
Inspiration From the Incomplete:
The Role of Asynchronous
Awareness in Digital Art
Creation.

Kyle Matthew Buza

B.A. Biology, Cornell University (1998)
B.A. Chemistry, Cornell University (1998)
M.Eng. Computer Science, Cornell University (2000)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on May 9, 2008 ~3vne a•6~]
in partial fulfillment of the requirements for the degree of
Master of Science at the Massachusetts Institute of Technology

@ Massachusetts Institute of Technology, 2008
All rights reserved

Author Kyle Matthew Buza
Program in Media Arts and Sciences

May 13, 2008

Certified by John Maeda

Associate Director of Research, The Media Lab

Thesis Supervisor

Accepted by Deb Roy

Chair, Departmental Committee on Graduate Studies

Program in Media Arts and Sciences

MA3SA HL'SETTS INS TTT
OF TECHNOLOGY

JuL

JAN 2 1 2008

LIBRARIES

Inspiration From the Incomplete: The
Role of Asynchronous Awareness in
Digital Art Creation.

Kyle Matthew Buza
Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, on May 10, 2008
in partial fulfillment of the requirements for the degree of
Master of Science at the Massachusetts Institute of Technology

Abstract

The majority of visitors to sites on the World Wide Web (WWW) have
traditionally been only passive observers; consumers of previously created
content. More recently, however, these users have been encouraged to
contribute to these sites, opening the door to new forms of creative self
expression. As we enter this new era of widespread collaboration and
sharing made possible by the WWW, one question that remains is how to
build appropriate communication channels to and from this new medium
with respect to the tools used for digitally mediated creative expression.
In this thesis, I will attempt to formulate a coherent set of characteristics
that both creative programming environments and their associated
WWW sites must possess to help improve, inspire, and support the work
of creative individuals using these systems, which I will refer to as
architectures for web-based collectivity.

Inspiration From the Incomplete: The
Role of Asynchronous Awareness in
Digital Art Creation.

Kyle Matthew Buza

Thesis Reader Robert C. Miller
Associate Professor

Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Inspiration From the Incomplete: The
Role of Asynchronous Awareness in
Digital Art Creation.

Kyle Matthew Buza

~/ ,$ Thesis Reader David P. Reed
Adjunct Professor

MIT Media Laboratory

/ /

AI k- - r-

-.

Acknowledgments

I'd like to thank my readers, David Reed and Robert Miller, for providing

me with the valuable feedback upon which this thesis is based.

Takashi Okamoto and Luis Blackaller, for being my partners in crime.

Members of the Physical Language Workshop: Kate Hollenbach, Brent

Fitzgerald, Amber Frid-Jimenez, and Laura Martini, for teaching me

things I never knew.

Amna Carreiro, for taking care of things.

My parents, who respectfully dealt with my disappearance into the bow-

els of MIT for the past two years.

And my advisor, John Maeda, for seeing something in me that I did not,

and helping me to become something I've never been.

Contents

1 Introduction 17

1.1 Motivation 18

1.1.1 Programming as a Creative Medium 18

1.1.2 Example-Based Pedagogy 19

1.1.3 Influencing Creative Behavior 20

1.1.4 The Role of the Web 21

1.2 Defining the Problem 22

1.3 Thesis Structure 23

2 Background 25

2.1 Definitions 25

2.2 Computer Mediated Creativity 26

2.2.1 Early Collaborative Systems 26

2.2.2 The Rise of the Personal Computer 27

2.2.3 Early Content Sharing Systems 28

2.3 Design Oriented Programming 30

2.3.1 The Influence of Lisp 30

2.3.2 Processing 32

2.3.3 Max/MSP 33

2.3.4 LiveCoding34

2.4 Creative Content Sharing on the Web 35

2.4.1 Web 1.0 35

2.4.2 Web 2.0 36

2.4.3 Web-based Content Repositories 37

2.4.4 Pushing Data To the Web 38

2.4.5 Representational Flexibility for Appropriation .

2.4.6 Execution From the Web

2.5 The Future of the Browser

2.5.1 The Marriage of the Browser and the Desktop .

2.5.2 End-User Programming

2.5.3 Augmenting the Browsing Experience

3 Experiments

3.1 OpenCode: Programming on the Web

3.1.1 Rich Internet Application Programming

3.1.2 Functionality .

3.1.3 Implementation

3.1.4 User Model

3.1.5 Issues

3.2 E15: A Web-Enabled Creative Studio

3.2.1 Inspiration

3.2.2 Language

3.2.3 Extensibility

3.2.4 Interface

3.2.5 Features

3.2.6 Browser Integration

3.2.7 Web API Access

3.2.8 DOM Access

3.3 E15:Web: Collecting the Pieces . ..

3.3.1 Submissions

3.3.2 Documentation

3.3.3 Direct Web Execution

3.3.4 Search

4 Evaluation

4.1 O penCode .

4.1.1 Redeeming Aspects

4.1.2 Negative Aspects

4.1.3 Target Demographic

4.1.4 Other Repositories

4.1.5 Additional Comments

4.1.6 Discussion

4.2 E15:Web

4.2.1 Data Retention

- -

4.2.2 End User Privacy..

4.2.3 Code Management .

4.2.4 Discussion

4.2.5 Extensibility

4.2.6 Security

4.3 Challenges

5 Conclusion

5.1 OpenCode

5.2 E15:Web

5.3 Future Work

5.3.1 Granularity of Sharing ..

5.3.2 Realtime Video Collection

5.4 Final Thoughts

. 72

. 74

.. 74

.. 75

.. 75

.. 76

List of Figures

1-1 Leonel Moura's mbots, programmed to exhibit stigmergic be-

havior to create abstract artwork. 21

1-2 The evolution of artwork created by Moura's stigmergic

mbots, whose interactions are based solely on local sensory

input. 21

1-3 Campbell's fish-scale model of collaboration, also described as

the "collective comprehensiveness through overlapping patterns

of unique narrowness"... 22

2-1 Ivan Sutherland's Sketchpad is considered to be the precursor

to modern-day CAD tools. 26

2-2 sprite-o-mat(2007): A recent demo by the Alcatraz group. . 29

2-3 The Boxer visual programming environment was designed to

harness our natural conception of space. 31

2-4 John Maeda's Design By Numbers 32

2-5 The Processing sketchbook 32

2-6 A simple Max/MSP patch 34

2-7 LiveCoding in Fluxus. New code can be evaluated while view-

ing the result of the most previous evaluation. 34

2-8 The maxobjects.com WWW site is a large collection of user-

submitted Max externals. 37

2-9 The Openstudio drawing application is run as a Java desktop

application directly from the browser itself. 39

2-10 The Piclens browser plugin provides users with a pseudo 3D

view of WWW-based image collections 42

2-11 AT&T's Pogo 3D WWW browser 43

3-1 The main OpenCode programming interface, containing an

editor window, and collection of links to scripts submitted

by other users. 47

3-2 Compiling a program in OpenCode. The program text is

submitted to a compilation server, and the compiled ap-

plet is displayed in the browser window. 48

3-3 OpenCode users can select which version of the the Process-

ing library to use when running their sketch. 49

3-4 The OpenCode user profile page, listing submitted applets,

compiled libraries, and static resources. 50

3-5 Rendering multiple frames of video in E15. 51

3-6 E15 was originally driven by a desire to create a flexible 3D en-

vironment within which traditionally browser-only data could

be placed and spatially arranged. 52

3-7 Repeating a single 2D animation frame in the 3D E15 context

can produce compelling 3D artwork. 53

3-8 The main E15 interface. 56

3-9 Using the embedded E15 web browser to access the DOM

and evaluate snippets of user-defined JavaScript to collect

web data 58

3-10 Using the Google Data APIs to search, display, and view

YouTube content in less than 100 lines of Python code. 59

3-11 Augmenting the Facebook API-based visualization with in-

box data extracted from the page DOM. 60

3-12 The E15:Web index page, showing recently submitted scripts

and active users. 61

3-13 The E15:Web API documentation interface. Each entry can

be modified and commented upon by end users. 63

3-14 Direct web execution 63

3-15 Upon loading the script from E15:Web, users may modify script

parameters, procedure definitions, and apply filters...... 64

3-16 Users may search for scripts that use specific API proce-

dures. 65

4-1 E15:Atari2600, an embedded Atari 2600 console in the 3D E15

context. Subsequent frames can be arranged to provide a sense

of depth during gameplay 75

List of Tables

2.1 Listing of current design-oriented programming environ-

ments. REPL specifies support for read eval print loop-style

execution. Some of these environments can be extended

on the language level (L), platform level (P), or both. . 30

Chapter 1

Introduction

"The net is not a place for 'professionals' to publish and the

masses to merely download. Online, everyone is becoming an

artist; everyone is a creator. The network is providing new

opportunities for self expression, and demands a new kind

of artist: the artistic instigator, someone who inspires other

people to be creative by setting a positive example with their

own work, and providing others with tools, context, and sup-

port. That support can be technical, aesthetic, or emotional-

encouraging others to believe in their own capabilities and

take the risk of trying to make something personally meaning-

ful." [21]

The majority of visitors to sites on the World Wide Web (WWW) have

traditionally been only passive observers; consumers of previously cre-

ated content. More recently, however, these users have been encouraged

to contribute to these sites, opening the door to new forms of creative

self expression. As we enter this new era of widespread collaboration and

sharing made possible by the WWW, one question that remains is how to

build appropriate communication channels to and from this new medium

with respect to the tools used for digitally mediated creative expression.

In this thesis, I will attempt to formulate a coherent set of characteris-

tics that both creative programming environments and their associated

WWW sites must possess to help improve, inspire, and support the work

of creative individuals using these systems, which I will refer to as archi-

tectures for web-based collectivity.

1.1 Motivation

Over the course of the past decade, we have witnessed a rather dramatic

shift in the granularity of information we obtain from the WWW. As net-

work bandwidth has increased, and WWW sites have become nearly triv-

ial to construct, massive amounts of data are being placed on the WWW,

accessible to millions of people almost instantaneously. Accompanying

this widespread accessibility of consolidated data collections is the emer-

gence of new vehicles for pedagogical, as well as creative-inspirational

purposes.

In this section, I will discuss the use of programming as a creative tool

that, through exposure via the WWW, has the potential to facilitate the

transition from creative individuals acting in isolation to ones that are

more effectively able to teach and inspire others.

1.1.1 Programming as a Creative Medium

Accompanying the widespread adoption of the personal computer for cre-

ative purposing in the 1980s was a large dose of skepticism echoed from

the halls of the traditional design community. Scripted, procedural exper-

imentation was viewed as the antithesis of the staid and cerebral aspects

of modern design[34]. As a result, computer programs were effectively

placed underneath a microscope in order to help demystify the otherwise

invisible creative processes made possible through their use.

In recent years, we have witnessed an explosion of these computer-based

creative programming tools. They are everywhere, all addressing specific

challenges in need of simplification. Programming tasks that were once

difficult have now been generalized and abstracted to streamline their

adoption and integration into mainstream design culture. This transition

has left both students and educators sitting at the microscope, perhaps

with little recollection of how they arrived there in the first place. In this

myopic state, everyone has been too busy staring at the trees to notice

the forest growing around them.

This newfound fascination with code is unsurprising, as the expressive

potential of this digital medium is enormous. It's possible that this inter-

est is, to some extent, misguided. An infinitely malleable canvas should

be just as inspiring to artists as it is terrifying. Immersed in the abun-

dance of possibility, many individuals simply end up being stifled by it.

Representing the full landscape of expressive potential offered by any cre-

ative digital tool is difficult. Today, on virtual desktops embedded within

a 2D window-based interaction metaphor, our computers are only able to

provide us with a tiny snapshot of the much larger creative domain of-

fered by these tools, as we can only see so much on a 2D screen. In the

digital realm, these snapshots serve as lightweight externalizations of the

programs used to generate them; programs that themselves are notori-

ously difficult to describe in any other way:

"... The understanding of how programs work individually

and in cooperation with each other.., remains very difficult to

generalize, teach, communicate, or even preserve, due to lack

of easy 'externalization,' i.e. representation, of ideas." [19]

1.1.2 Example-Based Pedagogy

The current set of creative tools leveraged by digital artists relies heavily

upon the use of examples in order to educate new users of their expres-

sive potential. These examples serve as motivating agents for new users

to begin learning and exploring the new digital landscape. They become

the provenance of new experiments and creations that often remain tech-

nically and aesthetically similar to the original. It is in this spirit that

original versions of the Unix operating system (OS) were modified, serv-

ing to inspire the development of the open source Linux OS, and a rather

large collection of variants inspired by Linux itself.

