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Abstract

In this dissertation black hole singularities are studied using the AdS/CFT correspon-
dence. These singularities show up in the CFT in the behavior of finite-temperature
correlation functions. A direct relation is established between space-like geodesics in
the bulk and momentum space Wightman functions of CFT operators of large dimen-
sions. This allows to probe the regions inside the horizon and near the singularity
using the CFT. Information about the black hole singularity is encoded in the expo-
nential falloff of finite-temperature correlators at large imaginary frequency. We also
find a UV/UV connection that governs physics inside the horizon. For the case the
bulk theory lives in 5 dimensions the dual theory is an SU(N) Yang-Mills theory on a
sphere, a bounded many-body system. The signatures of the singularity we found are
only present as N — oo. To elucidate the emergence of the singularity in the gauge
theory we further study the large N limit. We argue that in the high temperature
phase the theory is intrinsically non-perturbative in the large N limit. At any nonzero
value of the 't Hooft coupling A, an exponentially large (in N?) number of free theory
states of wide energy range (or order N) mix under the interaction. As a result the
planar perturbation theory breaks down. We argue that an arrow of time emerges in
the gauge theory and the dual string configuration should be interpreted as a stringy
black hole.
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Chapter 1

Introduction

The classical theory of general relativity predicts that reasonable initial matter distri-
butions will evolve generically into spacetime singularities[47, 77, 46]. In the resulting
space-time there are geodesics that cannot be extended for an arbitrary proper time

1. An observer traveling along such a geodesic

either in the past or in the future
will hit in a finite time a singularity after which the theory of general relativity is
not predictive. Many solutions of great physical relevance are singular such as the
Schwarzschild metric for a black hole and the Big Bang in the Friedmann-Robertson-
Walker spacetime which should describe our universe. Therefore singularities arise
in many situations of physical interest and their understanding is essential both in
cosmology and as a necessary step towards the clarification of the structure of the
theory itself. In this introduction we will review known facts about the physics of
singularities, motivate the direction of the research described in later chapters and
summarize its main results.

The theorems implying the generic formation of singularities typically involve

three classes of assumptions:

e First an energy condition on the matter distribution is assumed. An example
usually referred to as the ” weak energy condition” is that the energy density of

the matter is non negative in any frame. Classically matter coming from any

1That is the spacetime is geodetically incomplete
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reasonable source satisfies this condition?

o Also some global structure on the spacetime is imposed like the absence of closed

time-like curves.

o The final requirement is that gravity must be strong enough to trap a region as

happens if a spatial cross section of space-time is closed.

The singularity resulting from the evolution of a nonsingular matter distribution

satisfying the assumptions can be of different kinds.

e It can be possible for timelike observers to see the singularity before hitting it.
In this case there is a region of spacetime lying in the future of the singularity.
The evolution of spacetime in this region depends in principle on what happens
at the singularity and therefore general relativity is not predictive there. The
surface separating the future of such a singularity from the rest of spacetime is

called a Cauchy horizon and the singularity itself is denoted as timelike.

e If no observer can see the singularity before hitting it we are in the presence of
a spacelike? singularity. This kind of singularity constitutes a genuine boundary
of spacetime as the evolution of a timelike observer could in principle follow the
laws of general relativity up to the singularity. The ensemble of all the world-
lines of timelike observers which do not intersect the singularity is separated
from the rest of spacetime by a surface called an event horizon. By its definition
it is possible for an observer outside the event horizon not to fall into the
singularity indefinitely while observers inside the horizon will hit it in a finite

proper time.

Cosmic censorship hypothesis have been put forward asserting in their weak form
that any observer who has observed a singularity is destined to fall into it eventually.
Nature should abhor naked singularities and any Cauchy horizon should be chastely

cloaked by an event horizon. This at least would make the theory of general relativity

2Quantum fluctuations of the energy momentum tensor however can modify this picture
3
or null
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predictive for any observer outside the event horizon of the singularity[76, 33]. In
order to understand the fate of observers falling inside the horizon a theory beyond
general relativity is required. It has to be noticed in this respect that many spacelike
singularities like for example the Schwarzschild black hole or the Big Bang singularity
are such that the curvature of spacetime blows up in their neighborhood. Then as
the radius of curvature is of the order of the Planck length quantum effects should
become important and a quantum mechanical theory would be necessary to describe

the evolution of the system.

The fact that quantum mechanical effects have to be taken into consideration to
understand the physics of a black hole singularity can also be ascertained in a different
way. The mass M of a black hole solution is simply related to the area A of its event

horizon by the following relation®:

K

The area of the event horizon moreover can be proven to increase in any physical
process under quite general assumptions [15]. The two facts above are strikingly
similar to the first and second law of thermodynamics dE = TdS, dS > 0 and
indicate that one should associate to the black hole a finite entropy proportional
to the area of its event horizon. This idea finds an astounding confirmation in the
realization by Hawking that quantum mechanical effects are responsible for radiation
to be emitted from the horizon [42]. At the level of his semiclassical analysis this

radiation has a thermal nature with temperature

hik
Tey = oy (1.2)

Classically the black hole horizon absorbs anything which crosses it, the consideration
of quantum mechanical effects albeit only at the semi-classical level shows that it

also emits thermal radiation. The requirement of consistency with the first law of

4other parameters describing the solution being kept fixed
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thermodynamics then implies that the entropy of the black hole should be given by
S = — (1.3)

The assignment of a nonzero entropy to a particular solution to the theory [43,
15, 16] however is a perplexing concept and seems to point out to the fact that
the black hole spacetime is the effective macroscopic description of a system with
many microstates. A more fundamental theory incorporating quantum mechanics
consistently should be able to recognize what these microstates are and to count

them matching the entropy S of the event horizon.

The association to a black hole of a finite entropy which is proportional to the
area of its event horizon has other interesting ramifications. Consider for example
some system occupying a spherical region of area A having entropy S;. We can now
collapse some spherical distribution of matter in such a way to form a black hole
whose horizon is exactly the boundary of the sphere we started with. This black
hole will have an entropy Sgy = Zéi which must be greater than S;. We therefore
obtain a bound on the entropy of a system proportional to the area of the surface
enclosing the system itself [17]. This is quite peculiar as we would expect the entropy
to scale as the volume of the system as happens for example for any local quantum
field. It appears that a local quantum field theory has no hope of describing a theory
of quantum gravity unless such description is holographic in nature, that is the field

theory lives in one less dimension than the gravity theory.

The fundamental inconsistency of the picture obtained above with our usual un-
derstanding of a quantum mechanical system is made even clearer by the following
consideration: The time evolution of the state describing some mass distribution un-
dergoing a gravitational collapse has to be unitary but this is at odds with the fact
that, after the evaporation of the black hole, what remains is radiation described by
a density matrix! The resolution of this ”information paradox” [44] has to come from
a more refined analysis of the quantum gravitational effects, an analysis for which,

presumably, a complete consistent theory is required.
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If the full theory of quantum gravity is unitary we expect that all the information
about the state collapsing to form a black hole must be found in the radiation emitted
by the horizon before the black hole evaporates. This information would then be
stored in long time correlations in the emitted radiation and its recovery would be
possible only over a period comparable to the evaporation time of the black hole.
This description is acceptable for an observer outside the black hole for whom a lump
of matter falling into the horizon will never quite reach its surface® and will somehow
thermalize there, all information remaining trapped just above the horizon. However
the description seems to be completely inconsistent from the point of view of an
observer falling with the lump of matter into the black hole for whom the crossing of
the horizon, where spacetime is smooth, will not be registered in a particular way and
all the information will cross the horizon. The principle of black hole complementarity
[89] states that such a difference in the description of the localization of information

for the two classes of observers is not contradictory.

String theory is the leading candidate for a theory of quantum gravity® and should
provide a consistent framework in which to study the physics of spacelike singular-
ities. The theory has already been proved to resolve many time-like singularities .
Unfortunately the high curvature of the geometry near a black hole singularity makes
the theory strongly coupled. Nevertheless we will see how string theory can provide a
microscopic description of the microstates of a black hole and how it makes plausible
the principle of black hole complementarity. Moreover we will see that it allows for

an holographic description of the degrees of freedom of a quantum gravity theory.

A fundamental object in any string theory are closed strings. These can be visual-
ized as small loops with length~ [, propagating in time, sweeping a 1+ 1 dimensional
world sheet. The strings can interact by splitting and joining and the strength of the
interaction is governed by a string coupling constant g which is determined dynam-

ically. Each string has several oscillation modes which, for an observer who cannot

SIn fact signals sent from the black hole horizon will reach an external observer only after an
infinite time

SIntroductory treatises about string theory are for example [79, 35]

"see for example [26, 54, 36]
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distinguish the finite size of the string, propagate as particles of different masses. The
growth of the number of these particles with their mass is exponential N(m) ~ e™b.
There are always massless modes corresponding to the propagation of a particle which
can be associated with the graviton. The low energy limit of a consistent string theory
is therefore a theory of gravity. This low energy limit is valid as long as the curvature
radius of spacetime is much bigger than the string scale [,. For definitiveness we will
consider type II string theory whose low energy limit is type II supergravity in 10
dimensions. 6 of these dimensions can then be compactified to get to a low energy
effective theory in 4 dimensions with gravitational constant G ~ g*I2.

