
Detecting and Tolerating Byzantine Faults in

Database Systems

by

Benjamin Mead Vandiver

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

@ Massachusetts Institute of Technology 2008. All rights reserved.

Ni

Author
Department of Electrical i ing and

I V

Computer Science
May 23, 2008

C ertified by
Barbara Liskov

Ford Professor of Engineering
Thesis Supervisor

Accepted by..
Terry P. Orlando

/hairman, Department Committee on Graduate StudentsMASSACHUSETTS INSIT -
OF TECHNP!O .Oy

JUL 0 1 2008

LIBRARIES-- - -~~-- ~---

i·

Detecting and Tolerating Byzantine Faults in Database

Systems

by

Benjamin Mead Vandiver

Submitted to the Department of Electrical Engineering and Computer Science
on May 23, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Computer Science

Abstract

This thesis describes the design, implementation, and evaluation of a replication
scheme to handle Byzantine faults in transaction processing database systems. The
scheme compares answers from queries and updates on multiple replicas which are
off-the-shelf database systems, to provide a single database that is Byzantine fault
tolerant. The scheme works when the replicas are homogeneous, but it also allows
heterogeneous replication in which replicas come from different vendors. Heteroge-
neous replicas reduce the impact of bugs and security compromises because they are
implemented independently and are thus less likely to suffer correlated failures. A
final component of the scheme is a repair mechanism that can correct the state of a
faulty replica, ensuring the longevity of the scheme.

The main challenge in designing a replication scheme for transaction processing
systems is ensuring that the replicas state does not diverge while allowing a high
degree of concurrency. We have developed two novel concurrency control protocols,
commit barrier scheduling (CBS) and snapshot epoch scheduling (SES) that provide
strong consistency and good performance. The two protocols provide different types
of consistency: CBS provides single-copy serializability and SES provides single-copy
snapshot isolation. We have implemented both protocols in the context of a replicated
SQL database. Our implementation has been tested with production versions of
several commercial and open source databases as replicas. Our experiments show
a configuration that can tolerate one faulty replica has only a modest performance
overhead (about 10-20% for the TPC-C benchmark). Our implementation successfully
masks several Byzantine faults observed in practice and we have used it to find a new
bug in MySQL.

Thesis Supervisor: Barbara Liskov
Title: Ford Professor of Engineering

Acknowledgments

Many people have helped me along the way. My adviser Barbara Liskov has been

an invaluable source of guidance. She has helped me to refine my thinking, ensuring

that I fully understand my work.

I also wish to thank my fellow co-authors and thesis committee members: Sam

Madden, Hari Balakrishnan, and Mike Stonebraker. Working with them has been

insightful and fun; I feel like I have learned a lot.

My research group, the Programming Methodology Group, has been a continual

source of intellectual and not-so-intellectual conversation. One of the more enjoyable

parts of graduate school is talking about research with other smart people. Thanks

to Winnie Cheng, James Cowling, Dorothy Curtis, Dan Myers, Dan Ports, David

Schultz, Ben Leong, Rodrigo Rodrigues, and Sameer Ajmani.

In addition, I wish to thank all of the people I have taught with over the years.

I love teaching and you were my partners-in-crime. Thanks to Eric Grimson, Duane

Boning, Joel Moses, Franz Kaashoek, Gill Pratt, Lynn Stein, Seth Teller, Michael

Collins, Randy Davis, many other professors and still more graduate TAs.

My family and friends have also always been there for me. Mom and Dad always

had words of encouragement. Alex and Amy attended numerous thesis lunches. Jenny

Dorn also joined me for many lunches on the subject of the graduate student condition.

Finally, I wish to thank my wife Jen. She has been a truly incredible source of

support and encouragement. I could go on, but I have not the space to thank her

enough.

Contents

1 Introduction

1.1 Goals

1.2 Approach

1.3 Contributions

1.4 Outline

2 Related Work

2.1 Tolerating Byzantine Faults

2.1.1 Byzantine faults and Databases

2.2 Database Replication for Crash Faults

2.3 Database Repair

3 Architectural Model

3.1 Middleware Model

3.2 Database Interface

3.2.1 Transaction Isolation Level...

3.2.2 SQL

3.2.3 SQL Compatibility

3.2.4 Non-determinism

3.2.5 Operating Environment

3.3 Faults

3.3.1 Bugs in Databases

7

.

.°

........

.o

4 Commit Barrier Scheduling

4.1 Basic Design

4.2 Protocol

4.2.1 Commit Barriers

4.2.2 Handling a Faulty Primary

4.2.3 View Changes

4.3 Fault Recovery

4.3.1 Recovery of a Crashed Replica.. .

4.3.2 Recovery from a Shepherd Crash

4.4 Correctness

4.4.1 Safety

4.4.2 Liveness

4.5 Practical Issues Running CBS

4.6 Optimizations

4.6.1 Bandwidth Reduction

4.6.2 Group Commit

4.6.3 Read-only Transactions

4.6.4 Early Primary Commit

5 Snapshot Epoch Scheduling

5.1 Snapshot Isolation

5.2 Key Issues

5.2.1 Keeping Replicas Synchronized .

5.2.2 Resolving Conflicting Transactions

5.2.3 Handling Faults

5.3 Protocol

5.3.1 Handling a Faulty Primary.

5.3.2 View Changes

5.4 Fault Recovery

5.4.1 Recovery of a Crashed Replica .

8

47

... ... 48

... ... 51

... ... 54

. 56

... ... 61

. 62

. 62

. 64

. 64

. 64

. 66

. 67

. 68

. 68

. 68

. 72

. 73

77

78

81

81

82

83

86

88

93

93

94

5.4.2 Recovery from a Shepherd Crash

5.5 Correctness

5.5.1 Safety

5.5.2 Liveness

5.6 Practical Considerations Running

5.7 Optimizations

6 Implementation and Performance

6.1 CBS Implementation

6.1.1 Heuristics

6.1.2 Handling Heterogeneity. . . .

6.1.3 Handling Concurrency

6.2 CBS Performance Analysis

6.2.1 Middleware Overhead

6.2.2 HRDB Overhead

6.2.3 Heterogeneous Replication . .

6.2.4 Fail-stop faults

6.3 SES Implementation

6.3.1 Shim Implementation

6.3.2 SES Shepherd Implementation

6.4 SES Performance Analysis

6.4.1 Shim Performance

6.4.2 SES Shepherd Performance .

6.5 Bug Tolerance and Discovery

6.5.1 Tolerance of Bugs with HRDB

105

. 105

. 106

. 107

. 107

. 109

. 111

. 116

. 121

. 124

. 124

. 124

. 126

...... 129

. 130

. 130

. 133

. 133

6.5.2 Discovery of Bugs using HRDB

7 Repairing Byzantine Replicas

7.1 Compare and Repair Mechanisms

7.1.1 Computing Summaries: Hashing

7.1.2 Coelho Algorithm

SES

. 96

. 97

. 97

. 99

. 100

. 100

134

137

138

140

140

7.1.3

7.1.4

7.1.5

7.2 HRDB

7.2.1

7.2.2

N-Round-X-Row-Hash

Results

Conclusions

and Repair

Quiescent Repair . . .

Incremental Repair . .

8 Conclusions

8.1 Contributions

8.2 Future Work

8.2.1 Repair

8.2.2 Replication of the Shepherd

8.2.3 Bug Discovery

8.3 Conclusion

142

144

154

155

155

157

165

165

167

167

168

169

169

List of Figures

3-1 Middleware system architecture. Left-hand architecture uses a single

shepherd, the right hand, a replicated shepherd. 34

3-2 Serializable schedules and conflicting transactions. Transaction A +-

B conflicts with the other two transactions. 36

3-3 Examples of SQL Compatibility Issues 39

4-1 Commit Barrier Scheduling Shepherd Architecture. 49

4-2 Possible transaction execution schedule on the primary as observed

by the shepherd. Primary indicates that Q. and Q, do not conflict

because they both complete without an intervening commit. 50

4-3 Pseudo-code for the coordinator 55

4-4 Pseudo-code for secondary managers. 56

4-5 Example schedule of three transactions, as executed by the primary.

Note that the coordinator does not know the identities of x, y, and z

(or even that they are distinct). Each query is super-scripted with the

barrier CBS would assign to it 56

4-6 Secondary replica gets stuck because it executes transactions in an

order that differs from the coordinator's ordering. 58

5-1 Illustration of transaction ordering rules 79

5-2 T1 is simultaneous with T2, and T2 is simultaneous with T3, yet T1

is not simultaneous with T3. 79

5-3 Equivalent orderings produced by reordering snapshots, reordering com-

mits, but not reordering commits and snapshots. 82

5-4 Snapshot Epoch Scheduling Shepherd Architecture. 86

5-5 Transactions are scheduled into snapshot and commit epochs 87

5-6 SES Coordinator pseudo-code. 89

5-7 SES Replica Manager pseudo-code. 90

5-8 Crash Recovery Scenario 95

5-9 Replication for fault tolerance and performance (f = 1). 101

6-1 MySQL performance on TPC-C with various warehouse counts. . .. 110

6-2 TPC-C with 1 and 3 Warehouses run through middleware (no replication) 113

6-3 TPC-C with 5 and 10 Warehouses run through middleware (no repli-

cation) 114

6-4 TPC-C with 1 and 3 Warehouses, comparing replication methods . . 118

6-5 TPC-C with 5 and 10 Warehouses, comparing replication methods . . 119

6-6 TPC-C with 30 warehouses, comparing replication methods 120

6-7 Performance of HRDB with a heterogeneous replica set (MySQL, DB2,

Commercial Database X). 122

6-8 Transactions completed over time on TPC-C workload as one replica

is crashed and restarted 125

6-9 Slow secondary gets stuck. An aborted transaction consumes a database

connection needed to acquire a snapshot. 127

6-10 Performance of Shim on writes and TPC-C 131

6-11 Performance of SES Shepherd on writes benchmark: each transaction

updates 5 rows out of a 10,000 row table. 132

6-12 Bugs we reproduced and masked with HRDB. 134

7-1 Architecture of Compare and Repair mechanism 139

7-2 Results for recursive hashing Coelho algorithm. The amount of cor-

ruption, P, is the probability that any given row is incorrect. 147

7-3 Coelho scaled up to run against a 1GB table, varying branching factor

(B) and probability a row is incorrect (10-5,10-4,10-3). The peaks are

where the tree leaves do not fit in memory. 148

7-4 Performance of N-round-X-row-hash, P is the probability that any

given row is incorrect. 150

7-5 Bandwidth model vs actual data for 2 round X row hash with 10 row

second round. H (hash overhead compared to row size) is 0.037. P is

the probability that any given record is incorrect. 151

7-6 The repair manager submits repair transactions through the coordina-

tor like a client, and the coordinator supplies it with the hooks required

for successful repair. 156

7-7 Incremental Repair operations repairing first table A then table B. .. 159

List of Tables

3.1 Summary of bugs reported in different systems. In all cases, over 50%

of the reported bugs cause non-crash faults resulting in incorrect an-

swers to be returned to the client, database corruption, or unauthorized

accesses. Current techniques only handle crash faults. The numbers

for the different systems are reports over different time durations, so it

is meaningless to compare them across systems. 43

4.1 System with f = 2 where a faulty primary causes a system-wide dead-

lock: no transaction is executed by f + 1 replicas 59

4.2 A faulty primary's reply could be incorrect, yet match a non-faulty

secondary's reply and be the majority. The variable A is initially 0 at

all replicas, and each transaction increments the value of A by 1. 60

4.3 Race condition in group commit 70

5.1 Snapshot Isolation Concurrency Examples 80

5.2 Re-execution cannot correctly update crashed replicas in Snapshot Iso-

lation 84

5.3 Example of a situation where two conflicting transactions acquire f +1

votes. 85

5.4 Situation from Figure 5.3 after coordinator commits T1. 85

5.5 Reprint of Table 5.4. 91

5.6 Example of a situation where the entire system deadlocks. 92

5.7 Example of a situation where aborting transaction can result in ineffi-

ciency. .. . 92

6.1 Performance implications of bandwidth overhead for large results. . . 116

6.2 Shim Protocol 126

6.3 Average writeset size, by transaction type. 130

7.1 Time/Bandwidth summary: comparison of NRXRH and Coelho. Pa-

rameters used: Coelho used B = 128 for each corruption scenario.

NRXRH used X 1 = 2, X 1 = 10, and X 1 = 200, X 2 = 10 respectively. . 152

7.2 Time/Bandwidth summary: comparison of NRXRH and Coelho with

precomputed hashes. Parameters used: Coelho used B = 128 for

each corruption scenario. NRXRH used X 1 = 2, Xi = 4, and X 1 =

500, X 2 = 10 respectively 153

7.3 Effect of correlated failures on Coelho and N-round-X-row-hash. Cor-

relation is the probability that the successor row is corrupt given the

current row is corrupt. Corruption is the fraction of rows of the table

that are corrupt. 154

Chapter 1

Introduction

Transaction processing database systems are complex, sophisticated software systems

involving millions of lines of code. They need to reliably implement ACID semantics,

while achieving high transactional throughput and availability. As is usual with sys-

tems of this magnitude, we can expect them to contain thousands of fault-inducing

bugs in spite of the effort in testing and quality assurance on the part of vendors and

developers.

A bug in a transaction processing system may immediately cause a crash; if that

happens, the system can take advantage of its transactional semantics to recover from

the write-ahead log and the only impact on clients is some downtime during recovery.

However, bugs may also cause Byzantine faults in which the execution of a query is

incorrect, yet the transaction commits, causing wrong answers to be returned to the

client or wrong data items to be stored in the database. A Byzantine fault is one

where the faulty entity may perform arbitrary incorrect operations. Examples of such

faults include concurrency control errors, incorrect query execution, database table

or index corruption, and so on. In fact, even if a bug eventually results in a crash,

the system could have performed erroneous operations (and exhibited Byzantine be-

havior) between the original occurrence of the bug and the eventual crash.

Byzantine faulty behavior is hard to mask because it is difficult to tell if any

given operation was executed correctly or not. Existing database systems offer no

protection against such faults. The field of Byzantine fault tolerance is well known

in the distributed systems research community, along with the solution: replication.

This thesis describes the design, implementation, and evaluation of new replication

schemes to mask and recover from both Byzantine and crash faults in transaction

processing systems.

In this chapter, we first describe the goals of our system: what we set out to

accomplish. Next, we discuss the approach we used to address the goals. We then

present an overview of the three major contributions of the work. Finally, we conclude

with an outline of the rest of the thesis.

1.1 Goals

Our aim is to develop a replication system that tolerates Byzantine faults in databases

while providing clients with good performance. This section describes the goals of

the system.

Correctness. The primary goal of our system is correctness: the system must behave

correctly in the presence of Byzantine-faulty database replicas. The system is

parametrized by f, the maximum number of simultaneously faulty replicas.

If no more than f replicas are faulty, then clients must receive only correct

answers for transactions that commit and non-faulty database replicas must

have equivalent logical state.

The system must appear to the clients as if it were a non-replicated system (e.g.,

single-copy consistency). Furthermore, it must provide a strong consistency

model such as serializable or snapshot isolation. With strong consistency, clients

may ignore much of the additional complexity introduced by replication.

Good Performance. We require that the performance of our system must not be

substantially worse than that of a single, non-replicated database. In the trans-

actional database context, good performance implies support for high concur-

rency. The problem is that, if presented with a workload consisting of opera-

tions from a set of concurrent transactions, different replicas may execute them

in different orders, each of which constitutes a correct execution at that replica.

However, these local orders may not all be consistent with each other, which can

lead to divergence in the state of non-faulty replicas. Ordering problems can be

avoided by running one transaction at a time, but this approach eliminates all

concurrency and performs poorly.

Support for Heterogeneity. The system must support heterogeneous database repli-

cas to ensure failure independence. Heterogeneous replicas are unlikely to share

the same set of bugs since their implementations were produced independently.

Heterogeneity can also reduce the probability that security vulnerabilities will

affect the correct behavior of the replicated system, because a single vulnerabil-

ity will likely affect only one of the replicas. Clearly all replicas in a deployment

must be similar enough that the system can cause all non-faulty replicas to

process queries "identically."

1.2 Approach

The goals listed above are individually straightforward to implement, but taken to-

gether they describe a significant design challenge. Our system satisfies the goals

through the use of the following four techniques:

Voting. By running each client operation on multiple replicas and voting on the

result, the system can guarantee correct answers as long as less than some

threshold of the replicas are faulty. However, voting only works if replica execute

operations in equivalent orders and the operation results are comparable across

heterogeneous replicas.

Middleware. Our system interposes an intermediary between the clients and the

database replicas. This middleware runs the replication protocol, ensuring cor-

rect answers and strong consistency for the clients and consistent state for the

database replicas. Middleware simplifies client code by hiding the replication

mechanism from the clients. To clients, middleware acts like a single database

with a standard interface. The middleware interacts with database replicas via

the standard client interface, thus requiring no (or minimal) modifications to

database replica software. In some cases, it does not even require any additional

software to run on the machine hosting a replica database. Treating each replica

as a mostly "shrink-wrapped" subsystem eases the deployment and operation of

our system and allows it to work with commercial offerings.

Primary/Secondary Scheme. To achieve good performance, our system selects

one replica to be the primary and make ordering decisions about transactions

for the rest of the replicas (the secondaries). As long as the primary is non-faulty,

it is highly efficient at determining the available concurrency in the workload.

If the primary becomes faulty, the system replaces it with a secondary. Since

the expectation is that databases are infrequently faulty, we trade off perfor-

mance loss in an unusual case for a faster transaction ordering mechanism in

the common case. Obviously, a Byzantine-faulty primary must be prevented

from impacting the correctness of the system.

Repair. Once a database replica has suffered a Byzantine fault, its state may be

incorrect. A repair operation corrects the state of the faulty replica so that

it can once again contribute positively to the voting process. Without an effi-

cient repair mechanism, the likelihood of exceeding f faults increases over time,

limiting the lifetime of the system.

1.3 Contributions

This thesis presents and evaluates three major new contributions to the area of Byzan-

tine fault tolerance of databases. The first two contributions are novel concurrency

control protocols that provide good performance while tolerating Byzantine faults in

databases. The third contribution is a repair mechanism that can be used to correct

the state of database replicas that have become faulty.

Commit Barrier Scheduling. A key contribution of this thesis is a new concur-

rency control protocol, called commit barrier scheduling (CBS), that allows

our system to guarantee correct behavior and single-copy serializable execution

while achieving high concurrency. CBS constrains the order in which queries

are sent to replicas just enough to prevent conflicting schedules, while preserv-

ing most of the concurrency in the workload. Additionally CBS ensures that

users see only correct responses for transactions that commit, even when some

of the replicas are Byzantine faulty. CBS requires that each replica implement

concurrency control using rigorous two-phase locking, but this is not onerous

since rigorous two-phase locking is used in many production databases. CBS

does not require any modification to the database nor any co-resident software.

Though unnecessary for correctness, such co-resident software can improve the

performance of the protocol.

We have implemented Commit Barrier Scheduling as part of HRDB (Hetero-

geneous Replicated DataBase), which uses SQL databases as replicas. HRDB

supports replicas from different vendors (we have used IBM DB2, MySQL, Mi-

crosoft SQLServer, and Derby). Our experiments with the HRDB prototype

show that it can provide fault-tolerance by masking bugs that exist in some but

not all replicas. HRDB is capable of masking deterministic bugs using replicas

from heterogeneous vendors and non-deterministic bugs using different versions

from the same vendor. In addition, using HRDB we discovered a serious new

non-deterministic bug in MySQL; a patch for this bug has been included in

a recent MySQL release. We found HRDB to have reasonable overhead of

10-20% (compared to a non-replicated database) on TPC-C, a database indus-

try standard benchmark that models a high-concurrency transaction processing

workload.

Snapshot Epoch Scheduling. The second major contribution is another new con-

currency control control protocol, called snapshot epoch scheduling (SES), which

has the same correctness and performance properties as CBS, but provides

single-copy snapshot isolation instead. Snapshot isolation is weaker than se-

rializability, but is supported by many popular databases (e.g., Oracle, Post-

greSQL, and Microsoft SQLServer) due to its desirable performance character-

istics. Rather than requiring that replicas provide serializable isolation using

rigorous two-phase locking, SES instead requires that replicas implement snap-

shot isolation. Due to the nature of snapshot isolation, SES requires additional

functionality from component databases: writeset extraction. Writeset extrac-

tion is required to retrieve data necessary for efficient response to faults.

We implemented SES as a module for HRDB and tested it with PostgreSQL,

a popular open-source database that implements snapshot isolation and has an

extension that implements writeset extraction. We found HRDB running SES

to perform well: replication only introduces 18% overhead.

Repair Algorithm. The third contribution is two database repair mechanisms for

correcting the state of a faulty replica, one for CBS and one for SES. These

mechanisms use only the SQL interface, thus they work on heterogeneous repli-

cas. In addition to these mechanisms, we also analyze two compare-and-repair

algorithms, one we developed and one from the literature. The algorithms

efficiently correct faulty state, achieving an order of magnitude performance

improvement over a naive algorithm.

Summing up the individual contributions presented above, this thesis demon-

strates a practical application of Byzantine fault tolerance protocols. Databases suf-

fer from Byzantine faults and clients care about receiving correct answers to their

queries. Moreover, the database community provides various implementations with

similar interfaces, allowing us to achieve the replica failure independence assumed

present, but often overlooked, in other applications of Byzantine fault tolerance.

1.4 Outline

The thesis starts off with a discussion of related work in Chapter 2, then describes

our system model and assumptions in Chapter 3. Chapter 4 presents Commit Barrier

Scheduling and Chapter 5 details Snapshot Epoch Scheduling. Chapter 6 evaluates

the overhead and fault tolerance properties of both CBS and SES. The repair mech-

anisms are described and evaluated in Chapter 7. Finally, we conclude and discuss

future work in Chapter 8.

Chapter 2

Related Work

To the best of our knowledge, HRDB is the first practical Byzantine fault-tolerant

transaction processing system that is able to execute transactions concurrently. We

begin by discussing research on systems that tolerate Byzantine faults. Then we

discuss work on the use of replication to allow database systems to survive crashes.

We conclude with a brief discussion of database repair tools which could be used for

replica state repair.

2.1 Tolerating Byzantine Faults

The BFT library [5] provides efficient Byzantine fault-tolerance through state ma-

chine replication; it requires that all operations be deterministic. One might ask

whether this library, previously used for NFS, can be easily adapted to transactional

databases. BFT ensures that all the replicas process operation requests in the same

order; in our system operations are queries, COMMITs, and ABORTs. As originally

proposed, BFT requires that operations complete in order; with this constraint, the

first query to be blocked by the concurrency control mechanism of the database would

cause the entire system to block. Kotla and Dahlin propose [19] a way to loosen this

constraint by partitioning operations into non-conflicting sets and running each set

in parallel. To do this, however, they require the ability to determine in advance

of execution whether two operations (or transactions) conflict, which is possible in

some systems (such as NFS) and difficult in databases [36]. In database systems,

the statements of the transaction are often not available at the time the transaction

begins. Furthermore, just determining the objects that a single database statement

will update involves evaluating predicates over the contents of the database (an op-

eration that must itself be properly serialized.) To see why, consider an update in an

employee database that gives a raise to all employees who make less than $50,000;

clearly, it is not possible to determine the records that will be modified without (par-

tially) evaluating the query. In contrast, our scheme does not require the ability to

determine the transaction conflict graph up front but still preserves concurrency while

ensuring that state machine replication works properly.

BASE [6] is an extension of BFT that allows the use of heterogeneous replicas by

implementing stateful conformance wrappers for each replica. Typically, the confor-

mance wrapper executes the operations while maintaining additional state that allows

it to translate between the local state of the replica and the global system state. Our

system interacts with replicas via SQL, which is a more expressive interface than

the BASE examples. Rather than maintaining state in the wrapper, our scheme de-

pends on rewriting the SQL operations to keep the replicas' logical state the same. A

more full featured implementation might maintain wrapper state to circumvent some

vagaries of SQL.

Any system that provides agreement in the presence of Byzantine faults requires

that no more than 1/3 of the replicas are faulty. Recent work [47] shows that, provided

with a mechanism to agree on the order of operations, execution under a Byzantine

fault model requires only that no more than 1/2 of the execution replicas are faulty.

Thus a two-tier system can use a set of lightweight nodes to perform agreement and

a smaller set of nodes to execute the workload. We use this property in our design.

2.1.1 Byzantine faults and Databases

A scheme for Byzantine fault-tolerant database replication was proposed two decades

ago [25], but this work does not appear to have been implemented and the proposal

did not exhibit any concurrency, implying that it would have performed quite poorly.

When this paper was written, Byzantine fault tolerance was not as well understood,

particularly the lower bound of 3f + 1 replicas necessary to perform agreement in

the presence of up to f Byzantine faulty replicas. Their algorithm uses only 2f + 1

replicas to perform agreement, making it impossible that the scheme worked.

C-JDBC [9] defines a RAIDb level called RAIDb-lec that uses voting to toler-

ate Byzantine failures in databases. Unlike the other RAIDb levels, no performance

results for RAIDb-lec exist, and the feature has been removed from subsequent ver-

sions of C-JDBC (or Sequoia as it is now called). It is unlikely that RAIDb-lec was

ever fully implemented. It seems unlikely that RAIDb-lec supports concurrent write

operations because the other modes of C-JDBC do not.

Goldengate Veridata [12] uses a log extraction mechanism to compare the update

streams of a pair of databases, looking for discrepancies. Veridata is a commercial

product devoted to data integrity, showing that there is real demand for this service.

Since Veridata does not observe interactions with clients, it can only discover eventual

inconsistencies and cannot verify answers that are actually sent to clients. Because

it compares streams from two replicas, Veridata can flag inconsistencies, but it lacks

the required 3 replicas to decide what the correct answer should be.

Gashi et al. [10] discuss the problem of tolerating Byzantine faults in databases

and document a number of Byzantine failures in bug reports from real databases (see

the discussion in Section 3.3.1). They propose a middleware-based solution where

transactions are issued to replicas and the results are voted on to detect faults. They

do not, however, present a protocol that preserves concurrency or discuss the associ-

ated problem of ensuring equivalent serial schedules on the replicas.

Castro et al. successfully used the BASE [6] library to construct a Byzantine fault

tolerant version of an object-oriented database called Thor [23]. While Thor supports

transactions with strong consistency, it is an object store, not a modern relational

database system. The specific techniques used to make Thor work with BASE are

not applicable to generic databases.

With the outsourcing of data storage, certifying that untrusted databases have

correctly executed queries has become a research topic called data publishing. A data

owner provides data for the service provider to serve to clients, and the owner would

like the clients to have confidence that their queries are being executed correctly on

the data supplied by the owner. One common mechanism is for the owner to compute

a Merkle [24] tree of signed hashes [27, 28], while another method is to seed the data

with marker tuples [46]. All of these mechanisms require a correct owner and support

a restricted set of queries on the data. Many of them also require modifications to

database software.

2.2 Database Replication for Crash Faults

Database replication is at the core of modern high availability and disaster recovery

mechanisms. None of the database replication mechanisms mentioned below tolerate

Byzantine faults. Many of the schemes can not be modified to support tolerating

Byzantine faults because they use asymmetric execution: transactions are executed

on a single replica and the results propagated to the other replicas. Asymmetric

execution provides good performance by avoiding duplication of work. However, if

the executing replica is faulty, then it can propagate incorrect values into the state of

correct replicas. Symmetric execution introduces additional challenges with regards

to concurrency control: many replicas must execute transactions in the same order.

Replication has been well researched and implemented by industry [15, 41]. Many

of the points in the space have been examined [13, 44], along a number of dimensions,

such as consistency model, agent or entity performing replication, what operations the

agent has available, replica operating environment, and types of faults tolerated. This

thesis focuses on providing strong consistency with middleware using heterogeneous,

well-connected replicas. Weak consistency models [30, 13] can be unsatisfying to users

and introduce new challenges for Byzantine fault tolerance. Supporting heterogeneous

replicas is key to fault independence and middleware reduces the cost of supporting

heterogeneity. While some work has addressed database replication with adverse

network conditions [37, 1], we do not: we focus on replication with well-provisioned,

low latency, and highly reliable interconnect.

A typical strong consistency model is single-copy serializable [18, 4, 3], where the

system behaves as if it is a single, non-replicated database that executes concurrent

transactions as if in some serial order. Providing single-copy serializable behavior

with a middleware-based system poses a challenge because the middleware does not

have direct control over the concurrency manager in the database replicas. One res-

olution is to implement a concurrency manager in the middleware, usually using a

course-grained mechanism like partitioning [17] or table-level locking [2]. The per-

formance of such solutions is dependent on the workload matching the granularity of

the mechanism.

The Pronto [29] system uses a mechanism similar to ours: have one replica decide

the serial schedule for the rest. In Pronto, the primary replica decides the ordering and

the secondary replicas execute transactions sequentially in the order they complete

executing on the primary. Performance is limited to that of sequential execution,

but Pronto can guarantee that the secondary replicas are hot spares: a crash of the

primary does not result in loss of any committed transactions, nor does any recovery

need occur to promote a secondary to be the new primary.

