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Abstract

Quantum Information Processing (QIP) promises increased efficiency in computation.
A key step in QIP is implementing quantum logic gates by engineering the dynamics
of a quantum system. This thesis explores the requirements and methods of coherent
control in the context of magnetic resonance for: (i) nuclear spins of small molecules
in solution and (ii) nuclear and electron spins in single crystals.

The power of QIP is compromised in the presence of decoherence. One method of
protecting information from collective decoherence is to limit the quantum states to
those respecting the symmetry of the noise. These decoherence-free subspaces (DFS)
encode one logical quantum bit (qubit) within multiple physical qubits. In many
cases, such as nuclear magnetic resonance (NMR), the control Hamiltonians required
for gate engineering leak the information outside the DFS, whereby protection is lost:
It is shown how one can still perform universal logic among encoded qubits in the
presence of leakage. These ideas are demonstrated on four carbon-13 spins of a small
molecule in solution.

Liquid phase NMR has shortcomings for QIP, like the lack of strong measurement
and low polarization. These two problems can be addressed by moving to solid-state
spin systems and incorporating electron spins. If the hyperfine interaction has an
anisotropic character, it is proven that the composite system of one electron and N
nuclear spins (le-Nn) is completely controllable by addressing only to the electron
spin. This 'electron spin actuator' allows for faster gates between the nuclear spins
than would be achievable in its absence. In addition, a scheme using logical qubit
encodings is proposed for removing the added decoherence due to the electron spin.
Lastly, this thesis exemplifies arbitrary gate engineering in a le-in ensemble solid-sate
spin system using a home-built ESR spectrometer designed specifically for engineering
high-fidelity quantum control.

Thesis Supervisor: David G. Cory
Title: Professor of Nuclear Science and Engineering
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Chapter 1

Introduction

The quantum nature of information processing can lead to computational speed-ups

for certain types of algorithms, like factoring [132] and searching [53]. Truly quantum

phenomena, like entanglement [40], have applications in creating provably secure

communication channels [10] and can give measurement enhancements beyond the

Heisenberg uncertainty limit [50]. These advantages are only possible through the

coherent control of quantum dynamics while limiting the deleterious effects of deco-

herence. Nuclear magnetic resonance has served as a test-bed for the development of

methods for coherent control and for the exploration of error correction and preven-

tion schemes. This thesis will focus on the aspects of coherent control as it relates to

quantum computation in such experimentally realizable systems.

The first part of this thesis (Chapters 2-4) develops methods for coherently control-

ling quantum information with the goal of implementing high-fidelity quantum gates.

This includes improving the model of classical controls previously unaccounted for,

as well as implementing new optimal control schemes from the literature. In the pres-

ence of decoherence, one method of extending coherence times is the use of quantum

encodings. The resulting logical qubits, storing the informaiton over many physical

qubits, present a unique challenge in coherent control, as the control Hamiltonians

may not respect the structure of the encoding. Nonetheless, a scheme for controlling

logical qubits is presented in Chapter 3 and is implemented in a liquid phase NMR

testbed (Chapter 4) with natural decoherence.



The techniques developed in liquid phase NMR are then applied to systems that

form interesting building blocks for future quantum devices. One example is nuclear

and electron spin based qubits in the solid-state. In only a few isolated cases has com-

plete coherent control been demonstrated, and in general, the issues of implementing

control have not yet been articulated. In Chapter 5 of this thesis, we develop a method

for controlling nuclear spins via the anisotropy of the hyperfine interaction (AHF).

We show that such systems are universal and that nuclear-nuclear gates can be imple-

mented in timescales faster than those afforded by solid-state NMR. We demonstrate

such engineered quantum gates using the AHF and the methods in Chapter 2 in a

test-bed solid-state system of one electron and one nuclear spin. The design of our

pulsed ESR spectrometer used for this demonstration is the topic of Chapter 7.

An important consequence of moving to the electron-nuclear spin systems is that

the electron spin T1 relaxation couples via the HF interaction to the nuclear spins,

reducing the nuclear spin coherence time. We can draw from the encodings and

methods explored in the liquid state and use these to develop a quantum memory

in the solid-state. The analysis of possible codes and the structure of electron T1

induced decoherence in AHF systems is investigated in Chapter 6. Finally, Chapter

8 discusses the scalability of these solid-state systems including single spin projective

measurements and concatenation of nuclear subsystems by coupling the electron spins.



Chapter 2

Engineering Quantum Control in

Closed Systems

2.1 Background

The standard description of computing with quantum systems and simulating quan-

tum dynamics on quantum systems can be broken down into in three main phases:

state preparation, state evolution, and measurement. The state evolution is governed

by the Schrodinger/Heisenberg differential equation of motion for a quantum mechan-

ical state/operator. The solution to this differential equation is described by unitary

evolution of the quantum state or operator. Thus quantum gates are unitary opera-

tors. The state preparation and measurement need not be unitary operations. Either

can change the net purity of a quantum state or causing a 'wavefunction collapse'.

While there are alternate models of quantum computation, such as measurement-

based quantum computation [120], we are concerned with the standard model of

generating arbitrary unitary operators enacting quantum gates.

Given the equation of motion for a quantum state, p(t) and a set of controllable



gc(t) and natural1 (Jo) Hamitonians for a closed quantum system:

t) = [Po + aFc(t),p(t)] (2.1)

the evolution of the state can be found by direct integration. Provided the initial

condition p(0) is known, the final state is:

p(T) = U(0,T) p(0) U(O,T)t  (2.2)

The propagator, U is defined as:

U(O, T) = Te - foT •'ro+`c(t)dt (2.3)

where T is the Dyson time-ordering operator specifying how the integral should take

into account the non-commutivity of e' at different times. Henceforth, h = 1. In

differential form, this reduces to

U (t) = -i(Po + ci (t)) U(t) (2.4)

While the formal mathematics involved with the generation of unitary dynamics

is beyond the scope of this thesis, the operator U(t) is a dynamical group whose

generator is the Hamiltonian [3]. If V~c(t) is given for all times 0 < t < T the

dynamics can be integrated. However, we are interested in the inverse problem of

finding some dc(t) that generates a desired U(t). The Yc(t) is not unique and may

not exist for all T if II)c(t) I is bounded.

2.2 Requirements for Control

Before diving into the various methods for generating quantum control, we first iden-

tify when it is even justified to expect some desired unitary operator given a nat-

ural Hamiltonian do and control Hamiltonian Vc. From the theory of Lie alge-

'The static, time-independent Hamiltonian is also referred to as the system or drift Hamiltonian



bras/groups, we can expect dro and JC to be able to generate a full rank Nx N

unitary matrix representation of the elements in the Lie group U(N) if the Lie brack-

ets (or equivalently commutators) of the generators span the group. This was shown

in the context of quantum control by Rabitz [118] and others have shown numerical

methods for assessing the completeness of control [127]. The question of complete

controllability in classical linear dynamical systems has been treated in detail and

much of the theory for classical control problems can be used in the quantum regime,

most notably the satisfiability of control by graphical means [141, 4].

As an example of controllable and uncontrollable systems, take a simple two spin

system2 : _0 = al + y2U + Jal2 . Suppose the control Hamiltonian is c = a.

In order for the system to be completely controllable, we must be able to generate

a complete set of orthogonal basis operators, represented as linear combinations of

tensor products in the Pauli basis3 . The first order commutator of [)o, Yc] generates

the operator 01 = -iý_ - + f2 -i•o-1U2. By taking higher order commutators, we

can generate further operators 02, 03, etc until the linear independence of the Nth

operator from all the other operators ON-1 breaks down. In this simple case, we never

generate an operator with a term a2 or a, which are necessary to have 15 linearly

independent operators. If we keep the same ffo, but change c to Jffc = a1 + a2,

we can now generate the a2 terms necessary and make them linearly independent

provided w, W2. In terms of a physical example the former case is like a liquid state

NMR sample with spin 1 and spin 2 being different nuclear species (say 13C and 1H)

while the latter case is a homonuclear spin system with a finite, large chemical shift

difference.

One important distinction is the equivalence of SU(N) x U(1) and U(N) in the

context of quantum mechanics [127]. These two groups differ only by a global phase,

unobservable in quantum mechanics. The explicit presence of the identity element, 1

as a generator is a necessary condition for generating U(N). As the identity element

20J is the Pauli spin matrix for p = {x, y, z}. Here the product with the identity operator,

1 = ] on all other spins is implied for non-repeated indices.

Here this is all the 16 possible tensor product combinations of aay,az, and 1 between spins 1
and 2.



corresponds to an energy shift in -J, it is not present in our model of the system.

We thus only concern ourselves with the desired unitary matrix up to a global phase.

2.3 Methods

While the algebra generated by the natural and control Hamiltonians provides a

mathematical set of conditions for universality, generating arbitrary unitary gates

using this knowledge can be non-intuitive. Fortunately, quantum information science

has provided various constructions of gates [36] that are universal: single-qubit rota-

tions and any complete set of two-qubit couplings is sufficient to generate any unitary

operator. For a magnetic resonance system, RF pulses applied on resonance with any

spins' Larmor frequency act as single spin rotations. Periods of evolution under 0

will behave as a gate with many spin-spin couplings. Refocusing pulses can be applied

to evolutions under 0 to reduce this evolution to two-qubit gates [67].

As an example, let us take the two spin system from above and construct a simple

two-qubit gate: a controlled-not:

10001 0 0 0
0 1 0 0

0001

00100 0 0 1
0 0 1 0

=El + E 12 (2.5)

E+ = 10) (0 = (1 + uz)/2, E_ = 1) (11 = (1 - az)/2. The projective operator form

of the CNOT gate is then rearranged to look like a rotation having the form eiA by

applying a variety of identities. For clarity, we work out this simple case.

U.=ot



E2a2 + E+12 E'.2 (1 EE)1 2

= El ei -2 _', + (1 - EI )12

- E -l e-iO, + (11 -E1)12

S 112 + E- (12_2) 2+ _l(e ,'i •• - 2

= iES (12-_2)

- e j(1-4e)(-x2 )

-• e 112 _ 1 i s .Tr

•_ ~ ~ z 4•• 0-••ze- 'aX e--'M4 0z1ax

(2.6)
(2.7)

(2.8)
(2.9)

(2.10)

(2.11)

(2.12)

Since global phases are not observed we can drop the first exponential. We further

simplify this result by applying spin-selective rotations about x and y:

-isr _1 i: r _2 .Lr '1

e 4 = (2.13)
•it 1 -_in 2 -ir2 _ lOJ1 2 -j _

2

=e4ze ~4 e 4 Ye 4z ze_4 Y (2.14)

-L ' 1 1 1 2 4e2 ,;ere.•1 ,.2 Z Z r .2

e- C ima- Z e is- e- is a e is a e-°z a ore-' l (2 .15 )

If the spins 1 & 2 are sufficiently well separated in frequency (i.e. they are different

nuclear species), then one can independently address spin 1 and spin 2. Operators

of the form e- io,Y/2 can be implemented by applying a the control Hamiltonian

for a short period of time (T) at the resonance frequency of the Jth spin such that

Oax,y = JVcT. This is commonly referred to as a hard pulse. The internal dynamics of

the system can be neglected if |JJcl > IJJ0R1 for the rotating frame of the particular

spin species. To implement a very good approximation of the aua coupling, we allow

the system to evolve under 0fo for a time 1/2J, applying a hard 7r pulse to both spins

1 and 2 at the end and half way through the evolution period [114]. This occurs

because when the resonance frequencies of spins 1 & 2 are much greater than the

scalar interaction strength, the operational form a . a 2 is reduced to only the secular

part ala . The former is the strong coupling regime; the latter is the weak coupling



regime.

If the spins 1 & 2 are not sufficiently separated in frequency, then applying a hard

pulse to spin 1 will have a non-trivial effect on spin 2. Spin selective rotations can be

accomplished by applying collective pulse and allowing the chemical shift difference to

differentiate between the two spins. By interspersing evolution under ff with a series

of pulses, arbitrary rotations of either spin is possible. Another possible approach is to

apply a longer, weaker pulse on resonance with the spin under consideration. As the

excitation bandwidth is inversely proportional to the total time of the pulse, a long

enough pulse will have little effect on the other spin. During the pulse, the system

continues to evolve under ff however. This evolution must be tracked and unwanted

evolution refocused by a set of 7r rotations at particular times. In addition, .90 will

exhibit some degree of strong coupling, making the evolution of the spin system more

complex.

For multiple spins of the same nuclear species, this tracking becomes increasing

cumbersome. Several methods for tracking the net evolution of the spin systems,like

Fourier synthesis of couplings [117] or numerical schemes [14], have been discussed,

but approximate .V as a diagonal Hamiltonian. The robustness of these gates can

therefore be compromised by such strong coupling errors.

2.3.1 Strongly Modulating Pulses

Recall that in liquid phase NMR systems, the scalar coupling between two spins has

an isotropic form a - a, which the above methods approximate as Uzaz when the

precession rates of the individual spins are well-separated 4. A network of refocusing

spin-selective 7r-pulses can remove the aza component and can be phase shifted to

remove other components of the strong coupling, however evolution of the system

under strong coupling during a pulse can cause slight errors of the net unitary. While

these can be reduced through further optimization of the delay times, another method

is to constantly modulate the control fields to generate the desired unitary action.

4 The Hamiltonian for liquid state NMR is -Yo == Wk ±k + + Ek, .ok . See Chapter 4 for
more details.



These will be referred to a strongly modulating pulses (SMP).

Instead of applying low-power, shaped pulses resonant with a particular spin pre-

cession rate, quick high-power pulses can be applied at a many arbitrary carrier

frequencies. Since the pulses are high-power, each spin will nutate about the effective

field of the applied RF and the off-resonant field including a Bloch-Siegert shift. If

many of these quick pulses are applied at a variety of frequencies and phases, this

averages out the couplings between the spins; the dynamics is then just single spin

rotations given by the net action of the short pulses. For small systems this can

be solved analytically, but tracking these individual trajectories is best done using

numerical techniques.

First, a target unitary operation UtaTrget, the natural Hamiltonian, ffo and the

control Hamiltonians Yfc are defined. The control Hamiltonian for this magnetic

resonance system is:

J/=,(t) = Ap(cos(pft + fp) 3 + sin(Q ft + 4T) j (2.16)
k k

Physically, this represents an oscillatory magnetic field perturbation applied orthog-

onal to the quantization axis of the spins. Note that AP is proportional to the Rabi

frequency of the spins.

Next, an initial guess for the modulation parameters for the pth period of strong

irradiation, {JQf , Ap, Op, Tp} are provided. Here Of defines the carrier frequency of the

irradiation, AP is the intensity of the magnetic field, p, the phase, and -p the duration

for the particular period. The time-varying RF can be made time-independent by
going to a rotating frame and transforming ofo to foRP = U - -- ( Zk ao). The

net unitary operator for this pth period,

Up = e
-
irp( p +AP(EaZ cos COp+E y sin p)) (2.17)



and the net unitary of the P periods of irradiation is the product of the Up

P

Unet = UfcUp (2.18)
p=1

Ufe represents the overall frame change between the pth and the (p + 1)th periods and

is just a collective oz rotation of an angle that is the difference of the two frames and

times: Qp+iT-P+ - pTP.

In order to compare the desired unitary with the calculated unitary, the gate

fidelity measure [43] is used: F(Unet, Utarget) = Itr[UtUt•ug •12 Since Unet is a function
Jtr[UnetU"eJ12

of 4P independent variables, F can be maximized by adjusting these 4P variables.

One approach is to use the Nelder-Meade simplex [1161 algorithm. We explicitly

calculate Unet and evaluate F for values near an initial guess in parameter space, the

simplex search finds a local minimum, hopefully resulting in F = 1. For a dispersion

of parameters in either the control Hamiltonian (,f ) (e.g. RF field inhomogeneity)

or the system Hamiltonian (/fo3) (e.g. chemical shift uncertainty, coupling constant

uncertainty, B0 inhomogeneity, etc), the goodness measure can be weighted sum of

F for each instance of the dispersion: F = Zj wjFj, where wj is the weighting factor

and F3 is the fidelity for the jth instance of the Hamiltonian.

In cases where the Larmor frequencies of the spins are well separated due to having

distinct gyromagnetic ratios, multiple control Hamiltonians can be used. The full

Hamiltonian can be broken up into subsystems: ffo = JA + J•f + AB. A rotating

frame is also defined for each subsystem. If the desired unitary also conforms to the

subsystem structure, as is the case for any single-spin rotations, it will have the form

of Utarget = UA 0 UB. The SMP algorithm can then be broken up into finding UA

using the natural Hamiltonian A and controls cA . Next, the algorithm searches

for UB using dB and Y'CB with the additional constraint that the total time of the

SMP must be the one for implementing UA. This subsystem approach reduces the

simulation time since two separate smaller Hilbert spaces are easier to compute than

one larger one. The strong, independent modulations of subsystems A and B are

likely to average out the interaction of -XAB. Simulations on the entire Hilbert space



of Jfo for both control sequences show how well this averaging occurs. Should the

convergence be inadequate, the controls for each subsystem can be used as an initial

guess in searching over the entire Hilbert space. Coherent effects (e.g. Hartmann-

Hahn matching) and relaxation (e.g. Overhauser effects) due to simultaneous pulsing

should be considered. Lastly, in cases where the controls are available only over one

subsystem, say JcA, the other subsystem need not be treated quantum mechanically.

The coupling effects due to -YAB can be divided into an "incoherent sum" of the

dim(J-) possible configurations of the spins in B, giving a set of Hamiltonians {AY }.

This again reduces the size of the Hilbert space over which the algorithm must search

[1491. For example, a seven spin-1/2 system, is represented as a 128 x 128 matrix,

but a four spin-1/2 subsystem can be treated as 8 separate 16 x 16 matrices.

2.3.2 Gradient Ascent Pulse Engineering

The Gradient Ascent Pulse Engineering (GRAPE) algorithm [71] is a numerical

method, like SMP, for finding control sequences for generating arbitrary unitary

transformations. It differs in its searching of parameter space by taking the gra-

dient of various goodness functions (i.e. gate fidelity) resulting in linear updates to

the modulation sequence rather than using the simplex method.

While the SMP method defines periods of modulation with fixed duration, trans-

mitter frequency, amplitude and phase, the GRAPE method varies the amplitude of

two different orthogonal control parameters (like the in-phase and quadrature com-

ponents of the RF field) for a fixed time step, At ,and a fixed number of points,

N. At each point in time, tj, the control Hamiltonian has K finite amplitudes,

a3 "C= - ajkCk. Provided LfT(tj)IAt <K 1, the net unitary propagator of

the entire system is well approximated by the product of the j instantaneous uni-

taries:

U(T = NAt) e-Thm (2.19)

At this point, the same Nelder-Meade simplex algorithm for all N x K parameters

can be used to optimize the fidelity function F. Alternatively, the GRAPE method



uses the product structure of U and the linearity of quantum theory to calculate the

first derivative of F with respect to ajk and updates the N x K parameters to move

in the direction of steepest descend in parameter space. If the initial guess to the K

independent controls are a , then the next iteration of controls can be updated as:

-_.(n+l) .-(n) -_(n)
ak =ak + ) ak VkF (2.20)

where E is the step-size and VkFIj = - . The derivatives of F have a conveniently
-Oajk

compact form, allowing for fast-computation and limiting the number of matrix ex-

ponentials to be computed.

,9F a Itr[iUne~t targe 1 2  (.1a - DaF-k (tr[UnetU•tretl 2 ) (2.21)

(2.21)
1 (tr[UnetUttrget] tr[UntetUtarget]) (2.22)V aajka

= Vak NU- ... Ujj-...1 lUtarget xV aajk

tr [UI ... U U ... UNUlVUtarget] (2.23)

1t [Uj+(-iSk/At)Uj Uj. +
V (
tr[Unet Utarget ltr [U_ (Ck t) Utarget]) (2.24)

Here we have used the fact that aUJ/jajk = (-iCkAt)Uj and made the substitu-

tion uZ_ = UjUj-2 ... U1 and Uj+ = UNUN-1 ... Uj+. The derivative for each aik is

thus related to the products of unitaries appropriately separated with the insertion

of the control Hamiltonian for the jth interval. In implementing this algorithm, we

only need to calculate the matrix exponential for each time step once and store it in

memory, taking successive products of matrices to arrive at the gradient. This greatly

reduces the number of evaluations of F compared to that of the simplex algorithm.

The algorithm terminates when F is within an acceptable threshold.

While both methods converge to find quantum gates numerically, there are key

differences in the types of gates found using either method. The high-dimension pa-

rameter space over which we search has much structure and many local minima [83].



(a) Spin 1 (b) Spin 2

(c) Spin 3 (d) Spin 4

Figure 2-1: Bloch Sphere plots for an SMP. These four spheres represent the ac,
Ua, and az components of each of the four carbon spins of crotonic acid. The green
(light) box represents the initial state (pN = Zk ak) and the red (darker) box the
final state (-aI + , + a + u4), the result of the rotation: Ucl_9ox = e - i ra /4. Note the
discontinuities in the trajectory indicate switching from one period of RF to another
period of RF. These transient effects are discussed below. The trajectories are nearly
sections of a geodesic along the surface of the sphere; slight modulations in the line
are due to small scalar couplings to other spins. The duration of this pulse is 557ps.



(a) Spin 1 (b) Spin 2

(c) Spin 3 (d) Spin 4

Figure 2-2: Bloch Sphere plots for GRAPE Pulse. The same conventions as Figure
2-1 are used here. The pulse consists of 100 points of RF, constant for 10ps. The
trajectory of the single spins is much more complicated than that of SMPs. This may
lead to degradations in fidelity during implementation.



The initial guess of the algorithm confines the search to some local region in parame-

ter space and the landscape of this region is modified by the weighting the goodness

functions with penalties added for limiting the overall duration and maximum ampli-

tude. Empirically 5, the SMP method finds single-spin rotations, SU(2) 0 ... 0 SU(2)

easily, but frequently fails to converge to for multiple-qubit gates (SU(4)). This is not

seen with the GRAPE algorithm, which finds multiple qubit gates provided the total

time of the initial guess is sufficiently long. It remains an open question as to why

we see this behavior. One possibility may be the complex penalty functions of the

SMP method are tuned for single-spin rotations, while the GRAPE method does not

impose added penalties beyond the fidelity. Another possiblity is that the number of

independent control parameters for a GRAPE pulse (NK) are typically larger than

those of an SMP (NK > 4P).

2.4 Imperfect Systems

Finding a set of classical control parameters using only the closed system quantum

mechanical evolution gives a solution for generating some desired unitary transforma-

tion within a specified precision. Care must be taken to find implementable sets of

control parameters, both in terms of the magnitude of the control and in the band-

width of the specified control parameters. Furthermore, even within the limits of a

classical control system, e.g. a magnetic resonance spectrometer, the specified control

fields given to the controller may be distorted by the non-linear elements, like diodes

and amplifiers, such that the fields present within the quantum system of interest

differ from the desired fields.