Whereas modern OS kernels contain millions of lines of code, aestheti-

cally pleasing graphics programs often contain on the order of hundreds.

New design-centric graphics tools are being created at an ever-increasing

rate, each providing individuals with a new creative domain within which

they may experiment, explore, and create. They are often designed to be

simple, offering streamlined programming interfaces to their functionality.

The resulting short, easily-digestible code snippets lend themselves to dis-

tribution on the WWW and serve as a pedagogical alternative to complex

API specifications.

Original examples often serve
as the substrate for future
work. When distributed via the WWW, these snippets serve as social cues to

new socially influenced creative explorations, referred to as "artifacts"

in the context of the cognitive sciences[40]. The aggregate sum of these

artifacts can be viewed as a sub-landscape of expressive possibility offered

by these environments.

1.1.3 Influencing Creative Behavior

Creative thinking and the artistic process have long been viewed as the

product of the isolated individual mind. This notion has been brought

into question in recent years, and is no longer generally accepted[26]. In

an age of creative digital tools accompanied by streamlined mechanisms

for sharing and distributing content created with them, it has become

increasingly difficult to remain entirely uninfluenced by the masses.

We are entering a new chapter in the evolution of this type of socially-

influenced creativity, transitioning from a more isolated model to one

where sharing and exposure are increasingly relevant. Underlying these

new relationships is the emergent collective coordination through the set

of strictly local interactions occurring between group members known as

stigmergy. In other words, local artifacts left by contributing members

can be interpreted by each member of the community, affecting future be-

havior. This notion provides the theoretical foundation for Swarm Intel-

ligence (SI) research, with applications to robotics, computer simulation,

and art. The Portugese conceptual artist Leonel Moura, for example, has

explored the production of emergent visual aesthetics through collections

of independently operating robot actors.

. . I4I f;

4 1

Figure 1-2: The evolution of artwork created by Moura's stigmergic
mbots, whose interactions are based solely on local sensory input.

Just as the introduction of the camera during the Industrial Revolution

influenced Impressionist artists like Monet and Degas, recent technolog-

ical advancements have influenced the number of creative possibilities

available to aspiring artists. Presented with a seemingly endless supply of

tools, each with their own learning curve and subtle minutiae of expres-

sive potential, individuals may become overwhelmed unless the paths to

creative exploration are cleared, and access to expressive tools simplified.

Figure 1-1: Leonel
Moura's mbots, pro-
grammed to exhibit stig-
mergic behavior to create
abstract artwork.

1.1.4 The Role of the Web

The influence of technology on art and creativity is undeniable. In the

age of the Internet and WWW, the stage is set for new forms of social

creativity to take shape and have widespread influence. Universal access

to the WWW is a relatively recent phenomenon, and the capabilities of

WWW browsers continue to evolve rapidly. However, precisely how it can

enhance new creative acts and host collaborative engagements remains

unclear. As browser capabilities continue to improve, new mechanisms to

support creativity on the web will appear. The recent appearance of web-

based video editing tools and word processing applications is a reflection

of this trend.

We live in an age where everything is on the WWW, and every day we

Figure 1-3: Campbell's
fish-scale model of col-
laboration, also described
as the "collective com-
prehensiveness through
overlapping patterns of
unique narrowness".

are provided with new tools to expedite the transfer of our data to it.

From small snippets of text to images and video, WWW sites are open-

ing their doors to end-user contributions. Storage is now inexpensive, and

there is value in harvesting end-user data. While the time and resource

investments put into sites like Flickr[5], YouTube[17], and del.icio.us[2]

may once have been relatively high, open source copycats are now every-

where, and can be set up by anyone in a matter of hours. While these

"consumer-grade" versions lack the scalability and polish of their ances-

tors, they demonstrate the openness and highly democratic nature of the

web. It is through these web-based aggregation methods that new mecha-

nisms for seeing large collections of data are possible.

Sets of images of the Eiffel Tower contributed by users from around the

world have been consolidated into large-scale web-based collections that

are now viewable by everyone. It is through this organization that users

are able to obtain a perspective that extends beyond their own individual

collection. This perspective shift was made available through the "collec-

tive comprehensiveness through overlapping patterns of unique narrow-

ness", described by Donald Campbell in relation to his fish-scale model of

collaboration [23].

1.2 Defining the Problem

Whether we like it or not, technology will continue to invade and trans-

form traditional notions of design. Elements of existing techniques will

become easier with the aid of computer-based tools, and entirely new

forms of technology-based design (e.g. motion graphics, web design) will

continue to emerge. In light of these changes, both design educators and

students are in need of new ways to understand the creative scope offered

by new computer-based tools, as well as ways to obtain support and in-

spiration from existing communities of creators. Current code-based de-

sign tools, for example, are often difficult to describe in a few sentences,

and are even more difficult to describe with respect to their expressive

potential. How can we go about providing the users of these tools, as well

as their educators, with an easily digestible summary of the creative land-

scape made possible through their use?

Over the past decade, the WWW has excelled in its ability to facilitate

the distribution of just about all forms of digital media. New applica-

tions are created daily that allow users to enhance their creative poten-

tial. Some are simple, many are complex. As a result, the creative palette

available to the digital artist is larger than ever, and continues to grow.

With these applications in the hands of end users, they are beginning to

produce unique content at an ever-increasing pace. One problem with

this model is that because the majority of these tools are desktop appli-

cations, created content rarely leaves this isolated context. How can we

leverage this explosion of created content to inspire potential artists and

creative individuals? How can this content be exposed to others as exam-

ples to be modified for pedagogical purposes? How can experimentation

be made both fluid and easily digestible? Finding answers to these ques-

tions will be challenging on a number of levels. The consolidation of data

collected from end users is likely to involve issues of end-user privacy and

trust, and mechanisms need to be built to encourage and maintain active

participation.

In this thesis, I will attempt to demonstrate, from the perspective of the

digitally-enhanced creative act, the most salient aspects of the WWW

necessary to enhance end-user learning and creativity with respect to cre-

ative programming.

1.3 Thesis Structure

This thesis is structured as follows:

* Background: In this chapter, I will discuss the history of digitally-

mediated creative acts, as well as the history of modern computer-

based tools for creative expression and pedagogy. I will show how

work created by these tools was disseminated, and today's role of

the WWW in this distribution process.

* Experiments: In this chapter, I will present two architectures for

web-based collectivity, namely OpenCode, and E15:Web, an environ-

ment based on E15, a new design-oriented programming environ-

ment.

* Evaluation: In this chapter, I will present the user feedback ob-

tained from the development of the OpenCode and E15:Web sys-

tems.

* Conclusion: In this chapter, I will summarize the lessons learned

from this research, and propose future research directions.

Chapter 2

Background

In this chapter, I discuss the history of digitally-mediated creative acts,

as well as the history of modern computer-based tools for creative ex-

pression and pedagogy. I will show how work created by these tools was

disseminated, and discuss today's role of the WWW in this distribution

process. In addition, I will briefly discuss new applications and architec-

tures targeted at augmenting the 2D WWW browser experience - both

visually and technically. These discussions will serve to contextualize the

the experiments conducted in Chapter 3.

2.1 Definitions

As the base level of computer literacy continues to increase, the number

of users interested in programming for the purpose of self expression will

increase as well. In the context of rich, interactive media, a number of

tools exist to facilitate this user-to-programmer transition. Each of these

tools has been developed out of a need for more general environments

within which expressive digital media can be created in a flexible man-

ner. Visual programming environments like Max/MSP and text-based

environments like Processing have successfully abstracted out specific

elements of this development cycle. Max/MSP, for example, provides a

Figure 2-1: Ivan Suther-
land's Sketchpad is con-
sidered to be the precur-
sor to modern-day CAD
tools.

simplified interface to the dataflow of a program, while the Processing

programming environment provides a screen buffer abstraction to simplify

the creation of code-driven procedural animations. In this thesis, I will

refer to these types of systems as design-oriented programming environ-

ments, or DOPEs. The architectural decisions made by the designers of

each DOPE define the outline of the creative landscape made possible by

each.

2.2 Computer Mediated Creativity

As the large mainframe computers of the 1960s transformed into their

smaller, more lightweight counterparts, they began to enter into the homes

of the general public. It was this transition that set the stage for a new

generation of digital artists and computer-mediated creators. These indi-

viduals originally produced work in isolation, later creating custom sys-

tems for the sharing and collaboration surrounding their work.

2.2.1 Early Collaborative Systems

In many respects, the provenance of Human Computer Interaction (HCI)

with significant implications for the creation of new forms of digital me-

dia was in 1963, when Ivan Sutherland created Sketchpad[43], an interac-

tive program that is considered to be the precursor to modern day Com-

puter Aided Design (CAD) tools. This system demonstrated new tech-

niques for both graphical user interface (GUI) design and a hierarchical

end-user program structure. Sketchpad inspired Douglas Engelbart to de-

velop the oNLine System (NLS)[30], an environment designed to facilitate

networked collaboration. The NLS used a keyboard in conjunction with

the first computer mouse in order to support the editing and organizing

of shared files. More specifically, the "NLS Journal" subsystem was de-

signed for the management of personal data, including short messages,

mail, and data records. Many of these developments led to modern day

groupware and hypertext systems.

The ideas explored by Sutherland and Engelbart have influenced many

aspects of modern computer interfaces, and painted the landscape for the

future of digital creativity and collaboration. The desire to build systems

like the NLS - systems that enable human beings to share information

with ease - has often been associated with the Memex[22], Vannevar

Bush's fictional system he described in an Atlantic Monthly article pub-

lished in 1945. This microfilm-based system allowed its users to navigate

large document archives with ease in order to realize new relationships

between disparate pieces of information. Motivating these thoughts was

the conviction that the value of collaborative intelligence is greater than

the sum of its parts. Widespread communication and collaboration are

necessary requirements to maximize the potential of human understand-

ing. Today, systems that are built upon these ideas are known as collab-

orative systems, or groupware, ideas upon which WWW-based collabo-

rative systems such as Wikipedia are based. Unfortunately, the current

state of these systems is still a far cry from Engelbart's original NLS vi-

sion.

2.2.2 The Rise of the Personal Computer

The NLS was built around the first time-sharing computer, an SDS 940,

which could support sixteen connected workstations. These workstations,

today commonly referred to as thin clients, provided end users of the

NLS with access to shared data. Unfortunately, the burgeoning popu-

larity of the personal computer in the 1970s allowed people to use their

computers within the privacy of their own home, severely impeding at-

tempts at large-scale information integration enabled by time-sharing sys-

tems like the SDS 940. At the apex of this shift was the appearance of

the Sinclair ZX80 personal computer in 1980. Targeted at the more gen-

eral home user as opposed to computer enthusiasts themselves, the suc-

cess of the ZX80 demonstrated the potential of this emerging consumer

market.

With computers sitting in the homes of individuals, and only occasion-

ally connected to a network, the sharing of user content was difficult, and

The main menu in Quantum
Link, an early BBS.

therefore much less common. However, because digital content creation

was subject to more limited means of production during this time, large-

scale systems for content sharing were unnecessary. Cameras were ana-

log, and the toolsets used to create purely digital content were only just

beginning to be developed. Today, in spite of attempts to return to the

mainframe model of computing - where small, lightweight client com-

puters communicate with large servers over the network in the NLS spirit

- high performance personal computers remain popular with consumers.

In the absence of a system to facilitate sharing between creative individu-

als in the form of a central time-sharing server, Engelbart's vision hasn't

yet become reality.

