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ABSTRACT

Tradable pollution permits are the basis of a new market-based approach to environmental
control. The Acid Rain Program, established under Title IV of the Clean Air Act
Amendments of 1990, and aimed at drastically reducing thee®{3sions of electricity
generating units in the US, is the world’s first large-scale implementation of such a
program.

An important feature of this program is that pollution permits, called allowances under
Title 1V, can be banked for future use. This thesis introduces a model of the collective
banking behavior of affected units in the context of Title IV. The present theoretical
investigation differs from previous work by its rigorous treatment of the constraint that
allowances can only be banked, but never borrowed from future allocations, a
consideration which has important consequences. The model presented captures the
effects of the changes in electricity demand, the number of affected units, environmental
regulations and technological innovations on the utilities’ banking behavior and on the
allowance price. The effect of uncertainty on the banking behavior is explored, and an
analysis of how the allowance market would react in a world of uncertainty to various
circumstances is then presented.

The author would like to thank Denny Ellerman, Paul Joskow, Dick Schmalensee and Liz
Bailey for their helpful comments, as well as the Massachusetts Institute of Technology
for financial support.
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[. INTRODUCTION

The Acid Rain Program, established under Title IV of the Clean Air Act
Amendments of 1990, is aimed at drastically reducing theeg@sions by electric
utilities.1 Accordingly, it sets a permanent cap to 8Missions by utilities at about half of
their annual emissions in 1980. These reductions were to be implemented in two stages:
Phase I, covering the years 1995 through 1999, applies to the 263 dirtiest electricity-
generating units with a capacity above 100 MW, as well as to any units that voluntarily
opt into the program early. Phase II, which is to start in the year 200@®owonly
restrict emissions by these Phase | units even further, but also impose restrictions upon
cleaner and smaller units, so as to ultimately cover more than 2000 units.

Title IV is the world’s first major market-based approaches to environmental
regulation. At its core is the virtually unrestricted trading of emission allowances by
electric utilities. An allowance gives the permission to emit one ton of sulfur dioxide. Each
unit has been allocated in advance a certain annual number of allowances mainly based
upon its average heat input in the baseline péridde to the trading component of the
Acid Rain Program, a unit can reduce its emissions below the allocated number of
allowances, transferring the unused permits to other units within the same plant or holding
company or selling them to other units and brokers. Or it can decide not to abate its
emissions, and purchase allowances from other units, to cover the emissions above its
allocation of allowances. In addition to this spatial trading, Title IV allows for
intertemporal trading, so that units can save their allowances for use in the future with
lower permit allocations. The only limitations the EPA, that is, the US Environmental
Protection Agency, imposes on the trading program are that a unit cannot borrow

allowances from its allocations for future years, and that at the end of each year, every unit

! Another concern of Title IV are NOx emissions. In the following, 1 will focus on theaS@ect of the

program.

2 The actual allocation mechanism is somewhat more complex. For a more complete description, see, for
example, Joskow and Schmalensee (1998).



has to have enough allowances in its ‘account’ to cover it8@3sions for the year,
these allowances are then deducted from the actount.

In contrast to the traditional ‘command-and-control'’ approach to environmental
regulation, Title IV of the 1990 Clean Air Act accords a lot more freedom to the
generating units, as long as they can provide enough allowances to account for their
annual emissions: No specific technology is required, and no uniform emissions rate or
percentage reduction is imposed. Thus, each unit can decide whether to install a scrubber,
for instance, switch to coal with a lower sulfur content, or simply purchase allowances.
The trading program gives units with low cost methods of abatement an incentive to
overcomply and sell the remaining permits to other sources that would otherwise have to
face very costly emissions reductions. Unlike the previous programs, Title IV relies on the
market to achieve the cumulative emissions limits at least cost.

Several empirical studies of this new market-based approach have included
investigations of the spatial and intertemporal trading behavior by the units subject to SO
regulation! However, despite the large interest in this and similar trading programs,
important theoretical issues underlying any trading program remain unexplored. In
particular, while the spatial component of trading has been investigated in depth since the
early 70’s’ theoretical analyses of the dynamics of allowance banking have only recently
received interest.

Previous theoretical investigations of the banking dynamics (Cronshaw and Kruse
(1996), Rubin (1996), Kling and Rubin (1997)) are very general in many respects. No
particular functional form for the costs functions is assumed and the time-dependence of
the imposed emission cap is left unrestricted. Cronshaw and Kruse (1996) focus on the
effect of profit regulations on the firms’ pollution permit trading and saving behavior.
Rubin (1996) presents an analysis of emissions trading, banking and borrowing in a

continuous-time model. In Kling and Rubin (1997), the case of emission trading when

% To give credibility to this emissions trading program, each unit has had to install a continuous
emissions monitoring system, or CEMS, to ensure that ther8idsions are measured accurately.
* See, for example, Ellerman et al. (1997), EIA (1997), or EPA’s Acid Rain Program Homepage.
® See, for instance, Mongomery (1972) and Tietenberg (1985).

® Cronshaw and Kruse (1996), Rubin (1996) and Kling and Rubin (1997).



both banking and borrowing are allowed is explored and a suggestion is made about how
borrowing can be regulated so as to minimize negative environmental impacts.

However, none of these analyses adequately explore constraints on the
intertemporal trading of permits, an important feature of many pollution permit programs.
Title IV, for instance, does not allow borrowing of emissions permits issued in the future
for present use. This requires the bank of allowances to remain nonnegative at all times, a
constraint that is not trivial to take into account. For this reason, previous attempts to
include this constraint (Cronshaw and Kruse (1996), Rubin (1996)) havdirbited to
deriving first-order conditions for optimality where the Lagrange multiplier of the non-
negativity constraint is left unevaluated. While providing some insight into the effect of the
inability to borrow from the future, this approach does not provide an explicit expression
for the optimal paths of emissions and the allowance price, and fails to answer even simple
questions such as “for how long will the units be willing to bank allowances?” or “if a new
cost-effective abatement technology becomes available in the future, how will the path of
emissions be modified?”.

We explicitly take into account the non-negativity constraint of the allowance
bank. Admittedly, to keep our analysis tractable, we need to make more restrictive
assumptions about the functional forms of the cost functions and the time-dependence of
the emissions cap. While previous analyses, limited to first-order conditions, explicitly
model only the dependence of current emissions oautientabatement cost and
environmental standards, our analysis clearly couples the present optimal level of
emissions not only to current, but alsoftdure abatement costs, electricity demand, or
environmental regulations.

Another aspect of tradable permit programs that has received little attention in the
theoretical literature is the effect of uncertainty on the units’ banking behavior. Deviations
from the results obtained under certainty have essentially been attributed to transaction
costs’ Yet it has been shown in the commodity market liter4tinat these deviations can

occur even in the absence of transaction costs. Along these lines, we show that, in the

" Bailey (1996a).
8 See, for example, Williams and Wright (1991)



absence of transaction costs, the non-negativity constraint on the allowance bank
introduces deviations from the paths obtained under certainty.

Previous theoretical studies have so far also ignored the impact of changes in
expectations on the banking dynamics. We provide various examples describing how the
paths of the allowance price and of emissions are updated when new information about the
future becomes available.

This paper thus seeks to address various unexplored theoretical aspects of the
economics of allowance banking in the context of Title IV of the Acid Rain Program.
Throughout the paper, a special effort will be made @aoepthe pollution permits banking
problem in a setting that is rich enough to model the important features of the allowance
market and yet simple enough to enable an approach that goes beyond simple first-order
conditions.