To understand the effects of bandwidth, we must give an accurate model for the

classical control system. In an NMR probe, one way of coupling magnetic fields to the

sample of interest is the inductor of a tuned RLC circuit. As our model, we will chose

the linear response to a driven, tuned and matched circuit but solve the unmatched

circuit first as a simpler example. The response of a spin system driven with a tuned

5These results come from investigations on a four-qubit liquid-state NMR sample.



circuit has been treated in the context of multiple-pulse solid-state NMR [98], more

generally using linear response theory [7], and even using finite pulse approximation

[143]. We base our analysis on this work and then extend it to the control methods

introduced in the previous section.

The parallel circuit in Figure 2-3 shows that in response to a time-dependent

voltage vs(t) a current iL(t) will flow through the inductor L and consequently give

rise to a magnetic field 6 B1 (t) The effects of the reactive elements can be described

by a convolution kernel K(t - t') whereby the current through the inductor is:

is(t) = K(t')v,(t - t')dt' (2.25)
OO

Vs
L

Figure 2-3: Parallel RLC Circuit model of NMR Probe.

Using the Laplace transform the integral equation is rewritten as a set of algebraic

equations. A function of time, t can be expressed in terms of a complex variable s by

the transform f(s) - fo f (t)e-stdt. The net current i,(s) flowing across the voltage

source is given by v,(s)/Ztotal(S) where the total impedance of the circuit Ztotal is,

sL +r + RLC(s2 + _s + W2)
Ztotal(S) = L . (2.26)

LC(s•2 + S + W2)

and w2 = 1/LC. Using Kirchoff's laws, we solve for the current across the inductor

6In this simplification of the electromagnetic model, the current iL(t) is an approximation of the
current density J(F, t) resulting in a field (f3 (t)) inside the sample. In this model, we neglect the
susceptibility of the sample and the geometric factors between current and field.



iL ():

iL(s() i(S) (2.27)
L(S) LC(s2 + sw 2 )

L 0

v8(s)v=(S) (2.28)
RsLC[82 + (L + 1)S + 0 +

Defining the quality factors and shifted resonance as:

Qll = woRC (2.29)

Q = woL (2.30)
r

1 1 1 (2.31)-•- = Q - • Q (2.31)
Qe Q11 Qs

02 = wL2(1 + ) (2.32)

The complex transfer function, K(s) is specified by the product of two poles by

completing the square of the quadratic function of s in the denominator:

2Kw) (2.33)
(s) = R(s + a + iw,)(s + a - iwr) (233)

where

a = (2.34)
2Qe

r 1w 0 (1 + r ) (2.35)

Here Qe is the effective quality factor of the tuned circuit, Qo is the shifted reso-

nance due to a damping factor, and wr is the addition shift due to resonance.

Following the standard impulse response theory [59], the impulse of a constant

AC voltage with phase q0 and frequency w turned on at some time t = 0 constitutes

the following Laplace transform pair:

V(t) = Voei•+eo0(t) , V(s) - (2.36)



where 0(t) is the Heaviside function. The time varying current, iL(t), can be specified

by the inverse Laplace transform, L-1 of the voltage and transfer function:

iL(t) = - 1{V(s)K(s)} (2.37)

VoeOW {dl e i(wt+4) + d2e-atei(wrt+±2) - d3 -ate - i(wrt- 3) (2.38)

The complex parameters d3 and 4O are given by:

1 2 3
d 1/V42W2 +( 2 +w2 - w2 )2 1/(2Wr V 2 +(W - Wr) 2 ) 1/(2Wr V 2 + (w+wr)2)

ta-2aw a atan[0] 2 2 -Wr W+Wr

Table 2.1: Transient response parameters of tuned RLC circuit.

The terms with coefficients d2 and d3 give the transient response of the circuit to

the sudden impulse, with a characteristic time of 1 , oscillating at the loaded resonancea,

frequency, w,. The steady current thus oscillates at the driven frequency, w is out-

of-phase with the driving voltage by ¢1. The in-phase and quadrature components

of the current across the inductor can be separated from the complex response by

taking the real and imaginary parts of the terms after factoring out the steady-state

current.

iL(t) = V0ei°w02 dle i(t+i) 1 + d2e-atei((Wr-w)t+02-1) d3e-at -i((wr+W)t-b3+±b)

(2.39)

iL,o(t) = dei(Wt+1) (2.40)R d2 -~at

iLL(t) = iL,o (1 +-e cos ((wr -W )t + 2 -1)

d3 e-at cos((W, +w)t 3 + 14)) (2.41)
d2 eat

in,±(t) = iL + e,0- sin ((w,- W)t±+ 2 -1)

+ de - at sin ((w, + w)t - 3 + ± 1) (2.42)
di



Although described by a complicated set of equations, the transient response is

simply understoood as an in-phase and quadrature current. The characteristic decay

time of this current is proportional to 1/Q , such that larger Q's will result in longer

transients. With regard to applying a pulse of particular phase 40, the in-phase

transient will cause a rotation of any single spin with increased amplitude for short

times, while the quadrature transient with cause a rotation about an orthogonal axis

ko + ir/2. Thus the actual pulse rotates the spins about an axis offset from the

intended axis of rotation [121, 98]

This simple RLC circuit has a single tunable element that can adjust the resonance

frequency, but the impedance between the voltage source and the entire circuit will

also change as the capacitance changes. By adding another capacitor, we have two

independent elements to ensure the tuning of the circuit resonance to the Larmor

frequency and matching the impedance of the circuit to the transmission line (50Q).

Figure 2-4 shows a model tune-match circuit with independently tunable elements

C, and C2. We follow the same analysis as above, noting that the characteristic

polynomial of the transfer function will increase by one power of s due to the addition

of a reactive element. The total impedance of this circuit ZTM is again used along

with Kirchoff's laws to arrive at the transfer function, K(s), relating the input voltage

to the inductor current, iL(S) = v,(s)k(s). ZTM(s) and K(s) are:

1 sL+r
ZTM 

1 + Rs + -

sC2 LC (S2 + -+W)
R,,CC 2s3 + L(C 1 + C2)s 2 + r(C 1 + C2)s + w0  (2.43)+=+(2.43)

sLCIC2(S2 + _S ± W2)

s1/CI R,K(s) = S /CR 8  (2.44)
3 RC± s RsCs + RsCIC2

where C, is the effective series capacitance of C, and C2.

Since the impulse voltage is a function of 1/s and k(s) a cubic in s, the current

response will be a quartic in s and can be solved exactly. The general form of the
R(s)current iL(S) i -L --- = , where R and P are polynomial functions of s and can be



Figure 2-4: Tune-Match RLC 2 Circuit model of NMR Probe.

decomposed into partial fractions:

I(s) = 4 = I(t)= rj ePjt (2.45)
SPj

If we use thes initial impulse from Eq. (2.36), the current is:

iL(t) = {mlei(wt+Pý1) +  mePt+i } (2.46)
j=2

where pj are the poles of the transfer function and mje0 'i are the residues of those

poles.

For the purpose of simulating the real field response B (t) for a known control

vS(t), it will suffice to compute a response for a given choice of circuit parameters

{C1, C2, R8 , r, L} valid for any piecewise constant V(t), as the response will add lin-

early in time. We have computed the mj, O5 and pj as a function of the circuit

parameters using Mathematica and use the result in our numerical model below. We

omit the solution here as it gives little insight to the problem.

As our model depends on the values of the circuit components, by completely

specifying these values we can then apply our response model to the control fields for

implementing a unitary operation. Not all the values of the circuit components can be

easily measured, but can be inferred from other measurements. The impedance of the

inductor within a Bruker proton/carbon/nitrogen inverse probe head is approximately

L = 80nH. The resistance r can be inferred from the quality factor Q of the probe7

7We neglect Q loading due to the sample.



and the resonance frequency w0 , measured using a network analyzer. A matched

probe should have the real part of the impedance set to 50 and the imaginary part

vanishing, yield the following set of equations:

1= wRL ± v/r R - r2R2+ rR2 w2L2  (2.47)
C 0 = (2.47)wR,(r 2 + W2L 2)

r

C'2 = (2.48)
w/rR(r2 - rR + w2L 2) (2.48)

C1 and C2 can thus be inferred from L, r, R, wo.

2.4.1 Application to Strongly Modulating Pulses

For a strongly modulating pulse, the classical control parameters are described by

a sum of N finite duration (r) voltages with a particular amplitude (A), carrier fre-

quency (w) and phase(q) V'(t) = EN= vj(t) with

j-1 j-1

v3(t) = A3(t) cos(wjt + j) (0(t - E- S k) - )(t - Em)) (2.49)
k=1 k=1

The control fields B (t) can be derived for each of the vj and added together with a

time translation. The amplitude and phase difference between each of the periods give

rise to an in-phase and quadrature transient. We simulate this transient by explicitly

calculating the current response, i'(t), in O10ns intervals for a strongly modulating

pulse. As the measured response of the probe for a flat pulse shows transients on

the order of 300ns (Figure 2-5) this provides enough points to see the affects of

the transient. Figure 2-6 shows a seven period strongly modulating pulse with and

without the simulation of transients. We note that for this particular pulse, the

measured transient and the predicted transient have different shapes. It is not known

whether this is an artifact of sampling at a different rate than the one at which the

transient response was calculated.

The in-phase and quadrature transients behave like a net rotation of the in-phase



4

3

E2

0'

x 10
4

3 4 5 6 7 8 9
Time (usecs)

CIo

o 1 2 3 4 5 6 7 9
Time (usecs)

Figure 2-5: 5ps pulse digitized at 100MHz.

control Hamiltonian, c-ip = E u4, and quadrature Hamiltonian -Y-q Y '.

The transients can be modeled as small angle error unitaries in the vain of [143] and

added to Eq. (2.18)

N N

Unet 1 Ue (k) Uk Uk) UE 1 Uk (2.50)
k=1 k=1

Although the Ue(k) are separable and appear as single-spin rotations, the non-commutivity

with the other Uk make them act non-trivially over the entire Hilbert space when

taken over the entire modulation sequence. Thus, UE need not appear as single-spin

rotations. We should note that by the usual controllability criteria mentioned in

the previous section, the presence of transients does not sacrifice the universality of

system, but they do lead to an overall coherent error when implementing a gate.

We quantify this loss of fidelity by simulating the quantum dynamics for the

current response i'(t). For a characteristic set of pulses on crotonic acid (see Chapter

4) we calculate the loss of fidelity as a function of Q. The average loss of fidelity for

this set is less than 0.05% for a modest Q (QNeasured=1 2 6 ), as seen in Figure 2-7.

·



Amplitude of Strongly Modulated Pulse: C123 X

Time (microseconds)

(a)

Figure 2-6: Strongly Modulating Pulse with transients. This seven period pulse
implements a collective " rotation on all four spins of crotonic acid.

2

For Q's ranging from 50 to 500, we calculate the average loss of fidelity and worst

case loss of fidelity over the set of 31 pulses. These results appear in Figure 2-8. In

the limit of Q -- 0, the tuned circuit becomes broadband and the rapid changes of

amplitude and phase do not affect the spin system.

2.5 Conclusions

The application of optimization and control theory to the problem of generating

unitary evolution continues to improve the quality and permits us to increase the

complexity of quantum gates. Furthermore, including bandwidth limitations in the

system model will boost the fidelity of implemented pulses. The methods used for

generating control, though having roots in liquid-state NMR, have been applied to

many other systems including trapped ions, superconducting qubits, and solid-state

nuclear and electron spin qubits. However, as the size of the Hilbert space grows

exponentially with each additional qubit, using classical computing simulations to

find ideal control parameters will not prove scalable or even feasible in the near

future.

_ ·· _ __ · __···_·



Loss of Fidelity due to Transients, Q=126
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Figure 2-7: Fidelity loss with and without transients for Crotonic acid pulses. The
addition of transients into the system model does not affect all pulses equally. This is
due to the different number of periods of the pulses as well as the relative amplitude
and phase switching between periods.
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Figure 2-8: Loss of Fidelity versus Q. The worst case pulse and the average fidelity
loss of a catalogue of 31 strongly modulating pulses. For moderate Q values (<150),
the loss per pulse is less than 1%.

Lastly, the description here focused only on closed quantum systems, whereas the

interaction of the controllable quantum system with an uncontrollable environment

can lead to a loss of quantum coherence. Further improvements in the robustness

of quantum gates can be made by taking into account the noise processes of the

open quantum system. Indeed, the single-qubit rotation + ZZ-gate model presented

above inherently refocuses slowly varying magnetic fields - usually responsible for T2

proceses, but is not an optimal way of computing gates. Generating complex control

sequences in the presence of a relaxation superoperator has been explored theoretically

in the literature though an experimental demonstration of these open-system optimal

control techniques has yet to be realized.

In summary, the present techniques for generating arbitrary control of quantum

systems, while sufficient for today's experimental implementations, will need to ma-

ture greatly as they scale in size and as we account for decoherence.

)0





Chapter 3

Engineering Quantum Control in

Open Systems

When modeling a quantum system, one typically starts by describing the micro-

scopic Hamiltonian of the system. Seldom are such microscopic systems well-isolated

from the many other independent degrees of freedom of the surrounding microscopic

systems and thus for a more complete description we include an interacting environ-

ment. We define the environment as all the other quantum systems or degrees of

freedom which we do not have immediate control over. Our closed system, which had

guaranteeing unitary dynamics, is now open to the influence of an environment; the

dynamics will in general be non-unitary.

3.1 Encoding Quantum Information

Quantum mechanics describes the the microscopic evolution while statistical mechan-

ics provides a macroscopic description of the system seen by averaging over the many

degrees of freedom. As experimentalists we measure macroscopic quantities like volt-

age, charge, force, etc. that may seem very different than the quanta of angular

momentum we model. The term decoherence [152, 51, 16] is used to describe the

transition of the quantum mechanical nature of matter to the classical nature, as the

quantum coherence or superposition of a state is lost. The finer points of decoherence



will not be discussed; it is a broad area of active research outside the scope of this

thesis.

The problem of decoherence compromising quantum computations was identified

early in the field of quantum information science. Quantum versions of error correct-

ing codes (QECC) from classical communication theory [133, 20, 136] were employed

to correct for particular error models and became unified under the stabilizer formal-

ism [52]. The general scheme takes one qubit of quantum information and protects

it from a finite number of errors by spreading the information among additional N

ancilla qubits. If this encoding step occurs at time, t = 0, then at some later time

t' (chosen for a particular error rate and the code depth) the information can be de-

coded from the N+1 qubits and the states of the N ancilla bits contain information

about what sorts of errors occurred. Measurements of the ancilla bits do not destroy

the original quantum state and can be used to rectify the original state. With N new

ancilla bits the process can be repeated for the duration of the computation.

For noise models with particular symmetries, Zanardi [151] and Guo [381 found

that particular subspaces of the Hilbert space between 1 qubit and N ancilla bits

remain invariant under the action of the noise. These decoherence free subspaces are

special cases of the more general noiseless subsystems. Such passive error avoidance

encodings do not require the repeated measurement and refreshing QECC, making

them infinite distance codes [75]. Experimental implementations of decoherence-free

subspaces (DFS), noiseless subsystems (NS), and QECCs have proven their efficacy

at correcting errors, though natural noise seldom coincides precisely with the chosen

noise model.



3.2 Case Study: Correlated collective noise along

quantization axis

3.2.1 System-Environment Model

We define a model Hamiltonian as a closed quantum system that can be broken into

three different pieces:

;YfS+E = 1-S + OE + OfS 0 VE (3.1)

where S describes the system and E the environment. If we move into an interaction

frame of the system environment defined as UE(t) = e
- iEt, this renders the system

environment Hamiltonian time dependent:

ES+E UE S+E - S + Ys (t) 0 YE (t) (3.2)

If we reduce our observations to only those of the system Hilbert space (Hs), the

system Hamiltonian now has a time dependence due to the unknown environmental

dynamics and the coupling term: A's = Aedet + Astoch(t).

3.2.2 Stochastically fluctuating magnetic fields

In this section we use a simple, well-known DFS to motivate our discussion. The

DFS encodes one logical qubit in two physical spin-! particles and protects against

collective dephasing caused by fully correlated uni-axial noise. In NMR, for example,

fluctuations of the quantizing magnetic field B, at a local molecule appear fully

correlated, yet lead to dephasing when averaged over the spin ensemble [44].

These fluctuations are described by a Hamiltonian of the form H~toch(t) = 7YBz(t) Z,

where Z = a 'r is the total angular momentum of the spins along the z-axis and

-y is their gyromagnetic ratio. The DFS is based on the encoding l0)L = 101), I1)L =

110). A basis for the space of operators on the encoded qubit, in turn, is given by the



four logical Pauli operators:

L 1 2) L 112 1 2)z 1v 7(al- 0 )  07 1€ 7(ax0x +a a)(3.3)Z 2 \z X 2( 'xx Y Y
IL l (1l,2 12 L 1 (1)2 12

1 Z \ Z) Y 2  X Y Y X)

This two spin-! particle Hilbert space (C4 = C2 &C2) can be described as a direct-

sum of the total angular momentum subspaces, Zo Z+1 G Z -, where 1 is the total

angular momentum projected along the quantization axis. The logical basis states

0)L and 1)L reside exclusively in Z0, where Z0 = C2 . When we discuss leakage,

we imply that information stored in Zo is lost to parts of Hilbert space outside of

Z0 through unitary dynamics. In this case, the information within the state of the

system cannot be described completely by the four operators above (Eq. (3.3)).

Since the total angular momentum with 1 = 0 is a constant of the motion under

the system-enviroment Hamiltonian, a state not completely represented by a linear

combinations of (Eq. (3.3)) is thus affected by decoherence. We will expore this DFS

as implemented in liquid state NMR for both one and two logical qubits.

The internal Hamiltonian (in the rotating frame) for two spins in liquid-state NMR

already is exclusively in Z0 and thus can be expressed by the operators in Eq. (3.3);

it does not cause mixing of the subspaces Zi,

9 = A12 (1 ) + J12 1 2  (3.4)

0Aw1207z + 7rJ 2(1L + u) (3.5)

where Aw 12 is the difference in chemical shift of the two spins and J12 the scalar

coupling constant. The addition of 1 to nt only adds an global shift in energy.

Thus evolution under the internal Hamiltonian alone generates a continuous rotation

about an axis in the logical xz-plane making an angle of arctan(7rJ 12/Aw 12) with the

logical z-axis.

If we want to add an additional encoded qubit to the system, we add two additional

physical qubits and take the tensor product combinations of the states OL) and 1L)



to generate the basis vectors of two logical qubits stored within four physical qubits:

I00)L 1 0101), 110)L 11001), (3.6)
01)L 1 |0110), 111)L 1 1010)

The liquid state NMR Hamiltonian for four scalar coupled spins, unlike the two

spin case, cannot be written using solely the logical operators:

7r34-2 3 -2 -4 9(nt-4 1L + 2 + J14 Ul -4 + J2a + J24 02 64) (3.7)

Assuming the Jjk are unique, this Hamiltonian will drive certain basis states

outside the DFS (e.g. U 2 J 3 10101) = 210011) - 10101)). If the noise is collective only

over each pair of spins that encodes a logical qubit [144], the states 10011) and 11100)

are not protected against the noise and they will decohere. Therefore, the internal

Hamiltonian will be responsible for leakage and the ultimate decay of the system.

Notice that we would in general expect the noise to be collective over all the

physical qubits, and not pairwise collective. In the case of NMR, this corresponds to a

fluctuating external magnetic field, which is fully correlated. However, the differences

in energies between qubits could be strong enough to effectively add a non-collective

component to the noise. In particular, we can consider in NMR the case in which

each pair is formed by spins of a different chemical species. In this case, the difference

in gyromagnetic ratio makes the strength of the noise acting on each pair unequal, so

that the noise is no longer collective. On the other hand, when the Zeeman energy

separation is considerable, the coupling between spins can be very well approximated

by the diagonal part of ' -ak, i.e. T which does not cause leakage.

When the noise generator is fully collective (as for homonuclear systems in NMR),

the internal Hamiltonian still causes leakage, via the coupling to the states 10011)

and 11100). Since these states belong to the zero eigenvalue subspace of the noise

generator, they do not decohere. Information could still be lost at the measurement

stage, since these states are not faithfully decoded to physical states. A unitary

operation is enough to correct for this type of leakage [79], and since decoherence



is not an issue here, there are no concerns regarding the time scale over which the

correction should be applied; however, amending for this unwanted evolution would

in general mean the introduction of an external control. This can be a source of

leakage leading to decoherence.

For logical encodings other than the DFS considered, the natural Hamiltonian

may drive the state out of the protected subspace even for single logical qubits; for

example, the NS considered in [45] will evolve out of the protected subspace whenever

the chemical shifts or scalar couplings among its three constituent spins are not all

equal. This will be discussed further in the context of electron-nuclear systems in

Chapter 7.

3.2.3 Generating Control

If we assume that leakage from the natural Hamiltonian can be suppressed, then

information within encoded qubits will be protected from decoherence, but may ex-

perience unitary evolution within the subspace due to a drift Hamiltonian. While

this scheme provides an excellent quantum memory, it does not provide universal

control of a logical qubit within the subspace. Nonetheless, universal computation

within these DFSes has been shown to be possible from a theoretical point of view

[81, 6, 86, 87] and in specific experimental conditions [44, 9, 106, 102]. In particular,

universal fault-tolerant computation within a DFS is possible if the exchange inter-

action between qubits can be switched off and on at will [70, 37, 89]. Our interest is

assessing the fidelity of control for a finite decoherence, for a finite bandwidth of our

control parameters, and for Hamiltonians not respecting the symmetry of the logical

subspace, in particular the ones available in NMR (.nt and fc).

We know that the control Hamiltonian for magnetic resonance (Eq. 3.8) and the

natural Hamiltonian provide universal control over a Hilbert space 7 E C4 and thus

can also provide universal control within a subspace 7-H, C X. However, unless both

the natural and control Hamiltonians can be expressed solely as logical operators of

the encoding, the control Hamiltonian will cause leakage outside of the subspace.

As an example, we take the collective DFS over two spins from above. The control



Hamiltonian can be parameterized as:

f)--•(t) e-2(I±0I)(t) (IX1 + I2)ei(JI1)0(t) (3.8)

This control Hamiltonian is physically the same as Eq. (2.16), but given in a rotating

frame. wf(t) is a continuous function of the magnetic field amplitude, whereas AP was

a discrete time representation of the same amplitude. Note that this Hamiltonian is

not expressible in terms of the logical operators given in (3.3). In the case of ideal

control fields, an instantaneous 7r-pulse (tp -4 0) corresponds to a logical operation

[44], since Px(7r) = e- i7/ 2(ax X )  _e - i/2(o4 ), which is equivalent to a 7r pulse

around aL. Figure 3-1 motivates the extent to which complete control over the

logical subsystem can be obtained in the finite tp regime. In this figure, we plot the

purity of the projection of p(t) -iet(+) on the logical subspace

(notice that here and in the following we are only interested in the traceless part of

the density matrix, since it is the only part that gives rise to the NMR signal). In

the limit of very high RF power (4- -- 0), the system undergoes a 7r-pulse in a time
Wrf

tp = and returns completely to the subspace after this time. It remains outside

the subspace only for the duration of the pulse. For wf which are physically relevant

(wP < 2F100 kHz and 0 < Aw < 27r20 kHz), a single RF pulse does not result in a

logical 7r-rotation due to off-resonance effects. Experimentally we are limited to finite

tp and even our simple two logical qubit model system is sufficient to introduce several

key challenges in implementing coherent control over logical qubits: (i) decoherence

due to leakage outside the subspace during RE modulation periods, (ii) decoherence

due to leakage outside the subspace after RE modulation, and (iii) loss of fidelity due

to cumulative leakage with respect to the spectral density of the noise.