Consider a black hole solution of this low energy theory with fixed entropy® S.
As G is proportional to g2 the area of the event horizon goes like g? because of 1.3.
Decreasing g the radius of the horizon decreases and the curvature radius reaches [,
at some point. At this point the low energy description is invalid and one has to
describe the solution as some collection of stringy excitations. For a Schwarzschild
black hole in four dimensions, with the radius of the horizon being r,, the entropy and
mass scale as M = 72 and S ~ %‘21 The Newton constant in four dimension is related
to the string length and the string coupling as G = g%I2. Therefore at 7, = I, we have
M~ 2—;21—3, S ~ ~. Around this point we should switch to a stringy description of
the black hole. The degeneracy of string excitations with mass m is given by e™s.
Setting the entropy to be equal at ry = I, therefore implies m = gz—lz,, = 2M which
differs from the mass of the Schwarzschild solution by a factor of order O(1). The
fact that this factor is not one reflects our lack of precise knowledge about the region
of parameters where we match the two descriptions but we nevertheless realize that
string theory has the ability to give a microscopic account of the entropy of a black
hole[50]. In fact by exploiting the fact that some protected quantities can be computed
reliably at weak coupling string theory has very successfully described the microscopic
degrees of freedom providing the entropy of certain extremal supersymmetric black
holes [87, 23].

Consider now an observer falling through the horizon of a black hole and at a small

8and charges Q if present
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distance d from it, then because of the red-shift effect a timescale At measured by the
in-falling observer will be seen as a timescale % by an external observer. Therefore if
an external observer looks at a string falling into the horizon with a time resolution
of order one this corresponds to a proper time resolution of order O(d). A general
property of string theory is that the size of a string grows when looked with better
and better time resolution At. The growth of the volume occupied by the string is
logarithmic in At while the total length of the string® grows like (At)~!. Therefore
as the string approaches the horizon an external observer will see it grow in size
and become denser never quite reaching the horizon but spreading and thermalizing
over it instead. An observer falling with the string however will always look at it at
the same time-scale and therefore will not see any difference in the string as it falls
through the horizon. String theory gives therefore an intuitive explanation of the
complementarity principle plausibility which relies on its qualitative difference with
respect to a theory of point-like particles [89].

Finally AdS/CFT [64] provides us with a non-perturbative holographic descrip-
tion of string theory. According to the strongest form of the correspondence it is
conjectured that ' = 4 SU(N) super Yang-Mills theory gives a nonperturbative
description of type IIB superstring theory in AdSs X S5. In the following we will
often refer to the string theory as the bulk theory and to the gauge theory as the
boundary theory. The next section gives a brief review of the terms of the correspon-
dence, with special attention to the limit in which the bulk theory reduces to classical
supergravity, before describing how we can use it to learn more about the quantum

theory of black holes.

1.1 Parametric relations in AdS/CFT

N =4 SU(N) super Yang-Mills theory, is a conformally invariant theory with two
parameters: the rank of the gauge group N and the ’t Hooft coupling A = ¢g3\,N.

From the operator-state correspondence, physical states of the theory on S® can be

Sthis picture neglects the effect of interactions which can split and join the string
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obtained by acting with gauge invariant operators on the vacuum and their energies
are given by the conformal dimensions of the corresponding operators. As S° is
compact the spectrum of the gauge theory is gapped and discrete for any finite N.
Below any energy E we only find a finite number of states, in this respect the theory
is similar to a quantum mechanical system with a finite number of degrees of freedom.

The AdS string theory also has two parameters: the ratio between string length
l, and the curvature radius R of AdS, and the ratio between the (10d) planck length
[, and R. These ratios respectively characterize classical stringy corrections and
quantum gravitational corrections beyond classical supergravity. For small /;/R and
lp/R, the parameters of the SYM theory and of the bulk string theory are related
by'® [64]

o 1 GN 1

— — __18 2 14
m-y  mowe  Ov=hedlt (14)

The above relations indicate that the classical supergravity limit is given by the large
N and large A limit of the SYM theory. In particular, a departure from the large
N limit of the Yang-Mills theory corresponds to turning on guantum gravitational
corrections in the AdS spacetime, while a departure from the large A limit (with
N = o0) corresponds to turning on classical stringy corrections.

AdS/CFT implies an isomorphism between the Hilbert space of the two theories.
In particular, any bulk configuration with asymptotic AdSs boundary conditions can
be associated with a state (either pure or a density matrix) of the Yang-Mills theory.
The mass M of the bulk configuration is related to the energy E in the YM theory
as [39, 96

E~MR. (1.5)

Depending on how E scales with N in the large N limit, states of Yang-Mills theory
are related to different objects in string theory in AdS. For example those whose E

do not scale with N (i.e. of order O(N?)) should correspond to fundamental string

10We omit order one numerical constants.
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states. An object in AdS with a classical mass M satisfies
GyM =fixed, Gy/R®—0 (1.6)

From 1.4 and 1.5 the corresponding state in YM theory should have E ~ O(N?).

1.2 Black holes in AdS/CFT

h

Figure 1-1: Penrose diagram for the AdSs; Schwarzschild black hole. Each point in
the diagram represents a three sphere 3. The radius of this sphere shrinks to zero at
the past or future curvature singularities which are represented by wavy lines. The
diagram is separated in four regions by the red lines representing the horizon. Near
the two vertical boundaries the spacetime is asymptotic to AdSs. The Schwarzschild
time coordinate maps the region outside the horizon on the right to the real line and
is constant on the blue lines. The region on the left of the diagram can be associated
with a Schwarzschild time having an imaginary part equal to £75}; and flowing from
up to down. This geometry is considered in detail in chapter 2.1

The classical supergravity equations admit a solution describing a Schwarzschild
black hole embedded in AdSs !!. This solution describes an eternal black hole, there
are past and future spacelike singularities separated by horizons from an asymptotic
observer. For large enough mass the black hole has positive specific heat and is in

equilibrium with its own Hawking radiation!?.

in this introduction we will always refer to this five dimensional background even if most of the
results of the main text are valid in a different number of dimensions.
12The AdS boundaries providing an effective "box” for the system
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One can define a canonical ensemble for semi-classical quantum gravity in an
AdS. background [45]. The system undergoes a first order phase transition at a
temperature Tgp, for T > Typ, the ensemble is dominated by the contribution of
the stable black hole with Tgy = T. The AdS-CFT correspondence then dictates
that the boundary theory in the state corresponding to a thermal density matrix
at temperature T > Typ must be dual to the stable black hole bulk configuration
with the same temperature!®. Time evolution in the boundary theory is identified
with the bulk Schwarzschild time. The symmetries under time translation and SO(4)
rotations in the internal S for the gauge boundary theory extend to isometries of the

bulk black hole spacetime. This leads to the following two sets of questions:

e 1 Does the finite temperature boundary gauge theory encode information about
the spacetime region inside the horizon of the black hole? If yes in the strongly
coupled large N limit the gauge theory should correspond to a classically singu-

lar field configuration; how is the singularity encoded in the boundary theory?

e 2 In case we are able to pinpoint the manifestations of the black hole singularity
in the gauge theory we can study how these are affected by going to finite N ,
corresponding to the consideration of the quantum theory in the bulk, or by

going to finite coupling A which corresponds to giving strings a finite size.

To study the first set of questions we must consider the physical observables
in the boundary theory which are finite temperature correlation functions of gauge
invariant operators. The possibility that these can be used to probe the region inside
the horizon is complicated by the fact that the conformal field theory evolves through
the bulk Schwarzschild time. This time coordinate, appropriate to describe physics
as seen from an asymptotic external observer maps the region outside the horizon to
the complete real line and therefore does not probe directly the region beyond the
horizon. If time evolution inside the horizon of a black hole is to be described by

the boundary theory, time has to be generated holographically. While challenging

13This correspondence established at the Euclidean level extends to real time [64, 4]. At temper-
ature T = Typ the gauge theory also undergoes a first order deconfinement phase transition in the
large N limit [97, 96]. See chapter 2.3 for further details
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this opens the possibility to describe holographically time evolution in the regions
containing the past and future singularities which can be viewed as Big Bang or Big

Crunch cosmologies.

The notion of an horizon is intrinsically non-local as, for example, the future hori-
zon corresponds to the boundary of the past of the future infinity and therefore the
determination of its location involves the knowledge of the future evolution of space-
time. If gauge theory correlators were to encode only the region of the spacetime
outside the horizon this would entail that the Ads-CFT correspondence is very non
local in time. Considerations of this nature led to imagine some gedanken-experiment
to disprove this possibility. For example by assuming the existence of precursors (non-
local operators encoding the bulk ”instantaneously”) in the gauge theory [80, 29] it
would be possible to recover information about an event P in the bulk before the col-
lapse of some matter distribution would form a black hole whose horizon encompasses

P [51].

The quest for understanding if and how the region beyond the horizon is encoded
in the boundary conformal theory was undertaken by many. In particular the au-
thors of [28] were able to pinpoint an interesting albeit subtle manifestation of the
singularity in the gauge theory correlation functions. We now describe in more detail

their work as it plays an important place in the results described below.

