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ABSTRACT

An analysis tool for calculating minimum pressure envelopes was developed using XFOIL. This
thesis presents MATLAB® executables that interface with a modified version of XFOIL for
determining the minimum pressure of a foil operating in an inviscid fluid. The code creates
minimum pressure envelopes, similar to those published by Brockett (1965). XFOIL, developed
by Mark Drela in 1986, is a design system for Low Reynolds Number Airfoils that combines the
speed and accuracy of high-order panel methods with fully-coupled viscous/inviscid interaction.
XFOIL was altered such that it reads in command line arguments that provide operating
instructions, rather than operator interaction via menu options. In addition, all screen output and
plotting functions were removed. These modifications removed XFOIL's user interface, and
created a "black box" version of XFOIL that would perform the desired calculations and write
the output to a file. These modifications allow rapid execution and interface by an external
program, such as MATLAB®. In addition, XFOIL's algorithms provide a significant
improvement in the accuracy of minimum pressure prediction over the method published by
Brockett.

Development of the modified XFOIL and MATLAB® interface contained in this thesis is
intended for future interface with Open-source Propeller Design and Analysis Program
(OpenProp). OpenProp is an open source MATLAB®-based suite of propeller design tools.
Currently, OpenProp performs parametric analysis and single propeller design, but does not
perform cavitation analysis. Minimum pressure envelopes provide the propeller designer
information about operating conditions encountered by propellers. The code developed in this
thesis allows the designer to rapidly assess cavitation conditions while in the design phase, and
make modifications to propeller blade design in order to optimize cavitation performance. A
methodology for design is discussed outlining future integration with OpenProp.

Thesis Supervisor: Prof. Patrick Keenan
Title: Professor of Naval Architecture

Thesis Supervisor: Richard W. Kimball
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Introduction
The study of propeller cavitation and its inception is an important aspect of propeller

design. In order to accurately predict cavitation inception, it is necessary to be able

to determine the actual pressure distribution in the fluid. By comparing the pressure

coefficient to the local cavitation number, an estimate of the local cavitation

conditions may be made. This is often accomplished by determining the fluid

velocity distribution in the fluid, and then using the velocity to calculate local

pressure conditions. Specifically, the pressure distribution is desired along the

upper and lower surfaces of the foil in order to determine lift, drag, moment, and

cavitation inception.

An early approach to this problem was to assume that the working fluid was

inviscid. This assumption allowed the use of potential flow theory to calculate

velocity as a function of location within the fluid. However, this method was limited

to very simple shapes, such as a two-dimensional cylinder. Potential theory lacked

the ability to directly calculate the fluid velocities around complex geometries such

as foil surfaces.

Conformal mapping provided a method by which the exact velocity distribution could

be calculated for certain types of foil shapes. However, exact conformal

transformations for all foil shapes are not possible. Although various

transformations have been introduced, this project uses the Karman-Trefftz foil as a

comparison for numerical approaches. To further extend the use of conformal

transformations, numerical approaches were developed to approximate the

mapping function for foils of arbitrary shape.

An improved approach to obtain an accurate estimate of the actual pressure
distribution on two-dimensional foils of arbitrary shape was developed by Brockett
[1]. Brockett's work was based on the work of Moriya [2] which is an approximate
conformal transformation of the circle to an airfoil profile and gives equations for the
velocity distribution. Brockett published a FORTRAN computer program that would



accept foil ordinate input, in various formats, and calculate the velocity and pressure

distributions at a specified angle of attack or lift coefficient.

The purpose of this report is to present a modified approach to the work of Brockett,

and present an improved method for computing the minimum pressure envelopes of

a foil. As a reference, Brockett's method of calculating the minimum pressure

distribution was programmed into MATLAB. Sample input provided by Brockett

was used to verify accuracy of the MATLAB version of Brockett's work.

A modified approach using the two-dimensional panel method of XFOIL is

presented. Rather than using the approximate conformal transformation method

presented by Brockett, a modified version of XFOIL was used to perform the

calculations for pressure distribution. The modified XFOIL executable removed all

interactive user interfaces, including menu driven options and interactive screen

output. In addition, desired output is saved as a text file, rather than plotting to the

screen. The development of the modified XFOIL executable allows the use of an
external program, in this case MATLAB, to call XFOIL to perform the desired

calculations. The results are then saved as a text file, and may be read in by

MATLAB, which conducts the desired analysis and output.

A Karman-Trefftz foil was used as a reference for comparison. The analytic solution
for the pressure distribution on the foil was used as the baseline to which the
numerical methods were compared. The method presented using XFOIL to
conduct calculations is nearly indistinguishable from the analytic solution, a
significant improvement over the Brockett method that underestimated the minimum
pressure by 28% at a high angle of attack (10o).

The intention of this project was to develop an improved method for computing
minimum pressure envelopes for an arbitrary foil shape. In addition, it was
developed such that this method would be integrated into the Open-source
Propeller Design and Analysis Program (OpenProp). OpenProp is an open source
MATLAB@-based suite of propeller design tools. OpenProp currently performs



parametric analysis and single propeller design, but does not perform cavitation

analysis. The development of the MATLAB code in this project would aid the

designer in the rapid design of propellers by providing a quick method to predict

cavitation performance of a propeller, and allow the analysis of cavitation

performance early in the design process. Conceptual implementation will be

discussed later in this report.



2 Conformal Transformations
2.1 History
Prior to the development of the computer, obtaining an accurate solution for the flow

around a complex shape was a challenging task. The development of conformal

transformations was therefore of great benefit, as it provided an analytic solution for

the exact inviscid flow solution to a select number of foil shapes. This method was

developed by Joukowski in 1914. Karman and Trefftz then introduced a more

general mapping function, which was a special case of the Joukowski

transformation. Theodorsen [3] then built upon this work and developed an

approximate numerical technique for obtaining the mapping function of an arbitrary

foil shape. These developments ultimately led to the work of Brockett, and his

development of the design charts published in 1966 [4].

2.2 Use of Conformal Transformations
Although a detailed explanation of conformal transformations is not warranted here,
the motivation of this project deserves a brief description of the procedure of

conformal transformations, in order to highlight the significant improvements of the

work presented. The following is an adaptation of Kerwin's [5] derivation.

Potential flow solution for a two-dimensional cylinder is easily described and

understood. It consists of a source-sink dipole, oriented by the direction of the
uniform stream. This produces streamlines that define the two-dimensional shape

shown in Figure 1.



Figure 1: Potential Flow Solution for 2-D Cylinder

The Karman-Trefftz transformation maps a complex point z, where z = X + i*Y, from
the Z-Plane to a point ý using equation (2.1) below.

Aa [(z+a)" +(z- a)]
C = (2.1)[(z+,a) -(z-,a) 2.)

In order to evaluate the velocities in the ,-Plane the derivative dL /dz must be
evaluated using equations (2.2) and (2.3) below.

d 4/ 2a2 [(z-a)' (z+a)] (2.2)

dz [(z +a) -(z -a)(2.

u-iv = ] d; (2.3)

dz

l Z--plane
Potential Flow Around a Circle

-----



In order to map the circle into the p-plane, the Kaman-Trefftz method requires that
the circle center be defined by xc and yc. Also, the trailing edge angle, r, is defined
in degrees and related byA= 2- r/180. Finally, a, which is the X-intercept, is set
equal to unity. The foil in Figure 2 below was developed by defining xc = -0.1 and
yc= 0.15, and i = 100. In addition, an angle of attack may be specified, however, in
Figure 1 and Figure 2, the angle of attack is zero. Lastly, the circulation is set in
order to meet the Kutta condition to ensure smooth flow leaving the trailing edge.
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Figure 2: Karman-Trefftz Foil and Streamlines

To evaluate the velocity and calculate the pressure distribution for the ideal fluid
flow over the foil surface, the velocities in the Q-Plane were evaluated using
Equation (2.3), and the pressure coefficient, Cp, was calculated using Equation
(2.4), where q is the absolute velocity, and U is the free stream velocity.
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Since the Karman-Trefftz foil provides an analytic solution for the potential flow

around the mapped foil, it provides an exact solution to which numerical methods

may be compared. Figure 3 shows the analytic pressure distribution for the

Karman-Trefftz foil shown in Figure 2.

Pressure Distribution for a = 0o

t~-

0.2 0.4 0.6
Chordwise Position (X/C)

0.8

Figure 3: Karman-Trefftz Foil Pressure Distribution.

The analysis above is the result of the MATLAB script contained in Appendix A:

MATLAB Script for Conformal Transformation of Karman-Trefftz Foil. This script

also generates and exports data for further analysis.
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3 Brockett's Analysis
3.1 Introduction to Brockett's Analysis
In reference [1], Brockett developed a computer code to evaluate the steady two-

dimensional pressure distribution on arbitrary foils, and presented the results. This

code is based on an approximate potential theory suggested by Moriya which is

empirically modified in a manner suggested by Pinkerton to give an arbitrary lift for a

set incidence, while satisfying the Kutta condition. Interpolation functions for the

ordinates were used to reduce the calculations to a straight-forward numerical

procedure. Brockett presents a FORTRAN computer program, which, as part of this

thesis, was rewritten as a MATLAB script in order to facilitate simple input and

output. The original code was left unaltered as much as possible, such that the

algorithms were left intact. The only significant changes are the method in which

data was fed to the program, and the programming structure as required by
MATLAB. Also, MATLAB allows variables to be defined by the user, or data can be

read in by MATLAB, rather than using FORTRAN control card format specified by
Brockett. This functionality greatly enhances the interface capability of the program

by the user, and allows more rapid analysis and comparison of results. The code is
presented in Appendix B: MATLAB Code of Brockett's Work, and a description of

the main variables used in the program are included in Appendix C: Brockett .m

Variable Descriptions.

3.2 User Input to MATLAB Version of Brockett Code
FORTRAN used formatted control cards, which allowed the user to input data to be
processed by the program. This method of data has been superceded by either
direct input by the user or digital data saved as files on the computer. The MATLAB
code developed maintains as much original structure as possible, while allowing the
operator to specify which data will be used as input, which is accomplished by the
use of MATLAB script files. These files allow the user to specify the data to be
processed for each of the formats required by Brockett's code. In reference [1],
Brockett provides sample input and output of the original code. The first script file in
Appendix D: Sample Input Scripts for Brockett .m., REQD_IN.m, duplicates the



sample input presented by Brockett, and was used as a validation case for the

MATLAB code. Results matched the values presented in Brockett's sample output

on pages 70 - 72A of reference [1]. This format of this script file is required when

inputting data at the points at the required offset locations as required by

BROCKETT.m.

Also included in Appendix D: , are ARB_IN.m, KTIN.m, and BrockIN.m. The

ARB_IN. m is a sample file for the format required to input foil ordinates at arbitrary

locations. ARB_IN. m is written to accept input similar to that presented by Brockett

in Figure 4b of reference [1]. The format is for input of foil ordinates at arbitrary

stations. The format allows multiple angles of attack to be input, resulting in the

calculation of pressure distribution at each angle of attack. This format accepts

input, as specified by Brockett, that specifies airfoil ordinates in X, Y format. Data

points are required to be entered with the same number of points on the upper and

lower surface, starting with the trailing edge along the upper surface to the nose

location, continuing along the lower surface to the trailing edge. KT_in. m is a script

file used to import the data generated by the conformal transformation of Appendix

A: , used to compute the pressure distribution predicted by Brockett. BrockIN.m

is used to input the geometry for the NACA 66, a = 0.8 (TMB Modified) foil used by

Brockett in reference [4].

Brockett's FORTRAN program required very specific format for inputting data.

Since the original code was maintained similar to the original structure, several

operational variables must be specified for the code to function properly. In
addition, input data must be carefully structured in the proper format to be
processed correctly. The script files of Appendix D: were used to accomplish the

variable definitions required by Brockett .m.

3.3 Output from Brockett.m
To validate that the MATLAB version of Brockett's code was accurate, a test run
was conducted that replicated the sample case included in reference [1]. The
REQD_IN.m script file was used, and the output of Brockett .m, contained in



Appendix E: Brockett.m Sample Output, was verified using reference [1]. A

summary of the output at sample chord position for the MATLAB version of

Brockett's program, and the original data published by Brockett is shown in Table 1.

As seen in Table 1, the data agrees within approximately 7 significant figures, which

is the number of significant figures expected for the single-precision data type used

by FORTRAN. The default for MATLAB is to use double-precision floating-point

numbers, which would explain the slight differences between MATLAB calculations,

and Brockett's published data.

I I Pressure Coefficient

Upper Surface
0.75 -0.099686 -0.099685 0.00100%
0.5 -0.329138 -0.329138 0.00000%
0.25 -0.616285 -0.616284 0.00016%
0.178606 -0.689939 -0.689939 0.00000%
0.030154 -1.226171 -1.226170 0.00008%

Lower Surface
0.030154 0.540715 0.540716 -0.00018%
0.178606 0.033803 0.033804 -0.00296%
0.25 -0.037634 -0.037633 0.00266%
0.5 -0.038729 -0.038728 0.00258%
0.75 0.042112 0.042113 -0.00237%
Lift Coeff 0.430129 0.430129 0.00000%

Table 1: Comparison of Brockett's published data to
Calculations

MATLAB Version of

Output from the original and the MATLAB version of Brockett's work include multiple

tables consisting of Profile Constants and Pressure Distribution information. In

addition to the screen output of the data, the MATLAB version saves the data as
text files labeled Pressure. txt and Profile. txt, which are saved in the "Data"

folder. This data is later read into variables by MATLAB, or may be opened by the
user.

iTLAB Version % Difference
of Brockett

1.000000 0.00000%
-0.495331 0.00040%



3.4 Brockett Analysis Results
To compare the pressure distribution calculated by the Brockett method to the exact

solution shown in Figure 3, KTIN. m was written to read in the ordinates of the

normalized Karman-Trefftz foil generated in Figure 2. The X-Y ordinates are

cosine-spaced, and the number of points is specified by the 'out_pts' variable in

ConfrmlTrans .m. If out_pts is set to 37, this matches the required input

location format of Brockett, but is not required. Otherwise, BROCKETT. m will accept

format as arbitrary location input. Results obtained from the use of a Karman-

Trefftz foil shape is shown in Figure 4.

Figure 4 through Figure 7 shows that Brockett's method predicts the general shape

of the pressure distribution and gives an estimate of the minimum pressure for the

foil, but does not accurately predict the magnitude. In Figure 4, the actual minimum

pressure coefficient, -Cpmin, is 1.192 at x/C = 0.32. Brockett's analysis predicts that

-Cpmin = 1.079 at x/C = 0.33, which falls short by 9.5%. This error increases as

angle of attack increases. Inviscid minimum pressure coefficients predicted by
Brockett are compared to analytic results for the Karman-Trefftz foil for various

angles of attack in Table 2.

-Cp min
a Brockett Analytic Error

-15 11.0498 10.7114 3.16%
-10 5.5078 5.2178 5.56%
-5 1.8012 1.7059 5.59%
-4 1.3052 1.2482 4.57%
-2 0.932 1.017 -8.36%
0 1.0788 1.1919 -9.49%
2 1.2366 1.3938 -11.28%
4 1.4281 1.6374 -12.78%
6 1.6749 2.0243 -17.26%
8 2.32 3.0368 -23.60%
10 3.1896 4.4451 -28.24%
15 6.8295 9.4474 -27.71%

Table 2: Comparison of Brockett's Method of Calculation of Minimum Pressure
Coefficient to Exact Solution for a Karman-Trefftz Foil
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4 Introduction to XFOIL
4.1 XFOIL Functionality
XFOIL 1.0 was written by Mark Drela in 1986. The main goal was to combine the

speed and accuracy of high-order panel methods with the new fully-coupled

viscous/inviscid interaction method used in the ISES code developed by Drela and

Giles. A fully interactive interface was employed to make it much easier to use than

the traditional batch-type CFD codes. Several inverse modes and a geometry

manipulator were also incorporated early in XFOIL's development, making it a fairly

general airfoil development system [6].

XFOIL is an analysis and design system for Low Reynolds Number Airfoils. XFOIL

uses an inviscid linear-vorticity panel method with a Karman-Tsien compressibility

correction for direct, and mixed-inverse modes. Source distributions are

superimposed on the airfoil and wake permitting modeling of viscous layer influence

on the potential flow. Both laminar and turbulent layers are treated with an e9-type

amplification formulation determining the transition point. The boundary layer and

transition equations are solved simultaneously with the inviscid flow field by a global

Newton method [7].

4.2 XFOIL Formulation Summary
Details of XFOIL's formulation are presented in reference [7], and will only be

summarized here. XFOIL uses a general inviscid airfoil flow field, constructed by
the superposition of a free stream flow, a vortex sheet of strength y on the airfoil

surface, and source sheet strength, a, on the airfoil surface and wake. The airfoils

contour and wake trajectory is discretized into flat panels, with panel nodes on the

airfoil and wake. Each airfoil panel has a linear vorticity distribution defined by the
node value. Each airfoil and wake panel has a constant source strength, which is
later related to viscous layer quantities. Requiring the stream function to be equal
to a constant value at each of the nodes on the airfoil surface results in a system of
linear equations that could be solved in combination with the Kutta condition.



XFOIL's viscous formulation was not used extensively in this research, and will not

be discussed in detail.

4.3 Adaptation of XFOIL
XFOIL has been in use for many years, and has become a highly regarded analysis

tool. This project adapts the improved functionally of XFOIL for use in propeller

design by using the algorithms contained within XFOIL to conduct the analysis of a

given foil. In particular, XFOIL is used to develop minimum pressure envelopes, or

cavitation buckets, as presented by Brockett [4].

XFOIL in its current release (XFOIL 6.94) is a menu driven program, which requires

interactive user input and manipulation. In addition, XFOIL generates various

output plots to allow graphical display and interface by the user. In order to adapt

XFOIL's functionality, XFOIL was converted into a "black-box" calculation tool.

XFOIL's menu driven functionality was removed by altering the source code such

that all desired operational instructions would be input as command line arguments,

rather than menu driven items and direct user input. All of XFOIL's plot and screen

output utilities were also disabled. By disabling the plot functionality, calculation

speed was improved. Also, removal of XFOIL's plot functionality, allowed simpler

compilation of the source code, since no graphical interface was required for the

operating system. Finally, XFOIL was altered such that any desired output was

written to and saved as a data file, which could be read by MATLAB or opened

directly by a text editing program.