Figure 3-2 shows an illustrative example of the integrated effects of a i-pulse

applied to the two spins in such a DFS on the purity (Tr{p2 }) and correlation with

the ideal final state (Tr {pwantp}) as a function of the ratio of the relaxation rate

1/T2 to the RF power wL. The initial states were chosen from the four logical Pauli

operators Eq. (3.3), and we make the approximation that the internal Hamiltonian
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Figure 3-1: Leakage during an RF pulse. Shown above is the projection onto the
logical subspace of a state initially inside the DFS, during application of an RF
pulse for various ratios of _. Defining the projection operator onto the logical

Wrf

subspace as PL , we plot p(t) = Tr[(PLp(t))2]/Tr(p(t)2), for t = 0 -+ 2tP, where
p(t) e- iM t(• • )c z  t( +X ) and wotp - r. The logical state completely returns
to the subspace after application of a ir-pulse to both spins only when the spins have
identical resonance frequencies (Aw = 0). If the ratio _ is non-zero, as requiredCOrf

for universality, the return to the logical subspace is imperfect (in particular, it is in
general possible to go back to a state very close to the initial state in a time t > tp,
but it is much more difficult to implement a 7 rotation). A logical 7r-pulse using a
single period of RF modulation is not possible, a more complex RF modulation, like
composite pulses [85], strongly-modulating pulses [43, 115] or optimal control theory
[71], is required. In the above model, j 500; the initial state of the system is aL

is zero during the application of these ir-pulses, with the noise superoperator along

the z-axis, and relaxation constant T2. As would be expected, the desired result
L L 1,a

(negating the state in the case of po = y , CZ, or preserving it for po = 1 L, u) is

rapidly degraded by the totally correlated decoherence during the 7-pulse, unless the

Rabi frequency is considerably faster than the relaxation rate. The increase in both

the coherence and the correlation when the relaxation becomes fast compared to the

rotation rate is due to a sort of "quantum Zeno" effect [109], so that the RF field

itself is unable to rotate the state out of the DFS. This regime is known as motional

narrowing in NMR relaxation theory [31]. In a complete analysis of the 2-spin case

the effects shown in Fig. 3-1 must be combined to those in Fig. 3-2.
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2n/(CORF T2) 2n/(oRF T2)

Figure 3-2: Fidelity loss due to subspace leakage. The plots illustrate the loss of
fidelity due to totally correlated decoherence during the application of a r-pulse about
the x-axis to the two spins of the DFS. The dashed curves (red) are for the initial

= or po while the lower curves (blue) are for Po = or Po = aL.
states P0o=o1Lo(blue) Po, = or
The left plot shows the trace of p2 following the xr-pulse as a function of the inverse
product of the RF power wf and the relaxation time T2. The right plot shows the
correlation with the ideal final state, i.e. the trace of Pwantp, following the x7r-pulse as
a function of this same parameter.

3.2.4 Control in the Presence of Leakage

It has been established that (i) we must leave the subspace in order to generate

control over our encoded qubit and (ii) decoherence effects during the pulse will

compromise the information. If we assume that the noise properties of the system

are well-enough behaved that (ii) can be neglected, decoherence will only occur due

to information that has leaked from the subspace and remains there for some time.

However, evolution of a state outside the subspace is precisely how we can generate the

correct evolutions under .fo in order to perform effective unitary rotations inside the

subspace. By leaving the subspace, allowing for a period of evolution, then returning

to the subspace, the information begins and ends protected but can be compromised

in between.

In the absence of symmetry to a noise process, time-honored methods for reduc-

ing dephasing were developed long before the onset of quantum information theory.

Hahn's spin echo [57] shows that by modulating the system with a xir-pulse dephasing

due to static field (infinite correlation time) inhomogeneities are cancelled. Carr and

H)



Purcell [23, 99] extended this concept by adding a train of 7r-pulses and showed that

decay of coherence could be reduced for finite correlation time noise processes. A re-

cent resurgence in these ideas have appeared in the quantum information literature.

So called dynamical decoupling or "bang-bang" control [147] has been applied beyond

magnetic resonance, for example to the control of decoherence in spin-boson models

[142].

We analyze the fidelity of performing a encoded quantum operation under a col-

lective noise model of a stationary process with a finite correlation time within the

formalism of Stochastic Liouville Theory (SLT) [48, 58, 25] and cumulant expansions

[80]. We show that high fidelity encoded quantum operations can be achieved by

leaving the subspace and modulating at a rate much faster than the correlation time

of the noise.

3.3 Stochastic Liouville Theory and Cumulant Av-

erages

Stochastic Liouville theory is based on a semiclassical model of decoherence, in which

the Hamiltonian at any instant in time consists of a deterministic and a stochastic

part. In the simplest case of NMR T2 relaxation, this typically takes the form

Jeo0 (t) = )Aiet(t) + As,(t) = A0 + ")(t) + Zkwk(t)Zk, (3.9)

where ff is the static internal Hamiltonian, Yec(t) is the RF Hamiltonian, the wk(t)

describe the phase shifts due to stochastic, time-dependent fluctuating fields and

Zk are the generators of each of these noise sources, i.e. operators which describe

how these classical fields are coupled to the quantum system. In the two-spin DFS

example considered previously, there is only one noise generator Z = (UZ + o )/2

with w(t) = yB(t), which describes collective fluctuations parallel to the applied

static magnetic field.



We now introduce a superoperator £(t) defined on Liouville (operator) space via

£(t) = Yot(t) 0 1 - 10 ot (t) = Ldet(t) + Ekk( kt)k (3.10)

where Zk = Z{ 01-10 Zk. This superoperator is the generator of motion for density

operator p, meaning

p(t)) = U•p(0)) = Texp -i dt'L£(t') p(O)) (3.11)

where T is the time-ordering operator and Ip) represents the quantum state in Liou-

ville space. Since what is actually observed in an experiment is the statistical average

over the microscopic trajectories of the system (JIp(t))), we have to take the ensemble

average superpropagator to obtain (Kp(t))) = (u)Jp(0)) = Sfp(0)). The problem of

calculating the average of the exponential of a stochastic operator has been solved

by Kubo [80] using the cumulant expansion. In terms of the so-called "cumulant

averages" (-.. )c (see Appendix A), the superpropagator is given by:

( =U exp - if dt' ( (t')), - f dtdf dt 2 ((tl)(t 2))c + .. (3.12)

Providing the spectral norm fjo dt'L(t') <« 1 for all t > 0 we can safely neglect high

order terms in the exponential's argument.

Similar expressions are obtained in the formalism of average Hamiltonian theory

(AHT) [54] for the coherent (instead of stochastic) averaging of the system evolution

under control Hamiltonians cyclic and periodic in time. Here we can obtain sim-

plifications analogous to those encountered in AHT if we analyze the evolution in

the interaction frame (called "toggling frame" in NMR) defined by the RF propaga-

tor Urf(t) [55]. In this frame the noise operators acquire a further time-dependency

(coherently imposed by the cyclic excitation) in addition to the stochastic time de-

pendency of their coefficients wk(t). The total Hamiltonian in the toggling frame is

ot (t) = det(t) + k tk(t) k(t), (3.13)



where the toggling frame equivalent operator 0 of any given operator O is defined by

O(t) = U(t) 0 Urf(t), with

Ub(t) - T exp - i dt' Hr(t'), (3.14)

and Ur(tc) = 1 for cyclic controls, so that the toggling frame and laboratory frame

coincide at the end of each cycle.

This time-dependent change of basis in Liouville space induces a change of basis

in the space of superoperators acting on Liouville space, as a result of which the noise

super-generators Zk also become time-dependent, i.e.

Zk (t) = Zk(t) 0 1 - 1 0 Zk(t) . (3.15)

This facilitates the calculation of the average super-generator, L and further allows

the first-order effects of the RF fields upon the decoherence to be determined from

the second-order terms in the cumulant expansion. In contrast, assuming as usual

that the random variables Wk(t) have a mean value of zero at all times, it would be

necessary to analyze the third-order terms in order to obtain these results.

Returning now to the problem of greatest interest here, in which there is only

one noise generator which describes totally correlated decoherence as above and the

corresponding random variable w(t) is stationary and mean zero, the results given in

Appendix A imply that the first two cumulants in the toggling frame are:

Ift I.\-~,\ ft
IC 1(t) 1- dt' KLdet (t') +± w(~t)6r) dt' ZCdet (t')

t Jo t Jotj( ti o

AJ2 t P Jf dti dt 2 ([Zdet(t1), det(t2)I + 2 G(t 2 - t 1) 2(t2)

(3.16)

In the last line we have introduced the autocorrelation function G(At) = (w(t +

At)w(t)) for the stationary random noise variable w(t).



3.4 Refocusing noise with a Carr-Purcell sequence

We now use these results to analyze an implementation of a aoL rotation on a two-spin

DFS qubit. We will show that this implementation is applicable when the correlation

time of the noise -r is long compared to the time required to apply a w-pulse to the

spins. It consists of a (r/2)-rotation of both spins in the DFS qubit about the y-axis,

followed by a Carr-Purcell-style sequence consisting of an even number 2n of r-pulses

separated by equal time intervals - = t/2n, and finally the inverse (7r/2)-rotation, i.e.

[~](r [r]T [~jf [h (3.17)

This transforms the weak aca coupling between the two spins of the DFS qubit

into auux, which projects to the an operator within the DFS (Eq. 3.3). Setting

7 = ¢/(2nwJ) yields a rotation by an angle q around the logical x-axis. Even though

the state of the two spins is outside the DFS throughout the time 2n-T, the sequence

of ir-pulses is able to refocus the effects of the noise provided T < T,.

Assuming instantaneous r-pulses, this follows from AHT since during any cy-

cle (0, 2T) the internal Hamiltonian in the toggling frame Hit alternates between

+Aw(ao - a ) + (r/2) JUa1 (in the interval (0, T)) and -Aw(a I - aU) + (7r/2) Jaul2

(in the interval (T, 2T)), so that the zeroth-order average Hamiltonian is just j(0) =

(ir/4)aoxU = (r/4)a L . This is in fact also the average Hamiltonian to all orders, since

the toggling frame Hamiltonian commutes at all time, and the first cumulant is just

the corresponding superoperator k 1 = C1 = (2-)-1 (3* 0 1 - 1 0 e').

Again because the toggling frame Hamiltonians commute, the deterministic part

of the Liouvillian 'det (t) does not contribute to AC2 = AC2 at the end of each cycle,

nor at the end of the entire sequence. The second cumulant is determined by the

stochastic part alone:

2 2nr £1
K2 = dt 1i dt2 G(t2 - t1)2(t 1)2(t 2) . (3.18)

Because each r-pulse simply changes the sign of 2)2 (t) from the preceding interval, it

Because each w-pulse simply changes the sign of Z(t) from the preceding interval, it



follows that Z(t) = +Zz if t is in an even interval (2kT, (2k + 1)T) and Z = -Z: if t

is in an odd interval ((2k - 1)T, 2k-), where k is an integer 0 < k < n and Z, is the

noise super-generator rotated along the x-axis. In addition, since the random variable

w(t) is stationary, the double integral over any two intervals i and i' will be equal

to the double integral over any other pair j and j' providing that li - i'j = IJ - j'l.

These observations allow the overall double integral in Eq. (3.18) to be expressed as

2 Z2 2n-1
IC2 2= ( 2nA + E (2n - m) Bm Z(, (3.19)

m=1

where

A j dti dt2 G(t1 - t2 ) (3.20)

and

Bm = (-1)m dtl dt 2G(t- t2 ) (3.21)

for m = 1,...,2n- 1.

In the case of Gaussian noise with autocorrelation function G(t) = 2e-t/T,, one

finds that

A = (Q-r) 2 ) (e - /Tc + T/Tc - 1) (3.22)

and

Bm = B(-1)me -m -/T, Be = (QT,) 2 e-/Tc /rc• 1)2. (3.23)

On evaluating the geometric series in Eq. (3.19), one obtains the closed form

(2= 2 T2 [2n (T/T + eIr- I) + (1 - e-••T: I - 2n(1 + e-r/Tc)- e-27-/7-c
(2nT)2 + e-7-/rc

(3.24)
which is easily shown to go to zero as r/Trc -* 0 1. We can quantify the protection

afforded by the CP-sequence by taking the entanglement fidelity [104, 44] of the

superoperator with the ideal propagator for the sequence as a measure of its efficacy,

1In the limit T/-r -, oc the behavior of ( depends on the noise strength: If a constant noise

strength is assumed,( * 0 as . If instead we assume -rc =cst, ( -*oo, since it is now ( oc
and the fidelity will go to zero.



F = Tr{Ui'S}/Tr{U~i'Uýid}. Since the unitary part of the evolution commutes

with the noise and gives the ideal propagator, the fidelity is just the trace of the

superoperator, which for a single two-spin DFS qubit is

F(C) = Tr{e- Z((2n r)2/2} = (3 + 4 e-2(n272 + 8n 2 2 ) . (3.25)

The fidelity for cycles of CP-sequences of length 4 and 16 are plotted in Figure 3-3.

As expected, it shows an improvement for an higher number of intervals and shorter

time spacings with respect to the correlation time.
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Figure 3-3: Gate fidelity as a function of the correlation time for 4 and 16 cycles of
the Carr-Purcell (CP) and Time-Suspension sequences (TS). The noise strength Q
was fixed at 1 Hz., while the duration of the entire sequence was fixed at ttot = 4
sec (where tot = 2n- for the CP sequence and ttrot = 4nTr for the TS sequence). The
increase in fidelity at very short correlation times is due to the phase fluctuations
becoming so fast that they produce essentially no effect at the given noise strength
Q.

It is interesting to also consider a simple sequence that completely refocuses the

internal Hamiltonian, namely

[7rp T - [r [e (3.26)X X X o

where the superscripts on the pulse angles now refer to the spin affected by the pulses



and n is an integer. This will be referred to in the following as the Time-Suspension

(TS) sequence. The average Hamiltonian is now zero, while the noise operator in

the toggling frame is Z1 = +(u 1 + a')/2 in the intervals 1 and 3 respectively and

2 = (Ul-oU )/2 in the other two intervals. If we sandwich the TS-sequence between

a pair of (7r/2)-pulses as we did for the CP, and again assume a stationary Gaussian

distribution of totally correlated noise, we find it is more effective at protecting the

system from decoherence even when the number of 7r-pulses on each spin and the

cycle time is the same, since the effective modulation rate is then faster (there is a

pulse every -/2). Indeed the relaxation superoperator for the TS-sequence is IC2 =

( 1(Z2 Z2) + (2 Z Z 2 (see [21] for details), where Zk = Zk 0 1 - 1 0 Zk (k = 1,2)

and:

(1= 22 2 (e- 4 nr/rc (ne 4 r/c - ) -- 1)e /cn (3.27)
(3.27)

+2n- + n ( -2/ 1) (2 - e-/rc1

( 2= W2 Tr(2 -7e/in)
2 e-44/Tc

16n 2T2  1 + e2/rc (ne4T/c - n + 1) + ne - (n + 1)]

(3.28)

The fidelity is therefore:

F(~1 , (2) = Tr{ exp (-_( 1 (Z2 + Z2)(4nT) 2/2 - (2ZZ 2(4n-r) 2/2)}
(3.29)

= re- )(4)2 (cosh(-(~i(4n-r) 2) + cosh(-( 2 (4nT)2/2)) .

3.5 Simulation of a selective DFS qubit gate

It is particularly interesting to study how these schemes perform for realistic con-

trol parameters, with finite rf power. The analytical expressions found above for the

attenuation due to totally correlated noise with a stationary Gaussian distribution

apply only to the special case of ideal pulses (instantaneous in time), but similar

behavior is expected under more realistic assumptions on the control fields. In par-

ticular, to act selectively only on some of the spins we would have to use the technique



of SMP [43, 115], thereby inducing a much more complex dynamics on the system for

which closed form solutions are not available, but which can be studied via numerical

simulations.

L t C t nl t L t I
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Figure 3-4: Pulse sequence for a rotation about a1L of a two-spin DFS qubit. The
evolution of a second DFS qubit under the internal Hamiltonian of the system is
refocused. The darker pulses represent f) rotations while the lighter pulses are 72#

rotations.

We have studied the accuracy with which a rotation about the logical x-axis can be

performed by numerical simulations. These simulations included the internal Hamil-

tonian, the external control Hamiltonian and totally correlated noise w(t) with a sta-

tionary, Gaussian distribution. The evolution was discretized into equal time steps, for

each of which we calculated the propagator U(tk) = exp(-i(Hint+Hf(tk)+W(tk)Z)>t).

The noise strength w(tk) is extracted from a multivariate gaussian probability distri-

bution, with a covariance matrix Ci,k = Q2e-|j-k 6t/Tc, where j and k are integers indi-

cating the time intervals. We then take the average of the superoperators Si = U• 0 Ui

obtained over a sequence of evolutions differing only by the random number seed.

We have performed one set of simulations using a fictitious two-spin molecule

(chemical shift difference: Aw = 600Hz, scalar coupling J = 50Hz), and another us-

ing the internal Hamiltonian of 1lC-labeled crotonic acid (see Section 4.2 for details).

Both sets of simulations were performed with instantaneous ideal pulses, and again

with the strongly-modulating pulses used in actual NMR experiments.

In the case of the two-spin molecule, since selective pulses are not required, we

compare the results of SMP pulses with the dynamics under short, collective pulses

(called "hard pulses" in Section 2.3, 7r-pulse time tp = 2ps). SMP appear to perform



better even if they require longer times. In the crotonic acid simulations, the sequence

was designed not only to implement a selective r/2-rotation about the logical x-axis

on the two spins in one DFS qubit, but to also refocus the evolution of the other two

spins under the molecule's internal spin Hamiltonian (see Fig. 3-4).

The fidelities of these simulations are plotted as a function of correlation time

in Fig. 3-5. Compared to simulations with ideal pulses, we observe a drop in the

fidelity due to the finite duration of each pulse. This drop is only in part accounted

for by the increase in time in the cycle length. Nevertheless, the effectiveness of the

CP-sequence in preventing decoherence during the unavoidable excursions from the

DFS is evident.
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Figure 3-5: Fidelity for ideal and real pulses. a) Two-spin CP sequence implementing
a 7r/2 rotation about the logical ax (A fictitious spin system with Aw = 600Hz and
J=50Hz was used in the simulation) b) r/2 rotation about the logical oL for Crotonic
acid (see 4.2 for molecule data).

3.6 Conclusions

We have considered the difficulties of operating on quantum information stored in en-

coded qubits without losing the protection from decoherence offered by the encoding.

Although we have focused on the Hamiltonians and control fields operative in NMR

for concreteness, similar challenges will be encountered in other functional realiza-

tions of quantum information processing, including superconducting qubits, ion traps



and quantum optics. The most significant result is a demonstration that in many

realizations, including NMR, the implementation of a universal set of quantum gates

may be considerably simplified by briefly leaving the DFS while using dynamical de-

coupling to inhibit decoherence during these excursions. This approach depends on

the ability to operate on the system on time scales short compared to the correlation

time of the noise. In evaluating various possible realizations of quantum information

processing, it is important to characterize not only the decoherence rate, but also the

spectral density of the underlying noise, to verify that the gate speed is sufficient to

allow the noise to be refocused. We provided here numerical results relative to realis-

tic conditions in an NMR experimental implementation, which build on and confirm

the previously reported theoretical results. In addition to its role as a facile testbed

for quantum information processing, NMR spectroscopy provides widely applicable

tools such as Average Hamiltonian/Liouvillian theory by which one can calculate the

efficacy of control sequences for refocusing the noise, and devise new ones for specific

noise generators.





Chapter 4

Experimental Demonstration of

Encoded Logical Operations

In this chapater, we demonstrate a quantum logical gate between a pair of logical

qubits using liquid state NMR techniques. First, we must prepare the nuclear spin

ensemble for quantum processing using pseudo-pure states. Next, we entangle the

two logical qubits using encoded quantum logic. As developed in the previous chap-

ter, we use the scheme for generating logical rotations of encoded qubits when the

control Hamiltonian drives the encoded information outside of a protected subspace.

Provided the noise correlation time is slow compared to the rate of modulation, we

can implement higher fidelity operations despite the significant leakage. The analysis

of the results assesses how well one can implement logical quantum operations in the

presence of leakage.

4.1 Implementation

4.1.1 State Preparation

In the standard NMR model for liquids comprised of small molecules with magnetic

nuclei, the microscopic spin Hamiltonian for a single molecule in high-field well ap-

proximates the coherent dynamics of the system. The microscopic systems behave as



non-interacting to first order: all intermolecular dipole-dipole interactions are aver-

aged out and appear as mechanisms for relaxation. Thus, liquid state NMR provides

an excellent means for exploring engineering of unitary dynamics. If we specify the

thermal equilibrium state of this ensemble quantum system, for a large number (

1020) molecules we find that the initial state of the system is highly mixed at

temperatures where the system remains a liquid (around 300K). This means that if

we could select a single molecule from the sample, statistically each nuclear mag-

netic moment would be as likely to be up (aligned with the field) as it would to be

down (anti-aligned with the field), with only a slight preference (1 part in 106) for

alignment. This so called high-temperature, high-field approximation is applied to

the canonical Boltzmann distribution for an ensemble of quantum systems where the

initial state of a system of N spins 1/2 is:

1-3 --.o'

Peq (4.1)

- /hBo > l 7 + 6((/hBo)2) (4.2)
j=1

where = 1/kT and Z is the partition function of the system. For typical fields and

temperatures for liquid phase NMR, the Taylor expansion of the Hamiltonian can be

truncated to first order in (3hBoy7). All correlations due to the scalar couplings are

much weaker and can also be dropped; also, Z 1. This equilibrium state poses

a problem for using NMR molecules as small-scale quantum information processors

because the standard model of quantum computation requires pure quantum states

as fiducial inputs at the beginning of a quantum algorithm.

Full Pseudo-pure states

For this implementation, we use a spatially-averaged pseudo-pure state1 . The imple-

mentation expressed as quantum logic gates is shown in Figure 4-1. First, we must

breakdown the quantum logic gates into a series of single-spin rotations and delays

1See Appendix B for details about initialization of thermal spin states.
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Figure 4-1: Full Pseudo-Pure State Preparation Circuit.We represent single qubit
rotations by square boxes, controlled rotations by closed circles on the controlling
qubit linked to the applied rotation on the controlled qubit; swaps gate by two crosses
on the swapped qubits, connected by a vertical line. Notice the number of controlled
operations, each requiring a time of the order of the inverse coupling strength, and
SWAP gates, each requiring three times the inverse coupling strength. The single-
qubit rotations above have the values a - -2,-r 1 7r, and 7 - r which account
for the scaling of the signal-to-noise compared to the equilibrium state.

with the appropriate refocusing pulses to avoid unwanted evolution from chemical

shift and scalar coupling terms in the Hamiltonian [114]. Pulsed magnetic field gra-

dients introduce a spatially-dependent Hamiltonian and provide a method for im-

plementing non-unitary quantum dynamics when we carry out measurements over

the entire ensemble. We use strongly-modulating pulses (Chapter 2) to generate all

single-spin rotations and model the system as an incoherent mixture of ensembles

experiencing slightly different RF field strengths to improve the average gate fidelity

of an inherently incoherent quantum process [13].