Section Il presents the units’ behavior in a world of perfect foresight. After
recalling the previously established first order condition required for optimality, we show
that, under mild conditions, the banking behavior can be divided into two periods, namely
a period when allowances are banked for future use followed by a period when they are
not. We then outline the general framework which enables us to determine the length of
the banking period and the absolute level of the emissions and the allowance price, in
addition to the changes in emissions and price as a function of time, as given by the first-
order condition. In order to gain insight about the factors influencing the banking
behavior, we first examine the simple case of constant demand for electricity. Various
useful extensions of this simple model are then presented: The effect of growth in demand,
the implications of the increase in the number of affected units in Phase 1l and the
consequences of technological innovations are analyzed.

In Section Ill, we then describe how uncertainty affects the results derived under
certainty, explaining the origin and the direction of the biases caused by neglecting
uncertainties. Based on our global approach derived under certainty, we introduce a

simple way to take into account changes in the units’ expectations as time progresses.



[I. THE ALLOWANCE MARKET UNDER CERTAINTY

2.1 Background Information

In this section we will briefly discuss previously established results upon which our
model is built, define the most important variables and introduce our main assumptions.
The electricity generating units face an intertemporahopdtion problem. In
each period of time, they have to decide by how much they want to reduce their SO
emissions, considering the current and future costs of abatement, as well as the fact that
they have to account for the remaining tons of ®4th allowances taken from their
currently available allowances, instead of saving them for future use. The crucial constraint
under the set-up of Title IV is that the bank of allowances has to be non-negative at any
time; that is, the units cannot borrow allowances from their future allocations. Thus we

arrive at the following optimization problem:

{eTqi?.}D; (1+r)"c, (a,[)g subject tq@j : OS v e’
where
a is the number of tons of $@bated by all units at time t; A& - g,
e the actual S@emissions at time t, after any abatement has taken place,
& the SQ emissions that would be needed to satisfy the demand for electricity

from Title 1V units at time t without any S@batement requirements
(counterfactual emissions),
c(a) the cost of abating ons of SQ at time t,
\£ the total number of allowances with vintage time t issued to all affected units,
S the stock of allowances (bank) available at the beginning of period t, and
r the riskless rate of interest, assumed to be constant over time for notational
convenience.
The first order condition for this problem is well known and fully derived for

instance in Cronshaw and Kruse (1996). Wesmply state this condition and give it a



simple interpretation. The optimum path of emissiqrs &hieved when the following

equality holds:

Ma(a.)=@+0(ma)-r) (@

where ng&) is the marginal cost’¢a;), which is increasing in.d\, is the Lagrange
multiplier associated with the constraint;S0.

When the constraint is not binding,is zero and the marginal cost simply
increases at the rate of interest. If the marginal cost of abatement in the future, discounted
to the present, is higher than the present marginal cost, units will be willing to save more
allowances for future use, because by doing so, they decrease their discounted future cost
by more than they increase their present cost. On the contrary, a discounted future
marginal cost lower than the present marginal cost will tend to decrease savings.
Incentives to save more or less will persist until the discounted marginal cost is equalized
across all times during the banking perifd.

When the constraint is binding, that is, when no allowances are being carried over
from period t to t+1, theh>0 and the marginal cost increases at a rate less than the rate
of interest. The units would have an incentive to borrow allowances from the future, but

the constraint that;3=0 makes this impossible.

Whether the marginal cost rises at the rate of interest or not over a specific period
of time depends, of course, on the factors that determine when banking should occur. To

understand these factors, let us consider the marginal €estgthe units would face in

° We should remind the reader that our marginal cost functi) is the marginal cost of abatement of

all units required to abate $@missions. To focus on the intertemporal aspect of allowance trading, we
take optimal spatial trading as given; that is, at each point in time, the units trades with each other to
equalize their marginal cost of abatement. The marginal cost resulting from this spatial trading is the
marginal cost of the whole industry at that point in time. To construct the marginal cost function used in
the following analysis, we plot the marginal cost of the industry for each level of abatement by all the
units. Note that optimal spatial trading requires that units make optimal abatement decisions and that the
allowance market be efficient. While the optimality of the firms’ abatement decisions needs to be
assumed, the existence of a unique allowance price supports the efficiency of the allowance market. And
indeed, the SOallowance market has experienced a convergence of various price indices to a uniform
allowance price (Ellerman et al. (1997), p.27-28).

% This is simply Hotelling’s rule.



each time period if banking were not allowed. Every time this marginal cost increases
faster than the rate of interest, there is an incentive for units to save allowances for future
use. Such savings would increase the current marginal cost and reduce the future marginal
cost, so as to prevent the marginal cost from increasing at a rate greater than the rate of
interest. More formally, we can state that if the marginal cost obtained when no banking is
allowed, m(e-Y), rises at a rate faster than r in an interygt [t then the allowance price
obtained when banking is allowed,(gne), will rise at rate r in an interval {JT;] such

that [t,ta] O [To, T4].

The main reason for the banking of allowances under Title IV is undoubtedly the
phase-in aspect of the trading program. To capture the idea of a trading program with
more stringent regulations following an initial, less restrictive compliance period in our
model, we define a Phase I, extending from O to time T, wheadldvances are issued
per unit time and a phase I, starting at time T, where a smaller numbeiralbwances
are issued per unit time. As is certainly the case in thePs@ram, the units are
assumed to know their allowance allocations in advance. We first assume that the number
of units affected in the two Phases remains constant. As we will see later, relaxing this
assumption does not change our results significantly.

Without the possibility to carry over allowances from one period to the next, there
would be a substantial jump in the marginal cost at the onset of Phase Il, when the number
of allowances drops fromavto Y. Given the possibility to bank, the units will, of course,
smooth out this jump in their marginal cost of abatement.

In addition to the reduction in the number of allowances issued, the units face
other fluctuations in their marginal cost due to, for example, fluctuations in the electricity
demand, or fluctuations in the marginal cost function itsetf((). In what follows, we
will assume that the fluctuations in the electricity demand and in the marginal cost function

never cause the marginal cos{amY) to increase faster than the rate of interest. Under

this assumption, the only incentive to start banking allowances is to prevent the jump in



10

the marginal cost at the beginning of phase II, at timeThus, our assumptions imply
that the banking period is unique: It starts in Phase | and ends at soméntiRtemse 12

Under the same assumption, we can further showr tisadctually finite. There is
an incentive to save in period t for a period t'>T in the distant future only if the marginal
cost in period t’, discounted to time t, is higher than the current marginal cost — that is, if
(141" my(e-Yr) > m(e-Y). But if the marginal cost functiona-Y.) increases
strictly less than the rate of interest beyond the jump at T, then there exists a t’>T large
enough so to make the left hand side smaller than any positive marginal cost today. Thus,
for t’ large enough, the incentive to save does not exist anymore and banking has to stop
at some finite tima>T. This banking period can, in principle, start anytime in Phase I, but
in the context of Title 1V, units are willing to start saving from the beginning of Phase I.
We thus simply identify time O as the beginning of the banking period as well as the

beginning of Phase'f.

2.2 General framework

Equation (1) only gives us the relationship of the marginal cost between different
time periods. However, it fails to provide us with clear information about the length of the
banking period as well as the shape and level of the path g&rSi€sions. In order to
find these quantities and analyze their dependence on changes in the various parameters of
the model, it is convenient to switch from a discrete time optimization problem to a
continuous time approach. The identities used so far translate very easily from the discrete
approach to the continuous one. The equalization of the discounted marginal cost during

the banking period is simply written as:

m(e, - €)= € m(e,— ¢ fort<t

1 Even though these fluctuations are not large enough to create a banking period by themselves, they do
influence the number of allowances saved during the banking period (which is caused by the drop in the
number of allowances issued).