The starting point is the consideration of the following finite temperature two

point function for a gauge invariant scalar operator O(t) in the boundary theory:

Gu(2t) = (0 (¢4 %/3) 0 (—t)>ﬂ (17)

where () ; represents the expectation value on the canonical ensemble at temperature
T = % The possibility that this quantity could encode the geometry inside the
horizon had already been suggested in [64]. The operator O(t) is dual to a scalar field
propagating in the bulk black hole geometry. The mass of the field being proportional
to the conformal dimension of O. The two point function G 2(2t) in the large N limit

at strong coupling A can be computed by solving in the supergravity limit for the
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propagation of the scalar field in the black hole background with point-like sources
positioned on the boundary at times ¢ + 33 and —t respectively. As the mass m of
the scalar field becomes large the correlator can be evaluated in the semi-classical

geodesic approximation and is given by
G12(2t) = e_mc(t)

where L is the proper length of the spacelike geodesic joining the boundary points*4.

Figure 1-2: Spacelike geodesics connecting ¢ + ;-ﬂ and —t at the boundary. Ast —
t. (black arrow) the geodesics becomes null and approaches the singularity. The
extremal geodesic is dashed in figure.

As can be seen from the figure the geodesic passes through spacetime regions inside
the horizon. There exists a particular time ¢, beyond which there are no geodesics
connecting the two boundaries. Moreover as ¢t — ¢_ the length of the geodesic diverges
as L(t) ~ log(t. — t). This corresponds to a light-cone singularity in the field theory,
since the geodesics are becoming almost null and would imply the following singular

behaviour for the correlator:
1

Gra(t) ~ @

this length has to be regularized by subtracting the length of the geodesic corresponding to ¢ = 0
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However such a divergence is excluded by the following simple spectral consideration:

(Gt +i0)] = |Z(B) ™ Ep e HEERHER) B (m|O(0) ) 2] <
< 1Z(B)) Sy e BEE (m|O(O)1n) ] = G4 (0)]  (18)

where the sums run over all the states in the theory, the E, are their energies and
Z(B) = Ly exp(—BE,).

The source of the problem lies in the assumption that it is the bouncing geodesic we
have drawn in figure that has to be considered in evaluating the correlation function.
By a careful consideration of the analytic continuation of the correlation function
from Euclidean time to real time the authors of [28] conclude that, on the contrary,
for any real value of ¢ the correlator is dominated by the contribution of two geodesics
in the complexified spacetime which do not approach the singularity. The correlator
however turns out to be a multivalued analytic function of ¢ (in the large m limit) and
the contribution of the singular geodesic can still be obtained by a subtle continuation
of the two point function on a different Riemann sheet.

This suggestive result provided a starting point for our investigation which is
described in detail in chapters 3 and 4. We considered a scalar operator O(t,Z) in
the gauge theory (Z being the position on the S the boundary theory lives on) and
its finite temperature two point Wightman function G, (t,%Z) = (O(t,2)0(0)),. As
the theory is invariant under time translations and rotations in the S3 directions it is
convenient to perform a Fourier transform in time and consider a decomposition in

spherical harmonics in the Z directions:
o0 .
Cr(w,l) = / dte—t / A0 (2)G (8, 7)
—00 93

where [ is a set of SO(4) quantum numbers.

We obtain the following results about the structure of G (w,1) in the N = oo and

A — 00 limit:

e (Ch 2.3) G, (w) has a continuous spectrum whose origin can be traced back to
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the presence of the horizon in the dual bulk theory. All the singularities of the
correlation function are away from the real axis which implies an exponential

decay in time of its Fourier transform back into coordinate space.

e (Ch 3) The analytic structure of the correlation function is such that the com-
plex w plane can be divided into several asymptotic regions. In two of these
regions w — oo while in the remaining two w — Fioco. The asymptotic ex-
pansion of the function G, (w) for large w in each of these sectors cannot be

obtained by analytic continuation from the one valid in another sector.

e (Ch 3.2) Let the conformal dimension of O be A = 2 + v then asymptotically

for v — oo we have the following W K B expansion for the two point function:
Gi(w = vu,l = vk) ~ 20e"Z@B) (1 + O(v™1))

The function Z(u, k) can be determined by studying spacelike geodesics in the
black hole background. These are labeled by the value of the integral of motion
E coming from the isometry under Schwarzschild time translations and p coming
from the isometry under SO(4) rotations. For each geodesic we can evaluate
its length!® which will depend on F and p. The Legendre transform of this
function in the (E, p) variables is Z(iE, ip).

e Ch (3.2.3) For each (w,!) we determine the geodesic which has to be considered
in computing G (vu,vk) in the large v limit. For w — oo this geodesic
approaches the boundary of the spacetime. For w — Zioco the geodesic is the
one represented in the previous figure, it enters the region beyond the horizon
and comes closer and closer to the singularity. The turning point of the geodesic
scans the black hole spacetime as we change (w,!), in particular the timelike
coordinate inside the horizon is hologra.phicaily generated and encoded in the
behaviour of gauge theory correlation functions for imaginary w. The different

asymptotic sectors of G (w) for large w correspond to the geodesic approaching

5houndary to boundary proper length regularized as in footnote 7
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the boundary or the singularity.

e (Ch 4.3) We identify two manifestations of the presence of the singularity in the
asymptotic behaviour of G, (w, ) for w — +ioco along the imaginary w axis.The
first manifestation is that G, (w) decays exponentially along the imaginary axis.
This asymptotic behavior is due to the fact that light-like geodesics reach the
singularity in a finite time. By various different methods we prove that this
exponential decay survives in the case O has a finite conformal dimension and
is controlled by a simple parameter encoding the geometry of the black hole in
the region inside the horizon. The second manifestation is given by the divergent

behaviour of the k derivatives of Z(u, k) as u — i00:

n

d k2n

Z(iu, k) Jg=o~ u*™  u— 00

This divergence is due to the shrinking of the radius of curvature as we approach

the singularity.

e (Ch 4.4) At any finite N the boundary theory has a discrete spectrum being a
bounded quantum mechanical system. We can then write a spectral decompo-

sition of G4 (w, )

Gi(w,l) =21 e PPrpnd(w — Ep + En)
mn
where the sum is over all the states in the system. The correlator is a sum
of delta functions on the real axis and cannot be analytically continued for
imaginary w. In particular the signatures of the singularity we found in the large
N limit at strong coupling disappear indicating that quantum effects should
resolve the singularity. This still leaves open the possibility that stringy effects
(small coupling) could resolve the singularity already at the classical (large N)

level.

We see that a first step towards the understanding of the resolution of spacelike

singularities is the study of the appearance of a continuous spectrum in the large N
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limit of the boundary theory. So far we know that in the N — oo limit G4 (w,)
develops a continuous spectrum. For any finite N it is quasi-periodic in time but it
decays exponentially in the N — oo A — oo limit. The emergence of a continuous
spectrum and time decay in the gauge theory is connected with some of the deepest
features of the physics of spacelike singularities and the resolution of the information

paradox.

1.3 Time arrow and space-like singularities

The equations of general relativity are time symmetric, but in presence of spacelike
singularities an intrinsic arrow of time can be generated. This happens in both the
examples of FRW cosmologies and the formation of a black hole in a gravitational
collapse. We have stated that a black hole behaves like a thermodynamical system,
thus in the case of a gravitational collapse, the direction of time appears to have
thermodynamical nature. It has also been speculated that the thermodynamic arrow

of time observed in nature may be related to the big bang singularity [76].

With the tools provided by the AdS/CFT correspondence we can try to achieve
a microscopic understanding of the emergence of thermodynamic behavior in a grav-

itational collapse in an anti-de Sitter spacetime.

The classical gravity limit of the AdS string theory corresponds to the large N
and large ’t Hooft coupling limit of the boundary theory. As we have described,
a matter distribution of classical mass M in AdS can be identified with an excited
state of energy E = uN? in the SYM theory with y a constant independent of N.
This mass distribution!® can collapse to form a black hole which we can identify
with a thermal density matrix in the gauge theory [97, 64]. Then the gravitational
collapse of the matter distribution should be identified with the thermalization of
the corresponding state in SYM theory. We can speculate that the appearance of

a spacelike singularity at the end point of a collapse should be related to certain

16 Assume M is sufficiently big that a big black hole in AdS is formed, which also implies that p
should be sufficiently big.
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universal aspects of thermalization in the SYM theory!”
In the boundary theory consider the following correlator of an arbitrary gauge
invariant operator O which when acting on the vacuum creates a state of finite energy

of order O(N?).
Gi(t) = (HlO@)O(0)[i) — (|O(0)}3)* (1.9)

where |i) is a generic energy eigenstate in the high energy sector E ~ N2. Thermaliza-
tion occurs and an arrow of time is generated, if for all such operators O and generic
states |i) with energy big enough that their dual field configuration can collapse in a

stable black hole, we have
Gi(t) — 0, t— o0 (1.10)

In particular, 1.10 implies that information is lost as one cannot distinguish different
initial states from their long time behavior.