4.3.1 Executing XFOIL

XFOIL was altered such that it reads in command line arguments that provide

instructions, rather than direct input from the operator via menu options. This allows
rapid execution by an external program, such as MATLAB. From the DOS prompt,
or by executing a system command, XFOIL can be instructed how to process input
data, and which results to save. A simple example of how the modified XFOIL
program may be executed as follows. At the DOS command prompt, in a directory
containing the xfoil.exe program, the user may type:



"xfoil NACA 4415 OPER ALFA 5 OPER CPWR output"

The above command instructs XFOIL to use internal definition for a NACA 4415 foil,

at an angle of attack of 50, and write the pressure coefficient (Cp) distribution to a

file named "output". When executed, the command line above results in a DOS

output of the following:

START of XFOIL

START of Menu Loop. Command

Using NACA 4415

Max thickness = 0.1500

Max camber = 0.0399

START of Menu Loop. Command

OPER loop command: A

Angle of Attack: 5.000

Calculating unit vorticity

OPER loop complete.

START of Menu Loop. Command

OPER loop command: CPWR

OPER loop complete.

is: NACA

43 at x

99 at x

is: OPER

0.301

0.398

distributions

is: OPER

The DOS output above represents informational items intentionally left in the XFOIL

program to allow the user to verify that commands were executed properly. The

result of the XFOIL calculations are written to a user specified file. Sample format is

as follows. The first column is the X-location, starting at the trailing edge, continues

along the upper surface around the nose back to the trailing edge. The second

column is the calculated pressure coefficients at the corresponding locations.

# x
1.00000
0.99329
0.98206
0.96938

0.95217
0.96743
0.98105
0.99296
1.00000

Cp
0.48832
0.28542
0.19383
0.11911

0.26832
0.28589
0.31188
0.35546
0.48832

=

=



Details of the structure and format of commands are included in Appendix F:
Modified XFOIL User Guide. In addition, Appendix G: Instruction for compiling
modified XFOIL Code contains additional instructions for obtaining and compiling
the source code for the modified version of XFOIL.

4.4 Comparison of XFOIL Calculated Pressure Distributions
In section 3.5, the exact solution to the Karman-Trefftz foil pressure distribution was
compared to the method presented by Brockett. Figure 8 to Figure 11 compare the
XFOIL calculated pressure distribution, the Karman-Trefftz solution and the Brockett
solution. In each instance, it can be seen that the XFOIL solution is nearly identical
to the analytic solution. The XFOIL calculations for Figure 8 through Figure 11 were
performed by instructing XFOIL to repanel the foil using 50 panels. Although higher
panel resolution could be specified (160 is default), 50 was specified to prevent an
excessive number of data points.
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Figure 8: Comparison of XFOIL and Brockett Method to Exact Solution, a =00



Pressure Distribution for a = 50
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Figure 9: Comparison of XFOIL and Brockett Method to Exact Solution, a =50
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Figure 10: Comparison of XFOIL and Brockett Method to Exact Solution, a =100
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5 Minimum Pressure Envelope Analysis
5.1 Background
In reference [4], Brockett published minimum pressure envelops for modified NACA-

66 sections with NACA A=0.8 camber and BUSHIPS Type I and Type II sections

using the calculation method described in section 3. These minimum pressure

envelopes were computed for steady two-dimensional flow, with an empirical

correction for viscosity. In addition, design charts for selecting "optimum" foils were

included.

The work presented here includes a similar analysis method, with calculations

performed by XFOIL, allowing the generation of minimum pressure envelopes for an

arbitrary foil shape. This was accomplished using MATLAB integrated with the

modified version of XFOIL described in section 4.3. Based on the improved

accuracy of XFOIL over the method proposed by Brockett as shown in section 4.4,

it is ascertained that this method provides a more accurate calculation of the

pressure distribution, and location and magnitude of the minimum pressure for the

inviscid solution

5.2 Description of Minimum Pressure Envelope Generation
Appendix H: MATLAB Files for Calculation of Minimum Pressure Envelopes

contains the MATLAB files that were used to generate the minimum pressure

envelopes using the modified XFOIL executable. This script performs various

functions described in the following sections.

5.2.1 Foil Shape Generation

Foils may be defined in either of two methods. XFOIL contains built in functions
defining NACA 4 and 5-digit series foils. If the user desires to use these NACA
foils, then the foil_type variable should be set to "NACA". If NACA series foil

shape is desired, the user must also set the variable foil name to either "FOUR"
or "FIVE", depending on which NACA series is desired, and the chordwise position
of maximum camber must be specified by the fo_loc variable.



If profile data will be read in from a data file, then the foil_type variable should

be set to "LOAD". Foil shape is defined by meanline and thickness information.

The data files containing the meanline and thickness information are specified by

the user using the mean_type and thick_type variables, which are set to the

name of the files containing the meanline and thickness offset values. The data

files need to be located in the corresponding "Meanline" and "Thickness" folders.

Sample format for these files is contained and described in Appendix I: Meanline

and Camber Data File Format.

The makefoil .m function inputs the meanline and camber data from the files

specified, and combines the meanline and thickness distributions in the standard

method as described by Abbott and Von Doenhoff [8]. In addition, the camber and

thickness distributions are scaled if required. The makefoil .m function utilizes

MATLAB's spline function to interpolate the required points to define the foil surface.

XFOIL requires that foil geometry is specified by defining the X-Y locations along

the foil surface from trailing edge, along the upper surface, around the leading edge,
and back to the trailing edge along the lower surface. This is accomplished within

the makefoil .m function.

The user may specify the number of desired output points to export to XFOIL by

specifying the N_parab_eval and N_surf_pts in the makefoil .m script. Care

should be used to specify a reasonable number of points, especially along the

leading edge. Too many points may cause errors in XFOIL due to excessively

small spacing. However, a sufficient number of points to adequately define the foils

should be used, provided they are adequately spaced, with more points in regions

of higher curvature. N_parab_def specifies the number of points used for creating

the spline that defines the nose radius. If less than approximately 20 points are

specified, the spline utility fails to produce a smooth output curve. Input and output
may be plotted to verify proper definition of surface locations by setting the

make_plot variable to 'yes', otherwise it should be set to 'no' to prevent excess

plot generation.



5.2.2 User Specifications and Output from XBucket.m

The output from the MATLAB script, XBucket. m, may be specified by the user.

The purpose of the script is to produce minimum pressure envelopes for the foil
geometry specified by the user. Output plots are a similar format to that of Brockett
[4]. Sample output plots show in Figure 12 and Figure 13 below.

INVISCID Brockett Diagram
Meanline: BrockO8act.txt. Thickness: Brock66act.txt
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Figure 12: Minimum Pressure Envelopes for NACA 66 Section (TMB Mod. Nose
and Tail) with Zero Camber at Various Thicknesses



INVISCID Brockett Diagram
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Figure 13: Minimum Pressure Envelopes for NACA 66 Section (TMB Modified)
with the NACA a=0.8 Camberline, Having a Maximum Camber Ratio of
0.04 at Various Thicknesses.

XBucket. m generates output as in Figure 12 and Figure 13 based on user
specified ranges. The upper and lower bounds of the angle of attack for which
calculations and plotting are performed is specified by Alpha lim.
Alpha_delta specifies the resolution, or increment in angle of attack, for which
each minimum pressure coefficient is determined. Larger values of Alpha_delta
save calculation time, but produce less accurate plots.

Each plot produced is for a specified camber ratio. The desired range and camber
ratio increment are specified by the foc_rng and foc_step variable. A
separate plot will be produced for each camber ratio from the lower foc_rng value
to the upper foc_rng value, in increments of foc_step.

Similarly, on each plot are minimum pressure envelopes for each thickness ratio.
The range of values for thickness is specified by toc_rng, in increments of
toc_step. A separate curve is plotted for each thickness value.



Also, although not a specific concentration of this project, the user may specify that
XFOIL's viscous calculation mode be used. In order to conduct viscous
calculations, the user must set visc_tog to 1, and specify the desired Reynolds
number for calculation. This function has been incorporated for further research.
Initial results are not reliable, as XFOIL does not converge consistently. The effect
of convergence failure is shown for a typical case in Figure 14. The jagged curve is
a result of XFOIL's viscous calculations failing to converge when calculating the
minimum pressure coefficient for a given angle of attack.
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Figure 14: Sample Viscous and Inviscid Minimum Pressure Envelopes
Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum
Iterations)

It is believed that small panel size (or excessive number of panels), angle of attack,
Reynolds Number, maximum number of iterations and viscous solution acceleration
parameter (VACC) are all factors that affect XFOIL convergence. Various
combinations were tried to improve convergence. Results were improved when
adding the command to repanel the foil with 70 panels, vice the previous value of

--- ---- ----- -

::::



140. Results are shown in Figure 15. Additional research should be conducted to
evaluate the viscous calculation capability of XFOIL, and determine how to most
effectively set parameters that result in smooth, consistent, convergent results.

Minimum Pressure Envelope(s) for:
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Figure 15: Sample Viscous and Inviscid Minimum Pressure Envelopes
Calculated by XFOIL (Reynolds Number = 1*106, 100 Maximum
Iterations, 70 Panels)

5.3 Comparison of Brockett's Method to XFOIL Results
This intent of this research was to create a MATLAB based utility that would
reproduce the minimum pressure diagrams published by Brockett [4], which could
be later integrated into OpenProp for propeller design. Initial attempts using a
simple two-dimensional panel method did not closely match Brockett's published
results. As a result, XFOIL was implemented in order to conduct the pressure
distribution calculations. XFOIL was chosen due to its highly regarded reputation as
an accurate tool for conducting foil analysis and design. Results using XFOIL were
still not able to reproduce the data as expected. Finally, the program as published
by Brockett in reference [1] was reprogrammed in MATLAB in order to conduct
further comparison. It was this comparison that revealed the noticeable differences



between Brockett's results and exact theory for potential flow, as previously shown

in Figure 4 through Figure 7.

Figure 16 below illustrates the differences between Brockett's published minimum

pressure envelopes, and the XFOIL calculated results. Figure 16 presents

minimum pressure envelopes for the NACA 66 (TMB Modified), a = 0.8 meanline.

Each individual curve was developed for a camber ratio of 0.06, and a thickness

ratio of 0.12.
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Figure 16: Minimum Pressure Envelope Comparison

Figure 16 illustrates the difference between Brockett (Inviscid) and the XFOIL
(Inviscid) solutions. The difference is a result of inaccuracies of the Brockett
method to predict the minimum pressure coefficient, as previously discussed in
section 4.4, and summarized in Table 2. Specifically, the Brockett method
underestimates the magnitude of the minimum pressure coefficient for intermediate
and positive angles of attack, which corresponds to the near vertical and upper
portions of the minimum pressure envelope, and overestimates the magnitude of



minimum pressure at negative angles of attack. The near vertical portion of the

graph represents the region of operation when the minimum pressure occurs in the
vicinity of the mid-chord. The upper and lower portions of the envelope correspond

to nose cavitation, when the minimum pressure occurs near the leading edge of the

foil due to elevated angles of attack.

The trend shown in Figure 16 is typical for all thicknesses and camber ratios. As a

result, the overall minimum pressure envelopes as shown in Figure 12 and Figure

13 do not exactly match the published results of Brockett [4]. In addition, Brockett's

published minimum pressure envelops for modified NACA-66 sections with NACA

a=0.8 camber include an empirical correction for viscosity. The difference between

Brockett's potential theory calculation and empirical correction for viscosity is also

shown in Figure 16. The magnitude of the difference between Brockett's viscous

and inviscid calculations is approximately equal to the magnitude difference

between Brockett's inviscid calculation and XFOIL. As a result, it is believed that

further investigation should be conducted to account for the viscous effects, and

how viscous effect could be accounted for using XFOIL. As previously noted,
XFOIL is capable of performing viscous calculations, and that ability was retained in

the modified version XFOIL used for this work. However, accurate results were not

reliably obtained, and were not evaluated. Further research in this area is

recommended, which would greatly enhance the capabilities generated as for this

project.



6 OpenProp Implementation Approach
Open-source Propeller Design and Analysis Program (OpenProp) is an open source

MATLAB@-based suite of propeller numerical design tools. This program is an

enhanced version of the MIT Propeller Vortex Lattice Lifting Line Program (PVL)

developed by Professor Justin Kerwin at MIT in 2001. OpenProp v1.0, originally

titled MPVL, was written in 2007 by Hsin-Lung Chung and is described in detail in

[9]. Two of its main improvements versus PVL are its intuitive graphical user

interfaces (GUls) and greatly improved data visualization which includes graphic

output and three-dimensional renderings.

OpenProp was designed to perform two primary tasks: parametric analysis and

single propeller design. Both tasks begin with a desired operating condition defined

primarily by the required thrust, ship speed, and inflow profile. The parametric

analysis produces efficiency diagrams for all possible combinations of number of

blades, propeller speed, and propeller diameter for ranges and increments entered

by the user. Efficiency diagrams are then used to determine the optimum propeller
parameters for the desired operating conditions given any constraints (e.g. propeller
speed or diameter) specified by the user.

OpenProp was developed to serve as an open source code for propeller design.

While it is currently a tool used in the initial design phase, it is a base program that
can be continually expanded to perform detailed design and analysis of
sophisticated marine propulsors and turbines. Development of a method of
cavitation analysis that could be integrated into OpenProp was a primary motivation
for this thesis.

The use of MATLAB provides for integration into the propeller design suite,
OpenProp. Integration of cavitation analysis into OpenProp would provide the
designer information about cavitation conditions while early in the design process,
allowing adjustments to blade geometry to correct deficiencies. Following the
design recommendations of Brockett [4], design charts or internal data feedback
could provide adjustments to blade geometry. Cavitation prediction can either be



conducted for existing foils, or foil design could be selected in order to avoid

cavitation for a given set of operating conditions.

6.1 Analysis of Existing Foils
For an existing propeller, where blade geometry is known, the code presented here

could be used to conduct cavitation analysis for the foil. The geometry for the foil

can be formatted as required, and may be used as input. To predict cavitation on

existing foils, the minimum pressure curve for the propeller geometry at the radial

position under investigation should first be generated. Then, based on operating

conditions (angle of attack and local cavitation number, a = [po - Pvapor] / [ApU 2]),
the operating point may be compared to the calculated minimum pressure

envelope. By setting the cavitation number equal to the negative of the minimum

pressure coefficient, the operating point may be determined. If the operating point

falls within the region bound by the minimum pressure envelope, cavitation is

assumed not to occur. Cavitation is assumed to occur in the region outside of the

minimum pressure envelope.

To analyze a complete propeller blade, it is recommended that a routine be created

that analyzes the propeller blade at various radial positions from the hub to the tip at

user specified intervals. At each radial position, the geometry must be determined

as input. In addition to the minimum pressure coefficient, the pressure distribution

along the chord may be calculated and compared to the cavitation number. By
determining where the negative of the pressure coefficient is greater than the

cavitation number, regions along the propeller where cavitation is predicted could

be determined. These regions could then be used to produce a color coded plot of

the surface of the propeller blade, indicating regions were cavitation is predicted to
occur.

Margin to cavitation may also be determined. For propellers that are predicted not
to cavitate, the operating angle of attack can be compared to the angles of attack at
the upper and lower bounds of the minimum pressure envelope for the cavitation
number. The difference between the operating angle of attack and the angles of



attack at the envelope boundaries gives an indication of how close the propeller is

to cavitation based on expected operating conditions. This information can also be

used to predict how far from design conditions the propeller may be operated before

the onset of cavitation. Varying inflow would be an example of off design conditions

that could be analyzed using the margin to cavitations. For example, if the inflow is

known to vary by 20 around the circumference, then as long as the margin to

cavitation is greater than 20, cavitation would not be expected to occur due to

varying inflow.

6.2 Geometric Design to Prevent Cavitation
Rather than analyzing an existing propeller, minimum pressure envelopes may be

used as an aid to the designer in producing propeller blade geometry that is

optimized to prevent cavitation. 'Optimum' foil geometry, as described by Brockett,

allows the greatest total angle change without occurrence of cavitation for a given

cavitation number. The optimum foil is the one for which the minimum pressure

envelope is the widest at the given -Cpmin. In other words, it is the thickness which

provides the greatest envelope width for the given operating conditions. Figure 17

outlines a basic procedure that could be implemented into OpenProp, utilizing the

information provided from the minimum pressure envelope data to assist in

propeller design.
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Figure 17: Example Flowchart for using Minimum Pressure Envelopes for
Design.
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For cambered foils, there are two separate curves that bound the minimum

pressure envelopes, one for the upper portion, and one for the lower. The curve

bounding the upper portion is the limit for the maximum envelope width, and is

shown in Figure 18. This boundary will be used to determine the optimal foil

thickness.

INVISCID Minimum Pressure Envelope(s) for:
Meanline: Brock08act.txt. Thickness: Brock66act.txt

Fo/c = 0.04

3

Figure 18: Minimum Pressure Envelopes to Find Optimum Thickness

The designer must first specify a desired meanline and thickness distribution,

howver, the values of fo/C and to/C are not yet known. To determine the angle of

attack, an arbitrary fo/C must be specified. From thin airfoil theory, the idea angle of

attack, ai, is defined as the angle of attack for which the coefficient Ao = 0. Ao is the

angle of attack dependent coefficient in the Fourier series expansion of df/dx

(camberline slope) [5]. Equations (6.1) and (6.2) below provide details.

a, =--Jdx X (6.1)



= -cos(x (6.2)
2

Tabulated camberline data may be available that includes ai and CL,ideal for a given

fo/C, and may be used instead of specifying an arbitrary fo/C and calculating a! and

CL,ideal. Once determined, the ideal lift coefficient, which is the lift coefficient for the

foil at the ideal angle of attack, should be evaluated, and may be obtained from

XFOIL. Once the ideal lift coefficient is determined, the initial estimate for camber

ratio of the design foil may be determined by scaling the camber by the ratio of the

desired lift coefficient to ideal lift coefficient.

SOC)arra Cldesired (6.3)
estiate arbitra Clideal

Using the minimum pressure envelopes for the estimated camber, the thickness

ratio can be determined based on the upper bounding curve of Figure 18 by

entering the graph at the design cavitation number. For example, if the value of the

cavitation number is assumed to be 0.8, the optimum foil thickness from Figure 18

is between 0.1 and 0.12, and could be interpolated as approximately to/C = 0.11.

Numerically, this procedure could be accomplished by one of two methods. If the

location of the "knuckles" of the envelopes can be identified, the bounding curve for

the minimum pressure envelopes can be determined, as in Figure 18. Defining the

bounding surface as a function of thickness ratio would allow the designer to directly

calculate the thickness that results in the widest envelope for the given cavitation

number. This method was attempted, but determining the location of the "knuckles"

was difficult and a reliable method was not found. Rather than determining a

function that describes the boundary of the minimum pressure envelopes, it is

recommended that the envelope widths be calculated for each of the thicknesses,
and a maximum determined for the specified cavitation number.

Based on design specifications (lift coefficient and cavitation number), the designer

has the option of two methods for determining an angle of attack for which to place

the foil. The angle of attack may be specified as the ideal angle of attack, or the



angle that maximizes the margin to cavitation, located halfway between the upper

and lower portion of the minimum pressure envelope curve for the given thickness

at the specified cavitation number. By definition, the ideal angle of attack will

minimize the local pressure spike at the leading edge, but may not provide equal

margins to caviation about the operating point, particularly for higher to/C.