2|n principle, the framework of our model can be extended to allow for multiple banking periods.
However, we will not explore this here.

¥This amounts to assuming that the constrag® & never binding in Phase .
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while after the end of the banking period, we have:

m(et - q) = rrg(et - \{) for t=T,
since the banking period has to end in Phase I, whalldvances are distributed.

The path of the allowance price and the path of emissions are then given by:

fe" n])(eo - Q)) for t<t

i m(st - YL) for t>1 @
B - m[l(éT m (e, - %)) for €1
& " E Y, fort>rt )

In equations (2) and (3), two unknowns, nameglgiredt , still have to be
determined before the allowance price and emissions path can be fully identified. To find

these unknowns, we first note that at,tthe path of emissions must be continuous:

6 =&~ (& e, - g)= ¥ (@)

The constraint of continuity arises from two factors. On the one hand, a downward
jump in the level of emissions atttis prohibited by the first order condition, as it would
result in a jump upward in the path of price. On the other hand, an upward jump in the
emissions would imply that allowances given out atare not used immediately,
indicating thatt is not truly the end of the banking period.

We also know that all the allowances issued over the banking period have to be

used in that same period:

[edt=[Ydt (5)

Combining equations (3) and (5) with

Y_D(H if t<T
CHO T

we obtain:
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(et —m[l(ert m(e, - %))) de Y- Y+t .Y (6)

Oy

We now have two equations, (4) and (6), in two unknowganet. Once these
unknowns are found, equations (2) and (3) fully define the path of the allowance price and
the path of emissions.

It is interesting to remark that the quantitigsand T come into play only through
the term T(Y-Y ) which represents the total number of “extra” allowances distributed in
Phase | compared to what would have been distributed if Phase Il had started

immediately. The exact time-dependence pdYer Phase | is therefore irrelevant, only
T
the quantityfO (Yt - YL) dt matters* This is important in the context of Title IV, since the

annual allowance allocations do indeed differ slightly, due to various special legislative
provisions discussed in more detail in Joskow and Schmalensee (1998).

Note that the analysis so far is completely general, making no assumptions
regarding the specification of the marginal cost function and the growth in demand. In
order to make all subsequent derivations analytically tractable, we will from now on model
the marginal cost {f&) by a linear functionm (a)= A+ B a.

For notational convenience, we rewrite the marginal cost function in the following

way:

m(a) = A+ Ba= A+ B (g - @) = B (€, - &) (7)

where the quantit, = A /B, +¢, embodies the effect of changes in both the electricity

demanck; and changes in the marginal cost of abatement.

4 This is the case, provided that the fluctuationsimYhase | are not large enough to cause a
temporary depletion of the bank in Phase I. This problem does not apply to ttrad@y program,
where the fluctuations in Phase | are small relative to the total number of permits issued.



13

2.3 Constant Demand for Electricity

To gain some insight about the units’ possible reaction to the Acid Rain Program,
it is instructive to consider first a simple case. In particular, if counterfactual aggregate
emissions were constant over time, such as might occur with unchanging electricity
demand and no technological change, there , and B = B, the marginal cost function
simplifiestom(a) = m(a)= Re- ¢).

We can now solve equations (4) and (6), to expreswl gas a function of

known parameters:
_1 0 T(y,

= f ~Y)F (8).
@L (e-v) @
e-(s-Y)e" (9), withT given by (8).

In equation (8), f(s) is a strictly increasing function defined as the solution to the
following transcendental equatio(t— e‘f) = f — s. For a derivation of this result see
Appendix B. This expression illustrates clearly which factors influence the length of the
banking period. On the one hands increasing in T(¥-Y.), the total amount of ‘extra’
allowances given out in phase I. On the other hamldecreasing (Vé +e —YL). The
terme-Y_ is a measure of the stringency of phase Il: It is the difference between the
number of allowances that would be needed to cover the emissions in Phase Il in the
absence of abatement and the actual number of allowances issued per unit time.

In this case, equations (2) and (3) which give the path price and the path of

emissions, can be rewritten by replacigdpeits value given by equation (9):

a Y)é(t 2 for t< T
P = (10)
% e Y fort>1
o - EE—(g—YL)é(t‘T) for t<t (1)
0 Y, fort>1

A graphical representation of these two equations is straightforward:
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As can be seen in the graph for the emissions pathe®{3sions by electricity
generating units decrease throughout Phase | as well as in the beginning of Phase II, until
they reach the level of allowances issued per unit time in Phase II.

Even this simplified version of the model encompasses not only a derivation of the
paths of emissions and price, but also an analysis of the effects of changes in various
parameters on the units’ banking behavior. As mentioned above, equation (8) clearly
illustrates how is affected by a change in any of the parameters of the model. In order to
analyze the corresponding changes in the whole path of emissions, the interdependence
among the variables has to be taken into account, for instance by rewriting equation (11).
That is, if a given parameter z affetighe emissions path needs to be expressed entirely
in terms of z or entirely in terms of The latter approach, which we will use here, turns
out to be simpler to carry out. We then simply study the effect of changesis,
keeping in mind that the changesiare caused by a change in z.

As an example, let us consider the effect on &@issions of the greater
availability of the extremely low-sulfur PRB coal that is due to the lower rail rates
resulting from the deregulation of the railroads. As explained in Ellerman et al. (1997), this
is equivalent to a permanent costless reduction ine®issions under Title 1V. In our

model, this essentially amounts to a decrease nafd thus irg .

!5 This is true since the abatement made possible by PRB coal is not sufficient to satisfy the Title IV
requirements. That is, the units will operate in the upward sloping section of the new marginal cost
function.
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costless ahatement
from PRE coal

We now examine the effect of the greater penetration of PRB coal on the path of
the allowance price. In the long run, that is, after the bank has been depleted, the decrease
in A simply results in an identical decrease in the allowance price, sinca(B) = A +
Ba.

We then see, from equation (8), that the length of the banking penoctases
when € decreases. Since the allowance price has to rise at rate r, regardless of the
presence of PRB coal, the longer banking period, combined with the lower long-run
allowance price, inevitably leads to a drop in the initial prigg€? FPhus, the whole price

path drops.

To examine the effect on the emissions path, we exgrassa function of (using
equation (33) from Appendix B) and substitute the result into equation (11):
TIY, - Y

& =0 -rr-e™

L ift>1

An increase it cannot yield an increase qfa all times, since the total number

allowances, and thus cumulative emissions, do not change. Similarly, it is incompatible

with an overall decrease of &ince it can be shown (see Appendix C) t%%aﬁs

increasing in t, it follows tha%% must be negative for small t and gradually increase until

'8 This result can easily be shown formally by using the equality betweghan(hé'm(a) to calculate
the total derivative of mgawith respect to€ .
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it becomes positive. In short, an increase tihat results from a decreasegnmust affect
the path of emissions as illustrated below: The initial decrease in emissions becomes
progressively smaller, until the emissions eventually increase over what they would have

been without PRB coal.

h
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1
1
1
1
1
1
1
1
’
1
1
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’
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2.4 Growth in Demand for Electricity

The analysis in the previous section assumes constant demand for electricity
produced by the generating units affected by Title 1V, to provide some initial insights
about the economics of allowance banking. The general framework of Section 2.2,
however, allows for the possibility of growth in demand through the time-dependence of
&. This section will thus relax the constant demand assumption, thus providing a more
realistic picture of the allowance market.