A crucial element for the emergence of thermalization in the boundary theory is
the large N limit. A" = 4 SYM theory on S® is a closed, bounded quantum mechanical
system with a discrete energy spectrum. At any finite NV, no matter how large, such a
theory is time reversible and never really thermalizes. However, to match the picture
of a gravitational collapse in classical gravity, an arrow of time should emerge in
the large N limit for the SYM theory in a generic state of energy E = uN? with
sufficiently large p. At finite NV, the theory is unitary and there is no information
loss. But in the large N limit, the information is lost, since one cannot recover
the initial state from the final thermal equilibrium. Thus the information loss in a
gravitational collapse is clearly a consequence of the classical approximation (large
N limit), but not a property of the full quantum theory. AdS/CFT implies that the
time evolution of the quantum gravity theory is unitary and therefore in principle

resolves the information loss paradox'®.

17Some interesting ideas regarding spacelike singularities and thermalization have also been dis-
cussed recently in [8].
'8To our knowledge this connection was first pointed out in the context of AdS/CFT in [64]. It
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In order to reconcile the unitary time evolution at finite N with the emergence of
an arrow of time and thermalization implied by the bulk theory in its classical limit
we have to accept that these are effects of the large N limit in the gauge theory. Then

we are challenged to answer the following questions:

e 1. What is the underlying physical mechanism for the emergence of an arrow

of time and thermalization in the boundary gauge theory?

e 2. We know such a mechanism must involve the large N limit. Is the large 't
Hooft coupling limit also needed? It could be that an arrow of time emerges
only for a certain range of A therefore implying the presence of a large N phase

transition as the coupling is decreased from oo to 0.

e 3. If an arrow of time also emerges at finite 't Hooft coupling A, what would
be the bulk string theory interpretation of the SYM theory in a state of high

energy which thermalizes? A stringy black hole? Is a singularity present in such
a black hole?

It would be very desirable to have a clear physical understanding of the questions
above as it could shed light on how spacelike singularities appear in the classical limit
of a quantum gravity theory and lead to an understanding of their resolution in a
quantum theory.

In Chapter 5 we suggest a simple mechanism for the emergence of an arrow of
time in the gauge theory in the large N limit and initiate a statistical approach
to understanding the quantum dynamics of a Yang-Mills theory in highly excited
states. We avoid the complications of working with correlation functions on specific
highly excited states and take into consideration correlation functions computed in
the canonical ensemble. The temperature must be such that the average energy of
the states in the ensemble is of order uN2. For the case of a SU(N) Yang Mills
theory compactified on S3 it has been proven [1, 97] both at small coupling and at

large coupling that this is the case for T' > Ty, where Ty is a function of A of order

remains a puzzle whether one can recover the lost information using a semi-classical reasoning; see
e.g. [64, 12, 11, 10, 57, 49, 67, 62, 6] for recent discussions.
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N° 19 As a second simplification we consider a simpler quantum mechanical system
(see Chapter 5.2) with far less degrees of freedom than N = 4 SYM on S but which
shares with it many features like the existence of a finite Ty, in the large N limit.

We obtain the following results:

o 1 We first prove that in the large N limit at any finite order in perturbation

theory the boundary theory does not thermalize.

e 2 We prove that for high enough temperature (such that the system probes
states of energy of order N2) the large N perturbation theory does not converge

for any value of A.

e 3 We interpret this as due to the fact that the high energy states E ~ N2
in the free theory are exponentially degenerate e” in N2. We show that the
introduction of a tiny perturbation A # 0 would strongly mix an exponentially
large (in N?) number of free states which span an energy interval of order AN.
Thus for any finite A the theory is nonperturbative in the large N limit in the
high energy sector. As a consequence the small A and the long time limits do

not commute at infinite N.

e 4 We finally develop a statistical method for studying the dynamics of the
theories in highly excited states, which indicates that time irreversibility occurs

for any nonzero 't Hooft coupling A.

In particular, we argue that the perturbative planar expansions breaks down for
real-time correlation functions and that there is a large N “phase transition” at zero
't Hooft coupling?®. We also argue that time irreversibility occurs for any nonzero
value of the 't Hooft coupling in the large N limit therefore answering some of the

questions we posed.

¥for T < Tye. the average energy computed in the canonical ensemble is O(N?). In the large N
limit we therefore have a phase transition which was identified as due to the deconfinement of the
theory at large temperature.

203ee [61, 32, 41] for some earlier discussion of a possible large N phase transition in ).
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Chapter 2

AdS Black Holes and AdS/CFT at

Finite Temperature

This chapter sets the stage for our investigations. We describe how to compute real
time thermal boundary correlation functions from gravity. In the first two sections
we first introduce the AdS Schwarzschild black hole geometry and then review some
of the properties of real time correlation functions in finite temperature field theory.

In the last section we describe how to compute them using AdS/CFT.

2.1 Black hole geometry

In this section we briefly review the classical geometry for a Schwarzschild black hole

in an AdSg41 (d > 3) spacetime. The metric can be written as
ds? = —f(r)dt* + f(r)'dr® + r?dQ%_, (2.1)
with

fry=r*+1- -5, (2:2)
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where p is proportional to the mass of the black hole and d22_, denotes the metric on
a unit (d — 1)-sphere. We have set the curvature radius of AdS to be unity, as we will
do throughout the thesis. As r — oo, the metric goes over to that of global AdS with
t identified as the boundary Yang-Mills theory time. The fully extended black hole
spacetime has two disconnected time-like boundaries, each of topology S¢~! x IR (see

Fig. 1 for the Penrose diagram).

Figure 2-1: Penrose diagram for the AdS black hole. A null geodesic going from the
boundary to the singularity is indicated in the figure.

The event horizon radius ry is given by the unique positive root of the equation
2y1- £ o
T

and the inverse Hawking temperature is given by

47 47 To

S e Rl )

(2.3)

In the limit that the mass of the black hole goes to infinity, i.e. g — oo and thus

rg — 00, after a scaling of the coordinates
T — 1T, t— t/'r'o, 'I"gdﬂi_l = d.’l,‘f (24)

the metric becomes

1
f
36

ds? = —fdt? + —dr® + r’dz? (2.5)



with
f = 2 s e (26)

In the above dz? denotes the metric for a flat (d — 1)-dimensional Euclidean space.
After the rescaling, the horizon is located at 7o = 1 and the inverse Hawking temper-

ature is
e 2.7
= (2.7)

The boundary manifold now consists of two copies of R*".
The black hole singularities are located at r = 0 in region II and IV respectively,
at which f blows up and the radius of the three sphere in 2.1 or the overall size of

IR? in 2.5 goes to zero.

Figure 2-2: A choice of fundamental domain in the Im z — Im¢ plane is indicated.
The red dots belong to the real Lorentzian section of the geometry. The dot at the
origin corresponds to region I in 2-1. The dots with Im 2z = ﬁ—’ correspond to regions
II/IV and the dot at Imt = g corresponds to region III

To describe the black hole geometry it is often convenient to use the tortoise

coordinate
o dr el q
Z(T) == : m = - g m lOg(T = T.i) (28)

where r; are zeros of f with ry being the horizon.

The region outside the horizon (region I) corresponds to z € (0,4+00). At the
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boundary r — oo, we have z ~ % — 0. At the horizon r — ry, we have

z R~ —glog(r—ro) — +00 .

In region I of the Penrose diagram 2-1, the Kruskal coordinates can be written in

terms of z and ¢ as
— -2 (t+2) — & (t-2)
U=—e"7 , V =e8 (29)

and therefore U < 0, V > 0. General real values of U,V cover the full Lorentzian
section of the spacetime with the Eorizon at UV = 0, the boundaries at UV = —1,
and the singularities at UV = e™% with B a constant to be introduced below. We
will extend 2.9 to the fully complexified Kruskal spacetime in which both z,t¢ and
U,V take general complex values. Values of z and ¢ which lead to the same values of

U,V are identified, i.e.

t~t+ﬂ1§3@ z~z+im;n

B, mnei. (2.10)

In terms of complex z and t, in region II/IV we have Im¢ = :i:%, Imz = % and in
region III Imt¢ = g, z € R,. A choice of fundamental domain in the Imz — Im¢
plane is shown in 2-2, where we also indicate points which correspond to the real

Lorentzian section of the complexified spacetime.

In the fully complexified spacetime the boundary has complex codimension-one
and is located at z = 0. The black hole singularity is a complex codimension-one

singularity located at (up to the identifications 2.10)

=a(r=0)= [ Fs =100 +i8). (211)

The imaginary part of zy, which is one quarter of the inverse Hawking temperature

B, arises by going around the pole at 7 = 7o (location of the horizon) in the complex
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r-plane. B is a positive real number! obtainable from the roots of equation f (r)=0.
Note that 2.11 is also the complex Schwarzschild time that it takes for a radial null
geodesic to go from the boundary to the singularity. A nonzero 8 implies that the
Penrose diagram for the black hole is not a square, as was first pointed out in [28].

In function of 3 the range of Re z in regions II/IV is Rez > %.