Howerver, the ideal angle of attack should provide a useful starting point for the

design.

INVISCID Minimum Pressure Envelope(s) for:
Meanline: Brock08act.txt. Thickness: Brock66act.txt
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Figure 19: Minimum Pressure Envelopes to Find Envelope Width and Cavitation
Margin

Figure 19 shows the minimum pressure envelope for to/C = 0.11. From this graph,

the cavitation envelope width may be determined. Points A and B correspond to the

values of the minimum pressure envelope at -Cpmin = o, and provide the values for

the angle of attack where the onset of cavitation is expected. Cavitation is not

expected between -1.50 and 2.20. Point C is the operating point if the foil is placed

at the ideal angle of attack of 0.90. The width of the cavitation envelope is 3.70

which is +1.30 and -2.40 from design angle of attack. XFOIL should be use to

- --- ----------------- ------------------ ----------------



recalculate lift coefficient at the design parameters to verify required lift coefficient is

achieved.

Rather than assuming the foil be operated at the ideal angle of attack, a method

that maximizes that margin tocavitation could be used instead. Cavitation margin is

defined as the magnitude of the difference between the operating angle of attack,

and the angle at which cavitation is predicted. In order to maximize the cavitation

margin, the operating angle of attack should be exactly in the middle of the upper

and lower portions of the minimum pressure envelope. For this method, the

operating angle of attack would be specified as (2.2* - 1.5*)/2 = 0.35' . However, by

changing the angle of attack, the lift coefficient would be reduced and may not

provide the required lift. As a result, the camber would need to be increased, and

design process would be repeated until design criteria were met.



7 Conclusion
A method of generating minimum pressure envelopes using XFOIL was created.

By modifying the source code, a version of XFOIL that does not require user

interaction was created. Using MATLAB to interface with XFOIL, minimum pressure

envelopes for an arbitrary foil shape can be generated, provided offset data is

available for foil geometry.

The minimum pressure envelopes created as a result of the XFOIL calculations

were compared to published work by Brockett. It was found that the two-

dimensional panel method of XFOIL could more accurately estimate the potential

flow solution for a Karman-Trefftz foil than the approximate conformal

transformation method used by Brockett. Although XFOIL includes the ability to

conduct calculations for a viscous fluid, additional work is required in order to

evaluate the limits for which XFOIL's viscous mode will reliably converge.

The code developed as part of this thesis is intended to be used for further

integration into OpenProp. Integration into OpenProp will allow the user to both

conduct cavitation analysis and prediction for existing foils, as well as allow the

designer to consider cavitation in the design process, and select foil geometry that

will prevent cavitation.

7.1 Recommendations for Future Work
7.1.1 Viscous Calculations

In order to utilize the benefits of the highly accurate potential flow solution available

from XFOIL, the effects of viscosity must be reevaluated, and accounted for. The

empirical modification used by Brockett depends upon specifying an experimental

lift coefficient for each angle of incidence, and can be determined from the lift-curve

slope (q) and angle of zero lift (ao0e), using the following equation:

C, = 2r(a-aao) (7.1)



It has been experimentally shown [8] that r1 and a0oe are independent for high

Reynolds numbers (>6x10 6). This method should be compared to the manner by

which viscous calculations are conducted in XFOIL. XFOIL's viscous mode should

be integrated into the methods presented here for calculating minimum pressure

envelopes, if found to be more accurate. In addition, the parameters affecting

convergence of XFOIL's viscous calculation should be evaluated to ensure proper

problem formulation and evaluation.

7.1.2 OpenProp Integration

The design approaches outlined in section 6 should be developed and integrated

into OpenProp. Once developed, these methods would provide great benefit and

enhance the utility of the OpenProp design suite. Program code that performs the

basic functions required to integrate cavitation design were developed in this thesis.

In particular, the development of the modified version of XFOIL allows rapid

calculation of complex foil geometries, and simplifies the method of retrieving data

from XFOIL and entering that data into MATLAB. In addition, the MATLAB code

generated in this project provide a starting point from which to develop the

functionality and usefulness of OpenProp.
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Appendix A: MATLAB Script for Conformal Transformation
of Karman-Trefftz Foil.

% Code Developed by Chris Peterson to calculate and display Conformal
% Transformation of a Karman-Trefftz foil. Intended to be used to
% compare values for different methods of calculating surface velocites
% for airfoils.
c1c; clear all;close all;
%User defined Data
U = 1; %Free Stream Velocity
alpha_deg = 0; %Angle of Attack (Degrees)
xc = -0.10; %Circle Center Location (<0)
yc = 0.150; %Circle Center (>0 adds + camber)
tau = 10; %Tail Angle
n_pts = 201; %Number of points along mapped foil surface
out_pts = 36; %Total number of X-Y output points (ODD)
a = 1; %X-intercept
alpha = deg2rad(alpha_deg);
%Display parameters
No_strm = 21; %Number of Streamlines to plot
range = 3; %Z-plane X-Y Range
strmstrt = -3; %X-Location for streamline start
div = 0.1; %Grid spacing for velocity vectors on Z-plane
%Calculation of properties
beta = atan(-yc/(l-xc)); %Angle to rear stagnation point
beta_deg = rad2deg(beta); %Beta in degrees
rc = sqrt((a-xc)^2 + ycA2); %Calculate radius of circle
Gamma_calc = 4*pi*rc*U*sin(beta-alpha); %Kutta condition requirement
Gamma = Gamma_calc; %Set circulation to required
lam = 2-tau/180; %Trailing egde to lamba calculation
%Generate Z-plane Plot with streamlines and velocity vectors
[X,Y] = meshgrid(-range:div:range,-range:div:range); %Create location mesh
r = sqrt((X-xc).^2 + (Y-yc).^2); %Radius at mesh locations
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi
for j=l:length(X)

for k=l:length(X)
if X(j,k) >= xc

theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc));
elseif X(j,k) < xc

theta(j,k) = atan((Y(j,k)-yc)/(X(j,k)-xc)) + pi;
end

end
end
%Calculate velocity components u, v based on potential theory
u = U*cos(alpha) - (U.*((rc./r).^2).*cos(2.*theta - alpha))...

- Gamma.*sin(theta)./(2.*pi.*r);
v = U*sin(alpha) - (U.*((rc./r).^2).*sin(2.*theta - alpha))...

+ Gamma.*cos(theta)./(2.*pi.*r);
%Calculate location of stagnation points
theta_sl = asin(Gamma/(4*pi*rc*U)) + alpha;
theta s2 = asin(-Gamma/(4*pi*rc*U)) + alpha - pi;
x_stl = rc*cos(theta sl)+xc;
ystl = rc*sin(theta_sl)+yc;
x_st2 = rc*cos(theta s2)+xc;
y_st2 = rc*sin(theta_s2)+yc;
%Define point on circle



x_circ = xc + rc*cos(0:pi/21:2*pi);
y_circ = yc + rc*sin(0:pi/21:2*pi);
z_circ = x circ + i*y_circ; %z is complex coordinates of circle
%Eliminates points inside circle for vector plot (large values near
singularities)
u mod = u;
v mod = v;
for j = l:length(X)

for k = l:length(X)
if (X(j,k)-xc)A2 + (Y(j,k)-yc)^2 < rc^2

u_mod(j,k) = 0;
v_mod(j,k) = 0;

end
end

end
% Plot Z-plane, with circle, stagnation points, velocity vectors and
% streamlines.
figure()
orient landscape;
axis equal;hold on;grid on;ylim([-range range]);xlim([-range range]);
title({'Z-plane'; 'Potential Flow Around a Circle'));
set(gca,'YTick',-range:range);set(gca,'XTick',-range:range);
streamline(stream2(X,Y,u,v,strm strt*ones (Nostrm,1) ...

,-range:2*range/(No_strm-l):range)); %Plots streamlines
plot(x_circ, y_circ, 'k') %Plots circle
plot(x_circ, y_circ, 'k.') %Plots circle points
plot(xc, yc, 'r+') %Plots circle center
plot(x_stl, y_stl, 'ko') %Plots stagnation point 1
plot(x_st2, y_st2, 'ko') %Plots Stagnation point 2
% quiver(X,Y,u_mod,v_mod, 'g'); %Plots Vectors
%Map surface of ccircle to Zeta-plane
Zeta circ = lam*a*((z_circ+a).^lam + (z_circ-a).^lam)...

./((z_circ+a).^lam - (z_circ-a).Alam);
%Routine to find velocities and -Cp on foil surface
theta = 0:2*pi/n_pts:2*pi-pi/n_pts; %Defines theta incremented 0->2*pi
x_z = xc + rc*cos(theta); %X location in Z-plane
y_z = yc + rc*sin(theta); %Y location in Z-plane
u_z = U*cos(alpha)... %X velocity in Z-plane

- (U.*cos(2.*theta - alpha)) - Gamma.*sin(theta)./(2.*pi.*rc);
v_z = U*sin(alpha) ... %Y velocity in Z-plane

- (U.*sin(2.*theta - alpha)) + Gamma.*cos(theta)./(2.*pi.*rc);
z_z = x_z + i.*y_z; %Complex velocoity in Z-plane
%Transform Surface Locations & Velocities to Zeta Plane
Zeta = lam*a.*... %Complex coords Zeta = f(z)

((z_z+a).^lam + (z_z-a).^lam)./((z_z+a).^lam - (zz-a).^lam);
x_zeta = real(Zeta); %X location in Zeta-plane
yzeta = imag(Zeta); %Y location in Zeta-plane
dzeta_dz = (4*(lam*a)^2) ... %D(Zeta)/Dz

*( ( (z_z-a).^ A ( l a m - 1) )  .* ((z z+a).^ ( l a m -l ) )  )...
./(( ((z_z+a).^lam) - ((z_z-a).^lam)).^2);

vel_zeta = (u z - i.*v_z)./dzeta_dz; %[u-iv]_zeta = [u-iv]_x/Dzeta/Dz
u_zeta = real(vel_zeta); %X velocity in Zeta-plane
v_zeta = -imag(vel_zeta); %Y velocity in Zeta-plane
q_zeta = sqrt(u_zeta.A2 + v_zeta.^2);%Zeta-Velocity Magnitude
cp_zeta = 1-(qzeta./U).^2; %Zeta pressure coefficient

%Create plot of Zeta plane



figure(); grid on;hold on;axis equal;orient landscape;
xlim([-range range]);ylim([-range+l range-1]);
title(('\zeta-Plane';'Potential Flow Around Mapped Foil'});
plot (Zeta circ, 'k')
%plot(Zetacirc, 'k.')
%Find Z coodinates in Z-Plane based on required spacing in Zeta-plane
%in order to calculate U-V components in mesh spacing for streamline plot
[Xgrd_zeta,Ygrd_zeta] = ... %Create location mesh

meshgrid(-range:div:range,-range:div:range);
Zetagrd = Xgrd_zeta + i*Ygrd_zeta;
Z_grd = -a.*((((Zetagrd-lam)./(Zetagrd+lam)) .^(/lam))+l)...

./((((Zetagrd-lam)./(Zetagrd+lam)).^ A (1/lam)) -1);
X_grd = real(Z_grd);
Y_grd = imag(Z_grd);
r_grd = sqrt((X_grd-xc) .2 + (Y_grd-yc).^2);%Radius at mesh locations
%Calculate angle theta to mesh locations, 0 <= theta < 2*pi
for j=l:length(X_grd)

for k=l :length(X_grd)
if X_grd(j,k) >= xc

theta_grd(j,k) = atan((Ygrd(j,k)-yc)/(X_grd(j,k)-xc));
elseif X(j,k) < xc

theta_grd(j,k) = atan((Y_grd(j,k)-yc)/(X_grd(j,k)-xc)) + pi;
end

end
end
%Calculate velocity components u, v based on potential theory
u_grd_z = U*cos(alpha) - (U.*((rc./r_grd) .^2).*cos(2.*theta_grd - alpha))...

- Gamma.*sin(theta_grd)./(2.*pi.*r_grd);
v_grd_z = U*sin(alpha) - (U.*((rc./r_grd) .A2).*sin(2.*theta_grd - alpha))...

+ Gamma.*cos(theta_grd)./(2.*pi.*r_grd);
for j = 1:length(X_grd)

for k = 1:length(X_grd)
if (X_grd(j,k)-xc)^2 + (Ygrd(j,k)-yc)^2 < rc^2

u_grd_z(j,k) = 0;
v_grd_z(j,k) = 0;

end
end

end
dzeta_dzgrd = (4*(lam*a)^2) ... %D(Zeta)/Dz

*( ((Z_grd-a).^ ( l a m -l ) )  .* ((Z_grd+a).^ ( l a m -l ) )  )...
./(( ((Zgrd+a) . lam) - ((Z_grd-a) .^lam)) .^2);

vel_grd_zeta = (u_grd_z - i.*v_grd_z)./dzeta_dz_grd;ý
u_zetagrd = real(vel_grd_zeta); %X velocity in Zeta-plane
v_zeta_grd = -imag(velgrd_zeta); %Y velocity in Zeta-plane
%quiver(Xgrd_zeta ,Ygrd zeta, u_zeta_grd, v_zeta_grd, 'g')%Plots Vectors
streamline(stream2(Xgrd zeta ,Ygrd zeta, u_zeta_grd, v_zeta_grd,...

strm_strt*ones(No_strm,1),-range:2*range/(No_strm-1) :range));%Plots
streamlines
%Create and save plot of minimum pressure distribution
figure(); hold on; grid on; xlim([0 1])
xlabel('Chordwise Position (X/C)')
ylabel('Negative of Pressure Coefficient (-C_p)')
title(['Pressure Distribution for \alpha = ', num2str(alpha deg), '\circ'])
plot((x_zeta-min(x_zeta)) ./(max(x_zeta)-min(x_zeta)), -cp_zeta, 'k.-')
saveas(gcf,'Trefftz.fig')
close ();
%Scales foil to Chord lenght of 1.



chord = (max(x_zeta)-min(xzeta));
x_zeta_scl = (x_zeta-min(x_zeta))./(max(xzeta)-min(xzeta));
y_zeta_scl = y_zeta./(max(x_zeta)-min(x_zeta));
%Locates nose location and index X and Y.
[xnose, inose] = min(x zeta scl);
[xtail, i tail] = max(xzetascl);
%Breaks scaled locations into upper and lower surfaces
x US = [xzetascl(itail:end) x zeta scl(l:inose)];
y_US = [y_zeta_scl(i_tail:end) y_zeta_scl(l:i_nose)];
x_LS = xzeta_scl(i nose:itail);
y_LS = y_zeta_scl(i_nose: i_tail);
%Defines X locations, cos-spaced, to be used for output
x_spl = (l+cos(0:2*pi/(out_pts-l):2*pi))/2;
%Splines Upper and Lower surfaces and evaluates at x_spl locations
spl_US = spline(x_US, y_US);
spl_LS = spline(x_LS, y_LS);
y_spl = [ppval(spl_US, x_spl(l:ceil (out_pts/2))) ...

ppval(spl_LS, x_spl(ceil(out_pts/2)+l:end))];
%Summary plot to compare input, output, and spline functions
figure();hold on; axis equal;
fnplt(spl US, 'r')
fnplt(spl_LS, 'g')
plot(x_US, y_US, 'k.')
plot(x_LS, yLS, 'k.')
plot(x_spl, y_spl, 'bo')
legend('US Spline', 'LS Spline', 'US Data', 'LS Data', 'Output Poi
%Saves splined output point and angle of attack to file xoutput
save('x_output', 'xspl', 'y_spl', 'alphadeg')
%Writes splined output X and Y locations to data file trefxy
fid = fopen('trefxy', 'w');
for i =1:length(xspl)

fprintf(fid, '%12.8f %12.8f\n', x_spl(i), y_spl(i));
end
fclose(fid);
%run brockthesis

nts')

%Starts Brockett's thesis for comparison of data.



Appendix B: MATLAB Code of Brockett's Work
(Brockett.m)

%ADAPTATION OF BROCKETT'S THESIS WORK. Code Modified by Chris Peterson.
%Code allows user specified input, and plots pressure distribution for
%given input.

clear all; c1c;
prnt2scrn = 1; %Turn on (1) or off (0) screen output

run CfmlInput %Allows user specified setting and data input.