Recent research has focused on providing single-copy snapshot isolation [22]. Snap-

shot isolation is a popular concurrency control mechanism that is slightly weaker than

serializable but performs well on common workloads. Postgres-R(SI) [45] modifies the

base level PostgreSQL implementation to efficiently support replicated snapshot isola-

tion. The Ganymede [31] and SI-Rep [22] provide single-copy snapshot isolation with

middleware. All of the above systems require writeset extraction. They use write-

sets to achieve good performance by having only one replica execute a transaction

and extracting the writeset for application on the other replicas. Furthermore, since

transactions conflict under snapshot isolation when their writesets intersect, writesets

enable middleware to perform conflict detection and resolution. Writeset extraction

is not available as a standard database operation; all the implementations depend on

modified versions of the PostgreSQL database.

A number of systems support heterogeneous replication. Probably the closest to

our system is C-JDBC [7, 9], which uses JDBC middleware to provide scalability and

crash fault tolerance. C-JDBC supports partitioning and partial replication, allowing

scale-up by sending queries to the appropriate replica. C-JDBC is optimized for

workloads with few write operations: only one write operation may be in progress

at a time. For high-contention workloads like TPC-C [42], C-JDBC is unlikely to

perform well.

Goldengate [11] provides high performance heterogeneous replication using log

shipping. The Goldengate engine reads the database log and converts its entries to

a database independent format for transfer. The log entries can then be shipped

over the network and applied to another database. Goldengate can extract data from

many databases (Oracle, DB2, SQL Server, MySQL, Sybase, etc) and can import

into any ODBC compatible database. Since database log format is implementation

specific, adding support to Goldengate for additional databases requires significant

effort. Sybase [41] appears to use a similar mechanism for heterogeneous replication.

While not heterogeneous replication per se, federated databases face a number

of similar challenges [35]. A federated database is comprised of many autonomous

sub-databases that each contain distinct datasets and may be running software from

different vendors. Such systems provide only eventual consistency due to replica

autonomy, but they do face challenges of SQL and schema compatibility. Oracle

Heterogeneous Connectivity [26] provides a mechanism to run queries against Oracle

and other heterogeneous databases and claims to resolve many SQL translation issues.

2.3 Database Repair

Should a database's state become faulty, a repair operation is necessary to rectify

the problem. Central to efficient repair is detecting which sections differ between

the faulty and correct state. A number of commercial programs [33] for database

comparison exist, mostly developed to aid database administrators who are comparing

databases by hand to determine what went wrong with their replication systems. The

companies do not detail their mechanisms, merely stating that they are "efficient" and

"scale to large databases."

When extracting data from transactional systems for storage in data warehouses,

the extractor must also detect new or changed data [20, 32]. These mechanisms rely

on data structure, triggers, or temporal locality to isolate updates. However, such

mechanisms may not efficiently reveal corrupted state.

Database repair bears some resemblance to synchronizing files between file-systems,

a task that rsync [43] accomplishes well. Rsync works by computing rolling hashes of

file blocks, effectively summarizing file content while isolating which blocks of the file

differ. Blocks in files are ordered and named by their offset from the beginning of the

file. A block inserted at the beginning of the file changes the offsets of all subsequent

blocks, necessitating the rolling hash so data can be matched, regardless of its new

position. Database rows are unordered and named by primary key. Inserting a row

does not change the primary key of other rows, obviating the need for the rolling

hashes used in rsync. An optimization of rsync uses multiple rounds of hashes to

further reduce bandwidth consumed [21].

Coelho describes an efficient database comparison algorithm used in PostgreSQL's

pgcomparator tool [8]. The algorithm works by building a tree of hashes (similar

to a Merkle tree [24]), which is then used to isolate rows that differ. We analyze the

performance of this algorithm in Chapter 7.

Chapter 3

Architectural Model

The system presented in the following chapters uses a middleware-based architec-

ture. Interposed between the actual clients and the database, middleware acts like

a database to the clients and a client to the databases. This chapter starts with

the middleware architecture that is at the core of the thesis. Next, we describe the

client/database interface, which details both what clients expect to interact with and

what operations the middleware has available to it. The final section introduces more

carefully the fault model and its consequences, along with a brief survey of faults in

databases.

3.1 Middleware Model

In our system, clients do not interact directly with the database replicas. Instead

they communicate with a shepherd, which acts as a front-end to the replicas and

coordinates them. The simplest shepherd design is a single machine, however the

shepherd could be replicated for increased fault tolerance. Figure 3-1 shows two

possible shepherd system architectures. The architecture requires 2f + 1 database

replicas, where f is the maximum number of simultaneously faulty replicas the system

can tolerate. It requires only 2f + 1 replicas because the database replicas do not

carry out agreement; instead they simply execute statements sent to them by the

shepherd. The figure illustrates a system in which f = 1.

Client Client Client

Figure 3-1: Middleware system architecture. Left-hand architecture uses a single
shepherd, the right hand, a replicated shepherd.

We assume the shepherd itself is trusted and does not have Byzantine faults,

though it might crash (e.g., because the machine it runs on crashes). Since the com-

plexity and amount of code in the shepherd is orders of magnitude smaller than in

the replicas, we believe that assuming non-Byzantine behavior is reasonable. Fur-

thermore, we expect that a trusted shepherd is the most likely way the system would

be deployed in practice. The shepherd can also be replicated for Byzantine fault

tolerance; this is a subject for future work.

We assume that all transactions that run on the replicas are sent via the shepherd.

3.2 Database Interface

Clients interact with a database by connecting to it, likely over a network connection,

and issuing a sequence of transactions. A database connection has a number of

properties on which clients and databases depend. First, each connection executes

transactions serially. Second, clients expect that if two transactions are submitted on

the same connection that the later one will see the effects of the previous one. Third,

the connection is established with a certain set of credentials, which govern which

operations will be allowed by the database. Fourth, some objects are only accessible

from the connection that created them, such as prepared statements, connection

variables, and temporary tables. Finally, transactions are tied to the connection that

created them: breaking the connection aborts the transaction in progress.

There is a set of common connection protocols, like JDBC or ODBC, that client

applications use to communicate with a database. Each database vendor provides

a library that implements one (or more) of these protocols and client applications

link against and call into the library to interact with the database. All of these

libraries provide a blocking interface to the database: control is not returned to the

client application until the database operation has completed. Finally, these protocols

support authenticated and encrypted connections (typically SSL).

A transaction consists of an ordered list of statements followed by a commit or an

abort. When executing a transaction, the database ensures that the statements are

executed in order, with the effects of the previous statements visible to the later ones.

A transaction commits by atomically and durably updating the state of the database

to reflect the operations of the transaction. A transaction that aborts has no effect

on the database state. In addition to atomicity and durability, the database also

provides consistency and isolation in the presence of concurrent transactions (ACID

semantics [14]).

3.2.1 Transaction Isolation Level

While each connection can only submit one transaction at a time, the database may

have many clients connected to it that are issuing transactions concurrently. The

transaction isolation level determines how the database handles multiple concurrent

transactions, particularly when two transactions access the same object.

Two transactions (or statements) conflict when they both access the same

object and at least one of the accesses is a write.

Databases provide a number of different levels of isolation between conflicting

transactions. The highest level of isolation is SERIALIZABLE, where transactions

are executed as if in some serial order. Two execution orders are serially equivalent

if, for each pair of conflicting transactions TA and TB, if TA appears before TB in one

order then TA appears before TB in the other order. See Figure 3-2 for a comparison of

serial transaction schedules. For all transactions whose order matters (e.g., conflicting

transactions), serializable isolation assigns a strict ordering; thus allowing an exterior

system such as ours to reason about operation ordering on a per transaction basis

instead of a per statement basis.

Transaction Schedule Equivalent Schedule Different Schedule
B A C A A B
C A B· A B A
A B A B C A

Figure 3-2: Serializable schedules and conflicting transactions. Transaction A +- B
conflicts with the other two transactions.

Databases typically implement isolation using either optimistic or pessimistic con-

currency control. An optimistic scheme keeps track of the read and write sets of a

transaction, and at commit time decides whether the isolation property has been

upheld, aborting the transaction if isolation is violated.

In a pessimistic system, the database acquires shared or exclusive locks on the data

items that it touches. Locking is conservative: databases may lock more items than

are actually necessary (e.g., pages instead of rows). Additionally, use of locking can

result in deadlocks, forcing the database's deadlock detector to abort a transaction.

Two-phase locking is a pessimistic mechanism that guarantees serializability but can

lead to cascading aborts so is never used in practice.

Rigorous two-phase locking (R2PL) is a stricter locking mechanism that prevents

cascading aborts. In R2PL, the database acquires shared or exclusive locks for each

operation and holds them until the commit point. The implication of R2PL is that if a

transaction A attempts an operation that conflicts with a concurrently running trans-

action B, then A's operation will block until B either commits or aborts. Similarly, if

a transaction has successfully executed and gotten answers for a set of statements, but

has not yet committed, it holds locks for all of the statements executed so far. R2PL

ensures that the order in which transactions commit is the same as the execution

order. Since commit order is visible to the client, serializable isolation with rigorous

two-phase locking allows an external system to observe (and enforce) a particular

execution order.

3.2.2 SQL

Transaction statements are usually presented in SQL (Structured Query Language),

a relatively standard declarative query language that most widely used databases

support. A SQL statement declares the objective of the read or write operation, not

the manner in which it should be performed. The database's query optimizer and

execution engine determine how to implement the query. Even for a given database

architecture and table layout, many query plans are possible.

SQL statements fall into several broad categories. While the following list is by

no means complete, it does cover the basic SQL statements:

* Reads consist of SELECT statements.

* Writes include INSERT, UPDATE, and DELETE statements.

* Transaction control statements manage transactions (BEGIN, COMMIT, and ROLL-

BACK (abort)).

* Data definition statements deal with updates to the table schemas (CREATE,

DROP, or ALTER).

We support all of the above except for statements that fall into the data definition cat-

egory. Many database implementations do not respect transactional semantics when

executing data definition statements. Thus, we provide no consistency guarantees for

workloads that contain them. However, actual client workloads rarely contain data

definition statements.

Databases provide two abstraction mechanisms to simplify client SQL: views and

stored procedures. Views are virtual tables that result from running a SELECT query.

Reading from a view is equivalent to reading from the result of the query associated

with the view. As such, the results from complicated queries can be simply retrieved

and the complicated queries fully optimized beforehand. Stored procedures are client-

authored programs stored in the database and executed using a CALL SQL statement.

Since the text of the procedure is only sent and compiled once, using stored procedures

reduces bandwidth and processing time. Each database implementation typically has

its own language for expressing stored procedures. Both views and stored procedures

hide implementation details from the SQL. Mechanisms that depend on SQL analysis

to determine the effect of SQL statements have trouble dealing with views and stored

procedures.

Finally, clients can submit parametrized statements (called prepared statements)

to the database ahead of time. The database can then parse and do preliminary

execution planning for the statement. When the client wishes to execute the prepared

statement, it provides values for the parameters. For example, a client inserting many

rows into the same table could use a prepared statement to send the INSERT SQL to

the database only once. Prepared statements are typically tied to the connection

that created them. Objects tied to connections can pose problems for middleware

that may use many actual database connections to service a single client connection.

3.2.3 SQL Compatibility

Many different relational database implementations exist: Oracle, IBM DB2, Mi-

crosoft SQLServer, MySQL, PostgreSQL, Sybase, Apache Derby, etc. While het-

erogeneity of implementation is key to increased failure independence, differences in

interface present a challenge. A number of SQL standards exist (SQL-92, SQL-99,

SQL:2003, ...), which specify both syntax and semantic meaning of SQL statements.

While all of the above databases claim to support most of SQL-99 [16], they all have

their own proprietary extensions to the language to support additional features. In

addition to differences in syntax, each database supports a different set of available

functions, handles NULL values and dates slightly differently, etc. A summary of

some of these incompatibilities is shown in Figure 3-3.

To address this SQL compatibility issue, we present two possibilities: an online

solution and an offline alternative. The online solution is for the system to translate

Item Example
Ordering of NULLs in result sets Oracle & DB2 consider them higher, MySQL

& SQLServer consider them lower.
Limiting result sets Oracle and DB2 support a standard

ROWNUMBER construct, MySQL & SQLServer
each have non-standard SQL like LIMIT n.

Multi-row inserts Optional standard implemented by DB2 and
MySQL, but not Oracle and SQLServer.

BOOLEAN type Only Postgres implements it, DB2 suggests
CHAR, SQLServer suggest BIT, MySQL
aliases BOOLEAN to TINYINT.

CHAR type MySQL silently truncates over length strings
instead of returning errors.

TIMESTAMP type MySQL's TIMESTAMP is a magic self-
updating value; MySQL's DATETIME is like
TIMESTAMP standard except it doesn't store
fractional seconds.

SELECT without table source DB2 and Oracle require dummy table
(SYSIBM. SYSDUMMY1 and DUAL, respectively)

Figure 3-3: Examples of SQL Compatibility Issues

from client issued SQL into database-native SQL for each database replica to execute.

There are existing software packages [39, 40] that accomplish this complex task. To

improve performance, the system could also maintain a cache of translated statements

to avoid re-translating common statements. A database administrator could then look

over the repository of cached translations and optimize them for better performance.

The offline solution is to hide non-standard SQL from the system by burying it

in views and stored procedures. Both views and stored procedures are often written

by database administrators offline to improve performance. By independently im-

plementing the same view or stored procedure on each heterogeneous database, the

implementation details of the operation are removed from the SQL sent by the client

application to the system. Of course, using views or stored procedures requires users

of the system to implement their queries in several different database systems.

In general, either of these solutions may require some effort by users to port their

SQL queries to several different database systems. Some effort may also be required to

set up identical tables on different systems and optimize performance via creation of

indices and other optimizations. Our system provides a basic translation mechanism

to make writing compatible SQL simpler. We believe that these overheads are not

overly onerous, especially given the increased robustness and fault tolerance that the

system offers.

3.2.4 Non-determinism

In order to build a replicated system, we require that each query presented by a

client be processed identically by every replica. However, some SQL queries can

be non-deterministic-different replicas legitimately produce different results for the

same operation. While some differences do not alter the meaning of the operation,

others do. For reasons of simplicity, we require that all SQL queries be deterministic.

The system can assume the burden of ensuring that SQL queries are deterministic by

using a translation engine to rewrite queries into an appropriate form. The rest of this

section presents potential sources of non-determinism and mechanisms for resolving

them.

Since relations are unordered sets, different replicas may end up returning dif-

ferently ordered responses to the same SQL query. For example, a query asking for

people living in Cambridge, MA could return the residents in any order. An ORDER

BY clause specifies one or more attributes with which to order the results. If the

attribute has unique values, the row order is completely specified and deterministic.

Thus, adding an ORDER BY with a primary key column to a query is both correct and

resolves the issue.

One situation where result set ordering is relevant is when the system is compar-

ing SELECT query results. From a practical standpoint, a set-compare routine could

determine that two differently-ordered results were the same. However, such a rou-

tine would likely be less efficient than the database sorting routine. Additionally, if

a query has an ORDER BY on a non-unique column, then some parts of the ordering

are important for correctness, while others are not. For example, a query asking for

people living in Massachusetts ordered by town specifies nothing about the ordering

of people from the same town. Comparison complexity can be entirely avoided by

adding the appropriate ORDER BY clause.

Another potential source of non-determinism is database-assigned row identifiers.

The database maintains a counter and assigns a number to each row as it is inserted.

The mechanism is often used to generate unique primary key values for rows. In

MySQL, it is called auto_incrementing columns; in Oracle, sequences. While the

mechanism is deterministic in the usual case, problems crop up around crashes. The

database may skip some values when it recovers, as it is unable to prove that it did

not use them already.

The system could duplicate the sequence mechanism and rewrite queries to include

the assigned ids. However, bulk inserts done with INSERT ... SELECT ... queries

do not provide an opportunity for the system to provide ids. For our system, the client

is required to provide their own row ids and avoid using the database functionality.

Other sources of non-determinism include non-deterministic functions like times-

tamp and rand. Once again, for simple queries the system could produce an output

for the function and rewrite the query to use that value. However, more complicated

queries are not amenable to rewriting. Handling non-deterministic functions in arbi-

trary SQL queries is an unsolved problem for all front-end based replication systems.

Hence, our system requires that clients not use non-deterministic functions in their

SQL queries.

3.2.5 Operating Environment

Databases running in a production environment are heavyweight pieces of software,

typically run as the sole application on high performance hardware. The database

instance is carefully tuned to take maximal advantage of the hardware. Since the

data stored within is valuable, database machines usually reside in a data center with

good physical security and power failure resilience. The common database execution

environment is reliable and well-provisioned.

While the system could be run over a wide area network, the additional latency

would have a significant impact on performance. We expect that the system is typ-

ically used to tolerate bugs more than disasters. As such, the database replicas are

likely located in the same data center. The data center provides a well provisioned

network connection with high bandwidth and low latency.

3.3 Faults

As described in Chapter 2, previous research in database fault tolerance has focused

on fail-stop fault tolerance. A fail-stop failure results in the failed replica ceasing

participation in the system. A replicated system is parametrized by f, the number of

simultaneously faulty replicas it can tolerate while still providing service. In the case

of fail-stop failures in a synchronous environment, at least f +1 replicas are necessary

to survive f failures. An example of this is a primary/failover system, which contains

2 replicas and can survive 1 crash. However, such a system depends on synchrony:

the failover mechanism must be able to determine (quickly) that the primary has

failed. In an asynchronous environment where timeouts are not a reliable mechanism

for determining if a replica is faulty, at least 2f + 1 replicas are necessary. In such a

system operations are performed by a quorum of f + 1 replicas, and safety requires

that every quorum intersect in at least 1 non-faulty node.

However, this thesis focuses on tolerating Byzantine faults in databases. As dis-

cussed in Chapter 1, a Byzantine faulty replica may perform arbitrary operations,

including but not limited to: returning incorrect answers, lying about what oper-

ations it has seen or performed, acting like a non-faulty replica, or colluding with

other faulty replicas. Tolerating f Byzantine faults in an asynchronous environment

requires at least 3f + 1 replicas, due to the requirement that each quorum must in-

tersect in at least f + 1 non-faulty replicas. Work by Dahlin [47] has shown that

using middleware to perform agreement reduces number of replicas needed to execute

operations to 2f + 1.

The Byzantine fault model is fundamentally different from the fail-stop fault

model. In the context of databases, a Byzantine-faulty replica could, but is not

limited to:

1. Return the incorrect answer to a query

Bug category DB2 Oracle MySQL
2/03-8/06 7/06-11/06 8/06-11/06

DBMS crash 120 21 60
Non-crash faults 131 28 64

Incorrect answers 81 24 63
DB corruption 40 4 (inc. above)
Unauth. access 10 unknown 1

Table 3.1: Summary of bugs reported in different systems. In all cases, over 50% of
the reported bugs cause non-crash faults resulting in incorrect answers to be returned
to the client, database corruption, or unauthorized accesses. Current techniques only
handle crash faults. The numbers for the different systems are reports over different
time durations, so it is meaningless to compare them across systems.

2. Incorrectly update or delete rows

3. Fail to adhere to transaction isolation requirements

4. Stall a transaction arbitrarily

5. Spuriously abort a transaction claiming deadlock

6. Fail to execute an operation and raise any error

7. Send messages outside the connection protocol specification

We will assume that the library implementations of the connection protocol correctly

handle malformed responses. Our system masks and recovers from all of the other

types of faults on the list.

Many of the techniques that are used in existing systems for handling fail-stop

faults do not transfer to a system that handles Byzantine faults. One of the most

common techniques is to have only one replica execute an operation and distribute the

results of the operation to all the other replicas. Obviously, if the executing replica is

faulty, it could return incorrect answers to be incorporated into the state of correct

replicas.

3.3.1 Bugs in Databases

Bugs lead to both fail-stop and Byzantine faults in databases. We performed a simple

analysis of bug reports in three database systems: DB2, Oracle and MySQL. Our goal

was to understand to what extent reported bugs return incorrect answers to clients

rather than cause crashes. Because it. is hard to get access to authoritative information

about bugs in practice, we looked at information available on vendor web sites about

bug fixes. In all cases, we found thousands of bug reports, a rate consistent with

other large software systems.

We divided the bugs into two broad categories: those that caused wrong results

to be reported or the database to be corrupted and those that caused a crash. It is

possible that crash-inducing bugs also caused wrong results to be reported; we count

these as crashes. Table 3.1 summarizes the results.

DB2: We looked at the set of bugs (called "Authorized Program Analysis Re-

ports", or APARs) reported as being fixed in DB2 UDB 8 Fixpaks 1 through 13;

these were released between February 2003 and August 2006. There are several thou-

sand such reports-many of the reports are related to tools associated with DB2, or

with the optimizer generating inefficient query plans. However, a number of them re-

sult in database corruption or incorrect answers that neither the user nor the database

system itself would detect. Examples of such bugs include reports titled "incorrect

results returned when a query joins on char columns of different lengths and uses like

predicate with string constant", "query compiler incorrectly removes a correlated join

predicate leading to an incorrect result set", and "in some rare cases, reorg operations

may result in corrupted index".

Of the 251 bugs reported, the majority (131) caused non-crash faults.

Oracle: We studied bugs that were fixed between July and November 2006 for an

upcoming release (labeled version 11.1 at the time) of the Oracle Server Enterprise

Edition by searching the Oracle Bug Database on the Oracle Metalink Server. We

did not characterize security bugs, as these are reported separately from the database

engine. The number of our sampled bugs that cause wrong results or database cor-

ruption (28) exceeds the number that cause crashes (21).

MySQL: We analyzed 90 days of bug reports from MySQL between August 15

and November 13, 2006. Of the 900 issues reported, about 131 of them are verified

issues inside the database server. As with DB2 and Oracle, more than half of the

verified MySQL database system engine bugs result in wrong answers.

Because current recovery and replication techniques only handle bugs that imme-

diately cause crashes, they apply to less than half of the bugs seen in this informal

study. We also note that our results are consistent with those reported by Gashi et al.

in a recent and more detailed study [10] of 181 bugs in PostgreSQL 7.0 and 7.2, Oracle

8.0.5, and SQL Server 7. They tested these systems and found that 80 of the reported

bugs result in "non-self-evident" faults-i.e., in incorrect answers without crashes or

error messages. They also report that for all but five bugs, the bug occurred in only

one of the four systems they tested, and in no case did any bug manifest itself in more

than two systems.

Chapter 4

Commit Barrier Scheduling

In this chapter we present a novel replication scheme for extracting good performance

while tolerating Byzantine faults. Furthermore, the scheme provides strong consis-

tency: client applications do not know they are talking to a replicated system because

the shepherd provides a single-copy serializable view of the replicated database. To

provide strong consistency, we require that all database replicas use R2PL to provide

serializable isolation.

Our Byzantine fault tolerant replication scheme must meet the following objec-

tives:

1. Ensure that all non-faulty replicas have equivalent logical state such that they

will return the same answer to any given query.

2. Ensure that the client always gets correct answers to queries belonging to trans-

actions that commit, even when up to f replicas are faulty.

3. Detect faulty replicas and flag them for repair.

The first objective can be met by coordinating the replicas to guarantee that they

all execute equivalent serial schedules. The naive approach of running transactions

one at a time to effect equivalent serial schedules on the replicas has poor performance

(see section 6.2.2). At the other extreme, simply sending the transactions concurrently

to a set of replicas will usually lead to different serial schedules, because each replica

can pick a different, yet "correct", serial ordering. Our solution to this problem is

commit barrier scheduling (CBS). CBS ensures that all non-faulty replicas commit

transactions in equivalent serial orders, while at the same time preserving much of

the concurrency in the workload.

The second objective can be met by ensuring that each query response sent to

the client is attested to by at least f + 1 replicas. If f + 1 replicas agree on the

answer, then at least one non-faulty replica agrees that the answer is correct. We

optimize for the common case where database replicas return correct answers: the

system can return an unverified answer to the client provided it subsequently forces

the transaction to abort if the answer turns out to be incorrect.

The third objective can be difficult to achieve because Byzantine-faulty replicas are

hard to detect. Replicas that return answers that do not match the answer agreed

upon by f + 1 other replicas are obviously faulty. However, a faulty replica can

claim to execute an operation correctly, when it actually did something completely

different. Additionally, a faulty replica can fail to make progress for a number of

different reasons. Our system flags replicas that return incorrect answers and uses a

set of heuristics to suspect replicas of other problems.

The chapter presents the basic design of commit barrier scheduling, followed by

the details of the protocol. Subsequently, we address how the scheme handles failures

(fail-stop and Byzantine) of the replicas and crashes of the shepherd. Following the

discussion of failures, we present a brief proof sketch for correctness and liveness.

We conclude by discussing the practical side of running CBS, along with a couple of

optimizations to the protocol.

4.1 Basic Design

As shown in Figure 4-1, the shepherd runs a single coordinator and one replica man-

ager for each back-end replica. The coordinator receives statements from clients and

forwards them to the replica managers. Replica managers execute statements on

their replicas, and send answers back to the coordinator. The coordinator sends re-

Primary Secondaries

Figure 4-1: Commit Barrier Scheduling Shepherd Architecture.

sults back to the clients, compares query answers for agreement, and determines when

it is safe for transactions to commit. The coordinator may also decide to abort and

retry transactions or initiate repair of faulty replicas.

The correctness of CBS depends on our assumption that the replicas use R2PL.

The pessimistic nature of R2PL guarantees that if a transaction has executed to com-

pletion and produced some answers, the shepherd can be confident that the trans-

action could actually commit with those answers. Under R2PL, a transaction holds

locks until the end of the transaction: a transaction that has executed all of its queries

holds all the locks it needs to be able to commit. By contrast, an optimistic concur-

rency control mechanism provides no guarantees about isolation until the transaction

actually commits. CBS must be able to compare definitive answers before deciding

whether to commit the transaction.

In CBS, one replica is designated to be the primary, and runs statements of

transactions slightly in advance of the other secondary replicas. The order in which

transactions complete on the primary determines a serial order. CBS ensures that all

the non-faulty secondaries commit transactions in an order equivalent to that at the

primary. Furthermore, the shepherd achieves good performance by allowing queries

to execute concurrently on the secondaries where it observes the queries execute con-

currently on the primary. CBS optimizes for the common case where the primary

is not faulty: when the primary is non-faulty the system performs well. A faulty

primary can cause performance to degrade but CBS maintains correctness.

Qx C
T1

T2 Qy Qz C

Figure 4-2: Possible transaction execution schedule on the primary as observed by
the shepherd. Primary indicates that Q, and Q, do not conflict because they both
complete without an intervening commit.

A non-faulty primary running R2PL exposes information about concurrency avail-

able in the workload, which we can use to achieve good performance. R2PL ensures

that a transaction T will hold all read and write locks acquired by any query in T

until T commits (or aborts). With two-phase locking, if a transaction T2 is able to

complete a query Qy after a query Qx from transaction T1 has run but before T1

commits (or aborts), then Qx and Q, do not conflict and can be executed in any

order. Such a scenario is illustrated in Figure 4-2. Furthermore, Q, does not conflict

with any statement of T1 before Q.. The essence can be summed up in the following

property:

If a non-faulty database replica completes executing two statements with-

out an intervening commit, then the two statements do not conflict.

The coordinator uses this property to extract concurrency information by observing

the primary execute transactions: if the (non-faulty) primary allows a set of queries to

run without conflicting, then the secondaries can run these queries concurrently (e.g.,

in parallel), or in any order, without yielding a different equivalent serial ordering

from the primary.

Obviously, a faulty primary can produce execution schedules in which conflicting

statements appear to execute concurrently. However, database implementations use

different mechanisms to detect conflicting transactions, which can result in non-faulty

database replicas disagreeing about which transactions conflict. For example, if one

replica locks individual database rows, while another replica locks whole database

pages, the second replica might block when the first one does not. Our approach

of using the primary to determine if queries can run in parallel performs well only

when the primary's locking mechanism is an accurate predictor of the secondary's

mechanism. Differences in mechanism that lead to secondary replicas blocking is not

a correctness issue, as the protocol works with an arbitrarily faulty primary. For

good performance, we require that concurrency control at the replica selected to be

the primary is sufficiently blocking:

A replica is sufficiently blocking if, whenever it allows two queries to run

in parallel, so do all other non-faulty replicas.

For good performance CBS requires f + 1 sufficiently blocking replicas so that we can

freely use any of them as a primary

4.2 Protocol

CBS does not limit concurrency for processing queries at the primary in any way.

When the coordinator receives a query from a client, it immediately sends it to the

primary replica manager, which forwards it to the primary replica. Hence, the pri-

mary replica can process queries from many transactions simultaneously using its

internal concurrency control mechanism (R2PL). As soon as it returns a response to

a query, the coordinator sends that query to each secondary replica manager. Each

of them adds the query to a pool of statements that will eventually be executed at

the corresponding secondary.

In addition to sending the query to the secondary replica managers, the coor-

dinator also send the primary's response to the client. Since only the primary has

executed the query at this point, the answer is still unverified and could be incor-

rect'. However, as discussed earlier, incorrect answers sent to the client are resolved

at transaction commit. We get performance benefits from returning the primary's

answer to the client immediately, as it reduces statement latency as observed by the

client. It also allows the processing of transactions to be pipelined: the primary ex-

ecutes the next statement while the secondaries execute the previous one. Sending

the primary's response to the client as soon as it arrives also improves overall system

performance because transactions complete more quickly and therefore hold database

locks for shorter periods.

The coordinator decides the transaction ordering. It greedily commits a trans-

action and assigns it a space in the global order when (a) the client has issued a

COMMIT for the transaction, and (b) f + 1 replicas (including the primary) are

ready to commit it.

A replica is ready to commit transaction T if it has processed all queries

of T and committed every transaction the coordinator has committed.