For our future discussion, it is convenient to introduce a complex quantity
B=03 +iB=|Ble?s . (2.12)

For example, for the metric 2.5,

47 T dr .« T
T m—— t — = 13 = - . -

g y co 7 B dsinge , 05 7 (2.13)

For a finite mass black hole 2.1-2.2 in AdS; (d = 4),

277y 2m(r1 + irg) 27 T
= — B = = O < — 2.14
s T8 + 13’ T3 + 13 T —iry B>1 (2.14)
where
A=riel,  a=ri

The explicit expressions of B for a finite mass black hole for other dimensions are

more complicated.

To conclude this section we note that in equation 2.3 8 has a maximum at Gy =
72(%?) above which there is no black hole solution. For a given 8 < [, there are
two solutions for 7o, the larger of which describes a stable black hole (the so-called
big black hole) with a positive specific heat. The one with smaller r, is called a
small black hole and has a negative specific heat. The Euclidean action of the big
black hole is always smaller than that of the small black hole and becomes negative
for B < Byp = f—_”l [45, 97]. One can define a canonical ensemble for semi-classical

quantum gravity in AdS background and when 3 < Byp, the ensemble is dominated

1The analogous quantity for a flat space Schwarzschild black hole is infinite.
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by the contribution of the big black hole [45]. We will focus on the big black hole.
Note that one can invert 2.8 to find r(z). In particular, for Rez > g:_, risa

one-to-one periodic function of z with period zg This property will be important

later.

2.2 Finite temperature correlation functions in bound-

ary theories

Since the main purpose of this chapter is to compute thermal boundary correlation
functions from gravity, in this section we review general properties of various real-
time correlation functions at finite temperature. We will consider that the boundary
theory lives either on IR x S% ! or RM41,

Consider a gauge invariant operator O in the boundary theory of conformal di-
mension A. For simplicity we will take O to be a Lorentz scalar. The real-time

thermal Wightman functions are defined by

Gi(z) = 3tr(eP0O(z)0(0)),
G_(z) =}tr(ePHO(0)O(z)) (2.15)

where H is the Hamiltonian of the boundary theory, tr denotes the sum over all states
in the Hilbert space, Z = tre #¥ is the partition function, z = (¢, Z) with # denoting
the spatial coordinates. The Feynman, retarded and advanced propagators are given
by

Gr(z) = 8()G+(@) +6(~)G-(z),

Gala) = 00 (¢°7(0(), 000)]),
Galz) = —%0(—t)tr (eH[0(z), 0(0)]) - (2.16)

Since spatial coordinates do not play an active role in our discussion below, we will

suppress them for the rest of the section for notational simplicity. We will also be
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interested in correlators with the following complex time separation?
1, [ _sn _ :
Gua(t) = tr [ePHO(t - i8/2)0(0)] = Gt — iB/2) (2.17)

which can be obtained from G (t) by an analytic continuation.

By inserting complete sets of states in 2.15, G4(¢) can be written as
1 ) ) .
G+(t) — 2 Z e—zEntezEm(t-Hﬂ) Prmn (2.18)

where m,n sum over the physical states of the theory® and p,, = | (m|O(0)|n) |2
Assuming the convergence of the sums is controlled by the exponentials, it follows
from 2.18 that G, (t) is analytic in ¢ within the range* —8 < Imt < 0. Similarly
G_(t) is analytic for 0 < Im¢ < 8 and Gy5(t) for —g <Imt < g

Going to frequency space one finds that

Ci(w) = /_ o:odte“”tG+(t)

1
= mp(w) (2.19)
where we have introduced the spectral density function

1
plw) = E(l —e Ay > (@2r)d(w - E, + En)e PEmpm . (2.20)
We will use the same letter for functions in frequency and coordinate spaces and
distinguish them only by the arguments of the function.

In terms of p, other correlators in frequency space can be written as

G_(w) = ePG,(w)

Cuw) = 3G, (W)= —

2eimn ")

%In the thermal field formulation, G12(t) corresponds to having O(0) acting on the first Hilbert
space while O(t) acting on the second Hilbert space.

3When the theory has a continuous spectrum like the boundary theory on R»“~, one should
replace the sums by appropriate integrals.

4This is the minimal range. The actual range can be bigger.
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Galw) = - [ ?7%
6w = - [ Gt
iGrp(w) = Ggrw)+iG_(w) (2.21)
From 2.21 we also have
p(w) = —i(Gr(w) — Ga(w)) (2:22)

We also note that the Euclidean correlation function in momentum space can be

obtained from Gg 4(w) evaluated at discrete frequencies

GR('iwl) l >0
Ge(w) = Cow="" ez (2.23)

B
GA(iwl) <0

Thus Lorentzian correlation functions in frequency space have a much richer analytic

structure than the Euclidean one.

Some further remarks:
e 1. From 2.20-2.21,

p(-w) = —p(w),  Gu(-w)=GCn), Gr(-w)=Galw). (224)

e 2. For a theory with a discrete spectrum, from 2.20, the spectral function p(w)
and G, (w) are given by a sum of discrete delta functions supported on the real

axis, while Gg(w) is given by a discrete sum of poles along the real axis.

e 3. For a theory with a continuous spectrum, the analytic behaviors of vari-
ous propagators in the complex w plane give important information about the

theory. From 2.21 one finds that for generic complex w

12(w) = Gra(w*), k(W) = Gr(-w") = Ga(w") - (2.25)
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Gr(w) is analytic in the upper half plane, while G 4(w) is analytic in the lower
half plane. From 2.25 the singularities of G4(w) in the upper half plane are
simply the reflection with respect to the real axis of those of Gg(w) in the lower
half plane. Furthermore the singularities of Gr{w) and G4(w) are symmetric
with respect to the imaginary w-axis. Equation 2.22 implies that Gj2(w) (and
G+(w)) have singularities in both the upper and the lower half plane, given by
those of Ga(w) and Ggr(w) respectively.

2.3 AdS/CFT correspondence in the black hole
background

The thermodynamic aspects of quantum gravity in AdS spacetime were discussed
long ago by Hawking and Page [45], using the semi-classical Euclidean path integral
formalism. They realized that it is possible to define a canonical ensemble for quan-
tum gravity in a Schwarzschild black hole background in AdS. They also found that
in the semi-classical limit, the system undergoes a first order phase transition at a
temperature Ty p of the order of the inverse curvature radius of the spacetime. Below
THp, the system is described by a thermal gas in AdS, while above Ty p it is described
by a big black hole. With the discovery of the AdS/CFT correspondence [63, 39, 96,
the results of Hawking and Page were given a natural interpretation in terms of the
boundary Yang-Mills theory [96, 97]. The thermal AdS and the Euclidean big black
hole in AdS;+; correspond to a confined and to a deconfined phase of the boundary
theory on S%! respectively, and the Hawking-Page transition corresponds to a large
N deconfinement transition [93]. The boundary theory at finite temperature on R4,
which is dual to 2.5 and corresponds to the high temperature limit of the theory on

8471 is always in the deconfined phase.

The correspondence can be extended to Lorentzian signature [64, 4] with the
Hartle-Hawking vacuum [40] of the black hole background identified with the thermal

density matrix of the boundary theory. The choice of the Hartle-Hawking vacuum is
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natural since it describes the black hole in thermal equilibrium. The Lorentzian black
hole background has two asymptotic regions with disconnected boundaries. The bulk
Hilbert space can be written as a product of two identical copies, each accessed by
a single asymptotic region. The Hartle-Hawking vacuum is the maximally entangled
state between the two copies and tracing over one copy in the product produces
the thermal ensemble accessible to the other asymptotic observer [53]. This is in
complete parallel with the thermal field formulation of the boundary theory at finite
temperature, with identical copies of the boundary theory Hilbert space associated

with each disconnected component of the boundary.

Now consider a scalar operator O in the boundary theory corresponding to a bulk

scalar field ¢ of mass m. In the supergravity limit, the conformal dimension of O is

given by [39, 96]
A=g+u, V=ﬂ(—ff—+m2, (2.26)

and thermal boundary two-point functions of O can be obtained from free bulk Green
functions in the Hartle-Hawking vacuum by taking the arguments of ¢ to the bound-
ary.’ For example, the boundary Wightman function 2.15 is obtained by

Gi(z,z') = lim (2ur®)(2ur'®)Gy(z,r;a’,7") (2.27)

r,r/—00

where z = (t, £) denotes a boundary point and G.. is the bulk Wightman function for

¢ in the Hartle-Hawking vacuum

G (z,730,1") = (Ol(r, 2)p(r',)10) g (2.28)

A Fourier transform of 2.27 in the ¢ and # directions leads to the relation in momentum

50btaining boundary correlation functions by taking the boundary limit of the bulk ones was
discussed, for example, in [9, 34, 58]. For other discussion of boundary Lorentzian correlation
functions in the supergravity approximation, see also [3, 84, 48, 66, 60].
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space
Gi(w,p) = lim (2vr®)2ur")G,(w,pir, 7). (2.29)
' —00

For boundary theories on S%°!, 7' in the above equation should be interpreted as the

angular momentum on S¢1.