A time-dependence @f translates into a time-dependenceepf since

€ = % +¢,.'" Starting from the path of price and the path of emissions given by

equations (2) and (3), we can derive equations analogous to equations (10) and (11)

derived in the case of constant demand:

)é(t 2 for t< 1
= % (12)
a for t>1

éﬁt (& -y )et for t< T
5

. 13
Y, fort>1 13)

eI:
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These equations, which make no assumption about the type of growth in
demand? are very revealing. The price increases at the rate of interest during the banking
period, as before. Yet, while the price stops increasing after the banking period in the
model without growth, it now keeps increasing, yet at a slower rate - otherwise, banking
would not have stopped - governed by the growth in demand. These expressions also
underline that in the model with growth in demand, the emissions path is determined by
two counteracting forces, namely the interest rate and the growth in demand. If the future
were not discounted, changes in emissions would follow changes in demand during the
banking periotf, as this would equalize marginal costs across time periods. Hence, an
increasing demand would yield an increasing emissions path. However, in the presence of
discounting, marginal abatement costs must increase over the banking period. It follows
that the abatement must increase over time, which implies that the emissions must lie

further and further below the demasgd as time progresses. The discounting of the future

eventually bring the emissions down towardity Phase Il. Unlike the effect of growth,
the effect of r on@ncreases over time due to the tefimleis thus possible that, for

small t, the effect of growth i, dominates the effect of r: In contrast to the constant

demand case, where only a decreasing path of emissions can be observed, the path of
emissions can actually increase initially. Eventually, the effect of r has to dominate, so that
& decreases towards “at the end of the banking period. Two cases thus emerge,
depending on the relative value of the parameters:

=5} Et
& F 8

TN N

¥
-
¥
—-

" Note that the mathematical results presented in this section remain valid whether the chﬁp@e in

due to changes igy or in A. To keep the exposition clear, we will focus on the effect of changgs in
rather than A For simplicity, B is for now kept constant.

'8 Except that, as noted before, growth must not cayseYy) to rise at a rate faster than the interest
rate.

19 Assuming aime-independent cost function.
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The next logical step would now be to solvetoand g to entirely determine the
path of price and emissions, as done in the constant demand case. However, this approach
is not analytically tractable, unless a functional form for the growth in demand is
postulated. Yet even without assuming anything about the type of growth, we can
determine in which direction the beginning of the emissions pgtis (&hifted due to the
introduction of growth into the model, by examining the change due to any small

change ing, (for all t). Once the change ip i8 known, the changes in the paths of price

and emissions is derived straightforwardly by applying equation (2) and (3) of Section 2.2:

EB(§O - eo)elI for t<1

P=0/~ 14

T BE - v) for t>1 (14)
EE -, —g,)€" for t<1

&= (& -e) - (15)
Y, fort>1

It is worth noting that the price continues to rise afteat a rate less thanr,

following the increase irg, .
The change inggdue to an arbitrary change & is obtained by noting that,
despite changes ig, , the total number of allowance issued during the banking period

must equal the number of allowances used in the banking period, as required by equation
(5). If €, changes, gandt must adapt to preserve this equality. As described in more
detail in Appendix D, this amounts to taking the total differential of equation (5) with

respect to g T and €, (for all t). This yields a surprisingly simple result:

r
e’

Ag, = AE, - _JAadt. (16)
0

The corresponding change in price is then given by:

AR, = A€, dt. 17).
F)O BerT_l_!‘ ‘c'tdt ( )

Introducing growth in demand into the model is equivalent to seftfyg= 0, and
A€, > 0for all t > 0. HenceQey,<0 andAPy>0. Intuitively, the decrease in emissions at the

beginning of Phase | makes sense, since the growth in demand provides an incentive to
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save allowances for the future above and beyond the banking due to the decline in the
number of allowances issued. Of course, this drop in emissions below the path found in the
previous section is not permanent, since cumulative emissions have to remain unchanged.
Also, the entire path of the allowance price shifts up, as seen in equation (14). This

follows directly from the increase in demand for allowances due to the increasing demand

for electricity.

Up to now, the discussion has relied on essentially no assumption about the time-
dependence of electricity demand and has lead us to general results linking changes in
demand and marginal cost to changes in prices and emissions. An analysis of the effect of
growth on the length of the banking periodecessitates assumptions regarding the type
of growth. Focusing on a special type of growth also enables us to obtain more precise
results, namely a determination of the length of the banking period and the absolute level
of the paths of price and emissions.

The particular case of linear growth in electricity demand provides results which
are both simple to derive and to easy to interpret. Linear growth can be viewed as
exponential growth in the limit of small growth. We thus expect our results to translate
qualitatively to an exponential growth model in the limit of slow groWth.

Following the usual procedure, we need to solve equations (4) and (6 pfudte
With m (e, - €) = BE, - €) and €, = g, + gt, these equations become:

g +oi-(5,-g)é = Y

T

l(go +gt—(§o—e0)é‘)dt: T +(t- JY.

The solution of these equations (derived in Appendix E) can be written as:

_1 - (YH_YL) g -
T‘thT(go-vL) ’ r(’§0—YL)§ (18)

e, =& - (£ - Y)e", witht given by (18), (19)
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where h(sy) is the solution to the following transcendental equation:

h% yh+ 1@— S

-e")=—1rm (20)

The parameter s is identical to the one used in the constant demand case, while the
parametey is a measure of growth in demand. Note that whei®, equation (18)
reduces to equation (8), that is, h(s,0) = f(s). The functioy) ligsncreasing in s, but
increasing iry if and only if s < 1-8% ** Consequently, the introduction of growth in
demand can lead to either an increase or a decrease in the length of the banking period.
The number of extra allowances given out in Phase | greatly influences the result through

parameter s.

2.5 Change in the number of units

The reader interested in an analysis of the Bx@gram might be especially critical
of our focus on the behavior of a fixed number of units that experience a decrease in the
number of allowances issued per unit of time from Phase | to Phase II. This focus
conforms to the reality of a phase-in program such as Title 1V in the sense that Phase Il of
Title 1V is indeed the more stringent phase in terms of the number of allowances issued to
each unit. More strictly speaking, however, the number of units subject,tee§@ation
increases sharply between Phase | and Phase Il from 445 units in 1995 to over 2000 units
in Phase II. The total number of allowances issued actually increases slightly (from, for
instance, 8694 in 1995 to around 9400 in Phase II), yet the dramatic increase in the

number of units still makes Phase 1l the more restrictive pé&fidte will now show that

?In the case of electricity demand, the growth is indeed quite slow: about 2% per year (from Ellerman ad
Montero (1996), Figure 1).

L Under a mild condition, described in Appendix E, which is usually satisfied in practice.

22 As explained in Joskow and Schmalensee (1997), the actual number of allowances varies from year to
year. At least as long as there is banking, this does not affect our results in any way, as mentioned earlier.
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accounting for the change in the number of units leaves our previous results qualitatively
unchanged’
In terms of our model, there are essentially two changes that have to be taken into

account. First, the demand of electricity from the units affected by Title IV jumps up at the
beginning of Phase Il. Let us cafl the demand for electricity from units affected in
Phase |, and? the demand for electricity fromdl the units included in Phase II.

Second, the marginal cost function will change. Put into the context of Title IV,
the marginal cost function considered so far has included all the units eligible for
compliance in Phase’t.In Phase I, all Title IV units have to be taken into account. In the
following analysis, we will consider the most general case, in which both A and B change

as we enter Phase II.
Phase I: ml(q): A + Bl(etl— e) = B‘(gtl— p)
Phase II: mz(a): A+ Bz(ef— e) = Bz('sftz— p)
The result that the discounted marginal cost is equalized during the banking period

remains unchanged:
B('-¢)= ¢ B(g: - ¢ if t<T
B*(52-¢)= ¢ B(g: - ¢ it t>T
which implies that the emissions path is given by:
CE! - (501 - eo)ert if t< T

e =[F-— (8 -g)d if T<t<T. (21)
ék if t>1

% Also, the derivations of the results are essentially identical to the ones in the previous section and are
therefore not included in the Appendix.