%Preallocate memory for Improved Speed
CO = zeros(1,18);SO = zeros(l,18);X = zeros(l,18);ANTRP=zeros(1,12);
CNT=zeros(1,12);XA=zeros(l,12);SNT=zeros(1,12);COL=zeros(1,17);
COT=zeros(l,17);Zl=zeros(12,17);Z2=zeros(12,17);
Z4=zeros(12,17);EE=zeros(1,NX);DD=zeros(1,37);

if IDEN == 0
SY=zeros(1,19);
VL=zeros(1,19);

elseif IDEN > 0
SY=zeros(1,36);
VL=zeros(1,36);

end

% CALCULATION OF CONSTANTS

AN=18.0;
for I=1:18

TA= (I-1)*.17453293;
CO(I)=cos(TA);
SO(I)=sin(TA);
X(I)=.5*(l.+CO(I));

end
SO(19)=0.;
CO(19)=-1.;
X(19)=0.;
for I=20:37;

IA=38-I;
X(I)=X(IA);
CO(I)=CO(IA);
SO(I)=-SO(IA);

end

% INTERMEDIATE POINTS AND CORRESPOINDING X VALUES

for I=1:9
ANTRP (I)=(I)*.017453293;

end
ANTRP (10) =12.5*. 017453293;
ANTRP(11) =15.0*.017453293;



ANTRP (12) =17.5*. 017453293;
for I=1:12

CNT(I)=cos(ANTRP(I));
XA(I) =. 5* (1-CNT (I)) ;
SNT(I)=sin(ANTRP(I));

end

% CALCULATION OF VECTORS USED TO OBTAIN SLOPE AND VELOCITY

for I=1:2:17
COL(I) = -1/(AN*(1-CO(I+1)));

end

COEF = 1;
for I=1:17

COEF
COT (I)

end

= -COEF;
= COEF*SO(I+1)/(1-CO(I+1))*0.5;

for I=1:12
COEF = 1;
CNNT = cos(18*ANTRP(I));
SNNT = sin(18*ANTRP(I));
for J=1:17

COEF=-COEF;
TA = (-CNT(I)-CO(J+1));
TB = (COEF*CNNT-1)/36;
TC = COEF*SNNT*0.5;
TD = TA*TA;
TE = (1+CO(J+1)*CNT(I))/TD;
TF = SO(J+1)*SNT(I)/TD;
TD = COEF*CNNT*0.5/TA;
Z1(I,J) = TB*TF+TC*SO(J+1)/TA;
Z2(I,J) = TB*TE+TC*SNT(I)/TA;
Z3(I,J) = (TC/18.)*TF-TD*SO(J+1);
Z4(I,J) = (TC/18.)*TE-TD*SNT(I);

end
end
% READ INPUT (REPLACED WITH FUNCTION ARGS)

%C ARBITRARY INPUT SUBROUTINE

if IPM > 0
if prnt2scrn == 1

fprintf(' INPUT AT ARBITRARY X VALUES\n')
end
if IDEN > 0 %(Not symmetric)

if ILK > 0 %(:INPUT TAU, RHO, RHO)
if prnt2scrn == 1

fprintf(' THICKNESS CAMBER NOSE RADIUS\n')
fprintf('%12.6f' ,TAO,F,RHO)
fprintf('\n\n')
fprintf(' X YT YC

PRINT 31
end
RHO = RHO*TAOA2;

DYC/DX\n') %



for I=1:NX
AT = AT in(I);
YT = YT in(I);
YC = YC in(I);
YCP = YCP in(I);
IA=2*NX-I;
if AT > 0

if YCP -= 0
THT
SA
CA
CC(I)
Y(I)
CC (IA)
Y (IA)

elseif YCP
Y(I)
Y (IA)
CC (I)
CC (IA)

atan(YCP*F);
sin (THT) *YT*TAO;
cos (THT) *YT*TAO;
AT-SA;
YC*F+CA;
AT+SA;
YC*F-CA;
0
YC*F+YT*TAO;
YC*F-YT*TAO;
AT;
AT;

end
elseif AT == 0

THT = atan(YCP*F);
Y(I)= RHO*sin(THT);
YN = Y(I);
CC(I)= -RHO*(1.-cos(THT));
XN = CC(I);

end
if prnt2scrn == 1

fprintf('%12.6f',AT,YT,YC,YCP)
fprintf( '\n' )

end
end
NX = 2*NX-1;

elseif ILK == 0
if prnt2scrn ==

fprintf (' X Y\n')
fprintf('%12.6f', XN, YN)
fprintf ( '\n')
for I = 1:NX

CC(I)=CC in(I);
Y(I) =Y in(I);
fprintf('%12.6f',CC(I),Y(I))
fprintf ( '\n' )

end
else

end
end
IMS
B
AWK
SA
CA

for I = 1:NX
CC(I)=CC in(I);
Y(I) =Y in(I);

end

= 37;
= 1-XN;
= atan(YN/B);
= sin(AWK);
= cos(AWK);

=



if prnt2scrn == 1
fprintf('\n\nROTATED AND SHRUNK INPUT\n')
fprintf('ANGLE OF ROTATION= %9.6f DEG,\n', AWK)
fprintf(' NOTE: THIS ANGLE WILL BE ADDED TO EACH OF THE INPUT

ANGLES\n')
fprintf

I = 1:N)
CC(I)
Y(I)
ALTER
CC(I)
Y(I)

= NX-1;
= (NX+1)
I=2:ND
B
EE
if

PHI,DEG\n')

= (CC(I)-XN)/B;
= (Y(I)-YN)/B;
= CC(I);
= (CC(I)*CA-Y(I)*SA) *CA;
= (Y(I) *CA+ALTER*SA) *CA;

/2;

= I;
(I) = 2*CC(I)-1;
EE(I) ~= 0
EE(I)=atan(sgqrt(abs(1-EE (I)^2))/EE(I));
if (B-A) <= 0

if (CC(I)-.5) < 0
EE(I) = EE(I)+pi;

end
elseif (B-A) > 0

if (CC(I)-0.5) < 0
EE(I) = pi+abs(EE(I));

elseif (CC(I)-0.5) > 0
EE(I)=2*pi - EE(I);

elseif (CC(I)-0.5) == 0
EE(I)=1.5*pi;

end
end

elseif EE(I) == 0
if (B-A) == 0

error('ERRONEOUS INPUT')
elseif (B-A) < 0;

EE(I)=pi/2;
elseif (B-A) > 0;

EE (I) =1. 5*pi;
end

end
end
EE(1)=0;
EE(NX)=2*pi;
for I=1:NX

A=EE(I)*180/pi;
if prnt2scrn == 1

fprintf('%12.6f',CC(I),Y(I),A)
fprintf('\n')

end
end

elseif IDEN == 0
if prnt2scrn == 1

fprintf(' PHI,DEG\n')

end
for

end
ND
A
for

AWK = AWK*180/pi;

( I



end
ND=NX-1;
for I=1:NX

CC(I)=CC in(I);
Y(I)=Yin(I);

end
EE(1) =0;
if prnt2scrn == 1

fprintf(' X Y
fprintf('%12.6f',CC (1) ,Y(1),EE (1))
fprintf('\n')

end
for I = 2:ND

EE(I) = 2*CC(I)-1;
if EE(I) -= 0

EE(I) = atan(sqrt(abs
if (CC(I)-0.5) < 0

EE(I) = EE(I)+pi;

elseif (CC(I)-0.5) == 0
EE(I) = pi/2;

end
elseif EE(I)==0

EE(I) = pi/2;
end
A = EE(I)*180./pi;
if prnt2scrn == 1

fprintf('%12.6f',CC(I),Y(I),A)
fprintf('\n')

end
end
EE(NX) = pi;

= 180;
if prnt2scrn == 1

fprintf('%12.6f',CC(NX),Y(NX),A)
fprintf('\n')

end
IMS
AWK

= 19;
= 0;

I = 1;
CC(1) = Y(1);
R = 0;
Y1 = Y(2)-Y(1);
Y2 = Y(3)-Y(1);
Y3 = Y(4)-Y(1);
A = (Y1*EE(3)-Y2*EE(2))
B = (Y2*EE(4)-Y3*EE(3))
A3 = (A-B)/(EE(2)-EE(4))
A2 = A-A3*(EE(2)+EE(3));
Al = Y1/EE(2)-EE(2)*(A2+,
R = R + pi/18;
I = I + 1;
CC(I) = Y(1)+R*(Al+R*(A2+R*j
if (R-EE(2)) <= 0

/(EE (2) *EE
/(EE (4) *EE

A3+EE(2));

(3)*(EE(2)-EE(3)));
(3)*(EE(3)-EE(4)));

PHI,DEG\n')

end

(1-(EE(I))A2))/EE(I));



while (R-EE(2)) <= 0
R = R + pi/18;
I = I + 1;
CC(I) = Y(1)+R*(A1+R*(A2+R*A3));

end

= INA-Z;

= Y(ND)-Y(NX);
= Y(NP)-Y(NX);
= NX-3;
= Y(N3)-Y(NX);
= 0;
= EE(ND)-EE(NX);
= EE(NP)-EE(NX);
= EE(N3)-EE(NX);
= (Y1*X2-Y2*Xl)/(Xl*X2*(Xl-X2
= (Y2*X3-Y3*X2)/(X3*X2*(X2-X3
= (A-B)/(Xl-X3);
= A-A3*(Xl+X2);
= Yl/Xl-X* (A2+A3*Xl);
= IMS;
= R-pi/18;
= I-i;

(I) = Y(NX)+R*(Al+R*(A2+R*A3));
= R+EE(NX);
(A-EE(ND)) > 0
while (A-EE(ND)) > 0

R = R-pi/18;
I = I-1;
CC(I) = Y(NX)+R*(Al+R*(A2+R*A3));
A = R+EE(NX);

end

I = 2:IMS
R = (I-1)*pi/18;
for J = 2:NP

if (R-EE(J)) > 0
if (R-EE(J+1)) < 0

JP = J-1;
X1 = EE(J)-EE
X2 = EE(J+1)-
X3 = EE(J+2)-:
Y1 = Y(J)-Y(J
Y2 = Y(J+1)-Y
Y3 = Y(J+2)-Y
A = (Yl*X2-Y:
B = (Y2*X3-Y:
A3 = (A-B)/(X:
A2 = A-A3*(Xl
Al = Yl/Xl-Xl
R = R-EE(JP)
CC(I) = Y(JP;

end
elseif (R-EE(J)) == 0

CC(I) = Y(J);
end

end

(JP);
EE(JP);
EE(JP);
P);
(JP);
(JP);
2*Xl) / (X1*X2*(Xl-X2))
3*X2) / (X3*X2* (X2-X3))
1-X3);
+X2);
*(A2+A3*Xl);

)+R*(Al+R*(A2+R*A3));

den
NP
Y1
Y2
N3
Y3
R
X1
X2
X3
A
B
A3
A2
Al
I
R
I
CC
A
if

end
for

I&T1 r%

));));

;

;



end
if IDEN == 0

for I = 1:18
IA = 38-I;
CC(IA) = -CC(I);

end
end
CC(IMS) = Y(NX);
if prnt2scrn == 1

fprintf ( ' \n\nINPUT AT REQUIRED X VALUES\n')
fprintf ( ' INDEX X YU YL\n' )

end
for I = 1:19

IA = 38-I;
Y(I) = CC(I);
Y(IA) = CC(IA);
J = I-l;
Input_at_reqd_x(I,:) = [J X(I) Y(I) Y(IA)] ;
if prnt2scrn == 1

fprintf('%12.6f',J,X(I),Y(I),Y(IA))
fprintf ( ' \n' ) ;

end
end
Y(19) = 0;
if prnt2scrn == 1

fprintf(' NOTE: LE AND TE ORDINATES SET=0\n')
end
ABA = Y () ;
Y(1) = 0;

elseif IPM == 0
AWK = 0;
if IDEN == 0

Y(19) = 0;
ABA = Y(1);
Y(1) = 0;
for I = 1:18

IA = 38-I;
Y(IA) = -Y(I);

end
elseif IDEN > 0

Y(37) = -Y(1);
ABA = Y(1);
Y(1) = 0;

end
end

% CALCULATION OF PROFILE SLOPE AND COTANGENT INTEGRAL

if IDEN < 0
ERROR('ERRONEOUS INPUT');

elseif IDEN == 0
MAD = 19;

elseif IDEN > 0
MAD = 36;

end

for I=1:MAD



SY(I) = 0;
VL(I) = Y(I)*9;
for J=1:17

LA = I-J;
if LA <= 0;

LA = 36+LA;
end
KB=I+J;
if (KB-36) > 0;

KB = KB - 36;
end
SY(I)
VL (I)

end
end

VL(37) = VL(1)
SY(37) = SY(1)
if IDEN == 0

for I
IA
VL(IA)
SY(IA)

end
end
Y(1)=ABA;
%

CALCULAT I C
ATTACK

if prnt2scrn =
fprintf('\
fprintf('\

end
for I=1:37

D2 =
CC(I) =
DD(I) =
AAAAA =
TA =
TB =
EE(I) =
Profile Co
if prnt2sc

= SY(I) + (Y(LA) - Y(KB))*COT(J);
= VL(I) + (Y(LA) + Y(KB))*COL(J);

= 2:18
= 38-I;
= -VL(I);
= SY(I);

)N OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF

= 1
\n\n PROFILE CONSTANTS\n\n');
t X\t\t\tY\t\t\tC\t\t\tD\t\t\tE\t\t\t DY/DPHI\n');

sqrt(SY(I)A2 + (SO(I)A2)/4.);
(VL(1) -VL(I) -SO(I)/2.)/D2;
(SY(I)-SY(1)+(CO(I)-1)/2)/D2;
(X(I)-1)/(2*D2)+X(I)*DD(I);
-CC(I);
-DD(I);
D2;
nst(I,:) = [X(I) Y(I) TA TB AAAAA SY(I)];
rn == 1

fprintf('%12.6f %12.6f %12.6f %12.6f %12.6f %12.6f\n',...
X(I),Y(I),TA,TB,AAAAA,SY(I));

end
end
if prnt2scrn == 1

fprintf('\n\n NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(1-
/+DELTA*sqrt(X-X^2))+DELTA*E )\n')
end

% CALCULATION OF LIFT CURVE SLOPE AND ANGLE OF ZERO LIFT,THEORY

P1 = (1+2*SY(1))A2+4*VL(1)A2;
P = sqrt(P1);
AOL = atan(2*VL(1)/(1+2*SY(1)));



AXL = AOL*180/pi;
if prnt2scrn == 1

fprintf(' DCL/D(ALPHA)/2PI (THEORY)=%10.6f\n ANGLE,CL=O (THEORY) =%10.6f
DEG \n\n\n\n'...

,P, AXL)
end

% CALCULATION OF BASE PROFILE VELOCITY AND INCREMENT DUE TO ANGLE OF
% ATTACK AT INTERMEDIATE POINTS

if prnt2scrn == 1
fprintf (' PROFILE CONSTANTS\n\n')
fprintf (' INTERMEDIATE VALUES\n')
fprintf(' UPPER SURFACE\n')
fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI \n')

end

for I=1:12
CD1 = 0.0;
CD2 = 0.0;
CD3 = 0.0;
CD4 = 0.0;
for J=1:17

JC = 37-J;
YT = Y(J+1)-Y(JC);
YC = Y(J+1)+Y(JC);
CD1 = CD1+YT*Z1(I,J);
CD2 = CD2+YC*Z2(I,J);
CD3 = CD3+YT*Z3(I,J);
CD4 = CD4+YC*Z4(I,J);

end
DYU = CD3+CD4;
DYL = CD3-CD4;
CTU = CD1+CD2;
CTL = -CD1+CD2;
TA = SNT(I)*SNT(I)*.25;
TB = .5*(1.+CNT(I));
ANTRP(I)= DYL;
E1(1,I) = sqrt(DYU*DYU+TA);
E1(2,I) = sqrt(DYL*DYL+TA);
C1(1,I) = (VL(1)-CTU-SNT(I)*.5)/E1(1,I);
C1(2,I) = (VL(1)-CTL+SNT(I)*.5)/E1(2,I);
D1(1,I) = (DYU-SY(1)-TB)/E1(1,I);
D1(2,I) = (DYL-SY(1)-TB)/E1(2,I);
AAAAA = (XA(I)-1.)/(2.*El(1, I))+XA(I)*D1(1,I);
TA = -C1(1,I);
TB = -D1(1,I);
Profile_Const_INT_U(I,:) = [XA(I) TA TB AAAAA DYU];
if prnt2scrn == 1

fprintf('%12.6f%12.6f%12.6f%12.6f%12.6f\n' ...
XA(I),TA,TB,AAAAA,DYU)

end
end
if prnt2scrn == 1

fprintf('\n\n LOWER SURFACE\n')
fprintf('\t\tX\t\t\tC \t\t\tD \t\t\tE \t\tDY/DPHI \n')

end



for I=1:12
AAAAA = (XA(I)-1.)/(2.*El(2,I))+XA(I)*D1(2,I);
TA = -Cl(2,I);
TB = -Dl(2,I);
Profile_Const_INT_L(I,:) = [XA(I) TA TB AAAAA ANTRP(I)];
if prnt2scrn == 1

fprintf('%12.6f',XA(I),TA,TB,AAAAA,ANTRP(I))
fprintf('\n')

end
end

if ICL == 0
AOLE
AXL

end

= AOLE+AWK;
= AOLE*.017453293;

%
% CALCULATION OF THEORETICAL AND DISTORTED PRESSURE DISTRIBUTION

if IPMIN > 0
if prnt2scrn == 1

fprintf('\n\n
fprintf ('
fprintf(' ALFA(CL=0)
fprintf(' ALFA

CM(X=0.25)\n')
end

end
for

MINIMUM
ETA = %8.6f,',ETA)

= %10.6f\n\n',AOLE)
CL CP MIN

I=1:JA
if IPMIN == 0

if prnt2scrn==l
fprintf('\n\n

end
if IDEN == 0

if prnt2scrn ==
fprintf('

end
elseif IDEN > 0

if prnt2scrn ==
fprintf('

end
end
if prnt2scrn == 1

fprintf('
SLOPE ALFA,CL=0\n')

end

ALFA

PRESSURES\n')

MAX VELOC

PRESSURE DISTRIBUTION\n')

SYMMETRICAL PROFILE\n\n')

NON-SYMMETRICAL PROFILE\n\n')

DELTA sin(ALFA) LIFT

end
DMALFA = ALFA(I)+AWK;
ANG = DMALFA*pi/180;
if ICL ~= 0

CL = CLE(I);
elseif ICL == 0

CL = 2*pi*ETA*(ANG-AXL);
end
DEL = ANG - AOL - atan(CL/sqrt(39.478418*Pl1 - CL^2)
SA = sin(ANG);
CA = cos(ANG);
if IPMIN == 0



if prnt2scrn == 1
fprintf('%12.6f',DMALFA,CL,DEL,SA,ETA,AOLE)
fprintf('\n')
fprintf('\n\n X POTNL VELOC VISC

Q VISC P/Q\n')
end

end
APG = A
CAP = cc
SAP = si
CLINT = 0.
CDINT = 0.
CMXINT = 0.
CMYINT = 0.
SIGMA = 0.
for J=1:37

APG
CAV

INCRM VISC VELOC

IG-DEL;
s (APG);
.n(APG);
0;
0;

= ANG-DEL*X(J);
= cos(APG);

SAV = sin(APG);
VELP = abs(CC(J)*CA+DD(J)*SA);
VELV = (1-DEL*SO(J)/2.)*((CC(J)-VL(1)/EE(J))*CAV+(DD(J)...

+(.5+SY(1))/EE(J)) *SAV+VL(1)/EE(J)*CAP-(.5+SY(1))/EE(J)*SAP);
VELV = abs(VELV);
ANCR = VELV-VELP;
PRESP = 1-(VELP)A2;
PRESV = 1-(VELV)A2;
ABD = pi/AN*PRESV;
ABC = ABD*SO(J)/2;
CMXINT = CMXINT+ABC*(X(J)-.25);
if IPMIN == 0

CLINT = CLINT-ABC;
if (J-1) > 0

ABD = ABD*SY(J);
CDINT = CDINT-ABD;
if (J-37) < 0

CMYINT = CMYINT-ABD*Y(J);
end

end
Press_Dist(J,:) = [X(J) VELP ANCR VELV PRESP PRESV];
if prnt2scrn == 1

fprintf('%12.6f',X(J),VELP,ANCR,VELV,PRESP,PRESV)
fprintf('\n')

end
elseif IPMIN > 0

if (SIGMA-PRESV) >=0
SIGMA = PRESV;
XMIN = X(J);
VMAX = VELV;

end
end
if (37-J) == 0

if IPMIN == 0
if prnt2scrn == 1

fprintf('\nINTEGRATED CN=%10.6f\n',CLINT)
% 4508 PRINT 17,CLINT

fp:
PRINT 18,CDINT

rintf('INTEGRATED CC=%10.6f\n',CDINT)

POTNL P/



fprintf ('INTEGRATED CM(X)=%10.6f,
X=0.25\n',CMXINT) % PRINT 19,CMXINT

fprintf('INTEGRATED CM(Y)=%10.6f,
% PRINT 20,CMYINT

% CALCULATION AT INTERMEDIATE POINTS
%

CW ABT

CW ABT Y=O\n',CMYINT)

DISTRIBUTION\n\n')
fprintf('\n\n

% PRINT 8
PRESSURE

fprintf(' ALFA CL DELTA
LIFT SLOPE ALFA,CL=0\n') % PRINT 12

fprintf('%12.6f', DMALFA,CL,DEL,SA,ETA,AOLE)
t% PRINT 2, DMALFA,CL,DEL,SA,ETA,AOLE

fprintf('\n\n INTERME
VALUES\n') % PRINT 14

sin (ALFA)

DIATE

% C
UPPER SURFACE NOSE VELOCITY

fprintf('
VISC P/Q \n') %

end

UPPER SURFACE \n')

X POTNL VELOC VISC INCRM VISC VELOC
PRINT 13

12
= ANG-DEL*XA(K);
= cos(APG);
= sin(APG);
= abs(C1(1,K)*CA+D1(1,K)*SA);
= abs((1.-DEL*SNT(K)/2.)*((C1(1,K)-VL(1)...