2.2.3 Early Content Sharing Systems

With the personal computer finding its way into the homes of thousands

of individuals, the desire to remain connected to others and share digital

information began to blossom. In the 1970s, Bulletin board systems (BB-

Ses) became popular among computer enthusiasts, which provided ordi-

nary computer users with the ability to share various types of media and

communicate with others. One of the earliest systems was the Commu-

nity Memory, a digital content distribution system also built around the

SDS 940 used by the NLS. This system, as well as more advanced BBS-

like systems of the 1980s like the Commodore 64/128-based Quantum

Link, supported a rich variety of services that were precursors to modern

internet-enabled functionality such as online news, chat services, games,

and file sharing.

In addition to these more traditional forms of content, many BBS users

were interested in sharing digital art within these communities. One such

community, known as the artscene, began sharing artwork made from

ASCII text on early BBSes, and later used FidoNet, a network used for

inter-BBS communication in 1984. A few years later, artscene members

began to form their own customizable BBSes for distribution of their

artwork, which was effectively replaced by the internet around 1995. As

network technologies advanced, so did the capabilities of the computers

themselves. ASCII artwork evolved into ANSI (16 foreground colors, 8

background) art, and later RIP (Remote Imaging Protocol), an early vec-

tor graphics protocol in 1993.

These works had value within these communities, often able to grant cre-

ators access to exclusive BBSes, and in some cases, monetary compensa-

tion. This value created competition between artists, which subsequently

bred creative inspiration[31]. As these communities grew, many began to

distribute collections of the generated ASCII and ANSI artwork (known

as artpacks or demos) as well as music sequences, poetry, and code. In

addition to providing creative inspiration to the recipients, demos also

made it easier for individuals to modify and learn new techniques from

existing work. Figure 2-2: sprite-o-
mat(2007): A recent
demo by the Alcatraz
group.

"demos are the last bastion of passionate, crazed, enthusiast-

only programming, crafted purely for the hell of it by inspired

teenagers working entirely in their spare time. The teens cre-

ate jaw-dropping audiovisual effects beyond the dreams of

most multimedia designers. Constantly striving to better their

rivals, devotees of the demo scene cram spectacular three- or

four-minute presentations onto a single 800-Kbyte floppy disk,

fitting them into tiny amounts of memory. Freely spread by

disk-swapping over bulletin boards and other sites on the In-

ternet, then replayed on home computers all over the planet,

each demo becomes a piece of digital graffiti proclaiming the

superiority of the gang that created it. Demos are made by

the rock-and-roll groups of code." [31]

The tightly-knit nature of these groups allowed them to define their own

standards with respect to the quality of the artwork disseminated within

them.

2.3 Design Oriented Programming

As members of the demoscene were creating visually-compelling work by

writing optimized assembly code, other attempts were being made to sim-

plify the process of programming itself, making it more accessible to a

wide variety of people. These environments have provided a new genera-

tion of musicians, artists, and designers with a rich collection of expres-

sive digital tools.

The environments listed in Table 2.1 have served to influence the work

presented in this thesis, and to demonstrate the need for new models for

the interactivity and distribution of creative work. The characteristics of

the DOPEs listed will be explained in more detail in subsequent sections.

Name Description REPL Extensibility

Tool for developing
visually-oriented software

Visual programming
environment for multimedia

Fluxus System for LiveCoding Yes
3D graphics
Environment for creating

E15 3D animations and Yes L/P
visualizations

Table 2.1: Listing of current design-oriented programming environ-
ments. REPL specifies support for read eval print loop-style execu-
tion. Some of these environments can be extended on the language
level (L), platform level (P), or both.

2.3.1 The Influence of Lisp

In 1960, John McCarthy published Recursive Functions of Symbolic Ex-

pressions and Their Computation by Machine, Part I[36], which described

Lisp, a programming language constructed through the definition of a

small set of operators and functions. Lisp had no distinction between

compile-time and runtime, allowing users to write and compile code at

the same time. In the years following, a number of Lisp variants have

emerged, all using the same syntax (parenthesized lists, or s-expressions).

The interpreted nature of Lisp served to enhance its interactive charac-

teristics, and it has been the basis for a number of simplified languages

intended for pedagogical purposes.

In 1967, Seymour Papert and Wally Feurzeig created the Logo program-

ming language, often referred to as "Lisp without the parentheses". It

was designed primarily for educational purposes, and remains well-known

as a tool for the creation of simple vector drawings, known as turtle graph-

ics. Papert and Feurzeig designed Logo under the belief that computer

programming was not simply a matter of accomplishing a task, but rather

a tool that could be used to achieve a profound insight into a diverse set

of academic pursuits. This theory of learning, known as constructivism,

became manifest in the Computer Clubhouse[41], an after-school program

designed to help children learn through technology and to socialize the

computer-enhanced learning experience.

While the notion that programming can improve a student's ability to

learn in a more general sense is relatively common in the context of edu-

cational programming, rigorous studies have yet to show a clear relationship[35].

Regardless, many Logo-inspired languages such as Squeak, based on Smalltalk,

and Scratch[13], a visual programming environment for children, have

emerged since this time. Other related systems have targeted specific ap-

plication domains, like the Geometer's Sketchpad[33].

In the early 1980s, Hal Abelson and Andrea diSessa built Boxer[28], a

programming environment attempting to leverage our natural conception

of space to assist young programmers. The Boxer prototype foreshadowed

the development of modern-day visual programming environments like

Max/MSP by merging visual and textual elements into a single environ-

ment, and by providing a more intuitive and expressive mechanism for

programming beyond simply editing and evaluating text. A collection of

spatially arranged regions, called boxes, can contain program text, data,

graphics, or other boxes, similar to the structure of Max/MSP.

Figure 2-3: The Boxer
visual programming en-
vironment was designed
to harness our natural
conception of space.

-L. MWU V1 . MW .rIMEM M=j

* tn rrs nI Emm a In

2.3.2 Processing

Figure 2-4: John Maeda's
Design By Numbers

Figure 2-5: The Process-
ing sketchbook

In 1999, John Maeda created Design By Numbers (DBN) [3], a pedagogi-

cal tool for designers to explore the use of code for creative purposes. The

DBN WWW site describes the language as follows:

"Design By Numbers was created for visual designers and

artists as an introduction to computational design. It is the

result of a continuing endeavor by Professor John Maeda to

teach the "idea" of computation to designers and artists. It

is his belief that the quality of media art and design can only

improve through establishing educational infrastructure in

arts and technology schools that create strong, cross-disciplinary

individuals."

DBN was a Java application that could run as an Applet within a WWW

browser. The DBN code was interpreted to generate static drawings on a

small canvas.

After contributing to different components of DBN, two of Maeda's grad-

uate students, Ben Fry and Casey Reas, created Processing[11], a Java-

based environment for developing graphically rich animations and visu-

alizations. The Processing "language" is effectively Java syntactic sugar,

performing compile time transformations for simplified drawing proce-

dures (such as recto to draw a 2D rectangle) into their Java equivalents.

The Processing application itself is a simplified IDE, referred to as a

sketchbook, for writing these types of programs. Since its release, Pro-

cessing has had a substantial amount of success within communities of

creative individuals interested in leveraging code for expressive purposes.

Its Java foundation provides the environment with the following benefits:

* OS Independence: Java runtimes exist for the most popular operat-

ing systems, including Windows, Linux, and OS X.

* Browser integration: Applets made within the environment can eas-

ily be embedded within Java-enabled WWW browsers, allowing

users to publish their work.

* Extensibility: Users can write external Java libraries that can be

leveraged by Applets created by the Processing environment, ex-

tending its functionality.

The simplifications made by Processing come at a cost, however, as the

additional layers of indirection that both Java and the Processing run-

time insert between a running program and the OS incur a performance

cost. While these effects are, in many cases, forgivable, they do impose

restrictions on the types of applications that can be developed by the

system, as the relative computation time per pixel remains high. Sitting

atop such a high pile of software abstractions, Processing is not particu-

larly well-suited for performance-critical applications, or applications that

require a large number of per-pixel calculations (video processing, for ex-

ample).

Following Processing, a number of similar 2D graphics programming envi-

ronments emerged, including the Python-based DrawBot (later becoming

NodeBox), as well as ContextFree, a generative, grammar-based environ-

ment for producing static images. It is through these efforts that creative

graphics programming has become accessible to a wide variety of aspiring

programmers.

2.3.3 Max/MSP

Max/MSP, a visual programming environment for visual artists and mu-

sicians, allows users to create graphics and sound without having to write

code. Max uses the the common "boxes and arrows" metaphor for visual

programming, where objects with behaviors can be connected, or "wired"

to others, establishing a direct communication channel between the two

objects. Like in Boxer, these objects can be arranged hierarchially, and

can pass messages between one another. However, whereas Boxer was de-

veloped in order to help children understand elements of program flow by

leveraging its Lisp-like foundation, programmatic introspection is not an

*00n prximity

Figure 2-6: A simple
Max/MSP patch

Figure 2-7: LiveCoding in
Fluxus. New code can be
evaluated while viewing
the result of the most
previous evaluation.

integrated component of the Max environment. Max programs (referred

to as "patches") are able to be modified at runtime, allowing new objects

to be created, and messages sent. This type of flexibility is possible as a

result of the Max object abstraction, as opposed to any type of underly-

ing language feature (like the Lisp-like underpinnings of Boxer).

A graphics extension of Max called Jitter provides a collection of Max

objects for video and 3D graphics that supports more low-level access

to the graphics hardware. Jitter allows users to establish relationships

between 3D objects without having to understand low-level graphics li-

braries like OpenGL. In contrast to Processing, Jitter has more direct

access to the underlying graphics hardware, and is somewhat more suit-

able for performance-critical applications. The tradeoff, of course, is in

flexibility. Environments like Max that expose elements at a high gran-

ularity allow certain bulk operations to be performed efficiently at the

expense of fine-grained control. It is for this reason that environments

like Processing are better suited for data visualization applications than

Max, because of the fine-grained control necessary in the context of these

applications.

2.3.4 LiveCoding

Writing computer code in the read-eval-print loop (REPL) style began

with John McCarthy's Lisp. By using a data structure that could contain

both code and data, Lisp programs could run interactively, allowing a

Lisp program to interpret Lisp code[36]. This is in contrast to languages

like C/C++ that transform the program text into a static executable.

Interpreted languages like Lisp allow evaluation results to be viewed im-

mediately, and data structures to be modified dynamically. These lan-

guage characteristics have been internalized into communities of artists

and programmers interested in creating music and digital artwork in a

highly interactive and flexible manner. This community has adopted the

term LiveCoding to refer to this particular programming style.

The majority of programming languages used by the LiveCoding com-

munity such as SuperCollider[15] and ChucK[44] are particularly con-

cerned with realtime audio synthesis. Other systems targeted at the gen-

eration of live, interactive graphics, have been built on top of Lisp, or lan-

guages Lisp-like in nature. Fluxus, for example, is an interactive graph-

ics programming environment based on the PLT Scheme Lisp dialect. In

Fluxus, the code written interactively by the user is transformed into an

OpenGL texture and layered on top of the OpenGL scene where the pro-

gram output is being displayed. In this way, the programmer can modify

the interpreted Scheme code while viewing the realtime results under-

neath a virtual text editor. Writing computer code in this way allows

users to interact directly with the runtime memory image of the inter-

preter context (control flow, method definitions, variables, etc.), making

these Fluxus much more fluid and interactive in comparison to Processing

or Max/MSP.

2.4 Creative Content Sharing on the Web

As the WWW evolved from a unique media presentation interface to a

platform fostering participation and collaboration surrounding this me-

dia, new mechanisms for content aggregation and filtering emerged. Vast

collections of images, programs, and video now reside online, with new

techniques being created for end users to interact with them.

2.4.1 Web 1.0

BBS systems continued to grow in size and integrate existing internet ser-

vices (such as email) until the 1990s, following the introduction of Tim

Berners-Lee's WorldWideWeb, the first WWW client. WorldWideWeb

was initially built with editing capabilities, allowing users to both browse

and edit WWW content. The majority of subsequent browsers did not

follow this trend. Mosaic, the first mainstream WWW client, achieved its

success from many sources, although its innovative approach of embed-

ding images, sound, and video within the page text was found to be an

immensely appealing alternative to users of the WWW browsers of the

time.