Subsystem Pseudo-pure states

When we would like to study the control of logical qubits, we know implicitly that the

protected quantum information lies in a logical subsystem of dimension ds embedded

within a larger Hilbert space of physical qubits of dimension df, where d, < df. In the

case of initial states that are made pure over the entire Hilbert space, we must average

over an exponentially increasing number of permutations of the eigenvalues in order

to effectively purify the system. If we work with logical qubits it is not necessary to

purify the parts of Hilbert space outside the logical degrees of freedom. Hence, we

can simplify the state preparation sequence when investigating logical qubits.



To present the general structure that encoding imposes to the Hilbert space,

we adopt the subsystem approach [75, 70], that provides a unified description for

Quantum Error Correction (QEC) [76, 20, 136], Decoherence Free Subspaces (DFS)

[151, 38, 88] and Noiseless Subsystems (NS) [146, 33, 87, 86]. A Hilbert space R of

dimension d = 2N is used to encode 1 < N qubits of information, protected against a

set of noise operators { J0 }. With a change of basis to a direct sum2 7- i i4 Si,

the noise acts only on the subsystems S (the syndrome) while the subsystems £4 are

noiseless (for simplicity, we will often refer to a decomposition: H = £ 0 S ® 7, with

7R an unprotected subspace).

If we evolve the system with logical operations, acting only on the encoded sub-

space L, the information within the subspace L will not leak out or mix with the

orthogonal spaces and will act separably on the syndrome space during logical uni-

tary transformations. This preserves the purity of the encoded subspace under the

action of J. Therefore, the remaining subsystems Si and subspace R can remain in

a mixed state.

The state preparation procedure that bears the most resemblance to the method

we propose is logical labeling [49], which uses a unitary transformation to change the

equilibrium distribution of spin states into one where a subsystem of the Hilbert space

is pseudo-pure conditional on a physical spin having some preferred orientation. The

parts of Hilbert space that remain mixed are of no use to the computation. It can

be shown that a m-qubit pseudo-pure state can be stored among the Hilbert space

of N-qubits provided the inequality (2m - 1) ((N/2)) is satisfied. A key insight is

that in the study of encoded qubits, one need not take this m-qubit effective pure

state and perform an encoding of 1-logical qubits under the hierarchy 1 < m < N:

Instead, a 1-qubit encoded state can be prepared directly from the equilibrium state

of N qubits.

If information is encoded in a subsystem of dimension 21, with a corresponding

syndrome subsystem, S of dimension d, that we can leave in a mixed state, the

number of zero eigenvalues in this subsystem pseudo-pure state is (2' - 1)ds. We can

2Further action is required in the case of QEC codes [146].



create a state that is pure over the logical degrees of freedom as long as there are

at least as many zero eigenvalues in the thermal state as in the 1-qubits pure state:
(21 1) .< N! ow

(2 - 1) ((N/2)!) 2ds. However, the eigenvalue spectrum of the equilibrium density

matrix of N spins-1/2 ( A(Peq) = {N, N -2, ..., -N}) will most generally not generate

the necessary eigenvalue spectrum required for decoding 3 the l-qubits of information

into 1 physical qubits without error. Thus, an averaging process akin to the ones used

for generating pseudo-pure states over the entire Hilbert space must also be used.

For the full pseudo-pure state creation, the eigenvalue spectrum of the entire

Hilbert space is arranged such that all of the 2N eigenvalues are identical save one

particular entry. With an encoded state, we have at least one other parameter to

vary within the eigenvalue spectrum in order to minimize the loss of signal due to

the averaging. Under a particular encoding the Hilbert space is transformed to 7-1

4i Li 0 Si. In the encoded representation the initial state will have the form:

PSP 1 L L (4.3)

is

IV)) is a fiducial state within the encoded subspace. The dimension of the i th syn-

drome is d,; ai are subspace weighting coefficients, such that E a, = 1, ensuring a

unit trace of Pspps. To simplify the analysis, we have set the syndrome to the identity

state.

If we encode 1 logical qubits among N physical qubits, with a syndrome subsystem

S of dimensions 28, we move the information into a single subspace and the non-

3 An important requirement for the subsystem pseudo-pure states is the ability to decode: the
use of a mixed state should not introduce a mixing of the information contained in the logical qubits
and in the unprotected subsystems, even when the information is transferred back to physical qubits
by decoding. For unital maps, setting the unprotected subsystem to the identity state will satisfy
this requirement without any further action required on the decoded state (notice that other mixed
states are possible for particular encodings). For a DFS or a NS, not being able to apply the simple
decoding operation to transfer the full information back to the physical qubits is inconvenient, as
logical observables are in general difficult to measure experimentally since they are usually given by
many-body states in the basis of the physical system. In the case of QEC the decoding involves also
a correction step. If the unprotected part of the Hilbert space has evolved, it is no longer possible
to perform a unique correction operation, valid for any input state.



information carrying subspace can have any state:

Pspps = a | L) 0 is D b p-R (4.4)( Is)
with b chosen in accordance with pz such that Tr[psPps] = 1. Again, we sacrifice

a general analysis for simplicity and insight, setting pi to the identity state, thus

relating b to the dimensionality of the subsystem and a:

pspps -=a (I)(0L 02 2 + -2±11R, (4.5)

We quantify the signal arising from observable magnetization of the state p as:

S(p) = Tr{ { p} 2 + T{Z c p} 2 + TT{E u0,p02  (4.6)

and seek to maximize S(p(a)) for the 1 qubit encoding about N qubits. A full analysis

[22] shows that for a = ds2 - N the signal is maximal (See Appendix B).

For multiple encodings of more than one logical qubit, each being protected against

some noise, or to concatenate different encodings, a tensor structure of encoded qubits

arises naturally. We also analyze this second type of construction, that can bring a

further enhancement of the signal. We assume here that we encode one logical qubit

in n physical qubits - each being a subsystem pseudo-pure state - and we build a

logical l-qubit state with the tensor product of these encoded qubits. The Hilbert

space can be written as a tensor product of direct sums as: R = @&-, (L4 0 Si D Ri).

The corresponding partially mixed states differ with respect to the previous ones,

in that the subspaces not used to store protected information (Rtotal) are not maxi-

mally mixed:

2Pspps 1  2  R1) (a2 1/L 2  R2) ...

(4.7)

Appendix B shows the analysis for maximizing the signal for the special case of

ai =a.



For our system of two-logical qubits protected against collective z noise, we have

two subspaces, with dsl = ds 2 = 0. We chose to prepare the initial state of the

encoded subspace to be 100)L. If we use the first method of SPPS creation, the state

is:

1-a
Psppsl = aJl0101) (01011 e 12 R (4.8)

with a = 1/8 for a maximum signal S = 1/2, the state represented as Pauli operators

has three- and four-body correlations:

Pspps1 = 1+

1 a- 2 +a, - +12"--1 8 0- O z (z

0 2 a 4 _ U2 a 3 -U1 a4 +olr (4.9)
Oz O z --O z Oz --Oz O z q- z O z (49

2 3 4 _1 34 1 2 4 .3Oz O z O z --o z z z O z O~z -O z rz Oz ..-

S( 34 12 1234)
96 'z Oz z z z z z z

However, if we choose the second method, a single logical qubit SPPS for this

encoding is:

101)(011 = 1L + Uz,L = 1 ± z- a 2- - U (4.10)
24 

4

The Hilbert space can be written as a direct sum of the logical subspace C (spanned

by the basis 101) and 110)) and its complementary subspace R (spanned by the basis

100) and 111)). If we add the identity on the R subspace to the logical pure state, we

obtain a mixed state that is equivalent in terms of its behavior on the logical degrees

of freedom:

1 1 - 2  1 1R
PL, - (1+ 2 z) = (1 + Uz L ) = 10)(01L E -4 (4.11)

4 2 4 4

The traceless part of this state is simply oc a' - a2: From thermal equilibrium, a

unitary operation is sufficient to obtain this state, so no signal is lost. The subsys-

tem pseudo-pure state that one obtains with this method requires less averaging to

implement the non-unitary transformation. We expect such transformation to result
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Figure 4-2: Subsystem Pseudo-Pure State Preparation Circuit.

in higher SNR since less purification of the state is required. Also, the lack of a aIa

indicates that subsystem pseudo-pure states will in general require fewer multi-spin

correlations, leading to shorter preparation sequences.

By taking the product space of two of these states:

PS = l (16 + R + a•,L L R +,L)Pspps 16~
_ 1 12 1 -a2 (13,4
16 2 3 2 (4.12)

= (½101)(101 @ 1(00)(001 + 111)(111))120

(½101)(101 e (I00)(001 + 111)(11))34

A non-unitary operation is required to obtain this state, but the resulting scaling

factor (a) for our implementation is 2/3. The scaling factor for creating the full

pseudo-pure state is 4/15. The preparation procedure is also less complex, since

it only requires preparing up to 2-body terms (Ua u) instead of the 4-body term

(0 a 2o a) necessary for the full pseudo-pure state 4

4.1.2 Quantum Circuit

As a demonstration of our control, we generate entanglement between two logical

qubits by implementing logical versions of typical quantum gates. Given two qubits

in the fiducial ground state 100), one can create entanglement between the two qubits

by rotating the first qubit into a superposition of 10) and 11) and then performing a

4An N-body term involves interactions among all N spins; usually only some of the couplings
among spins are strong enough to permit fast two-qubit operations



two-qubit gate on the resultant state. One such construction is a Hadamard gate,

followed by a controlled-not:

100) 1 1(I00) + O110)) cINOT2 (100) + Ill)) = ) (4.13)

The creation of a logical Bell state amounts to implementing logical versions of

Hadamard and CNOT gates. Thus we express these gates using the complete basis

spanned by the logical operators in Eq. (3.3).The Hadamard gate on a logical qubit

is specified, up to a global phase, as

L L+f a• -7-z  . -7r L - 7 wt 7 f -2-fL e z V
iUH= x - e-i - Xe (4.14)

The unitary operator for implementing a CNOT gate can be decomposed into a

product of unitary operators of the form of single logical spin rotations and couplings

of the 'ZZ' form similar to that of Eq. (2.6):

UCoNOT E 1L 0 2L +EIL12L
Uc+o1=E X E1L12LL (4.15)- i- 1•IL2L _ 2L _ I1L 2L) -i ILa2L irz2L

= e 4 -, " 4 z e - z e4 z 
0 

z Y

If we replace all of the aL by the two-spin versions according to Eq. (3.3), this

would amount to implementing many different two-qubit gates. Not all of the terms

in the expansion from logical qubits to physical qubits are relevant to the information

within the logical subspace. Many simplifications are possible. For instance, when a

logical operator consists of a sum of commuting bilinear terms, it may suffice to drop

all but one of the terms in the sum and add a constant scaling factor provided this

simplified unitary has the same effect as the full unitary on a state within the logical

encoding. One example is the isomorphism between a rotation of E about oL and a

7r rotation about o~ or o 2
-x O x or Oy y



io Z2 ua2
__L -io f= e 20 e 2

= (cos( )1 - i sin( 0)a1 ) (cos()1 - i sin(1)ao)
=C 2 21 ) S 22 0l - i Sin(n( 20-or

- cos2(-)1 + sin 2(-)0-z0- - isin(0) X T
2 2 z 2

= L COS(0)1 - i Sin()(0-1+2 + U2 1 )

= cos(0) - i sin(G)o o

= cos(0)1 - i sin(O)(U1U2+ + a.+o + or1 o+ _a )

=L cos(0)1 - i sin(0)(u1 U2 + O1 0 2)

= cos() - i sin()0,aI2

= cos(0)1 - i sin(O)(-o1. 2 + a10.+ + a1 -2a 1 2 )

=L cos(0)1 - isin(0)(aor 2 + a01_)

(4.16)

(4.17)

(4.18)

Here the last lines in (Eqs. 4.16, 4.17, 4.18) are all equivalent. The =L operation

keeps only the terms that act within the logical subspace. Explicitly, the logical basis

states are eigenstates of the oo 2 operator with eigenvalue -1 and are also eigenstates

of the operatora1 au2 with eigenvalues of 0. Using the following substitutions the net

unitary of a Hadamard gate and a CNOT gate can be decomposed into four separate

logical operations (up to a global, unobservable phase), each consisting of a rotation

about a single bilinear term:

UCoNOTUH 4 eiU 4 U3 U 2 U1

e 2

e-fe g

-ioa .a2e Y

(4.19)
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Figure 4-3: Logical Circuits to Physical Pulses. From left to right: entangling circuit
on logical qubits and corresponding logical pulses and the pulse sequence implement-
ing the x1L logical rotation on the physical qubits.

4.1.3 NMR Circuit

To generate a a'L coupling, we first generate the zeroth order average Hamiltonian

Z12 = J12alo2 [56, 54] by employing the CP-like sequence (see Figure 4-3) alos

described in Figure 3-4:

A12 - 1,2,3 - 12 - 1,2,4  12 - 1,2,3 12 - ) (4.21)12 [x 'A 12 /A12 x A12 -) (4.01

(Note the notation 9 )k - exp[-i- Ek Uk].) The effective unitary propagator to zeroth

order is U(0) = e- 4iA12 Z 12.

By applying "collective" rotations about i before the above sequence and a2 2

rotation about -2 after, the average Hamiltonian is transformed into oc1 a2 which has

the same action as a cL. Similarly, if the rotation axes are separated by 1 (i.e. an

phased pulse on one of the spins in the logical pair and a , phased pulse on the other),

an operator isomorphic to a uiL is achieved. The logical "two-body" interaction -

1L z 2L _ acting on the encoded subspaces is isomorphic to aorzo . We obtain this by

using (4.21) and replacing spin 2 with spin 3. Each of the four rotations in (4.20) can



be generated in this manner yielding an overall sequence:

S 1,2 7F 1,2,3,4 3,4 ,)3,,)4 3 42 - Z12 - - Z34 - - Z23 - - Z34 - (4.22)2 x 2 x -2 )x, 2 x2 v 2 22 ý

where Zjk denotes the subsequence generating Zjk and setting Ajk = (8Jjk) - 1

4.2 Experiment

Our quantum system is comprised of the four 13C spins (I = 1) of isotopically labeled

crotonic acid (also known as trans-3-butenoic acid) [74]. This molecule contains nine

magnetically active nuclei in total; the total spin system Hamiltonian takes the form:

1 1 1 7rH~

nternal = - -2JWk WO)gz± + .53 + (4.23)
ieC keH i,jeC;i<j

2 .
k,1eH;k<l j,k;j<k

where c0 (2H) is the rotating frame frequency near the 13C ( 1H) Larmor frequency,

the w• are the chemical shifts of the 4 carbon nuclear spins, the Wk are the chemical

shifts of the 5 hydrogen nuclear spins, and the 6 Jij (10 Jkl) are the scalar cou-

pling constants between two carbon (two hydrogen) spins (as usual, h = 1). We are

mainly concerned with coherently controlling the carbon subsystem of spins and seek

to suppress the proton subsystem. As the heteronuclear scalar couplings (terms Jj,k)

are the only means of mixing the two subsystems, a broadband decoupling sequence

modulating the proton spin system effectively removes this coupling during the ex-

periment. In practice, decoupling the proton spin system is equivalent to saturating

the populations of the proton spins. One potential artifact of this approach is the

introduction of transient nuclear Overhauser effects (NOE) [108, 24, 135].

We apply the pulses, delays, and gradients outlined above to create two different

initial states and two logical Bell states on the crotonic acid carbon subsystem. In

order to quantify the result of our quantum operations, we reconstruct the initial

and final states using quantum state tomography [28]. Here, we measure the Free
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Figure 4-4: Crotonic Acid Molecule.

I C1 C2  C3  C4
C1 6878.89 72.36 1.37 7.17
C2 1882.63 69.58 1.65
C3 4410.95 41.50
C4 -8604.96

Table 4.1: Chemical Shift and Scalar Couplings of Crotonic Acid. The diagonal terms
represent the chemical shifts of the four carbons relative to a transmitter frequency
of 100. 622 439 610 MHz. The off-diagonal terms give the scalar couplings between
the two spins. (Values courtesy of [74].)

Induction Decay of the spin system under 4nternatl The voltage signal is proportional

to the expectation value ( Ej aj (t)) from which we can determine the coefficients

(cn) of 32 of the 256 basis operators (O6n) comprising the C16 x C16 Hilbert space:

P= -En cnO,. Applying a set of 18 readout pulses we can change unobservable •n
into one of the 32 directly observable operators and reconstruct the state using the

orthogonality of these operators: tr[O(On ] = mn-.

i) 3 7rI}23 lr)1234 r)1234 r)12 i)13 i)24 E)1232)x 2)x 21 2/ 2 .• 2.• 2/ 2/x 2 Ju
xr)124 1r134 7r) 2) 4 7r)23 7 r)1 r )12 r)3 •x1r•12 )y4 r)13 71)4 rE)13 7•)4 7)23 •4

Table 4.2: Readout Pulses. The notation O)i indicates a single spin rotation of angle
0 about the Cartesian axis p for each of the spins in {j}.

The reconstructed density matrices are shown in Figures 4-5 and 4-6, where the
vertical axis shows the normalized amplitude and the horizontal axes label the basis

states in the computational basis (i.e. 10000),10001),...). The effects of decoherence



while performing the entangling operation can be qualitatively seen in the final state

as an attenuation of the off-diagonal terms of the Bell state: o10L±lo) .L Such attenu-

ation does not alter this state's protection against collective dephasing. Also, we note

that this particular Bell State ( 101)1) is immune to collective dephasing under the

noise generator j 12 but the Bell states 0)111 are not.

(a) Subsystem Pseudo-Pure State (b) Logical Bell State

Figure 4-5: Subsystem pseudo-pure and logical bell state density matrices. Density
matrices for the initial pseudo-pure state over only the logical subspace (a) and the
corresponding Bell-State (b). The darker part indicates the states in the logical
subspace. In the case of the subsystem pseudo-pure states, the division of the logical
subspace allows for the other areas of Hilbert space to be mixed.

4.3 Analysis

With the numerical values for the density operators we can now quantitatively assess

the implementation of the logical operations over the entire Hilbert space and the

logical subspace. We can also quantify the decoherence due to leakage.
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(a) Pseudo-Pure (b) Logical Bell State

Figure 4-6: Pseudo-pure and logical bell state density matrices. Density matrices for
the initial pseudo-pure state over the entire Hilbert space (a) and the corresponding
logical Bell State (b). The basis states comprising the dual DFS have been darkened.

4.3.1 Measures of Control

The quantum process associated with the encoded entangling operation can be spec-

ified by the general map:

E(p) = ApAl (4.24)

where A, are Kraus operators describing the experimental implementation of the

encoded operation, and p is defined over the entire Hilbert space. If the process

consists of strictly coherent dynamics a single Kraus operator defines the operation:

Ao = U. The correlation of two quantum states is defined as [43]:

C = Tr{pthpexp} (4.25)
Tr {p2h}Tr {p2xp}

which defines the relative closeness of states in Hilbert space with proper normal-

ization. Here Pth = UpinUt, Pexp = E(pin), and pi,, define the ideal, experimental

and input states respectively. The closeness of the ideal state to the experimental

state measures how well we have implemented the logical entangling operation for a

particular input state.



When the quantum process S includes incoherent and decoherent dynamics, the

purity (Tr{p2}) of the experimental state Pexp is less than that of the initial state pi.

In this case, one can define an attenuated correlation C' = yC where the attenuation

coefficient is defined as

Trf pI IpS Tr{pe } (4.26)
Tr {pi }

When we compare theoretical and experimental encoded states, their overlap has

contributions that mirror the logical subsystem structure of the Hilbert space. Con-

sider for simplicity a Hilbert space that can be written in terms of a logical and non-

logical subspaces, N • D£R. The Kraus operators [78] A,, can be separated into three

groups: {Ay,LL, Ap,RR, A,,LR }, which respectively describe the maps on the £ subspace,

R. subspace, and the mixing of these two subspaces. The correlation will reflect these

three contributions to the dynamics, C = CLLCLL + (aLRCLR + ORLCRL) + OZRRCRR,

where:

C Tr {PKPth , A,KH PHPinPH )Af ,KH} /Tr{(PHPep) 2}Tr{(pKPth )2}
CKH -7 OeKH -- p.p~~p

VTr {(PHPexp)2}T {(pKPth )2} V Tr{pxp}Tr{p}

(4.27)

Here we define PL (PR) as the projector onto the encoded (non-logical) subspace.

Notice that if the ideal state is inside the logical subspace, its projection on the

non-logical subspace PRPth is zero and the last term goes to zero, CRR = 0.

For encoded qubits, we limit state tomography to the logical subspace only, so

that a reduced number of readouts is enough to characterize the information available

from the this subspace. The ability to preserve and manipulate the information inside

the logical subspace can be better quantified by the correlation on this subspace, CLL,

comparing the experimental logical state with the theoretical state inside the subspace

only. If the input state of this process, pi, is a full pseudo-pure state (FPPS) and

inside the logical subspace, the correlation CLL with the logical ideal state is the only

contribution to the total correlation C.

If a subsystem pseudo-pure state (SPPS) is used instead, CLR z/ 0, since the



output state in the protected subspace may contain contributions arising from the

action of the map S on the identity in the non-logical subspace. Given an input state

Pin = a I) (' L + (1 - a) !, from the experimental output state we can only measure
dR

the quantity (by observing only the 1-logical qubits or their phyisical equivalents):

Trf{ Uthl) ( LnV thS(dR
C L = aCLL + (1 - a)CLR = aCLL + (1 - a)

Tr{(PLPexpPL) 2} Tr{(PLPth PL) 2}
(4.28)

Note that in this case C0 C*L, since the contribution CRL is not taken into account.

The measured correlation is thus defined by two terms: the first takes into account

the control over the encoded subspace only and the eventual leakage from it, while

the second takes into account mixing from the 7R subspace to the £ subspace. State

tomography of the input state 1 R after the algorithm allows one to calculate the

correlation on the logical subspace CLL*

To characterize the control of quantum gate operations most generally, many

metrics have been suggested [43, 128, 104]. A good operational metric is for example

the average gate fidelity (or fidelity of entanglement), that can be measured as the

average of correlations of a complete orthonormal set of input states {pj}: F =

Ej C = Ej Tr{UthPjUthE(Pi)}. Similarly, the encoded operational fidelity can be

defined as the average correlation over an orthonormal set of operators spanning £

(p k): FL CLL T thi L th&(L)}

The fidelity on the logical subspace focuses on the achieved control in the imple-

mentation of the desired transformation on the protected subspace; this new metric

is immune to unitary or decoherent errors within R alone:

FL = C3L = E Tr{UthpfiLUth(E• APLP1LPLA,)} (4.29)

= E,, IUthA,,L 2/N 2

The extent to which UL,exp is close to Uth,L can be determined from FL, while the

avoidance of subspace mixing will be specified by the gap between F to FL.