The bulk retarded (Feynman) propagator for ¢ leads to the retarded (Feynman)

propagator for O in the boundary theory by the same procedure. For example,
Gr(w,p) = lim (2vr)(2ur'")Gr(w,pi7,7) . (2-30)
T,7/—00

Note that the r,7" — oo limits for Gr on the right hand side of 2.30 contains also a
divergent term proportional to r. The divergent term is analytic in w, 7 and should
be discarded. When Fourier transformed to the coordinate space, such a term gives

rise to an irrelevant contact term.

Since the extended black hole background has two asymptotic boundaries, we
can also take r and ' to different boundaries. It follows from the thermal field
interpretation of the Hartle-Hawking vacuum that this procedure gives rise to Gy
introduced in 2.17

Gia(z,7') = lim 2vr®)(2ur')G (z, T2, 7). (2.31)

r,r’—different boundaries

Equation 2.31 can also be derived directly from the explicit expressions of the bulk

propagators in the Hartle-Hawking vacuum reviewed in Appendix Al.

We now look in some detail at the analytic properties of the boundary real-time

correlation functions using 2.27-2.31.
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2.3.1 Bulk propagators

Consider a free scalar field®
1 dd 2 2,2
S = —E/dr zvV—g [(3¢) + m*¢ ] (2.32)
in the background of 2.1 or 2.5. For 2.5 let
¢ = e e PIr T p(w,p; 1), (2.33)

the Laplace equation for ¢ can then be written in terms of the tortoise coordinate z

2.8 as

(02 +V(2) —w?) ¥ =0, (2.34)

where V, is an implicit function of z (below p® = 7 §)

Vo(2) = f(r) [g—z- +v% - % + (d‘;dl)z] : (2.35)

For 2.1 one replaces the plane wave in the Z directions in 2.33 by spherical harmonics

on 53 and get 2.34 with now the potential given by

4r? 4 4rd (2.36)

Vz(z)=f(r)((2l+d_2)2*1 +u2—l+——“(d—1)2>

where [ is the angular momentum on S°.

As discussed below 2.8, the region outside the horizon corresponds to z € (0, +00)
with z = 0 at the boundary and z — 400 at the horizon. Both 2.35 and 2.36 behave

near the boundary as

, z—0, (2.37)

6Since the background Ricci scalar is a constant, the m? term below should be considered as the
sum of the standard mass term and the coupling to the background curvature.
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and near the horizon
Vp e % 0, z— 400 . (2.38)

The fact that for Rez >> 1, 7 is a one-to one periodic function of z with a period zg

implies that V,(z) can be expanded for large real z as

4nn

Vo(2) = iane'T’ . (2.39)

This property will be important in our discussion below.

V(z) V(z)

boundary horizon YA boundary horizon Z

Figure 2-3: Schematic plots of the potential 2.35 or 2.36 for I < I, (left) and [ > I,
(right).

Note that the potential 2.35 is positive definite and monotonic in z € (0,+00)
for 2 > § and any p* > 0 (see 2-3). The potential 2.36 is monotonic as in 2-3 for [
smaller than a critical value ., while for [ > I, the potential develops a well as 2-3 .
l. can be found by solving V'(r) = V"(r) = 0. Its explicit value is rather complicated
and we do not give it here. An implicit expression in the large v limit will be given in
sec 3.3.2. The potential well reflects that when the angular momentum is sufficiently
large there exist stable orbits for a particle moving outside the horizon. We will
see later this has interesting consequences for correlation functions of the boundary
theory.

In our discussions below, we will use the notation appropriate for 2.5. The dis-
cussions apply to both 2.5 and 2.1 unless mentioned explicitly.

For any given real w, the Schrodinger equation 2.34 has a unique normalizable
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mode v, , which we will take to be real. We normalize it at the horizon as (d,, is a

phase shift)
Yupl2) A —ems—o | ghntib oo (2.40)
As z — 0, ¥,p has the form
Yup ® C(w, )2 ™+, 250 (2.41)

where the constant C is fixed by the normalization of 2.40.

The bulk Wightman propagator G, 2.16 and the retarded propagator G in mo-
mentum space can be written in terms of 1, as (see Appendix Al for a derivation)

ebw

. ! . ~ . 1]
Gr(w,p2,2) = ——Pw,p27)

. no o _ 0 ﬂﬁ(w',p; zvzl)
Gr(w,p;2,2") = /_ T e i (2.42)
with the spectral density function
~ 1 _d=1
Plw,pi2,2) = o= (rr') T Yup(2)hun(2), (2.43)
Going to the boundary using 2.29 and 2.30, we find that
eﬂw
G+(w,l7) = oo _ lp(:‘),ﬁ)( , )
© dw'  p(,p
= - —_— 2.44
Gr(w;p) /;oo 21 w — w' + e (244)
with the boundary spectral density
2v)?
ow.0) = L% w,p) . (2.45)
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2.3.2 An alternative expression

Equations 2.40-2.45 reduces the task of finding real-time boundary correlation func-
tions to solving a non-relativistic scattering problem in the potential 2.35. Using
standard techniques of scattering theory one can in fact deduce many analytic prop-
erties of those correlation functions without solving the Schrodinger equation 2.34

explicitly. For this purpose, we will first write 2.44 in a different form.

We introduce the following solutions to equation 2.34 specified by different bound-

ary conditions:

gw,p;2) =~ 22", 20,
Jw,pz) = 257, z—0,
hep(w,p;2) =~ e**, Z— 00
ha(w,p;2) ~ e =, zZ—00. (2.46)

Note that by construction,
ha(w,p;2) = he(-w,p;2),  gw,p;2) =9(-w,p;2),  §(w,p;2) =§(~w,p; 2)
The function g(z) can be written as a linear superposition of hg, hy
9w, 2) = 5 (@, Dha0,3;2) + f-wphalw,3i2)  (24)

which defines the Jost function f(w,p). Similarly hg (h4) can be written as a linear

superposition of g and g

hr(w,p;2) = 51; [f(w,p)§(w,p; 2) + K (w, p)g(w,p; 2)] . (2.48)

That f(w,p) also appears in the coefficient of the first term on the right hand side of
2.48 can be seen from the Wronskian, which can be worked out from 2.46-2.48

W[hR,y] = hRazg —90:hgp = f(wip)
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W[hRag] = hRazg - gath = —K(W, P) . (2'49)

The phase shift in 2.40 can be written in terms of the Jost function f(w,p) by

eZ’iJw — f(—UJ,p) 250
flw,p) (2:50)
and the normalization factor in 2.41 is
40.)2
C*(w,p) = ) 2.51
P = F o) 251)
From 2.44 we thus find that
Bu 2w
Gi(w,p) = (2v)° ¢
plw,p) = (2v)? 2.52
r) = ) e e (2:52)
The bulk retarded propagator (second line of 2.42) can also be written as
Gr(w,p;2,2) = (rr') 7" —Lg(w, p; 2<)hr(w, p; 25) (2.53)
f(w,p)

where z< (2>) denotes the smaller (bigger) between the z,2’. Taking z,2’ to the

boundary and extracting the normalizable term one finds that

GR(wap) =2

00 / _ B
Kop __m& 12 6w (2.54)

flw,p) S0 2T w—w' +ie

The first line of 2.54 reproduces the results [84, 48] which were derived using different

methods. All expressions 2.50-2.54 can be extended to complex w and p.

As a consistency check, note that by plugging 2.48 into 2.47 we find that

f(~w,p)K(w,p) — f(w,p)K(~w,p) = (2v)(2iw) (2.55)
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which leads to

K(w,p) K(-wp) _ _ (2v)(iw)
f(wap) f(_w7p) f(w,p)f(—w,p) .

(2.56)

Equation 2.56, together with 2.52 and 2.54, leads to

p(w?p) = _i(GR(wap) - GR(—w)p))

which is equation 2.22 upon using Gr(—w) = Ga(w).

2.3.3 Analytic properties

In this subsection we discuss analytic properties of the boundary G (w, p) and Gr(w, p)
in the complex w- and p-planes using 2.52 and 2.54.

From 2.46, under complex conjugation

(9(w,p;2))* = g(w*,p%52),  (§(w,p;2))* = glw*,p*; 2)
(hr(w,p; 2))* = ha(w*,p"; 2) = hr(—w*,p*; 2) (2.57)

Using 2.47 and 2.48, it then follows that

ffw,p) = f(=u*p%),  K'w,p) = K(-w",p"). (2.58)

Due to the simple boundary conditions various solutions in 2.46 have simple ana-
lytic properties in the complex w and p? planes. By writing the Schrodinger equation

2.34 in an integral form, using the techniques of [72] one can show that:

o 1. At given 2, g(w,p; z) and §(w,p; z) are entire functions of w and p [72];

® 2. hp(w,p; 2) is analytic in the upper half w plane. ha(w,p; z) is analytic in the
lower half w plane [72];

¢ 3. For a potential of the form 2.39, the only singularities of hg(w,p; 2) in the
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lower half w-plane are simple poles, located at [73]
w= -k p=1,2,- . (2.59)

From these one can further deduce the following:

e 4. Since g and § are entire functions of w, p, it follows from 2.49 that f(w,p) and
K (w,p) have the same analytic properties as hr(w, p; ), i.e. they are analytic
in the upper half w-plane and only have simple poles in the lower half w-plane

located at 2.59.

e 5. f(w,p) can only have zeros in the upper half w-plane along the imaginary
w-axis, which correspond to the bound states of 2.34. Suppose f(w,p) has a
zero at w = wy with Imwy > 0 and Rew # 0. It then follows from equation 2.47
that g(wo, p; z) is a normalizable solution of the Schrodinger equation 2.34 with
a complex eigenvalue. This cannot be the case for a Hermitian Hamiltonian.
As we remarked below 2.35, for real p, the potential 2.35 is positive definite for
z € (0,00) and thus has no bound state. Thus f(w,p) does have not any zeros
in the upper half w-plane for real spatial momentum. For pure imaginary p,
it is possible for 2.35 to have bound states and f(w,p) can indeed have zeros

along the upper imaginary axis.