Accompanying these developments was an almost universally accessi-

ble presentation interface for content, enabling a new environment for

voyeuristic experiences of creative individuals. This punctuated transi-

tion from otherwise isolated and independent modes of creation to one of

widespread exposure has influenced creative experiences in a variety of

ways. Accompanying this exposure is increased awareness and subsequent

competition reminiscent of the artscene.

2.4.2 Web 2.0

Almost as quickly as the WWW emerged as an accessible presentation

interface for digital content did Tim O'Reilly coin the term Web 2.0 to

describe a new trend in WWW usage focused on creativity and collabo-

ration. To a large extent, this transition was expedited by the realization

of large internet-based companies like Amazon. com that the contributions

made by customers (in the form of reviews) had the potential to be ag-

gregated to provide other customers with product suggestions, potentially

leading to higher sales. In short, these companies began setting "inclusive

defaults for aggregating user data and building value as a side-effect of

ordinary use of the application", a concept O'Reilly has described as "the

architecture of participation".

It has been through this participation model that WWW sites like Flickr

and You Tube have achieved widespread success. Through the large-scale

aggregation of end-user content, these sites have provided end users with

large collections of collaboratively filtered images and video, respectively.

These effects have recently extended into creative WWW sites, such as

DeviantART[4] and the Rhizome ArtBase[12]. These sites were built to

serve as virtual galleries of user-submitted artwork. While similar in their

overall objective, to create environments to present content from a diverse

set of artists, they differ with respect to their curatorial model. The Art-

Base is a submission-based system that is evaluated by the site curators.

Some pieces are accepted, others are rejected. DeviantART, on the other

hand, allows all users to upload content. This content resides within their

own virtual portfolio, subject to discussion with other members of the

DeviantART community.

2.4.3 Web-based Content Repositories

As our exposure and interactions with WWW browsers become more

common, the integration of existing creative tools then becomes a nec-

essary consideration. The organization of the Processing WWW page

(processing.org), is representative of the WWW presence of similar en-

vironments like Drawbot and ContextFree, which contain user forums,

galleries of images, and examples.

Maxobjects[9] is a centralized repository for the submission of user-contributed

externals for Max. These objects are compiled by members of the com-

munity that submit them directly to the site. While it is entirely possible

that these objects could contain malicious code, the majority of the Max

community download and run these libraries without hesitation. The rel-

atively small size of the Max community maintains a degree of trust in-

herent within it.

Figure 2-8: The maxobjects.com WWW site is a large collection of
user-submitted Max externals.

As many Max objects are purely functional and lack a clear visual com-

EE~Jmovusromfts 500 oP· P00 MI S5.Z Omg1SfZ O l 0.0'Pi

... S
O·JOITI-I ILU .II-I I UIO.I-I I OW... 77]ON

E aOOiI XC 3m d prtadp tto a qubd w"hromieo

.ir•nd X'(• ow- a 4K3 nouf kham wfi 3d bu*6pn wd lou" iu •,da powI
simradt

ponent (users can download objects that implement quicksort, for exam-

ple), the site is simply a set of links accompanied by short descriptions of

the objects (Fig 2-8).

Built WithProcessing [1], is a WWW-based collection of links to Process-

ing applets created by other users. Not being an actual database-backed

repository of programs makes it difficult for the site to handle the disap-

pearance of linked content. Many of the links found on the site no longer

work, as the link destinations have been moved from their original loca-

tion. Even though the site was created relatively recently (2006), many of

the links already suffer from this issue.

2.4.4 Pushing Data To the Web

In the early days of the WWW, site content was mostly static; allowing

site visitors to contribute content was not common. It was not until the

so-called participatory web took hold in early 2000 that sites began to

open up their doors, allowing large-scale contributions from end users.

Participatory sites like Flickr and YouTube, for example, provide users

with two mechanisms for the submission of content. The first resides

purely within the context of the browser itself: providing users with a di-

alog box to specify the file to be uploaded. More recently, however, these

services have realized the need to simplify this upload process outside of

the context of the browser, and now provide lightweight desktop transfer

applications like the Flickr Uploadr that allow drag-and-drop support for

uploading sets of images directly to the Flickr site.

Other WWW sites like the music community Last.fm[8], passively col-

lects data about a given user's listening habits from special audio player

plugins. This data is uploaded to the Last.fm servers and used to rec-

ommend new artists to each user. Other sites, such as Openstudio and

ScratchR [37], have integrated the end-user data submission process into

the desktop application itself.

2.4.5 Representational Flexibility for Appropriation

Online, there are WWW-based content repositories for nearly every type

of creative media, from images, video, and music, to applications and

source code. For the purpose of creative appropriation, (such as the re-

use of images or music), some of these media types lend themselves to

manipulation better than others. Publicly available source code, for ex-

ample, obtained through sites like sourceforge.net, are rather amenable

to end-user modification. Images and video, on the other hand, are less

flexible.

The flexibility offered by a human readable text-based format is not lim-

ited to source code, however. The Openstudio project from the MIT Me-

dia Lab, for example, allows users to create drawings through the use of

a simple Java drawing application. These drawings are not stored as ren-

dered images, but as an XML variant that allows other members of the

Openstudio community to repurpose the work. Distributing content in

this fashion is crucial in order to allow subsequent users to change, mod-

ify, or re-experience a given piece.

2.4.6 Execution From the Web

Figure 2-9: The Openstu-
dio drawing application
is run as a Java desktop
application directly from
the browser itself.

As a platform, the WWW browser presents a number of challenges to

the developer interested in rich media experiences. The underlying rea-

son for many of these challenges is security. Any data obtained from

sources on the internet is considered a potential suspect for compromising

the client machine. Allowing users to run arbitrary executables directly

from the WWW would be a rather large security issue. However, there

are cases where the integration of the desktop and the WWW browser

makes sense, and can be handled in such a way that security issues are

kept at a minimum. Java Web Start, for example, is a technology from

Sun Microsystems that allows users to run desktop Java applications

directly from the browser itself. Understandably, these programs are

not downloaded as Java source code, but as compiled Java bytecodes, a

mF rc

I,

• ...-... iU~~

i ~ ix,: - i.i i,.

,I,
~p-n.

byte-compiled format that also includes metadata (known as StackMaps)

for use by the runtime verification process to ensure the integrity of the

downloaded program. Openstudio, for example, has leveraged this de-

ployment technique for its drawing application (Fig 2-9). This step is

necessary because this application performs operations that are viewed

as security risks if they were to be run within the context of the browser.

2.5 The Future of the Browser

In this section, I will discuss three ways in which researchers are attempt-

ing to change the way we use traditional WWW browsers, relevant in the

context of the E15 environment, which is described in a later section.

1. Transition to the desktop: Motivated by both performance and mo-

bility considerations, developers are migrating specific browser func-

tionality to the end user's desktop.

2. Modification through end-user programming: Web browsers are be-

ginning to include functionality, allowing users to write custom code

to modify and manipulate traditionally browser-only data.

3. The shift to 3D: While early attempts to leverage 3D for richer

browsing experiences have failed, these efforts are resuming.

2.5.1 The Marriage of the Browser and the Desktop

The rate at which WWW browsers are obtaining new features is con-

stantly increasing, and the so-called "browser wars" are far from over.

The Mozilla foundation, as well as companies like Adobe and Google, are

currently building systems that extend the functionality of the browser

onto the end user's desktop. Google Gears[6], for example, is a system

that allows WWW developers to serialize web data so that WWW ap-

plications no longer need to be connected to a network in order to func-

tion. Mozilla Prism[lO] is a system that enables the development of so-

called Site-Specific Browsers (SSB), accomplished through the creation

of desktop-like applications that have the functionality of a single WWW

application. One benefit of this type of architecture is the transition from

the WWW browser itself, which runs in its own process, to an environ-

ment where each individual application can run in its own process, allow-

ing the OS to effectively manage the concurrent execution of multiple ap-

plications. The end result is a collection of otherwise unmodified WWW

applications (such as Facebook or Gmail), that are slightly more respon-

sive than using them through a WWW browser.

While accurate browser usage statistics are difficult to obtain, the current

WWW browser usage numbers are shared between Mozilla's Firefox, Mi-

crosoft's Internet Explorer, and Apple's Safari. Open source browsers like

Firefox, along with WebKit, the application framework Apple has lever-

aged for their proprietary Safari WWW browser, have allowed application

developers to bundle an entire browser within custom applications. For

example, Linden Lab, the makers of Second Life, have bundled Mozilla's

open source Gecko layout engine within their application to re-create the

traditional 2D browser experience within their 3D online environment.

2.5.2 End-User Programming

Environments like Processing and Max are not applications in the tradi-

tional sense, as neither is used for any one particular type of task. This

is in contrast to applications like Adobe's Photoshop or Apple's Final

Cut Pro, whose application domains are relatively well-defined. The im-

portance of extending these types of mainstream applications with pro-

grammability features has been recognized as a potentially effective mech-

anism to empower existing users without forcing them to go shopping for

a different application in possession of the desired functionality.

Early research into end-user application programmability began with

Michael Eisenberg's SchemePaint[29], a simple drawing application with

an integrated Scheme interpreter. Applications augmented in this way are

referred to as programmable design environments or simply PDEs, and

are the integration of programmability into standard design environments

(like Adobe's Photoshop). Eisenberg stresses the importance of these en-

vironments with respect to their ability to empower end users with more

expressive and modifiable application environments. Nardi explains:

"We have only scratched the surface of what would be possi-

ble if end users could freely program their own applications...

As has been shown time and again, no matter how much de-

signers and programmers try to anticipate and provide for

what users will need, the effort always falls short because it

is impossible to know in advance what may be needed End

users should have the ability to create customizations, exten-

sions, and applications..." [38]

This need for extensibility has been met to some degree by application

makers through the use of plugins. Many of the applications produced

by Adobe, for example, include plugin systems to allow end users to ex-

tend their products. Mozilla's Firefox WWW browser also has a plugin

architecture leveraged by many developers to augment and enhance the

end-user browsing experience. Two Firefox extensions, Chickenfoot[20],

and CoScripter are Firefox extensions that allow users to write code to

automate web browsing and manipulate WWW pages.

2.5.3 Augmenting the Browsing Experience

Figure 2-10: The Piclens Proceeding in lockstep with advances in graphics card performance is
browser plugin provides
users with a pseudo 3D a desire by OS and application designers to leverage this potential to

view of WWW-based achieve a more aesthetically pleasing user interface. Project Looking Glass,
image collections

a Java-based 3D desktop environment by Hideya Kawahara at Sun Mi-

crosystems was designed to leverage these developments.

Early attempts at 3D browser-type functionality focused on the Virtual

Reality Modeling Language (VRML) and X3D formats to describe 3D ob-

jects that could be displayed by a browser plugin. These efforts were un-

successful, and have been replaced by recent attempts at creating 3D en-

vironments within which 2D WWW data can be viewed. Also motivating

this trend is the fact that OS and application designers are desperately

trying to add more features and functionality to an already cramped 2D

desktop display.

Browser plugins like Piclens allows users to view sets of images in a pseudo

3D environment without having to traverse the WWW pages containing

the images (Fig 2-10). Unfortunately, this plugin requires site designers

to provide the Piclens plugin with specific information in the format it re-

quires. Pogo, a 3D browser being developed by AT&T is representative of

a recent interest in extending the capabilities of the browsing experience

beyond the existing 2D experience (Fig 2-11). While visually compelling,

Pogo is facing an uphill battle with respect to acquisition of new users

and providing marketers a convincing direction for WWW-based adver-

tisements.

These developments are the result of the current trend in leveraging high

performance graphics card functionality as well as a desire to provide

users with a more visually-compelling WWW browsing experience. Be-

cause the construction of effective 3D user interfaces remains difficult,

progress in this area is likely to remain slow.

Figure 2-11: AT&T's
Pogo 3D WWW browser

Chapter 3

Experiments

Through the consideration of the WWW as an appropriate medium for

the aggregation of DOPE-based creative acts, in this section I will de-

scribe two web-based systems that serve to accomplish the following:

1. Aggregate small-scale end-user contributions of code from entirely

new or existing DOPEs.

2. Simplify the task of both locating and executing these small-scale

code fragments.