Full pseudo-pure (FPPS) 0.98 0 .91 0.99
Full pseudo-pure Bell state (FPPBS) 0.96 0.74 0.95
Subsystem pseudo-pure (SPPS) 0.99 0.97 0.99
Subsystem pseudo-pure Bell state (SPPBS) 0.97 0.87 0.91

Table 4.3: Experimental and simulated data for the encoded Bell state. Experimental
errors of r. 4% can be attributed to systematic errors in the fitting algorithm used
to reconstruct the density matrix from NMR spectral data. Csim represents the
correlation between simulation of the NMR spin system and the ideal state, taken
over the entire Hilbert space. CExp compares this same simulation of the experiment
to the experimental tomography reconstruction of the state, in the entire Hilbert
space. CLL measures the correlation between the simulated and experimental states
projected onto the logical subspace.

Quantum state Ysim 'YExp 7LL

Full pseudo-pure Bell State (FPPBS) 0.97 0.78 0.65
Subsystem pseudo-pure Bell State (SPPBS) 0.95 0.87 0.72

Table 4.4: Attenuation coefficients for encoded Bell states. These values represent a
loss of purity in implementing a sequence of gates for entangling logical qubits. Ysim
shows the attenuation of the ideal encoded Bell state of an NMR simulation including
coherent and incoherent processes only, normalized to the initial state purity. 7Exp
shows the loss of purity between the experimental initial state and final states, recon-
structed using state tomography. 7LL shows the loss of purity for the projection of
these experimentally reconstructed states onto the logical subspace. Values less than
unity indicate a loss of coherence in the spin system.

4.3.2 Analysis of the Experiment

Since the experimental implementation of the pulse sequence used to generate logical

entanglement is independent of the initial state, we can use both initial states and

the aforementioned measures to gauge our control of the logical subspace. When

these measures differ with different initial states we reveal several key features of the

experimental implementation not accounted for in the simulation.

With respect to a simulation of the NMR system over four spins, the sequence

generates the desired logical entanglement with high fidelity regardless of initial state.

For example, in comparing the full pseudo-pure state (FPPS) and the subsystem

pseudo-pure state (SPPS), we see that the correlation between the ideal state and

Quantum state CExD



the simulated state (Csim) are nearly unity and differ from each other by only 1%.

The resulting simulated correlations of the full and subsystem pseudo-pure Bell states,

abbreviated FPPBS and SPPBS respectively, also differ by only 1% and are quite close

to unity. Lastly, the attenuation coefficients differ by 2%. As the simulations do not

take into account any decoherent or relaxation processes (T1 , T2 , Overhauser effects,

etc.), any reduction in purity is due solely to the simulation of RF inhomogeneity, an

incoherent process [13].

In comparing the experimentally measured density operator with the simulations

we can quantify our ability to experimentally create the desired initial state, imple-

ment our entangling operation, and see the effects of decoherence on the system. First,

we see that the correlation of the the SPPS is 6% higher than that of the FPPS when

measured over the entire Hilbert space (Cexp) but equal and nearly unity when the

states are projected onto the logical subspace (CLL). This apparent discrepancy rep-

resents errors due to unwanted, nonzero contributions to the density operator outside

the logical subspace since Cexp = Ej•k ajkCjk where Cjk represent correlations for blocks

of the density operator and a is a weighting factor summing to unity (-jk ajk = 1)

[22]. To illustrate this aspect, we can calculate CRR, aLL, and aRR for both initial

states.

For the SPPS, CRR = 0.97, aLL = 0.38, and aRR = 0.61. Whereas for the FPPS,

CaRR = 0.45, aLL = 0.89, and aRR = 0.05. ( For the ideal SPPS aLL should be and

aRR should be ý; for the ideal FPPS aLL should be 1.) The Cexp value for the SPPS is

much higher than that of the FPPS due to having near unit values for both CRR and

CLL and aLR r 0. Physically, this emphasizes the advantages of using a simpler initial

state. For the FPPS we must create a total density operator with equal weightings of

the many-spin correlations like a a 2a 3a 4 and all the combinations of u~I a2 between

four spins starting from the thermal state: E= 1 
a j . In the SPPS only terms involving

classical correlations between two spins (like ao I3) are necessary. The primary source

of error in creating pseudo-pure states over the entire Hilbert space are these many-

spin correlations of the initial state, thus accounting for the lower CRR contribution

to the FPPS.



Next, we address our ability to experimentally implement encoded quantum oper-

ations by analyzing the different correlations of the FPPBS and the SPPBS. Since we

use exactly the same pulse sequence to transform the FPPS to the FPPBS as we do

for transforming the SPPS to the SPPBS, we would naively suspect the trends for the

initial states to follow for the logical Bell states. However, the correlation between the

experiment and the simulation for the SPPBS is roughly 18% better than that of the

FPPBS. The fact that the FPPS and the SPPS are different states within the entire

Hilbert space accounts for this: contributions from CRR improve Cex for sub-system

pseudo-pure states. By calculating the projected correlations and weighting factors,

we see that Cexp for the SPPBS is bolstered by CRR, as CRR = 0.91, &RR = 0.64, and

aLL = 0.31. For the FPPBS, CRR= 0.41, OZRR = 0.06, and aLL = 0.74; as with the full

pseudo-pure initial state, small errors outside the logical subspace considerably de-

crease the correlation over the entire Hilbert space. Furthermore, the pulse sequence

seems to favor the SPPS state, as the purity (_yExp) of the SPPBS is larger than the

FPPBS. Again, this behavior indicates the presence of many-spin correlations in full

pseudo-pure states, as these correlations can develop extended and fragile quantum

coherences, decohering faster than a single spin or a single logical qubit.

Finally, If we consider the evolution in the logical subspace only, we find that CLL

is quite high for both the FPPBS and the SPPBS: 0.95 compared to 0.91 respectively.

Though slightly different from the simulations, the two states are comparable as the

correlation within the logical subspace between the experimentally measured FPPBS

and the experimentally measured SPPBS is 0.97. This indicates that our control

sequence will transform information within the logical subspace in a nearly identical

manner, unbiased towards the information outside the logical subspace. In summary,

we see that for a given implementation of the logical entangling operation, we can

learn about the experimental imperfections by preparing two states that are both

pure within a given subspace but each different outside of this subspace. In particular,

when considering the loss of purity and the correlation with the logical subspace, a

subsystem pseudo-pure state outperforms a full pseudo-pure state when comparing

the measured initial and final states to simulations.



4.4 Conclusions

The structure of the control and natural Hamiltonian plays an important role in the

control of logical qubits, as the operators needed to implement gates may not be

present and generating them may drive the information out of the subsystem. For

large systems with significant symmetry (like quantum dots under the exchange inter-

action [37]) or exceedingly small systems [44], the structure of the natural Hamiltonian

can provide the logical operations in itself. However, for systems of intermediate size

(most relevant to the present implementations of quantum information processors)

implementing quantum gates among logical qubits requires both a precise knowledge

of the natural Hamiltonian and a complete set of control parameters to ensure no

leakage from the protected subsystem or subspace. For example, if our four-qubit

system were composed of two proton spins and two carbon spins, each individual

species could be modulated separately, thus doubling the number of control parame-

ters in the external Hamiltonian and limiting the leakage of the information from the

subspace.

Recall that logical encodings are used to protect quantum information against

decoherence. Here we have omitted the encoding and decoding step of getting the

information from physical qubits to logical qubits and back and instead used an initial

state already reflecting the encoding. Our measures of fidelity may seem artificial,

as we could have actually measured the decoded qubits to get the same information

about leakage, loss of purity, etc. We should stress that the main goal is to assess the

control of logical qubits. Our measures over the logical degrees of freedom thus allow

us to quantify the leakage and loss due to decoherence, as well as the correlations of

the state. We can thus address the two main issues of logical control (i) implement-

ing leakage-free gates and (ii) implementing the intended operator on the subspace

without worrying about errors in the decoding process.

Lastly, our selection of logical qubits comprised of only two physical qubits limits

our logical operations for single qubit and two-qubit interactions to only "two-body"

operators. If instead we were to attempt a repetition of the experiment where the



logical qubits were encoded under different subsystems [45, 6], the single qubit and

two-qubit rotations would involve either "three-body" operators [140] or a sum of

non-commuting operators - quite unlikely to be found in a natural Hamiltonian. In

such a scenario, the ability to implement logical operations would necessarily need

to come from a modulation sequence, appropriately chosen to avoid leakage from the

subsystem.



Chapter 5

Control of Anisotropically coupled

Electron and Nuclear Spins in

Closed Quantum Systems

5.1 Introduction

As introduced in Chapter 1, nuclear spin degrees of freedom are excellent candidates

for quantum bits due to their long decoherence times. Although liquid phase NMR

systems are well recognized as versatile test-beds for quantum information processing

[30, 49], there is not a comprehensive proposal for how to engineer these coherent

systems into a robust quantum information processor that could scale as a quantum

computer [148, 126, 15]. The recognized deficiencies of liquid phase NMR include: (i)

the spin system is in a highly mixed state, (ii) the measurement is a weak ensemble

based measurement, (iii) the product of coupling strengths (J) to coherence times

(T2) is not much larger than 1, and (iv) the addressability of single qubits does not

scale with Hilbert space size.

Nuclear spins in single crystals or solid-state lattices have more promise for QIP.

For example the product J - T2 is larger due to dipole-dipole coupling of nuclear

spins and the longer relaxation times achieved by cooling to 4 He temperatures. The



polarization is also increased by going to lower temperatures, but still will not be

in a pure state without using another mechanism for increasing the polarization,

like optical pumping or dynamic nuclear polarization [134]. There have not been

convincing and demonstrable ways of achieving projective measurements of nuclear

spins or addressing the number of spins required for a quantum computation.

With the incorporation of electron spins into the lattice of nuclear spins, it is

possible to make strong projective measurements [123, 77] for both initializing a

single electron spin qubit or reading out the nuclear spin state. These measurements

can also boost the polarization of the nuclear spins. Furthermore, the orbital and

charge degrees of freedom of an electron spin can be used to incorporate "flying

qubits", linking together two information processors. The hyperfine interactions of

the electron and nuclear spins are also much stronger, but the coherence times of

the electron may also be much shorter, limiting the J -T2 product. It should be

stressed that this system may not scale to be a quantum computer, but does provide

comprehensive solutions to state initialization and projective measurements.

Many solid-state spin based proposals [68, 90, 11, 82, 29, 137] are particularly suit-

able for quantum computaton. First, the advances in semiconductor manufacturing

technology can be used for a "top-down" approach to building coherent devices with

scalable controls as the Hilbert space grows in size. For example, photolithography

techniques can be used to make a single qubit device. Such devices can be coupled

together 'on-chip' with each device having its own controls and tunable qubit-qubit

couplings. Likewise, select natural materials provide coherent, large Hilbert spaces in

a "bottom-up" approach, like nuclear spins in a lattice, but with a limited number of

controls. In both cases, the spin degrees of freedom provide Hilbert spaces with long

coherence times. Errant spins outside the isolated system (either electron or nuclear

in nature) act as a primary source of decoherence of the quantum information.

To date, there have been many demonstrations of coherent control in spin based

solid-state qubit paradigms. As the effective volume of the electron wavefunction

can vary by several orders of magnitude between specific systems, the electron spins

and the nuclear spins can play roles as both an uncontrollable environment or as



controllable qubits. At one end of the spectrum, many groups have exhibited control

over a confined electron qubit in GaAs quantum dots. Here, the surrounding substrate

of magnetic nuclei typically act as a noisy environment, decohering the coherent

electron spin state [110, 107, 72]. In systems where the electron spin is localized in a

molecular orbital or color center, the electron spin interacts most strongly with a few

nearest nuclei. Here, both the electron and the nuclear spins can be used as qubits

for information processing. Recent demonstrations include controlled electron-nuclear

entanglement [96, 97], enhanced nuclear spin detection [95, 26], and single electron-

nuclear gates [65, 103]. At the opposite end of the spectrum, the electron spin can

be considered an environment for a local cluster of nuclear spins. Optical pumping

techniques can be used to effectively cool the temperature of the spin states, but

the electron spin environment decoheres the nuclear spins during a computation [29].

Most recently, universal control of a nuclear spin via only electron spin control has

been demonstrated, [39]. A summary of these works appears in Table 5.1.

Electron-Nuclear spins Characteristic Systems Improvements with AHF control References
qubit-environment Quantum Dots. Control spin diffusion. [110, 107, 72]

qubit-environment Carbon Nanotubes. Extend electron T 2  10,0_7

qubit-memory NV Centers. Fullerenes. Extend coherence times to nuclear T 2 . [39, 65, 103]
qubit-qubit Ionic single crystals. Faster Gates. Universal Control [96]

actuator-qubit Faster Gates. Universal Control.

Molecular single crystals. Nuclear-nuclear gates via electron spin. [95]
environment-qubit Improved nuclear polarization transfer. [29]

Table 5.1: Electron and Nuclear spin roles in coherent solid-state systems. Depend-
ing on the localization of the electronwave function and relative decoherence rates,
an electron spin can act as a qubit or as an environment to nuclear spins. Coher-
ence, in either case, can be extended by controlling the electron spin. If the hyperfine
interaction is anisotropic, nuclear spin dynamics can be controlled via the electron
spin. Such nuclear spin control may be used to reduce losses to the nuclear environ-
ment or to enhance polarization transfer nearby nuclear spins. It can also be used to
robustly control small clusters of nuclear spins acting as small quantum information
processors.

Ultimately the details of the microscopic electron wavefunction and the magnetic

properties of the atomic lattice sites determine these systems' dynamics, thus the

fate of any system as an information processor is determined by how the available

control fields can steer the natural dynamics to a desired outcome. The presence of



an anisotropic hyperfine interaction provides a means by which the control of nuclear

spins can be improved. Here we show how to exploit a local, isolated electron spin to

coherently control nuclear spins. Moreover, we suggest that this approach provides a

fast and reliable means of controlling nuclear spins and enables the electron spins of

such solid-state systems to be used for state preparation and readout [95] of nuclear

spin states, and additionally as a spin actuator for mediating nuclear-nuclear spin

gates.

5.2 System Model

Many of the successes of liquid state NMR are due to the model of the spin system

being an accurate and complete description of the coherent dynamics of the spin

degrees of freedom. Likewise, we will choose solid-state electron-nuclear systems

where a single localized electron interacts with a few nuclear spins at nearby lattice

sites. In doing this, we neglect many uncontrollable degrees of freedom, such as

phonon modes, electron orbital angular momentum, the lattice potential, and we can

therefore write down a Hamiltonian for the spin degrees of freedom. Any coupling

of these external degrees of freedom into the spins of the system will be treated as a

source of decoherence.

Our Hamiltonian of a single local electron spin with angular momentum, S =

and N nuclear spins, each with angular momentum Ik = , in the presence of a

magnetic field B is [130]:

N N N

e= S - Y(1 - 6 ±u 2 AVSlI + I Z DkI ~ I1 (5.1)
k=1 k=1 k,1= 1

Here 3e is the Bohr magneton, 7 is the gyromagnetic ratio of the k h nuclear spin, and

B, is the external magnetic field. S and Ik are the spin-1 operators. The second-rank

tensors g, Ak, 6 k , and Dk' represent the electron g-factor, the hyperfine interaction,

the chemical shift, and the nuclear dipole-dipole interaction respectively.

With the intention of controlling the electron spins via electron spin resonance



(ESR) techniques, we choose a magnetic field where the electron spin is quantized

along the direction of B = B0o. For a g = 2 electron, the magnetic moment of the

electron spin is at least 660 times that of the nuclear spin. Thus, the nuclear spins

will align (or anti-align) with the local fields present due to the hyperfine interaction,

nuclear Zeeman interaction and the nuclear dipole-dipole interaction. In the regime

where the nuclear Zeeman and hyperfine fields are comparable in magnitude 1 4en

can be approximated by2 :

N Nk A ^k^k k ^ -k k kzi
en Sz - ZWI' + 27rZ (AS x + Aky SzS + Az Z) (5.2)

k=1 k=1

Here, w8 = feBollglj is the electron Larmor frequency and wk = -y 1(1 - 6)11Bo is the

nuclear Larmor frequency. The nuclear dipole-dipole interaction is neglected as it is

typically 100 times weaker than the hyperfine terms.

To find the eigenfunctions of this system, we can apply a similarity transformation

to diagonalize -Yen. Because the nuclear dipole-dipole interaction is not relevant in

this approximation, the only spin-spin interactions involve the electron spin and a

single nuclear spin. Thus, the transformation has a particularly simple form[84, 130]:

T = Sa®kR(O, O)® S f®k R(O, ¢k) (5.3)

where R(Ok, = -iok kI_ , k ,L = IT)(TI = E+, S = Ii>)(i = E_. The Hilbert

space divides into an upper and lower manifold for the electron spin. In each manifold,

the hyperfine field has a particular orientation with respect to the main magnetic field,

giving a geometric description (Fig. 5-1). The rotation about i moves the Az,, and

Az components to the zx-plane for each nuclear spin; the rotation about y rotates the

zx vector along z thus diagonalizing the Hamiltonian. The nuclear spin eigenstates

'The relative order of terms for Eq. (5.2) to hold is: OejjgmgzlBo > 11y(1 - 6)BoI|• IIAz"ll >
IIDj,kll

2j, = a are the spin operators in relation to the Pauli matrices.



are thus a mixture of the nuclear Zeeman eigenstates:

Io ) = cos + sinOTli) (5.4)

I|a) = sin 09T) - eT cos T 11) (5.5)

I|40) = cosO ) + ei sin0 1I) (5.6)

I>= sin 6 T) - e ecos l )  (5.7)

(5.8)

It should be noted that (0•, l0,1) $ 0 provided Ok h 27rl + k. The eigenfunctions

of this C2N+ 1 x C2N+l Hilbert space can store N bits of quantum information in either

the spin-up or spin-down electron manifolds:

1jl J2 * g.jN) = )®ka 1)® 32) ""® l&g (5.9)

or (5.10)

= J,} @ Ii)®t l/3•2 )} ®"" I )N (5.11)

where jk E {0, 1}. Note that by storing information in either the I|) or 1) electron

spin manifolds there is no spin superposition of the electron wavefunction and that the

electron spin remains separable from the nuclear spins. This precludes the electron

spin from storing any quantum information.

5.3 Generating Universal Control

Having identified a physical system in which we can store quantum, we now identify

the requisite control fields for universality. Drawing from the spectroscopy of electron

and nuclear systems, one possible way of controlling the spin system is to use oscilla-

tory magnetic fields resonant with a sufficient number of transitions to ensure univer-

sality. This will include both electron spin transitions and nuclear spin transitions,

much like the ENDOR (electron-nuclear double resonance) spectroscopic technique

[32, 101]. Another possible method is to draw from the ESEEM [122](electron spin
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Figure 5-1: Magnetic fields present at a single nuclear spin. The vector sum the DC
magnetic field (lighter arrow along z) and the hyperfine field (darker arrows) define
the nuclear spin quantization axis. The angle between the electron quantization axis
(z) and the nuclear quantization axis depends on the state of the electron: OT or 901.
In the absence of hyperfine anisotropy, the nuclear quantization axes are anti-parallel.
Note that we work only in the x - z plane, despite the fact that we have specified
both Azx and Azy terms. The x - y vector can be rotated to purely the x axis with
anew A' = VAx + Azy.
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echo envelope modulation). Here, pulses only on the electron spin excite coherence

between a number of levels. This coherence is then modulated by the different nuclear

spins through the hyperfine interaction. Coherence can be transferred from the elec-

tron to the nuclear spin also [62, 112]. The origin of the echo modulations of ESEEM

are due precisely to the orthogonality of the two quantization axes of the nuclear spin

arising from the anisotropy of the hyperfine interaction. This same condition allows

us to completely control the le-Nn system without the need for explicit nuclear spin

transitions.

If we seek to address only electron spin transitions, our controls are time-dependent

microwave fields oscillating near the electron spin resonance frequency and parametrized

by three values: B , the amplitude of an oscillating magnetic field (1 Bo0 2), Q the

frequency of oscillation, and the phase of the oscillation:

(5.12)

eIg||B (t)(cos (Qt + 0(t)) , + sin (Qt + 0(t)) y)

For simplicity, we can set 0(t) = q0 = and remove phase control completely.

The control Hamiltonian will excite transitions between levels 1j) and fk) provided

the matrix element (klSIj) # 0. If we assume the condition (aO, 11o0,1) # 0, this

operator will induce transitions between any level in the electron spin I manifold and

all levels in the electron spin T manifold, barring degenerate eigenvalues Ej of Ae

or degenerate transition frequencies (hwjk = Ej - Ek) 3 . As shown in [141, 4], this

level connectivity can be represented as a graph, and that the complete connectivity

of the graph generated by the matrix elements of Jc guarantee universality. For the

le-N nuclear spin system, distinct g-factors and hyperfine couplings for each nuclear

spin guarantee the non-degeneracy of the eigenstates. The hyperfine couplings and

the nuclear Zeeman frequencies must also be chosen such that wjk/wjkk' / 1. Lastly,

the anisotropy of each hyperfine interaction assures the complete connectivity of

the graph given the form of X, and )c. The entire system can be completely

controlled by modulating BI for a fixed Q and without phase control. Figure 5-2
3The matrix representation of -en in this case is strongly regular



shows several diagrammatic examples. For universal control over a set of nuclear

spins with resolved anisotropic hyperfine coupling to one electron spin it is sufficient

to apply an amplitude modulated waveform to any electron spin transition.

2

3

(a)
isotropic

(c) le-2n
anisotropic

le-ln

partially

(b)
anisotropic

(d) le-3n
anisotropic

le-ln

fully

Figure 5-2: Diagrammatic proof of universality. The connectivity of energy levels of
le-Nn systems represented as 2N+1 node graphs. An edge is drawn between two nodes
if the control Hamiltonian operator has a non-zero matrix element for the eigenstates
represented by the nodes ((klSIj) y- 0). When the hyperfine interaction between
any one nuclear spin and the electron is purely isotropic universality is not achieved
as in (a) and (c). In the limit of infinitesimal anisotropy, the levels may be connected
but the matrix elements are exceedingly small, indicating long times for generating
universal control. As additional nuclear spins are added, the connectivity becomes
exponentially more complex.

Physically, we can see the modulation of Af via -fc as generating rotations about

non-commuting axes. The local magnetic field vector between the electron spin and

any one nuclear spins is separated by a finite angle, 9, depending on the spin state

of the electron. )c modulates these non-commuting vectors and can thus generate

any rotation in SU(4) of a pair. If we consider collective motions of the N nuclear

spins relative to the two electron spin states, this generates the complete algebra in

SU(2N+l). Given the complexity of the full dynamics of these 2 N vectors, we can use

1
4



optimal control methods (Chapter 2) developed for and applied to liquid and solid

state NMR [71, 43, 115, 8] to engineer arbitrary unitaries.