Should two transactions reach this point simultaneously, the coordinator chooses an

ordering for them.

The coordinator will allow the commit only if the query results sent to the client

are each agreed to by f secondaries that are ready to commit T; otherwise it aborts

the transaction. Thus we ensure that the client receives correct answers for all trans-

actions that commit. The coordinator waits for agreement before assigning a trans-

action a space in the global order to avoid gaps in the order that would result from

transactions that had to be aborted because incorrect answers were sent to the client.

The job of the secondary replica manager is to send transaction statements to the

secondary, with as much concurrency as possible, while ensuring that the secondary,

in the absence of faults, will execute the statements in a serial order equivalent to

that selected by the coordinator. To achieve this property, the secondary manager

delays sending statements to the secondary replica, using three ordering rules:

'Section 4.2.2 shows that a faulty primary can return incorrect answers to the client even if the
system verifies the answer by waiting for f + 1 votes

* Query-ordering rule. A query or COMMIT of transaction T can be sent to the

secondary only after the secondary has processed all earlier queries of T.

* Commit-ordering rule. A COMMIT for transaction T can be sent to a secondary

only after the secondary has committed all transactions ordered before T.

* Transaction-ordering rule. A query from transaction T2 that was executed by

the primary after the COMMIT of transaction T1 can be sent to a secondary

only after it has processed all queries of T1.

These rules are the only constraints on delaying statement execution on the secon-

daries; they permit considerable concurrency at the secondaries.

The first two rules are needed for correctness. The query-ordering rule ensures that

each individual transaction is executed properly. The commit-ordering rule ensures

that secondaries serialize transactions in the order chosen by the coordinator.

The transaction-ordering rule ensures good performance when the primary is non-

faulty because it avoids deadlocks at secondaries. In the example shown in Figure 4-2,

query Qz of T2 ran at the primary after the primary committed T1. If a secondary

ran Qz before running query Qx from T1, Qz might acquire a lock needed to run

Qx, thus preventing T1 from committing at the secondary. The transaction-ordering

rule prevents this reordering. However, it allows queries from T 2 that ran before T1

committed on the primary (Q, in the example) to be run concurrently with queries

from T1 on the secondaries (such queries are guaranteed not to conflict because R2PL

would not have allowed Q, to complete on the primary if it had any conflicts with

Q..) Hence, CBS preserves concurrency on the secondaries.

At least f secondaries are likely "current" with the primary: they have committed

every transaction the primary has committed. Neither the commit-ordering rule nor

the transaction-ordering rule will delay queries from issuing on a "current" secondary.

In the common case of a non-faulty primary, a query that completes executing on

the primary can be immediately and successfully executed on a non-faulty secondary.

Thus, commit barrier scheduling provides good performance in the common case.

4.2.1 Commit Barriers

We implement the commit-ordering and transaction-ordering rules using commit bar-

riers. The coordinator maintains a global commit barrier counter, B. When the

coordinator gets a response to query Q from the primary, it sets Q's barrier, Q.b,

to B. The coordinator commits a transaction T by sitting T's barrier, T.b, to B,

incrementing B, and sending the COMMIT to the replica managers. Each secondary

replica manager maintains a barrier for the replica, R.b. The secondary replica man-

ager waits to send query Q to the secondary until Q.b > R.b. The secondary replica

manager can commit transaction T when R.b = T.b, after which it increments R.b.

Finally, a secondary replica is ready to commit transaction T when it has executed

all queries of T and R.b = B.

The use of commit barriers is conservative: it may delay a query unnecessarily

(e.g., when the query doesn't conflict with the transaction whose COMMIT is about

to be processed). It is correct, however, because delaying the running of a query isn't

wrong; all it does is cause the processing of that transaction to occur more slowly.

The pseudo-code for the coordinator is given in Figure 4-3. The code is written in

an event-driven form for clarity, although our implementation is multi-threaded. The

code for the primary replica manager is not shown; this manager is very simple since

it sends each statement to its replica as soon as it receives it from the coordinator,

and returns the result to the coordinator. Figure 4-4 shows the code for a secondary

replica manager.

Figure 4-5 shows an example schedule of three transactions, T1, T2, and T3, as

executed by the primary (assumed non-faulty for this example). Each COMMIT

("C") causes the barrier, B, to be incremented. With CBS, the secondary replicas can

execute the statements from different transactions in the same barrier (i.e., between

two COMMITs) in whatever order they choose; the result will be equivalent to the

primary's serial ordering. Of course, two statements from the same transaction must

be executed in the order in which they appear. Note that CBS does not extract all

available concurrency. For example, a secondary manager delays sending T3's W(z)

* Event: Receive query Q from client.
Action: Send Q to primary replica manager.

* Event: Receive response for query Q from the primary replica manager.
Actions:

1. Send the response to the client.
2. Q.b +- B.
3. Record response as Q.ans.
4. Send Q to secondary replica managers.

* Event: Receive response from a secondary replica manager for query Q.
Action: Add response to votes(Q).

* Event: Receive ABORT from client.
Actions:

1. Send ABORT to replica managers.
2. Send acknowledgment to client.

* Event: Receive COMMIT for transaction T from client.
Actions: Delay processing the COMMIT until f +1 replicas are ready to commit
T. Then:

1. If the response Q.ans sent to the client for some query Q in T is not backed
up by f votes in votes(Q) from replicas that are ready to commit T, send
ABORT to the replica managers and inform the client of the ABORT.

2. Otherwise:
(a) T.b - B; B - B + 1.
(b) Send acknowledgment to client.
(c) Send COMMIT to replica managers.

Figure 4-3: Pseudo-code for the coordinator.

* For each query Q in the pool, determine whether it is ready as follows:

1. All earlier queries from Q's transaction have completed processing.
2. Q.b > R.b

Execute each query Q that is ready on the replica and send the result to the
coordinator.

* The replica manager can issue a COMMIT of transaction T to the replica if all
queries of T have completed processing at the secondary replica and R.b = T.b.
When the COMMIT completes processing, increment R.b.

* For each ABORT statement for a transaction T in the pool, discard from the
pool any queries of T that have not yet been sent to the replica and send the
ABORT to the replica.

Figure 4-4: Pseudo-code for secondary managers.

B=O B=1 B=2 B=3
R (x) W0(x) C:

Tl
R0 (y) W2(z) C

T2
R (z) W'(z) C:

T3 '

Figure 4-5: Example schedule of three transactions, as executed by the primary. Note
that the coordinator does not know the identities of x, y, and z (or even that they
are distinct). Each query is super-scripted with the barrier CBS would assign to it.

to the secondary until after the secondary has committed T1. This is because we

assume, conservatively, that T3's W(z) might conflict with queries of T1. The same

rule prevents sending T2's W(z) before T3's W(z) has been processed and in this

case the delay is needed since there is a conflict.

4.2.2 Handling a Faulty Primary

The pseudo-code in Figures 4-3 and 4-4 provides correct behavior even when the

primary is Byzantine faulty. A primary that fails by returning a wrong answer is

handled by detecting that the client received an incorrect answer at the transaction

commit point and aborting the transaction. However a faulty primary might have a

concurrency control bug, so that it allows transactions that conflict to run in parallel.

A concurrency error is most likely to lead to a liveness problem, where transactions

are unable to make progress because they block at secondaries. Some additional

mechanisms are necessary to ensure forward progress.

Ensuring Progress

There are a number of ways a Byzantine faulty primary can attempt to prevent the

system from making progress. The simplest ones involve executing transactions very

slowly or spuriously signaling deadlocks or other error conditions. All of these oc-

currences arise during non-faulty execution; the faulty primary merely adjusts their

frequency. If the primary aborts a transaction due to deadlock or error, it provides no

ordering information about how to execute the transaction relative to the rest of the

workload. Thus, doing anything but aborting the transaction on the secondaries may

result in replicas blocked and unable to make progress. The primary replica man-

ager must use historical data or heuristics for gaging when a primary is obstructing

progress.

However, the most interesting failures are those that involve incorrectly serializing

transactions. The primary can claim to have executed two conflicting statements or

transactions concurrently, thus indicating to the coordinator that they do not conflict.

Each correct secondary will then select one of the conflicting items to execute and

one to block. Two possible scenarios arise: there are enough matching responses from

secondaries to commit a transaction, or there aren't. In the first case, the system

overall continues to make progress, but some secondaries may have executed (but not

committed) transactions in an order that is not consistent with the coordinator. In

the second, the entire system can deadlock.

Secondaries may find themselves unable to make progress due to executing trans-

actions in an order that differs from the order selected by the coordinator. As shown

in Figure 4-6, transaction T1 waits on transaction T2 in the database, while T2 waits

on T1 in the replica manager. This situation can arise due to faults or an insuffi-

ciently blocking primary. The secondary must rollback T2, allowing T1 to proceed.

CBS uses a timeout to detect stalled secondary replicas, and rolls back transactions

Figure 4-6: Secondary replica gets stuck because it executes transactions in an order
that differs from the coordinator's ordering.

on the replica to allow it to make progress.

However, there may be many concurrently executing transactions and the sec-

ondary replica manager cannot easily determine which transaction to abort to allow

T1 to proceed. The simple approach is to abort all transactions other than the one

which the replica is supposed to commit next. A more gradual back off would result

in fewer aborted transactions but higher delays before finding the appropriate trans-

action to abort. Transactions aborted in this manner can be safety re-executed once

the replica has completed executing the previously blocked transaction.

The case where the whole system deadlocks only arises when f > 1, and is illus-

trated in Table 4.1. A faulty primary indicates that conflicting transactions T1, T2 ,

and T3 do not conflict. Each of the first 3 secondaries selects a different transaction

to execute and blocks the others. The fourth secondary has crashed and does not

return any answers. Each transaction lacks f + 1 = 3 matching votes and thus none

of them can commit. Note that while none of these transactions will make progress,

the system as a whole can continue processing transactions that do not conflict with

any of the deadlocked transactions. Since the dependency cycle is in the coordinator,

the database level deadlock detector does not help. Nor does the coordinator have

* Transactions T1 and T2 both consist of a single query, W(x), and a commit.

* The Coordinator commits transaction T1 followed by T2.

* Secondary Replica S1 does the following:

1. issues Ti's W(x) to the database
2. issues T2 's W(x) to the database
3. receives the result from T2's W(x), finishing the execution of T2

* Replica S1 gets stuck:

- S1 cannot commit T1 because S1 hasn't finished executing T1 due to T2

holding a lock on x that T1 needs. The database's concurrency control
mechanism blocks T1 from executing.

- S1 cannot commit T2 because S1 must commit T1 before it commits T2.
The Commit ordering rule blocks T2 from committing.

Status by Replica
Transaction Primary S1 S2 S3 S4

faulty crashed

T1 exec exec block block
T2 exec block exec block
T3 exec block block exec

Table 4.1: Sy,
no transactio

stem with f =
n is executed by

I where a faulty primary
f + 1 replicas

causes a system-wride deadlock:

information about the dependencies of the various transactions; thus it is limited to

using timeouts to detect deadlocks of this nature.

The symptom of this condition is that a set of transactions complete executing

on the primary and some secondaries, but never commit, despite the commit being

received from the client. There are two possible locations to detect and resolve the

problem: the coordinator or the secondary replica managers. The coordinator could

use a global timer to detect when some transactions appear stuck and can instruct

all the secondary replica managers to abort the same transaction. Alternatively, the

secondary replica managers could timeout locally and abort transactions. While this

raises the possibility of livelock (each secondary aborts different transactions and the

system blocks again), it does not require global coordination and keeps all timeouts

local to the secondary replica managers. With a single shepherd, a global timeout is

the simplest mechanism; we use a global timeout to abort stuck transactions.

The introduction of deadlock resolution mechanisms ensures that individual repli-

cas and the system as a whole continue to make progress in the presence of a faulty

primary. Since the mechanisms require timeouts, aborting, and re-executing transac-

tions, performance suffers when a primary behaves badly. The impact on performance

is dependent on the timeout lengths, which are in turn dependent on the workload.

Since the system essentially drops to sequential execution after a timeout, the per-

formance is worse than sequential execution. As mentioned previously, we assume

that the faulty or insufficiently blocking primary necessary to arrive at the situation

is the uncommon case, and therefore poor performance is acceptable when handling

the scenario.

Faulty primary Replica R1 Replica R2

T 1 : A = 1 TI : A = 1 Ti: Waiting for T2

T2 : A = 1 T2 : Waiting for T1 T2 : A = 1

Table 4.2: A faulty primary's reply could be incorrect, yet match a non-faulty sec-
ondary's reply and be the majority. The variable A is initially 0 at all replicas, and
each transaction increments the value of A by 1.

Ensuring Correctness

Not all concurrency faults of the primary lead to liveness issues. The example in

Table 4.2 illustrates the point. Consider two transactions, T1 and T2, each of which

increments a variable A and returns its value. If A were 0 to start with, then the

correct value after executing both transactions should be 2. However if the primary is

faulty the following might occur: The primary runs T1 and T2 concurrently, incorrectly

returning A = 1 as the result of both increment statements. Each secondary is correct;

however, replica R1 runs T1 before T2 , acquiring the lock for A and blocking T2.

Similarly, replica R2 runs T2 before T 1, blocking T1. Furthermore, replica R1 endorses

the primary's response for T1 and replica R2 endorses the primary's response for T2.

Thus waiting for f + 1 replicas to agree on an answer before sending it to the client

does not ensure that the answer is correct!

The key realization from Table 4.2 is that each replica is voting on transaction

answers given some serial schedule. Non-faulty replicas R1 and R2 disagree about

the serial schedule, which is why they arrive at mutually inconsistent answers for the

two transactions. Correct behavior requires committing one transaction and aborting

the other, as the primary has sent two mutually inconsistent results to the client: one

must be incorrect. If T1 is first in the serial order, then the answer for T2 is incorrect,

and vice versa.

Our protocol ensures correct behavior because it requires matching query re-

sponses from replicas that are ready to commit the transaction. Recall that being

ready to commit transaction T requires that the replica has committed all transac-

tions the coordinator has committed. If the coordinator decides to commit T1 first,

it issues commits to the primary and R1. The coordinator cannot then commit T2

because R2's vote for T2 does not count because it isn't ready to commit T2 (it has not

also committed Ti). When R1 executes T2 it produces the answer 2, which doesn't

match the primary's answer. Thus, T2 is prevented from committing.

T2 will eventually get aborted when R2 times out and rolls back T2. At this

point, it can execute and commit T1. When R2 re-executes T2 it produces a different

answer than it did previously, namely 2. The coordinator considers only the last vote

provided by the replica in deciding whether a transaction should commit or abort.

The coordinator now has f +1 matching votes from replicas that are ready to commit

T2, and since the answer does not match the one sent to the client, the coordinator

aborts the transaction.

4.2.3 View Changes

If the primary is faulty, CBS may be unable to make progress efficiently. The way to

handle a faulty primary is to do a view change in which a new primary is selected by

the coordinator and the old one is demoted to being a secondary. While any replica

can be selected as the new primary, the best performance results from selecting one

that is sufficiently blocking. A correct view change must ensure that all transactions

that committed prior to the view change continue to be committed afterwords. This

condition is easy to satisfy: retain these transactions and abort all the others.

It is always safe to do a view change, but view changes are undesirable since

they can cause transactions to abort and interfere with the system making progress.

The coordinator tries to decide when to do view changes intelligently but it doesn't

always know when the primary is faulty. Clearly it knows the primary is faulty if it

must abort a transaction due to incorrect results sent to a client. But if the primary

doesn't respond, it might not be faulty; instead there might just be a network problem.

Additionally, it may not be obvious which replica is faulty; for example, if the primary

allows two statements to run in parallel, and a secondary blocks on one of them, this

could mean that the secondary is faulty, or it could mean that the primary is faulty!

Instead, the coordinator relies on heuristics: timers to limit waiting for the primary

to respond, or counts of the number of times secondaries are blocking.

These heuristics need to ensure forward progress by guaranteeing the system will

eventually choose a good replica as primary and will give it sufficient time to do its

work. We use techniques similar to those that control view changes in BFT [5], e.g.,

choosing a new primary in a round-robin fashion from all possible primaries and, when

a series of view changes happen one after another, increasing timeouts exponentially

between changes.

4.3 Fault Recovery

We now discuss how our system deals with recovery of failed nodes, i.e., how it brings

them back into a state where they can correctly participate in the protocol. We begin

by discussing recovery of replicas that have suffered a crash failure. Then we discuss

recovery of the shepherd. Obviously, some mechanism is needed to detect and repair a

Byzantine-faulty replica. We defer the discussion of the techniques required to restore

the state of a Byzantine-faulty replica to Chapter 7.

4.3.1 Recovery of a Crashed Replica

When a replica goes offline and then recovers, it rejoins the system in a consistent,

but stale, state: all transactions that it did not commit prior to its failure have

aborted locally. To become up-to-date, the replica must re-run any transactions that

it aborted, but that were committed or are in progress in the system. All statements

needed to recover the replica are in the pool of its manager.

A replica manager considers a replica to have crashed when the database con-

nection to the replica breaks. If the manager had sent a COMMIT to the replica

prior to learning that the connection had broken, but did not receive a reply, it can-

not know whether that COMMIT had been processed before the replica went down.

Furthermore, it cannot re-run the transaction if it already committed.

To allow the replica manager to determine what happened, we add a transaction

log table to each replica; the table includes a row for each committed transaction,

containing the commit barrier for that transaction (T.b). We also add a query to

the end of each transaction to insert such a row in the table. If the transaction

committed prior to the failure, the transaction log table will contain an entry for

it. When the connection is re-established, the replica manager reads the transaction

log table, compares the list of committed transactions with information maintained

on the shepherd, and replays any missing committed transactions. After all the

committed transactions have been processed, the manager starts running statements

of in-progress transactions.

Adding this extra statement to each transaction will not result in deadlocks be-

cause each transaction only touches the log table on its last statement, after the

coordinator has cleared it to commit. Also, the table need not be large. We can

truncate a replica's log table periodically by determining the barrier, T.b, of the old-

est transaction, T, not committed at this replica, and storing this information on the

shepherd. Then we can overwrite the log table on that replica to contain only entries

from T.b on.

Of course, the database connection between the replica manager and a replica can

break even when the replica has not failed. When such a network failure occurs, both

parties will detect the failure (and each will assume that the other has failed). The

replica will simply abort all pending transactions. When the shepherd re-initiates the

connection to the replica after the failure heals, it re-runs transactions that have not

yet committed, using information in the log table to avoid running transactions more

than once. Hence, there is essentially no difference between how the shepherd handles

a failure of a replica and how it handles a failure of the network between it and the

replica.

Note finally that we can be smart about how we run read-only operations. Slow

replicas, including those that recover from crashes, need not execute read-only trans-

actions and read-only queries. By executing only state-changing queries, we can bring

slow replicas up to date more quickly. Additionally, read-only transactions need not

write an entry into the transaction log table, which also allows them to remain read-

only from the database viewpoint as well.

4.3.2 Recovery from a Shepherd Crash

To survive crashes the shepherd maintains a write-ahead log. When the coordinator

determines that it can commit a transaction, it writes the transaction queries (and

their barriers), along with the COMMIT to the log. The coordinator forces the log to

disk before replying to the client. The log is also forced to disk after writing a replica's

transaction log table information prior to truncating the table. The cost of flushing

the coordinator's log to disk can be amortized with group commit, as described in

Section 4.6.2.

To recover from a crash, the shepherd reads the log, identifies all committed

transactions, and initializes the statement pools at the managers to contain the state-

ments of these transactions. The coordinator knows which transactions to include in

a replica manager's pool by examining the replica's transaction log table, just as if

the replica had crashed. The shepherd can start accepting new client transactions

when the replica selected as primary has completed executing all the statements in

its pool.

The shepherd's log can be truncated by removing information about transactions

that have committed at all the replicas. We can expect that most of the time all

replicas are running properly and therefore the log need not be very large.

4.4 Correctness

In this section we present an informal discussion of the safety and liveness of our

system. We assume here that no more than f replicas are faulty simultaneously.

4.4.1 Safety

CBS is safe because it guarantees that correct replicas have equivalent logical state,

and that clients always get correct answers to transactions that commit.

Ensuring equivalent logical state depends on the following assumption about

databases: if correct replicas start in the same state and execute the same set of

transactions in equivalent serial orders, they will end up in equivalent states and

will produce identical answers to all queries in those transactions. This condition is

satisfied by databases that ensure serializability via R2PL. The job of our system is

to present transactions requested by clients to the databases in a way that ensures

they will produce equivalent serial orders. The query-ordering rule ensures that each

transaction runs at each replica as specified by the client; thus the transactions seen

by the replicas are identical.

The commit-ordering rule ensures that COMMITs are sent to the replicas in a

way that causes them to select equivalent serial orders. The coordinator assigns each

committed transaction a place in the global serial order. Per the commit-ordering

rule, each replica commits transactions sequentially in the order specified by the

coordinator. Since commit order is equivalent to serial order, all replicas implement

equivalent serial orders. Thus we can be sure that correct replicas will have equivalent

states after they execute the same set of transactions.

Additionally, clients receive only correct results for queries of transactions that

commit because we vote on the answers: f + 1 replicas must agree to each query

response. The vote ensures that at least one correct replica agrees with the result,

which implies that the result is correct. However, it is crucial that we delay the vote

until each contributing replica is ready to commit the transaction, since only at that

point can we be sure it is producing the answer that happens by executing that query

at that place in the serial order. R2PL ensures that, barring faults, a transaction

that is ready to commit can be successfully committed with the answers that it has

produced.

We continue to provide correct behavior even in the face of the various recovery

techniques (recovery of a crashed replica, recovery from a database disconnection, re-

covery of the shepherd). The shepherd records complete information about committed

transactions, allowing it to recover from replica crashes and network disconnections;

the log tables at the replicas are crucial to this recovery since they prevent trans-

actions from executing multiple times. The write-ahead log at the shepherd ensures

that the information about committed transactions isn't lost if the shepherd crashes.

View changes do not interfere with correct behavior because we retain information

about committed transactions.

Finally note that the transaction-ordering rule is not needed for correctness. In-

stead, this rule is important for performance, because it ensures (assuming the pri-

mary is non-faulty and sufficiently blocking) that the secondaries execute queries in

an order that avoids spurious deadlocks.

4.4.2 Liveness

Given a non-faulty primary, CBS is live assuming that messages are delivered even-

tually and correct replicas eventually process all messages they receive.

However, the primary may be faulty. We handle this case through the view change

mechanism, which allows us to switch from a faulty primary to a non-faulty primary.

We rotate the primary in a round-robin fashion among the secondaries, so as to

prevent an adversary from forcing the primary to switch back and forth between

faulty replicas.

The problem with view changes is that there are cases where we can't be sure

that the primary is faulty, and yet we do the view change anyway, e.g., when the pri-

mary is merely slow to respond or secondaries are incorrectly ordering transactions.

An adversary could cause us to do a view change in which a non-faulty primary is

replaced by a faulty replica. However, the adversary cannot cause us to continuously

do view changes, without making progress in between, because we exponentially in-

crease the timeouts that govern when the next view change happens, and we select

primaries in a way that will eventually lead to a non-faulty one. Eventually these

timeouts will become large enough so that a non-faulty primary will be able to make

progress, assuming that network delays cannot increase exponentially forever. Under

this assumption (used for BFT [5]), our system is live.

4.5 Practical Issues Running CBS

With CBS, clients must be prepared to occasionally receive wrong answers for trans-

actions that abort. Thus, all answers in CBS must be considered "tentative" until the

commit point, after which they are guaranteed to be correct (assuming no more than

f faulty replicas). Our semantics will not cause a problem for clients that work in

"auto commit" mode (COMMIT sent implicitly after each query). Our semantics will

also not be a problem for clients that respect transactional semantics and do not let

values produced by a transaction "escape" to the application prior to commit - most

database applications are programmed in this way. Finally, note that even if bad

results did escape, the situation is still better than it is today without CBS, because

CBS will abort the transaction and ensure that the replicas have the correct logical

state, whereas in existing systems, wrong answers are simply returned without any

warning.

Should the shepherd crash with an outstanding commit from a client, the client

is not only unaware of whether the transaction committed, the client also does not

know if the answers it received are correct. For read-only transactions, the client could

submit the transaction again. For read/write transactions, the client could submit

a new transaction to confirm whether the changes from the earlier transaction were

made. The shepherd could also provide a mechanism whereby clients could query the

status of transactions.

The operator of the system can use a light-weight view change mechanism to

switch the primary. For example, when the operator schedules downtime for the

replica acting as the primary, the light-weight view change can avoid interruption in

service. A secondary that has completed executing every statement the primary has

executed agrees with all ordering decisions made by the primary. The secondary can

seamlessly be promoted to be the primary without aborting any transactions. To

produce the situation, the coordinator merely needs to pause sending queries to the

primary and wait for a secondary to catch up. Obviously, because the primary could

be Byzantine faulty, there may be no secondary that is able to execute all statements

in its pool. In this case, the coordinator times out waiting for a secondary to become

eligible. Then it reverts to the heavy-weight view change mechanism: it aborts all

currently executing uncommitted transactions, and promotes a secondary that has

committed all previous transactions.

Setting timeouts and detecting a more subtly faulty primary both require knowl-

edge of the system workload. Information about typical query execution time, dead-

lock probability, malformed transaction submission rate, etc. can be collected by

the shepherd over time. Such information can be sanity checked by the system ad-

ministrator. When the system performance deviates from the expected norm, the

system can notify the administrator and take preventative measures (like proactively

switching the primary).

4.6 Optimizations

4.6.1 Bandwidth Reduction

Having each replica return the entire query result can be expensive when the result

is large. A way to reduce this cost is to have secondaries return a hash of the result

instead. For example, the coordinator could rewrite the query for secondary replicas

to nest the query statement in an aggregate that computes a hash over the entire result

set. Most databases implement a standard hash function, like MD5, which could be

used for this purpose. This optimization would significantly reduce the bandwidth

requirements at the cost of increased computation at the database replicas.

4.6.2 Group Commit

When a database commits a transaction that modified the database state, it must

perform a disk write to ensure that the transaction is durable. Databases amortize

the cost of this slow disk access by committing many transactions simultaneously;

this is called group commit. So far we have processed transaction commits serially,

which prevents the database replicas from applying group commit.

To support group commit on the database replicas, we must ensure that:

1. The coordinator can agree to commit a transaction before the previous trans-

action has completed committing on the replicas.

2. Any transactions for which the coordinator does this do not conflict.

3. Database replicas can issue commits concurrently where the coordinator does.

We can achieve the first and second objective by relaxing the definition of ready

to commit as follows:

A replica is ready to commit transaction T if it has processed all queries

of T and all queries of all transactions the coordinator has committed.

Suppose two non-conflicting transactions, T1 and T2, complete executing simulta-

neously on f + 1 non-faulty replicas. If the coordinator commits T1, it can then

immediately commit T2, as f + 1 replicas are still ready to commit T2: they have

executed all queries of T1. Thus, the coordinator can commit two simultaneous non-

conflicting transactions. The coordinator cannot commit two simultaneous conflicting

transactions, as f + 1 replicas running R2PL cannot claim to have executed both to

completion.

A modification to the commit-ordering rule accomplishes the third objective:

Commit-ordering rule. A COMMIT for transaction T can be sent to a sec-

ondary only after the secondary has processed all queries of transactions

ordered before T.

A non-faulty replica cannot have executed two conflicting transactions to completion

because it uses R2PL, and thus the secondary replica manager never issues concurrent

COMMITs for conflicting transactions.

Faults

Faults complicate group commit because the coordinator is agreeing to commit trans-

actions before receiving acknowledgments that prior transactions have successfully

committed. There exists a race condition where a replica aborts a transaction that

has executed to completion, and completes executing another conflicting transaction

before the shepherd hears about the transaction abort. The race condition leads to the

bad scenario shown in Table 4.3. Transactions T1 and T2 conflict and a faulty primary

claims they don't. A good secondary replica executes T1 to completion, then aborts

T1 and executes T2 to completion before the coordinator notices that it aborted T 1.

The coordinator would then believe these two transactions do not conflict and could

issue a group commit for them. At this point, the system has failed because good

secondary 1 can commit the transactions in a different order than good secondary 2.

Status by Replica
Transaction Primary S1 S2

faulty slow

T1 exec exec, then abort
T2 exec exec

Table 4.3: Race condition in group commit

A non-faulty secondary would not randomly abort a transaction, but our commu-

nication protocol allows a malicious network to do so. When a connection between the

shepherd and the database breaks, the database aborts any transaction from the con-

nection that may have been in progress. Normally, database connections break only

when the shepherd or the database fails. However, a malicious network can cause a

network connection to break by filtering packets or forging a TCP reset packet. Both

of these methods work even when the connection content and authenticity is pro-

tected by a protocol like SSL. Thus, an adversary in the network can cause any single

transaction to abort whenever it desires. Key to the fault in Table 4.3 is that only

one of the transactions aborts; the rest are left undisturbed. Therefore, a malicious

network can cause the race condition on S1 without S1 being faulty. Even worse, by

causing a similar event to happen on the primary, the primary need not be faulty to

appear to concurrently execute two conflicting transactions to completion.

One resolution is to modify the system assumptions to tolerate only Byzantine

faults in the databases themselves; not faults in the network. For some operating

environments (e.g., data centers), this may be a reasonable assumption.

The alternative is to place a shim on the databases that makes transaction abort

explicit. The shim communicates with the database via a reliable channel (e.g., a

local socket), such that a failure of the channel constitutes a failure of the replica.