3. Provide access to the results of this collective behavior.

I will first describe OpenCode, a web-based programming environment

that allows users to write graphics programs within the context of the

browser itself. By leveraging pervasive browser plugins like Java and

Flash, end users can search for, compile, and execute programs without

leaving the web browser. Secondly, I will describe a new DOPE, E15, for

creating procedural animations and visualizations based on web data in

a rich 3D environment. Lastly, I will describe E15: Web, a WWW site for

E15 users that maintains an intimate connection with the E15 desktop

application in order to collect and aggregate code snippets written by

E15 users.

3.1 OpenCode: Programming on the Web

Today, websites containing user-generated content are increasingly com-

mon - more so than at any point in the past decade. Users may upload

video to YouTube, images to Flickr, and edit entries in the online ency-

clopedia Wikipedia as they wish. News organizations are allowing in-

dividual users to submit content to their sites, and blogs can be set up

in a matter of minutes. Once the data reaches these sites, the capacity

for public exposure explodes, and the possibility for creative instigation

emerges. Only as web browser developers find new ways to increase the

rich media functionality of the browser will content not only be stored on

the web, but created there as well. Closing the gap between the browser

(the place of presentation) and the client desktop (the place of creation)

has the potential to expose artists' artwork, and inspire others to create

work of their own. Content created on the web in this fashion also has

the potential to serve as a pedagogical tool as well, through the collec-

tion of certain elements of the creative process (the order of strokes in a

drawing, for example).

In this section, I will describe the motivation that drove the development

of the OpenCode system, how it is used, and a set of minor issues en-

countered during its development.

3.1.1 Rich Internet Application Programming

Modern web browsers typically come equipped to run two types of rich

internet applications (RIAs) namely Sun Microsystems' Java and Adobe's

Flash. Development of these types of applications typically takes place on

the desktop, either with a set of command line tools or an Integrated De-

velopment Environment (IDE). In addition to being a domain for the cre-

ation of applications, these development environments are used by artists

for purely creative purposes. Traditionally, the sharing and distribution

of code from these creative programmers happens through a submission

process to a central website where others can view and download sub-

mitted files. However, as is often the case, no effort is made by the pro-

gram developer to ensure that the submitted code snippet will run on

another user's machine. This has a tendency to cause frustration for new

programmers, and serves as an unnecessary barrier to entry.

Figure 3-1: The main OpenCode programming interface, containing
an editor window, and collection of links to scripts submitted by
other users.

OpenCode is a web-based programming environment targeted at lowering

this barrier. The system was developed in the Summer of 2006 by myself

and colleague Takashi Okamoto. In OpenCode, users can look at snippets

of code in both Java and the Java Processing dialect submitted by other

users, and run these snippets within the context of the browser itself.

Users of the site can modify existing pieces of code, and re-compile them

to see the changes immediately, without the need to download a specific

development environment to their desktop. This fluidity dramatically en-

hances the experimentation process and willingness of new users to exper-

iment and play with computational art generation programs. OpenCode

requires the end user to download no new browser plugins or add-ons.

The only requirement of the system is a Java-enabled web browser. Be-

cause the applications are sent to the client browser as Java bytecode,

security is not a concern.

Figure 3-2: Compiling a program in OpenCode. The program text
is submitted to a compilation server, and the compiled applet is
displayed in the browser window.

3.1.2 Functionality

OpenCode is a web site as well as a set of web services for the compila-

tion and download of graphical RIAs. In particular, Java and the Java

Processing dialect can be written in the browser, compiled on the server,

and run within the user's browser window. This "two click" program-

ming model (click to load an example, click again to run it) allows users

to experience graphically-rich applications along with their accompanying

source code to simplify the experimentation process.

3.1.3 Implementation

The OpenCode system is a web application built using the Ruby on Rails

web framework. The back end is composed of a set of Web Services, im-

plemented as Java servlets. Programs written in the browser are sent to

a compilation servlet, which executes a modified version of the Processing

application to produce Java class files directly, circumventing the existing

intimate relationship that Processing possesses with respect to the sketch-

book and the source code transformation process. This servlet responds

to the client request by sending back the appropriate application bun-

dle (a Java Archive File (.jar)), or relevant error condition to the client

using the JavaScript Object Notation (JSON) data format. Because the

OpenCode system only allows users to save programs to the server that

compile successfully, each program available to visitors is guaranteed to

compile and execute.

The Processing project has been in a state of so-called perpetual beta

since its initial release in 2001. This type of development allows the com-

munity of developers to freely change aspects of the system while main-

taining a subdued regard for overall system stability or consistency. One

issue with this development approach is that new versions may adversely

affect or break programs written for previous versions of the software.

With OpenCode, we were able to lessen the severity of these changes by

allowing users to build their applications against independent versions of

the Processing software via a drop-down menu in the browser (Fig 3-3).

In this way, multiple versions of the software may exist on the OpenCode

site, and users can use more stable versions of the software if more recent

versions contain regression bugs. In addition, this feature allows users to

compare performance characteristics of each Processing release by simply

selecting the appropriate build number from a drop-down list. In fact, we

observed specific performance regressions in the Processing application

while using this feature.

Figure 3-3: OpenCode
users can select which
version of the the Pro-
cessing library to use
when running their
sketch.

3.1.4 User Model

Each registered OpenCode user has a custom profile page (Fig 3-4), which

contains links to submitted applets, uploaded resources (such as fonts and

images), and custom libraries. As the Java security model does not allow

Java applets to access the local filesystem when run in the browser, any

static resources a user might require for his program must be uploaded as

custom user data, or made accessible through a URL. Through an inter-

est in allowing users to extend the functionality of the system as much as

possible, users are allowed to compile applets as well as custom libraries.

In other words, users can write custom code representing some set of re-

usable functionality, compile it on the OpenCode server, and add it to

his profile for subsequent use. On compilation and execution of an applet

Figure 3-4: The OpenCode user profile page, listing submitted ap-
plets, compiled libraries, and static resources.

that relies on one of these libraries, the server uses this custom set of li-

braries as an equivalent of the Java CLASSPATH. If found, these custom

classes will be added to the generated bundle that will be sent to the end

user on execution of the program.

3.1.5 Issues

During its development, and as we continue to observe the growing com-

munity of users on the site, we have come to realize the unfortunate fact

that even though OpenCode derives its flexibility from Java-enabled web

browsers, the performance and security limitations imposed upon the

Java plugin have severely limited the ability of our end users to create

rich and compelling motion graphics and visualization experiences. For

example, simple Java extensions for Processing (such as the Google API

library) require the use of the Java Reflection APIs, which enables run-

time object introspection of Java objects. This type of introspection is

viewed by the browser JVM plugin as a potential security threat, and its

use is prohibited in the context of the web browser. To circumvent this

issue, it was necessary to build custom servlets for each library that re-

quires such functionality. This has limited the scalability of the system by

increasing deployment overhead.

3.2 E15: A Web-Enabled Creative Studio

E15 is a system for dynamically constructing interactions within procedurally-

generated and web-based data sets in a flexible 3D context. Similar to

Pad++[18] by Bederson et al., E15 is not as much an application as it

is an environment for creating lightweight 3D applications. While the

E15 environment has been architected to allow programmers to easily add

new system-level functionality, it is currently distributed as a base imple-

mentation that supports the following input types:

* Web content: Users can access web data through existing web-

based data APIs, or can take advantage of an embedded web browser

to obtain access to rendered WWW pages and a well-formed DOM.

This content can be arranged within the 3D context, and procedure-

based interactions defined at runtime.

* Procedural 2D drawings and animations: An abstraction layer above

Apple's Quartz 2D API allows users to create procedural anima-

tions and visualizations with a simplified drawing API.

* Video: E15 allows users to render standard movie files, video from

YouTube, and live video input within the 3D context.

Through the use of an embedded Python interpreter, programming in

E15 does not require the conceptual context shift associated with the

compile, run, debug, repeat programming style. In E15, 2D animations

can be run, and all parameters (including class definitions) can be mod-

ified dynamically at runtime. In this way, the user can spend more time

viewing the result of his program (even if it isn't perfect or complete),

as opposed to typing and only seeing the result following compilation.

This interactivity, combined with the ability to arrange large collections

Figure 3-5: Rendering
multiple frames of video
in E15.

Figure 3-6: E15 was orig-
inally driven by a desire
to create a flexible 3D
environment within which
traditionally browser-only
data could be placed and
spatially arranged.

of 2D designs or web data, gives the programmer a malleable environ-

ment within which an intimate iterative creative design process can be

realized. E15 is implemented as an application for Mac OS X 10.5.

In this section, I will describe the overall architecture of the E15 DOPE,

the elements that motivated its design, its main feature set, and ways in

which end users can augment its existing functionality.

3.2.1 Inspiration

In early 2007, I completed a number of short projects inspired by a de-

sire to find new ways to recontextualize traditionally two-dimensional web

content. By forcing users to view web content a single page at a time,

modern WWW browsers have made it difficult for end users to leverage

their spatial processing abilities. Applications like the Data Mountain[42]

and the WebBook[24] have leveraged 3D to arrange sets of web pages

spatially, but are relatively rigid in structure. The ability to generate,

interact with, and procedurally filter large collections of WWW pages is

not supported by these environments. As an early experiment, I wrote

a simple domain-specific web crawler that collected full-page screen cap-

tures of every accessible page for three separate domains: CNN (www.cnn.com),

Wired (www. wired. com), and Openstudio (openstudio. media. mit. edu). In

contrast to visiting these pages through the context of a web browser,

the ability to visually scan through these sets of unordered pages allowed

me to fortuitously find pages of interest that would have been otherwise

hidden in the massive link structure of these domains. These experiences

led to the development of a more general system for the collection, orga-

nization, and layout of web data. This functionality is now an integral

component of the E15 architecture as seen in Fig 3-6.

A second motivating factor in the design of E15 was to build an environ-

ment wherein the creation of 3D animations was as easy as programming

the same animation in 2D. In DOPEs like Processing, the APIs for 3D

are essentially wrappers around existing OpenGL commands, which only

moderately alleviate the challenge of creating 3D animations. I found

that simply extending existing 2D content into a 3D environment creates

a unique aesthetic otherwise difficult to achieve using traditional 3D pro-

gramming techniques (Fig 3-7). By allowing end users to manipulate pro-

cedural 2D content and animations, E15 opens the door to a new realm

of expressive possibility without requiring users to understand OpenGL-

based 3D programming APIs.

3.2.2 Language

Initial prototypes of the E15 system were written entirely in the Objective-

C programming language, making it difficult to extend. This issue was

resolved through the integration of a Python interpreter along with var-

ious architectural abstractions to allow the interpreter to operate in the

traditional REPL fashion. Similar to the design of the scripting interface

to Pad++[18], only certain elements of the E15 engine are suitable for

manipulation through scripting. In E15, scene rendering and image ma-

nipulation methods are done in Objective-C for performance reasons, and

object creation and manipulation is done via Python.

At the core of the E15 application is an OpenGL context. The embedded

Python programming interface simplifies access to this context. Using

this interpreter, Python statements can be evaluated, and both classes

and method definitions can be dynamically modified. I chose the Python

language for the following reasons:

* Interactivity: Without a separate compilation step, the so-called

"edit-test-debug" cycle characteristic of interpreted languages is

fast.

* Readability: Python abandons brackets in favor of indentation, and

favors the usage of keywords in contrast to punctuation.

* Maturity: The Python developer community is large, and highly

active. As a result, the interpreter itself is more mature, and cur-

rently performs more efficiently than other interpreted languages in

its class.

Figure 3-7: Repeating
a single 2D animation
frame in the 3D E15
context can produce
compelling 3D artwork.

Python is a language commonly used in education[32]. Applications for

the One Laptop Per Child (OLPC), for example, are written in Python,

and made available for viewing by the end user. In addition to being a

valuable language to know in the context of industry, Python's widespread

nature makes it easy to find online documentation and examples. This

large community of developers is beneficial to creative programmers be-

cause of the rate at which additional Python modules are developed for

new tasks. For example, developers have recently created Python mod-

ules to access a number of common web services such as PyFacebook,

Flickr API, and the Google data APIs. Environments like Max and ChucK

that rely on compiled or custom languages are more difficult to extend.