5.4 Implementation

Further understanding of the requirements for control can be seen by analyzing an

example system. We demonstrate the utility of this control scheme by exploring

Ramsey fringes [119] and Hahn echoes [57] in a le-1n system. Our le-1n system is

a single crystal of x-ray irradiated malonic acid - an extremely well-studied sample

in the field of pulsed ESR. Using previously reported [92, 91, 69] hyperfine constants

of malonic acid we can orient the crystal to maximize the anisotropy of the hyperfine

interaction.

Figure 5-3: Malonic Acid Crystal. Molecules of malonic acid align via hydrogen
bonding to form a single triclinic crystal. There are either two or four molecules per
unit cell depending on temperature. White spheres represent hydrogen atoms, gray
spheres are carbon atoms, and red spheres are oxygen atoms. The electron defect is
located on the middle (carbonyl) carbon.

In the hyperfine principal axis system (PAS) the couplings of APAs are - [-60, -30, -90].

The PAS of the hyperfine tensor, the molecular axes (x,y,z) and the crystal axes (a,b,c)

are nearly coincident in this molecule. By mounting the crystal along the the ý axis,

a natural direction for crystal growth, we ensure the -90MHz component is always

perpendicular to Bo0 . We can then rotate the crystal about the ý axis, changing

the relative angle between the & - ý plane and the magnetic field. We measure the

splitting of the two hyperfine peaks versus rotation angle using x-band continuous-

wave (CW) ESR measurements (Figure 5-4). When the & - 6 plane is 45' to the 2



laboratory direction, the Az, term is maximized. This orientation is then transferred

to our pulsed ESR spectrometer.

0)

E

Field (Gauss) Rotation Angle along c-axis (deg)

(a) CW ESR spectrum (b) Fitting of splitting to the model

Figure 5-4: CW ESR alignment of crystal. The CW ESR spectrum (a) shows two
dispersive peaks, one for each possible nuclear spin configuration. By changing the
orientation of the crystal with respect to the magnetic field, the energy difference in
the splittings changes. We can map the measured splittings with our model Hamil-
tonian to maximize Azx

In adopting a real system to our model, we note that the electron wave function of

our paramagnetic defect can couple to the many surrounding hydrogen (I= 1/2) nuclei

as the dipole-dipole part of the hyperfine interaction between the S=1/2 electron and

the hydrogen nuclei in the matrix maintains over a long-range [130]. Furthermore,

we assume that each individual paramagnetic center does not couple to any other

paramagnetic center. In reality, these many centers can lead to line broadening via

instantaneous diffusion mechanisms. These undesired couplings can be treated as a

source of decoherence. Thus, the simplified Hamiltonian of our closed le-in system

is: Ifo/27r = vsi-vnz+AzASx+AzSj where v = 11.885 GHz, vn = 18.1 MHz,

Azx 14.2 MHz, and A;z -42.7 MHz. The control Hamiltonian Eq. (5.12) pa-

rameters are max(flOeIgIIB(t))/27r = 7 MHz and Q/27r = 11.909 GHz. A description

of the experimental setup appears in Chapter 7.
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Figure 5-5: Energy level diagram of a one electron (S=1/2) and one nuclear (I=1/2)
spin system for Eq. (5.2). The electron spin state is in an eigenstate of purely the
Zeeman interaction, while the nuclear spin state is not an eigenfunction of the Zeeman
interaction alone due to the anisotropic hyperfine interaction. Because (ao /31) # 0
and (aoj0o) : 0 the electron spin operator (Sr) has finite probabilities between all
levels (dashed arrows). This allows for universal control of the entire spin system.
The filled and unfilled circles represent the relative spin state populations of the
ensemble at thermal equilibrium. In our experimental setup the energy differences
are w12/27r = 7.8 MHz, w34 /27r = 40 MHz, w14 /27r = 12.005 GHz, w23/27r = 11.954
GHz
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5.4.1 ESEEM and Effective ESEEM

For an ESEEM experiment, one does a spin echo experiment on the electron spin:

- -T - X -7 T(5.13)
2x x

In the absence of any hyperfine coupling, we would expect to see an echo at a

time 2T after the first pulse, such that (S,(2r)) = -1. If we have a Hamiltonian like

Eq. (5.2), then the echo is modulated as [130]:

(Sy(2T)) = -1+ 22 cos(w -2 'cos(-34)+2cos(w )+2cos(W T)(5.14)

where w±= w12 ± W34 and k = (27rwiAzz/W12w 34)2 is the modulation depth. This

results assumes that A |IIC > II||nll, such that the electron pulses excite the en-

tire spectrum of available transitions. In the case when one has a weak microwave

excitation field |k ||cll < II| n n, only the transitions near the resonance frequency

Q are excited. Various methods, such as soft ESEEM [129] have been developed for

overcoming this problem by applying radiation at two different carrier frequencies

simultaneously.

Simulated and Experimental ESEEM data
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Figure 5-6: ESEEM data using hard pulses. Note the absence of peaks above 8 MHz.
The linewidths of the simulated data reflect a 6G magnetic field inhomogeneity. The
experimental and simulated data have not been normalized.
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Due to the insufficient RF power for covering the breadth of the malonic acid

spectrum, we can use our knowledge of the natural Hamiltonian at our preferred

orientation to generate the propagator: U,/ 2 = e- i Sx/ 2 using GRAPE. We then

apply the sequence:

U /2 - T- U/ 2 - T (5.15)

and expect to see echo modulations like those in Eq. (5.14) but reduced by a factor

of two because of the second flip angle.

Figure 5-7 shows the two-dimensional data for this "effective ESEEM" experiment.

If we take the Fourier transform over the indirect (T} domain and sum up over the

acquistion signal, we get a projection onto the indirect Fourier domain with spectral

components near 8,40,48 and 32 MHz. This indicates that we have components of

the electron magnetization modulating at the two nuclear frequencies.

xl 0
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S -50 -40 -30 -20 -10 0 10 20 30 40 so
Freq. (MHz)

(a) 2D T - t plot (b) FFT of T (projected)

Figure 5-7: ESEEM data using engineering pulses. Note the presence of all four peaks
in the experimental spectrum. The 8 MHz and 40 MHz peaks should be nearly twice
the amplitude of the sum and difference peaks. The simulated data and experimental
data are not normalized. Peaks occur on the positive frequency domain only due to
phase cycling of the pulses.



5.4.2 Ramsey-fringe Experiments

We can now use our methods to isolate one of the frequencies of the ESEEM ex-

periment. The equilibrium state of the ensemble system, Pthermal - -Sz, has no net

nuclear spin polarization, so we first transfer the available electron spin polarization

to the nuclear spins. This is achieved by selectively inverting the levels 12) and 14)

or 1) and 13) (see Figure 5-5). We created coherence between nuclear eigenstates

with an engineered nuclear 7r/2 pulse selective for only one of the electron manifolds4,

U12(7r/2). The Ramsey fringe experiment measures the phase evolution under Ye.

We halt evolution by again applying U12(r/2) and then transferring the polarization

back to the electron spin. By monitoring the relative amplitude of the electron spin

echo at different times, T, we indirectly observe the nuclear spin dynamics. If we

introduce a refocusing pulse for both nuclear spin states, U, = U12 (ir) + U34(ir), after

a time -/2, the coherent phase oscillations are refocused.

time

Figure 5-8: Schematic pulse sequence for measuring 'Ramsey fringes and Hahn echoes.
Up creates a non-equilibirum population difference between levels 1&2 and Uc creates
a coherence between nuclear spin in the S=-1/2 manifold. During 7-, this coherence
evolves under en, acquiring an observable phase. The coherence is transformed back
to a population difference between nuclear spin levels and then to electron spin levels.
A pair of short, unmodulated pulses are used to detect an electron spin echo whose
height is proportional to the resultant electron spin population. With a refocusing
pulse (Ur) the acquired phase is unraveled, leaving no modulation of the echo signal.
The waveform used to implement UpUc is shown inset. Note that all pulses are applied
resonant with the 1-4 transition and induces transitions between 1-4, 2-4, 1-3, and
2-3 due to selection rules.

4 Ujk(O) = e(ia o k). The operator Crik = Ij)(kI + Ik)(j

--



Figure 5-9 shows the coherent oscillations between nuclear coherence on levels I1)
& 12). We implement the net unitaries, Upc = U12 (E)U24 (7r) and UP-C as a single

modulation sequence with total time (T) of 800ns and simulated fidelities (F) 0.99

and 0.98 respectively. The nuclear r pulse, U, was implemented in a time period

(F=0.98, T=520ns) much shorter than would have been possible by addressing the

nuclear spin transitions directly. Again, it is key to realize that the nuclear pulse

is achieved through modulation of the hyperfine interaction and is applied at the

electron spin resonance frequency. Simulations of the modulation sequences using

our model le-In Hamiltonian show agreement of the observed oscillation.

Magnitude Spectru Sof Sgnal rom Evoluton of Coherence
d)etween-stbtes..n> bndd

I

1

S(ns)

Figure 5-9: Coherent oscillations of the nuclear spin in malonic acid. Measurements
of the electron spin echo as a function of T (a) between coherence transfer indirectly
reveal the nuclear precession rate. Simulations of the experiment show agreement
between with the observed signal (signal-to-noise ratio r4.9). The Ramsey fringe
experiment (x) reveals a clear precession of the coherence between the 11) and j2)
states at roughly 8 MHz . For the echo data (0), small pulse errors and incomplete
phase cycling result in a small systematic oscillation at half the precession frequency;
ideally the echo should be independent of -. The FFT (b) without a nuclear r reveals
the rate of procession as roughly 8 MHz . The absence of spectral peaks at +8MHz
indicates successful refocusing in the presence of a "nuclear r pulse".

5.5 Nuclear-Nuclear Gates

A key point to storing quantum information in electron nuclear spin systems is the

speed-up in quantum gate times due to the strength of the hyperfine interaction

compared to the nuclear-nuclear dipole interaction. Since no information resides on



the electron spin, this electron spin actuator provides a handle with which to control

the nuclear spins. Any two qubit nuclear gate U 1 ,n~2 must be implemented on the

entire electron-nuclear system as Uen = 1 0 Unl,n2. The electron spin may be put into

a superposition, or even entangled with the nuclear spins, during the gate, but at the

end of the gate remains separable from the nuclear subsystem.

To motivate the potential of this scheme, we can take the malonic acid system

above and replace the carbon nucleus closest to the paramagnetic electron with an

isotopically labeled 13C spin. The PAS of the hyperfine tensor between the carbon and

the electron is nearly the same as the proton-electron with values A= = [213,42,13].

Using the orientation the maximizes the coupling from above, we find a modulation

sequence for a CNOT, condition on the proton spin: Ule-2n = 1 0 CHNOTc. This

modulation (Figure 5-10) uses both phase and amplitude modulation of the microwave

field. It also assumes twice the maximum amplitude and twice the bandwidth of the

pulses used in the Ramsey Fringe experiments. These conditions are well within the

bounds of current ESR technology. Were such a gate needed in the absence of an

electron spin, the necessary time would be at least ten times that of our modulation

sequence (2ps) based on the C-H dipolar coupling strength s .

5.6 Conclusions

The universality of a system comprised of one electron spin (S = 1/2) with resolved

anisotropic hyperfine couplings to N nuclear spins (Ik = 1/2) has been investigated.

This system can be completely controlled by only irradiating transitions involving an

electron spin flip. Due to the spin state of the electron there are two nuclear quantiza-

tion axes with orthogonal components; any quantum gate between the nuclear spins

can be composed of repeated rotations of the orthogonal components induced by

electron spin flips. In practice, optimal control techniques must be employed to find

an implementable modulation of the control fields. We have used these modulation

5 The dipolar coupling strength for the -CH pair is +10 to -20 kHz depending on orientation to
the magnetic field.
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Figure 5-10: Nuclear-Nuclear CNOT Modulation for 13 C-labeled irradiated malonic
acid. At the same crystal orientation used above, we find a sequence modulating
both the amplitude and the phase of the control Hamiltonian with 1000 2ns intervals
and a maximum Rabi frequency of 15MHz. The time for performing the gate using
nuclear-nuclear dipole couplings (tens of kHz) in the absence of an electron spin would
be much longer.
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sequences to explicitly demonstrate universality in a malonic acid (N=1) ensemble

spin system.

Such systems with resolved anisotropic hyperfine interactions form a small quan-

tum information processors which can be the basis of a larger quantum computer;

however, an efficient means of coupling these small processors together is a necessary

step towards building a quantum computer.
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Chapter 6

Decoherence protection of

electron-nuclear systems

In a closed quantum system, consisting of one electron (S=1/2) and one nuclear spin

(I=1/2) coupled together, relaxation and decoherence of either spin species can in

turn affect the coherence properties of the other.

For solid-state spin systems, a bath of nuclear spin flip-flops generates a stochasti-

cally fluctuating magnetic field, leading to decoherence of electron spin states [138, 34].

As the nuclear spins present in these systems lies in the mesoscopic to macroscopic

scales, most theories rely on mean-field approximations, cluster expansions [124], or

other methods for approximating the magnetic field arising from an unnumerable

collection of nuclear spins.

In the microscopic limit, the dynamics of a closed system can be solved com-

pletely, with clearly interpretable results for a small number of spins. The simplest

of these consists of one electron (S=1/2) and one nuclear spin (I=1/2) coupled to-

gether. Relaxation and decoherence of either spin species can in turn affect the

coherence properties of the other by way of the spin-spin coupling. Empirically, nu-

clear spin relaxation times are measured to be much longer than those of electron

spins; this can be attributed to the stronger extent of localization of the nuclear spin

wavefunction compared to the total electron wavefunction and the strength of the

Bohr and nuclear magnetons. In a coupled system however, the relaxation times are
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not necessarily uncorrelated. Here, I present a simple model for showing the nuclear

T2' time is limited by the electron T1.

6.1 Markovian Dynamics of the T1 process

The characteristic signature of a T, process is the return of a system to equilib-

rium of a state out of equilibrium. For a spin-1/2 quantized along the i-axis in the

laboratory frame, fluctuating fields resonant with the energy difference between the

two spin states' and perpendicular to 2 are the main mechanism for T, [134]. A

dephasing, or T2 process, occurs when these fluctuations parallel to the axis of quan-

tization. Following the calculation from Redfield theory, the operational form of the

T, process involves an emission (o_) and an absorption process (o+) while that of a

T2 process have a (az) contribution. These operators appear with a time-dependence

in the Redfield matrix M and evolve under the equation of motion:

dp J = ~ikPkj - Pik kj + + ikfl(Pkl) (6.1)dt

(The subscripts represent row and column indices; repeated letters indicate a sum-

mation.)

In the limit where the correlation time, Tc, of the environment changing its state

(the effects of which appear in M), approaches 0, the environment behaves as a mem-

oryless system. In this Markovian limit, the dynamics can be accurately described

by a Lindblad master equation:

d= - , ,p] + {L kp, L} + {Llp, Lk} (6.2)
k

where Lk are the jump operators describing the effective action of the environment

'For single crystal solid-state systems, the mechanism for T1e is mostly the indirect, or Raman
process. This involves two phonons with an energy difference of E = h(V1 - v2) and a virtual energy
level. These processes give rise to a rapid divergence of T1 at at low temperatures, as Tf 1/T 9

[130]
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on the system in the short-time limit.

To solve this equation, p can be expressed as a linear combination of operators Bj

that span the Hilbert space and are orthogonal under Hilbert-Schmidt inner product

(tr(BkBj) = 65jk). This will yield N 2 coupled differential equations for a Hilbert space

of size N.

The dynamics can be expressed compactly by choosing the N 2 matrices Bj to

be the canonical rank 1 matrices Eij, where the entry of the ith row and jth column

is 1 and all other entries are 0. The density operator, p can then be columnized

by stacking the N columns in order to generate an N 2 X 1 vector Ip). The N x N

dimensional operators can be converted into their supermatrix N 2 x N 2 versions using

the following transformations.

e= * 0 1 - 1 & (6.3)

S= L Lk + -1 LkLk - LL 1 (6.4)
k

r is known as the relaxation superoperator and represents the dissipative dynamics

of the system. The Lindbladian Y = i.fo + F is the generator of the dynamics and

the dynamical superoperator S is obtained by integrating the dynamics (Chapter 3).

Ip(t) = YIp(t)) (6.5)

6.1.1 Example: Tf dependence of T2

Using the framework set forth in the preceeding section, we are poised to solve the

problem of a coupled electron and nuclear spin system with the electron undergoing

solely T1e relaxation. Take the closed system Hamiltonian to be -0leln = wSS z +

wiJ, + ASJZ and the jump operators to be L1 = vg--+o+ and L2 = V-Za_. The 16

entries in 1p) are ordered: {PII, P21, .. , P12, P22., p} .44}-

Conveniently, this matrix equation can be permuted to a block diagonal structure

resulting in four sets of coupled differential equations:
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11 = -g-P11 + g9+P33 (6.6)

p33 = g- -P11 - 9+P33 (6.7)

P22 - -g-P22 + g9+P44 (6.8)

P44 - g-P22 - g9+P44  (6.9)

P21 = -(2i(A + wi) + g-)p 21 g+p 43  (6.10)

P43 = g-P21 - (2i(-A + wu) + g+)p43 (6.11)

P12 = - ( - 2i(A + wi) + g-)P12 + g+P 34  (6.12)

P34 = g+P12 - (2i(A - w) + g+)P34 (6.13)

The eight other matrix elements are uncoupled. Each pair of differential equations

can be solved using eigenvalue and eigenvector methods associated with solving for

the equation of motion of coupled oscillators. The diagonal terms (Pl & P22, P33 &

p44) yield a simple solution by linear combination. By choosing a+ = p11,22 + P33,44

and a- = P11,33 - -_P22,44 we reduce the equations of motion to:9-

a = 0 (6.14)

_ = -(g_ + g+)a_ (6.15)

Thus the characteristic decay time for any of the diagonal terms of our coupled spin

system undergoing T8 modes of decay is T1 = (g- + g+)-1.

For the "off-diagonal" terms, corresponding to nuclear spin coherence, the eigen-

values of the coupled equations are more complex and can be found by solving for

the characteristic polynomial of the matrix:

(2i(w + A) + g- 1
L 9- - 2i((w + A) + g
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yield the eigenvalues:

1 1
A = -2iwz - (g+ + g_) -~ /(g + g_)2 + 8iA(g - g)) - 16A 22 2

While this general solution may not give much insight to the dynamics, we can

make a few generalizations for limiting behavior. First, we see that if roots A± are

complex, meaning we will have coherent oscillations of the nuclear coherence as well

as decay. The nuclear coherence decay rate, T2' will thus be bounded by the largest of

the two roots. In the case when A = 0, then spin systems are uncoupled; as such the

characteristic decay rate are A± = {-2iwi, -2iw - (g+ + g)}. Any state with nuclear

coherence and the electron state in equilibrium will oscillate and not decay, whereas

any non-equilibrium electron state with nuclear coherence will return to equilibrium

at a rate of 1/Te. For (g+ + g_) > A we get similar behavior although the physics

is completely different. This motional narrowing regime can be understood as the

nuclear coherence being modulated so quickly that dephasing becomes frozen. Lastly,

in the slow motion regime ( (g+ + g-) < A ) T2n --+ 2T{.

If the interaction between the electron spin and the nuclear spin is made anisotropic

as in Eq. (5.2) the 16 x 16 Liouvillian no longer has a compact block diagonal struc-

ture. Instead, the 16 differential equations becomes coupled and involve diagonalizing

one 8 x 8 matrix and two 4 x 4 matrices. A closed form solution using the preceeding

techniques will not prove effective.

Suppose that we do not want to know the general dynamics for any particular

state of an electron-nuclear system undergoing Te modes of decay, but instead pose

the question: Which states will not decay? Such states will be eigenstates with pure

imaginary eigenvalues, as seen from the A - 0 case above. Thus by identifying

the eigenstates of Y with purely imaginary eigenvalues, we will find a set of states

{Ir)} that do not decay. If the dimension of this set is four or greater, then there

may be a possibility of storing one qubit of information in the state, provided proper

commutation relations for these states exist.

To understand the structure of the Lindbladian we first identify a few facts about
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Y. In general Y is a defective matrix, in that it is not uniquely diagonalizable. This

can be seen from the fact that Y - Yt ~# 0 and resides in the non-Hermiticity of the

relaxation superoperator F. Otherwise stated, Y is not Hermitian. Quantum pro-

cesses must conserve the complete positivity of the state p; as such Y is a completely

positive matrix and thus has a decomposition as Y = GGT. This implies that Y2

has a set of right eigenvectors following the equation:

.jvj) = Ajlvj) (6.16)

and has a set of left eigenvectors following the equation:

(wjlY = Aj(wi (6.17)

The set of eigenvalues, {Aj} is the same from both {Iwj)} and {jvj)}. Thus {1wj)} is

the dual of {Ivj)}.

For a time-indepedent Lindbladian, o= 0, the solution for the state vector at

any future time is given by:

jp(t)) = E(Wklp(O))e kt Vk) (6.18)
k

This description of open system quantum evolution is reminiscent of a quantum

channel described as a Kraus form. The state is mapped from an initial to a final

form with a complex phase and attenuation. Let the left and right eigenvectors with

purely imaginary or zero eigenvalue be { f) } and {|I?) } respectively. As a single

qubit can be parametrized by three real values plus one normalization constraint, if

the {1 f)} follow the same commutation relations and product relations as the Pauli

operators, then one qubit of information can be stored in the {t]) }.
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6.2 Encoding nuclear spins to electron T1

As stated in the previous section, for the Ising Hamiltonian with A - 0 and g± com-

parable any other energy scale in the Hamiltonian, all states with nuclear coherence

will decay. Numerically, we see this is the case for an anisotropic Hamiltonian with

realistic energy scales. Using the insight of the collective a, encoding from Chapter

3, we can try to use an additional nuclear spin and the subsystem of two coupled

nuclear states I J = 0, J, = 0) and I J = 1, J, = 0) to remove the effect of the nuclear

spin dephasing due to the ZZ coupling. We take as our model Hamiltonian for this

le-2n system to be:

leln ^ ^20e ln = WSSz + w)1lil + 27rAiSzI + w 2I + 27rA 2S~~ (6.19)

Numerical results show that when A1 = A 2 and wi = w1 2 we have 177L) = {1 + Ua +
12  2  1U2 + +j U2 2+ 1 l + U.2+Ulu O1+U , Oz l a[ Oz Oz  1+0 z 2+lU -a' 1~ a~ 2 +~ or' 2~ OU , 2x ±r ly -

aolu)}. For any values A1 # A 2 or wl -1 w12 only 4 pure imaginary eigenvalues of

.Y exist, with the removal of the ax and oy terms from the preceding set. This is a

direct analog of the collective Z DFS from Chapter 3. If the coupling constant or

Zeeman frequencies are equal the internal Hamiltonian drives information stored in

the protected states outside of the subspace.

For an anisotropic interaction of the form:

1e2n = wsS! + wnl + 2+ixASzI + B1SI + w12I + 2+A 2S z 2^ (6.20)

numerical results show that no such DFS exists even when the couplings are equal.