The above discussions and equations 2.52, 2.54 lead to the following analytic proper-

ties for the boundary correlation functions G, (w,p) and Ggr(w, p):

e 7. Since the poles of f(w,p) at 2.59 cancel with the zeros of e’ — 1 in 2.52,

G4 (w,p) is analytic at w = '“%, neZz.

e 8. The only singularities of G (w,p) in the complex w-plane are poles, arising

from the zeros of f(w,p) in the complex w-plane’. Due to 2.58, the locations of

7From equation 2.50, the same zeros of f gives rise to the poles in the S-matrix of the Schrodinger
problem 2.34. Recall that zeros of f on the upper imaginary axis correspond to bound states, those on
the lower imaginary axis correspond to virtual states and those near the positive real axis correspond
to resonances of the Schrodinger problem.
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poles of G, obey a reflection symmetry: if there is a pole at wy, then there are
poles at —wo, wj, —wg. In other words, the poles are symmetric with respect to

the real and imaginary w-axes.

9. For G, from 2.54, the poles of K(w,p) at 2.59 cancel with those of f(w, p)
at the same locations. Thus the only singularities of Gg(w,p) in the w-plane
are poles, due to zeros of f(w,p). For real p, f(w,p) only has zeros in the lower
half plane and thus G is analytic on the upper half plane. For pure imaginary
p it then becomes possible for Gr(w,p) to have poles on the upper half plane

along the imaginary w-axis.
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Chapter 3

Two Point Correlators in the Black

Hole Background

3.1 Approximate expressions for Lorentzian cor-
relation functions for small [

The Schrodinger equation 2.34 cannot be solved exactly for d > 3. We review the
results for d = 2 (i.e. a BTZ black hole) in Appendix A2. For d = 4 2.34 is of Heun
type. In this and the following sections we develop various approximation schemes
to solve 2.34 and to find approximate expressions for G4 (w) and Gr(w). The first
method applies to d = 4 with the angular momentum ! = 0 (or linear momentum
p = 0 in the case of R®). We are able to obtain closed expressions which are valid
for generic values of w and v (not too small). Since this method gives rather explicit
answers we present it first. The second method applies to [ = 0 and |w| — oo limit,
but for any d > 3. The last method, which we discuss in detail in the next section,

applies to the large operator dimension limit v — oo, with any /.

3.1.1 An approximation for d = 4

In this subsection we develop a uniform approximation (in r) to the solution of 2.34

with d = 4, i.e. for a Schwarzschild black hole in AdSs. The approximation solution
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is then used to compute various Lorentzian two-point functions in momentum space
for strongly coupled N' = 4 SYM. A similar approximation has been also used by
Siopsis [83] in deriving the quasinormal modes for the black hole. Our discussion
below applies to both 2.35 and 2.36 with d = 4 and we will use a notation appropriate
to 2.36.

Under the following transformations

r* = ricosh®p + risinh?p
T(p)
— [ \P) 1
¥ sinh2p u(p) (3-1)

equation 2.34 becomes

R+1 k-1
n 2
+ - v+
“ [4sinh2p 4cosh®p
B (t+1)? 3 rir2
r3cosh®p + r3sinh®p  (r2cosh®p + risinh?p)?

Jup=0 w2

where

h==, ﬁ:fg (3.3)

and 8,3 were given in 2.3 and 2.14.

Note that p > 0 covers the region outside the horizon with the horizon at p =0
and the boundary at p = +o0o. There is no known exact solution to 3.2. Instead
we will find an approximation to it when [ is small. At the lowest order of the
approximation, we will drop the last two terms in the bracket. This follows from the
observation that neither of these two terms dominates at the horizon p = 0 or at the
boundary p = co. So dropping them will not affect the imposition of the boundary
conditions there. Furthermore, if

h2,h2,0% > :—g :—g,% (3.4)
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then the two discarded terms are always small compared to other terms anywhere
outside the horizon. The first quantity on the right hand side of 3.4 is very small for
a large black hole ry >> 1. The second quantity is of order O(1). The third quantity is
also small for [ not too large. We will solve 3.2 in this lowest order approximation and
obtain the corresponding Lorentzian correlators. Higher order corrections to 3.2 can
be developed systematically, but become rather complicated even to the next order.

We will not pursue it further (see [70] for a discussion).

Without the last two terms in 3.2, the equation reduces to an equation of hyper-
geometric type, whose solutions can now be found in closed form. We present them
in Appendix A3, along with explicit expressions for the functions f and K introduced
in 2.47 and 2.48. From the results there we find that

_ o, {20\ D(=v) T2 -¢Br (22 4+ 4B)
GR(UJ) 2”(][;) F(ux; I‘(l v wB)P(l u+wB)

— e%ﬂ“’ ™ " 1+v __ wB
e T
F(li;’—;'—f)l“(!i—+4,,)1‘(1+7”+‘;’—f) (35)

where B was introduced in 2.14. Other Lorentzian and Euclidean correlators can be
obtained using various formulae in section 2.3, e.g. 2.21 and 2.23. When v is an

integer, 3.5 should be modified and explicit expressions are given in Appendix A3.

Figure 3-1: Poles for G4(w,p = 0) for d = 4 in the complex w-plane. We use
To = 1, n= \/5

We now summarize some salient features of 3.5-77?:
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e 1. From 3.5 Ggr(w) has poles in the lower w complex plane located at

4 1+ v - . dr 1+ v _
Wn—'g( 2 +n), Wp = —W, = E( ) +n), n=0,1, (3.6)

G+ (w) also has poles in the upper half plane which are reflections of 3.6 with
respect the real w-axis (see 3-1). Note that when v > 1, all the values in 3.6
satisfy equation 3.4 and thus can be trusted. One notices the following features
of each pole line: (i) the distance of first pole from the origin is proportional
to v for v > 1; (ii) the spacing between poles in each line is 4 (or its complex
conjugate), which is independent of v. Recall that B is related to the complex
Schwarzschild time that it takes for a radial null geodesics to go from the spatial
boundary to the black hole singularity (see sec. 2.1). As we will see later, this
feature persists for black holes in other dimensions as well for / not too big. We
can also compute the residue at the poles for Ggr(w). We find that for large n,
the residues for two sequences are

3 8 (82)21/ o 87 (_92)21,
S TTweB\2 ) " TweB\ 2

respectively.

e 2. When Fourier transformed back to coordinate space, the poles imply that
the coordinate space correlation function decays exponentially with time with a
parameter controlled by the imaginary part of the poles. Performing the Fourier
transform Gp(t) = [ e **Gg(w) we get 0 for ¢t < 0 as expected. For t > 0

closing the integration contour in the lower half plane we get:

Gr(t) = —i 3 (ane ™t — afent) = —i )" efmlun)t (ane_m‘(“’")t - a;eme(“’")t) (3.7)
n

n
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e 3. As w — +oo, we find that G, (w) is power-like !

x(1‘(417‘2)2,,( 1)T§ﬁ27+ ) (3.9)

The behavior at w — —oo can be obtained using that Gia(w) = G4 (w)e 2%
is an even function 2.24. Note that in the above expression there are both 1/w

corrections and exponentially small tails of the form
e swb—imuB)  pe7z.  mel. (3.10)

One can also find the asymptotic behavior of G4+(w) in other quadrants of

the asymptotic w plane. For example as w — —ioo, we find it also decays

exponentially
Sl iw\* —%Bw —inv—fw inv—iwB
6 = g (5) ¥ (mermbeoen iy
(4n)? ReB? 1
X (1 D v(v* - 1) B o2 + . (3.11)

Note that given 3.11 and 3.9 the asymptotic behaviour of Ga(w) = G4 (w)e™ 25
along the real and imaginary w axis is quite similar but for the exponential decay
controlled by # instead of 3. Similar expressions can be worked out for Gg. As

w — +00 we get the following expansion:

Gr(w) = 21/F1_(,(_Vl;) e v (;)2'/ [1 + 2isin(mv)edB 4 .. ] (l +0 (%)) (3.12)

1Here we used the following asymptotic expansions for I'(z) [21]:

I(z) ~ V2nz*~ie™® (1 + 5o+ 0(90'2)) z=|zle® |0 < —g (3.8)

[(-z) ~ *iv2rz = %e” (Z e*2’"("+%)’) (1 - 1—;; + O(x‘z)) z=|zle*? 0<b< -g

n=0
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Along the imaginary axis for w — —ioco we find

Gr(w) = 2012 (%)2,/.