Breaking the connection between the replica manager and the shim has no effect on

system state. Should the shepherd crash, it must send an explicit abort message to

replicas when it restarts. Since these abort messages are actually protected by SSL,

an adversarial network cannot forge them. Similarly, should the replica crash and

recover, it sends a message informing the shepherd of the crash. The message must

be acknowledged before the shim will process any new operations from the shepherd.

Protocol

Assuming one of the two resolutions of the race condition detailed above, the CBS

protocol must be altered slightly to allow group commit. The simple solution is to

increment the replica's barrier, R.b, when the commit for a transaction issues instead

of when it completes. After f + 1 replicas have issued the commit for a transaction,

the coordinator can agree that the next transaction is allowed to commit.

Group commit and the transaction log table may interact oddly in the presence of

crash failures because a replica's log table may contain gaps when the replica crashes

with an outstanding commit for a transaction that did not conflict with subsequent

transactions (thus allowing them to commit before it). When the replica comes back

up, it is safe to re-execute these gap-transactions because they could not have con-

flicted with subsequently committed transactions. However, the gaps must be filled

before transactions with barrier numbers higher than the maximum barrier in the log

table may be executed.

Coordinator Group Commit

Once the coordinator can agree to commit a transaction before the previous trans-

action has completed committing on the replicas, then the coordinator itself can

implement group commit to reduce synchronization and disk write overheads. When

the coordinator receives a commit for a transaction from the client, it places the

transaction on the ready-list. Whenever the coordinator receives an event from a

replica manager that might allow a transaction to commit, it scans the ready list,

attempting to commit transactions. Once it has successfully committed a transaction

off the ready list, it restricts which replicas are allowed to participate in the agreement

process during the rest of the scan. Specifically, only replicas that have agreed with

all transactions previously committed during the scan may participate in agreement

to commit the next. At the end of the scan, the coordinator can write records for all

the committed transactions to disk, increment the global barrier B by the number of

transactions committed, send acknowledgments to the clients, and issue commits to

the replicas.

4.6.3 Read-only Transactions

CBS is important when most of the transactions modify the database state, but

workloads typically contain read-only transactions. Obviously an entirely read-only

workload requires no concurrency management because no transactions conflict. If

the workload contains read-only transactions, there are a number of optimizations

to CBS that can improve performance. Note that the client communication protocol

can indicate to the shepherd that a transaction will be read-only.

The first optimization is to ensure CBS never blocks a read-only transaction from

committing due to another read-only transaction. You might think that CBS could

block a read-only transaction from executing due to another read-only transaction, but

this almost never affects performance. CBS never blocks "current" replicas (i.e., those

whose barrier is identical to the coordinator's) and reads are not executed on replicas

that are behind. However, two read-only transaction are considered sequentially when

the coordinator is deciding if they are able to commit. We can relax this restriction

to reduce the latency associated with read-only transaction commit. To accomplish

this, we split the barrier into two parts: a write part and a read sub-part. Two parts

of the protocol change:

* When the Coordinator or a Replica Manager commits a transaction, instead of

executing B = B + 1, it does one of two things:

- Read-only Transaction: B.R = B.R + 1

- Read/Write Transaction: B.W = B.W + 1; B.R = 0

* When the Coordinator is determining whether a replica is up-to-date, instead

of checking that R.b = B, it uses one of two criteria:

- Read-only Transaction: R.b.W = B.W

- Read/Write Transaction: R.b.W = B.W & R.b.R < B.R

The commit of each read/write transaction effectively starts a new "epoch" of

read-only transactions. The two-tiered scheme is necessary to ensure that commits

from read/write transactions wait for specific read-only transactions to complete. For

example, suppose read/write transaction A conflicts with read-only transaction B,

but not read-only transaction C. Transactions B and C should be able to commit

concurrently, but transaction A should wait for B to complete before committing.

CBS still incurs a latency penalty due to first executing the statements on the

primary before issuing them to the secondaries. The penalty is most obvious for work-

loads with single-statement read-only transactions or long-running read-only queries.

In a read-only heavy workload, the primary isn't needed to schedule transactions ex-

cept when read/write transactions arrive. One further optimization that we have not

implemented would be to send transactions to all replicas simultaneously when the

workload is entirely read-only. When a read/write transaction arrives, the shepherd

would cease issuing new statements to replicas until the primary completes executing

all statements. At this point, the shepherd would revert to CBS until the workload

becomes entirely read-only again.

4.6.4 Early Primary Commit

Suppose the primary committed transactions as soon as it completed executing them.

Obviously, the primary's state would diverge if the coordinator subsequently aborted

a transaction that the primary had already committed. However, the only time

the coordinator is required to abort a transaction that successfully executed on the

primary is when incorrect results got sent to the client. This only occurs when the

primary is faulty. If the primary is faulty, we've only made it slightly more faulty.

From a performance standpoint, early commit increases available parallelism.

Time spent waiting for agreement is extra time that transactions hold locks on the

primary. Since the primary is the arbiter of which transactions may run in paral-

lel, extending transaction duration reduces parallelism. By committing transactions

before waiting for agreement, the primary makes locks available for acquisition by

subsequent conflicting transactions, effectively overlapping agreement with execution

of subsequent transactions. For high contention workloads, this could result in signif-

icant improvement in performance.

The change to the commit barrier scheduling protocol comes in two parts: runtime

and recovery. During runtime, statements are no longer marked with the coordinator's

barrier B, as the primary may be ahead of the coordinator. Instead, statements

are first annotated with the id of the latest transaction to commit on the primary.

The statements cannot be immediately annotated with the barrier of the transaction

because the coordinator has not necessarily assigned it yet. When a transaction

commits on the coordinator, all statements marked with its id are updated with the

barrier the coordinator just assigned to the committing transaction. No secondary

may issue a statement which does not have a barrier annotation, as the secondary

cannot have committed a transaction before the coordinator.

When considering recovery, the commit point for a transaction becomes important.

If the coordinator crashes while the primary is ahead, when the coordinator recovers

it must attempt to commit all the transactions the primary had already committed.

Thus, when the commit is sent to the primary becomes the conditional commit point.

It is conditional because the transaction only actually commits if at least f secondaries

agree with the answers. The coordinator must write a log entry with the transaction,

the answers sent to the client, and a tentative barrier value to its write-ahead log

before issuing the commit to the primary. If the coordinator crashes, it recovers by

reading the log and attempting to execute the conditional transaction queries on the

secondaries. If the coordinator acquires f answers that match the answer sent to the

client for each query in the transaction, it can declare the transaction fully committed

and write a log entry with its actual barrier value.

One final piece of complexity is how the coordinator handles crashes with a com-

mit outstanding on the primary. In this situation, when the coordinator recovers, it

does not know whether the transaction actually committed on the primary. The pre-

viously mentioned solution of writing transaction barrier values to a xactions table

does not work because the coordinator has not necessarily assigned the transaction

a barrier yet. Instead, the primary replica manager inserts a statement to write the

transaction's id to the xactions table. If the id is present in the coordinator's log

and in the primary's xactions table, then the coordinator must execute it on the

secondaries. If the transaction's id is missing from the table but in the log, then the

transaction may be safely discarded.

The overhead of adding an additional disk write to the commit process may out-

weigh the benefit of early commit. However, if the shepherd is replicated, then the

trade off becomes a fast agreement round between lightweight shepherd replicas ver-

sus a slow agreement round between heavyweight database replicas. In this situation,

the benefit of the optimization becomes clear.

Chapter 5

Snapshot Epoch Scheduling

A number of database systems provide a type of multi-version concurrency control

called Snapshot Isolation. Under this concurrency control mechanism, strict serializ-

ability is relaxed to ensure that readers never block for writers. Snapshot isolation

allows for better database performance while providing equivalent isolation for com-

mon benchmarks (e.g., TPC-C). However, snapshot isolation provides fundamentally

different consistency guarantees than serializability: there exist schedules of transac-

tion operations that are valid under snapshot isolation but invalid under serializability

and vice versa. Single-copy serializability is not achievable in a practical manner from

a set of snapshot isolation replicas.

HRDB uses Commit Barrier Scheduling (CBS) to provide a single-copy serializable

view of a set of databases that support serializable isolation. Since snapshot isolation

differs from serializability, the specific technique used in CBS does not apply. However,

single-copy snapshot isolation [45] is possible, and the general character of the commit

barrier idea is transferable. The key insight is that, while more optimistic, snapshot

isolation still provides the necessary guarantee: Any transaction that has successfully

executed all of its operations must have acquired all the resources it needs to commit.

Unlike CBS however, providing single-copy snapshot isolation requires modifications

to the database replicas in order to handle faults.

In this chapter, we first present the details of how snapshot isolation works, then

proceed to address the three challenges of replication with snapshot isolation: keeping

replicas synchronized, resolving conflicting transactions, and handling failures. Next,

we present our solution, which we call Snapshot Epoch Scheduling (SES), and give

an informal sketch of its correctness. We conclude with descriptions of a number of

optimizations to the basic protocol.

5.1 Snapshot Isolation

In snapshot isolation, a transaction first acquires a snapshot of the database state,

then performs a sequence of operations on this snapshot, and finally either commits or

aborts. The database creates a snapshot of its state and assigns it to the transaction

when the transaction starts executing. Typically, a database that provides snap-

shot isolation uses a multi-version concurrency control mechanism which encodes a

snapshot as version of the database.

A transaction can be ordered before, after, or simultaneously with another trans-

action. Transaction ordering is determined by the timing of transaction snapshots

relative to transaction commits. The ordering rules (illustrated in Figure 5-1) are as

follows:

* Transaction T1 is ordered before transaction T2 if T1 commits before T2 ac-

quires its snapshot. T2 observes values written by T1.

* Transaction Ti is simultaneous with transaction T2 if T1 snapshots before T2

commits and T2 snapshots before T1 commits. Neither T1 nor T2 observe the

values of each other's writes.

Though snapshot isolation allows simultaneous transactions, it is not correct to

think of sets of simultaneous transactions. Before is a transitive relation; simulta-

neous is not. That is, if T1 is before T2 and T2 is before T3, then T1 is before T3.

However, if T1 is simultaneous with T2 and T2 is simultaneous with T3, then T1 is

not necessarily simultaneous with T3. Figure 5-2 illustrates a scenario where simul-

taneous is intransitive: T1 is before T3, yet both T1 and T3 are simultaneous with

T2.

Before Simultaneous

Time Time
I I I I I

T2 T2
II i I I II I I I I I

I I I II I

TISS TIC T2SS T2C TISS T2SS TIC T2C
T1 commits before T2 acquires its T2 acquires its snapshot before T1
snapshot. commits and vice versa.

Figure 5-1: Illustration of transaction ordering rules

Time
I I II II

'I I I II I II II

T2
I I I T

S'T3
II LI

TISS T2SS TIC T3SS T2C T3C

Figure 5-2: T1 is simultaneous with T2, and T2 is simultaneous with T3, yet T1 is
not simultaneous with T3.

Snapshot isolation disallows concurrent writers: simultaneous transactions may

not write the same data item. Should two simultaneous transactions attempt to

write the same item, the first transaction to write will succeed and if it commits

the later transaction will be forced to abort. To avoid unnecessary aborts, the later

transaction is blocked until the earlier transaction commits or aborts. If the earlier

transaction commits, the later transaction aborts. If the earlier transaction aborts,

the later transaction's write succeeds and it continues executing. If the earlier trans-

action committed prior to the later transaction's write, the later transaction aborts

immediately. Snapshot isolation places no restrictions on reads.

To make execution under snapshot isolation more concrete, we provide several ex-

amples in Table 5.1. Example 1 provides an example of two simultaneous transactions

executing under snapshot isolation. Example 2 demonstrates a pair of transactions

executing in a manner allowed by snapshot isolation, yet the schedule is not serializ-

able. A serializable execution would result in both A and B having the same value

(both have value 5 or both have value 7). As example 2 demonstrates, a third possi-

bility exists under snapshot isolation: the values have swapped. Finally, Example 3

shows a pair of transactions whose execution is serializable (T1 then T2), but one of

them would be aborted by snapshot isolation due to a concurrent write.

Example 1:
Execution of simultaneous transactions under snapshot isolation
Time Transaction 1 Transaction 2 Comment
1 Read A: 7 T1 acquires snapshot
2 Read A: 7 T2 acquires snapshot
3 Write A+-12
4 Read A: 7 T1 reads from its snapshot
5 COMMIT
6 Read A: 7 T1's snapshot unchanged
7 Write A+-8 Concurrent write
8 ABORTED DB aborts T1 due to concurrent write

Example 2:
Schedule disallowed by serializability but allowed by snapshot isolation
Time Transaction 1 Transaction 2 Comment
1 Read A: 5
2 Read B: 7
3 Write B+5 Under R2PL, T1 blocks here
4 Write A+-7 Under R2PL, abort due to deadlock
5 COMMIT
6 COMMIT

Example 3:
Schedule disallowed by snapshot isolation but allowed by serializability
Time Transaction 1 Transaction 2 Comment
1 Read A: 5
2 Read A: 5
3 Write B+-5
4 COMMIT
5 Write B--7 Under SI, abort due to concurrent write
6 COMMIT

Table 5.1: Snapshot Isolation Concurrency Examples

5.2 Key Issues

In this section, we present three key issues that snapshot epoch scheduling must

address. First, it must keep replicas synchronized. Second, the protocol must re-

solve conflicts between transactions. Finally, the protocol must handle fail-stop and

Byzantine faults in replicas.

5.2.1 Keeping Replicas Synchronized

To keep the database replicas synchronized, they must all execute transactions in

the same order. As mentioned previously, under snapshot isolation, the ordering of

snapshots and commits entirely determines transaction ordering. Thus, replicas will

remain synchronized if they acquire snapshots and commit transactions in an identical

order.

Ensuring identical order will result in unnecessary synchronization overhead; we

only need equivalent order. The transaction ordering rules for snapshot isolation all

compare one transaction's snapshot time to another transaction's commit time. The

order of one transaction's snapshot time relative to another transaction's snapshot

time does not matter. Figure 5-3 illustrates reorderings of snapshots and commits

that do not affect the overall ordering of transactions: both transactions are still

simultaneous. Given a set of snapshot acquisitions with no intervening commits,

any ordering is acceptable. The equivalent property holds for sets of commits with

no intervening snapshots. Thus, the system need only synchronize at the transition

between snapshot and commit.

We ensure equivalent orders by dividing time into an alternating series of snapshot

and commit epochs. A transaction is assigned to one snapshot epoch and one commit

epoch. Each replica must acquire snapshots for all the transactions marked with a

particular snapshot epoch before it can progress to the subsequent commit epoch.

Similarly, a replica must commit all the transactions marked for a particular commit

epoch before it can process snapshots in the following snapshot epoch. Within an

epoch, all snapshots or commits may be issued concurrently as their relative order

Time
II

T1 I I II I

T2
I I

II I
I II

TISS T2 SS T1. C T2 C

Equivalent

I I II II I

S T1 I IT1
II i I I I I
II II II
,T2 , , T2
I I II I I
I I II II I I

I I I I I I

T2SS TISS T1. C T2C TISS T2SS T2C TI C

FLIPPED FLIPPED

Figure 5-3: Equivalent orderings produced by reordering snapshots, reordering com-
mits, but not reordering commits and snapshots.

does not matter.

While databases provide an explicit commit operation, they do not provide an

explicit snapshot operation. Snapshot isolation does not specify when the snapshot

is taken for a transaction. However, by the time a query has produced an answer, the

snapshot must have been acquired. Thus, to force a transaction to acquire a snapshot,

the system begins a transaction and issues a statement. When the statement returns,

the transaction has acquired the snapshot it will use. Since the system cannot proceed

to a subsequent commit epoch until after the statement returns, using a client-issued

statement could impact performance if the statement runs for a long time. Therefore,

the system issues a computationally trivial read operation (e.g., reading the only row

from a single row table) to acquire the snapshot for a transaction.

5.2.2 Resolving Conflicting Transactions

When the system is presented with a pair of simultaneous transactions that write to

the same item, all of the replicas must select the same transaction to abort. The

simplest solution is to only allow one outstanding write operation at a time, but such

serialization results in poor performance. Our solution is the same as in commit

barrier scheduling: use a primary replica to decide which of the conflicting operations

gets to proceed. Write operations are directed first to the primary, and are only sent

to the secondary replicas when the operation completes executing on the primary.

The primary's concurrency control mechanism will resolve conflicts between writes;

either blocking or aborting the "loser" of any conflict. As long as the primary is not

faulty, the secondary replicas are never exposed to concurrent writes and thus always

select the same transactions to execute as the primary.

Unlike CBS, only writes need be sent first to the primary. Under snapshot isola-

tion, reads cannot conflict with any other operation and thus do not need to be ordered

by the primary. Thus, read-only operations can issue on all replicas immediately.

Also unlike CBS, all of the replica's concurrency control mechanisms must behave

identically: given two transactions, all (non-faulty) replicas must agree on whether

they conflict or not. CBS always had the option of executing transactions sequentially

on a replica, which rendered the details of the replica's concurrency control mechanism

moot. However, under snapshot isolation, if the coordinator schedules transactions

simultaneously, then a replica must execute them simultaneously: dropping to serial

execution is incorrect. CBS has the notion of a sufficiently blocking primary: the pri-

mary's concurrency control mechanism could be coarser grained than the secondaries.

A replica with a coarser-grained mechanism makes no sense in SES, as the replica

would be incapable of serving as a secondary (i.e., it will abort transactions that the

coordinator commits). We assume that fine-grained locking is the norm in databases

that provide snapshot isolation.

5.2.3 Handling Faults

Under serializable execution, a replica that crashes will recover as a replica with

consistent, but stale, state. However, as Table 5.2 demonstrates, the same is not

true under snapshot isolation. The issue arises when a replica crashes after it has

committed one of a pair of simultaneous transactions. When the replica recovers, it

cannot re-execute the unfinished transaction because it has "lost" access to the snap-

shot epoch in which the transaction is supposed to snapshot. Consider the example

in Table 5.2; transactions 1 and 2 are supposed to be simultaneous, but when the

crashed replica recovers, it can only re-execute transaction 2 after transaction 1.

* Replica set commits both transac-
Transaction 2

tions, ending with A=8 and B=6.
A÷-B+1

* Faulty replica crashes after time 5
Read B: 7 but before time 6, and recovers with

A=5 and B=6.
Write A--8

* Faulty replica cannot re-execute

COMMIT Transaction 2 (A t- B + 1) to arrive
at state A=8 and B=6.

Table 5.2: Re-execution cannot correctly update crashed replicas in Snapshot Isola-
tion

We can update the database state as if the transaction were correctly executed by

extracting from the non-faulty replicas the data items modified by the transaction,

and applying the modifications directly to the crashed replica. With respect to the

situation in Table 5.2, we would extract A-8 from transaction 2; applying this mod-

ification directly to the replica does correctly update its state. The set of modified

data items is called a writeset, and it includes inserted, updated, and deleted items.

Writeset Extraction is an operation run by a replica for a particular transaction; it

returns the writeset of the transaction. Databases do not provide writeset extraction

as a client operation; they must be modified to support it. By performing writeset

extraction before committing each transaction, our system can tolerate replica crashes

by replaying writesets to bring the replica up to date.

Tolerating Byzantine faulty replicas requires voting. As before, the system is

parametrized by f, the maximum number of simultaneously faulty replicas. An an-

swer with f + 1 matching votes is guaranteed to be correct, and we must run 2f + 1

replicas to ensure that we always receive f + 1 responses.

A Byzantine faulty primary can allow conflicting transactions to reach the sec-

ondary replicas, presenting a potential correctness issue. Snapshot isolation is a pes-

simistic protocol with regard to concurrent writes: a transaction that has successfully

Time Transaction 1
Time

B -A+1
1 Read A: 5
2
3 Write B--6
4
5 COMMIT
6

Status by Replica
Transaction Primary S1 S2

faulty

T1 exec exec block
T2 exec block exec

* Transactions T1 and T2 conflict.

* f = 1; need f + 1 = 2 votes to com-
mit

Table 5.3: Example of a situation where two conflicting transactions acquire f + 1
votes.

executed all of its write operations can commit successfully. Given a set of simultane-

ous conflicting transactions, a non-faulty replica will execute only one to completion,

effectively voting for that transaction to be the one to commit. Table 5.3 illustrates

a scenario where a pair of conflicting transactions both acquire f + 1 votes and could

potentially commit. Committing both violates our correctness criteria for two rea-

sons: S1 and S2's states diverge despite both being non-faulty and the clients observe

two conflicting transactions that both commit. We resolve the issue by requiring that

a replica must have executed all transactions previously committed by the system

before voting on the next one. Table 5.4 shows what happens if the system commits

T1. At this point, S2's vote for T2 will not count until it has executed T1. When S1

commits T1 it will abort T2 due to concurrent writes, disagreeing with the primary.

Without S2, T2 lacks enough votes to commit and will stall. The mechanism prevents

conflicting transactions from committing; the resulting liveness problem is discussed

in section 5.3.1.

Status by Replica
Transaction Primary S1 S2

faulty stale

T1 commit commit block
T2 exec abort exec

Table 5.4: Situation from Figure 5.3

* Transactions T1 and T2 conflict.

* S2's vote for T2 does not count
because it has not executed T1.

after coordinator commits T1.

Primary Secondaries

Figure 5-4: Snapshot Epoch Scheduling Shepherd Architecture.

5.3 Protocol

The architecture is the same as for CBS (as shown in Figure 5-4), namely, that

clients interact with a Shepherd, which coordinates the database replicas. Clients

issue transactions consisting of a sequence of queries, followed by a COMMIT or

ABORT. These operations are not required to be issued in bulk. As before, 2f + 1

replicas are required to tolerate f failures. All replicas are required to use snapshot

isolation as their concurrency control mechanism. The shepherd runs a coordinator,

and a replica manager for each replica. The shepherd maintains an on-disk write

ahead log.

The shepherd divides time up into a series of alternating snapshot and commit

epochs (as shown in Figure 5-5), which the replica managers use to ensure that each

replica correctly orders transactions. For each transaction, the coordinator must

schedule two events: a snapshot event and a commit event. The coordinator assigns

transaction events to epochs using an epoch counter, epoch. Even numbered epochs

are for snapshots, while odd numbered epochs are for commits. The shepherd moves

Time

T1

T2

T3
I II

II

Epoch 0 (SS) 1 (C) 2 (SS) 3 (C)
Count: 2 2 1 1

Figure 5-5: Transactions are scheduled into snapshot and commit epochs

to the next epoch when it must assign an event whose type (snapshot or commit)

does not match the current epoch. For each epoch, the coordinator notes the number

of events during the epoch in an array called counts. A replica manager can incre-

ment its epoch counter, replica.epoch, when epoch > replica.epoch and the replica

has completed the processing of all events in replica.epoch, i.e., it has processed

counts[replica.epoch] events. The primary and secondary managers both follow these

rules for incrementing their epochs. The snapshot and commit epoch mechanism

guarantees that a transaction will see exactly the same snapshot on all replicas, thus

ensuring that the replicas will stay synchronized and non-faulty replicas will produce

the same answers.

When a new transaction arrives at the coordinator, the coordinator assigns the

transaction to a snapshot epoch and issues the snapshot to the replicas. A replica

manager is free to issue any query of a transaction it has seen to the replica, assuming

that the transaction has already acquired its snapshot at the replica. As previously

described, reads can be sent to all replica managers immediately, while writes must

first be executed by the primary. The coordinator sends the primary's answers to the

client.

When the client issues a commit for a transaction, the shepherd starts the commit

process. The commit process verifies that the transaction has been executed correctly,

then commits the transaction. To verify that a transaction has been executed cor-

rectly, the coordinator waits for f + 1 replicas to have executed the transaction to

completion. Each of these replicas must have matching answers to those sent to the

client. Should the coordinator discover f + 1 matching answers to a query that do not

match the answer that was sent to the client, the coordinator aborts the transaction.

Otherwise, the coordinator requests the transaction writeset from each replica, and

commits the transaction upon receipt of f + 1 matching writesets.

All replicas participating in the commit process must be up to date: they must

have executed, if not committed, every transaction committed on the coordinator.

The coordinator commits transactions sequentially, incrementing a sequence number

for each committed transaction. Each replica manager also maintains a sequence

number, which the replica manager increments whenever it completes executing a

committed transaction. An up to date replica is one whose replica manager's sequence

number matches the coordinator's sequence number.

The commit point for a transaction is when the coordinator commits the transac-

tion, not later when the replicas commit the transaction. When a transaction commits

on the coordinator, the coordinator increments its sequence counter and assigns the

transaction to a commit epoch. The coordinator also marks the transaction with the

value of the sequence counter when the transaction commits; the transaction sequence

number is used during recovery, as explained in section 5.4.1. The coordinator writes

the transaction's agreed-upon writeset and commit epoch to the shepherd's log and

sends an acknowledgment to the client. Then the coordinator issues a commit for

the transaction to the replica managers. Replica managers may commit a transaction

only when the replica manager's epoch matches the transaction's commit epoch.

The full protocol is presented in Figures 5-6 and 5-7. Unlike commit barrier

scheduling, the primary's replica manager is no different than the secondary replica

managers.

5.3.1 Handling a Faulty Primary

As mentioned in section 5.2.3, a faulty primary can cause a liveness problem by passing

two conflicting transactions. Table 5.5 picks up the scenario where the section 5.2.3

left off; secondary S2 has executed T2 and blocked T1. Unfortunately, S2 now has a

liveness issue: it cannot make progress on T1 since it executed T2. Replica S2 will

be able to complete executing T1 if it aborts T2. However, aborting a transaction

* Event: Receive BEGIN TRANSACTION from client
Action:

1. If epoch is odd, epoch - epoch + 1
2. counts[epoch] +-- counts[epoch] + 1
3. T.snapshotEpoch -- epoch
4. Issue BEGIN TRANSACTION for T to replica managers

* Event: Receive query Q from client.
Action: If Q is read-only, send Q to all replica managers; else send Q to the
primary replica manager.

* Event: Receive response for query Q from primary replica manager.
Actions:

1. Send the response to the client, noting it as Q.ans.
2. If Q is an update query, send Q to secondary replica managers.
3. Add response to votes(Q), the set of responses received so far from the

different replicas.

* Event: Receive response from secondary replica manager for query Q.
Actions: Add response to votes(Q).

* Event: Receive ABORT from client.
Actions:

1. Send ABORT to replica managers.
2. Send acknowledgment to client.

* Event: Receive COMMIT for transaction T from client.
Action: Request transaction writeset

* Event: Receive writeset from uncommitted transaction T from replica manager
Actions:

1. add writeset to writesets(T)
2. if f + 1 matching writesets from replicas with replica.seqno = B then:

(a) If the response Q.ans sent to the client for some query Q in T is
not backed up by f votes in votes(Q) from replicas that are ready to
commit T, send ABORT to the replica managers and inform the client
of the ABORT.

(b) Otherwise:
i. T.seqno -- B; T.commitEpoch -- epoch; B - B + 1
ii. If epoch is even, epoch 4- epoch + 1

iii. counts[epoch] <-- counts[epoch] + 1
iv. Send acknowledgment to client and COMMIT to replica managers.

Figure 5-6: SES Coordinator pseudo-code.

* Event: BEGIN TRANSACTION for transaction T arrives from coordinator
Action: Issue snapshot when replica.epoch = T.snapshotEpoch

* Event: snapshot completes on replica
Action:

1. replica.count +- replica.count + 1
2. if epoch > replica.epoch and counts[replica.epoch] = replica.count then

(a) replica.epoch - replica.epoch + 1
(b) replica.count 0

* Event: query Q from transaction T arrives from coordinator
Action: Issue Q when all previous queries of T have completed executing on the
replica. Send response to Q to the coordinator.

* Event: coordinator requests writeset for transaction T
Action: When all queries of T have completed executing, perform writeset
extraction and send resulting writeset to coordinator.

* Event: COMMIT for transaction T arrives from coordinator
Action:

1. When writeset extraction for T has completed, replica.seqno +-

replica.seqno + 1
2. Then issue COMMIT when replica.epoch = T.commitEpoch.

* Event: COMMIT completes on replica
Action:

1. replica.count -- replica.count + 1
2. if epoch > replica.epoch and counts[replica.epoch] = replica.count then

(a) replica.epoch -- replica.epoch + 1
(b) replica.count - 0

* Event: ABORT arrives from coordinator
Action: discard any unexecuted queries and abort transaction

* Event: coordinator advances epoch
Action: if counts[replica.epoch] = replica.count then

1. replica.epoch - replica.epoch + 1
2. replica.count - 0

Figure 5-7: SES Replica Manager pseudo-code.

* Transactions T1 and T2 conflict.
Status by Replicaansaction Status by Replica * S1 and S2 picked different trans-

Primary S1 S2 actions to execute.
faulty stale

T1 commit commit block * Coordinator committed T1.T1 commit commit block
T2 exec abort exec * S2's vote for T2 does not count

because it has not executed T1.

Table 5.5: Reprint of Table 5.4.

may prevent a replica from being able to re-execute the transaction. Thus, aborting

a transaction must be a global decision: T2 must be aborted on the whole replica set.

The coordinator uses the following rule to abort transactions:

Any uncommitted transaction whose commit process has stalled beyond

a given timeout is unilaterally aborted by the coordinator.