24 Eligibility, instead of designation as a Table A unit, is important due to the Substitution and Reduced
Ulitization provisions of Title IV. Montero (1997) finds that 623 Phase Il units were eligible to opt into
the program early in addition to the original 263 Table A units. Units with low marginal costs will of
course be likely to opt in.
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Note that equation (21) measures the 8aissions by units affected under Title
IV in each phase. Total emissions in Phase | are givepphysgdhe emissions of non-

affected units. The following two graphs illustrate this difference.

Total Emissions Ermigsions from Affected Umnits
F 3 Fy
By Bt //——I_\i
: : -t ! I -t
T T T T

In each phase, the emissions havirgas functional form as in equation (15).
Again, growth in demand and discounting of the future work against each other.
Depending on the relative importance of growth in the first Phase (for Phase | units),
growth in the second Phase (for all units) and the interest rate, various paths of emissions
can be observed. Thus, a hump in the emissions path can occur in one period, in both, or
not at all.

While we observe a jump in &t t = T, the path of the allowance price remains, of
course, continuous:

. :Qal('e:g—eo)é‘ st

%Z(af —YL) if t>1

As before, we can also determine the effect of changes (the demand from

affected units at time t) oy @nd thus on the path of emissions and price. We can use

equation (36) of Appendix D to derive an equation similar to equation (16):

B! 0" .
— AT _ T — e _ AT g
Ae, = A€, rﬁe 1)+ 52 (e é )% IOA.St dt (22)
Interestingly, changes in Phase Il parameters, such as an increase in growth of
demand affecting only non-Phase | units in Phase I, affect the path of emissions in Phase |

through e.
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As before, we can assume linear growgh € €, + g't and €7 =€ +g°t)to

find T and its dependence on parameters such as growth. We obtain the following

equation, which is the analogue to equation (18):

1= Flk(s+ Asy, M)

where:
(YH _YL)
=rT
S=r (~O—YL)
s -2) 0
As= =2 2
, o ~ Y.
_ g
. r(§0 _tL)
M=e" —%(erT -1

and k(s'y,M) is the solution to the following transcendental equation

k%yk+lﬁ—s.

1+

(1- M) = (23)

As in our previous analysis, s is mainly a measure of how many extra allowances

are given out over Phase | relative to Phase Il. Similagys roughly (up to a constant) a

measure of how many allowances would have to be distributed to non-Phase | units in

Phase | to cover their emissions without requiring abatemeatrameter M is a measure
of the variation in the slope B of the marginal cost.'HB, then M=1 and equation (23)

reduces to equation (20) obtained in the case of a constant number of units, that is,

k(s',y,1) = h(s’y). We would thus fall back to the usual equation under linear growth with

the exception that s is replaced bys:+

25 This can be seen from:

i(’e‘f - &)t =i((€§ +g*t)- (&2 + g'f) dt=(&2 - &) 1+( ¢ - gl)T_;_
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The functional form of equation (23) being similar to the one of equation (20), we

obtain a similar result concerning the effect of the introduction of growth. Condition (41)

simply turns into: k(sAs, y,M) is increasing ity if and only if® (s+ A9 <1- Me2=29,

In short, although the inclusion of a change in the number of units into the model
makes the derivations more complex and certainly changes the results numerically, the
analysis essentially remains unchanged. More importantly, the change in the number of
units itself only necessitates minor changes in the model. It is mainly the change in the
slope of the marginal cost function (B) due to the change in the number units which
complicates the matter. WhenBB?, the only change required is a redefinition of the

electricity demanck, . In light of these results, the change in the number of units will be

neglected in the remainder of our analysis.

2.6 Technological Change

The flexibility provided by an allowance trading program such as thep&@ram
encourages the use of the most cost-effective abatement methods, which, in turn, may
stimulate innovations in environmental control technologies. Since the enactment of Title
IV, for instance, reports on improvements in the blending of coal as well as in the removal
efficiency and implementation costs of scrubbers have flooded the literature on coal and
electricity market$! As these technological innovations are expected to continue and to
influence the units’ compliance strategies and thus banking behavior, we will now briefly
address the issue of technological progress in our model.

In the framework of our model, the effect of technological change can be modeled
by allowing the parameters of the marginal cost function to be time-dependent. An
arbitrary time-dependence of the marginal cost paramet&e@ping Bconstant over

time, is straightforward to include; all results we derived concerning the time-dependence

% Provided, again, that 1y k—1)= 0.
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of € can be directly applied, as ifluences the results only through = % +€..1In

.
particular, equations (16) and (17) can be applied to determine the initial shifts in
emissions and prices under very few assumptions. Moreover, these equations allow for
both continuous and one-time technological progress.

An expected future decrease in marginal cost (thaAisF0, andAA<O for t>t),
for instance, can be handled by merely reversing the results we obtained when
investigating the effect of the introduction of growth. Hence, an expected future decrease
in marginal cost causes an overall price decrease and an initial increase in the emissions.
The increase in emissions only lasts for part of the banking period, the length of which also
adjusts?®

Another interesting case arises when the decreasasruAiform over time and
starts immediatelyAA; =AA <0 for all t. This is equivalent to the example of PRB coal
analyzed in the case of constant demand. We now show that similar conclusions can be
obtained when relaxing the constant demand assumption. A uniform decreasauses

an initial decrease in the path of emissions, as a simple application of equation (16) shows:

I
Ae, = At - A
e, = A€ e“—l! € dt
=NE - ——TAE
'j%
Ag
= T—(1+ <
(& - m) <0
H,_/ >0

20
(€'= 1 + m because'gis convex and 1 +tris tangent to'eat1=0.)

This initial decrease cannot persist forever because the cumulative number of
allowances used must remain the same, despite the change in the costs of abatement.
Also, equation (14) indicates an overall decrease of the path of price.

The two previous cases illustrate the importance of the timing of technological

breakthroughs for banking behavior. First, we emphasize that the drop in price is always

27 Examples include Arnold and Smith (1994), Kindig and Godfrey (1991), Walz et al. (1995), and
Greenberger (1991). Note that our exposition does not imply that none of the innovations observed in
reality would have surfaced in the absence of Title IV.
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permanent, while the initial change in emissions does not even persist through the banking
period, since cumulative emissions must remain unchanged. Also, while a decrease in the
marginal cost always leads to a decrease in price at t = 0, such a decrease will only lead to
a decrease in emissions at t=0 if the decrease in the marginal cost at t=0 is large enough
relative to the future decrease. In particular, if there is no decrease in marginal cost at t=0,
there will actually be an increase in emissions at t=0. The essential difference in the
direction of the initial shift in emissions originates from the fact that a future decrease in A
discourages saving allowances for future use. On the contrary, if the decreasiitsA
immediately, the lower costs make more allowances available now, thus encouraging
savings.

Technological change affecting the parametas Bhore difficult to handle. In the
previous section on the change in the number of units, we indirectly considered the effect
of a one-time change in the parameter B. Since the results derived do not depend on
whether the change in B is due to the change in the number of units or due to a
technological innovation, the same approach can be applied to determine the effects of

changes in B, simply replacing T by the timevhen the one-time drop occurs.