As the quantization axis of the nuclear spins depends on the state of the electron

spin, electron spin flips in the isotropic Hamiltonian are seen as fluctuating fields

along the 2-axis. In the anisotropic case the axis for the nuclear spins when the

electron spin is up differs from when it is down, thus an electron spin flip looks like

a rotation about the y-axis for the nuclear spins and evolution under J1•2 after

the spin flip looks like a z-axis rotation. Random rotations about two orthogonal
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Figure 6-1: Purity of le-2n DFS Qubit. For unequal couplings, we see the same
behavior as we showed for the NMR example. oL and uL undergo a single exponential
dephase, while the cL state remains unchanged. For equal couplings (not shown),
none of the logical states decay.

axes thus lead to dephasing, as our logical qubit is only immune to random rotations

about a single axis. In the isotropic case the electron Te process can be modeled as

a dephasing channel for the nuclear spins. For the anisotropic case, the channel then

looks depolarizing.

For collective rotations about a random axis, it has been shown [146, 45, 145] that

the smallest noiseless subsystem supporting one qubit of information exists for three

spin-1/2 particles within doubly degenerate subsystems of J = 1/2. Our numerical

calculations of the eigenspaces of 2, after a Gram-Schmidt decomposition, show that

when the couplings are equal (Aj = A, Bj = B, w1j = wi), a total of five states have

zero eigenvalues with eigenvectors I /) and I|f). This numerical result cannot be

compactly represented as sums of two-spin exchange operators, as the noiseless basis

states.

Intuition suggests that the noiseless operators should remain invariant under the

action 2' and also under the map generated by 2: S = e- t V t. Again, we use numer-

ical calculations to investigate the dynamics. For any state 19 0 o L) the outcome of

the map S is 1. These states are fixed points of the map, as suspected. If the electron
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Anisotropic, equal couplings
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Figure 6-2: Purity of le-2n DFS Qubit. For equal couplings (a), the caz and a,
following single exponential decays to zero. The state uL saturates a 2/3 because the
fixed point of this map is 1qL) = 1 - 3 2 . For unequal couplings, all of the logical
states decay to zero, as is characteristic of a depolarizing channel.

spin state has an identity component, then S1e ® aL) = a|Ie 0 & L) + 01 0 crg .

The non-unitality of the process manifests itself as the left eigenvectors are not in

one-to-one correspondence with the right eigenvectors. One would suspect depolariz-

ing/repolarizing of the state as tr{p(t = 0) 2 } $ tr{p(t -- oo) 2}. However, if we trace

out the electron spin, we see that the information within the nuclear subsystem is

preserved. Thus the initial state of the electron spin does not have to be the thermal

state, but should be diagonal. This means that a single qubit of information within

the three nuclear spins can be preserved.

The usual catalogue of logical encodings can thus be employed to nuclear spin

subsystems coupled to a single electron spin to extend the memory of nuclear spin

registers beyond the Te of the electron spin. However, if the hyperfine couplings and

Larmor frequencies of the nuclear spins composing the logical qubit are incompatible

with the encoding, the natural Hamiltonian will drive the state outside the protected

space.

Lastly, we have conveniently dropped the nuclear dipole-dipole interactions from

-fo as argued earlier that these couplings are small compared to the hyperfine terms.
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While we need not use the dipolar action for control, during long times of a relaxation

process the slight change in eigenstates and symmetry breaking will slowly leak the

information from the protected subsystem into the environment. Without further

explanation, we suggest the possibility of approximate DFSes [5] or modeling the

dipolar evolution as a finite correlation time noise process [139].

6.3 Generating Robust Control

Identification of a nuclear spin memory has many implications for small scale quan-

tum information processors including quantum repeaters [17], spin-based storage [95].

In these applications quantum information must be transferred from a more volatile

qubit to the memory with a high fidelity and should be done unitarily. As an odd

quirk of nature, the precise Hamiltonians supporting logical qubits are not univer-

sally accessible. In order to encode into and out of the protected subspace you must

break the symmetry, if only briefly, that gives you an encoding. In a system where

the coupling between two spins could be tuned dynamically, either by changing the

electromagnetic fields or moving particles apart, this task would be rather straight-

forward. For systems like those in magnetic resonance, the couplings are well-defined

and cannot be rapidly changed. In essence there seems to be a trade-off between

having robustness or control.

By dynamically modulating the Hamiltonian with external fields, we can attempt

to symmetrize the Hamiltonian on average. This technique has its origins in magnetic

resonance where multiple-pulse sequences have been used to remove interactions on

average; the quantum information literature uses the moniker of "bang-bang" control,

as the amplitudes used for modulating the system must typically be strong compared

to the noise correlation time.

While decoupling the electron spin from the nuclear spin would indeed remove

the effects of Te relaxation on the nuclear spins, several arguments can be made in

favor of resymmetrizing. First, to decouple with bang-bang style pulses the system

must be able to support a large bandwidth response. For ESR systems, this includes
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both a high-power amplifier with the ability to excite all interactions in the system

simultaneously and a low Q resonator for dealing with nanosecond scale responses.

Such low Q's are typically avoided in ESR as the inductive detection scales as v/Q.

For some optically detected systems [77, 66], hard pulse techniques may be possible.

One method of decoupling involves performing an average over a group, g9, such

that the effective Hamiltonian of the system becomes some desired Hamiltonian [19).

If we want all of the nuclear spins to appear identical, this require averages of the cyclic

group, CN, where N is the total number of nuclear spins. Symmetrizing Hamiltonian

thus corresponds to implementing the symmetries of the group.

As an example, take the smallest system capable of T1 robustness for a generic

anisotropic Hamiltonian, C3. C3 has 3 rotational symmetries and three planes of

reflective symmetries as seen in Figure 6-3. Implementing the rotational symmetries

corresponds to an exchange of spins A and B, followed by an exchange of B and C.

This net exchange must be done twice, so that spins A, B and C each stay in the

three positions for an equal amount of time. The unitary operators for implementing

such an exchange are:

UAB e- i A ' B  (6.21)

UBC = e-i 4 
c  (6.22)

UCA = e -i•c•A (6.23)

Alternatively, we can implement a series of six reflections to average over C3. Such

a six step cycle only requires a single exchange/swap for each step. Given that the

symmetrizing must be done such that the total cycle time is much quicker than T,

(Tr/T <« 1), one would expect the three-step cycle to outperform the six-step cycle.

This would indeed by true if the unitary dynamics could be generated instantaneously

Fig. 6-4. However, when the unitary dynamics must be generated using the natural

Hamiltonian and by a modulation of the control Hamiltonian, the details of this

process can affect which scheme is best. Not all unitary gates are created equal. For

example, any gate U, above must be implemented on the combined le-3n system
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Figure 6-3: Dynamic Symmetrization (cyclic).

as Unet = P U, . This has a tensor product decomposition: U(2) 0 U(2) 0 U(4).

However, if we attempt to generate a single step of the rotation cycle we require

an operator of the form U(2) 0 U(8). As the form of the anisotropic Hamiltonian

and a simply control Hamiltonian can be written solely as tensor products of U(2),

generating unitary gates span higher dimensional unitary groups requires longer time

evolution.'

6.4 Conclusions

In this section we have elucidated a solution to electron T1 processes limiting cou-

pled nuclear spin coherence times. For electron-nuclear systems where the hyperfine

coupling takes on an isotropic form (aiso -I), the electron spin flips induce uniaxial

dephasing; however, in the anisotropic hyperfine case, the dephasing occurs along two

orthogonal axes, leading to depolarization. A memory of nuclear spin qubits can still

be achieved by going to logical encodings of qubits. While we have studied a few

key logical encodings, the noise models we have presented do not take into account
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Figure 6-4: Dynamic Symmetrization (reflection).

any nuclear spin-lattice or spin-spin relaxation mechanisms. Further investigation

under a complete noise model will give added insight into the dynamics and utility

of these systems. Also, we have only studied the case of Markovian noise processes.

Finite correlation times will dictate which symmetrization schemes work best and

most robustly in realistic scenarios.
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Chapter 7

Instrumentation

Pulsed electron spin resonance is a widely used technique in spectroscopy of param-

agnetic substances [130], but has rarely been applied to observe coherent dynamics

over large Hilbert spaces. As such dynamics are the ultimate goal of QIP, we have de-

veloped pulsed ESR instrumentation and techniques specific to engineering coherent

control in electron/nuclear spin systems. In this section we describe the requirements,

design, and operation of the microwave electronics and cryogenic probe.

7.1 X-Band Pulsed ESR Spectrometer

As described in Chapter 5, we wish to operate our quantum system of electron and

nuclear spin state at a magnetic field where the anisotropic hyperfine interaction

and nuclear Zeeman interaction have comparable strengths. For malonic acid 0.4T

is a convenient field strength; with an electronic g-factor of -2, this corresponds to

X-band microwave frequencies (8-12 GHz). Pulsed spectrometers operating in this

range have existed since the mid-50s, as research groups modified CW ESR spectrom-

eters to observe spin echoes. Technological improvements in microwave electronics

gave rise to more sophisticated spectrometers in the mid-60s [100, 18, 63] and more

recent advances throughout the 1990s introduced microelectronics to the pulsed ESR

system [42, 41, 131, 12]. Furthermore, commercial pulsed ESR spectrometers can be

purchased operating from the L-band (800 MHz) to the W-band (95 GHz), however,
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these systems do not readily allow for arbitrary fast modulation of the microwave

control fields - a requirement for robust control of the hyperfine interaction. Gaus-

sian and Sinc shaped pulses have been used for EPR-based imaging techniques[35]

and in limited spectroscopic applications[125], but arbitrary waveform generation on

an X-band carrier frequency, though not technically challenging, has not been widely

used by the pulse ESR community.

Our custom spectrometer benefits from advances in microwave technology in the

X-band, driven primarily by communications and radar applications. This has al-

lowed for miniaturization of passive (circulators, attenuators, directional couplers,

etc) and active (amplifiers, phase shifters, mixers) components. Connectivity of the

components can be achieved without waveguides using low-loss coaxial cables, al-

lowing for a small form-factor spectrometer. We include PCI based acquisition and

timing, where a digitizer and pulse programmer reside in the personal computer con-

trolling the spectrometer. A library of quantum gates are easily transferred to the

arbitrary waveform generator (AWG) using custom software.

Figure 7-1 shows a block diagram for the spectrometer. An Agilent E8254A (AA)

microwave synthesizer provides the base microwave frequency, VB, up to 20 GHz,

with kHz resolution. This signal is mixed with an intermediate frequency (IF) signal,

VIE = 159MHz, from a PTS-160 synthesizer (BB) matching the resonance frequency

of our system vo = VB + VIF. A single-sideband upconverter supresses the first lower

harmonic VB - VIF and outputs vs. The carrier frequency is then amplified using a

low noise 10 dB pre-amplifier (i) to drive a double-balanced mixer (j) with a 4GHz IF

bandwidth. A 250 MHz signal from an AWG (CC) provides amplitude modulation

of the carrier signal. Another amplification stage (g) compensates for the insertion

loss of an ECL (emitter coupled logic) driven 6-bit digital phase shifter (h). A series

of fast buffer amplifiers converts a 0-5V TTL signal to the -5V to OV ECL levels. A

variable attenuator (k, see Figure 7-2 for calibration curve) allows for adjusting the

input signal to a 12W solid-state power amplifier with maximum output of 42 dBm, 50

dB gain and a 1 GHz bandwidth centered at 11.2 GHz (I). The sensitivity in coupling

the spectrometer to the microwave resonator necessitates variable attenuation control
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for the fixed gain amplifier.

The output of the power amplifier arrives at port 1 of a three port circulator

(m)with 23 dB isolation between ports. Port 2 couples to a loop gap microwave

resonator (described in the following section). Port 3 connects back to another circu-

lator (m) for further isolation. A PIN diode power limiter (o) and a TTL microwave

switch (n) provide two additional layers of isolation between the probe and the re-

ceive train when pulsing at high power. The switch can be triggered closed during

acquisition with roughly a 300ns deadtime.

Acquisition begins after the switch with nearly 100dB of gain in multiple stages.

First, a receiver frontend (p) mixes down the signal near v0 with the base frequency

(vB), obtained from a directional coupler (z) off the main microwave synthesizer.

This component amplifies the signal by 30 dB and has a noise figure of 2.5dB. A

high-gain low-noise preamplifier (t) provides 25dB of IF gain; further amplification

(u) brings the 159 MHz signal up another 25dB. A 900 hybrid splits (v) the IF

signal into in-phase and quadrature components that are mixed down to DC with

two IF double-balanced mixers (x) with the PTS source providing a local oscillator

for phase sensitive detection. Two low-pass filters (y) remove the harmonics from

the mixers. Each of the quadrature channels are then digitized with a PCI based

100MHz, 14-bit digital acquisition card (National Instruments NI-5122)

A PulseBlasterESR (SpinCore) PCI-based pulse programmer operating at 300

MHz allows for 3.3ns resolution for any instruction word. This device provides 4

BNC channels capable of driving TTL lines and 24 additional channels buffered to

drive additional TTL lines. The pulse programmer controls the following time-critical

parts of the spectrometer: switch gating, amplifier blanking, digital phase shifting,

AWG triggering, and digitizer triggering. To specify the amplitude modulation of

the microwave carrier, shaped waveforms are loaded onto the AWG using a GPIB

interface (Measurement Computing PCI-GPIB-300K).

A key calibration in the optimal operation of the spectrometer is the linear scaling

of the power amplifier output. As we mix a 250 MHz modulation from our AWG with

the main microwave carrier (vBB), the voltage levels of modulation will affect the mixer
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Figure 7-1: Block Diagram of Microwave and RF Electronics for Pulsed ESR Spectrometer. Details of the components cor-
responding to lowercase labels can be found in Table 7.1. The capital letters are reserved for separate, complex components:
microwave synthesizer (AA), the RF synthesizer (BB), the AWG (CC),the probe (DD) (See 7.2), and dual channel digitizer
(EE).



Manufacturer
RF Amplifier
Power divider
Attenuator
Low Pass Filter
SSB Upconverter
Microwave Amplifier
Digital Phase Shifter
Microwave Amplifier
Double-Balanced Mixer
Attenuator
Power Amplifier
Circulator
Microwave Switch
Limiter (PIN-PIN Diode)
Receiver Front-end
Low Pass Filter
Low Pass Filter
High Pass Filter
IF Amplifier
IF Amplifier
900 Hybrid
Power divider
Mixer
Low Pass Filter
10 dB Directional Coupler

Mini-Circuits
Mini-Circuits
Mini-Circuits
Mini-Circuits
MITEQ
Mini-Circuits
MITEQ
MITEQ
MITEQ
ATM
Microwave Power
Ditom
ATM
Eclipse Microwave
MITEQ
Mini-Circuits
Mini-Circuits
Mini-Circuits
HD Communications Corp.
Mini-Circuits
Pulsar
Mini-Circuits
Mini-Circuits
Mini-Circuits
ATM

ZFL-1HAD
ZMSC-2-1
SAT-10
SLP-300
SMO812LC2MDC
ZX60-14012L-S
PS-0618-360-5-5.6
AFS-2-10701370
DMO812LW2
AF966-10
L1112-41-TL39
D3C1112
S1517D
EPL8012A3
ARO812LC2C
VLP-64
SLP-200
SLP-50
HD18440
ZFL-500LN
QE-07412
ZX10-2-12
ZFM-3
SLP-50
Cl116-10

Table 7.1: Microwave and RF components.
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(j) output amplitude fed into the power amplifier (I). For shaped pulsing, this voltage

varies discretely from 0% to 100% with 8-bit precision; we need the amplifier output

to correspond linearly to any input signal as the engineered quantum gates depend

on such linearity. The variable attenuator (k) is set such that we do not saturate the

amplifier and a flat modulation signal at 100% corresponds to the maximum power

output (42dBm). We calibrate the linearity by adding 120 dB of attenuation after

the power amplifier and feeding the amplifier output directly into the receiver front

end (p). (The large degree of attenuation excludes saturation effects from the receiver

front end.) The usual heterodyne detection, less one IF amp (u) allows us to observe

a DC signal proportional to the amplifier output. We specify flat (boxcar) shaped

pulses with amplitudes ranging from 10% to 100% of the maximum output voltage

of the AWG. We then take the mean digitized DC level after a series of 256 scans

and plot this level for different settings of the variable attenuator (k) in Figure 7-

2. Using this data, we set the maximum AWG output voltage to 300mV (pp). We

have also used a 6th order polynomial fit to some of the non-linear traces (4 and

5). By inverting the polynomial, we can then adjust the input voltage nonlinearly to

ensure linear output (not shown). This allows for shorter ! times and modulations

sequences.

7.2 Low-Temperature Pulsed ENDOR Probe De-

sign

The novel spectrometer presented in Section 7.1 enables the use of optimal control

techniques and pulse shaping in ESR for an electron-nuclear spin system. Next, we

focus on coupling the magnetic fields arising from electron spin magnetization to the

spectrometer by means of a resonant structure. At microwaves frequencies, TE or

TM mode cavities in rectangular or cylindrical geometries [113] can provide high Q

resonant structures; loop-gap resonators (Section 7.2.1), dielectric resonators, and

stripline resonators and their variations can have Q's of 1 to 10, 000 but the dimen-
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Figure 7-2: Microwave Power Amplifer Linearization. Each curve shows the hetero-
dyne detected output for a specified AWG input signal. At small attenuation (10-8)
the amplifier begins saturation at 40% of the maximum AWG signal. Linear operation
begins at a setting of 3.
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sions of the resonators are typically on the order of the wavelength of the radiation.

Many previous probe designs [41, 27] for pulsed ESR and ENDOR (electron-nuclear

double resonance) provided us insight into microwave materials, coupling mechanism,

geometries, etc.

The probe for our ESR or ENDOR spectrometer not only holds the resonator,

but most also provide a stable mounting of the sample within the resonant cav-

ity. For room temperature (300K) studies this is usually a trivial matter; for low-

temperature/cryogenic studies several additional factors must be taken into account.

First, there must be a means of conducting heat from the cryogenic bath to the

sample. This can be done by submersing the sample into the cryogen or by using a

cold-finger device (Figure 7-6) with appreciable thermal conductivity at the temper-

atures of interest. Care must be taken to isolate the low temperature components

from ambient temperature and minimize conductive, convective, and radiative heat

losses. Radiative losses (4 T 4 ) are minimized using a radiation shield thermally

sunk to liquid nitrogen temperatures. We evacuate (10' torr) the sample space to

reduce convective losses.

7.2.1 Loop gap resonators

The loop gap resonator [93, 94, 47, 46] is a resonant structure with dimensions on the

order of the microwave wavelength. The basic idea comes from modeling a slotted

tube as a lumped element device. A cylindrical conductive tube of length z and with

radius r gives rise to a natural inductance L when current flows along the surface

of the conductor. If slots of thickness t are made down the length of the tube, the

current cannot flow along the slots and a charge buildup at the gaps will give rise

to a capacitance C. This device will resonate at a frequency of roughly 1/1V . An

oscillating current flowing azimuthially around the loop gives rise to a magnetic field

along the long axis of the tube. The electromagnetic fields can be further confined

by placing the loop-gap in a larger diameter conductor of radius R. Slight empirical

corrections give the formula for determining the resonance based on the geometric

factors, as reported by Hyde [46]. Figure 7-3 shows a schematic of the loop gap
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Figure 7-3: Loop Gap Resonator. r defines the inner radius and R is the radius to
the shield. W is the gap width and t is the thickness of the conducting cylinder.
Z defines the overall length of the resonator and only contributes to the resonance
due to stray fields when Z is comparable to r. n defines the number of loops. The
inductance of such a structure is L = po7r 2/Z; the capacitance is C = EWZ/tn.

resonator.

The quality factor of the resonator depends on the conductivity of the materials

used, the dielectric constant, E, of the materials between the conductors, and the

uniformity of the gaps. Coupling to the resonator can be achieved inductively by

placing a loop of the inner coaxial conductor near the end of the loop gap resonator

or capacitively by coupling the inner conductor of a coax (or antenna) to the gap.

Our loop gap resonators were constructed from oxygen-free high conductivity

copper tubes with an outer diameter of 4mm, inner diameter of 3mm, and lengths

ranging from 4mm-12mm. Two gaps ranging from 0.25mm - 0.50mm were made

along long axis. The slotted copper tubes are then inserted into fused silica (quartz)

tubes (ID=4mm, OD=6.4mm) and affixed to the inner surface using a cyanoacrylate

adhesive with care taken to keep the gaps smooth and free of adhesive. An outer shield

(OD=10mm) is placed around the loop gap resonator. These devices will resonate

between 10.500 GHz and 12.100 GHz. Measurements using a microwave network

analyzer show a Q of about 250.
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7.2.2 Generation 1 Probe

In the design of our probe, we have tried to satisfy constraints on the sample tem-

perature, easy of access, compatibility with existing equipment and modularity. Our

first task was to arrange for sample and resonator mounting with an existing Janus

DT cryostat. Figure 7-4 shows the probe tail. The outer vacuum shield (A) attaches

to the helium dewar via a viton o-ring seal. An aluminum vacuum box (E) accom-

modating the resonator and any electronics is welded to (A). The bottom plate (see

Figure 7-5) mates with the vacuum box and seals with an o-ring (D). The OFHC

copper cold plate (C) mounts to the helium space of the dewar via an indium seal

and can be cooled to 4K. The radiation shield (B) sits flush against to the nitrogen

space of the dewar and remains at 77K to reduce radiative losses. The assembled tail

is positioned between the two pole pieces of an electromagnet such that the sample

coincides with the most homogenous part of the magnetic field.

The bottom plate design (Figure 7-5) provides convenient, modular access to

change samples or resonators. Inductive coupling to the loop gap resonator is achieved

by bending the inner conductor of a 0.141" coaxial cable (A) into a teardrop shaped

loop and soldering the inner conductor to the coaxial shied. Given the assymmetry

of the coupling loop with respect to the loop gap resonator, impedance matching of

the transmission line (coaxial cable) to the resonator depends both on the relative

orientation of the coupling loop and the distance from the surface. A major concern

is the robustness and reproducibility of moving the coupling loop toward and away

from the loop gap resonator.

Berillium copper bellows provide a means for retaining vacuum and permitting

linear motion of the coupling loop without using a proper vacuum feedthrough. Un-

fortunately, the restoring force of the bellows causes lateral and bending motions; this

is problematic for maintaining the alignment of the coupling loop. We compensate for

this by silver soldering both end of the bellows to 6mm thick brass endcaps (C&D);

the coaxial cable was soldered to one of the brass pieces to complete a vacuum seal.

Both brass pieces fit snugly into the barrel of brass holder (F) in order to prevent
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Figure 7-4: Cryostat-Probe Interface. Outer vacuum shield (A). Radiation Shield
(B). Copper cold plate (C). O-ring groove (D). Vacuum Box (E).
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(a) Without Barrel

Figure 7-5: Probe Bottom Plate. In (a) we show the coaxial cable (A), tuning screw
(B), and brass bellows attachments (C & D) relative to the bottom plate (E). In (b)
we add the brass barrel (C) which restricts lateral movement of C & D.

lateral deflections when the bellows compress. A 1/4-40 threaded hollow adjuster (B)

mates to a protrusion on the bottom brass endcap allowing for a fine adjustment of

the height of the coupling loop.

Ideally the resonator should mount to the bottom plate and the sample should be

suspended from the coldplate in order to reach the lowest temperature possible. A

defect in the aluminum weld of the outer vacuum to the probe vacuum box caused

a central axis alignment issue of the vacuum shield, radiation shield, and coldplate.