From a correctness standpoint, once the coordinator has committed T1 it must glob-

ally abort T2: given two simultaneous conflicting transactions, only one transaction

may successfully commit. Thus, aborting T2 is the right decision, though it will oc-

cur after a timeout rather than immediately when T1 is committed. The coordinator

could decide to abort T2 immediately if it compared writesets extracted from T1 and

T2 and determined directly that they conflict. However, the situation only arises

when the primary is faulty, which is assumed to be uncommon. Comparing writesets

would slow down the common case to speed up the uncommon case: not usually a

good trade-off.

In Table 5.5, the system could make progress even though replica S2 could not.

However, the whole system can deadlock, in exactly the same scenario that afflicts

commit barrier scheduling (see Table 5.6). The system-wide deadlock can only happen

when f > 1 (f = 2 in the example). No transaction acquires f + 1 votes. The same

resolution used above works for the system-wide deadlock: one of the transactions

will be aborted globally, freeing one of the good secondaries to agree with another

good replica.

Status by Replica
Transaction Primary S1 S2 S3 S4

faulty crashed

T1 exec exec block block
T2 exec block exec block
T3 exec block block exec

Table 5.6: Example of a situation where the entire system deadlocks.

Aborting stalled transactions resolves the liveness problem, but can result in inef-

ficiency. In Table 5.7, T1, T2, and T3 all have f+ 1 votes; which is enough to commit.

If the coordinator commits T1 first, then replicas S2 and S3's votes no longer count.

The coordinator will be unable to commit any of T2, T3, and T4 until it aborts a

transaction. The coordinator will not help the situation by aborting T3 or T4, but

it has no way of knowing this information. The coordinator can abort both T3 and

T4 on the way to aborting T2 (which actually resolves the situation). However, the

coordinator only needed to abort one of T3 and T4, which demonstrates the afore-

mentioned inefficiency. The coordinator can make the right choice by performing

writeset comparison on all of the stalled transactions. Writeset comparison only need

be done when sets of transactions stall past the timeout.

Status by Replica
Xaction

Primary S1 S2 S3 S4
faulty faulty

T1 exec exec block block exec
T2 exec block exec exec
T3 exec block exec exec
T4 exec exec block block

* T1 and T2 conflict

* T3 and T4 conflict

* Coordinator commits
T1 first, rendering S2
and S3 not up to date

Table 5.7: Example of a situation where aborting transaction can result in inefficiency.

One final concern is the effect of a Byzantine network on the system. By fil-

tering packets or forging a TCP connection reset, the network can cause individual

database connections to break. Under the default model, breaking a database connec-

tion aborts any transaction in progress from the connection. Since transactions are

not restartable under snapshot isolation, this can result in good replicas being unable

to process the transaction. If enough good replicas are forced to abort a transaction,

the shepherd will not be able to acquire f + 1 votes and must also abort the trans-

action. Additionally, since SES allows group commit, it suffers from the same issues

that CBS does when transactions get aborted at commit. These issues can be avoided

by running a shim on the database replica; the shim makes transaction abort explicit.

Details of such a shim can be found in section 6.3.1.

5.3.2 View Changes

If the primary is faulty, SES may be unable to make progress efficiently. The way to

handle a faulty primary is to do a view change in which a new primary is selected

by the coordinator and the old one is demoted to being a secondary. SES performs

view changes in exactly the same manner as CBS, namely, it aborts all currently

executing transactions, selects a secondary to be the new primary, and starts executing

transactions again. For details related to view changes, see Section 4.2.3.

5.4 Fault Recovery

We now discuss how our system deals with failed nodes, i.e., how it brings them

back into a state where they can correctly participate in the protocol. We begin by

discussing recovery of replicas that have suffered a crash failure. Then we discuss

recovery of the shepherd.

Obviously, some mechanism is needed to repair a Byzantine-faulty replica. As we

did for CBS, we defer the discussion of the techniques required to restore the state of

a Byzantine-faulty replica to chapter 7. However, with writeset extraction SES can

catch some Byzantine faults before they affect the replica's state. If a replica's writeset

disagrees with the overall agreed-upon writeset, then committing the transaction on

the replica will result in incorrect values being written to the replica's state. However,

by aborting the transaction on the replica and instead applying the agreed-upon

writeset, the corruption of the replica's state can be avoided. We call this process

writeset correction, and it occurs as each replica goes to commit a transaction.

5.4.1 Recovery of a Crashed Replica

When a replica goes offline and then recovers, it rejoins the system in a locally con-

sistent state: all transactions that it did not commit prior to its failure have aborted

locally. As discussed in section 5.2.3, the replica manager replays transaction write-

sets to bring the replica up to date. Recovery consists of three phases: determining

where to begin replay, replaying operations, and rejoining the active set by starting

to execute transactions that have not yet committed.

A replica manager considers a replica to have crashed when the database connec-

tion to the replica breaks. If the manager had sent a commit to the replica prior to

learning that the connection had broken, but did not receive a reply, it cannot know

whether that commit had been processed before the replica went down. Application of

transaction writesets is idempotent, but replaying all committed transactions would

be seriously inefficient.

To allow the replica manager to bound transaction replay, we add a transaction

log table to each replica; the table contains sequence numbers from committed trans-

actions. We add to each transaction a query to insert a row into the table with the

transaction's sequence number and commit epoch. If the transaction commits prior

to a replica crash, the transaction log table will contain an entry for the transaction

when the replica recovers.

When the replica recovers and the connection is re-established, the replica manager

reads the transaction log table to determine where to begin replay. Replay starts in

the most recent epoch with a transaction in the log table. Any transactions committed

in this epoch yet not present in the table must be replayed, as well as all committed

transactions in subsequent epochs. Writeset application is typically much faster than

executing the transactions, ensuring that the recovering replica will eventually catch

up to the rest of the replicas. The replica manager can insert rows into the transaction

log table as it performs recovery to mark progress in case the replica fails amid

recovery.

A recovering replica must also start executing transactions have not yet commit-

ted. Transactions currently executing on the rest of the replica set can be divided

into two categories based on whether they acquired their snapshot before or after

the replica crash. Currently executing transactions that acquired their snapshot be-

fore the crash require writeset application to commit on the recovering replica. They

cannot be re-executed because the required snapshot is no longer accessible on the

recovering replica. A further implication is that long-running transactions can have

trouble if f + 1 nodes crash and recover during the lifetime of the transaction. This

is a liveness issue and not a correctness issue because nodes that crash and recover

will not vote on these transactions, which will result in the transactions timing out

and getting aborted.

For executing transactions that acquired their snapshot after the replica crash, the

necessary snapshots are available. The replica manager replays writesets, watching

for transitions from one commit epoch to the next. Before committing any transac-

tions in the next commit epoch, the replica manager checks to see if any executing

transaction acquired its snapshot during the intervening snapshot epoch. If so, the

replica manager begins executing the transaction and has it acquire its snapshot be-

fore continuing with transaction replay. When the recovering replica has caught up to

the replica set, it will have correctly acquired the snapshots for all currently executing

transactions and can once again contribute to the voting process.

Time
,- Epoch Schedule

0 1 2 3 4 5
I I I I I I

T1

T2

T3I I I I I I.

T4
I I I

iT5 I

Snapshot Commil
T1 0 1
T2 2 -
T3 2 3
T4 2 5
T5 4 -
Replica xactions table
Transaction I Epoch

I I I TI1 1

Replica Crash Now T3 3

Figure 5-8: Crash Recovery Scenario.

Consider the situation in Figure 5-8, where a replica crashes during the commit

·_··

of transaction T3. When the replica recovers, the replica queries the transaction log

table (called xactions in the figure) and discovers that T3 did in fact commit before

the replica crashed. Replay will start in commit epoch 3, as this is the latest epoch

mentioned in the xactions table. The replica must replay T4's writeset to bring

it up to date with the rest of the replicas. Note that re-execution is not possible

with T4 because the replica cannot start executing T4 with the correct snapshot:

its state reflects the result of committing T3. Before replaying transactions, we note

that two transactions are currently executing: T2 and T5. The recovering replica

cannot execute T2, as it acquired its snapshot during epoch 2, which occurred before

the replica crash. The replica will not be able to vote on T2; it will have to wait

for a writeset if and when T2 commits. T5 does not have this issue as it acquired

its snapshot after the replica crash. The replica manager starts T5, has it acquire a

snapshot, then applies the writeset for T4, which completes the replica's recovery.

The replica uses an insert into the transaction log table instead of an update to

avoid write-write conflicts. Inserting rows causes the table to grow in size, but the

transaction log table can be truncated to a single row at any time. The replica man-

ager injects a transaction into the workload to delete all rows less than the maximal

epoch value. Since currently running transactions never insert values less than the

current maximum, the delete operation will never result in a write-write conflict.

5.4.2 Recovery from a Shepherd Crash

As mentioned previously, the shepherd maintains a write-ahead log which it uses to

survive crashes. When the coordinator determines that it can commit a transaction,

it writes the transaction writeset and sequence number to the log. The coordinator

forces the log to disk before replying to the client. Note that the coordinator can

employ the group commit optimization, where by delaying the processing of a commit,

the system can write a series of log records in one disk operation.

To recover from a crash, the shepherd reads the log and identifies the sequence

number of the last committed transaction. The shepherd knows where to start write-

set application for each replica by examining the replica's transaction log table, just

as if the replica had crashed. The shepherd can start accepting new client transac-

tions when the primary replica manager's sequence number matches the coordinator's

sequence number.

The shepherd's log can be truncated by removing information about transactions

that have committed at all the replicas. We can expect that most of the time all

replicas are running properly and therefore the log need not be very large.

5.5 Correctness

In this section we present an informal discussion of the safety and liveness of our

system. We assume here that no more than f replicas are faulty simultaneously.

5.5.1 Safety

SES is safe because it guarantees that correct replicas have equivalent logical state,

and that clients always get correct answers for transactions that commit.

Ensuring that correct replicas have equivalent logical state requires that they exe-

cute equivalent operations in equivalent orders. SES has the same SQL compatibility

requirements as CBS with regard to SQL that executes identically on all replicas.

Database SQL heterogeneity aside, within a transaction, statements are submitted in

an identical order to each replica, thus ensuring that all replicas observe equivalent

operations.

Additionally, a non-faulty replica must not commit a transaction that conflicts

with any other transaction committed by a non-faulty replica. If the coordinator does

not commit conflicting transactions then neither will the replicas. The coordinator

cannot commit conflicting transactions because it requires f + 1 up to date replicas

to commit a transaction and no non-faulty up to date replica will agree to commit a

conflicting transaction.

Ensuring equivalent order requires that given two transactions, all non-faulty repli-

cas order them identically. For example, if T1 is before (or simultaneous with) T2 on

replica R1, then T1 must be before (or simultaneous with) T2 on all other replicas.

The transaction ordering rules from section 5.1 all compare the time one transaction

commits to the time another transaction acquires a snapshot. SES breaks time up into

discrete epochs, and fixes each transaction's snapshot time into an epoch and commit

time into a later epoch. Since all correct replicas acquire transaction snapshots and

commit transactions during the assigned epochs, if transaction T1 commits in epoch

5 and transaction T2 acquires its snapshot in epoch 6, then all replicas will order

T1 before T2. Thus, replicas have equivalent state because they execute equivalent

operations in equivalent orders.

During the commit process, the coordinator verifies that each transaction returned

correct answers to the client. Each answer must be attested to by at least f+1 replicas,

ensuring that at least one non-faulty replica agrees with the answer. Should the

answer sent to the client differ from the answer that acquire f+1 votes, the transaction

is aborted, as at least one non-faulty replica believes the answer is incorrect. If the

coordinator waits long enough, all f + 1 non-faulty replicas will participate, ensuring

that the situation will eventually fit into one of the two aforementioned scenarios.

SES offers a trade-off between read-only query latency and correctness guarantees

provided on query answers. Since reads never block, they are executed simultaneously

on the whole replica set. Unlike CBS, SI replicas never change their answers during

re-execution, thus the answer produced is always the final answer. By running the

read operation on all replicas and reaching agreement before returning, the system

can guarantee correct answers to reads before the commit point. Thus, read-only

operations would run at the speed of the slowest of the f +1 fastest replicas and would

be guaranteed correct answers. By contrast, the protocol as previously described

returns answers when the primary produces them, which is likely faster than the

slowest of the f + 1 fastest replicas.

Unfortunately, the argument in the previous paragraph could be considered incor-

rect. While SI replicas will not change the content of their answer, they can change

whether they return an answer at all. If a faulty primary passes two transactions that

make concurrent modifications, one of the transactions should not return an answer

for that statement (or any subsequent statements). At the commit point, one of the

transactions will get aborted, effectively withdrawing answers for a set of statements.

Getting an answer when the system should not give one could be considered incorrect

behavior.

On the other side of the trade-off would be to return the first answer produced,

as opposed to the primary's answer. Latency is reduced to that of the fastest replica,

but with the implication that a faulty replica can get its answer sent to the client with

high probability (e.g., lying is faster than actually computing the answer). Returning

the first answer provides the same correctness guarantee as returning the primary's

answer, however it is easier for an adversary to cause incorrect answers to be sent to

the client.

5.5.2 Liveness

Given a non-faulty primary, SES is live assuming that messages are delivered eventu-

ally and correct replicas eventually process all messages they receive.

However, the primary may be faulty. A view change operation will replace a

faulty primary with a new replica. However, the faulty primary could already have

caused some transactions to stall and some replicas to be unable to make progress.

The timeout mechanism will eventually abort these stalled transactions; a non-faulty

primary would have merely aborted them quicker. A non-faulty replica can only stall

if it executed a stalled transaction that will eventually abort. When the transaction

aborts, the replica will once again be able to make progress.

Since the view change operation can involve aborting all currently running trans-

actions, continuous view changes would result in the system being unable to make

progress. An adversarial network cannot convince the shepherd that a primary re-

turned incorrect answers (a sure sign it is Byzantine-faulty), it can merely make the

primary appear very slow. By increasing the timeout used to decide when to do a

view change because the primary is too slow, the shepherd can guarantee progress,

given that messages are delivered eventually.

5.6 Practical Considerations Running SES

Writeset extraction must produce logical writesets for comparison by the shepherd.

However, each database may store data in a database-specific layout and format.

For example, one database could store data in a table, whereas another database

could expose a view of the same name which computes the data from a collection

of other tables. The writeset from one database will not directly match the other

database. Thus, each database must also provide a bi-directional mapping function for

converting between logical and physical writesets for that database. When producing

writesets for comparison, the mapping function ensures that the shepherd compares

logical writesets. Conversely, when the shepherd applies writesets to a database to

bring it up to date, the mapping function converts logical writesets into physical

writesets that can be applied to the database's data model. The mapping function is

somewhat analogous to the SQL translation layer.

5.7 Optimizations

We conclude this chapter with a discussion of several optimizations to the basic SES

protocol.

Scale-up

So far, replication has been used exclusively for increased fault tolerance, not for

increased performance. Since the performance of the system is directly dependent

on the performance of the primary, shifting load off the primary should improve

performance. The primary does not have to execute reads to determine conflicts,

thus the shepherd can avoid sending reads to the primary entirely. Reducing the load

on the primary should allow it to scale up write-write conflict detection. If after some

timeout a read still has not achieved f + 1 matching votes, the read can be sent to

the primary for a tie-breaker.

We can run more than 2f + 1 replicas to provide performance scaling on a workload

100

Figure 5-9: Replication for fault tolerance and performance (f = 1).

which consists mostly of read-only transactions. One such architecture, modeled

on the Ganymede [31] system, appears in Figure 5-9. The system runs more than

2f + 1 replicas and the coordinator uses snapshot epoch scheduling to ensure that they

remain synchronized. The coordinator schedules all transactions into snapshot and

commit epochs as described above, but now it has a choice about which replicas will

execute each transaction. The Master Set consists of 2f + 1 replicas that execute all of

the update transactions. Reads are sent to any 2f + 1 replicas. Any replica that is not

in the Master Set uses the writesets extracted from the update transactions, applying

and committing them during the appropriate commit epoch. Writeset application

is typically much faster than executing the update queries. The major change to

the coordinator and replica manager code is that replica manager must maintain

a replica.counts[epoch] to keep track of which transactions have been issued to the

replica, rather than depending on a global counts[epoch].

101

Read-only Transactions

Read-only transactions are entirely ordered by their snapshot epoch. Thus, they

need not be scheduled into a commit epoch, nor must they be assigned a sequence

number. Furthermore, the coordinator can agree that a read-only transaction can

commit (i.e., all answers sent to the client are correct) without synchronizing relative

to other transactions. The commit process for read-only transactions goes as follows:

* Coordinator

- Event: Receive COMMIT for read-only transaction T from client

Action: Wait for f + 1 replicas with matching answers for each query.

* If the response Q.ans sent to the client for some query Q in T is not

backed up by f + 1 votes in votes(Q) then ABORT

* Else send acknowledgment to client and COMMIT to replica managers.

* Replica Manager

- Event: Receive COMMIT for read-only transaction T from coordinator

Action: Issue COMMIT to replica

- Event: COMMIT for read-only transaction T completes on replica

Action: Nothing

Scheduling Epochs

The coordinator can perform an optimization similar to group commit by delaying

snapshots or commits to group them better into epochs. Epoch advancement on

a replica is a synchronization point because all operations from the previous epoch

must be completed before the replica can advance to the next epoch. When schedul-

ing transactions into epochs, the coordinator can delay advancing to the next epoch

slightly, hoping to be able to schedule another transaction into the current epoch.

By doing so, the shepherd can increase epoch size, essentially allowing more concur-

rency. The potential downside of this optimization is that it increases the number

102

of simultaneous transactions, which would also increase the possibility of write-write

conflicts.

Deferring transaction snapshot acquisition is more beneficial than deferring trans-

action commit. When a transaction is ready to commit, it holds locks on the items

it has written. Deferring the commit extends the duration that the locks are held,

potentially reducing throughput in high contention scenarios. However, snapshot ac-

quisition occurs before any locks are acquired, thus there is more flexibility in snapshot

scheduling than commit scheduling.

103

104

Chapter 6

Implementation and Performance

Heterogeneous Replicated DataBase (HRDB) is our prototype implementation of the

shepherd. We have two implementations of the shepherd, one that runs Commit

Barrier Scheduling (CBS) and one that runs Snapshot Epoch Scheduling (SES). In

this chapter, we present some details of each implementation, followed by an analysis

of the implementation's performance. We conclude with a discussion of bug tolerance

and discovery with HRDB.

6.1 CBS Implementation

We implemented the HRDB prototype of CBS in Java and it comprises about 10,000

total lines of code. Clients interact with the shepherd using our JDBC driver. Imple-

menting our own limited functionality JDBC driver was simpler than having the shep-

herd understand an existing JDBC wire protocol (such as the one used by MySQL's

JDBC driver). Clients only need to load our driver JAR file and change the JDBC

URL to connect to the shepherd, thus allowing HRDB to work with existing applica-

tions. The replica managers also use JDBC to interact with their replica databases.

All major database implementations supply a JDBC driver.

JDBC access involves blocking operations: its calls do not return until the database

returns an answer to the query. Thus, the shepherd must run each concurrent trans-

action in a separate thread on the replica manager. Overall, to support c concurrent

105

transactions, the shepherd must use c(2f + 1) threads. Our implementation uses a

thread pool containing a limited number of threads (typically 81 per replica), which

allows thread-reuse but restricts the maximum number of clients. In practice, many

databases also place restrictions on the maximum number of concurrent connections

(e.g., MySQL 5.1 defaults to 151).

We have successfully run HRDB with MySQL (4.1 and 5.1), IBM DB2 V9.1,

Microsoft SQLServer 2005 Express, and Derby (10.1 and 10.3). Two other common

options, Oracle and PostgreSQL, use Snapshot Isolation and are thus incompatible.

In the remainder of the section, we first present details of how our implementation

uses heuristics to detect problems. Subsequently, we discuss how HRDB handles

database heterogeneity. The final part of the implementation section describes a

number of alternative mechanisms for handling concurrency that we implemented for

comparison with CBS.

6.1.1 Heuristics

CBS requires that the implementation use a number of timeouts and heuristics to

manage execution and handle faults. Our prototype does not police the primary's

execution of transactions for execution time, deadlock count, or other subtle issues.

It does track two timeouts to ensure forward progress:

* Replica Stall Timeout - Each replica manager tracks the last time it issued

a statement to the replica. If the replica manager is lagging behind the coordi-

nator (i.e., R.b < B) and the last time it issued a statement is greater than the

replica stall timeout (typically 1 second), then the replica reverts to sequential

execution. All transactions other than the transaction that is supposed to com-

mit next (the transaction with T.B = R.b) are rolled back and are not re-issued

until the transaction that is supposed to commit next actually commits. At

this point, normal execution resumes. The replica stall timeout ensures that a

replica which executed transactions in an order that does not agree with the

coordinator's order will eventually be able to make progress.

106

Transaction Stall Timeout - Once a commit is received from the client, the

transaction must commit on the coordinator before the transaction stall timeout

expires. To receive a commit from the client, the primary must have completed

executing the transaction, thus the transaction stall timeout represents how long

the coordinator will wait for agreement. If the transaction stall timeout expires,

then the secondaries likely disagree about transaction ordering (potentially a

global deadlock), and aborting the transaction could help resolve the situation.

Our implementation uses 1 second for the transaction stall timeout.

Obviously, the values chosen for our prototype reflect both our implementation and

how TPC-C runs on the databases we test with. Our timeouts are static values,

but an actual implementation would need to adjust them based on the workload and

environment.

6.1.2 Handling Heterogeneity

HRDB has a basic translation layer for each database system that rewrites SQL

queries using simple syntactic transformations (e.g., translating function names, han-

dling various data definition language expressions, etc.). However, we require that

clients submit SQL that behaves deterministically. Ensuring deterministic queries

was not onerous for us because the benchmarks we ran were mostly deterministic to

begin with.

6.1.3 Handling Concurrency

HRDB supports a number of alternative schemes to enable us to evaluate the perfor-

mance of Commit Barrier Scheduling. Each of the schemes detailed below is used by

a replicated database system for concurrency control. By supporting other modes, we

can compare the overhead of each scheme in the same environment. In addition to

CBS, HRDB implements the following alternative schemes for concurrency control:

* Serial - Each transaction must acquire a global lock before executing, resulting

in transactions being presented to the database replicas in an entirely sequential

107

manner. This scheme provides minimal performance, but obvious correctness.

Serial execution is used by C-JDBC [7] for all write operations.

* Table-level locking - Before executing each SQL statement, the coordinator

extracts the tables involved and acquires shared or exclusive locks depending

on whether the statement is read-only (SELECTs typically require only shared

locks). This coarse-grained locking scheme represents a simple SQL-parsing

approach to determining conflicting transactions. The locking mechanism must

also detect and resolve deadlocks that occur in the workload. A versioning

scheme based on tables is used by [2].

* Explicit-Partition locking - By declaring categories of transactions that con-

flict (partitions), the client takes on responsibility for concurrency control. The

client supplies special locking statements to the coordinator which explicitly in-

dicate which resources each transaction depends on. The two primitives, LOCKX

id and LOCKS id, request exclusive and shared access to the client-defined re-

source id. The locking mechanism itself is identical to the table-level locking

scheme, except that the client chooses which locks to acquire. If the client does

not send SQL that matches the partitions, the replica set can deadlock or di-

verge (as we proved while debugging the scheme). Client-specified partitions

are used in [17].

* Serial Secondaries - Instead of using a barrier scheme to determine which

statements can execute concurrently on the secondaries, secondaries execute

transactions serially. Answers are sent to the client as they are produced by the

primary, with the whole transaction shipped in batch to the secondary when

it completes executing on the primary. The Pronto [29] system operates in a

similar manner, though it does not attempt to tolerate Byzantine failures.

The scheme is much simpler than CBS-there is no possibility of mis-ordering on

the secondaries. However, the performance suffers from two issues: execution

is not pipelined and transactions execute serially on the secondaries. When

the commit arrives from the client, the secondaries must execute the complete

108

transaction, resulting in a longer wait before agreement is reached. System

performance is fundamentally limited by sequential execution at the secondaries.

Since these alternative schemes ensure transaction isolation and consistency at the

Shepherd level, the database replicas can execute at a lower isolation level. We run

the database replicas using READ UNCOMMITTED, where the transactions do not

acquire any locks during execution. Running at this lower isolation level improves

sequential performance. The exception is that the Serial Secondaries scheme requires

that the primary (only) run at the SERIALIZABLE isolation level.

6.2 CBS Performance Analysis

In this section, we characterize the performance of HRDB under different workloads

and compare it to the alternative schemes mentioned above. Our tests were done

with 2f + 1 = 3 replicas, 1 primary and two secondaries, which can tolerate 1 faulty

replica. Our implementation does not perform logging on the shepherd, nor does it

use SSL to encrypt and authenticate JDBC connections.. The tests were run on a

cluster of Dell Poweredge 1425 machines running Fedora Core 4 Linux, each with

dual processor 2.8 GHz Xeons with 2GB of RAM and SATA 160 GByte disks, and

all attached to the same gigabit Ethernet switch. Some tests also included a Dell

OPTIPLEX GX620 3.8Ghz with 4GB of RAM running Windows XP. The overhead

tests were run using MySQL 5.1.23 with InnoDB tables.

We use the TPC-C [42] query mix to test our system because it produces a high

concurrency transaction processing workload with non-trivial transaction interaction.

TPC-C simulates an order-entry environment where a set of clients issue transac-

tions against a database. The TPC-C workload is heavily slanted towards read/write

transactions, with read-only transactions comprising only 8% of the workload. Our

tester implementation runs on a single machine, with one thread per client to submit

requests. The test machine spends most of its time waiting for queries to complete,

making it an unlikely performance bottleneck.

We use the same transaction types as TPC-C but do not attempt to model the

109

keying, wait, and think times. Instead, when a client finishes a transaction, it imme-

diately submits another. Changes in wait time shift the number of clients required

to reach saturation, but do not affect the relative performance of our system with

respect to the database. Each test initializes the database for a specific number of

warehouses, runs the system for 10 minutes with 20 clients to warm up the buffer

cache, and then measures throughput for various client configurations.

The unit of concurrency in TPC-C is the warehouse: most transactions target a

single warehouse and transactions targeting the same warehouse likely conflict. Each

warehouse takes up approximately 100MB of space. Figure 6-1 shows the performance

of a single MySQL5.1 database on TPC-C, for various numbers of warehouses. For

the 1, 3, and 5 warehouse cases, the system is limited by low concurrency in the

workload. For 10 and 30 warehouses, there is ample concurrency and the system

is I/O limited. These 5 TPC-C scenarios are the ones we use when evaluating the

performance of CBS.

TPC-C running against single MySQL5.1 database, no wait time

200

o

A 150

50-100

50

0 5 10 15 20 25 30 35 40
Clients

Figure 6-1: MySQL performance on TPC-C with various warehouse counts.

110

I I I I I I I

I Warehouse ---+--
3 W arehouses .---
5 Warehouses '...----

10 Warehouses -..- '.
30 Warehouses

4 -------------- -- I. . - - - -. . . . " ---
....o-.-

We begin by measuring the overhead of our middleware implementation, then

progress to the overhead of commit barrier scheduling with a homogeneous replica

set. Then we demonstrate that HRDB does work with a heterogeneous replica set and

achieves good performance. We finish up the section with results that demonstrate

that HRDB tolerates crash faults. We note that the HRDB implementation is an

untuned Java prototype and the TPC-C implementation is also untuned.

6.2.1 Middleware Overhead

The middleware architecture interposes another server between the client and the

database, creating a source of overhead independent of the concurrency control mech-

anism. Given ample network bandwidth and processing power on the middleware

server, the additional latency per operation that it imposes can still reduce through-

put. Specifically, increased operation latency lengthens transaction duration, which

reduces throughput in high contention workloads. For example, if all transactions

require the same lock, the maximum throughput is 1/(transaction duration). In ad-

dition to latency overhead, we also investigate the communication overhead of our

JDBC driver to ensure that it does not adversely affect performance.

Latency Overhead

To measure the effect of middleware on system throughput, we compare the perfor-

mance of running TPC-C directly on the database against running TPC-C through

several different middleware implementations. Since we are evaluating the effect of

the middleware's existence, each of the three implementations we benchmarked is

as simple as possible: they perform no replication or concurrency control. Two im-

plementations are merely TCP proxies which proxy the JDBC connections from the

client to the database. The third is a JDBC proxy, which communicates with the

client using our own JDBC protocol and communicates with the database using the

database's JDBC protocol. Because JDBC is a blocking interface, the JDBC proxy

uses many threads to support many concurrent clients. For comparison, one of the

111

TCP proxies was implemented using a multi-threaded, blocking I/O model, and one

was implemented using a single-threaded, non-blocking I/O model.

Figures 6-2 and 6-3 show the results of running TPC-C through middleware that

does no replication or concurrency control. The PassThrough is the JDBC proxy,

where the clients communicate with it using our JDBC protocol and it communicates

with the database using the MySQL JDBC protocol. None of the intermediaries

perform any replication: there is only one database. In each configuration, there is

a Java Virtual Machine with the full number of client threads using MySQL's JDBC

libraries (on the tester machine for MySQL, Proxy, and ThreadProxy, and on the

middleware machine for PassThrough).

When the database is limited by available concurrency instead of I/O (1, 3, or 5

warehouses, not 10 warehouses), introducing a TCP proxy (single or multi-threaded)

results in significant performance overhead. For the 1 warehouse case, most transac-

tions conflict and the proxies both show about 30% overhead. With 3 warehouses,

the multi-threaded proxy (16% overhead) takes advantage of the quad-core CPU on

the middleware machine and outperforms the single-threaded proxy (33% overhead).