/E1(1,K))*CAV+(D1(1,K)+(.5+SY(1))/E1(1,K))*SAV+...
(VL(1)*CAP-(.5+SY(1))*SAP)/E1(1,K)));

= VELV-VELP;
P = 1 -(VELP)^A2;
V = 1 -(VELV)^2;

if IPMIN > 0
if (SIGMA-PRESV) >= 0

SIGMA = PRESV;
XMIN = XA(K);
VMAX = VELV;

end
elseif IPMIN == 0

PressDist INT U(K,:)

if prnt2scrn == 1
fprintf('%12.6f',
fprintf('\n')

end

= [XA(K) VELP ANCR VELV PRESP

XA(K) ,VELP,ANCR,VELV, PRESP, PRESV)

% LOWER SURFACE NOSE VELOCITY

if IPMIN == 0
if prnt2scrn ==

fprintf('\n LOWER SURFACE\n')

PRINT 15
fprintf('\n

POTNL P/Q

end
for K=1:

APG
CAV
SAV
VELP
VELV

ANCR
PRES
PRES

PRESV];

end
end



fprintf(' X POTNL VELOC VISC INCRM VISC VELOC
POTNL P/Q VISC P/Q\n')

end
end
for K=1:12

APG = ANG-DEL*XA(K);
CAV = cos(APG);
SAV = sin(APG);
VELP = abs(Cl(2,K)*CA+D1(2,K)*SA);
VELV = abs((l.+DEL*SNT(K)/2.)*((Cl(2,K)-VL(1) ...

/El(2,K))*CAV+(Dl(2,K)+(.5+SY(l))/El(2,K)) ...
*SAV+(VL(1)*CAP-.(.5+SY(l))*SAP)/El(2,K)));

ANCR = VELV - VELP;
PRESP = 1-VELP^A2;
PRESV = 1-VELVA2;

if IPMIN > 0
if (SIGMA-PRESV) >= 0

SIGMA = PRESV;
XMIN = XA(K);
VMAX = VELV;

end
elseif IPMIN == 0

PressDistINTL(K,:) = [XA(K) VELP ANCR VELV PRESP
PRESV];

if prnt2scrn == 1
fprintf('%12.6f',XA(K),VELP,ANCR,VELV,PRESP,PRESV)
fprintf('\n')

end
end

end
if IPMIN > 0

Min_Press(I,:) = [DMALFA CL SIGMA VMAX XMIN CMXINT];
if prnt2scrn == 1

fprintf('%12.6f' ,DMALFA,CL,SIGMA,VMAX,XMIN,CMXINT)
fprintf ('\n')

end
end

end
end

end
% END OF BROCKETT'S CODE

% Combine Profile Constant Data in Order
i = 1;
j = length(ProfileConstINTU);
step = 1;
while j>0 && i<length(Profile Const)

A = ProfileConst(i,l);
B = Profile_ConstINTU(j,l);
if A > B

Profile_Comb(step,:) = Profile_Const(i,:);
i = i + 1;
step = step + 1;

elseif B > A



Profile_Comb(step,:) =
Profile_Const_INT_U(j,2:end)];

j = j -1;
step = step + 1;

end

[Profile_Const_INT_U(j,l) 0

end
j = 1;
while j <= length(Profile_Const INT_L) i <= length(ProfileConst)

if B < A && j <= length(Profile Const INT L)
Profile_Comb(step,:) = [Profile_Const_INT_L(j,l) 0

Profile_Const_INTL(j,2:end)];
j = j + 1;
if j <= length(Profile Const INT L)

B = Profile_Const_INT_L(j,l);
end
step = step + 1;

elseif A < B II j > length(Profile_Const INT L)
Profile_Comb(step,:) = Profile_Const(i,:);
i = i + 1;
if i <= length(Profile_Const)

A = Profile Const(i,l);
end
step = step + 1;

end
end

% Combine Pressure Distribution Data in Order
if IPMIN == 0

i = 1;
j = length(PressDistINTU);
step = 1;
while j>0 && i<length(PressDist)

A = Press Dist(i,l);
B = Press Dist_INT_U(j,l);
if A > B

Press_Comb(step,:) = Press_Dist(i,:);
i = i + 1;
step = step + 1;

elseif B > A
Press_Comb(step,:) = Press Dist INTU(j,:);
j = j -1;
step = step + 1;

end
end
j = 1;
while j <= length(Press_Dist_INT L) i <= length(Press Dist)

if B < A && j <= length(Press Dist INTL)
Press_Comb(step,:) = Press_Dist_INT_L(j,:);
j = j + 1;
if j <= length(Press Dist INT L)

B = Press Dist_INT_L(j,1);
end
step = step + 1;

elseif A < B I1 j > length(Press Dist INT L)
Press_Comb(step,:) = PressDist(i,:);
i = i + 1;
if i <= length(Press Dist)



A = PressDist(i,l);
end
step = step + 1;

end
end

end

% Calls XFOIL calculate pressure distribution and imports data
cmd = ['xfoil.exe LOAD trefxy OPER ALFA ', num2str(ALFA),...

OPER CPWR CPX'];
system(cmd);
fid = fopen('CPX');
xfoil_data_in = textscan(fid, '%f64 %f64', 'headerlines', 1);
fclose (fid);
xfoil_x = xfoil_datain{l});
xfoil_cp = xfoil_data_in{2);

% Plots Data from Brockett and Xfoil on same graph as Trefftz.
open('Trefftz.fig')
plot(Press_Comb(:,l), -PressComb(:,5), 'ro-')
plot(Press_Comb(:,l), -Press_Comb(:,6), 'r.-')
plot(xfoil_x, -xfoil_cp, 'bx-')
legend('Conformal Transformation','Brockett Method (Inviscid)',...

'Brockett Method (Viscid)','XFOIL Calc')
savefile = ['K-T,alfa=',num2str(ALFA),];
saveas(gcf, savefile);



Appendix C: Brockett.m Variable Descriptions
Function variables are specified as those variable that instruct the MATLAB version

of Brockett's work how to process the data, which data will be input, and how the

data is formatted. The following paragraph provide a brief description of these

variables, and how they are used in Brockett.m

JA: Specifies the number of angles of attack that will be calculated. Although not

specified directly by the user, the scripts in Appendix C: calculate this value based

on the number of inputs for the ALFA vector. It is recommended that multiple

angles of attack be processed individually, since output for multiple angles is only

printed to the screen.

KA: This variable was used originally by Brockett for processing multiple jobs. This

functionality is not used in the MATLAB version. Separate jobs are specified by the

appropriate script file (i.e. ARBIN.m, REQ_IN.m, etc), in which the use specifies

the job parameters. The job specification script is specified by the "run" command

in the beginning of Brockett.m.

IPMIN: Specifies whether or not minimum pressure distribution data will be

reported. Should normally be set to 0. Plotting and screen output will not be

available if minimum pressure data is not calculated. If screen output is not desired,

use the 'print2scr' variable below.

ALFA: Vector of angles of attack to be calculated. Normally a single value. Note:

If multiple angles of attack are specified, output for each angle of attack will be only
to screen in tabular format. Plots for each angle of attack will not be generated.

IDEN: Specifies whether input data points are for a symmetric foil shape.
Symmetric data is designated by IDEN = 0, or non-symmetric IDEN = 1. Symmetric
data can either be in the format of offsets, or camber and thickness data.



IPM: IPM = 0 specifies that ordinate information will be input at required locations.

Required locations are specified by:

x x+ Cos- ,m= 0...18

x36-m = ,,

When input at required station is specified, only the upper surface, Yo through Y17,

are specified for symmetric foils. All others, Yo through Y35 are specified. If IPM = 1

(arbitrary input locations), user must define the number of locations (NX) that will be

input.

ICL: ICL = 1 if experimental lift coefficient is specified rather that angle of zero lift

(AOLE) and lift-slope curve coefficient (ETA). If ICL = 0, AOLE and ETA must be

set to zero. Otherwise, if ICL = 0, AOLE and ETA must be specified. AOLE and

ETA values do not affect inviscid calculation, and are only used for the empirical

modification to account for viscous effects. If unknown, may be set to 0 for inviscid

calculations.

CLE: If ICL = 1, user must specify experimental lift coefficients corresponding to

input angles of attack (ALFA). ALFA and CLE vector must be of equal length.

ILK: ILK = 0 specifies that offsets will be input in X, Y format. CC is vector of x-
values, and Y is vector of corresponding y-offset values. For symmetric foils, give
only upper surface from trailing edge to nose. Last point must be (0, 0). For non-
symmetric foils, must specify XN and YN which are x and y ordinates of nose
location. Sample scripts locate this point automatically from input vectors CC and
Y. Order for non-symmetric foils must be from trailing edge (1, X.X), along upper
surface to (XN, YN), and back to trailing edge (1.0, X.X).

ILK = 1 specifies that foil surface locations will be specified by thickness ratio
(TAO), camber (F), and leading edge radius (RO). Input required is x-location
(AT_in), thickness value (YT_in), camber value (YCin), and camberline slope



(YCP_in). AT_in, YT_in, YC_in, and YCP_in start at trailing edge(x=1) and go to

leading edge (x=O), and are of length NX.

foil_name: User specified foil designation. Used for plot legend and/or titles.



Appendix D: Sample Input Scripts for Brockett.m.
REQD IN.m

% Written by Chris Peterson

This file inputs data to be processed 
by MATLABs version of

Brockett's 
Thesis 

program. 
The data is from fig 3b, pg 67.

Format is for input at required stations an

gle of attack specified

ALFA =
JA =
IPMIN =
IDEN =
IPM =
ICL =
AOLE =
ETA =
foil name

4.09; %ANGLE OF ATTACK
length(ALFA); %NUMBER OF ANGLES
0; %0:Report Data, 1: No Data
0; %0:SYMM, 1:NONSYMM
0; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
0; %0:USE ALPHA, 1: USE INPUT CLE
0; %Experimental angle of zero lift
0.959; %Lift curve-slope coeff
= 'RAE-101,00-10';

Y_in is array of ordinates, trailing edge to leading edge along upper
surface, then leading edge to trailing edge along lower surface. Only
Yn n=0->17 for symmetric foils. All others n=0->35

in = [0 .00068 .0027 .00599 .01046 .01597 .02236...
.029345 .03636 .04267 .047445 .04985 .04885...
.04475 .038405 .03034 .020q3 .01071 ];

% Formats Y for both surfaces
Y = [Y_in 0 fliplr(-Y_in)];

%Plot input
figure(1)
axis equal;
hold on;
plot((l+cos(0:2*pi/36:2*pi))/2, Y, 'g.')
plot((l+cos(0:2*pi/36:2*pi))/2, Y, 'g')
legend('Input to Brockett')
title(foil name)

NX = 0; %Req'd to set variable EE(used in Arb Input)

Format~~~~~~~~~~~~~~ isfripta eurdsai l fatc ncfP



ARB IN.m

% Written by Chris Peterson

This file inputs data to be processed by the MATLAB version of
Brockett's Thesis program. The data is from fig 4b, pg 69.
Format is for arbitrary input stations, non-symmetrical,
lift coefficient specified

IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 1; %0:SYMM, 1:NONSYMM
IPM = 1; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
ICL = 1; %0:USE ALPHA, 1: USE INPUT CLE
CLE = [-0.14 .15 .44 .73 .97 1.16 1.26 1.34 1.11]; %Lift Coeff
ETA = 0;
AOLE = 0;

ILK = 0; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
ALFA = [-7.6 -4.5 -1.5 1.5 4.7 8.0 9.7 11.4 16.2]; %ANGLE OF ATTACK
JA = length(ALFA); %NUMBER OF ANGLES

foil name = 'CLARK Y, NACA RPT 460';

% Coordinates. Must have same number on upper surface as lower surface.
% For symmetrical foil, give only upper surface (last point 0,0 for
% symmetrical foils)
CC = [1 .992404 .95 .9 .8 .7 .6 .5 .4 .3 .2 .15 .1 .075 .05 .025 .0125...

0 .0125 .025 .05 .075 .1 .15 .2 .3 .4 .5 .6 .7 .8 .9 .95 .992404 1];
Y = [.0006 .0027 .0144 .0273 .0515 .0728 .0907...

.1043 .1131 .1162 .1126 .1057 .0950 .0873 .0777...

.0637 .0532 .0354 .0180 .0136 .0085 .0053...

.0033 .0008 -.0005 -.0006 -.0006 -.0006 -.0006...
-.0006 -.0006 -.0006 -.0006 -.0006 -.00061;

[XN, indx] = min(CC);
YN = Y(indx);
NX = length(CC);

%Plot input
figure()
axis equal;
hold on;
plot(CC,Y, 'k.', CC,Y, 'k');
legend('Input to Brockett')
title(foil name)



KT IN.m

% Written by Chris Peterson

% This file inputs data to be processed by the MATLAB version of
% Brockett's Thesis code (Brockett.m). This file reads input generated
% by the Karman-Trefftz foil Conformal Transformation script
(CnfrmlTrans.m).

IPMIN = 0;
IDEN = 1;
IPM = 1;
ICL = 0;
if ICL == 0

AOLE = 0;
ETA = 0;

elseif ICL ==1
CLE = 0;
AOLE = 0;
ETA = 0;

%0:Report Data, 1: No Data
%0:SYMM, 1:NONSYMM
%0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS
%0:USE ALPHA, 1: USE INPUT CLE
%Viscous calcs require experimental data input
%Experimental angle of zero lift
%Lift-curve slope coefficient

%Experimental lift coefficient
%AOLE and ETA must be set to 0 if ICL = 1
%AOLE and ETA must be set to 0 if ICL = 1

end
ILK = 0; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
foil name = 'Karman-Trefftz';

load('xoutput.mat', '-mat');%Opens data generated by CnfrmlTrans.m

= x_spl;
= y_spl;

xn ind] = min(CC);
= length(CC);
= Y(xn ind);
= alpha_deg;
= length(ALFA);

%Read in x data from K-T foil ordinates
%Read in y data from K-T foil ordinates
%Find nose x location and index
%NUMBER OF STATIONS
%Specifies nose y location
%ANGLE OF ATTACK (FOR DESIRED PRESSURE DIST)
%NUMBER OF ANGLES

%Plot input
figure()
axis equal;
hold on;
plot(CC,Y, 'k.', CC,Y, 'k');
legend('Input to Brockett')
title(foil name)

%Compare to Karman-Trefftz foil? 1-yes, 0-no
comp2kt = 1; %Opens previous trefftz plot and plots new data

CC
Y
[XN,
NX
YN
ALFA
JA



Brock IN.m

% Written by Chris Peterson

% This file inputs data to be processed by MATLAB version of
% Brockett's Thesis program. The data is from Brockett's published

% minimum pressure envelopes for NACA foils (DTMB Report 1780, pg 14).

IPMIN = 0; %0:Report Data, 1: No Data
IDEN = 1; %0:SYMM, 1:NONSYMM
IPM = 1; %0:STD INPUT LOCATIONS, 1:ARBITRARY STATIONS

ICL = 1; %0:USE ALPHA, 1: USE INPUT CLE
ETA = 0;
AOLE = 0;

ILK = 1; %0:INPUT STA X,Y 1:INPUT TAU, RHO, RHO
ALFA = 0; %ANGLE OF ATTACK
JA = length(ALFA); %NUMBER OF ANGLES

foil name = 'NACA 66 (Mod), a=0.8';

TAO = 0.12;
F = 0.06;
RHO = .448;
AT_in = fliplr([0 0.007596 0.030154 0.066987 .116978 .178606 .25 .32899
.413176...

.5 .586824 .671010 .75 .821394 .883022 .933013 .969846 .992404 1]);
YT_in = fliplr([0 .0817 .1608 .2388 .3135 .3807 .4363 .4760 .4972 .4962
.4712...

.4247 .3612 .2872 .2108 .1402 .0830 .0462 .0333]);
YC in = fliplr([0 .06006 .18381 .33684 .49874 .65407 .79051 .89831 .96994
1 ...

.98503 .92306 .81212 .63884 .42227 .23423 .09982 .02365 0]);
YCPin = fliplr([7.1485 6.6001 4.7712 3.6751 2.8681 2.2096 1.6350 1.1071
.6001 ...