Python is a full-featured language that provides users with a rich toolkit

for addressing a wide variety of programming tasks. This is in contrast to

domain-specific languages like Scratch[13] and Alice[25], that only make

certain types of programming easier. Alan Kay, in his foreword to Watch

What I Do [27], a book about end-user programming and programming

by example, bemoans the oversimplification of the programming task as a

solution to providing end users with PDE-like flexibility:

"... when we teach children English, it is not our intent to

teach them a pidgin language, but to gradually reveal the

whole thing: the language that Jefferson and Russell wrote

in, and with a few style shifts, the language that Shakespeare

wrote in. In other words we want learners of English not just

to be able to accomplish simple vocational goals, but to be

able to aspire to the full range of expression the language

makes possible. In computer terms, the range of aspiration

should extend at least to the kinds of applications purchased

from professionals. By comparison, systems like HyperCard

offer no more than a pidgin version of what is possible on the

Macintosh. It doesn't qualify by my standards."

This statement suggests the presence of difficult decisions involved with

the design of DOPEs or PDEs that seek to teach as well as enable end-

user creativity. The extreme oversimplification of the programming task

may allow users to express themselves in the short term, but if what they

have learned through their interactions with simplified interfaces cannot

be applied to other application domains, then the simplification loses its

pedagogical utility. For the most part, visual programming environments

fail in this respect, as the only interaction mechanism is with the visual

object abstractions themselves.

3.2.3 Extensibility

As mentioned in Table 2.1, languages like Processing and Max/MSP are

able to be extended at the language-level only. Processing, for exam-

ple, allows users to write external Java libraries to extend the function-

ality of the environment. In contrast, E15 is flexible at the language-

level as well as the platform-level. In other words, users can install new

Python libraries written by others and use them within E15 (a language-

level extension), or they can directly modify the E15 source to support

new content types (platform-level extensions). Developers are likely to

want to use platform-level extensions for performance reasons. Platform

level extensions are supported in the form of "pixel generators" (PGs),

wherein developers write the code necessary to create their own data for

display in the 3D context, and send it directly to the E15 OpenGL inter-

face to generate textures. Python module extension templates are pro-

vided to simplify the development of PGs, and to allow developers to cre-

ate Python functions to access this new functionality.

3.2.4 Interface

The E15 interface, shown in Fig 3-8, consists of the following three main

components:

1. 3D View: The content generated and manipulated by the Python

script is placed in this context.

Figure 3-8: The main E15 interface.

2. I/O Console: Both system errors and Python standard streams are

routed to this embedded view.

3. Script Interface: Python scripts are written and evaluated in this

view.

3.2.5 Features

As an OS X application, E15 supports procedural access to the following

technologies through the embedded Python interface.

* WebKit: A fully-functional web browser. Procedural loading of

pages and access to the DOM are supported.

* Quartz 2D: Apple's Quartz 2D vector drawing API.

* Core Text: Rich text rendering capabilities are supported, including

kearning and line break injection.

* Core Image: A collection of image filters that can be applied to E15

content.

* Core Video/Quicktime: Playback and management of video frames.

* GLSL-based OpenGL shaders: Users can write GLSL-based shaders

and manipulate shader parameters procedurally within Python.

3.2.6 Browser Integration

Today, when end users interact with web content, they interact with the

data in the context of one of three general forms, or models[20]:

* String Model: The textual representation of the WWW page, often

poorly formatted and otherwise difficult to read.

* Document Object Model (DOM): A more structured representation

of a WWW page, typically constructed by a web browser. Repre-

sented as a tree structure, programmatic traversal of this structure

is easier than dealing with raw HTML.

* Rendered Model: The representation of a WWW page that users

are accustomed to seeing. In the rendered model, DOM elements

exist at well defined locations in a 2D region.

When procedurally accessing web data through programming languages

like Perl or Python, web content is obtained most often as raw HTML.

This form is often malformed and generally difficult to leverage for the

extraction of useful data. E15 provides access to web data in each of

these forms by leveraging an embedded WebKit-based browser that al-

lows a degree of web page intimacy otherwise restricted to web browser

plugins. Through WebKit, E15 has full access to the rendered DOM, and

through the Python interface, can evaluate snippets of JavaScript code in

the rendered page context. This allows users to inspect and modify the

page content similar to the Mozilla Firefox plugin Greasemonkey[7]. This

allows users to inspect, modify, and extract components of web pages and

use them to construct new visual relationships from this data.

Fig 3-9 shows an E15 session wherein a WWW page is loaded in the em-

bedded browser, and an E15 script containing JavaScript code to extract

image links is evaluated to produce a set of images to be loaded into the

3D view.

Figure 3-9: Using the embedded E15 web browser to access the DOM
and evaluate snippets of user-defined JavaScript to collect web data.

The elements of Fig 3-9 are as follows:

1. 3D View: Contains the result of the collected image URLs, arbi-

trarily positioned in 3D.

2. Script Interface: This window contains the Python script and the

accompanying JavaScript to be evaluated in the context of the cur-

rent WWW page. In this example, the JavaScript to be evaluated

simply traverses the DOM and collects URLs for the images refer-

enced on the page:

function getimgurls() {

imgtags = document .getElementsByTagName("img")

var imgurls = [];

for (var i = 0; i < imgtags.length; i++)

imgurls [i] = imgtags[i] . src;

return imgurls;

3. I/O Console: The URLs of the images found on the given page are

printed to the console.

4. Web View: Contains the loaded WWW page of interest. JavaScript

can be evaluated in the context of this page to modify and extract

data from the DOM.

1

3.2.7 Web API Access

Today, a number of websites are making their data accessible to program-

mers through Web Service APIs, which allow developers to create new

applications from existing web data. Flickr, Facebook, and YouTube all

offer these APIs to developers, often under the restriction that they not

be used for archiving. After all, the data these sites possess is their most

valuable resource.

Figure 3-10: Using the Google Data APIs to search, display, and view
YouTube content in less than 100 lines of Python code.

By using these APIs, E15 users can collect, analyze, and display data col-

lected from popular sites like Facebook (Fig 3-11), YouTube (Fig 3-10),

and Flickr. In addition, users may write Python snippets to arrange and

perform data-driven actions based on this data. Unfortunately, because

these sites want to maintain their IP, only a limited amount of data can

be obtained from these APIs.

3.2.8 DOM Access

To allow users to go beyond the limited data available from existing Web

Service APIs, E15 provides a mechanism to access the data contained

in the rendered page DOM. This gives users the ability to create more

rich visualizations by augmenting the data obtained from the APIs with

data obtained from the DOM. For example, Fig 3-11 shows the result of

an E15 script that uses the Facebook Web APIs to collect basic infor-

mation (images and friend relationships), supplemented with data ob-

tained by accessing the rendered page DOM. In this case, message head-

ers are extracted from the DOM as the user browses the Facebook site.

This data is used to build a visual history of a user's Facebook messages,

which would otherwise be extremely difficult to accomplish with existing

browser plugins.

Figure 3-11: Augmenting the Facebook API-based visualization with
inbox data extracted from the page DOM.

3.3 E15:Web: Collecting the Pieces

Through an extension of the ideas explored through OpenCode, E15:Web

is the WWW component of the E15 application. Similar to the Open-

Code WWW site, E15:Web was designed in collaboration with colleague

Takashi Okamoto. In an age where the social benefits of the WWW are

increasingly relevant, E15:Web serves as the web-based back end to ex-

isting E15 application functionality. As new users download E15 and

leverage it for creative purposes, E15:Web ties together these disparate

end-user explorations. As a publicly accessible repository of E15 scripts

where examples can be created, modified, and commented upon, E15:Web

evolves in lockstep with the growing E15 community. E15:Web maintains

an intimate connection with the E15 application, allowing users to load

scripts found on the E15:Web site directly into E15. The ability to asyn-

chronously observe the work created by others, and directly modify and

execute this work is reminiscent of Hal Abelson and Andrea diSessa's de-

scription of the benefits of end-user programmability found in Boxer:

"One major benefit of programmability is that even profes-

sionally produced items become changeable, adaptable, frag-

mentable, and quotable in ways that present software is not.

Not only would professionals be able to construct grand im-

ages, but others would be able to reconstruct personalized ver-

sions of these same images." [28]

In contrast to sites like Flickr and YouTube, where the potential for reap-

propriation of the media remains low, E15:Web enables the sharing of

interpreted code snippets, unfinished by nature, serving as templates for

interactive programming sessions. By relaxing the notion of completeness

inherent within compiled languages like C/C++, the sharing of these

snippets may allow the barrier to experimentation and contribution to

be lowered.

IlLc.i to ES1:U.b

IhUt is EIS:Umb?

E15:eb is on .exp.ibnt in
intogrotIon, prsion, Md
.1nimaliss. Rs an integmtedd
C omponnt o the EIS*t0 CP9-
o5•m aotosE5,b is uto isheit
5yp.ond odeo diotU. f5ot
E15i, as d 1 iP toad b ited
od..• i08ptlo. otheo1 .
Content mo EIS:1514b Is m 1 Ihd
by natwo , and 164 ML to
inspit. EIS ý to stoto, ow
W tiwt0y inspire others.

Neo StIpts

I•201
T .pr 22
1 9:12:55 --0490
20111

Th. Wt 24
a*135:28 - 4
2M8

22

10
Ib

13

1 3

11
1--e4e

24

7 -e4e1

24
11 _0

1-0*~ 24
f2 24

25:13 -048
b

Figure 3-12: The E15:Web index page, showing recently submitted
scripts and active users.

Iewlk

Bq
i: II

(C) = KUL@ &ý ana 9d Takashi Okawtc.
M.c~ Lý Wwkshw, till Pkia ab

oan 40 1

The E15 application is stateless in the sense that no examples are bun-

dled with the application download itself. The entire collection of exam-

ples resides on the E15:Web site (Fig 3-12), allowing the community of

E15 users to have increased awareness with respect to the activity of the

E15 community at large. Providing an interface for exposing these cus-

tom experiences via the WWW is important, and the ultimate role of

E15:Web.

In this section, I will describe the E15:Web site, and demonstrate how it

integrates with the existing E15 application.

3.3.1 Submissions

The central component of E15:Web is an integrated submission system

built into the E15 application that sends both E15 screen captures and

the script evaluation history to the E15:Web server. The ten most recent

submissions are displayed on the main E15:Web WWW page shown in

Fig 3-12. While users are able to indicate when this submission happens,

this functionality is not available in the standard E15 API set for security

reasons.

3.3.2 Documentation

Because of the stateless nature of the E15 application, API documenta-

tion is not part of the downloaded application binary. In the spirit of the

perpetual beta mindset characteristic of many Web 2.0 applications, we

anticipate the E15 API will change. Changes should be brought about by

members of the E15 community, a notion that inspired the E15 documen-

tation interface to adopt a wiki-style interface. End users can comment

upon and directly modify the E15 documentation contained within the

E15:Web site as shown in Fig 3-13.

MI-I -t

Figure 3-13: The E15:Web API documentation interface. Each entry
can be modified and commented upon by end users.

3.3.3 Direct Web Execution

Figure 3-14: Direct web execution.

By establishing an intimate relationship between desktop application and

makeshodr(str progrmanld, str shaderid, str shoder-type, str code)

p((. Crates and coo i Les a sader object that is attached to the previously created proram
object using maed pogram().

Exampte Usq._:
p((. * Create a simplge fraent shod .

moke-proga('ý imp teleshodr")

p((. 0 Now mcte and attach the had-(.).<br /h
' ."<br I

void main (void)

glFrgColto = vec4(0.0, 1.0, 1.0, 1.0);

}

"""<be />
makp-(.cr"s.implte-,s , "s, Ner", "fte t",d shder)

p((. MM we're ready to atualtly attach the shader to a specific el•emnt.

attoch-program("demo", "simple-shad")

r?"_~.~.'"~""9

ftethod humm
take-md

Cýt&t (Use ~ M)

(c) 2gg8 = and Takashi Okamoto.
P 7tical Lauaae WOrksho, MlT Media Lcb.

OC n, n El5 Web
E http iie meg mak omit du Apder44 edit

Editinp no·ehdw

Figure 3-15: Upon load-
ing the script from
E15:Web, users may
modify script parameters,
procedure definitions, and
apply filters.