The inner diameter of the loop-gap resonator (3mm) and the relative sample size (1-

1.5mm in girth) did not provide a generous tolerance when aligning the sample to the

loop gap by moving the bottom plate into position. Furthermore, when evacuated,

forces on the outer vacuum shield changed the relative position of the OVC to the cold

finger causing further distortions. To ensure proper sample-resonator alignment, we

have designed a rexolite holder (Figure 7-6 ) containing the loop gap resonator, shield

and sample in one complete package. Angular references on the top surface allow for

changing the sample's rotational alignment with respect to the main magnetic field

- an essential piece to tuning the anisotropic hyperfine interaction. With this de-

sign, the sample and loop gap resonator can be aligned [relative to the coupling loop]
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(a) Bottom rexolite holder (b) Rexolite Holder (Exploded View)

Figure 7-6: Rexolite Sample Holder. The lower half of the rexolite holder (a) is
comprised of a two-piece copper quartz rod holder (A & B), quartz rod (C), outer
shield (D), and rexolite piece (E). The loop gap resonator (not shown) mounts along
the center axis. The upper half (b) consists of another rexolite holder (F) with 150
markings where (A) mounts for sample orientation.

outside of the probe box and mounted directly to the copper cold finger. Thermal

contraction of the device at 4K and the increased thermal mass of the rexolite holder

prevent us from cooling the sample to liquid helium temperatures. At liquid nitro-

gen temperatures (77K) the relaxation properties and polarization of the samples of

interest are appreciable; thermal contractions of the loop gap resonator, while finite

and observable in its frequency response, do not impede the observance of electron

spin resonance.

Once the sample, resonator and bottom plate have been completely mounted, we

evacuate the sample space and cool the entire system to 77K. Mechanical movements

due to ambient pressure and thermal contractions of the resonator necessitate further

impedance matching of the coupling loop to the loaded resonator. To measure the

relative impedance, we attach the probe and a microwave synthesizer to a three port

circulator and measure the reflected power on the third port with a diode detector.

When the probe is matched to the transmission line (50Q), the observed voltage

from the diode detecter approaches zero (see Figure 7-7). In Figure 7-8 we show this

voltage as a function of microwave frequency for different adjustments to the coupling

129



.... d....... ,

Figure 7-7: Resonator Measurement Setup. A swept microwave signal (AA) and the
probe are attached to a three port circulator. A diode detector measures the output
voltage as dO is varied.

loop height. Optimal coupling usually occurs when the edge of the coupling loop is

within 2-3mm of the resonator end.

7.3 Future Directions of Instrumentation

Our probe and spectrometer have allowed us to demonstrate universal control in a one

electron, one nuclear spin (le-1n) quantum information processor. However, initial

investigations into a le-2n system suggest that faster hardware and phase sensitive

modulation, although mathematically not necessary, may be useful. In addition, a

desire to study samples (like Si:P) with strongly temperature dependent relaxation

times [1] motivates changes to the sample mounting. In short, the design, assembly

and usage of this ESR spectrometer has brought to light many of the shortcomings

of this first generation instrument. In this section, we will outline some future direc-

tions for extending the current design to study larger Hilbert spaces or different spin

systems.
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Resonantor traces v. Loop Height

Frequency (GHz)

Figure 7-8: Impedance Matching of Loop Gap Resonator. Each traces shows the
impedance mismatch of the probe to a 50Q tranmission line as measured with a
diode detector. dO represents an equilibrium position of the coupling loop; the integers
represent turns of a 1/4-40 screwthread. This resonance of this loop gap is around
12.004 GHz as indicated by the arrow.
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7.3.1 Spectrometer component advances

In accordance with our numerical investigations for control of large Hilbert spaces,

a future design benefits from faster, phase sensitive modulation and increased mi-

crowave power. The modulation rate of a microwave carrier signal is fundamentally

limited by the frequency of that carrier signal, roughly 10-12GHz for our system.

With a 1-2 Gs/s AWG, we can generate pulses shaped with 0.5-1ns time steps well

within our X-band carrier. In addition, in phase and quadrature modulation of the

carrier signal provides an additional control parameter. When engineering quantum

gates numerically, the algorithms converge to satisfactory solutions quickly with this

additional parameter. Moreover, strong/fast perturbations to the system yield shorter

quantum gates. A 1kW X-Band traveling-wave-tube (TWT) microwave amplifiers or

120W solid-state microwave amplifiers would provide the higher nutation frequencies

we desire . As the oscillating magnetic field in the resonator scales as the square-root

of the power, a 100-fold increase in power would only give a 10-fold increase in our

control amplitude. Next, one needs to upgrade the pulse programmer, which controls

the timing of all aforementioned parts. Commercially available sub-nanosecond tim-

ing and at least 12 independent control lines would provide ample timing resources.

Lastly, a larger bandwidth heterodyne detection module will allow for observation

of more strongly coupled hyperfine systems. Modifications of the detection module

include increasing the IF frequency above the current value of 159MHz and any re-

moval of bandwidth limited components. A digitizer with sampling of 1Gs/s will also

allow for finer observations of echo modulations.

7.3.2 Probe advances

As the sample and control fields are coupled via a finite-bandwidth resonator this

too must increased. In Chapter 3, we outlined how distortions of shaped pulses due

to tuned-circuit ringing degrade the fidelity of an engineered quantum gate. With a

resonator Q of 250 and a resonance frequency of 12 GHz, we can expect a bandwidth

of 48 MHz. Even our current modulations rates are outside the limitations of this
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resonator. Degrading the Q (and increasing the bandwidth) can be achieved by

insertion of a lossy dielectric material, changing the material of the resonator to one

with a lower electrical conductivity, or by changing the geometry. This last option

may be promising, as the current resonator design does not have a broad tuning

range. Samples with differing dielectric constants can load the resonator and lower the

resonance frequency, as can thermal changes, like temperature dependent electrical

conductivity or contractions changing the gap sizes of a loop-gap resonator. Ideally,

we would like to pick a single resonance frequency and tune the resonator, as opposed

to the current method where the loop gap resonance defines the operating frequency.

Bridged-loop gap resonators [111, 61] and stacked dielectric resonators [641 are both

options.

While providing increased modulation bandwidth, decreasing the Q reduces the

detection sensitivity. The sensitivity of the detected field, assuming thermal resistive

noise, scales as QV [2], we can compensate for increased resonator bandwidth with

decreased resonator volume (V,). Another way to increase the sensitivity is to increase

the polarization of the sample by going to lower temperatures (see Figure 7-9). The

cold plate of the old design can be removed and the sample placed directly in liquid

helium. Rotating the sample with respect to the magnetic field can occur directly

with a series of support stages and a mounting rod. Further support structures will

be necessary to adjust the alignment of the sample within the resonator.

In short, improvements to the spectrometer involve increased bandwidth and a

variety of trade-offs. A necessary decrease in the Q of the resonator can be compen-

sated for by going to lower samples temperatures, small volumes, and higher power

amplifiers.
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Figure 7-9: Polarization of electron spin (S=1/2). For several key temperatures, we
plot the electron spin polarization as a function of magnetic field: P = tanh( 'B).
For magnetic fields compatible with the anisotropic hyperfine interaction, roughly
33% polarization can occur near liquid 4He temperatures.
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Chapter 8

Conclusion

In the preceding six chapters, I have developed several tools for coherently controlling

quantum information in a variety of physical settings and have shown demonstrations

of their feasibility. Methods developed using liquid state NMR include improving the

system model of classical control fields, controlling logical qubits in the presence of

leakage, decreasing the signal loss in state preparation for logical encodings, and

understanding real-world implementations of optimal control methods. In addition,

I show how these techniques, developed in a test-bed system, are applicable to other

technologies, including solid-state spin systems.

To control nuclear spins by an electron spin actuator represents a new paradigm

for coherent quantum control: accessing a subsystem without directly addressing the

qubits within the subsystem. The faster gate times seen for the le-1n and le-2n

systems can be expected with additional nuclear spin qubits provided the hyperfine

interactions are as strong. This added resource does not come without cost, as envi-

ronmental coupling to the electron spin manifests itself as depolarizing noise on the

nuclear subsystem. Here, the insights gathered from implementing logical encodings

in the liquid state can be applied to find a noiseless/decoherence-free subsystem of

nuclear spins in the solid-state. As the Hamiltonian required for complete control-

lability of the system and the Hamiltonian necessary for an NS without leakage are

mutually exclusive, the same types of modulation techniques used in Chapter 4 to

limit the leakage can be used to generate the correct symmetries on average.
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8.1 Outlook

The universality of the anisotropic hyperfine interaction is relevant to most solid-state

quantum information proposals. In these systems both the electron and nuclear spins

can serve as qubits and as environments. Where the interactions can be resolved,

those parts of the system can be controlled. The idea of one species corrupting the

coherence of another is true on a large scale, but locally the systems are universal.

When possible the largest completely controllable quantum system should be used;

decoupling usable spins in the presence of available control is a waste of a valuable

resource.

As the size of any controllable quantum system grows, the operational fidelity of

quantum gates in general decays. While nature's abhorrence of a quantum computer is

an unanswered question, progress towards a large scale quantum computational device

- capable of eclipsing the power of classical computers - proceeds at a slow, steady

rate. In light of the long timescale expected until the dawn of quantum computation,

one can ask the question: What sort of small-scale coherent solid-state devices could

be made by drawing from QIP ideas? One possible idea is a quantum repeater or

memory for storing the state of a photon or short-lived qubit for an extended period

of time and then moving it onward. This could extend the coherence time of the

original state. Another possibility is a few qubit processor implementing the phase

estimation algorithm. As the speed-ups of most quantum algorithms rely on the

phase of the quantum state and finding a periodicity, the ability to monitor the phase

of a quantum state can have applications in interferometry, quantum metrology, and

quantum simulations.

8.2 Extensions of Logical Qubits in Liquid State

NMR

Improved models of control fields, subsystem pseudo-pure states, and encoded logic

presented in this thesis can be extended into more complex encodings with the hope
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of achieving higher fidelity control over multiple layers of logically encoded qubits.

With six qubits, fully concatenated error protection schemes could be implemented.

For example, by adding another logical qubit like that used in Chapter 4, the system

ground state will be I0)1LIO)2LO10)3L. These three logical qubits can then be used for yet

another encoding with the basis state 10)l = JO)ILO|2LI0)3L and I1) = I1)1LI1)2LI1)3L.

This new logical qubit would be robust to pairwise collective ý noise to infinite depth

and a oL noise to first order. (10)j+j1)j)//-2 is a GHZ state of collective z DFS qubits.

Alternatively, one can encode against as errors first and then logically collective phase

errors by switching the order - a DFS qubit made from two physical GHZ states.

While the encodings can be analyzed theoretically given a particular noise model,

studying the coherence properties of these two states experimentally will provide

insight into the mechanisms of decoherence. These properties will depend greatly

on the molecule used as the quantum information processor. Indeed, recent work

using NMR on liquid crystals [60] shows an improvement in fidelity by using a logical

encoding. Lastly, subsystem pseudo-pure states enable a more efficient study of any

logical qubit states by simplifying the state preparation; the accompanying measures

of fidelity over the logical degrees of freedom will enable a measure of leakage in

implementation.

Further improvements can also be made in the methods used to engineer unitary

transformations. First, the bandwidth limitations of the device used to couple the

control fields to the spin system (e.g. the coil of the RF circuit) should be included

in the system model used to find control sequences. This can be done by either

simulating the control field explicitly with a convolution kernel or putting a penalty

on fast modulations. For open quantum systems, the algorithms used to engineer

quantum gates do not take into account relaxation processes. The implementation

used in Chapter 4 maximally leaves the subspace of a single qubit when rotations

of aL are required. By adding a relaxation superoperator to the SMP or GRAPE

algorithm, as well as penalties for time spend outside of the subspace, it may be

possible to find a path through Liouville space that minimizes decoherence due to

leakage during a oL operation. Finally, as the systems scale in size, using simulations
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of large quantum systems to find control sequences becomes inefficient. It may be

possible to use the quantum information processor itself as a "simulator", whereby

measurements of the quantum state can be used to assess the fidelity of the quantum

operation. The modulation sequence can then be iteratively altered to improve the

gate fidelity. Similar ideas have been implemented in atomic ensemble systems [105J.

8.3 Extensions of Anisotropic Hyperfine Control

Control of nuclear spin qubits local to an electron spin via the anisotropic hyperfine

interaction provide a new tool engineering small scale quantum registers. The le-in

implementation (Chapter 5) shows that AHF control is possible by measuring quan-

tum phase evolution of the nuclear spins on the electron spin. The next step would be

to assess the goodness of the quantum gate implementation using a quantitative mea-

sure, like gate fidelity. This would also require pseudo-pure sequence for the ensemble

system, not like that of liquid state NMR. In fact, we have found the modulation se-

quences for implementing the necessary rotations of a pseudo-pure state reported in

[96]. It is likely that some gates will not perform as intended due to bandwidth limi-

tations of the resonator; improvements to the optimal control algorithms can account

for this bandwidth and should give increased fidelities. The possible difference in nu-

clear spin relaxation times of the two manifolds (T2 vs. TO) is yet another property

of the AHF system that needs to be investigated. Gate engineering can be used to

simplify the measurement of the relaxation superoperator. Lastly, The le-2n mal-

onic acid system (Chapter 5) is an ideal candidate for immediate demonstration of a

nuclear-nuclear gate.

To extend these AHF systems to be used as a quantum memory, I have shown

that at least three nuclear spins are necessary for the nuclear T2 to extend past the

electron T1 . One possible sample for showing this is a phosphorous donor embedded in

a lattice of silicon. NMR measurements of the nuclear T2 in bulk 29Si show coherence

times of several seconds to minutes. These times will degrade near a donor electron,

but should be long given no other nearby defects. The geometry of the four silicon-29

138



Figure 8-1: Isotropic DFS with Si:P. The nearest four silicon atoms to a phosphorus
defect provide the correct geometry for a le-4n logical qubit. The dark (blue) spheres
are 29Si atoms. The light (yellow) sphere is a 31P atom.

atoms in the E-shell of the defect silicon lattice [150] (see Figure 8-1) readily provides

the symmetry necessary for a le-4n isotropic DFS'. Universality can be recovered by

reorienting the crystal with respect to the magnetic field and applying a sequence

to induce a time-averaged symmetry to the Hamiltonian. The isotropic hyperfine

coupling of the phosphorus will divide the system into four separate manifolds instead

of just the two of the electron spin states. Engineering of such a system may be beyond

the forefront of silicon technology, but should provide a very clean quantum memory.

If these local quantum memories can be connected in an efficient, coherent manner,

we can build the basis of a larger, robust quantum processor.

Finally, in order to scale these quantum memories controlled via the anisotropic

hyperfine interaction beyond one logical qubit the local processors must be con-

nected. The electron spin provides a "handle" for linking these two systems in a

variety of ways: optically when such an excitation exists, electrically if the system

is a metal/semiconductor, or through modulating of the dipole-dipole interaction be-

tween two electrons. Strong measurements of the electron spins can then entangle two

1The isotropic DFS is spanned by the two basis vectors 10)L = Is, s) and I1)L = -(It+,t-) +
It-,t+) - Ito ,t 0)). Is) is the singlet state and Ito,+,_) are the J=1 triplet states with Jz angular
momentum 0,+1, and -1 respectively
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or more nuclear subsystems into a robust multiple logical qubit quantum memory.
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Appendix A

Cumulant Methods

We calculate the ensemble average of a time-ordered exponential in terms of the cumu-

lant expansion. First, expand the time-ordered average exponential S = (T exp(-i fo dt'dV(t')))

via the Dyson series:

S = 1 - i f dt' (f(t')) + -•, 2Tfl dt t 2(a t (t 1)a3 (t 2)) + "'"

n! fT, ot dt, ... fo, dtn(-ff(tl)... ff (tn)) +..
(A.1)

The term (3V(tl) -.. · (tn)) is called the n-th moment of the distribution. We

want now to express this same propagator in terms of the cumulant function K(t),

defined by:

S = eK (t )
(A.2)

The cumulant function itself can most generally be expressed as a power series in

time:

K(t) = n Kn= -itK 1 + ()2 K2 +... (A.3)

Expanding now the exponential (A.2) using the expression in equation (A.3) we have:

S = 1+ K(t) + (K(t))2 +

= 1-itKi+ --I. !(K2+K)+2) "

(A.4)

where in the second line we have separated terms of the same order in time. By
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equating terms of the same order in Eq. (A.4) and (A.1) we obtain the cumulants

K& in terms of the moments of order at most n. For example:

K, = -1 dt' (, (t')) (A.5)

K2 = - T dti dt2 ( (tI))V(t 2 )) - K

The propagator can therefore be expressed in terms of the cumulant averages:

= (A.6)
'e(tl)JY(t2))C= T((y)(t 1)ay2(t2)) - ( (t)( (t2)

The propagator can therefore be written as:

S = exp - i dt'(,Ye(t')) - dtl dt2 ( 1(tl)(t 2 )) +... (A.7)

Note that if J' is a deterministic function of time, the ensemble averages can be

dropped and (a(t)) fo dt' '(t') becomes the time-average Hamiltonian, which is

the first term in the Magnus expansion. The second term in the cumulant expansion,

on the other hand, becomes

T ftdtl o dt2 V(t 1)>"(t 2) - ( otdt' (t'))

= 2 dt, dt2  (t ) (t2) - dt 1  dt2 ý Y (t1 ) ye(t2) (A.8)

= d 1 t dt 2 o (t1 )df'(t2) - dt1 dt 2 i (tl)a -(t 2)

It ti= 0dt,1 0 dt2 [y(t) es(t2)],

where [., .] denotes the commutator and we have used the fact that the time-ordering

operator T symmetrizes its argument with respect to permutation of the time points.

This is the second term in the Magnus expansion for the "average" (effective) Hamil-
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tonian, and proceeding in this fashion one can in principle derive average Hamiltonian

theory from the Dyson and cumulant expansions.
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Appendix B

Signal loss in state preparation

Since we are interested in the information that we can manipulate and observe, a

good measure of the sensitivity gain or loss is the SNR of the qubits storing the

information. We consider the magnetization of the Q qubits:

SNR = (1W) cx S(p) = /Tr{•EQ=I aop}2 + Tr{ =1Q ep}2 + Tr{• Q= 1ip}2

(B.1)

At room temperature and in a high magnetic field, the NMR spin system is a

highly mixed state described by the thermal density matrix Pth:

N
P 1 l e1 NNEejj7 ~7 (B.2)

Pth TN - EPeq = N- 2N (B.2)
i=1

where the term EPeq is a small, traceless deviation from the identity, which gives

rise to the observable signal. The ability to use this system as a quantum informa-

tion test-bed relies on effectively purifying the mixed equilibrium state. QIP can be

performed on pseudo-pure states [49, 73, 301, states for which the dynamics of the

observable operators are equivalent to the observables of a pure state. Unfortunately,

the creation of pseudo-pure states comes at the expense of exponential consumption

in experimental resources: time in the case of temporal averaging [73], signal in the

case of spatial averaging [30], or usable Hilbert space in the case logical labeling [49].
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Since the eigenvalues of a pseudo-pure state are different than those of the mixed

state (with the exception of SU(2)), a non-unitary completely positive map, T, must

be implemented:
pp = T(pth) = - ,a(pp - (B.3)

where ppp is a density matrix describing a pure state. The scaling factor a determines

the signal loss and is bounded by the spectral norm ratio (since IIPeql >Ž IT(Peq) I):

ka < 1P/2 (B.4)11 -< - 1/2N1

with IlPeqi = . The SNR loss in the case of a full pseudo-pure state is thus N2N 2
N - I 

"

In the case of encoded qubits, the information is spread throughout the Hilbert

space in a way that is not guaranteed to give an observable signal as defined in Eq.

B.1. Since logical qubits represent actual information, the easiest way the access this

information is to decoded the logical qubits into physical qubits which will give rise

to an observable signal.

We assume to encode 1 logical qubits among N physical qubits, with a syndrome

subsystem S of dimensions 2', then the unitary encoding operation will take the state

over 1 physical qubits and N - 1 ancilla to the encoded state Pk)LIO)s:

Uenc1|),1|)sI00...)N-•-s = I)L)OS (B.5)

where here we assume that the s syndrome states are order as the first ancillas. For

a subsystem pseudo-pure state like that of Eq. 4.5, the state post decoding (Uene) is:

Pspp = (a)(I -2N-2s+ 11) 00 . .)(00 . .. N--s (B.6)
+ 1-a 1

2N -- 2s+7

If we reduce the sum of the SNR from Q to 1 then the information carrying signal is

given by: S(p) = acaS(J1)(4'1) oc aal, where a < Jp P j l- To obtain the spectral
norm of the subsystem pseudo-pure state traceless part, we calculate its eigenvalues:norm of the subsystem pseudo-pure state traceless part, we calculate its eigenvalues:
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a _2 -N  1 - a -2 -N{- - 2-N , - 2N" _ 2 ~+i } (B.7)
2s 2 N 2 s+1

The upper bound for the signal is obtained for a = 2 s±+ -N and we have: SNR oc

N28+ -N.N23+1-
For tensor qubits of logical qubits, as in Eq. 4.7, the decoding has the form:

UcP-Uen= - 2=,[(a1- 11)i 2n-2 )(B.8)
0 9 100...)(00...I + 1n(B

where we have made the assumption that ai = a. The signal is again proportional

to aal and varying a we can find the optimal state. The eigenvalues for the traceless

part of the subsystem pseudo-pure state are:

HV=1_({1 ,0, 7 1T2-_+l }j) - 2-(B.9) (B.9)
= {(-) -p ( a)P I -N 2 -2-"}2s -2n-2s+l ip=--0 2-N,-2

The maximum SNR depends on the relative dimension of the logical subspace and

the syndrome and on the number of encoded qubits. In particular:

When 1 < 1 og2-2-n) the SNR oc N28+1/z-n (The norm reaches the minimum

value 2 -N for a < 2s+1/1-n)

When 1 > log1-2-n ), instead, we obtain SNR oc _2s(2N-2). : The minimum valueao21-- 1 -(2-a 2
8

for the norm (2n - 2')- 1 - 2N is obtained for , i.e. for a 28
28 = 2n-~ 2 8±1 ie for a 2=

Notice that for n < s there is no useful solution. In both cases, the SNR obtained

with a tensor product structure is higher than for the first construction presented.
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Cory DG. "Fidelity enhancement by logical qubit encoding." arXiv:0705.4119v1

[quant-ph].

o Cappellaro P, Hodges JS, Havel TF, Cory DG. "Control of qubits encoded in

decoherence-free subspaces." Laser Physics 17, 545 (2007).

" Hodges JS, Cappellaro, PC, Havel TF, Martinez R, Cory DG. "Experimental

implementation of a logical Bell state encoding ." Physical Review A 75, 042320

(2007).

" Cappellaro P, Hodges JS, Havel TF, Cory DG. "Subsystem pseudopure states."

Physical Review A 75, 042321 (2007).

o Hodges JS, Cappellaro P, Havel TF, Cory DG. "Quantum Control of Nuclear
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