With 5 warehouses, thread scheduling starts interfering in the multi-threaded proxy

(39% overhead) but not in the single-threaded proxy (31% overhead). With 10 ware-

houses the database is limited by I/O operations and thus additional operation latency

has less of an effect on performance (both proxies exhibit only 14% overhead).

With enough available concurrency, the PassThrough has negligible overhead.

Since it is JDBC-aware, it interacts with the client and the database on the operation

level, never needing to block waiting on the wrong entity. The MultiThread proxy

uses twice as many threads (one to wait on the client and one to wait on the database)

because it does not understand the JDBC protocol. Finally, the PassThrough's JDBC

driver for communicating with the client is slightly more bandwidth-efficient for TPC-

C (about 20%).

112

TPC-C, I warehouse, no wait time

100

80

60

40

20

0 5 10 15 20 25 30 35
Clients

TPC-C, 3 warehouses, no wait time

10 15 20 25 30 35 40

Clients

Figure 6-2: TPC-C with 1 and 3 Warehouses run through middleware (no replication)

113

MySQL 5.1
SingleThread Proxy ----+
MultiThread Proxy ...-....--

SPassThrough +

200

150
o

100Q

50

0

..
....

..........

-- ------ -------------------- ------

MySQL 5.1 -
SingleThread Proxy ---i--
MultiThread Proxy -........

PassThrough .- +-..

I I I Im I I B I

F

F

F

1-

TPC-C, 5 warehouses, no wait time

+.

'.s

'--4.

...

------------- ------- ----- ---
------------ 1-------·-I-+--- --

.....

/P~ MvSflT '51

SingleThread Proxy
MultiThread Proxy

,PassThrough

--- 4---.

----....
......

10 15 20 25 30 35 40

Clients

TPC-C, 10 warehouses, no wait time

0 5 10 15 20 25 30 35 40
Clients

Figure 6-3: TPC-C with 5 and 10 Warehouses run through middleware (no replica-
tion)

114

200

150

100

50

-. I. -- - - -i

--- --l i , . i , , I .. I . ,,

F

F

1-

E

Communication Overhead

Clients use our own JDBC driver to interact with HRDB or the PassThrough. Our

JDBC wire format is independent of the component replica database interfaces. While

each database provides a JDBC driver with a standard interface, the wire format

used by the driver for query results is database-specific. Thus, query results must be

unmarshaled in the shepherd and remarshaled to be sent to the client. This step is

also necessary to store the result set from the primary for comparison with the result

sets from the secondaries.

Our wire format compares favorably with the native MySQL JDBC driver. TPC-

C run directly against MySQL averages 10.6KB I/O with the client per transaction

(3.3KB sent, 7.3KB received). TPC-C run through the PassThrough averages 8.1KB

I/O with the client per transaction (3.5KB sent, 4.6KB received). Our JDBC im-

plementation sends less header information with query results, potentially due to

our incomplete implementation of the JDBC specification. For this benchmark, our

JDBC protocol averaged 20% less bytes exchanged with the client.

However, the above results are only half of the story: the Shepherd or Passthrough

must also receive the results from the database via the MySQL JDBC driver. Thus,

the overall bandwidth consumed by the PassThrough is 180% of running TPC-C

directly against MySQL. Given the TPC-C consumption reported above, even 200

transactions per second through the PassThrough only consumes 4MB/second of the

gigabit switch. The Shepherd running with 3 database replicas would consume 380%

of the bandwidth, or a little less than 8MB/second, which is still a small fraction of

the gigabit switch.

One obvious situation where 180% bandwidth overhead would cause issues is when

a query generates much larger results. We measured the overhead for single operations

with large results by running a SELECT query with a large result set directly against

a MySQL5.1 database and also through the PassThrough. The query requests TPC-

C customer data for a particular warehouse and by varying the number of districts

we control how much data is returned by the query. Selecting one district worth of

115

customer data returns a result about 2 megabytes in size; selecting all 10 districts

produces the expected 20 megabyte result. TPC-C's customer table is a representative

sample because it has a good mix of data types.

System Query Size Time Result Size Total Bytes MS per MB
MySQL5.1 1 district 177ms 1.63MB 1.63MB 108ms/MB
PassThru 1 district 404ms 1.83MB 3.46MB 116ms/MB

MySQL5.1 10 districts 2099ms 16.3MB 16.3MB 129ms/MB
PassThru 10 districts 4481ms 18.3MB 34.6MB 130ms/MB

Table 6.1: Performance implications of bandwidth overhead for large results.

By interposing a byte-counting proxy between the client and the database (or

PassThrough), we can measure the total bytes sent by the various JDBC protocols.

Table 6.1 shows the results of the experiment. As expected, the PassThrough exhibits

half the performance of the stand-alone case, as the result must be sent twice: once

to the PassThrough and then again to the client. The overall time is governed by

total bytes sent (ms per MB of result is comparable). Our result set implementation

is slightly less efficient than MySQL for large results (it takes 12% more bytes to

send the same result). As is evident from the data from running TPC-C, our JDBC

protocol is more efficient for small result sets: when selecting a single row from the

customer table, MySQL's result size is 1951 bytes compared with PassThru's 1002

bytes, for a saving of 49%.

One optimization that we could apply, but have not implemented, is pipelined

result relay. The JDBC protocol supports incremental fetching of result sets. By

requesting the result in chunks and sending each chunk to the client as it arrives, we

could hide some of the latency associated with large results. However, not all JDBC

drivers support this component of the protocol.

6.2.2 HRDB Overhead

To measure the overhead associated with the HRDB shepherd, we compared running

the TPC-C workload against a database directly to running it through the HRDB

shepherd. We evaluate the performance of CBS relative to the other potential schemes

116

the Shepherd implements. The performance of the various schemes depends on the

amount of contention in the workload. We produced a number of different contention

scenarios by varying the number of TPC-C warehouses. For each scenario, we ran

TPC-C directly against the database to determine the zero overhead performance, and

also through the PassThrough to determine the maximum middleware performance.

Figures 6-4, 6-5, and 6-6 show the results of these tests in comparison to the various

concurrency control schemes implemented by the shepherd.

Assuming sufficient CPU and network bandwidth, the major performance differ-

ence between CBS and PassThrough is that CBS must wait for agreement at commit.

The additional wait time adds to transaction duration, which reduces overall perfor-

mance, especially for high contention workloads. The results for high contention work-

loads (Figure 6-4: 1 and 3 warehouses) show that the extra latency introduced by CBS

at the commit point reduces performance 30-40%. In these cases, the PassThrough

also performs badly; CBS is only 11-17% slower than the PassThrough. However,

workloads without high contention (Figure 6-5,6-6: 10 and 30 warehouses) show CBS

having only 10-15% overall performance loss.

The Pronto scheme results in longer wait times at commit than CBS, as it does not

pipeline execution on the secondaries with execution on the primary. When Pronto

reaches the commit point, it must wait for the all secondaries to execute the entire

transaction. Furthermore, the secondaries execute transactions sequentially, ensuring

that there is at least a full transaction execution latency between transaction commits

on the coordinator. By contrast, CBS can commit batches of transactions at the

same time; in some of the tests reaching an average batch size of 7 transactions.

With high contention, the system is sensitive to small increases in latency. Our low

contention cases occur when the database is I/O limited and transaction execution

time becomes significant. Thus, Pronto performs worse than CBS under both high

and low contention.

The performance of the Explicit Partitioning scheme is entirely dependent on

the granularity of the partitioning. Our partitioning scheme uses warehouse as the

partitions, acquiring all partition locks upfront in ascending warehouse order, so as to

117

TPC-C, 1 warehouse, no wait time

100

80
-o

6

40
20

20

0 5 10 15 20 25 30 35 40

Clients

TPC-C, 3 warehouses, no wait time

200 ,

150
. ---------------------------------

...-. -,

100
50

50

MySQL 5.1 - lShepherdcl 3Us, Pronto +....
PassThrough --t- -. Shepherd 3DBs, TableLocking -

Shepherd 3DBs, CBS-.... Shepherd 3DBs, Serial -+--
Shepherd 3DBs, Partition ... -- .-......

0 10 20 25 30 35 40

Clients

Figure 6-4: TPC-C with 1 and 3 Warehouses, comparing replication methods

118

.+...-...-.......-......

S.........

4

MySQL 5.1 ---- Shepherd 3DBs, Pronto -.......-
PassThrough --- --- Shepherd 3DBs, TableLocking .. -.

Shepherd 3DBs, CBS Shepherd 3DBs, Serial -- -- ---
Shepherd 3DBs, Partition ...-+I I ~I I I I I I

- - 4.. - -
+- -- --

TPC-C, 5 warehouses, no wait time

ZJU

200

0
150

0 S 100

50

0

0 5 10 15 20 25 30 35 40

Clients

TPC-C, 10 warehouses, no wait time
100

80

60 ------------------------------S0 60 -----......--- -.. . ---------------------

ri

40

4

I-,

20 '

MySQL 5.1 '--- Shepherd 3DBs, Pronto --. +-- 1
PassThrough --- .-- Shepherd 3DBs, TableLocking -. .. ---

Shepherd 3DBs, CBS-..... Shepherd 3DBs, Serial
0P 1 S i

0 5 15 20 25 30 35 40

Clients

Figure 6-5: TPC-C with 5 and 10 Warehouses, comparing replication methods

119

-- - -- - - ---- 4------------- ------ I -- --- --I ,,·,t~~ ------ ------ -~ " I"

-" - - - --..-..

*·-·--·-·.-.--c.-
·- ·-- i··-·--·--·-·.-..-.--.--.!

M
MySQL 5.1 -+--- Shepherd 3DBs, Pronto --.---+-

PassThrough -------- Shepherd 3DBs, TableLocking .. -- ---
Shepherd 3DBs, CBS- + Shepherd 3DBs, Serial --~

I I I I

------....-......... f ------

. . .. - • ÷• .

TPC-C, 30 warehouses, no wait time

20

S 15

10

n
0 10 15 20 25 30 35 40

Clients

Figure 6-6: TPC-C with 30 warehouses, comparing replication methods

avoid deadlocks. With only 1 warehouse, the partitioning scheme is identical to serial.

With 30 warehouses, the number of partitions is sufficient to keep the database busy

and partitioning performs very well. Deadlocks between multi-partition transactions

can significantly affect performance, but all partitions touched by a transaction are

known upfront for the TPC-C workload, thus allowing deadlocks to be avoided. Multi-

partition transactions make up about 11% of the workload.

Table Locking performs poorly on TPC-C because most transactions involve writes

to the same table. Specifically, the New Order and Payment transactions, which

account for 88% of the workload, both write to the district table. Thus, Table

Locking performs only slightly better than serial execution. Our implementation of

TPC-C carefully orders table accesses to minimize deadlocks, but we had to add

an explicit table lock acquire to the delivery transaction due to an inherent cycle

between neworder and delivery transactions. When the Table Locking scheme

experiences deadlocks, its performance drops below that of Serial.

120

Ic

Serial execution restricts performance to that of a single client, regardless of how

many clients are present in the test. In our experiments, this results in performance

2 and 5 times worse than a stand-alone database. In all but the highest contention

test, CBS beats serial by a factor of 2 to 3.

In summary, Commit Barrier Scheduling performs well in comparison to both the

PassThrough and alternative schemes for concurrency control. CBS matches or beats

the performance of Explicit Partitioning without any help from the client. Improv-

ing the performance of the PassThrough will likely provide significant performance

improvements for CBS as well.

6.2.3 Heterogeneous Replication

Now we demonstrate that HRDB is capable of using a heterogeneous replica set, and

that a sufficiently blocking primary is a reasonable, but not necessary, assumption.

We implemented the TPC-C workload in standard SQL, and thus were able to run it

against several different vendor's database implementations. The databases used were

MySQL 4.1.22-max and 5.1.16 with InnoDB tables, IBM DB2 V9.1, and Commer-

cial Database X1. We also ran experiments with Apache Derby 10.1.3.1 (a Java-based

database) but omit performance numbers here as it is much slower than the other sys-

tems. The minor SQL translation that HRDB provides makes this possible; however

some queries of TPC-C were modified to take into account NULL ordering, timestamp

differences, etc.

One issue that crops up is that databases assign different types to the results

of computations, making the result sets difficult to compare. Our implementation

coerces all database replica results into the types returned by the primary database.

While the mechanism works well, a malicious primary could fool the shepherd into

believing the replicas are in agreement by selecting types which map many values to

few values. For example, returning a single bit results in all replica answers being

coerced to a single bit, increasing the likelihood of acquiring f + 1 matching responses.

We ran the test with 20 clients on a 10 (small) warehouse workload, with the ob-

'Database name omitted due to licensing constraints

121

Performance of HRDB with Heterogeneous Replicas on TPC-C, 20 Clients

MySQL via PassThrough

T

Vu

80

70

S 60

0

• 40

30

20

10

n I

....... o...

TI

.

MySQL5.1 DB2 Commercial X

Shepherd running CBS, 3 DBs, DB as Primary

Figure 6-7: Performance of HRDB with a heterogeneous replica set (MySQL, DB2,
Commercial Database X).

jective of demonstrating feasibility and relative performance of various configurations

(not databases). The implementations of HRDB and TPC-C used in this section are

slightly older than the ones used to produce the results in the previous section, so

performance numbers do not transfer.

Figure 6-7 shows the throughput results for a number of configurations. The

top three horizontal lines show the performance of running TPC-C against a partic-

ular database through the PassThrough. They indicate the maximum throughput

achievable using that database replica. Each of the three columns shows the perfor-

mance of running HRDB in a 3 database configuration (MySQL 5.1, DB2, Commercial

Database X) with the labeled database as the primary database. The bottom hor-

izontal line shows the performance of running HRDB in a 3 database configuration

(MySQL 5.1, DB2, Commercial Database X) where transactions are executed sequen-

tially. No matter which database is selected as the primary, CBS runs twice as fast

as sequentially execution on this workload.

122

Commercial X via Passlhrough.. h..r .

SDB2 via PassThrough

Shepherd, 3DBs, Sequential..............-...

,,

CBS runs at the speed of the primary, or the slowest of the f + 1 fastest replicas,

or whichever is slower. Furthermore, if the primary is not sufficiently blocking for one

of the secondaries, that secondary will not be in the f + 1 fastest replicas most of the

time.

* MySQL as primary - The primary (MySQL) is faster than the other replicas,

so HRDB runs at the speed of the slowest of the f + 1 fastest replicas, which is

Commercial Database X

* DB2 as primary - The primary (DB2) is slower than the other replicas, so

HRDB runs at the speed of DB2.

* Commercial Database X as primary - The primary (Database X) is rea-

sonably fast, but slower than MySQL, so HRDB should run at the speed of

Commercial Database X. However, for one query, Commercial Database X does

not appear to be sufficiently blocking for MySQL. With MySQL spending time

untangling transaction ordering issues, the next fastest replica is DB2, so HRDB

actually runs at the speed of DB2.

Sufficiently blocking should be a transitive property. That is, if Commercial

Database X is sufficiently blocking for DB2, and DB2 is sufficiently blocking for

MySQL, then Commercial Database X should be sufficiently blocking for MySQL. In-

tuitively, if DB2 allows two transactions to run in parallel with Commercial Database

X as the primary, it should also allow those two transactions to run in parallel when it

the primary. If MySQL blocks one of the transactions when Commercial Database X

is the primary, it should also block one when DB2 is the primary. However, this does

not appear to occur during that tests we ran. Our tests do demonstrate that suffi-

ciently blocking holds in most cases and that the system successfully makes progress

when it does not.

In conclusion, heterogeneous replication is feasible. Sufficiently blocking is a rea-

sonable assumption, though it does not always hold. Finally, the system runs at the

speed of the slowest of the f + 1 fastest replicas, or the primary, whichever is slower.

123

6.2.4 Fail-stop faults

To demonstrate that HRDB survives fail-stop faulty replicas, we measured transac-

tion throughput while one replica was crashed and restarted. We ran a 20 client

TPC-C workload and recorded the timestamps at which each replica committed each

transaction. Figure 6-8 shows a replica being crashed 76 seconds into the test and

restarted 40 seconds later. In this time, the rest of the system continues executing

because it can tolerate a faulty replica. When the faulty replica restarts, it is 500

transactions behind.

For the overall system, the performance impact of a crashed replica is negligible.

When the replica restarts, it is able to catch up with the rest of the replicas because

it does not execute any reads. For this workload, the slow replica was able to exe-

cute transactions at nearly three times the rate of the rest of the replicas (750 vs.

250 transactions in 20 seconds). This result demonstrates that transiently slow or

rebooted replicas can catch up with the other replicas.

6.3 SES Implementation

Our second implementation of the HRDB shepherd uses Snapshot Epoch Schedul-

ing (SES) to provide single-copy snapshot isolation. HRDB running SES uses only

replicas that provide snapshot isolation; we show results with PostgreSQL. Our im-

plementation of SES includes both the shepherd and a shim that runs co-resident with

the database. Both entities are implemented in Java and together comprise about

7700 lines of code. We first present motivation and implementation details of the

shim, then describe interesting implementation details of the shepherd.

6.3.1 Shim Implementation

As mentioned in Section 5.3.1, a malicious network can break network database con-

nections, which the JDBC standard specifies as resulting in the database aborting any

currently executing transaction associated with the connection. Once a database has

124

Transaction Execution: HRDB System vs Faulty Replica

2000

1500

0
U

0

S 1000

0

A

60 80 100 120 140 160

Time in Seconds

Figure 6-8: Transactions completed over time on TPC-C workload as one replica is
crashed and restarted

aborted a transaction, it may be unable to re-execute it, allowing an attacker to pre-

vent a transaction from acquiring the necessary quorum. The primary purpose of the

shim is to maintain transactions over connection drops, but once we've placed some

code on the database machine, adding some additional functionality is a reasonable

proposition.

The shim runs on the same machine as the database and communicates with it

via a local, secure, and reliable channel such as an OS socket. The shim, channel,

and database all comprise one replica: failure of any of them counts as failure of

the whole replica. The shim communicates with the database using the database's

standard JDBC driver. In addition to relaying SQL, the shim also can snapshot

transactions, extract writesets, and run the epoch scheduling algorithm. The shim

snapshots a transaction by executing trivial read: SELECT 1. It performs writeset

extraction by using an implementation specific mechanism (e.g., hooking into the

lower level of the JDBC driver and requesting the writeset). The shim maintains its

125

own epoch, count, and counts[epoch] values, so it can determine when to advance the

epoch. It runs our wire protocol, which supports the operations shown in Table 6.2.

Name Arguments Operation
BEGIN tid [epoch] Begins and snapshots transaction with tid, recon-

necting to tid if it already existed. If epoch is
given, blocks snapshot until shim's epoch matches
epoch.

STMT sid SQL executes SQL on replica and returns result,
caching result. If the same statement id is re-
quested again, returns the cached answer.

WRITESET Extracts and returns the writeset for the current
transaction.

COMMIT [epoch] Commits the current transaction. If epoch is
given, blocks commit until shim's epoch matches
epoch.

ROLLBACK Rolls back the current transaction.
EPOCH epoch count Fills in an entry in the shim's counts[epoch] array.
ABORT tid Out of band abort mechanism; aborts transaction

tid by closing the associated JDBC database con-
nection.

STARTUP epoch Resets the shim to start in the given epoch. Aborts
all in-progress transactions.

Table 6.2: Shim Protocol

6.3.2 SES Shepherd Implementation

The HRDB Shepherd running SES interacts with the database shims instead of di-

rectly with the databases. Due to the introduction of the shim, we control the interface

that the replica manager uses to communicate with the database replica. While JDBC

is blocking, our interface need not be, allowing the SES Shepherd to run many fewer

threads than the CBS Shepherd. We use a hybrid approach, using a multi-threaded,

blocking interface for the primary replica manager, and a non-blocking, event-driven

interface for the secondary replica managers.

The replica managers need not enforce epoch scheduling because that functionality

is present in the shim: the shim blocks snapshot and commit operations until the

appropriate epoch. Each replica manager independently tracks counts/epoch], relaying

126

new values to the shim as they become available. It does so by maintaining an

additional connection to the shim over which is sends control messages like STARTUP

and EPOCH. Once a shim has acknowledged the completion of all events in a particular

epoch, the replica manager can discard the counts[epoch] value for the epoch.

Primary Execution 2 Database Connections

Epoch 0- SS 1 - C 2 - SS 3-C

T1 Issue W(A)...Done Issue W(B) I Abort

T2 Issue W(B)...Done Commit

T3 Issue W(A)...Done Commit

T4

Slow Secondary Execution 2 Database Connections

Epoch - ss 1 - C 2 - SS

T1 Issue W(A)

T2 Issue W(B)...Done Commit

T3 Issue W(A)...Done

No connection to snapshot T4

Figure 6-9: Slow secondary gets stuck. An aborted transaction consumes a database
connection needed to acquire a snapshot.

The major implementation challenge for the SES shepherd has to do with aborted

transactions. Figure 6-9 illustrates the scenario. The top half of the figure shows

transaction execution the primary. Transactions T1 and T2 conflict: they both write

to B. The primary decides that T2 wins the conflict, committing T2 and aborting T1.

Subsequently, the primary starts executing T3 and T4. T3 would conflict with T1

127

(based on A, not B) if they had executed concurrently. T1 and T2 snapshot in epoch

0. T2 commits in epoch 1. T3 and T4 snapshot in epoch 2. T3 commits in epoch 3.

The primary database uses 2 database connections to execute the transactions.

The lower half of Figure 6-9 shows how a slow secondary can get stuck. Two

factors cause the problem: SES does not enforce an endpoint on aborted transactions

and the shepherd has a limited number of database connections. The secondary is

slow and has not realized that T1 has been aborted. Furthermore, it does not issue

the W(A) from T1 until after it starts executing T3. At this point, the W(A) from

T1 blocks because it conflicts with T3. However, the secondary cannot advance to

epoch 3 and commit T3 until after T4 has acquired a snapshot in epoch 2. With

both database connections in use, one consumed by T1 and one by T3, none remain

available for T4.

There are two straightforward solutions to the problem: more connections and

out-of-band abort. Opening another database connection will allow T4 to acquire

a snapshot. Once T4 has acquired a snapshot, T3 can commit. When it does so,

the database will abort T1 due to conflicting writes, resolving the problem. However,

opening a new database connection is an expensive operation. Furthermore, while the

situation in the figure only requires 1 additional connection, more complicated sce-

narios can require many more connections and most databases only support a limited

number. The other solution is to force T1 to abort. Sending a rollback message over

Tl's database connection will not abort the transaction if the database is blocked on

a statement and not listening to the connection. While JDBC includes a cancel op-

eration for canceling executing SQL statements, drivers are not required to implement

it. A solid mechanism for aborting the transaction is to close the associated JDBC

connection. Closing and re-opening a JDBC connection is an expensive operation.

Since the situation from Figure 6-9 can arise whenever a transaction is aborted, we

need a minimally expensive solution.

We chose an escalating approach. Upon transaction abort, we first send an in-

band rollback message. If the rollback message is not acknowledged quickly, we switch

to an alternate connection. The shim retains several additional connections for this

128

purpose, making it highly likely that one is available for use. Finally, we start a timer

on the shim. If the aborted transaction has not successfully aborted when the timer

expires, the shim closes the JDBC connection associated with the aborted transaction.

The progressive use of more expensive mechanism ensures that the common case is

fast, but still provides eventual progress. The condition is particular to SES because

in CBS a transaction that is ready to commit never waits for subsequent transactions

to perform operations.

6.4 SES Performance Analysis

We present only limited performance results for SES, due to issues with writeset

extraction and implementation challenges.

Writeset extraction is not a standard database function and thus requires a database

extension. The Postgres-R project developed a modified version of PostgreSQL that

supports writeset extraction. While we originally had planned on using Postgres-R,

we found that it was too unstable to support our benchmarks. Thus, we augmented

the WRITESET shim operation to take a size argument: the shim supplies a dummy

writeset of the given size. Since writesets are only used during recovery, dummy

writesets do not prevent non-faulty performance testing.

We use two workloads to test the shim and the SES shepherd. The first is TPC-

C, the industry-standard transaction processing benchmark used to test CBS in the

previous section. The other benchmark is one of our own design we call writes,

where each transaction reads and updates 5 random rows of a 10,000 row table. The

benchmark is CPU and write intensive, with low contention and I/O overhead.

While the throughput measurements acquired do not take into account the over-

head of actual writeset extraction, they do include exchanges of similarly sized mes-

sages. We ran each class of benchmark transaction against Postgres-R, and had it

perform writeset extraction. The average writeset sizes are shown in Table 6.3. None

of these writesets is sizable compared to the bandwidth available.

129

Transaction Type Writeset Size (bytes)
TPC-C New Order 2704
TPC-C Payment 788
TPC-C Order Status 4
TPC-C Delivery 1327 (per warehouse)
TPC-C Stock Level 4
Writes 113

Table 6.3: Average writeset size, by transaction type.

6.4.1 Shim Performance

We implemented a JDBC wrapper for the shim's wire protocol so we can run bench-

marks directly against the shim. The shim introduces an additional source of latency

in transaction execution, albeit one that does not involve an extra network hop. Due

to the inefficient implementation of the shim, it consumes significant computation

resources, which can result in serious performance loss for computationally bound

database workloads. Figure 6-10 shows the results of running the writes and TPC-C

workloads against the shim. Since the writes test is CPU-limited, the shim signifi-

cantly impacts performance. A better shim implementation would probably mitigate

much, but not all, of the performance penalty. The shim performs well on TPC-C

with 1 warehouse and low client count. Since TPC-C with 1 warehouse is contention-

heavy, it is very sensitive to additional latency. Since the shim performs well, it does

not introduce much additional latency.

6.4.2 SES Shepherd Performance

Figure 6-11 shows the performance of SES on the writes workload. The Postgres

8.3 Shim line shows the performance of running the test against the shim. The

Passthrough line shows the performance when forwarding middleware is placed be-

tween the tester and the shim. The PassThrough does not perform replication, it

merely forwards SQL to the shim and results back. By introducing additional oper-

ation latency, the PassThrough causes transactions to hold locks longer. The cost of

the PassThrough beyond the shim is minimal (3% relative to the shim) due to the

lack of contention in the workload.

130

Shim Performance: Writes test

0 10 20 30 40 50 60
Clients

Shim Performance: TPC-C, 1 Warehouse

0 5 10 15 20 25 30 35 40
Clients

Figure 6-10: Performance of Shim on writes and TPC-C

131

I tUU

1400

1200

8 1000

800
C

" 600

400

200

0

140

120

S 100

8 80

b) 60
1d.-

40

20

0

+-

--

-

8-

r-8v a h

-883--

PostgfeSQL 8.3 -+--- PostgreSQL 8.3 via Shim ----.---

Writes test, 10,000 rows, 5 statements

IZUU

1000

a 800
O

600
o

I 400

200

0

0 10 20 30 40 50 60
Clients

Figure 6-11: Performance of SES Shepherd on writes benchmark: each transaction
updates 5 rows out of a 10,000 row table.

At 20 clients, SES running with 2 PostgreSQL 8.3 database replicas shows good

relative performance: 15% performance loss relative to the PassThrough. A perfor-

mance loss of 15% is similar to CBS running on a low contention workload. However,

performance degrades as more clients are added. The performance degradation is due

to epoch scheduling: additional clients put more pressure on the shepherd's schedul-

ing algorithm. The scheduling algorithm used for these results is a simple greedy one:

if the shepherd is currently in a snapshot epoch and it needs to assign a commit, it

ends the snapshot epoch and begins a commit epoch. This approach results in epochs

with small sizes (usually 1), which in turn results in less concurrency. A better epoch

scheduler would likely resolve the issue.

For comparison, we also show the performance of serial execution on the shep-

herd. The shepherd need not use a shim because a transaction that gets aborted may

be safely re-executed if no other transactions are executing on the system. Write-

set extraction is similarly unnecessary: crashed replicas can be brought up to date

132

..

..

.. o.

Postgres 8.3 via Shim - Shepherd 3DBs, SES +....
PassThrough --------- Shepherd 3DBs, Serial No shimI I

rnnrr

via transaction replay. Serial execution without a shim runs 85% slower than the

PassThrough with a shim. Despite significant overhead, SES performs nearly a factor

of 6 better than serial execution on this workload.

We do not show the performance of SES running TPC-C due to implementation

issues. TPC-C exhibits the scenario described in Section 6.3.2. Our implementa-

tion is not robust enough to perform connection fail-over and thus fails to provide

performance numbers for TPC-C with many clients.

6.5 Bug Tolerance and Discovery

To demonstrate HRDB's ability to tolerate non-fail-stop failures, we attempted to

reproduce some of the bugs found in our study from Section 3.3.1. We also present

details of a new bug in MySQL that was discovered by HRDB during performance

testing.

6.5.1 Tolerance of Bugs with HRDB

We focused on bugs that could be triggered by specific SQL statements as they are

easier to exhibit, reserving a more general study for future work. We note that we

only attempted to reproduce a small number of bugs.

We successfully reproduced seven such bugs in the production versions of database

systems that we used (see Figure 6-12). We ran our system with the bugs using the

configurations shown in the figure and we were able to successfully mask the failure

in each case. Some bugs used SQL that was supported by all vendors; we were able to

mask these bugs using databases from different vendors, since none of them appeared

across vendors. Other bugs involved vendor-specific syntax and thus were applicable

only to certain databases. We were able to mask bugs in MySQL 4.1.16 using MySQL

5.1.11, and to mask bugs in MySQL 5.1.11 using MySQL 4.1.16, demonstrating the

utility of our system even within different versions of the same database.