%8 The adjustment could go in either direction.
29 We will not consider continuous changes in B here.
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[ll. THE ALLOWANCE MARKET UNDER UNCERTAINTY

3.1 The Path of Price under Uncertainty

Unfortunately, no environmental policy is implemented in the ideal world of
certainty we have modeled so far. On the contrary, the electricity units subject to Title IV
have to face uncertainty for instance in their marginal cost of abatement, in the regulatory
environment, and in the demand for electricity. That is, expectations about the future have
to replace perfect foresight. In this section, wieexamine how some of the results
derived so far are affected by the presence of uncertainty. As we will see, uncertainty
changes affects our results in two ways. First, when accurate information about the future
is replaced by expected information about the future, the expected path of price and
emission are slightly modified: in a sense, the units become slightly more pessimistic.
Secondly, the future expected path changes as time progresses, when new information
about the future becomes available.

In the context of uncertainty, and assuming risk-neutrality, the units seek to

minimize the sum of theixpectedliscounted cost’
.o d -t [ . [ﬁﬂ = S + Y_ g
min [E 1+ € - subject to 24
(Tin, 0 oi( u) ale, e)% j HA (24)
where
Ef.] is the expectation value given all the information known at time t,
M =r +p, where r is the riskless interest gna the asset-specific risk

premium>"

As shown in Appendix F, the solution to equation (24) can be obtained by using

dynamic programming:

30 We momentarily switch back to discrete time to ease the derivation. The continuous time version of the
results follows straightforwardly.

31 The risk premium is taken as given here; it can be derived from the CAPM, where it represents the
nondiversifiable risk of the asset, i.e. the covariance of its rate of return with the market return. See, for
instance, Blanchard and Fisher (1996), Ch. 10.
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E (Mol = &0))] = 0+ 1) mle. - €)-2). (25)

Thus, as long as we have banking, so ahat0, we equalize the discounted

expectednarginal cost of abatement, regardless of the functional form of the marginal

cost.
Iterating equation (25) gives:
m(a)=n + @)™ E[(m.(a.)
= A+ (L) BN+ (1 1) B (o a.:))|
Nzol(lw E o]+ (1) Ef(men(a)
so that
e [(ma(an )] = o) (@) -G S (o) " elh]. o

Equation (26) describes the expectation at time t of the path of the allowance price. It tells

us that when we expect the bank to be non-empty, soEl;lfubLS] =0 0Os< N, the

expected price rises at ratdbetween time t and t+N. thﬂ[)\m] >0 DsD[_s‘s] , SO
that we assign a positive probability to an empty bank, the expected price will rise at a rate
less thanu when N D[gfs] . The downward offset will increase over the inte{\gt] :

Note that realistically, once we have assigned a positive probability to an empty bank in

some periods, we will expect that the bank might possibly be empty in all subsequent

time periods as well. When we expect the bank to be depleted without any doubt, then

Et[qw] = E[Y+N], and the expected price is uniquely determined by

Et[FLN] = E([m+N(£t+N - Y+N)]

To summarize the interpretation of equation (26),

E[(Roy)] = ()" P - (1+p)" Z 1+ 1) E[A).

Rise at ratgt

Downward correction increasing with
the likelyhood of an empty bank
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-t

= P

A B C

In the above figure, A is the period when the bank is certainly nonempty, B, the
period when the bank may be empty and C, the period when the bank is certainlj?empty.
The dashed line represents the price that would be observed if there were no uncertainty
about whether the bank is empty or Fiot.

In the reality of the S@allowance market, the ranges A and C do exist: Due to
the particular phase-in setup of Title IV, with a more restrictive Phase Il, market observers
are certain that the bank won't be empty a year from now, while they do expect the bank

of allowances accumulated in Phase | to be depleted late in Phase II.

It is interesting to note that the form of equation (25) reminds us of the difference

equation

E[R.]=(1+u)R-u,
on which the present value model of rational commodity pritisdased, whergy, is the
convenience Yield to holding an asset. Bailey (1996a) put this convenience yield into the
context of the S@allowance market, attributing it mainly to the transaction costs

associated with transferring an allowance.

32 As in the model under certainty, we assume that the banking period is unique by requirin(ethat m

Y ) has a probability zero of increasing at a rate greater than the interest rate.

% The graph compares the path obtained under certainty with the expected path under uncertainty given a
known initial price B at t=0. In reality, as we will see later, the initial expected price is also affected by

the presence of uncertainty, but here, we have artificially set the initial price under certainty and under
uncertainty equal to simplify the discussion.

3 Pindyck (1993).



30

Yet in our model, we have ignored the effect of transaction*@std the
resulting convenience vyield. Instead, ourresults from the possibility of a stockout, that
is, a depletion of the allowance bafikrhe importance of the non-negativity constraint
and its impact on the rate of price increase has been extensively recognized in the
commodity market literatur&.

We now provide two interpretations &f The term\; is nonzero when the
constraint S+ Y;— & = 0 is binding. As is well known, is the shadow price of relaxing

this constraint when it is binding. More precisely, from equation (25) we can write
A= m(et - Q) - (1+ U)_l Et[( mu(em - Ql))]

- e (e e) o) €[ e .2 )]

In other words) is the cost savings that would be incurred if an allowance
allocated in period t+1 were made available in period t.

Examining equation (26) gives another, maybe more intuitive, explanation for the
importance oh:. The electricity generating units as a whole are willing to save an
allowance for future use, even when the rate of price increase is legs pramided that
there is the possibility of an empty bank. The fact that the market as a whole cannot
borrow allowances from future allocations introduces a nonlinearity into the model. The
market can, for instance, absorb an unexpected downward fluctuation around the expected
trend in electricity demand by saving more allowances than expected, thereby smoothing
the effect of this shock on the price level. An unexpected upward fluctuation of the same
size, however, can only be absorbed by a use of allowances from the existing bank. The
buffering capability is limited, since an optimal smoothing may require more allowances
than available at the present time. That is, in the case of a stockout, an upward shock in

demand increases the price by more than the corresponding downward shock decreases it.

% Transaction costs constitute only about 1% of the allowance price. For more on this, see Bailey (1996a)
% Note that a convenience yield arising from transaction costs and our findings are not mutually
exclusive; both effects can be expected to have an influence on the allowance prices actually observed in
the real world.

37 See, for example, Williams and Wright (1991).
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Hence, when there is a possibility of a stockout, the units as a whole are willing to save

allowances even thougdh, [( Pin )] < (1+ u)N R.

3.2 Certainty Equivalence Property

Although equation (25) along with the bank non-negativity constraint fully define
the expected path of price and emissions, an analytic solution is impractical. Numerical
simulations have been implemented in similar prob&ms.

To get further analytical insight, we propose instead an approximate solution to
equation (25), identifying the direction of the bias caused by the approximation. Taking

the expectation at time O in equation (25):

Eol(Maferes = @) = e n) B e - ] - EA)

Assuming linear marginal cost and a parameter B constant over time, we have:

(B(e[5 - Efe]) =en)( d Ele)- € d)- €A]) @

Note that equation (27) is exactly the same as equation (1) obtained under certainty,
except for the fact that all quantities are replaced by their expectations apdlt isy
tempting to find the expected path as we did under certainty. However, thegf&fm E
does not behave in the same way@n the model under certainty: It is non-zero as soon
as there is possibilityof stockout, even though tlexpectecamount of allowances

available in the bank is non-zero. It is only when the bank has a zero probability of being
empty (region A in the previous graph) thafX=0. In this case, the so-called certainty-
equivalence property (CER)applies and iterating equation (27) does give the correct
expected path, once[E] is known. Of course, the assumption of a linear marginal cost is

essential for this.