.0914 -.4448 -1.0483 -1.8132 -3.1892 -3.7243 -3.7425 -3.5148 -3.2028...
-3.00251);

NX = length(AT_in);
CLE = 2*pi*(1-0.83*TAO)*(deg2rad(ALFA) + 2.05*F); %Lift Coeff

noserad = RHO*TAOA2;

comp2kt = 0;



Appendix E: Brockett.m Sample Output
PROFILE CONSTANTS

X Y C D E DY/DPHI
1.000000 0.000000 0.000000 0.000000 0.000000 0.001998
0.992404 0.000680 0.890691 0.026481 -0.069870 0.007287
0.969846 0.002700 0.933471 0.096858 -0.181740 0.015520
0.933013 0.005990 0.958680 0.186467 -0.307426 0.022185
0.883022 0.010460 0.978938 0.279256 -0.427845 0.028863
0.821394 0.015970 0.997232 0.380868 -0.545076 0.034145
0.750000 0.022360 1.016276 0.490314 -0.655257 0.038834
0.671010 0.029345 1.038498 0.615677 -0.761927 0.040635
0.586824 0.036360 1.062833 0.761407 -0.865047 0.039076
0.500000 0.042670 1.088804 0.937296 -0.967603 0.032369
0.413176 0.047445 1.114413 1.150647 -1.070719 0.021690
0.328990 0.049850 1.139587 1.422610 -1.182065 0.004568
0.250000 0.048850 1.147911 1.771430 -1.308325 -0.015548
0.178606 0.044750 1.144379 2.222439 -1.465799 -0.030556
0.116978 0.038405 1.137954 2.859395 -1.696827 -0.041660
0.066987 0.030340 1.125485 3.863976 -2.087954 -0.050476
0.030154 0.020930 1.087640 5.708723 -2.863493 -0.056743
0.007596 0.010710 0.945091 9.983659 -4.773447 -0.060158
0.000000 0.000000 0.000000 17.144979 -8.056392 -0.062063
0.007596 -0.010710 -0.945091 9.983659 -4.773447 -0.060158
0.030154 -0.020930 -1.087640 5.708723 -2.863493 -0.056743
0.066987 -0.030340 -1.125485 3.863976 -2.087954 -0.050476
0.116978 -0.038405 -1.137954 2.859395 -1.696827 -0.041660
0.178606 -0.044750 -1.144379 2.222439 -1.465799 -0.030556
0.250000 -0.048850 -1.147911 1.771430 -1.308325 -0.015548
0.328990 -0.049850 -1.139587 1.422610 -1.182065 0.004568
0.413176 -0.047445 -1.114413 1.150647 -1.070719 0.021690
0.500000 -0.042670 -1.088804 0.937296 -0.967603 0.032369
0.586824 -0.036360 -1.062833 0.761407 -0.865047 0.039076
0.671010 -0.029345 -1.038498 0.615677 -0.761927 0.040635
0.750000 -0.022360 -1.016276 0.490314 -0.655257 0.038834
0.821394 -0.015970 -0.997232 0.380868 -0.545076 0.034145
0.883022 -0.010460 -0.978938 0.279256 -0.427845 0.028863
0.933013 -0.005990 -0.958680 0.186467 -0.307426 0.022185
0.969846 -0.002700 -0.933471 0.096858 -0.181740 0.015520
0.992404 -0.000680 -0.890691 0.026481 -0.069870 0.007287
1.000000 0.000000 0.000000 0.000000 0.000000 0.001998

NON-DIMENSIONAL VELOCITY, V=(C*cos(ALFA)+D*sin(ALFA))*(I-/+DELTA*sqrt(X-X^2))+DELTA*E)
DCL/D(ALPHA)/2PI (THEORY)= 1.003996
ANGLE,CL=0 (THEORY) = 0.000000 DEG



PROFILE CONSTANTS

INTERMEDIATE VALUES
UPPER SURFACE

X C D E DY/DPHI
0.000076 0.161276 16.982900 -7.981671 -0.062038
0.000305 0.313757 16.522600 -7.769532 -0.061966
0.000685 0.450819 15.831154 -7.451069 -0.061848
0.001218 0.569054 14.992649 -7.065239 -0.061689
0.001903 0.667997 14.085384 -6.648289 -0.061492
0.002739 0.749135 13.169455 -6.228004 -0.061265
0.003727 0.814891 12.284473 -5.822656 -0.061012
0.004866 0.867893 11.452912 -5.442571 -0.060740
0.006156 0.910580 10.685001 -5.092396 -0.060456
0.011852 1.005922 8.501872 -4.103034 -0.059397
0.017037 1.043992 7.345885 -3.584794 -0.058606
0.023142 1.069452 6.436098 -3.181521 -0.057745

LOWER SURFACE
X C D E DY/DPHI

0.000076 -0.161276 16.982900 -7.981671 -0.062038
0.000305 -0.313757 16.522600 -7.769532 -0.061966
0.000685 -0.450819 15.831154 -7.451069 -0.061848
0.001218 -0.569054 14.992649 -7.065239 -0.061689
0.001903 -0.667997 14.085384 -6.648289 -0.061492
0.002739 -0.749135 13.169455 -6.228004 -0.061265
0.003727 -0.814891 12.284473 -5.822656 -0.061012
0.004866 -0.867893 11.452912 -5.442571 -0.060740
0.006156 -0.910580 10.685001 -5.092396 -0.060456
0.011852 -1.005922 8.501872 -4.103034 -0.059397
0.017037 -1.043992 7.345885 -3.584794 -0.058606
0.023142 -1.069452 6.436098 -3.181521 -0.057745



PRESSURE DISTRIBUTION
SYMMETRICAL PROFILE

ALFA CL DELTA sin(ALFA) LIFT SLOPE ALFA,CL=0O
4.090000 0.430129 0.003146 0.071323 0.959000 0.000000

X
1.000000
0.992404
0.969846
0.933013
0.883022
0.821394
0.750000
0.671010
0.586824
0.500000
0.413176
0.328990
0.250000
0.178606
0.11.6978
0.066987
0.030154
0.007596
0.000000
0.007596
0.030154
0.066987
0.116978
0.178606
0.250000
0.328990
0.413176
0.500000
0.586824
0.671010
0.750000
0.821394
0.883022
0.933013
0.969846
0.992404
1.000000

POTNL VELOC
0.000000
0.890311
0.938002
0.969537
0.996363
1.021857
1.048659
1.079765
1.114433
1.152882
1.193643
1.238150
1.271331
1.299976
1.338998
1.398210
1.492035
1.654753
1.222837
0.230616
0.677705
0.847027
0.931114
0.982953
1.018643
1.035219
1.029507
1.019180
1.005820
0.991941
0.978717
0.967527
0.956528
0.942939
0.924185
0.886534
0.000000

VISC INCRM
0.000000
-0.000269
-0.000877
-0.001532
-0.002161
-0.002763
-0.003318
-0.003835
-0.004305
-0.004731
-0.005110
-0.005460
-0.005780
-0.006129
-0.006662
-0.007654
-0.009812
-0.015487
-0.025387
0.015110
0.009398
0.007264
0.006319
0.005850
0.005575
0.005338
0.005071
0.004772
0.004421
0.004020
0.003565
0.003062
0.002504
0.001906
0.001268
0.000656
0.000000

INTEGRATED CN= 0.425593
INTEGRATED CC= -0.030299
INTEGRATED CM(X)= 0.002425, CW ABT X=0.25
INTEGRATED CM(Y)= -0.001200, CW ABT Y=0

VISC VELOC
0.000000
0.890042
0.937124
0.968005
0.994201
1.019094
1.045341
1.075931
1.110128
1.148151
1.188533
1.232689
1.265552
1.293847
1.332336
1.390556
1.482224
1.639265
1.197451
0.245726
0.687103
0.854291
0.937434
0.988803
1.024218
1.040558
1.034578
1.023952
1.010241
0.995961
0.982282
0.970590
0.959032
0.944844
0.925453
0.887190
0.000000

POTNL P/Q
1.000000
0.207346
0.120153
0.059997
0.007261

-0.044191
-0.099685
-0.165893
-0.241960
-0.329138
-0.424784
-0.533015
-0.616284
-0.689939
-0.792914
-0.954992
-1.226170
-1.738206
-0.495331
0.946816
0.540716
0.282546
0.133026
0.033804
-0.037633
-0.071679
-0.059885
-0.038728
-0.011675
0.016053
0.042113
0.063891
0.085055
0.110867
0.145882
0.214058
1.000000

VISC P/Q
1.000000
0.207825
0.121798
0.062965
0.011564

-0.038552
-0.092737
-0.157627
-0.232384
-0.318250
-0.412611
-0.519523
-0.601622
-0.674040
-0.775119
-0.933647
-1.196987
-1.687191
-0.433888
0.939619
0.527890
0.270187
0.121218
0.022270

-0.049022
-0.082760
-0.070351
-0.048479
-0.020588
0.008062
0.035122
0.057956
0.080258
0.107269
0.143537
0.212894
1.000000



PRESSURE DISTRIBUTION

ALFA CL DELTA sin(ALFA) LIFT SLOPE ALFA,CL=0O
4.090000 0.430129 0.003146 0.071323 0.959000 0.000000

INTERMEDIATE VALUES

UPPER SURFACE
POTNL VELOC

1.372143
1.491405
1.578802
1.636931
1.670913
1.686517
1.688985
1.682543
1.670351
1.609742
1.565266
1.525772

VISC INCRM
-0.025188
-0.024563
-0.023607
-0.022440
-0.021175
-0.019899
-0.018667
-0.017513
-0.016452
-0.013469
-0.011923
-0.010735

X
0.000076
0.000305
0.000685
0.001218
0.001903
0.002739
0.003727
0.004866
0.006156
0.011852
0.017037
0.023142

X
0.000076
0.000305
0.000685
0.001218
0.001903
0.002739
0.003727
0.004866
0.006156
0.011852
0.017037
0.023142

VISC VELOC
1.346954
1.466842
1.555195
1.614491
1.649737
1.666619
1.670318
1.665029
1.653899
1.596273
1.553343
1.515037

VISC VELOC
1.025289
0.841053
0.656035
0.479510
0.317415
0.172465
0.045015
0.065988
0.162258
0.410048
0.528914
0.618006

POTNL P/Q
-0.882775
-1.224289
-1.492615
-1.679543
-1.791949
-1.844340
-1.852671
-1.830950
-1.790074
-1.591269
-1.450057
-1.327982

POTNL P/Q
-0.103366
0.250928
0.538334
0.748276
0.885539
0.963112
0.995986
0.997616
0.978634
0.842409
0.732298
0.630720

VISC P/Q
-0.814286
-1.151624
-1.418630
-1.606580
-1.721633
-1.777618
-1.789962
-1.772323
-1.735383
-1.548088
-1.412873
-1.295338

VISC P/Q
-0.051217
0.292630
0.569618
0.770070
0.899248
0.970256
0.997974
0.995646
0.973672
0.831861
0.720250
0.618069

LOWER SURFACE
POTNL VELOC VISC INCRM

1.050412 -0.025123
0.865489 -0.024437
0.679460 -0.023425
0.501721 -0.022211
0.338321 -0.020906
0.192062 -0.019597
0.063355 -0.018340
0.048822 0.017165
0.146171 0.016087
0.396978 0.013070
0.517400 0.011514
0.607684 0.010321



Appendix F: Modified XFOIL User Guide.
The version of XFOIL used for this project was modified with the following goals:

1) Eliminate the need for interactive user interface, such that the program

execution could be automated and called by an external program.

2) Allow the data resulting from XFOIL calculations to be read and imported by
an external program.

3) Remove internal plot functions such that the only output would be in the form

of data files.

These goals were accomplished by the following changes:

1) Elimination of the menu prompts requiring user input that directed the

execution of the original XFOIL.

2) Elimination of all plotting functions by removing them from the source code.

3) Modification of the source code to write desired output to data files.

In order to become familiar with the operation of XFOIL, the users should first
download and execute the official release version of XFOIL from the website

http://web.mit.edu/drela/Public/web/xfoil/. Version 6.96 was used for this project.

Due to the menu interface and interactive input, it is easier to become familiar with

the functionality of XFOIL using the original version. In addition, it is recommended

that the user read the sessions. txt and xfoil_doc .txt to acquaint

themselves with the operation and capabilities of XFOIL.

This appendix will describe how to utilize the modified version of XFOIL used in this
project. For the remainder of this appendix "XFOIL" will refer to the modified

version of XFOIL used for this project.

XFOIL was written and compiled to built as an executable, such that it could either
be executed from the command prompt, or by a function call from an external
program. For this project, MATLAB was used as the main program, instructing



XFOIL to conduct desired calculations and write desired data to files, which were

then read into MATLAB variables.

The first major change to XFOIL that was implemented is that all operational

instructions are required to be input as command line arguments to the function call.

All desired XFOIL operations are required to be entered as command line

arguments at the time of execution. Upon completion of processing command line

arguments, XFOIL will terminate and will not accept additional instructions.

Commands and menus instructing XFOIL on how to process data were maintained

in the same menu structure as the original XFOIL program. However, rather than

being input by the user at a menu prompt within the program, they are input at the

command line prior to execution. XFOIL reads all command line arguments

sequentially, processing them separately until completion. The following is an

example of an XFOIL execution:

c:\xfoil NACA 4415 OPER ALFA 5 OPER CPWR output QUIT

xfoil is the function call to execute the XFOIL program, and the rest of the items

are all command line arguments read in by XFOIL. There are three types of

command line arguments: Menus, commands, and command arguments. All

menus and commands consist of four (or less) letters, which must be

CAPITALIZED. OPER is an example of a menu item, instructing XFOIL that the next

command line argument is located under the OPER menu. The argument following

OPER must be either a command or another submenu available under the OPER

menu.

Commands instruct XFOIL how to execute. For example, commands can specify
values for items such as angle of attack or Reynolds Number, or they may instruct
XFOIL to perform a calculation, such as determining the minimum pressure
coefficient. The first command above is NACA, which instructs XFOIL that the
internal definition for a NACA foil shape will be used. The next command is ALFA,



specifying the angle of attack. The final command is CPWR, instructing XFOIL to

calculate the pressure coefficient distribution along the foil, and write the distribution

data to a file. It should be noted that NACA is available under the top level menu of

the original XFOIL program, and both ALFA and CPWR are available under the

OPER menu. Upon completion of command execution, XFOIL will return to the top

menu, rather than in the current menu, as the original XFOIL. For this reason, OPER

must be entered prior to the CPWR command.

For some commands to execute, they require command arguments to be specified.

Command arguments are different from command line arguments. Command line

arguments are all of the items following xfoil. Command arguments are items

required by XFOIL commands to be executed. In the above example, 4415 is an

argument for the NACA command, 5 is an argument for the ALFA command, and

output is an argument for the CPWR command. Command arguments may be

integer, character string, real, or filename, as required by the command. Another

difference from the original XFOIL is that when reading in command arguments,

XFOIL does not recognize filename extensions. For example, output. txt would

not be a valid command argument for the CPWR command. As mentioned, the

menu structure and many of the command items
weAire ratniner frnm the- nri inal YlrnII The Top Level

XFOIL 6.9 user primer provides a good

description of commands, command arguments,

and menus.

To the right is the XFOIL menu structure. The

original XFOIL contained all menus, but the

striked items were removed since they

contained only plot commands. Menus are
similar to directories, which contain submenu

items and commands.

CPER

SVPAR

VP~e

ANNO
-MDES

LANNO
SQDES

LANNO
- GDES

H: CAMB
0 ANNO

-* PPAR
IDT D-bA A-4I



Although several of the original commands were retained in the XFOIL code, only

certain commands used for this project were tested. Other command may work, but

were not specifically tested or used in this project. In addition, some commands

that were not included may only require slight modification to be used. A

description of how the XFOIL code processes command line arguments will be

included at the end of this appendix to aid in future implementations.

Commands employed and included in the XFOIL code will be described below.

Commands will be grouped by their corresponding menu. Only commands

deliberately incorporated will be discussed, although other commands may still be

present in the source code. Descriptions will consist of the command, command

argument designator (i-Integer, r-Real, f-Filename, s-Character String), and a brief

description taken from the XFOIL 6.9 user primer. Command argument designators

specify that the command requires a command argument, and describe the type of

argument expected by XFOIL.

(Top Level)
REVE Reverse written-airfoil node ordering
LOAD f Read buffer airfoil from coordinate file
NACA i Set NACA 4,5-digit airfoil and buffer airfoil
NORM Buffer airfoil normalization toggle
PANE Set current-airfoil panel nodes based on curvature.
QUIT Exit program

OPER - Direct operating point(s)
VISC r Toggle InviscidNiscous Mode (Reynolds number is argument)
RE r Change Reynolds Number
ITER i Change viscous solution iteration limit
INIT Toggle BL initialization flag
ALFL rrr NEW FUNCTION. Instructs XFOIL to calculate the minimum pressure

coeffient over a range of angles of attack, and writes the values for
minimum pressure coefficient and chordwise position for each angle of
attack to a single file called CPMINARRAY. TXT. Both inviscid and
viscous results are included, if applicable. Format is:
ALFL (Lower Angle) (Angle Increment) (Upper Angle).

ALFA r Prescribe alpha (angle of attack). Command may also be specified by A
rather than ALFA



CLI r Prescribe inviscid lift coefficient
CL r Prescribe lift coefficient
DUMP f Output Ue, Dstar, Theta, Cf, vs s,x,y to file
CPWR f Output x vs Cp to file
CPMN Output location and value of minimum surface Cp (inviscid and viscous

if applicable) to file named CPMIN. TXT

OPER VPAR - Change BL parameter(s)
XTR rr Change trip positions Xtr/C
N r Change critical amplification exponent Ncrit
VACC r Change Newton solution acceleration parameter

MDES - Complex mapping design routine
No functions implemented

QDES - Surface speed design routine
No functions implemented

GDES - Geometry design routine
TSET rr Set new thickness and camber
EXEC Set current airfoil + buffer airfoil. (Command may also be specified by

x, rather than EXEC)

GDES CAMB - Modify camber shape directly or via loading
No functions implemented

PPAR - Showlchange paneling
N i Number of panel nodes
P r Panel bunching paramenter
T r TE/LE panel density ratio
R r Refined area/LE panel density ratio

There are a few simple steps required in order to use XFOIL commands. Once the

modified version of XFOIL has been compiled, the executable xfoil .exe should

be place in the desired working directory. No other files are required for execution.

Start the command prompt by either typing cmd in the Window's Run dialog, or by

selecting the Command Prompt icon, normally located under the Accessories folder

of the start menu. Next, navigate to the directory where xfoil .exe is located,

using the "cd" command. At the command prompt, run the XFOIL program.



The XFOIL program command line consists of the name of the executable, either

xfoil or xfoil .exe, and the command line arguments necessary to execute the

desired functions. If located in a submenu, the required menus must be included

before the desired XFOIL command. If required for the command, any command

arguments should follow the command. The general format is:

xfoil [MENU] [COMMAND] [ARGS] [MENU] [COMMAND] [ARGS] ...

For any of the top level menu commands (REVE, LOAD, NACA, NORM, PANE),

no menu is required. Arguments will also be omitted if not necessary for the

particular command (e.g. NORM, CPMN). Although not required, the QUIT

command may be placed as the last command if desired. If QUIT is used, screen

output will be generated verifying proper termination of XFOIL. A simple test can be

used to verify proper execution of XFOIL by typing "xfoil QUIT" at the command

prompt, to which the output should be:

START of XFOIL
START of Menu Loop. Command is: QUIT
QUIT. End of XFOIL

The typical command structure used in this project is described below. If airfoil

geometry was to be input from a data file, NORM was used to ensure that the foil

would be normalized upon input to XFOIL. Airfoil geometry was specified using

either NACA or LOAD. If necessary, the geometry was then adjusted using TSET to

set the desired camber and thickness (Must also include the x or exec command

to set the current airfoil from the buffer airfoil, otherwise changes will not be

processed. See XFOIL 6.9 user manual for more information on buffer and current

airfoils.) Finally, the minimum pressure coefficients were calculated in increments

of 0.10 for angles of attack from -5' to 60, and the results were written to

cpminarray. txt. MATLAB used the following command to achieve the above

results:



xfoil.exe NORM LOAD foildata PANE GDES TSET 0.06 0.04

GDES X OPER ALFL -5 0.1 6

The results are then read in by MATLAB from the cpminarray. txt file for

processing.