WWW page, E15:Web allows users to view previously submitted art-

work and E15 code snippets; they may also load and run these snippets

directly from the WWW page itself.

Through the definition of a custom .e15 MIME type, the embedded E15

browser is able to define custom actions when E15 users click on links to

E15 scripts. This process, shown in Fig 3-14, proceeds as follows:

1. Load: Clicking on an image in the embedded web browser loads the

associated script into the script interface.

2. Observe: The E15 user can observe the downloaded script prior to

evaluation. While this step is not absolutely required by E15 or

E15:Web, it is currently included for security purposes, allowing

the user to ensure no malicious code is contained in the downloaded

snippet.

3. Evaluate: After running the script, the user may then continue to

evaluate additional Python code to modify and customize the down-

loaded animation or visualization.

After the user has run the script obtained from E15:Web, class and method

definitions can be changed, filters applied, and parameters modified. In

contrast to environments like Processing, these changes are made during

script execution, as E15 scripts are not compiled. Starting with the origi-

nal script, Fig 3-15 shows a sequence of modifications a user might make

to produce his own visual aesthetic.

3.3.4 Search

E15:Web allows users to perform searches for scripts based on either the

API procedures used, or any arbitrary text contained within the script

itself. In this way, all scripts that use specific Python libraries or partic-

ular sets of procedures may be viewed as a collection in E15:Web. As an

example, a user may search for all scripts submitted to the E15:Web site

nIp¶

A Sript
ALL Scripts

JSar-ch Terms

Thu Apr 24 lon Apr 21 Thu Rpr 24
Thu Apr 24 81:38:81 -0488 20:27:52 -0408 01:31:87 -8488
17:38:6 -848 200888 Destroy 2@e8 Destroy 28 8
2888 Destroy

Mlon Apr 14 Thu Apr 24 Thu Apr 24 Sat Apr 19
21:34:20 -848 801:28:37 -8488 81:26:44 -848800 16:58:49 -8400
2888 Destroy 2888 2888 208 •8

Thu Apr 24
81:23147 -
288

3400
U

Mon Apr 14
21:15:51 -8488
2888 Destroy

Thu Apr 24
01:28:11 -0488
2008

Sat Apr 19
17:2:984 -8400
2008 Destroy

Figure 3-16: Users may search
dures.

for scripts that use specific API proce-

that use the rect procedure and reference flickr for accessing data from

the Flickr site with the search string "rect + flickr".

The E15:Web search interface is shown in Fig 3-16.

I

Chapter 4

Evaluation

In this chapter, I will provide the results of a peer review of the Open-

Code system, and show how this feedback has been integrated into the

E15:Web architecture. I will then provide a common set of three charac-

teristics encountered during the development of these systems.

4.1 OpenCode

Following its release in December of 2006, OpenCode now has a total of

862 registered users and 362 publicly accessible programs as of April 24,

2008. Together with Takashi Okamoto, OpenCode was presented at Mas-

saging Media 2: Graphic Design Education in the Age of Dynamic Media,

an AIGA conference in April of 2008. The project was received well by

educators interested in integrating programming elements into their de-

sign curricula.

To evaluate the influence and role of OpenCode, I have conducted a peer

review, obtaining feedback from five individuals that were found to both:

1. Have previously created an OpenCode account without external

provocation.

2. Be either an educator that has leveraged Processing in their curric-

ula, or has made significant contributions within the existing Pro-

cessing community.

To evaluate the success of the application, and to determine which fea-

tures are lacking, these individuals were asked the following four ques-

tions:

1. Redeeming Aspects: What do you like about OpenCode?

2. Negative Aspects: What do you dislike about OpenCode? (Or, what

features would make it more interesting to you?)

3. Target Demographic: In its current form, what demographic do you

think OpenCode is most suited for?

4. Other Repositories: Today, there are a number of web-based repos-

itories for Processing programs (builtwithprocessing, openprocessing,

etc.). Do you actively use these or similar types of repositories?

4.1.1 Redeeming Aspects

In general, the idea behind OpenCode is well respected. While various

WWW sites have been created previously that allow end users to compile

and run arbitrary code chunks within a browser-based sandbox, to the

respondents' knowledge, none have been created that allow in-browser

compilation of Processing applets.

The ability to both peruse, execute, and modify collections of submitted

programs is appealing, as code obtained from other sources on the WWW

can be difficult to compile. The centralized OpenCode build structure

ensures that all submitted programs are guaranteed to run for all users.

4.1.2 Negative Aspects

Respondents suggest that perhaps too much emphasis has been placed

upon the compilation step, versus any sort of traditional elements of com-

munity in the collaborative sense. The ability to comment upon, browse,

and search for programs submitted to the system are features commonly

requested.

Also mentioned is the lack of an easily digestible Flickr-like gallery of im-

ages that represent the submitted programs. As static images are difficult

to procedurally obtain from time-based media such as the programs on

the OpenCode site, they are typically obtained through some form of an

end-user submission process. For these reviewers, the ability to visually

scan large collections of images generated from different programs is more

important than simply looking at the code itself.

One respondent mentioned the disconnect between the code residing on

the OpenCode server and the end user's desktop. Maintaining multiple

copies of programs is undesirable, and effective ways to synchronize the

two collections would be needed.

In comparison to the Processing IDE itself, the majority of respondents

noted the lack of tabbing mechanism for maintaining collections of files

containing distinct functionality. This allows users to effectively structure

their work environment without having to manage a single monolithic file

within the browser. In addition, the ability to create end-user libraries

was not immediately found to be useful, as the interface to this function-

ality was unclear.

4.1.3 Target Demographic

The respondents were somewhat split on this subject, with some believ-

ing that the system could serve the community of learning programmers

by providing them with a continuously growing collection of working ex-

amples. Others believed that, in the absence of end-user tutorials and

active forums, the system is not well-suited to students new to the Pro-

cessing dialect.

4.1.4 Other Repositories

Of the online repositories for Processing programs that exist today, none

were used by any of the respondents (including the creator of the builtwith-

processing site). Instead, sites like Flickr, the video sharing site Vimeo[16],

and social bookmarking site del.ici.ous[2] were referenced as alternatives.

Existing WWW-based collections of applets like builtwithprocessing were

criticized as containing excessive numbers of broken links.

4.1.5 Additional Comments

One respondent made the following comment with respect to exposing

his work through the use of video and imagery in contrast to making the

source code itself accessible:

"Perhaps it is due to comfort with those older media formats

that archiving work using them feels more natural. Perhaps

it's also the fact that I want to keep working with my code,

and putting it on the web for others to see feels like freezing

it in a particular state. By defining artifacts as images rather

than code, I feel a little more liberated to continue work on

my desktop."

In the history of interactive graphics programming, the vast majority of

applications have been written in compiled languages like C/C++ and

Java, limiting end-user interactivity. In these applications, the interaction

flexibility must be written by the program developer, as the end user is

not allowed to modify the program behavior without recompilation. For

example, parameter-changing sliders or file-choosing mechanisms must

be implemented up front by the application designer. In an age of fast

computers and a newfound appreciation of strictly interpreted languages

that can run in the REPL style, end-user expectations of interactivity are

likely to change. Allowing the end user to directly modify the internal ob-

ject state and class structure of an interpreted program at runtime, they

become interactive sessions, wherein notions of application completeness

begin to fade away.

4.1.6 Discussion

One interesting result that arose from this evaluation is the heavy re-

liance upon image and video-based WWW repositories for inspiration,

as opposed to code-based repositories. Because these respondents were al-

ready comfortable with the programming process itself, the how of a par-

ticular design or aesthetic appears to become less interesting than what.

As anticipated, the notion of completeness associated with written pro-

grams is a concern with many users. They appear to be comfortable with

revealing their work as imagery or video as opposed to the code itself.

4.2 E15:Web

E15:Web was developed in part as a response to some of the problems

inherent with the OpenCode system. Initially, E15:Web was designed to

alleviate the following internally-perceived issues with OpenCode:

1. Performance: Running interactive graphics programs within the

context of a WWW browser is slow in comparison to the end user's

desktop.

2. Resource Management: Managing external resources (images, movie

files, etc.) referenced from user programs is difficult when constrained

to the browser.

The end result was a simple web-based submission system for images

and code. Through the internalization of the feedback obtained from

OpenCode, the following additional features were incorporated into the

E15:Web site:

1. Code Search: As the collection of submitted scripts grows, the need

for mechanisms to perform keyword searches within the set becomes

necessary. Users may search for specific strings within the archive of

submitted scripts.

2. Image Galleries: The desire to have easily digestible representations

of the work in the form of static images or video is common. As an

application that runs on the end user's desktop, image generation

and submission is much easier than in OpenCode.

3. Tutorials: In order to position E15:Web as a tool that can be used

for pedagogical purposes as well as creative exploration for more ad-

vanced users, it must contain an evolving collection of examples and

instructions on new features and techniques. A wiki-style format

allows users to create, modify, and comment upon examples.

4.2.1 Data Retention

The initial design of E15:Web allowed users to delete submissions if they

so desired, permanently removing them from the E15:Web database.

However, it became apparent through user feedback that code version-

ing and access to structured repositories of personal work are important.

As a result, a decision was made to provide users with the ability to hide

submitted scripts from public view, retaining privacy as well as versioning

history.

4.2.2 End User Privacy

As with any end-user application that sends information to the WWW,

privacy must be maintained. Even though the majority of E15 scripts

do not contain particularly sensitive personal data, this is not always the

case. During the development of E15:Web, submissions were made by cer-

tain users that contained personal data in the form of personal web API

keys. In particular, the Flickr API was being used to access and modify

the users' Flickr image collection. Using these APIs requires the end user

to create personal API keys for both authentication and access control.

Upon recognizing this issue, efforts were undertaken to provide a general

mechanism for allowing users to protect private data. Prior to submission

to E15:Web, these privately tagged pieces of data must be replaced with

their sanitized equivalents. The solution to this problem was designed to

proceed as follows:

import flickrapi

apikey = ' 19817caf4fleed49d9649bf4346ddObf'

apisecret = '9382b9882cOce9e8'

In this case, the API keys are private, and should not be submitted to

the E15:Web server. E15 supports the following C-style comment syntax

for protecting private values:

import flickrapi

apikey = '/*19817caf4fleed49d9649bf4346dd0bf*/'

api_secret = '/*9382b9882cOce9e8*/'

These specifiers tell the E15 runtime to replace the content between them

with a special value that is not retained in the script that will be sub-

mitted to E15:Web. The script that will be submitted to the site is as

follows:

import flickrapi

api_key = 'SECRET'

apisecret = 'SECRET'

Even if the user forgets these specifiers, E15:Web was augmented to con-

tain a "Hide" button for each submitted script, allowing users prevent

their script from being accessible to the general public.

4.2.3 Code Management

E15 programs, as lightweight code snippets, do not need a profound code

management architecture. However, as creative programmers have come

to expect this type of functionality, it is likely that there may be com-

monly referenced script snippets that users use often. One example of

this functionality is the following Python script that can be appended to

any E15 script that will submit saved images not only to E15:Web, but to

the Flickr WWW site as well.

import flickrapi

def onSubmit(e):

api_key = '19817caf4f leed49d9649bf4346dd0bf'

apisecret = '9382b9882cOce9e8'

flickr = flickrapi.FlickrAPI(api_key, api_secret)

(token, frob) = flickr.getTokenPartOne(perms='write')

flickr. getTokenPartTwo((token, frob))

flickr.upload(filename=e, description='Auto-generated submission from http://el5web.media.mit.edu.'

In order to manage these types of small, reusable chunks, an API proce-

dure was added to enable an E15 include mechanism as follows:

includescript("http//ei5web.media.mit. edu/users/buza/flickrscript .py")

These scripts are contained within the user's profile on the E15:Web site,

with access control being managed by the existing browser session. In

other words, these scripts are kept private - only accessible to the cur-

rently logged in user.