% Deaton and Laroque (1992), Williams and Wright (1991).
39 See, for example, “The consumption/savings decision under uncertainty in Blanchard and Fisher
(1996).
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When a stockout becomes a possibility (region B in the previous graph), the term
Eo[A:] can no longer be neglected. Rearranging equation (27), we obtain an upward
correction to the CEP path in region B:

cfen] = e (el & o)+ T Wep)

Upward correction

Certainty equivalent path

Due to this correction relative to the certainty equivalent path in region B, using
the CEP over the whole banking period (regions A and B) to solve[iej] &ill give
slightly biased values ofofeo]. The value of gey] obtained through CEP has to be
slightly lowered, so that the total expected cumulative emissions remain equal to the
cumulative number of allowances issued, despite of the upward correction in region B.
Thus, two corrections have to be made to the path obtained with the CEP, as illustrated

below.

& CEP Expected Path

Truae Expected Path

>t

First, the true expected emissions path lies somewhat below the path predicted
through the CEP in the period of certain banking. Second, the uncertainty regarding the
end of the banking period smoothes out the cusp obtained at the end of the banking period
in the model under certainty. Keeping these corrections in mind, we will use the certainty

equivalence property in what follows.

3.3 Changes in Expectations

It is worth pointing out that equation (26) gives the path of the expected price
based on information available at time t. When our expectations about the various

parameters of the model change, we have to recompute the path from that point on, taking
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into account the number of allowances currently in the bank. When new information
becomes available, there may be a cusp or even a discontinuity in the path of emissions
and of price. Obviously, the path is changed as soon as the information about an event

becomes public, even when the event itself occurs in the future.

The analyze the effect of changes in expectations, we first have to translate real
world uncertainties into uncertainties regarding the parameters in our model:
» Uncertainty regarding the deregulation in the electric utility market
uncertainty ire;.
» Uncertainty regarding environmental regulation with an effect on the use of coal in the
generation of electricityl uncertainty irg;.

» Uncertainty regarding technological changeuncertainty in Aor B.

We are now ready to consider a few examples that illustrate the impact of changes

in expectations on the path of emissions and prices.

Changes in expectations regardgngr A can both be simply regarded as changes

in E[€,]. Under the CEP we can adapt equation (16) to determine the changes in the

expected emissions when our expectations change at some dimnimg the banking

period:

~ o=
Ne =AF, ———— [AEdt (28)
e[o to er(T—tO) _ 1_{ t

where Ag, = Eto[gt]— Eo[é"t]
The changes in future emissions can then be found through:
e [e]= E[E]-(5, - ¢) . (29)
Using these results, we now consider an unexpected permanent decreastaming

right now at § - as, for instance, in the case of PRB coal - or an unexpected permanent

decrease in the level of demamdor coal produced electricity, starting right nowat t
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t I
CEF not applicable; -------

A permanent, uniform decrease inok; that is expected fort t; >, - for
instance, the government announces at tjrtteat it plans to implement stricter
environmental regulations disfavoring coal at timetias somewhat different
implications, as we will now see:
Ag, =0 andAg <0 fort=t, >t,
Application of equation (28) shows thag, >0, although demand & is
unchanged, while equation (29) indicates that at witen the demand is actually
expected to drop, we will expect a drop in emissions. This drop in expected emissions at

t=t, is simply due to the drop in expected counterfactual emissions .af tretexpected

path of price will, of course, not jump at t

et Py
_‘ 2

Tl - - - =

t,
ZEF not apphcable: -------

The opposite picture emerges if the electricity generating units find quihat t

deregulation of the electricity market becomes a lot more likely in the future: Since coal is
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a fairly cheap fuel, we can interpret deregulation as an increased demand for electricity
generated by already existing coal-fueled units.

We shall not study the effect of uncertainty and changes in expectations concerning
B, since we would have to make a correction to CEP even in the period where banking is
certain. The amount of work required for a rigorous treatment does not seem to be

justified by the few intuitive results that might be obtained.
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V. CONCLUSION

This paper has analyzed in detail the economics of allowance banking in the
context of Title IV of the 1990 Clean Air Act Amendments. Going beyond simple first
order conditions, we have determined the paths of the allowance price and of SO
emissions as well as the length of the banking period as a function of well defined
parameters describing the S&lowance market environment under certainty. In contrast
to previous theoretical studies, special attention has been given to the fact that programs
like Title IV do not allow emissions permits to borrowed from future allocations. We have
also determined the impact of changes in these parameters on the allowance price and on
emissions under mild assumptions about the time-dependence of electricity demand and
the marginal cost of abatement. We have first derived explicit solutions in the case of
constant demand for electricity, before handling the more realistic case of growing
demand. Incorporating into the model the fact that the number of units subject to SO
regulation changes drastically has not changed our results qualitatively. The effect of
technological progress has been treated as a straightforward application of our previous
analysis.

The most notable effect of the inclusion of uncertainty into the model is the units’
willingness to bank allowances even when the expected price rises at a rate less than the
rate of interest. We show that this effect is present even in the absence of any transaction
costs, as it arises from the non-negativity constraint on the bank of allowances. Using the
results obtained under certainty, we derive simple, although admittedly approximate,
relationships which enable us to determine the impact of the changes in expectations on
the units’ banking behavior.

Even hough our analysis has focused on theF8@gram, the model is general
enough to be adapted to any other tradable permits program that contains a phase-in
provision. This is quite important in light of the fact that this type of market-based
approach to environmental regulation is likely to become increasingly common in the
future and has even been suggested on a world-wide basis to regulate emissions of

greenhouse gases.
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Appendix A: Definition of the symbols

P Undiscounted allowance price at time t (spot price).

e actual number of tons of S@missions at time t, after any abatement has taken
place.

& SO, emissions that would be needed to satisfy the demand for electricity

from Title 1V units at time t without any S@batement requirements
(counterfactual emissions).

& tons of SQ abatement at time t;; a& - a.

c(a) cost of abating:dons of SQ at time t.

m(&) marginal cost of abating another ton of,Séi time t, whendons are already
being abated. ifa) = A+ Bia= A + B (& - @) = B (E,- @)

~ A
= = E + €,
Y total number of allowances with vintage time t issued to all affected units.

Yy Y. in Phase I.

Yo Y:in Phase Il.

S stock of allowances (bank) available at the beginning of period t.
T length of Phase I.

T time when the allowance bank runs out.

riskless rate of interest.

-

asset-specific rate of interest.

risk premiumju = r +p.

Q T T

growth in electricity demandg( = €, + gt).
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Appendix B: Constant Electricity Demand, Determinationociredt

This section describes how to obtain the solution of equations (4) and {&ridr
& in the case of constant electricity demand and no technological changes, @nd B
= B). The marginal cost is then given by(a,) = B(€ — ¢) and equalization of the
discounted marginal cost during the banking period yields

e=e-€(g-g) fortst (30).

In this simple case, equation (6) becomes:

T

I(g—e”(g—q)))dt: TY +(1- Y

1_erT)

0 T§+(§—e0)(—:TYH+(T—T)\{, (31)

while equation (4) becomes:

(5-e)=€"(z-Y) (32)

which we substitute into (31) to obtain:

gr+(5-v )(e" —1)?1 =TY, +(1-T)Y.