Future modification may be made to the source code to allow for the use of

additional commands, or to alter existing commands. A basic description of the

code structure will aid those wishing to conduct future modifications. Upon

execution, XFOIL reads up to 50 command line arguments into the CMDARGS

variable, which is a character array. Then, within a loop structure, a single

command line argument is read into the COMAND variable. The CMDSTEP variable,

which is a counter, initially set to 1, is incremented each time a new command line

argument is read in from CMDARGS. The COMAND variable is then process and

compares COMAND to all of the top menu items, both menus and commands. If a

menu description such as OPER is the first command line argument, then XFOIL

will enter the OPER menu routine, read the next command line argument into the

COMAND variable, and increment CMDSTEP. If the COMAND variable contains an

XFOIL command, then the routine for that command will be entered. If necessary

for execution, the required number of command line arguments will be read in as

command arguments. Again, each time that a command line argument is read,

CMDSTEP will increment to keep track of which command line argument is being

processed.

This process will continue until all command line arguments are processed or QUIT

is received by XFOIL. XFOIL will search through the current menu, looking for a

match to the COMAND variable, until the end of the menu is reach, and will return to

the top level menu. If no match is found, then XFOIL produces an output saying the
command is not recognized. If in the top menu, and no match is found, then XFOIL
will read in the next command line argument, and look for a matching command or
menu. For example, if the command "xfoil TEST QUIT" is entered at the



command prompt (TEST is not a valid XFOIL command), the following output is

produced:

START of XFOIL
START of Menu Loop. Command is: TEST
TEST command not recognized.
END OF LOOP

START of Menu Loop. Command is: QUIT
QUIT. End of XFOIL

Future modifications to the code may be accomplished using the same structure as

above. For commands present in the code but not implemented (those not modified

to read in arguments as required), modifications to the routine such that command

line arguments are read in and assigned to variables as necessary to execute the

command may be made. The following is a simple example of how to perform this:

C==ORIGINAL CODE=
ELSEIF(COMAND.EQ. 'NACA') THEN
CALL NACA(IINPUT(1))

C

C==MODIFIED CODE=
ELSEIF(COMAND.EQ. 'NACA') THEN
READ(CMDARGS (CMDSTEP), *) CMDNUM3
CMDSTEP=CMDSTEP+1

CALL NACA(CMDNUM3)
C

The original code above calls the NACA function with the argument I INPUT (1) ,

which was input by the user at the menu prompt. The modified code requires that

no user input is required, and command line arguments are sequentially read from

the command line. As a result, the IINPUT variable is not used in the modified

code. For the modified code, after reaching the NACA command (which was the

current command being processed in the COMAND variable), the next command line

argument is read in from the CMDARGS variable and is assigned to CMDNUM3, which

is used as the argument for the call to the NACA function. CMDSTEP is then



incremented. The next command will be read into COMAND upon restarting the next

menu loop, if applicable. This structure allows the processing of arguments as

necessary for the command being executed. Other existing functions may be

included in XFOIL, or new functions added, as desired using a method similar to

that described above.



Appendix G: Instruction for compiling modified XFOIL Code
This appendix is intended to provide basic instructions on how to obtain and

compile the source code for the modified version of XFOIL used for this project.

The original source code for XFOIL as released by Mark Drela can be obtained at

http://web.mit.edu/drela/Public/web/xfoil/. Version 6.96 was used for this project. In

order to compile the official release version of XFOIL, it is recommended to follow

the instructions that are contained in the README that is included with the *.tar files

containing the source code. Since this project was conducted on a Win32 based

PC, the following recommendations are provided based on personal experience

while trying to compile the source code in Windows XP

(1) Download and install Cygwin, available at http://www.cvgwin.com/. Cygwin is a

Linux-like environment for Windows. It consists of two parts:

* A DLL (cygwinl.dll) which acts as a Linux API emulation layer providing

substantial Linux API functionality.

* A collection of tools which provide Linux look and feel.

Cygwin allows native Linux applications to be run on Windows machines, if they are

rebuilt from their original source code using Cygwin. Specifically, the original

source code for XFOIL made use of X11 window tools that are not normally

available in Windows (Unix like plotting). The use of Cygwin was a fix to this.

Once running the Cygwin setup program, and under the "Select Packages Screen",
complete the following actions prior to clicking the "Next" button:

-Under the "Devel" pull-down menu, select the "gcc-g77: Fortran Package" for
installation by click the "Skip" item on the left column. This action selects the
current version to include in the installation. This action will also select add-on
packages required for installation.

-Under the "Devel" pull-down menu, select the "make: The GNU version of the
'make' utility" for installation by click the "Skip" item on the left column.



-Under the "X1 1" pull-down menu, select the "xorg-xl 1-base: Cygwin/X base"
package for installation, and the "xorg-xl 1-devel: Cygwin/X headers and import
libraries". Associated add-ons will also be automatically selected.

(2) A basic guide on installation these items can be found at

http://llwww2.warwick.ac. uklfaclsci/moaclcurrentstudentslDeter cock/cyvawin/.

Although not an official reference, the instructions and guidance provided here were

found to be useful.

(3) Download and install MinGW. Instructions can be found by following the

download link on the http://www.minaw.org/ web page. When running the

installation program, ensure that the selection box for 'g77 compiler' is checked

under "Select Components to Install:", and continue with the installation process.

(5) Add the following lines to the file "c: \cygwin\etc\bash.bashrc"

PATH=/cygdrive/c/mingw/bin: $PATH
export PATH

These statements place the /Mingw/bin ahead of I/Cygwin/bin in the path

statement for the Cygwin environment, ensuring that Mingw executables for

gcc.exe and g77. exe are used, rather than the Cygwin versions. This prevents

an error when XFOIL is run outside of the Cygwin environment, and eliminates the
error when cygwinl. dl is not present.

In order to test the above step, start Cygwin and type which gcc at the Cygwin $

prompt. The response should be /cygdrive/c/mingw/bin/gcc. If the

response is /usr/bin/gcc, then the above steps were not completed properly.

(4) Download original source code from:
http://web.mit.edu/drela/Public/web/xfoil/xfoi16.96.zip

(5) Unzip xfoil6 .96. zip to a working directory (i.e. C: \XFOIL\).



(6) Replace the following files in the C: \XFOIL\SRC\ directory with the files

modified by the author as part of this project:

blplot.f polplt.f xoper.f

dplot.f xfoil.f xplots.f

gui.f XFOIL.INC xqdes.f

modify.f xgdes.f xtcam.f

plutil.f xgeom.f

pntops.f xmdes.f

(7) Place Makefile in the C: \XFOIL\SRC\ directory. Details of this file are

provided below.

Makefile

***************************************** ****************

# Makefile for XFOIL V6.93 programs
# H.Youngren 4/24/01
# M.Drela
#************************** *******************************

# Modified by Chris Peterson to generate modified version
# of XFOIL that removes menus and plots, and executes from
# command prompt.
#*********************************************************

SHELL = sh
#BINDIR = $(HOME)/bin/
BINDIR =

PROGS = xfoil
# pplot pxplot

SRC = ../src
OSRC = ../osrc

XFOILOBJ = xfoil.o xpanel.o xoper.o xtcam.o xgdes.o xqdes.o xmdes.o \
xsolve.o xbl.o xblsys.o xpol.o xplots.o pntops.o xgeom.o xutils.o modify.o \
blplot.o polplt.o aread.o naca.o spline.o plutil.o iopol.o gui.o sort.o \
dplot.o profil.o

#PPLOTOBJ = pplot.o polplt.o sort.o iopol.o
#PXPLOTOBJ = pxplot.o plutil.o gui.o

XUTILOBJ = userio.o

FTNLIB =



##--------------------------------------
OSOBJ = frplot0.o

# Use this for individual TS-wave frequency plotting
# OSOBJ = frplot.o ntcalc.o osmap.o getosfile.o

##--------------------------------------
# PLTOBJ = ../plotlib/libPlt.a

# Use this if you have a copy of the plotlib as a system library
# PLTOBJ = -lPlt

# The extra location arg here is for Linux which places X libs in /usr/X11lR6
# PLTLIB = -L/usr/XllR6/lib -lX11

### Default compilers and flags
### FFLOPT used for xsolve.f
FC = g77
FFLAGS = -0
FFLOPT = -0
INSTALLCMD = install -s

CC = gcc
CFLAGS = -0 -DUNDERSCORE

# Uncomment flags for desired machine...

##--------------------------
### DEC Alpha with OSF and DEC
#FC = f77
#FFLAGS = -fast -04 -tune host
#FFLOPT = -fast -04 -tune host
#FFLOPT = -fast -05 -tune host
# Debug flags
#FFLAGS = -00 -g
#FFLOPT = -fast -04 -tune host
##--------------------------
### SGI setup
#FC = f77
#FFLAGS = -02 -static
#FFLOPT = -02 -static
##--------------------------
## Uncomment for RS/6000
#FFLAGS = -0 -qextname
#FFLOPT = -0 -qextname
##---------------
## Uncomment for HP-9000
#FFLAGS = -0 +ppu
#FFLOPT = -0 +ppu
#FTNLIB = -U77
##--------------------------
### Absoft Linux f77
#FC = f77

f77/f90 compiler

-unroll 3



#FFLAGS = -O -f -s -W -B108 -N34
#FFLOPT = -0 -f -s -W -B108 -N34
##--------------------------
### f2c/gcc compiler driver
#FC = fort77
#FFLAGS = -02 -fomit-frame-pointer
#FFLOPT = -02 -fomit-frame-pointer
##--------------------------
### GNU g77
#FC = g77
#FFLAGS = -03 -fomit-frame-pointer
#FFLOPT = -03 -fomit-frame-pointer
# Debug flags (symbols, array bounds)
#FC = g77
#FFLAGS = -g -00 -C
##--------------------------
### Intel Fortran Compiler
#FC = ifort
#FFLAGS = -0
#FFLOPT = -0
#FTNLIB = -Vaxlib /usr/lib/C-ctype.o /usr/lib/C_name.o /usr/lib/ctype-info.o
#FTNLIB = -Vaxlib
#FTNLIB = -i_dynamic

##--------------------------
### Double precision option
#FFLAGS = -0 -r8
#FFLOPT = -0 -r8
#PLTOBJ = ../plotlib/libPltDP.a

all: $(PROGS)

install:
$(INSTALLCMD) $(PROGS) $(BINDIR)

clean:
-/bin/rm $(PROGS)
-/bin/rm $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PPLOTOBJ) $(PXPLOTOBJ)

# -/bin/rm *.o

xfoil: $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ)
$(FC) -o xfoil $(XFOILOBJ) $(XUTILOBJ) $(OSOBJ) $(PLTOBJ) $(PLTLIB)

$(FTNLIB)

#pxplot: $(PXPLOTOBJ) $(XUTILOBJ)
# $(FC) -o pxplot $(PXPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

#pplot: $(PPLOTOBJ) $(XUTILOBJ)
# $(FC) -o pplot $(PPLOTOBJ) $(XUTILOBJ) $(PLTOBJ) $(PLTLIB) $(FTNLIB)

xfoil.o: $(SRC)/xfoil.f $(SRC)/XFOIL.INC
$(FC) -c $(FFLAGS) $(SRC)/xfoil.f

xpanel.o: $(SRC)/xpanel.f $(SRC)/XFOIL.INC



$(FC) -c $(FFLOPT)
xoper.o: $(SRC)/xoper.f

$(FC) -c $(FFLAGS)
xsolve.o: $(SRC)/xsolve.f

$(FC) -c $(FFLOPT)
dplot.o: $(SRC)/dplot.f

$(FC) -c $(FFLOPT)
xtcam.o: $(SRC)/xtcam.f

$(FC) -c $(FFLAGS)
xgdes.o: $(SRC)/xgdes.f

$(FC) -c $(FFLAGS)
xqdes.o: $(SRC)/xqdes.f

$(FC) -c $(FFLAGS)
xmdes.o: $(SRC)/xmdes.f

$(FC) -c $(FFLAGS)
xbl.o: $(SRC)/xbl.f

$(FC) -c $(FFLAGS)
xblsys.o: $(SRC)/xblsys.f

$(FC) -c $(FFLAGS)
xplots.o: $(SRC)/xplots.f

$(FC) -c $(FFLAGS)
pntops.o: $(SRC)/pntops.f

$(FC) -c $(FFLAGS)
blplot.o: $(SRC)/blplot.f

$(FC) -c $(FFLAGS)
xpol.o: $(SRC)/xpol.f

$(FC) -c $(FFLAGS)
xgeom.o: $(SRC)/xgeom.f

$(FC) -c $(FFLAGS)
xutils.o: $(SRC)/xutils.f

$(FC) -c $(FFLAGS)
modify.o: $(SRC)/modify.f

$(FC) -c $(FFLAGS)
aread.o: $(SRC)/aread.f

$(FC) -c $(FFLAGS)
naca.o: $(SRC)/naca.f

$(FC) -c $(FFLAGS)
plutil.o: $(SRC)/plutil.f

$(FC) -c $(FFLAGS)
userio.o: $(SRC)/userio.f

$(FC) -c $(FFLAGS)
gui.o: $(SRC)/gui.f

$(FC) -c $(FFLAGS)
spline.o: $(SRC)/spline.f

$(FC) -c $(FFLAGS)
sort.o: $(SRC)/sort.f

$(FC) -c $(FFLAGS)
profil.o: $(SRC)/profil.f

$(FC) -c $(FFLAGS)

polplt.o: $(SRC)/polplt.f
$(FC) -c $(FFLAGS)

iopol.o: $(SRC)/iopol.f $
$(FC) -c $(FFLAGS)

$(SRC)/xpanel.f
$(SRC)/XFOIL.INC
$(SRC)/xoper.f
$(SRC)/XFOIL.INC

$(SRC)/xsolve.f
$(SRC)/XFOIL.INC
$(SRC)/dplot.f

$(SRC)/XFOIL.INC
$(SRC)/xtcam.f

$(SRC)/XFOIL.INC
$ (SRC)/xgdes. f

$(SRC)/XFOIL.INC
$(SRC)/xqdes.f

$(SRC)/XFOIL.INC
$(SRC)/xmdes.f

$(SRC)/XFOIL.INC
$(SRC)/xbl.f

$(SRC)/xblsys.f
$(SRC)
$(SRC)
$(SRC)
$(SRC)
$ (SRC)
$ (SRC)
$ (SRC)
$ (SRC)

/XFOIL.INC
/xplots.f
/XFOIL.INC
/pntops.f
/XFOIL.INC
/blplot.f
/XFOIL.INC
/xpol.f

$(SRC)/XDES.INC

$(SRC)/XDES.INC

$(SRC)/XDES.INC

$(SRC)/XDES.INC $(SRC)/CIRCLE.INC

$(SRC)/XBL.INC

$(SRC)/XBL.INC

$(SRC)/XDES.INC

$(SRC)/xgeom.f

$(SRC)/xutils. f

$(SRC)/modify.f

$(SRC)/aread.f

$(SRC)/naca.f

$(SRC)/plutil.f

$(SRC)/userio.f

$(SRC)/gui.f

$(SRC)/spline.f

$(SRC)/sort.f

$ (SRC)/profil. f

$(SRC)/PINDEX.INC
$(SRC)/polplt.f
(SRC)/PINDEX.INC
$(SRC)/iopol.f

#pplot.o: $(SRC)/pplot.f $(SRC)/PPLOT.INC
# $(FC) -c $(FFLAGS) $(SRC)/pplot.f



#pxplot.o: $(SRC)/pxplot.f $(SRC)/PXPLOT.INC
# $(FC) -c $(FFLAGS) $(SRC)/pxplot.f

frplot0.o: $(SRC)/frplotO.f
$(FC) -c $(FFLAGS) $(SRC)/frplotO.f

frplot.o: $(SRC)/frplot.f
$(FC) -c $(FFLAGS) $(SRC)/frplot.f

#ntcalc.o: $(SRC)/ntcalc.f
# $(FC) -c $(FFLAGS) $(SRC)/ntcalc.f

#osmap.o: $ (OSRC)/osmap.f
# $(FC) -c $(FFLAGS) $(OSRC)/osmap.f

#getosfile.o: $(OSRC)/getosfile.c
# $(CC) -c $(CFLAGS) $(OSRC)/getosfile.c

(8) Start Cygwin, and navigate to the location of the XFOIL source code, with

appropriate files replaced by typing "cd . ./.. /cygdrive/c/xfoil/src" or to

the directory as appropriate.

(9) At the Cygwin prompt, type "make". The modified executable used for the work

conducted in this thesis should compile. The xfoil .exe executable will be built

and located in the same directory above in step (8). xfoil.exe may now be

relocated as necessary and place in the appropriate directory for MATLAB

execution.

(10) Future modifications may be made to the source code files (*.f) in order to alter

the program as further desired. If the source code files are altered, repeat steps (8)

and (9) to generate a new executable file.



Appendix H: MATLAB Files for Calculation of Minimum
Pressure Envelopes

XBucket.m

%Code by Chris Peterson.
%Code intended to produce minimum pressure envelopes using XFOIL to
%calculate minimum pressure for foil geometry. Code can either use NACA 4-
%or 5-digit airfoils built into XFOIL, or may read in properly formatted
%thickness and camber distributions from text files.

c1c; clear all; close all;

foil type = 'LOAD';

if foiltype == 'LOAD'
foil name = 'foildat
load mean = 'Brock08
load thck = 'Brock66

elseif foil_type == 'NACA'
foil name = 'FOUR';
fo loc = 0.4;

end

xdir
panels
Alpha_lim
Alpha_delta

foc_rng
NACA)
foc_step

= '.\xfoil\';
= 175;
= [-5 8];
= 0.1;

= [0.00 0.06];

= 0.01;

toc_rng = [0.02 0.2];
toc_step = 0.02;

visc_tog
iter lim
Re no

= 0;
= 500;
= le7;

if visc_tog == 1
visc cmd = ['OPER ITER

%Either 'LOAD', or 'NACA' for 4 or 5 digit

%Filenames thickness & camber, and data file
a';
act. txt';
act.txt';

%Or 'FIVE'
%0.X for 4-digt, or 0.05*k for 5-digit (k=l-5)

%Specify XFOIL.EXE executable location
%Sets number of panels if resetting in XFOIL
%Angle of attack range
%Angle of attack increment

%Camber ratio range (Must be <0.1 for 4-digit

%Camber ratio increment

%Thicness ratio range
%Thickness ratio increment

%l-yes(viscous), 0-no(Inviscid)
%XFOIL viscous calc iteration limit
%Reynolds number for visc calcs

%Add visc functionality to XFOIL command line
', num2str(iter lim),' ',...