133

Bug Description Faults No Fault
MySQL #21904 Parser problem with INO sub- MySQL 4.1, 5.1 DB2, Derby

queries
DB2 #JR22690 Query optimizer optimizes DB2 V9.0 MySQL 4.1

away things it shouldn't
Derby #1574 UPDATE with COALESCE Derby 10.1.3 MySQL, DB2

and subquery
MySQL #7320 Aggregates not usable where MySQL 4.1 MySQL 5.1

they should be
MySQL #13033 INNER JOIN and nested MySQL 4.1 MySQL 5.1

RIGHT OUTER JOIN
MySQL #24342 MERGE tables use wrong MySQL 5.1 MySQL 4.1

value when checking keys
MySQL #19667 GROUP BY containing cast to MySQL 5.1 MySQL 4.1

DECIMAL

Figure 6-12: Bugs we reproduced and masked with HRDB.

6.5.2 Discovery of Bugs using HRDB

While producing preliminary performance measurements of CBS overhead, we no-

ticed that when running HRDB with 3 identical MySQL replicas, the primary was

producing answers that did not match the secondaries' answers. Upon further investi-

gation, we found that MySQL was allowing phantom reads: a query in transaction T1

was seeing inserts from transaction T2 despite T2 being ordered after T1. Isolation

level SERIALIZABLE should not permit phantom reads. Since HRDB was running

with 3 homogeneous MySQL 5.1.16 replicas, the system suffered correlated failures:

both secondary replicas produced the incorrect result and the primary's answer was

voted down. Because the primary's answer was deemed wrong, HRDB aborted the

transaction, effectively turning a Byzantine fault into a fail-stop fault.

We submitted the details of the case to the MySQL development team, and they

quickly verified that it was a bug (MySQL #27197). MySQL failed to acquire the

correct locks in SELECT queries that use an ORDER BY ... DESC. The bug affected

every version of MySQL since 3.23; remaining present for 4 years. From looking at

the MySQL bug database, it is possible that someone noticed the issues previously

but their report was dismissed as unreproducible. It has been patched in MySQL 5

134

(Version 5.1.20 and onward lack the bug). The results from Section 6.2.2 use MySQL

5.1.23, so as to avoid the bug.

It is surprising that a serious bug in the MySQL locking code remained unnoticed

for 4 years, despite being exhibited by a standard benchmark query. The key insight

is that the bug is a concurrency bug: it only appears with multiple clients. Most

database test suites are single-threaded, as otherwise the test does not know what

the correct answers should be. Since HRDB uses voting to determine correct answers

and supports concurrent execution, HRDB is admirably suited to finding concurrency

bugs in databases.

135

136

Chapter 7

Repairing Byzantine Replicas

Our system must repair Byzantine faulty replicas or eventually more than f replicas

will be faulty. The two major issues are how and when to repair a replica. The process

by which the shepherd repairs faulty replica state must be efficient because databases

can be very large. The task is further complicated by the use of heterogeneous repli-

cas, which make solutions involving standard interfaces preferable. Finally, a repair

mechanism should also be transactional: it should restore the replica to a state that

is identical to an observable state of the overall system.

The shepherd initiates a repair process when it has cause to suspect a replica

of being Byzantine-faulty. The shepherd suspects a replica of being faulty when it

produces incorrect answers or writesets, regularly misorders transactions, or fails to

adhere to the database protocol. However, some faults are silent: the state of the

replica gets corrupted, yet does not result in incorrect answers. The shepherd can

proactively query replicas to detect silent faults.

We rely on an exterior mechanism to repair faults in the replica software or hard-

ware. Assuming that an external mechanism ensures that the replica is functionally

correct, the shepherd must repair the replica's state. The objective of state repair is

to make the replica's state consistent with that of the whole replica set.

In this chapter, we begin by presenting a study on efficient "compare and repair"

mechanisms. Armed with these tools, we then address how they are applied in the

context of HRDB.

137

7.1 Compare and Repair Mechanisms

A compare and repair mechanism reduces the overhead of correcting a replica's state

by only transferring data for the parts of the replica's state that are incorrect. The

compare operation expends computation and bandwidth usage to isolate differences

between the faulty state and the correct state. Obviously, a compare and repair

mechanism provides the most benefit over replacing the entire state of the faulty

database when the amount of corruption (difference between the faulty and correct

states) is minimal. We believe it is reasonable to assume low corruption, i.e., that

faults cause small, localized parts of a database's state to become incorrect. While

counterexamples exist, we believe them to be infrequent and thus optimize for the

common case. For this chapter, we assume minimal corruption.

Comparing a pair of mostly-identical databases is not an operation exclusive to the

shepherd; a number of commercial [33] and open source [8] tools have been created

to address the issue. The shepherd does not have any special advantages and has

a number of restrictions: it can only use SQL, cannot assume that replicas lay out

data similarly, and bugs may cause changes that bypass triggers or other accounting

mechanisms on the database. In this section, we describe and evaluate two compare

and repair algorithms that adhere to the restrictions imposed by the shepherd.

To simplify the presentation, we consider the problem of attempting to repair a

potentially faulty replica's data with a known correct replica's data. No operations

other than the repair operation are executing on either replica. The data is made

up of records from a single table, each of which has a unique ID (e.g., primary key).

These records are stored on the replica in pages, likely sorted by ID. We assume that

the number of records, n, is large, that the faulty replica only differs by a minimal

amount, and that n is essentially identical for the two replicas.

Our model (shown in Figure 7-1) is one where the faulty replica and the correct

replica communicate with a comparator over the network. The comparator may ask

to be sent records from either replica, or it may ask for aggregate hashes of sets of

records. The comparator may issue inserts, updates, and deletes to the faulty replica

138

Figure 7-1: Architecture of Compare and Repair mechanism

to make its data match that of the correct replica. Finally, the comparator may

use temporary tables on the correct replica to cache information and simplify data

extraction. Upon completion, the comparator ensures, with high probability, that the

data now stored on the faulty replica matches the data stored on the correct replica.

The objective of this work is to develop and evaluate algorithms that are efficient in

terms of completion time, computation at the replicas and comparator, and network

bandwidth utilized.

The straw-man algorithm, which we will call table-copy, is one in which the com-

parator does a complete data transfer. The comparator instructs the faulty replica to

delete its whole data set while requesting that the correct replica send it the whole

correct data set. The comparator then inserts the correct data set into the faulty

replica. The table-copy algorithm does one pass over the correct data, but sends and

inserts the entire data set.

First, we explain how hashing can enable efficient compare and repair mechanisms.

Then we discuss two hashing schemes: one from the literature and one we developed.

Finally, we show a performance analysis of the strengths of each mechanism.

139

7.1.1 Computing Summaries: Hashing

Table-copy is very inefficient because it transfers many more records than actually dif-

fer on the faulty replica. A correct repair algorithm must transfer at least the records

that differ, but may transfer more. Efficient repair works by comparing summaries

to isolate records that actually differ and transferring only those records. Hashing

provides a summary mechanism: if two hashes differ, then, with high probability,

the data used to produce them also differs. Conversely, if two hashes match, then,

with high probability, the data used to produce them also matches. Hash collisions

can result in failure to correctly identify differing records, but the probability of false

positives can be made small by choosing a hash with a reasonable number of bits in

the output.

As an example, the simplest hashing mechanism is one in which each record is

hashed individually. Both replicas hash all records and send the <ID,hash> pairs

to comparator, which compares them in order of ID. The comparator logs all record

IDs whose hashes do not match. The comparator then requests these IDs from the

correct replica while deleting records with these IDs from the faulty replica. Finally,

the coordinator inserts the records retrieved from the correct replica into the faulty

replica.

Compared to table-copy, the simple hashing algorithm does more computation,

but consumes less bandwidth. The hashing algorithm does two passes over the data:

one to compute the hashes, and a second to extract/insert differing records. The only

records that are updated are those that actually differ. For records of reasonable size,

the hash is much smaller than the record, which results in transferring less data than

table-copy. However, the bandwidth requirement of sending a hash for every record

is significant.

7.1.2 Coelho Algorithm

As described in [8] and implemented in PostgreSQL's pgcomparator, the Coelho

algorithm recursively builds a tree of hashes on each database, then compares the

140

trees to isolate the records that need to be transferred. The Coelho algorithm in [8]

is a not a repair algorithm: it only identifies what rows are different. We extended it

to transfer data to make the two tables identical. The extended algorithm has three

phases:

* Build Tree - The first phase starts by producing a temporary table containing

the row's primary key, a hash of said key, and a hash of the row contents

(including primary key). Then, it uses the bits of the key hashes to group

rows into a tree of aggregate hashes. The algorithm takes a branching factor

parameter that determines the splay of the tree by controlling how many bits

are used at each level of the tree. The height of the tree is determined by

measuring the size of the table, and selecting the largest power of the branching

factor less than the table size. The Build Tree phase is done on both databases.

* Compare Trees - Starting at the root of the tree, the comparator fetches

hashes from each database, compares them, and where they differ, the sub-

trees are fetched and explored to discover the exact differences. It is possible to

arrive at a non-leaf sub-tree that is present on one database but not present on

the other. Depending on which database is lacking the sub-tree, either the entire

contents of the sub-tree should be transferred, or the entire contents should be

deleted.

* Transfer Rows - The first step of this phase is to enumerate the ids of rows that

must be transferred into a temporary table on the source database. Then, a join

of this table to the original table at the correct database produces the contents

of all necessary rows, which are then transferred into the faulty database.

Coelho makes two important design decisions: materializing the hash tree, and

choosing its primary key to be the hash of the actual table primary key. Materializing

the tree requires an amount of storage space linear in the size of the table. The size

of a hash relative to the size of a row matters because each leaf of the tree stores

a hash of a record, a hash of the record's primary key, and the record's primary

141

key. For large tables, the temporary tables will not fit in memory and will require

disk access. Furthermore, if the number of differences is small, much of the table

will never be fetched by the comparator, thus resulting in wasted computation and

storage. However, once the tree is built, Coelho can be very efficient (in both time

and bandwidth) at isolating differences.

Choosing to hash the primary key provides the benefit of generality at the cost

of performance. Coelho can ignore the type of the primary key because hashes can

be computed from any data type. It may also safely ignore the distribution of the

primary key values because a good hash function will evenly distribute hashed values

over the output space. Coelho depends on this even distribution to build a balanced

tree. However, grouping records by the hash of the primary key, effectively random-

izing record ordering, ensures that Coelho cannot take advantage of the database

organization. For example, if a fault corrupts records on a single page, the faulty

records are likely to be distributed evenly over the tree, rather than isolated to a

particular branch.

7.1.3 N-Round-X-Row-Hash

We developed an algorithm that does not materialize a hash tree, assuming that with

a small number of differences, most of the tree would never be used. We begin by

producing high level summaries, hashing many records at a time. When the hashes

do not match, we produce a new set of more refined summaries from the set of records

whose summary hashes did not match. Without a materialized tree, we must have an

efficient mechanism for refining a summary. Our algorithm uses the database primary

key for efficient re-grouping.

N-Round-X-Row-Hash runs N rounds of computing hash aggregates and then

refining where the hashes do not match. Assuming for the moment that the records

have numeric IDs that range from 1 to n, on the first round N-Round-X-Row-Hash

groups records into buckets based on ID ranges of size X 1 (1... X 1, X 1 + 1... 2X 1,

etc). The contents of each bucket is hashed and sent to the comparator. Hashes

that do not match imply that at least one record in the bucket differs. In the next

142

round, N-Round-X-Row-Hash sub-divides buckets whose hashes did not match in the

previous round into buckets of size X 2, once again based on contiguous ranges of IDs.

The algorithm runs for N rounds, using bucket size Xi on round i. On the last round,

N-Round-X-Row-Hash transfers all records in all buckets whose hashes do not match.

Thus, the bucket size on round N, XN, governs the amount of waste: the algorithm

will transfer records in chunks of size XN.

The optimal choice for N and the Xi's is dependent on the number of records, n,

the bandwidth cost of a bucket hash compared to the size of a record, H, and the

probability that a record differs, P (a measure of corruption). Additional rounds with

smaller bucket size trade off additional passes over the records for less bandwidth and

waste (unnecessary records transferred). With a well-provisioned network, it may be

faster to accept more waste to avoid scanning the records again. For the workloads

we have tested, 2 to 3 rounds suffice.

If the bucket hashes are close to the size of the records, the Xi's must be larger

to amortize the cost of the hashes. For some tables (e.g., many-to-many mapping

tables), the hash may be as large as the record, resulting in no bandwidth savings

for single records. However, tables with small record size are not often the biggest

tables. In addition to the hash itself, H incorporates the cost of bucket identifiers,

both when they accompany the hash on the way to the comparator and when they

are sent back to the database to identify records for the subsequent round. Our test

workload has big records; an individual hash is 2% the size of the record and the cost

per bucket hash is closer to 4% the size of the record.

The probability that a bucket hash does not match depends directly on the prob-

ability a record differs. With more differing records, the bucket sizes must be smaller

to recover equivalent information about which records differ. For example, if a record

differs with probability 1 in a 1000, then buckets of size 100 are likely to match,

allowing the comparator to rule out many records. However, if a record differs with

probability 1 in 10, then buckets of size 100 are almost guaranteed not to match,

preventing the comparator from ruling out any records. In successive rounds, the

probability that a record differs has a lower-bound of one over the bucket size in the

143

previous round (1/xi_ 1). At least 1 record in the previous round's bucket must differ

to cause the hash not to match, and thus for the record to be considered in the sub-

sequent round. Since the algorithm becomes less efficient with increasing differences,

it gets diminishing returns as the bucket size dwindles in successive rounds.

We developed a model for the approximate bandwidth consumed by N-Round-X-

Row-Hash as compared to table-copy, given N, X, H, and P. H is predictable for

a given table but P is not: the system must assume a value for the model to work.

By comparing N-Round-X-Row-Hash to table-copy, we can factor out the number of

records and focus on speedup. The model is recursive because the fraction of buckets

whose hashes do not match in round i determines the cost of round i +1. The formula

is:

H 1
F(N, X, H, P) = + (1- (1- P)x1)G(N, X, H, max(P, +), 2)x1 X,

S+ (1-(1- P)Xi)G(N,X,H, max(P, -),i+) if i<N
G(N, X, H, P, i) =

1 otherwise

Using the primary key to perform bucketing has some challenges. Since the record

ID may be sparse, N-Round-X-Row-Hash requests ranges of IDs whose expected num-

ber of rows is Xi. For simplicity, N-Round-X-Row-Hash assumes an even distribution

and computes the range factor by querying the record count and spread (minimal and

maximal record IDs). Multi-column and non-integer primary keys are a subject for

future work.

7.1.4 Results

We present details of our implementation and tests, then analyze performance re-

sults for Coelho and N-round-X-row-hash separately. Finally, we compare the two

algorithms, including testing them in a couple of alternative environments.

144

Implementation

We implemented the table-copy, N-round-X-row-hash, and Coelho algorithms in Java

using JDBC. The two interesting implementation details are how the hashes are com-

puted and how the needed rows are extracted:

* Row hashes are computed by concatenating all the columns together, applying

SHA1, and taking the top 64 bits. Aggregate hashes are computed by XOR'ing

hashes together.

* When the coordinator has determined which row ranges need to be copied, it

creates a temporary table on the correct replica and inserts all the IDs of the

rows to be copied. A simple join operation produces all the necessary rows in a

single SQL statement.

We measured the time spent and bandwidth consumed by the various repair al-

gorithms. Due to the foibles of Java, the bandwidth consumption was measured by

redirecting the JDBC database connections through a byte-counting proxy. While

this should degrade the time measurement slightly, it shouldn't affect the bandwidth

utilization. The results obtained include all the SQL and JDBC overhead, but do not

take into account network level phenomena.

The experiments were run on three machines: two machines running MySQL

5.1 databases, and a comparator machine running the algorithm. The machines are

connected by 100MB/s switched Ethernet. The table used was the customer table

from the TPC-C benchmark, adjusted to use only a single column primary key. We

ran the experiments with a number of table sizes, varying from 10,000 rows to 1.3

million rows. A 256K row table is approximately 200M in size, and a 1.3M row table

is 1GB in size. The hashes are approximately 2% the size of the row data. For a

baseline, doing a TableCopy of the 200M table takes 4.3 minutes and consumes 448

megabytes of bandwidth, while the 1GB table takes 20min to copy and consumes 2.38

gigabytes of bandwidth.

The data corruption tool expresses corruption as the chance that any particular

row is incorrect. The tool picks random record IDs until it has the appropriate number

145

of rows. Then it regenerates the contents of these rows. Thus, the contents are likely

to be wildly different from the original row. The amount of difference does not matter

to a good hashing function and we aren't considering schemes that attempt to repair

partial records.

Analysis of Coelho

Figure 7-2 demonstrates that the Coelho algorithm can be very efficient in bandwidth

utilization and does well even when the corruption is high. The performance has a

number of interesting features, depending on the branching factor, b, and table size,

n. The timing results break down overall execution time into phases. During the

Build Base phase, the database creates the table of leaves by hashing the contents of

each row of the table. The resulting temporary table is 6% the size of the customer

table. The Build Base phase dominates the execution time, implying that the Coelho

algorithm is compute and disk I/O bound (it uses 96% of the CPU during this phase).

The bandwidth cost of sending the single SQL statement for the phase is negligible.

The database computes and stores the rest of the tree during the Build Tree

phase. Together, the upper levels of the tree consume less space than the leaf table.

Building the tree requires sending a small number of SQL statements; no data is

returned. While bandwidth consumed during the Build Tree phase is proportional

to log(n)/b, the constant factor is small enough to render the bandwidth cost of the

phase negligible.

The Compare Tree phase is when Coelho compares replica hash trees. The final

two phases, Send IDs and Transfer, are where the algorithm sends the ids of rows to be

transferred and performs the transfer. The same rows must be transferred, regardless

of how they were discovered. Thus, the variability of the overall bandwidth comes

from the Compare Tree stage. The results bear this out, as the largest Compare Tree

time corresponds to the highest bandwidth utilization.

As the branching factor, b, increases, the bandwidth utilization grows linearly,

with breakpoints at the square root and cube root of the table size (in rows). As-

suming that the number of corrupted rows, C, is small relative to the table size, the

146

Coelho Times, 256K Rows (200MB)

Io N 300 ON 00 o N 00 ON oo 0o0o

Branching Factor

Coelho Bandwidth Results, 256K Rows (200MB)

256 1024
Branching Factor

4096 16384 65536

Figure 7-2: Results for recursive hashing Coelho algorithm. The amount of corrup-
tion, P, is the probability that any given row is incorrect.

147

Build Base I
Build Tree I

Compare Tree I
Send IDs I
Transfer I

Corruption Corruption Corruption1/10000 1/1000 1/100

50000

40000

30000

20000

10000

A

le+09

le+08

le+07

le+06

100000

10000

P=-0.0001 0-- - P .001 ------- P=-0.01 +........ TableCopy
...... ,................ o.......... 1.1" ,........,.......

.. ".. . °".

...o.-'
'°° '

'" '•i,,

--

*....... o
**,,

, ~ ~ rc I • I • I I , I ,

I

i J
LCC Y1

m

II

I

[

penultimate examination of the hash tree will result in C non-matching hashes. The

last examination of the tree will thus result in C x b leaves fetched, resulting in a

linear bandwidth scale up. Over the square root break-point, the leaves of the tree

will not be full, resulting in a smaller last fetch. As the branching factor continues to

increase, Coelho begins to act more like N-round-X-row-hash.

Coelho Results, 1.3M Rows (1GB), P=10AX

250000

200000

0

150000

! 100000

50000

A
-5-4-3 -5 -4 -3 -5-4-3 -5 -4 -3 -5-4 -3 -5-4-3 -5-4-3 -5-4-3 -5 -4-3 -5-4

B=4 B=8 B=16 B=32 B=64 pB=128 B=256 B=512 B=1024 B=2048
Brancnmg Factor

Figure 7-3: Coelho scaled up to run against a 1GB table, varying branching factor

(B) and probability a row is incorrect (10-5,10-4,10-3). The peaks are where the tree

leaves do not fit in memory.

Coelho pays a performance cost for materializing the tree. The cost is most

noticeable in the case where the tree does not fit in memory, as can occur when the

algorithm is scaled up to a 1.3 million row table (shown in Figure 7-3). The high peaks

are caused by the Build Tree phase and occur at branching factors 22, 24, 25 , and 210.

Each of these problematic branching factors turn out to be a factor of 220, which is

slightly less than the actual number of rows in the table. Thus, the Build Tree phase

will build a tree with a million leaves and it likely spills out of memory while doing

so. Since the assignment of rows to leaves is done with an unpredictable GROUP BY,

148

this results in random disk accesses, which account for the abysmal performance. For

very large tables, the branching factor must be chosen so that the first level of the

tree fits in memory, otherwise catastrophic performance loss results from the spilling

of the GROUP BY buckets to disk.

The size of the materialized tree affects the performance of Coelho even when the

tree fits in memory. The effect is noticeable in Figure 7-2 by looking at the Build

Tree durations for B = 4, B = 8, B = 64, and B = 512. These B values maximize

the size of first level of the tree and also correspond to a 25% performance slowdown

for situations with low corruption.

In conclusion, the performance of the low-bandwidth Coelho algorithm is limited

by the computational and storage overhead of the build tree phase. While the algo-

rithm can be very sensitive to input parameters, it is not sensitive to input conditions.

Assuming that input parameters are chosen to avoid problem conditions, the Coelho

algorithm performs well.

Analysis of NRoundXRowHash

We ran experiments with varying amounts of corruption and evaluated N-round-X-

row-hash's performance in time and bandwidth consumed. As shown in Figure 7-4,

the input parameters to NRoundXRowHash play an important role in determining

its performance. We used a 2 round hash, except where the initial round bucket size

was less than 20. The larger the initial bucket size, the lower the bandwidth of the

first round. Since N-round-X-row-hash transfers records in chunks the size of the

final round's bucket, large buckets in the final round increase the cost of a final round

bucket hash not matching. Thus, N-round-X-row-hash with N = 1 has a trade off

between the bandwidth cost of sending hashes versus a hash not matching and having

to send the whole bucket contents.

The second round mitigates the bandwidth cost of a larger first round size at the

expense of the time required to compute the second round. A third round was not

worth performing for the database size used in this experiment. For high corruption,

a first round bucket size large enough to merit a second round was likely wasted:

149

I oUUIIUI

NRoundXRowHash Times, 256K Rows (200MB)

le+06

100000

E 10000
10000

1000

le+09

le+08

le+07

le+06

100000

P=0.01 TableCopyP=0.0001 --+--

LLUIIUn , IUIIIU L ULcL e Le. L IoUW

....... ,.. ...-" •

.•.

÷

-----. Ii..-- · B --- -- -------. -------

.+.'
......... .. --..... -'

7, .

10 100

Rows / Bucket, First Round

NRoundXRowHash Bandwidth Results, 256K Rows (200MB)

1000

1 10 100 1000
Rows / Bucket, First Round

Figure 7-4: Performance of N-round-X-row-hash, P is the probability that any given
row is incorrect.

150

P=0.001 --

P=0.01 ----.... TableCopy

* * * * * *

1 R d
2 R d R d 2 b k i 10

hashes of large buckets are highly likely not to match, preventing the comparator

from excluding any rows in the second round. For low corruption, running a second

round produced significant reductions in the bandwidth utilized with little additional

computational overhead.

The trade off between additional rounds and sending additional rows depends on

how well provisioned the replicas are in terms of computational power and bandwidth.

During execution, the replica is CPU limited. Our experiments were performed with

100MB/s interconnect, which provides ample bandwidth for less efficient compare

mechanisms. Since our target environment is a data center, not a wide-area network,

ample bandwidth is a reasonable assumption.

The model provides a good approximation of actual performance, as shown in

Figure 7-5. Due to the approximations made in the model, it is most accurate when

corruption is low.

Actual vs Model: Bandwidth Reduction of NRXRH relative to table-copy

0.1

0.01

0.001

0.001

1 10 100 1000 10000

Rows per first-round bucket

Figure 7-5: Bandwidth model vs actual data for 2 round X row hash with 10 row
second round. H (hash overhead compared to row size) is 0.037. P is the probability
that any given record is incorrect.

151

Model P=.0001 Actual P-0.0001 Table-copy -----
Model P=.O1 --------- Actual P=-.01

- ---- ----- -------------------

---------. ---- -- --
, ,. ÷.. + ..+

....

.

NRoundXRowHash still performs well even when the bucket hashes do not fit in

memory. Since the record scan is likely performed in ID order, only one bucket is

having rows added to it at a time. Once the database adds a row to bucket n + 1,

it will never add another row to bucket n, allowing bucket n to be written to disk

without performance penalty. For very large tables, NRoundXRowHash should avoid

unnecessary disk accesses.

NRoundXRowHash vs Coelho

Corruption Algorithm Time Bandwidth
1/100 NRXRH 29s 15MB
1/100 Coelho 24s 8.0MB
1/1000 NRXRH 12s 4.8MB
1/1000 Coelho 15s 1.6MB
1/10000 NRXRH 11s .44MB
1/10000 Coelho 14s .27MB

Table 7.1: Time/Bandwidth summary: comparison of NRXRH and Coelho. Param-
eters used: Coelho used B = 128 for each corruption scenario. NRXRH used X1 = 2,
X1 = 10, and X 1 = 200, X 2 = 10 respectively.

Table 7.1 summarizes data from the Coelho and N-round-X-row-hash results

shown earlier, reporting the performance given the best parameters. Coelho uses

less bandwidth than NRXRH by a factor of 2 to 3, but with low corruption NRXRH

outperforms Coelho in speed by 20%. If the amount of corruption is truly unknown,

Coelho may be a better scheme as parameter choice is based primarily on the number

of records, whereas NRXRH parameters must also take corruption into account. If

corruption is assumed to be low and the network well-provisioned, NRXRH performs

well. The performance results summarized in Table 7.1 were selected by taking the

results with the fastest time that did not use vast amounts of bandwidth.

Observing that both Coelho and N-round-X-row-hash spend large amounts of

computation time hashing the table, we ran some experiments on precomputed hashes.

Table 7.2 shows the results of running both algorithms with precomputed hashes. The

algorithms perform much faster if they don't have to hash a 200MB table. For low

corruption, both algorithms run 2-3 times faster on precomputed hashes. Maintaining

152

Corruption Algorithm Time Bandwidth
1/100 NRXRH 22s 15MB
1/100 Coelho 15s 7.7MB

1/1000 NRXRH 4.7s 5.7MB
1/1000 Coelho 4.9s 1.5MB

1/10000 NRXRH 3.3s .43MB
1/10000 Coelho 4.6s .26MB

Table 7.2: Time/Bandwidth summary: comparison of NRXRH and Coelho with
precomputed hashes. Parameters used: Coelho used B = 128 for each corruption
scenario. NRXRH used X 1 = 2, X1 = 4, and X1 = 500, X 2 = 10 respectively.

precomputed hashes would require some sort of trigger in the database that updates

the hash whenever the row is updated. These triggers would have a performance

impact on system throughput.

For tables that are very large, the story is much the same. For a 1 GB table and

a corruption probability of 10- 5 , the NRXRH model suggests a N = 2 round scheme,

using X 1 = 1000 and X 2 = 10. A potential concern is that NRoundXRowHash's

second pass would take a long time when the table does not fit in memory. To test

this possibility, we ran the test without precomputed hashes, ensuring that the whole

gigabyte table must be considered. As usual, B = 128 works well for Coelho. The

results are as follows:

* NRoundXRowHash: 57 seconds, .45 megabytes of bandwidth

* Coelho: 73 seconds, .26 megabytes of bandwidth

Even when NRoundXRowHash must run two rounds over a table that does not

fit in memory, it still outperforms Coelho in time to completion (by 22%). Since

NRoundXRowHash uses the table index on the second round, it only needs to read a

small chunk of the table. The second round takes 9 seconds to perform, but by com-

parison, a single round 1000-row hash takes longer (59 seconds) and uses 50 times the

bandwidth (24 megabytes). Precomputed hashes would only improve the performance

of NRoundXRowHash: it currently hashes some chunks of the table twice.

The work so far assumed that all rows are equally likely to get corrupted. In

practice, corruption is not completely random. Disk corruption or buffer overruns can

153

Correlation Corruption Algorithm Time Bandwidth Params
.5 1/100 Coelho 26s 9.6M B = 128
.9 1/100 Coelho 32s 9.6M B = 128
1 1/100 Coelho 30s 9.6M B = 128
.5 1/100 NRXRH 32s 16M X1 = 4
.9 1/100 NRXRH 24s 9.7M X1 = 7
1 1/100 NRXRH 18s 4.7M X1 = 80 and

X2 = 10

Table 7.3: Effect of correlated failures on Coelho and N-round-X-row-hash. Corre-
lation is the probability that the successor row is corrupt given the current row is
corrupt. Corruption is the fraction of rows of the table that are corrupt.

corrupt rows in chunks. Table 7.3 shows the results of running the repair algorithms

when corruption is likely to corrupt adjacent rows. Rows are ordered by their primary

key, assuming that it is a clustered index. With a correlation of .5, rows are likely to

get corrupted in pairs. A correlation of .9 means groups of 10 rows and correlation of

1 ensures that all of the corrupted rows are adjacent.