Rearranging yields:

Yo~ Y
(1—e‘”) = n—rTﬁ. (33)
If we define
_ (%-v)
s=1T ('§—YL)

and let r=f we can write
(1—e‘f) = f-s. (34)
Intuitively, the value of f as a function of s can be found by determining the point

where the left hand side and the right hand side coincide:



41

. RHS
LHS

p fiz)

Here is the graph of the function f(s) thus defined:

fs)

A l+sz

] . 5

It is strictly increasing, intersects the origin and tends asymptotically to 1+s for large s.
The fact that f(s) is increasing in s follows from the fact that the slope of the right
hand side of equation (34) is 1 while the slope of the left hand side is less or equal to 1 for

f > 0. Using the function f(s) we have just defined, we can exprass

1DTY Y

—fg (-v,) Q

The value of gcan then be found by simply rearranging equation (32):

e, =E-(E-Y)e"
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Appendix C: Constant Electricity Demand, Proof t%%ts Increasing in t

During the banking period, we have:

Ru\ad

S l-rt-e™ (e 1)+ X

&

so that

a_et _ _rT(YH B YL) (_r +re—rt)(er(t—T) _1)+ rT(YH B YL)(_ r)er(t—T)

ot (1-rt-e™)’

aze[ 3 —rT(YH - Y|_Z (_r +re—rt)ref(Y‘T) +

-e™)
_ rsT(YH Yl-)er(t—'[)||;|| (1_6_”) _ U
(1—rT—e ”) H-ri-e" 1@
20
rsT(YH — Y'—) er(t—T) E Fg E
i 0
@;}iﬁg@g
- 20
oe

which shows thatg is increasing in t.
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Appendix D: Non-Constant Electricity Demand, Effect of Changes in

We now derive the effect of an arbitrary variation in the patB, afThis includes

any variation in the level of the marginal cost parameter) or in the electricity demasd
right now or at any point in the future. From equation (5), we have

jth—(ﬂ\p -y)+tY)=0. (35

We let €, change tog, + A€, and lett and g adapt to this change so that (35)

remains satisfied. This amounts to taking the total differential of (35) with respeayto
and €, at every time t:

oL oL C oL
EAT +—ANg, +I—Aa ds=0

oey
where L represents the left hand side of (35). Evaluations of each derivative yields

(e - ¥ )at+ aae[ dt[Aeo +I§Z%dt§ﬁ§sds= 0.

Since =Y the first term vanishes and rearranging yields:

- jj g.?A'sfsds dt
Ne, = =

I—dt

In the case of linear marginal cost,= €, - (50 -

(36)

e)) € for t<1 and we obtain:

de _
aas—é(t 9-3(3 &
de, _ .
oe, €

whered(.) is the Dirac delta (i.e., the point mass distribution). Thus



—jj(é(t -9 -58(9 é‘)A%fs dsdt
Ae, = 00

) r
| !e dt
- I(A’a‘t —Agoe”)dt

0

Te” dt
I

(e”r_ 3 AE, —iAi dt

G

r

so that:

~ roo. -
Ae, = Ag, —HJ‘AEI dt,
0

which is equation (16) in the body of the paper.
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Appendix E: Linear Growth in Electricity Demand, Determinationociredt

This section describes how the obtain the solution of equations (4) and{6) for

and g in the case of linear growth of parameter
€ =€, +Qt.
Equation (4) becomes:
€, +gT—(§O —eo)é(T =YO (50— %):(€0+ - D& €,

which can be substituted into equation (6):

T

I(’a‘o +gt—(§o—e0)é‘)dt= T +(t- T ¥
0
to yield:

(8, +at-(B,+ar-Y)e&" ) dt= TY+(x- T

Ol

O ’§OT+9L2—(§O +gT—YL)e‘”EFTr—_1§: TY, +(t-T)Y.
ﬁm g 0 (%-Y)
U (1—e—rT) = 3 r(§0 _Y'-)r-[+]ﬁ ! (gO _YL)
1+ —— g rt
r(:aO —YL)
which can be written as:
h%yh+1ﬁ— S
hY
-e")=—1rhm (37)
where
O
O
h=rt )D
Yo =Y =
S= T4 0 (38)
(80 _YL)D
B O
r('§o—YL) E

Equation (37) implicitly defines a function hfsand the solution can expressed as:
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t="h(sy) (39)

Graphically, the solution of (37) can be obtained by finding at which value gf h(s,
the left hand side and the right hand side of equation (37) intersect:

L, By
& 2 2

asymptotes \

—_

Note that h(s,0)=f(s), where f(s) is the function defined in the constant demand
case. We now determine in which direction the value of the functioy) bf@nges when
its two arguments change. Taking the total differential of equation (37) with respect to s
and g shows that h{g,is increasing in s if and only if:

y(rt-1)+1=0 (40)

In the case of the allowance market, one can verify that this condition is satisfied

for realistic values of the parametét$dence, for all practical purposes, the result that

40 Condition (40) can be written as:

- g rt-1
—gf” ) +1>0 - —(g/ 0)( — )+120
r(eo—YL) r(l—YL/ao)

The worst case is obtained wher<r1 and when r andare as small as possible, whif/ €, and

yrr-)+120 -

Y, /§O are as large as possible. Taking the following extreme values: r 4% years,
9/€, < g/€,= 2% (from Ellerman and Montero (1996), Figure 1) afd'€, < Y /€,= 30% (from
Ellerman et al. (1997), p. 14), we obtain

(29%)((4%) = ( 5yeary - 3

+1=0429= Q
(4%)(1- 30%)




a7

increases with s, which we had obtained in the case of constant demand applies for the
linear growth in demand case as well.

We now seek to determine when the functionyh(s,increasing iry. It can be
shown that condition (40) also guarantees that the right hand side of equation (37) is
steeper than its left hand side and under that condition it is straightforward to determine
the impact of changes yn Differentiation of the right hand side of (37) with respecy to
show that an increaseyrleaves the point (2s,s) unchanged while lowering the curve for

h(s,y) > 2s and increasing the curve for hfss 2s, as illustrated below.

&
‘PRHS
(25.5) o ¥ Lnus
iy :—pi
- : » his, v)

Hence, if the RHS is steeper than the LHS, the direction of the changeyin h(s,
only depends on whether the point (2s,s) lies above or below the curve representing the
left hand side. We thus conclude that kjgs increasing iry if and only if:

s<1-€* or, equivalently $<0.7968 (41)

(assuming that condition (40) always holds).
In summary, since we can reasonably assume that condition (40) holgsish(s,

always increasing in s and is only increasing iircondition (41) holds.
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Appendix F: Path of Price under Uncertainty

We now derive the solution to equation (24):

U -t M _ =S+ Y-
{eTq'?.}EE"i(““) q(at—q)% subject to @;25 e

through dynamic programming. We define a valuation function

vi(s) = min{ £(s. ¢

whereF(S e)—g(e—e 1+u E_[Ml ] e S )Y

The first-order condition is:

U U
aF - |3V+ +1) 0 + O
ise)=0 0 -mle,-e)elien) g PS8R, g
0 %S« Y& O
0 MR
BV,..(S..)0
O E = 0= (1+ +A 42
T el b)(-m (e, - ) +2,) (42)
while the envelope condition is:
0Viis(Si1) _ OFia(Sirr €0)
0S4 0S4
oV, -
— (1+ l.l)_l Et+1[i t+2($+2) OSQ B_)\Hl
] aS[+2 aSn+1D
0 1 U
Taking the expectation at time t of the envelope condition gives
DV(8)2 i G BVea(S0) 05,
Vt+1 S Vt+2 S+2 aS[+2
E 0= (1+ E, [E. - E. [\,
g 0S., g ( u) téEtlﬂ 0S., aSHl% [ tl]
U

Equation (42) can then substituted in, which yields:

(L u)-me - e)+n) = (1+0) " B[+ )= mulees - &) +Ae)|- EA



Rearranging gives

E[(Malew: - &)| = @) mle, - §-2.).

(43)
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