'OPER VISC ', num2str(Re no), ' '];
elseif visc_tog == 0

visc cmd = '';
end

%Determine alphas to calculate
A_rng = Alpha_lim(l):Alpha_delta:Alpha_lim(2);

%Start of main calculation loops
for fo_c = foc_rng(l) :focstep:focrng(2)

k = int8((fo_c+foc step)/foc_step);
%Calculate over range of f/c

%k is index for data array below



for to_c = toc_rng(1):toc_step:toc_rng(2) %Calculate over range of t/c
j = int8((to_c-toc_rng(1)+toc_step)/toc_step);

%IF below determines if XFOIL database will be used, and creates
%foil if tabulated data is to be read in
if strcmp(foil_type, 'NACA')

if strcmp(foil_name, 'FOUR')
name = get4_nm(fo_loc, fo_c, to_c);

elseif strcmp(foilname, 'FIVE')
name = get5_nm(fo_loc, to_c);

end
elseif strcmp(foil_type, 'LOAD')

makefoil(to c, fo c, loadmean,
name = foil name;

end

%Makes foil if req'd
loadthck, foilname);

%CMD generates call to run the XFOIL executable to calc
cmd = [xdir, 'xfoil.exe ',...

'NORM ',...
foil type, ' ', name, ' ',.
'GDES TSET ', num2str(to c), ' ',num2str(foc), ' '
'GDES X '...
visc cmd,
'OPER ALFL ', num2str(Alpha_lim(l)),' ',...
num2str(Alpha_delta),' ', num2str(Alpha_lim(2)), '

system(cmd);
%Reads in -Cpmin, and x-location

fid = fopen('CPMINARRAY.txt');
clear datain;
if visc_tog == 0;

datain = textscan(fid, '%f64
elseif visc_tog == 1;

datain = textscan(fid, '%f64
'headerlines', 1);

end
fclose(fid);
if visctog == 1;

cpmni(j, :,k)
xcpmni(j, :,k)
cpmnv(j,:,k)
xcpmnv(j, :,k)

elseif visc_tog ==
cpmni(j,:,k)
xcpmini(j, :,k)

end

%Calls XFOIL
of -Cpmin

%f64', 'headerlines', 1);

%f64 %f64 %f64', ...

datain{l,l};
datain{l,2);
datain{l,3);
datain{l,4};

= datain{1,1};
= datain{l,2);

%Data array for minimum Cp
%Data array for location of CPmin

%Generates Bucket diagrams, new plot for each Fo/C
figure();
hold on; grid on;
cmap = colormap(hsv(toc_rng(2)/toc_step+l)); %Generates color distibution
set(gca,'ColorOrder',cmap);
plot(-cpmni(:,:,k), A_rng(l:length(cpmni))); %Plots Alpha vs. -Cpmin
xlim([0 3]);
if fo c > 0

CPmin.

end

'] ;



ylim(Alpha_lim);
else

ylim([0 81);

%Set plot X/Y limits

end
xlabel('-CP_m i_n'); ylabel('Angle of Attack (\alpha)');
if foil type == 'NACA'

title name = [foil type, ' ', foilname];
elseif foil type == 'LOAD'

title name = ['Meanline: ', load mean, ' Thickness: ',
else

title name = 'UNKNOWN TYPE';

load thck];

end
title({ ['INVISCID Brockett Diagram',lO0, title_name, 10,...

Fo/c= ', num2str(fo c), ', '\Delta\aipha
num2str(Alpha_delta)] });

tau = toc_rng(l) :toc_step:toc_rng(2); %Used for legend
legst = cell(l,length(tau)); %Initializes cells
for i = l:length(tau); %Set vales to cells

leg_st(i) = {num2str(tau(i)));
end
legend(leg_st, 'Location', 'SouthEast')

if visc tog == 1
figure ();
hold on; grid on;
cmap = colormap(hsv(toc_rng(2)/toc_step+l));

%Generates color distibution
set(gca,'ColorOrder',cmap);
plot(-cpmnv(:, :,k), Arng(l:length(cpmnv)));

%Plots Alpha vs. -Cpmin
xlim([O 31);
ylim(Alpha lim); %Set plot X/Y limits
xlabel('-CP m i n'); ylabel('Angle of Attack (\alpha)');
if foil type == 'NACA'

title name = [foil_type, ' ', foil_name];
elseif foil_type == 'LOAD'

title name = ['Meanline: ', load_mean, '. Thickness:
load thck];

else
titlename = 'UNKNOWN TYPE';

end
title({(['VISCOUS Brockett Diagram',10, title_name,10,...

' Fo/c = ', num2str(foc), ' \Delta\alpha = ,
num2str (Alpha_delta) 1});

tau = toc rng(l):toc_step:toc_rng(2); %Used for legend
leg st = cell(l,length(tau)); %Initializes cells
for i = l:length(tau); %Set vales to cells

leg_st(i) = {num2str(tau(i))};
end
legend(leg st, 'Location', 'SouthEast')

end
end



makefoil.m

%Code by Chris Peterson. Code will read in specified camber and thickness
% distributions and generate foil geometry file for XFOIL. Thickness and
% camber are scaled to t set and f set.
% Coordinates start at TE, go forward CCW along upper surfact to LE,
% and back to TE along lower surface.

function [] = makefoil(t set, fset, mean_type, thick_type, save as)

% ccd; clear all; close all;
t set = 0.1;
fset = 0.08;
mean type = 'NACAa=08(Brockett).txt';
thick_type = 'NACA66(Brockett).txt';

save as = 'brockett';

make_plot
N_parab_def
numbers < -20
N_parab_eval
export;
N_surf_pts

fract
0.005.

conc fact

%Get meanline and
[xf fco dydx_o]
[xt tc o RLEo]

= 'no'; %Generate plot toggle ('yes' or 'no')
= 35; %Number of points to make nose parabola. Fails at

= 11; %Number of points to include at the nose in data

= 80; %Number of points along body to TE (not including LE)
%N_parab_pts + N_surf_pts must be < 150

= 1-2/N_parab_eval; %Fraction of parabola to use from LE to

%Max parabola point must be less than 0.005
%to prevent sharp cornder at 0.005.

= 2; %Power for exponential disribution at LE. This
%concentrates point near tip.

dy/dx distributions from mean line data base
= getmeanline(mean type);
= getthickdist(thick type);

%Scale appropriately
t set = t set/2;
if max(fc o) -~= 0

f scale = f set/max(fc_ o);
elseif max(fc o) == 0

f scale = 0;
end
f c
dydx
t scale
t c
RLE

%uses 1/2 thickness

= fc o * f scale;
= dydx_o * f_scale;
= t set/max(tc o);
= tc o * t scale;
= RLE o * (t scale)^2;

%Find points along RLE nose parabola
x_RLE = fract*0.005*(0:1/(N_parab_def-1) :) .^conc_fact;
t_RLE = sqrt(2*RLE*(x_RLE));

%Spline parabola and tabulated data for thickness function
x_locs = [x RLE x t(2:end)]; %New combined x/c values



t_fnct = csape(xlocs, [le10 t_RLE t_c(2:end) 1],[1 0]); %1e8 sets init
slope = ~inf
%Make x locations for generating data file

%Cosine spacing from 0.005 to TE
x_cos_sp= 0.005 + 0.5*0.995*(1-cos(0:pi/(N_surf pts-l):pi));

%Exponential spacing for nose
xeval LE = fract*0.005*(0:1/(N_parab eval-1):l) .^conc_fact;
tevalLE = sqrt(2*RLE*(xevalLE));
x_eval_mb = [xcos_sp]; %Establishes eval points
t eval mb = fnval(tfnct, x eval mb); %Evaluates spline at eval points
x eval = [x_eval_LE xeval_mb];
t eval = [tevalLE tevalmb];

%Spline tabulated data for camber at same x/c locations as thickness
f_fnct = csape(x f, f_c);
f eval = fnval(f fnct, x eval);
dydx_eval = fnval(fnder(f_fnct), x_eval);

%Plotting for unrotated parameters
if strcmp(make_plot,'yes')

figure();
hold on;
axis equal; %Set X:Y to unity
title('Camber, Thickness, and LE Graphical Display')
xlabel('X/C');
xlim([-0.01 0.25]); %Set Initial Zoom

%Plot thickness
fnplt(t_fnct, 'y'); fnplt(f_fnct, 'g')
plot(x_t, t_c, 'co'); plot(x_f, f_c, 'ro')
plot(x_RLE, t_RLE, 'k.');
%Plot RLE Circle and parabola for viewing on plot
plot(RLE - RLE*cos(0:pi/100:pi), RLE*(sin(0:pi/100:pi)), 'b:');
plot((0:1/10000:0.2), sqrt(2*RLE*(0:1/10000:0.2)), 'r:');
%Plot camber

legend('Splined Thickness', 'Splined Camber',...
'Tabulated Thickness (Scaled)', 'Tabulated Camber (Scaled)',...
'Calcuated Parabola', 'Leading Edge Radius', 'LE Parabola',...
'Location', 'southeast')

end

%Calculate upper and lower surface ordinates
xu = x_eval - t_eval.*sin(atan(dydx_eval));
yu = f_eval + t_eval.*cos(atan(dydx_eval));
x_1 = x_eval + t_eval.*sin(atan(dydx_eval));
yl = f_eval - t_eval.*cos(atan(dydx_eval));

%Solve for most forward point on foil
[x fwd, min i] = min(x u);
y_fwd = y_u(min_i);

%New plot for actual upper and lower surfaces
if strcmp(make plot,'yes')

figure ();



end

%Cor
%sur
x co
yco

hold on;
axis equal; %Set X:Y to unity
xlim([0 1]); %Set Initial Zoom
plot(x_u, y u, 'b-', x_u, yu, 'r.')
plot(x l, y_1, 'b--ý, x_1, y_1, 'r.');
plot(xeval, f_eval, 'g-', xeval, f eval, 'r.')
plot(x_fwd,y_fwd, 'kp')

nbine coordinates into a single array of points from TE along upper
-face around LE back to TE along lower surface
mb = [fliplr(x u) x 1];
,mb = [fliplr(y_u) y_l];

%Rotate and scale such that max forward point is at 0,0, and TE is at 0,1.
%Assumes TE is already at 0,0 (Uses method in Brockett Report)
shiftang = atan(yfwd/(l-x_fwd));
%Scaled chord length back to 1 (accounts for portion forward of 0)
x scaled = (x comb-x fwd)./(l-x fwd);
y_scaled = (y comb-y_fwd)./(l-x_fwd);
%Rotate so that most forward point is at 0,0
x_rot = (x_scaled.*cos(shift_ang) - yscaled.*sin(shiftang))/...

sqrt(l+(y_fwd/(l-x fwd))^2);
y_rot = (yscaled.*cos(shift_ang) + x _scaled.*sin(shift ang))/...

sqrt(l+(y_fwd/(l-x_fwd) )2);

%New plot for final upper and lower surfaces
if strcmp(make_plot,'yes')

figure();
hold on;
title('Final Points exported to Data File.');
axis equal; %Set X:Y to unity
xlim([O 1]); %Set Initial Zoom
plot(x_rot, y rot, x rot, y_rot, 'r.');
legend('Connect the dots', 'Actual data points');

end

%Write to text file for use in XFOIL.
cmd = ['del ', saveas]; %save as is file name to be written to
system(cmd); %Delets previous file
fid = fopen(save as, 'w');
for i = l:length(x rot)

fprintf(fid, '%10.8f %10.8f\n', x_rot(i), y_rot(i));
end
fclose(fid);



getmeanline.m

% Code by Chris Peterson
% Code developed to read meanline information from data file 'filename'.
% Data will be read in from file, and returned to function call. Data
% return is vectors containing x-locations, camber distribution, and
% camber line slope values. Function checks for 999 value specifying
% less data points than standard input format.

function [x loc f_c dy_dx] = getmeanline(filename)

cd('./Meanline');

input = dlmread(filename, '\t', 4, 0);
M = input';
x loc in= M(1,:)/100;
f c in = M(2,:)/100;
dy dxin= M(3,:);

for i=l:length(x loc in)
if xloc in(i) == 9.99 %Checks to see if formatted with less points

x loc = x loc in(l:i-l);
f c = f c in(l:i-l);
dy_dx = dy_dx_in(l:i-l);
cd ..;
return

else
x loc = x loc in;
f c = f c in;
dy dx = dy dx_in;

end
end

cd



qetthickdist.m

% Code by Chris Peterson
% Code developed to read thickness information from data file 'filename'.
% Data will be read in from file, and returned to function call. Data
% return is vectors containing x-locations, thickness distribution, and
% value of leading edge radius. Function checks for 999 value specifying
% less data points than standard input format.

function [x_loc t_c RLE] = getthickdist(filename)

cd('./Thickness');

input = dlmread(filename, '\t', [4 0 29 2]);
M = input';
x loc in= M(1,:)/100;
t c in = M(2,:)/100;
fid = fopen(filename);
RLE = textscan(fid, '%s', 'headerlines', 29);
fclose all;
RLE = str2num(RLE{1)(7})/100;

for i=l:length(x loc in)
if xloc_in(i) == 9.99 %Checks to see if formatted with less points

x loc = x loc in(l:i-l);
t c = t c in(l:i-1);
cd ..;
return

else
x loc = x loc in;
t c = t c in;

end
end

cd ..;



Flet4 nm

%Code by Chris Peterson. Code generates a 4 digit string based on location
%of max camber, camber and thickness to generate NACA 4-digit designation.

function [name] = get4 nm(loc, fo c, to c)

if fo c == 0
nol = '0';
no2 = '0';

else
nol
no2

end

= num2str(int8(100*fo c));
= num2str(int8(10*loc));

if to c < 0.1
no34 = strcat('0', num2str(int8(100*to c)));

else
no34 = num2str(int8(100*to c));

end

name = strcat(nol, no2, no34);

cet5 nm.m

%Code by Chris Peterson. Code generates a 5 digit string based on location
%of max camber, camber and thickness to generate NACA 4-digit designation.

function [name] = get5_nm(loc, toc)

nol = '2'; %Only designs implemented in XFOIL are 210, 220,..., 250

if loc > 0.25 I loc < 0.025 %Will round to nearest 10%
error('Improper location for Max Camber.')

else
no23 = num2str(10*int8(2*10*loc));

end

if to c < 0.
no4 5

else

1
= strcat('0', num2str(int8(100*toc)));

no45 = num2str(int8(100*to_c));
end

name = strcat(nol, no23, no45);



Appendix I: Meanline and Camber Data File Format
Meanline and thickness distributions for various NACA foils are available at the
Public Domain Aeronautical Software website (http://www.pdas.com/avd.htm). The
formats of these files were used as input for the meanline and thickness

distributions, and the MATLAB code assumes similar formatting for other tabulated
offsets. Examples of meanline and thickness data files are shown below for the
NACA a=0.3 Meanline, and the NACA 66-008 thickness distributions:

NACAa=0.8.txt
NACA Mean Line a=0.3
(Stations and ordinates given
in per cent of airfoil chord)
x
0
0.5
0.75
1.25
2.5
5
7.5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

y
0
0.3892
0.5463
0.8317
1.4478
2.4575
3.2925
4.008
5.1721
6.052
6.6853
7.0721
7.1754
7.0738
6.8162
6.4333
5.9488
5.3828
4.7531
4.0763
3.3683
2.6453
1.9243
1.2244
0.5698
0

NACA66-008.txt
NACA 66-008
(Stations and ordinates given
in per cent of airfoil chord)

dy/dx
0
0.6554
0.6052
0.5416
0.454
0.3634
0.3078
0.2662
0.2025
0.1507
0.1028
0.0483
-0.002
-0.0371
-0.0649
-0.0875
-0.1057
-0.1201
-0.1312
-0.139
-0.1436
-0.145
-0.1428
-0.1364
-0.1243
0

x
0
0.5
0.75
1.25
2.5
5
7.5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100

y
0
0.6111
0.7341
0.9151
1.2183
1.6716
2.0321
2.3336
2.8245
3.2003
3.4904
3.7091
3.8642
3.9603
3.9984
3.9777
3.8945
3.7378
3.4659
3.0593
2.5713
2.0256
1.445
0.8674
0.3378
0

dy/dx
0
0.5674
0.4353
0.306
0.2079
0.1605
0.1303
0.1123
0.0857
0.0658
0.0505
0.0372
0.0253
0.0131
0.0016
-0.0102
-0.0236
-0.0408
-0.0693
-0.0915
-0.1039
-0.1137
-0.1169
-0.1131
-0.0952
-0.0038

L.E. radius = 0.389 percent chord



All values are specified as a percentage of chord length. Note that for meanline

data, 'y' values represent camber offsets, and dy/dx is camberline slope. For

thickness distribution, 'y' represents thickness values perpendicular to the meanline,

and dy/dx is thickness slope. In addition, leading edge radius must be specified.

If desired, meanline and thickness for arbitrary foil shapes may be specified using

the above format, or alternatively, if offsets are available, but not at the locations

specified above, the following formats may also be used. These meanline and

thickness offsets were taken from reference [4]

Brock08act.txt
NACA Mean Line a=0.8(modified)
(Stations and ordinates given
in per cent of airfoil chord)
x
0
0.7596
3.0154
6.6987
11.6978
17.8606
25
32.899
41.3176
50
58.6824
67.101
75
82.1394
88.3022
93.3013
96.9846
99.2404
100
999
0
0
0
0
0
0

Y
0
0.6006
1.8381
3.3684
4.9874
6.5407
7.9051.
8.9831
9.6994
10
9.8503
9.2306
8.121.2
6.3884
4.2227
2.3423
0.9982
0.2365
0
0
0
0
0
0
0
0

Brock66act.txt
NACA 66 (Mod)-From Brockett
(Stations and ordinates given
in per cent of airfoil chord)

dy/dx
0.71485
0.66001
0.47712
0.36751
0.28681
0.22096
0.1635
0.11071
0.06001
0.00914
-0.04448
-0.10483
-0.18132
-0.31892
-0.37243
-0.37425
-0.35148
-0.32028
-0.30025
0
0
0
0
0
0
0

x
0
0.7596
3.0154
6.6987
11.6978
17.8606
25
32.899
41.3176
50
58.6824
67.101
75
82.1394
88.3022
93.3013
96.9846
99.2404
100
999
0
0
0
0
0
0

Y
0
0.817
1.608
2.388
3.135
3.807
4.363
4.76
4.972
4.962
4.712
4.247
3.612
2.872
2.108
1.402
0.83
0.462
0.333
0
0
0
0
0
0
0

dydx
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

L.E. radius = .448 percent chord



The file formats for Brock08act.txt and Brock66act.txt utilize the same number of rows
and columns as the previous formats (NACAa=0.8.txt and NACA66-008.txt). The only
difference is that when there are less than 26 offset locations, the number 999 must be
put after the last data point. This instructs the code to stop reading in data points. All
other values after the last offset location must be filled in with zeros to maintain proper
file format and size. Also, dy/dx values for thickness distributions are not required, and
may be filled in with zeros if unknown.