4.2.4 Discussion

As of April 2, 2008, E15 and E15:Web are in early alpha stages of devel-

opment. E15 application binaries were distributed to interested testers,

who were allowed to create E15:Web accounts. Early debugging and eval-

uation sessions have proven difficult. Currently, evaluation has proceeded

on an individual basis, through personalized one-on-one sessions. In its

current form, users are currently spending more time getting up to speed

with the environment itself, as opposed to being active contributing mem-

bers of the E15:Web community.

4.2.5 Extensibility

As mentioned in Section 3.2.3, the E15 platform allows developers to aug-

ment its functionality through the creation of "pixel generators", embed-

ded within the E15 runtime. To demonstrate this functionality, I ported

an Atari 2600 emulator into E15 as a pixel generator (Fig 4-1). This ef-

fort took less than two days to implement.

4.2.6 Security

Figure 4-1:
E15:Atari2600, an em-

Because E15:Web allows users to execute arbitrary Python scripts, secu-
bedded Atari 2600 con-

rity is an important concern. For example, a malicious user could easily sole in the 3D E15 con-

embed a small Python snippet like the following into their E15 script to text. Subsequent frames
can be arranged to pro-

cause significant harm to an unsuspecting end user: vide a sense of depth

during gameplay

import os

for file in os.listdir(os.sep):

os. remove(file)

While this is a concern, Java code exhibiting similar functionality can

just as easily be embedded within a program written in the Processing

dialect of Java. Sites like maxobjects.com distribute sets of Max objects:

compiled binaries that are executed when added to a Max patch. Mem-

bers of the Max community trust the content contained on this site, and

are not concerned about potential security issues. In a similar fashion,

E15:Web creates a security microcosm like maxobjects.com and Wikipedia

that users can trust because of its self-governing nature.

4.3 Challenges

During the development of both OpenCode and E15:Web, the following

issues and challenges were encountered and addressed:

* Trust: As WWW-based systems focused on the aggregation of end-

user content, these systems needed to respect end-user privacy and

minimize security risk.

* Reusability: As current DOPE users have come to expect specific

code organization functionality such as the use of tabs in the Pro-

cessing DOPE, building mechanisms supporting libraries or other

organizational techniques was required.

* Cumulativity: The organization and aggregation of end-user contri-

butions required additional infrastructure on the server back end.

Chapter 5

Conclusion

The goal of this thesis was to formulate a coherent set of characteristics

that creative programming environments and their associated WWW

sites must possess to help improve, inspire, and support the work of cre-

ative individuals using these systems. In order to accomplish this goal,

two WWW-based systems and a custom DOPE were created:

* OpenCode: A web-based programming environment for developing

development graphically rich RIAs.

* E15: An environment for dynamically constructing 3D interactions

within procedurally-generated and web-based data sets.

* E15: Web: A WWW site and management system for E15 images,

code snippets, and code management.

In the context of this thesis, I refer to OpenCode and E15:Web as archi-

tectures for web-based collectivity.

5.1 OpenCode

OpenCode was built in an attempt to streamline the experimentation

process with respect to writing code within the context of creative pro-

gramming environments. By embedding the development environment

within the browser itself, end users are no longer required to download

and install a full desktop application before initiating development or

example-based experimentation. While the majority of respondents found

the in-browser compilation feature useful for simple experimentation,

many users expect a more rich set of community and collaboration fea-

tures from today's web applications. In addition, respondents appear

to find more utility and inspiration from image and video-based WWW

repositories like Flickr and Vimeo than they do from the ability to view

program source code. Users also expressed an element of discomfort with

respect to distributing the source code of their work online as they did

not view them as finished or complete.

From this feedback, the following were isolated as important components

to be considered in future versions of the system:

* Image Galleries: With an accessible web-based collection of images,

users can obtain a general view of available content without having

to run each program individually.

* Incompleteness: The use of compiled languages like Processing

makes users feel the need to finish their code before placing it on

the WWW.

5.2 E15:Web

The lessons learned from OpenCode were integrated into initial versions

of E15:Web, which has continued to evolve over the course of the past

three months. In particular, E15:Web was built around a submission in-

terface within the E15 application that sends both images and code snip-

pets to the E15:Web server. On the E15:Web page itself, these submis-

sions are viewed in a gallery-style format, similar to existing sites like

Flickr. In contrast to systems like OpenCode, which present challenges

with respect to the generation and collection of static images, image gen-

eration and submission is integrated into the E15 runtime itself. Both the

E15 application and E15:Web are early in the development process, and

evaluation of the E15:Web site has proceeded through individual one-on-

one debugging sessions and direct email communication.

As mentioned in Section 4.3, three technical challenges were encountered

during the development of OpenCode and E15:Web - namely, trust,

reusability, and cumulativity:

* Trust: Ensuring the content obtained from these systems is not ma-

licious, and the data sent to these systems respects end-user pri-

vacy.

* Reusability: Ensuring the content obtained from these systems re-

mains flexible and amenable to creative appropriation.

* Cumulativity: Creating an environment within which user created

content can be collected and arranged.

5.3 Future Work

5.3.1 Granularity of Sharing

As E15:Web is still in early stages of development, it remains to be seen

whether or not it's able to inspire a new community of creative individu-

als. It's possible that users are just as apprehensive about sharing short,

reusable code snippets as they are sharing source code to clean, polished

applications. If this is indeed the case, additional research must be con-

ducted to determine precisely how much of the creative process users are

willing to expose on the WWW in the form of source code.

5.3.2 Realtime Video Collection

Modern GPUs afford reasonably efficient runtime video capturing tech-

niques from OpenGL-based graphics applications. A natural progression

of the E15 architecture would be to integrate a realtime video genera-

tion mechanism in addition to the current image generation technique.

Through this functionality, direct sharing of video content can be sup-

ported.

5.4 Final Thoughts

We are currently observing a transition from isolated, creative acts to

ones that serve to both teach and inspire others. As we begin to under-

stand the salient components of the WWW that are relevant to this tran-

sition, new WWW/desktop application hybrids will begin to emerge, fully

integrated with the ability to share and expose aspects the creative pro-

cess to the community at large. Only after these applications are devel-

oped will creators and educators be able to take a step back and see the

expressive potential offered by digital creative tools.

Bibliography

[1] Built with processing www page. Website.
http://builtwithprocessing.org/.

[2] del.icio.us www page. Website. http://del. icio.us/.

[3] Design by numbers www page. Website. http://dbn.media.mit. edu/.

[4] Deviantart www page. Website. http://www. deviantart . com/.

[5] Flickr www page. Website. http://www. flickr. com/.

[6] Google gears www page. Website. http://gears.google .com/.

[7] Greasemonkey www page. Website. http://www.greasespot.net/.

[8] Last.fm www page. Website. http://ww. last.fm/.

[9] Maxobjects www page. Website. http://maxobjects. com/.

[10] Mozilla prism www page. Website. http://wiki.mozilla.org/Prism.

[11] Processing www page. Website. http: //wvw.processing. org/.

[12] Rhizome artbase www page. Website. http://rhizome. org/art/.

[13] Scratch www page. Website. http://scratch.mit.edu/.

[14] Secondlife www page. Website. http: //www.secondlife. com/.

[15] Supercollider www page. Website. http://www.audiosynth. com/.

[16] Vimeo www page. Website. http://ww.vimeo. com/.

[17] Youtube www page. Website. http://wwvw.youtube. com/.

[18] Benjamin B. Bederson, James D. Hollan, Ken Perlin, Jonathan
Meyer, David Bacon, and George W. Furnas. Pad++: A zoomable
graphical sketchpad for exploring alternate interface physics. Journal
of Visual Languages and Computing, 7(1):3-32, 1996.

[19] Laszlo Belady. Large software systems. Technical report, Yorktown
Heights, NY, January 1978.

[20] Michael Bolin. End- User Programming for the Web. PhD thesis,
Cambridge, MA, USA, 2005.

[21] Amy Bruckman. Cyberspace is not disneyland: The role of the artist
in a networked world, 1995.

[22] Vannevar Bush. As We May Think. The Atlantic Monthly,
176(1):101-108, jul 1945.

[23] Donald Campbell. Ethnocentrism of disciplines and the fishscale
model of omniscience. Interdisciplinary relationships in the social
sciences, pages 328-348, 1969.

[24] Stuart K. Card, George G. Robertson, and William York. The web-
book and the web forager: video use scenarios for a world-wide web
information workspace. In CHI '96: Conference companion on Hu-
man factors in computing systems, pages 416-417, New York, NY,
USA, 1996. ACM.

[25] Matthew Conway, Steve Audia, Tommy Burnette, Dennis Cosgrove,
and Kevin Christiansen. Alice: lessons learned from building a 3d
system for novices. In CHI '00: Proceedings of the SIGCHI confer-
ence on Human factors in computing systems, pages 486-493, New
York, NY, USA, 2000. ACM Press.

[26] Mihaly Csikszentmihalyi. Creativity : Flow and the Psychology of
Discovery and Invention. Perennial, June 1997.

[27] Allen Cypher, Daniel C. Halbert, David Kurlander, Henry Lieber-
man, David Maulsby, Brad A. Myers, and Alan Turransky, editors.
Watch what I do: programming by demonstration. MIT Press, Cam-
bridge, MA, USA, 1993.

[28] A. A diSessa and H. Abelson. Boxer: a reconstructible computa-
tional medium. Commun. ACM, 29(9):859-868, 1986.

[29] Michael Eisenberg. Programmable applications: Interpreter meets
interface. Technical Report AIM-1325, 1991.

[30] Douglas C. Engelbart. Toward augmenting the human intellect and
boosting our collective iq. Commun. ACM, 38(8):30-33, 1995.

[31] Dave Green. Demo or die. Wired, page 142, 1995.

[32] Mark Guzdial and Andrea Forte. Design process for a non-majors
computing course. In SIGCSE '05: Proceedings of the 36th SIGCSE
technical symposium on Computer science education, pages 361-365,
New York, NY, USA, 2005. ACM.

[33] R. Nicholas Jackiw and William F. Finzer. The geometer's sketch-
pad: programming by geometry. pages 293-307, 1993.

[34] John Maeda. Design by Numbers. MIT Press, Cambridge, MA, USA,
1999. Foreword By-Paola Antonelli.

[35] Richard E. Mayer, Jennifer L. Dyck, and William Vilberg. Learning
to program and learning to think: what's the connection? Commun.
ACM, 29(7):605-610, 1986.

[36] John L. McCarthy. Recursive functions of symbolic expressions and
their computation by machine, part i. Communications of the ACM,
3(4):184-195, 1960.

[37] Andres Monroy-Hernindez. Scratchr: sharing user-generated pro-
grammable media. In IDC '07: Proceedings of the 6th international
conference on Interaction design and children, pages 167-168, New
York, NY, USA, 2007. ACM.

[38] Bonnie A. Nardi. A small matter of programming: perspectives on
end user computing. MIT Press, Cambridge, MA, USA, 1993.

[39] Takashi Okamoto and Kyle Buza. Visualization of Social Interac-
tions in Facebook. In Proceedings of the International Conference on
Weblogs and Social Media. AAAI, 2008.

[40] J Rambusch, T Susi, and T Ziemke. Artefacts as mediators of dis-
tributed social cognition: A case study. pages 1113-1118, 2004.

[41] Mitchel Resnick and Natalie Rusk. The computer clubhouse: helping
youth develop fluency with new media. In ICLS '96: Proceedings of
the 1996 international conference on Learning sciences, pages 285-
291. International Society of the Learning Sciences, 1996.

[42] George Robertson, Mary Czerwinski, Kevin Larson, Daniel C. Rob-
bins, David Thiel, and Maarten van Dantzich. Data mountain: using
spatial memory for document management. In UIST '98: Proceed-
ings of the 11th annual ACM symposium on User interface software
and technology, pages 153-162, New York, NY, USA, 1998. ACM.

[43] Ivan E. Sutherland. Sketch pad a man-machine graphical communi-
cation system. In DAC '64: Proceedings of the SHARE design au-
tomation workshop, pages 6.329-6.346, New York, NY, USA, 1964.
ACM.

[44] Ge Wang and Perry Cook. Chuck: a programming language for on-
the-fly, real-time audio synthesis and multimedia. In MULTIMEDIA
'04: Proceedings of the 12th annual ACM international conference on
Multimedia, pages 812-815, New York, NY, USA, 2004. ACM.