N-round-X-row-hash handles corrupted chunks better than Coelho. Since Coelho

hashes the primary key when assigning rows to leaves, it completely randomizes the

order of rows. Adjacent corrupted rows are randomly distributed among the leaves,

producing no performance benefit. On the other hand, N-round-X-row-hash's buck-

eting scheme is more likely to catch multiple adjacent corrupted rows in the same

bucket. Holding corruption constant, more corrupted rows per bucket means that

more bucket hashes match, allowing N-round-X-row-hash to narrow the search more

effectively.

7.1.5 Conclusions

Both Coelho and N-round-X-row-hash perform well, reducing execution time by an or-

der of magnitude and bandwidth consumption by several orders of magnitude. Coelho

is a general-purpose algorithm that achieves good performance with minimal configu-

ration, but may have trouble with very large tables. N-round-X-row-hash is a special

purpose algorithm that is targeted at predictably low or correlated corruption in ta-

bles with simple primary key columns. A reasonable solution could involve using

154

Coelho normally and N-round-X-row-hash when the situation matches its strengths.

7.2 HRDB and Repair

Given the algorithms described in the previous section, HRDB must provide a repair

mechanism that guarantees the correctness of the repaired replica. A correct repair

mechanism ensures that the logical state of the replica after repair reflects the correct

logical state, to the extent possible on the replica. Obviously, if the faulty replica is

incapable of having its state correctly updated via SQL (e.g., its disk is full or its

software is faulty), then we need an external mechanism to correct the problem. The

repair mechanism ensures that the state of the replica after repair reflects the state

of the system as was externally visible to the client.

We first present a straightforward repair process that guarantees correctness by

quiescing the system. Quiescing the entire system to repair a single replica results

in a significant interruption in service. A repair operation may take a long time to

complete, while the whole system is unresponsive to clients. A more desirable mech-

anism would allow client transactions to execute in parallel with repair operations,

yet still provide the same correctness guarantees. We present two incremental repair

processes, based on whether HRDB has access to writesets or not.

Since most tables in the TPC-C benchmark have multi-column primary keys and

our implementations of the compare and repair algorithms do not support them, we

haven't produced performance numbers for repair during execution of TPC-C, nor

values for the overhead of precomputing hashes while running TPC-C.

7.2.1 Quiescent Repair

The simplest way to ensure that the faulty replica is repaired to a consistent snapshot

of the overall system is to quiesce the system while repair is in progress. If the shepherd

does not run transactions in parallel with the repair operation then all transactions

that committed prior to the repair operation will be reflected in the state of the

repaired replica after the repair operation completes. Both Coelho and N-round-X-

155

Figure 7-6: The repair manager submits repair transactions through the coordinator
like a client, and the coordinator supplies it with the hooks required for successful
repair.

row-hash work on a single database table at a time. By running a repair operation

for each table in the database, the complete database can be repaired. Once all of

the repair operations have completed, the shepherd can recommence executing client

transactions.

Repairing a faulty replica requires agreement on what constitutes the correct state.

The shepherd already has an agreement mechanism that it uses to verify the correct-

ness of client transactions. The repair system can borrow this mechanism and be

guaranteed correctness by submitting transactions as if it were a client: if the repair

transaction commits, the values with which it repaired the faulty replica must be

correct. HRDB runs a repair manager that performs replica repair by communicating

with the coordinator if it were a client. The shepherd provides some special hooks

for the repair manager to support the operations required for repair. The augmented

architecture is shown in Figure 7-6.

Repair transactions have two phases: fault isolation and data transfer. All replicas

participate in the fault isolation phase; this part of the transaction is executed just

like any client-submitted transaction. Both algorithms above (N-round-X-row-hash

156

and Coelho) are symmetric during the fault isolation phase: they send identical SQL

to both replicas. The shepherd provides a hook whereby the repair manager can

examine query results returned by the suspected faulty replica as well as the answer

the coordinator sends. Using this hook, the repair manager can compare hashes from

the primary with hashes from the faulty replica to determine where the faulty replica's

state differs. The result of the fault isolation phase is the set of rows (and their values)

that must be updated on the faulty replica.

The data transfer phases consists of DELETE and INSERT statements to store the

correct data and is executed only on the faulty replica. The shepherd provides a

second hook that instructs all replicas but the one being repaired to ignore these

DELETE and INSERT statements. The coordinator does not perform agreement on the

results of these semi-ignored statements.

When the repair manager attempts to commit the repair transaction, the shepherd

will abort the transaction if the primary was faulty and supplied incorrect information.

Thus, the shepherd's regular correctness mechanism ensures the correctness of the

repair operation. If the primary's results are incorrect, the faulty replica's state

will be incorrectly updated, and then all the incorrect updates rolled back. As an

optimization, the repair manager may commit the repair transaction at the end of the

fault isolation phase to verify correctness, and use one or more subsequent transactions

to update the faulty replica. Since many databases have performance issues with

transactions that update large numbers of rows, splitting the update operation into

several transactions may be more efficient for the database to execute. Finally, once

the fault isolation phase is finished and the values of the differing rows acquired, the

rest of the replicas are not necessary for the repair operation and could be executing

client transactions.

7.2.2 Incremental Repair

With incremental repair, the repair manager repairs small pieces of the database at

time, eventually repairing the whole database. Since the repair operation only requires

a consistent snapshot of a small part of database, client transactions can successfully

157

execute on the rest of the database. The granularity of the repair operation determines

the amount of interruption and must be balanced against the overhead of running a

repair operation. The compare and repair algorithms from Section 7.1 work on whole

tables, which for the TPC-C benchmark would be similar to quiescing the system

(i.e., similar to Table-level locking performance in Section 6.2.2). Both Coelho and N-

round-X-row-hash could be easily modified to work on parts of tables. For simplicity,

the rest of this section assumes that the granularity of an incremental repair operation

is a whole table.

An incremental repair operation ensures that the state of the repaired region on

the faulty replica matches the state of the replica set at the time the repair operation

commits. The mechanics of incremental repair differ depending on whether HRDB

has writesets available or not. In the context of HRDB, writesets are available with

SES (snapshot isolation) and not available with CBS (serializable isolation). One

subject of future work is using writeset extraction in CBS to ease repair, thus the

lack of writesets is not intrinsic to CBS. We start with a description of an incremental

repair solution using writesets in the context of snapshot isolation, since it is simpler.

Next, we go into a brief digression about how corruption spreads in the database

state. The spread of corruption is relevant to the final section where we describe

the challenges surrounding incremental repair without writesets in the context of

serializable isolation.

Incremental Repair with Writesets

Incremental repair is vastly simplified by the existence of writesets. When the shep-

herd flags a replica as faulty, it stops executing transactions on the replica. The repair

manager repairs each table individually with a separate transaction submitted like any

other client transaction, as shown in Figure 7-7. Because the system is not quiesced,

client transactions are intermixed with repair transactions. The replica manager of

the faulty replica must decide what to do with these intermixed transaction. Since

each table is repaired by a different transaction, executing just the repair operations

on the replica will leave the tables in an inconsistent state. Consider the example

158

T1

Repair A

T2

Time Repair B

Figure 7-7: Incremental Repair operations repairing first table A then table B.

in Figure 7-7: T2 occurs after the repair of A but before the repair of B. A faulty

replica that just executes the repair transactions but not T1 and T2 will end up with

the state of table A lacking any updates from transaction T2. However, the state of

table B will reflect T2's updates because the repair of table B was subsequent to T2's

commit.

The resolution is simple: after all repair operations have committed, replay write-

sets to the replica just as if it had crashed. Since writeset application is idempotent,

applying the writeset for T2 will correctly update table A and leave table B un-

changed. Once the faulty replica has applied the writesets of all transactions it did

not execute while being repaired, its state is both correct and consistent. In this

manner, the repair operation converts a Byzantine-faulty replica into a slow replica.

However, storing all the client transaction writesets for the replica while it per-

forms a potentially lengthy repair operation is costly. Instead, the replica manager

can apply writesets as transactions commit. Essentially, the replica manager treats

the replica as never having access to the required snapshot for the transaction, forcing

it to apply a writeset to commit the transaction. Applying writesets over potentially

faulty data is correct because writeset application does not depend on the data in the

database. Applying writesets before repair may also result in a performance improve-

ment due to reducing the difference between the correct data and the replica's data;

the magnitude of the difference is a key factor in the cost of the repair operation.

Two additional issues arise that are specific to snapshot isolation. The first issue

is that repair transactions can get aborted by the database for two reasons: concur-

rent writes and snapshot expiration. If the repair operation is repairing data that the

159

client regularly interacts with, then the data is likely to be modified while the repair

transaction is running. We can avoid aborts of the repair transactions due to concur-

rent writes by using a pessimistic locking mechanism for the repair transaction. Most

databases support some sort of intentional locking mechanism (typically a LOCK TA-

BLE SQL statement) that could be used for this purpose. Snapshot expiration occurs

because the database has only a limited amount of storage for snapshots, resulting

in long-running transactions having their snapshots overwritten. Repair operations

must be quick enough that their snapshots remain intact.

The second issue is that client transactions can wait on repair transactions com-

pleting, regardless of whether additional pessimistic locking mechanisms are used.

Snapshot isolation uses a pessimistic blocking mechanism when it detects a concur-

rent write, rather than aborting the conflicting transaction immediately. The longer

a single repair transaction runs, the more clients will have attempted to touch the

data it is repairing and have blocked. Long running repairs on hot data could quiesce

the system unintentionally. Thus, the size of repair operations should be inversely

proportional to how often the data is updated.

Spread of Corruption

A fault that corrupts the state of a replica may remain undiscovered by the shepherd

for some time. In the interim, corrupted state may propagate from the original fault

as transactions are executed. Two factors prevent the spread of corruption: writeset

correction and client interaction. If HRDB is using writeset extraction, incorrect rows

that would be written by a transaction can be caught prior to commit. Obviously,

writeset correction only helps when updates are captured by the writeset extraction

mechanism; lower-level faults will continue to elude detection.

The nature of client interaction with the shepherd can also mitigate the likelihood

of propagation. Consider the following interaction between the client and the shepherd

that inserts a row into a burnrate table that reflects the total salary paid out by a

company named "Foo Inc.":

select sum(salary) from emp where company='Foo Inc.'

160

=> 1500000

insert into burnrate (company,rate) values ('Foo Inc.',1500000)

=> 1 row updated

Suppose one of the replicas has an incorrect value for the salary of an employee of

Foo Inc. If the replica is the primary, it will produce an incorrect answer for the

first statement and the transaction will be aborted. If the replica is a secondary, the

value it computes for the first statement will be incorrect, but the value inserted in

the second statement comes from the (non-faulty) primary, not the faulty secondary.

Even with corrupted state involved in the transaction, committing this transaction

does not spread corruption on the faulty replica.

However, the following expression of the above process does spread corruption:

insert into burnrate select company, sum(salary) as rate

from emp where company='Foo Inc.'

=> 1 row updated

Instead of pushing the value out through the coordinator's voting process to the client,

the result of rate computation is inserted directly into another table. The coordinator

does not catch the fault because the return value of "1 row updated" is returned by

all replicas, even the one with a bogus value for rate.

In particular, corruption can spread from one table to another if the workload con-

tains the following operations: INSERT ... SELECT ... , UPDATE with join, DELETE

with join, or stored procedures. While many workloads contain these elements, some

do not (e.g., our implementation of TPC-C).

Incremental Repair without Writesets

The lack of writesets vastly complicates incremental repair. Once again, the replica

manager repairs each table individually in a separate transaction as shown in Figure 7-

7. From the example in the figure, the replica manager need not execute T1 because

both table A and B are repaired after T1 completes, ensuring that any changes made

by T1 are reflected in the final state of both tables. T2 presents a problem because

161

it is ordered between the repair of table A and table B. Transactions like T2 must

exist; otherwise the system is effectively quiescent. If the replica manager for the

faulty replica never executes T2 then the state of table A on the faulty replica will

not match its state on the rest of the replicas. If the replica manager executes T2 after

both repairs, then table B will reflect T2 executing twice, which also will not match

the rest of the replicas. Clearly, the only time that the faulty replica can execute T2

to ensure consistent repair is exactly when the coordinator ordered T2: between the

repair of table A and table B.

However, executing transactions on the faulty replica concurrently with incremen-

tal repair operations presents a correctness problem. Once again the problem is with

T2: T2 executes after table A has been repaired but before table B has been repaired.

If T2 propagates some corruption in the yet-to-be-repaired table B to the already-

repaired table A, then after all repairs, some corruption will remain in the database.

As described above, there are some workloads that will not propagate faults. Except-

ing those workloads, there is no general solution to this correctness problem without

either using writesets or quiescing the system. From the figure, it is incorrect not to

run T2, and can be incorrect to run T2 if it propagates faults.

We stated earlier that the replica manager for the faulty replica did not need to

execute transaction T1 from Figure 7-7 because T1's modifications to the database

state would be installed by the repair operations. However, it may be less efficient

than actually running T1. The cost of the repair operation is proportional to the

amount of data that must be repaired. Not executing T1 before running the repair

operations will have one of two effects:

* Executing T1 on the faulty replica causes its state to become further corrupted.

The repair operation becomes more costly.

* Executing T1 on the faulty replica correctly updates the state of the replica.

This situation will occur when the fault or corrupted state has nothing to do

with T1, thus allowing T1 to execute correctly. Any updates correctly applied

to the replica state by T1 need not be repaired, effectively reducing the cost of

162

the repair operation.

Whether to execute T1 depends on the likelihood of further corruption, offset by the

relative cost of executing the transaction versus enlarging the repair operation. If the

database is large and transactions touch a small number of rows, a fault is unlikely to

interfere with many transactions. Transaction processing databases are very efficient

at executing transactions and not terribly efficient at computing the large aggregates

required by repair. Furthermore, the fault detected by the coordinator may have been

transient (e.g., an incorrect answer to a query which did not reflect incorrect replica

state). For transient faults, running transactions as usual will result in the repair

operation transferring no data.

163

164

Chapter 8

Conclusions

This thesis shows, for the first time, a practical way to tolerate Byzantine faults

in transaction processing systems while ensuring that transaction statements can

execute concurrently on the replicas. We present two new concurrency control schemes

that provide correctness and strong consistency while supporting a high concurrency

execution. We also describe and evaluate repair mechanisms for correcting a faulty

replica's state.

To conclude this thesis, we first present an overview of the contributions in the

previous chapters. Next, we discuss directions for future work. Finally, we conclude

with a higher level look at where this work fits in.

8.1 Contributions

The first major contribution is commit barrier scheduling, which allows the coordina-

tor in the shepherd to observe transaction execution on the primary and ensure that

all non-faulty secondaries execute transactions in an equivalent serial order. CBS en-

sures that all replicas have the same logical state and that clients get correct answers

for all committed transactions. The key insight of CBS is to use one replica as a

primary that can efficiently determine the order of transactions.

We have implemented CBS as part of HRDB, which provides a single-copy seri-

alizable view of a replicated relational database system using unmodified production

165

versions of several commercial and open-source databases as the replicas. Our exper-

iments show that HRDB can tolerate one faulty replica with only a modest perfor-

mance overhead (10-20% for the TPC-C benchmark on a homogeneous replica set).

Furthermore, HRDB is 2-3 times faster on TPC-C than a naive implementation that

forcibly serializes all transactions. We also showed how HRDB is able to mask faults

observed in practice, including one that we uncovered in MySQL.

CBS has a number of attractive properties. First, it requires no modifications

to the database systems themselves. Second, it does not require any analysis of

SQL queries to detect conflicts. SQL analysis is intractable for complex queries at

finer granularities than table-level conflicts and may not work at all for materialized

views or stored procedures. Third, CBS is able to preserve substantial amounts of

concurrency in highly concurrent database workloads.

The second major contribution is another concurrency control scheme called snap-

shot epoch scheduling, which is similar to CBS, except it provides single-copy snapshot

isolation. SES takes advantage of a recent shift in databases to providing snapshot

isolation instead of serializable isolation. Snapshot isolation is a slightly weaker con-

sistency model than serializable, posing its own challenges for implementing a single-

copy replication scheme. One result of the weaker model is that we require additional

functionality from the database, namely writeset extraction. We implemented SES

as another part of HRDB, and our experiments show that it also performs well.

The final major contribution is a repair mechanism that can be used to correct

a faulty replica's state. The repair mechanism is essential to a long-lived system,

helping to ensure that no more than f replicas are faulty simultaneously. Due to

the large size of database state, the algorithms used for repair must be efficient in

both time and bandwidth consumed. We analyze two such algorithms, Coelho and

N-round-X-row-hash, and determine that both provide order of magnitude perfor-

mance improvements. In specific situations, N-round-X-row-hash (the algorithm we

developed) is 20% faster than Coelho (an algorithm from the literature), though it

uses more bandwidth. In a well-provisioned network scenario, this is a minor cost to

pay.

166

8.2 Future Work

There are numerous avenues of future work in the area of Byzantine fault tolerance

of databases. We present a limited set here.

The first item for future work is refinement of the SES implementation and acqui-

sition of better performance results. Further work could involve investigation and im-

plementation of the various protocol optimizations presented in Sections 4.6 and 5.7.

The optimizations offer performance improvements over the basic protocols, often to

deal with particular workloads. Worth special mention is the optimization to SES

that allows scale-up: using more replicas to distribute load, potentially providing

performance better than a single, non-replicated database.

8.2.1 Repair

As discussed in Chapter 4, the coordinator cannot always know when a replica has

suffered a Byzantine failure. Therefore we cannot rely on knowing about the failure

in a timely way. For example, some faults are silent: the database state is corrupted,

but the problem doesn't show up in the responses sent to the coordinator. Silent

faults can occur due to hardware problems; they also occur during updates and even

during the processing of supposedly read-only queries. Eventually these faults will be

detected when the affected tables are read, but this might be so far in the future that

it could too late (i.e., by then more than f nodes might be corrupted).

The use of writeset extraction can catch many faults that would otherwise be

silent. Specifically, the data updated by write operations is not returned to the client;

instead the number of rows updated is returned. Writeset extraction makes the up-

dated values explicit and visible to the coordinator for checking. Writeset extraction

has an impact on both performance (overhead of extracting writesets and perform-

ing agreement) and deployment (replica databases must be modified to support the

operation). While necessary for SES, writeset extraction could be performed in CBS

for increased fault tolerance [34].

Additionally, we are exploring a proactive approach to detecting silent faults where

167

the coordinator injects transactions that read aggregates of the database. If a replica's

state has been corrupted, it is unlikely to respond correctly to the aggregate oper-

ation. Since the expected result of these operations is that the data matches, some

variant of N-round-X-row-hash's hash bucketing mechanism would be appropriate.

The coordinator can then schedule repairs for databases found to be faulty. The

frequency and size of the proactive state checking transactions is dependent on the

workload and what guarantees the system must provide about how long corrupt state

is allowed to remain undiscovered.

8.2.2 Replication of the Shepherd

The shepherd is single point of failure in an otherwise replicated system. While both

CBS and SES support, and can recover from, crash failures of the shepherd, the system

is unavailable while the shepherd is down. We can use replication to tolerate crash

and even Byzantine failures of the shepherd. Replication of the shepherd requires

that the shepherd replicas run an agreement protocol to agree on client operations

and their order. Replicating the shepherd for fail-stop fault tolerance requires 2f + 1

replicas, while replicating for Byzantine faults requires 3f + 1. Shepherd replicas can

be co-resident with databases to reduce the number of hosts required.

In CBS, the only time that the shepherd explicitly assigns ordering to transac-

tions is at the commit point. In SES, there are two ordering events: the snapshot

and the commit points. A replication protocol for the shepherd only need run an

expensive agreement operation for these points; it need not reach agreement on each

individual operation in the transaction. By augmenting the shim that runs adjacent

to the database with some additional functionality, the replicated shepherd becomes

more a certifier than an intermediary. Removing the shepherd from the statement

execution path improves performance. We believe that a fully replicated shepherd can

significantly improve the fault tolerance of the system without incurring significant

additional performance penalty.

168

8.2.3 Bug Discovery

We had accidental success at finding new bugs with HRDB. A more determined effort

to use HRDB to detect bugs may bear fruit, potentially even in production databases.

Due to CBS and SES support for concurrency, HRDB is admirably suited to finding

concurrency faults. Concurrency bugs are difficult to find because single-threaded

test suites never reveal them and multi-threaded tests are non-deterministic, making

it tricky to tell if the result of the test is correct. The shepherd is well-poised to

find concurrency faults because it uses voting and guarantees equivalent transaction

schedules while not requiring that replicas execute operations in lockstep. The bug

we found in MySQL is a good example of such a bug: failure to acquire correct locks

resulted in a phantom read in some, but not all, of the replicas.

We have done some preliminary investigation with generating random SQL state-

ments, reminiscent of the RAGS [38] project. In RAGS, they generated random SQL

traces and ran them sequentially on a number of databases. By comparing the re-

sults, they were able to isolate suspected faulty behavior in a number of commercial

databases. However, RAGS did not perform any tests with concurrency due to the

non-deterministic nature of database execution. HRDB provides a logical next step.

8.3 Conclusion

In this thesis, we present a practical application of Byzantine fault tolerance to a

real-world situation. Databases suffer from Byzantine faults and there is merit (and

possibly money) in preventing the effects of these bugs from reaching clients. The two

concurrency protocols we developed allow concurrent transaction execution, which is

a key component of any viable solution. The repair operation we developed is critical

to actually running the system for long periods of time. Our system is useful for

tolerating and masking faults in production database systems, in part due to its

support for heterogeneity of implementation that is necessary to guarantee failure

independence. Lastly, if the cost of the system is too high for production use, it may

find a home as novel concurrency testing framework.

169

170

Bibliography

[1] A. El Abbadi and S. Toueg. Maintaining availability in partitioned replicated
databases. TODS, 14(2):264-290, 1989.

[2] C. Amza, A. Cox, and W. Zwaenepoel. Distributed versioning: Consistent repli-
cation for scaling back-end databases of dynamic content web sites. In Pro-
ceedings of the International Middleware Conference. ACM/IFIP/Usenix, June
2003.

[3] Philip A. Bernstein and Nathan Goodman. An algorithm for concurrency control
and recovery in replicated distributed databases. TODS, 9(4):596-615, 1984.

[4] Anupam Bhide, Ambuj Goyal, Hui-I Hsiao, and Anant Jhingran. An efficient
scheme for providing high availability. In SIGMOD, pages 236-245, 1992.

[5] Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems (TOCS),
20(4):398-461, November 2002.

[6] Miguel Castro, Rodrigo Rodrigues, and Barbara Liskov. BASE: Using ab-
straction to improve fault tolerance. ACM Transactions on Computer Systems
(TOCS), 21(3), August 2003.

[7] E. Cecchet, J. Marguerite, and W. Zwaenepoel. C-JDBC: Flexible database
clustering middleware. In USENIX Conference, 2004.

[8] Fabien Coelho. Remote comparison of database tables. Technical Report
A/375/CRI, Centre de Recherche en Informatique, Ecole des mines de Paris,
2006.

[9] Willy Zwaenepoel Emmanuel Cecchet, Julie Marguerite. Raidb: Redundant
Array of Inexpensive Databases. Technical Report 4921, INRIA, September
2003.

[10] I. Gashi, P. Popov, and L. Strigini V. Stankovic. On designing dependable ser-
vices with diverse off-the-shelf SQL servers. Lecture Notes in Computer Science,
3069:191-214, 2004.

[11] Goldengate. http://www.goldengate.com/technology/architecture. html.

171

[12] Goldengate veridata. http://www.goldengate. com/technology/veridata.
html.

[13] Jim Gray, Pat Helland, Patrick O'Neil, and Dennis Shasha. The dangers of
replication and a solution. In SIGMOD, pages 173-182, 1996.

[14] Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Tech-
niques. Morgan Kaufman, 1992.

[15] IBM. WebSphere Information Integrator SQL Replication. http://www. ibm.
com/developerworks/db2/roadmaps/sqlrepl-roadmap-v8.2.html.

[16] ISO/IEC. Sql:1999. http://www.iso.org/iso/iso_catalogue/catalogue_
tc/catalogue_detail.htm?csnumber=26196.

[17] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme, and G. Alonso. Improving the
scalability of fault-tolerant database clusters. Distributed Computing Systems,
2002. Proceedings. 22nd International Conference on, pages 477-484, 2002.

[18] Bettina Kemme and Gustavo Alonso. A new approach to developing and imple-
menting eager database replication protocols. TODS, 25(3):333-379, 2000.

[19] Ramakrishna Kotla and Mike Dahlin. High throughput Byzantine fault tolerance.
In International Conference on Dependable Systems and Networks, 2004.

[20] Wilburt Labio and Hector Garcia-Molina. Efficient snapshot differential algo-
rithms for data warehousing. In VLDB '96: Proceedings of the 22th International
Conference on Very Large Data Bases, pages 63-74, San Francisco, CA, USA,
1996. Morgan Kaufmann Publishers Inc.

[21] John Langford. Multiround rsync, 2001.

[22] Yi Lin, Bettina Kemme, Marta Patino-Martinez, and Ricardo Jimenez-Peris.
Middleware based data replication providing snapshot isolation. In SIGMOD '05:
Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 419-430, New York, NY, USA, 2005. ACM Press.

[23] Barbara Liskov, Mark Day, and Liuba Shrira. Distributed object management
in thor. Distributed Object Management, pages 79-91, 1993.

[24] Ralph C. Merkle. Protocols for public key cryptosystems. sp, 00:122, 1980.

[25] Hector Garcia Molina, Frank Pittelli, and Susan Davidson. Applications of
Byzantine agreement in database systems. ACM Trans. Database Syst., 11(1):27-
47, 1986.

[26] Oracle. Oracle database heterogeneous connectivity administrator's guide. http:
//download.oracle. com/docs/cd/B19306_01/server.102/b4232/toc. htm.

172

[27] HweeHwa Pang, Arpit Jain, Krithi Ramamritham, and Kian-Lee Tan. Verifying
completeness of relational query results in data publishing. In SIGMOD '05: Pro-
ceedings of the 2005 ACM SIGMOD International Conference on Management
of Data, pages 407-418, New York, NY, USA, 2005. ACM Press.

[28] Hweehwa Pang and Kian-Lee Tan. Verifying completeness of relational query
answers from online servers. ACM Trans. Inf. Syst. Secur., 11(2):1-50, 2008.

[29] Fernando Pedone and Svend Frolund. Pronto: A fast failover protocol for off-
the-shelf commercial databases. Technical Report HPL-2000-96, HP Laboratories
Palo Alto, 2000.

[30] Karin Petersen, Mike Spreitzer, Douglas Terry, and Marvin Theimer. Bayou:
replicated database services for world-wide applications. In SIGOPS European
workshop, pages 275-280, 1996.

[31] Christian Plattner and Gustavo Alonso. Ganymede: scalable replication for
transactional web applications. In Proceedings of the 5th ACM/IFIP/USENIX
International Conference on Middleware, pages 155-174, New York, NY, USA,
2004. Springer-Verlag New York, Inc.

[32] Prabhu Ram and Lyman Do. Extracting delta for incremental data warehouse
maintenance. In ICDE '00: Proceedings of the 16th International Conference
on Data Engineering, page 220, Washington, DC, USA, 2000. IEEE Computer
Society.

[33] Red Gate Software. SQL data compare. http://www. red-gate. com/products/
sql_data_compare/index.htm, May 2008.

[34] J. Salas, R. Jimenez-Peris, M. Patino-Martinez, and B. Kemme. Lightweight
reflection for middleware-based database replication. srds, 00:377-390, 2006.

[35] Amit P. Sheth and James A. Larson. Federated database systems for managing
distributed, heterogeneous, and autonomous databases. ACM Comput. Surv.,
22(3):183-236, 1990.

[36] Oded Shmueli and Alon Itai. Maintenance of views. In SIGMOD '84: Proceedings
of the 1984 ACM SIGMOD International Conference on Management of Data,
pages 240-255, New York, NY, USA, 1984. ACM Press.

[37] Jeff Sidell, Paul M. Aoki, Adam Sah, Carl Staelin, Michael Stonebraker, and
Andrew Yu. Data replication in mariposa. In ICDE, pages 485-494, 1996.

[38] Donald R. Slutz. Massive stochastic testing of sql. In VLDB '98: Proceedings
of the 24rd International Conference on Very Large Data Bases, pages 618-622,
San Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[39] SQLFairy. http://sqlfairy. sourceforge.net/.

173

[40] Swissql-SQLOne Console 3.0. http://www.swissql.com/products/
sql-translator/sql-converter, .html.

[41] Sybase replication server. http: //www. sybase. com/products/
business cont inuity/replicationserver/.

[42] Transaction Processing Performance Council. Tpc-C. http: //www. tpc. org/
tpcc/spec/tpcc_current.pdf.

[43] Andrew Tridgell. Efficient Algorithms for Sorting and Synchronization. PhD
thesis, Australian National Univerisity, 1999.

[44] Matthias Wiesmann, Andre Schiper, Fernando Pedone, Bettina Kemme, and
Gustavo Alonso. Database replication techniques: A three parameter classifica-
tion. srds, 00:206, 2000.

[45] Shuqing Wu and Bettina Kemme. Postgres-r(si): Combining replica control with
concurrency control based on snapshot isolation. icde, 0:422-433, 2005.

[46] Min Xie, Haixun Wang, Jian Yin, and Xiaofeng Meng. Integrity auditing of
outsourced data. In VLDB '07: Proceedings of the 33rd international conference
on Very large data bases, pages 782-793. VLDB Endowment, 2007.

[47] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. Separating agreement from execution for Byzantine fault tolerant ser-
vices. In SOSP '03: Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 253-267, New York, NY, USA, 2003. ACM Press.

174