L'(v)
. [1 — 4isin(7v)sinh (%) esf 4 ] (1 +0 (l)) (3.13)

w

while for w — +ioo:
Gr(w) = 2urlf(;y”)) ("—;“3)2V (1 +0 (%)) . (3.14)

Note that in contrast to 3.9-3.13, there are no subdominant contributions in
3.14, only power corrections. This is because G r(w) does not have poles on
the upper complex w plane. From equation 2.23, also the Euclidean correlator

GEg(w) has only power corrections.

Figure 3-2: This picture shows the ares in the complex w plane where there are no
subdominant contributions to G (w) in the limit w = vy and ¥ — oo, The straight
lines are lines of poles.

e 4. Now let us consider the following limit

o = p, vr>1, (3.15)
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and expand G4 (w) in 1/v. We find that
Gy(w) = 2v evZ(u) (1 + O(e—uX(u))) (1 + %Kl +-. ) (3.16)

The 1/v corrections follow from the standard Stirling formula. The exponen-
tially subdominant terms exist only in certain regions of the complex plane as

indicated in 3-2. The leading term Z(u) has the form

Z(u) = —L(u) + iut(u) (3.17)
with
1 -
L{u) = —Elog(A+A+A_A_)
B, (AAN B (A4 i
t(u) = o log (A_}L) Ly log Y zﬂ (3.18)
and
As VIT L U ey g VML Uy (3.19)

= — , A:—-—
Bl ~ V2 =B T V2

We will see in the following sections that the quantities Z(u), L(u) and ¢(u) can
be identified with geometric quantities associated with a bulk geodesic. One
can also check that the following equation holds

du

= it(u) (3.20)

i.e. Z(u) and L(u(t)) are related by a Legendre transform. Note that in the
limit 3.15 the lines of poles in 3-1 become branch cuts for the logarithms in
3.18, since the pole spacing is independent of v and goes to zero when we scale
w with v. This implies that in 3.18 the branch cuts of the logarithms cannot
be chosen arbitrarily and should be straight lines extending radially from :l:275’E

and :!:27?;-r to co. This point will be important for our discussion.
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e 5. Equation 3.16 implies that in the large v limit, the shape of Gjp(w) =
G4 (w)e™3% as a function w does not change once we scale w with v. In partic-
ular G2(w) can be written as a superposition of Gaussians concentrated around
the maxima of Z(u). We are thus led to examine the maxima of Z(u). One can
check that for 8 = 8, Z(u) has a unique maximum at u = 0 with Z(u) ~ —cu?
with ¢ a positive constant. When 3 > 3, the maximum splits into a minimum
at u = 0 and two maxima. Recalling 2.14 for ry — oo both 8 and 3 go to 0 with
% =1- %r& 2. In this limit the maxima are at « = ++/3. In the opposite limit

o — 0 the quantity # approaches a constant while 8 — 0 and the maxima are

2
wrg”

widely separated at u = +

3.1.2 An alternative approximation

The above approximation is valid for d = 4 and to leading order ! = 0. For w large,
one can also use the method developed in [25, 71] to find approximate expressions
for Gr and G,. We leave the details to appendix A4. The basic idea is to identify
different regions in 2z for which 2.34 can be approximated by Bessel equations. For
w large enough the regions of validity of these approximations overlap and it is then
possible to find a solution to 2.34 by matching solutions of Bessel equations in the

overlap regions. This method works for large w satisfying
W > 12 e > 2. (3.21)

In Appendix A4, one finds that for d > 2 the poles for Gg(w) are located at

i (1 +v i
Wy = ? ] + nl-:-z— 10g(2)) ,-
% T Vin_1t —0.1.---
On = —wp=—= ( 5 Th—3 10g(2)) n=0,1,--- . (3.22)

The locations of the poles 3.22 coincide for d = 4 with 3.6 except for a constant shift.
Various expressions of Gr(w) and G4(w) for large w are also derived in appendix

A4 D and for d = 4 have the same form as 3.9 — 3.14 with some difference in the
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numerical coefficients in front of the subdominant terms that can be traced back to
the constant shift in the position of the poles. For example, the asymptotic behavior

for Gr(w) and G (w) as w — —i00 are given by

o) = 2ggp ()" (1-sstenin ()% 1) (10 3)

-V ] w i
Gy = —21/-1-‘1_,(——(11-)-2 (%) sin(mv)e~ 9B (3.23)

The asymptotic behavior in other regions of the complex plane can be found in

Appendix A4.

3.2 A “semi-classical” approximation and relation

with bulk geodesics

In the previous sections we used various techniques to get an idea of the analytic
properties of various correlation functions. However, since the boundary correlation
functions 2.52 and 2.54 are related to the bulk geometry in a very nonlocal way, even
if one can solve the bulk Laplace equation exactly, it is very hard to extract from the
resulting boundary correlation functions information about the bulk geometry, which

is equivalent to solving a quantum inverse scattering problem.

In this section, we will develop another approximate method which will allow us
to make a more direct connection between the boundary correlation functions and the
bulk geometry. This will enable us to understand how the bulk geometry is encoded
in the boundary correlators, in particular the manifestations of the regions beyond
the horizon and the black hole singularities. This method also has the advantage of
being applicable for arbitrary angular momentum.

Below we will use the notation appropriate for the flat case 2.35. The discussion
applies without change to the sphere case 2.36 when ! < l.. There are some new
complications for [ > I, (see 2-3 ) which we will discuss in section 3.3.2 and Appendix

A5. Also we will focus on G4 (w,p) which captures all the important aspects of the
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story. The discussions can be generalized to other real-time correlation functions

without much difficulty?.

3.2.1 A “semi-classical” approximation

Consider the following large v limit with u and k fixed
w = vu, 7= vk, vr>1, (3.24)

i.e. we take the mass m of ¢ to be large and “measure” the frequency w and mo-
mentum P’ in units of m. In this limit, one can solve 2.34 approximately using the
standard WKB method with 1/v playing the role of 5. More explicitly, writing

¥ = e¥¥ equation 2.34 becomes

(0.5 ~ ~B2S + V() + %Q(z) o (3.25)

with
V(z)= f (1 ; ’:—z) (3.26)

and
Q) = f ((d;,dl)z - 3) . (3.27)

We first restrict to real k, for which case the potential 3.26 (see 3-3 ) is a monoton-
ically decreasing function for z € (0,+00), and consider positive energy scattering
sates with u > 0. Solving 3.25 order by order in 1/v, we find that, in the classically

forbidden region (i.e. for z < z. in 3-3), the exponentially decreasing solution to 2.34

2The story for Gr and Gp is slightly more complicated since they correspond to propagators in
the bulk with a source. These complications are not relevant for probing the singularities and the
regions behind the horizon.
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V()

Z Z

Figure 3-3: Schematic plot of the potential 3.26 for k € R. The boundary is at z =0
the horizon at z = oo.

can be written as

Yo (2) = —1—)6"3 (1+o(v)) (3.28)

with3

Z(z) = /z:dz'n(z'),
K(z) = V(r)—u?. (3.29)

2. = z(rc) in the lower integration limit of 3.29 is the turning point with 7. given by

the real positive root of equation

2
V(r) = f(r) (1 + %) =u’. (3.30)
For k2,42 > 0, equation 3.30 has a unique positive root . > 1. Z(z) satisfies the
equation
-l-z'z—k2+1u2—1 (3.31)
f 2 '

with Z’(z.) = 0. Note that to the order indicated in 3.28, the term in 3.25 proportional

to Q(z) does not contribute.

3The branch cuts for #(z) on the complex z-plane are chosen so that they do not intersect the
integration contour in Z.
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The expression for ¢{“**) in the classically allowed region of the potential 3.26 (i.e.

for z. < z < oo) follows from the standard connection formula

wkb) __ 2 T -1
L b — \/.—_(_) cos (VW - Z) (1 +0 (v )) (3.32)

p(z

with

W = / dZp(2"), pl2)= Juz ~f (1 + T—z-) (3.33)
Near the event horizon 3.32 has the form
|
wkb) __ wz+id,, -
Lp )-ﬁe + (1+O(1/ 1))+c.c.
which fixes the relative normalization between (%) and 1, of 2.40 to be

1
WD) — s u>0, v—o00 (3.34)

wp \/ﬂ

From 3.34 we find that in the limit 3.24 the boundary Wightman function G is
given by (for u > 0)

Gy(w,p) ~2v e (1 + O(V“l)) + subdominant terms (3.35)
with

Z(u, k) = lilmo(Z(z) + Z(2') —log 2’ — log 2)

= 2 lirr(l) (— log z + /z dz' n(z’)) . (3.36)

Higher order 1/v corrections in 3.35 can also be obtained from 3.25 using the standard

WKB procedure. In particular, the term proportional to Q(z) will be important at

order v 1.

While equations 3.35-3.36 were obtained for u > 0 and real k? > 0, they can be
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analytically continued to general complex values of u and k2. The analytic continua-

tion is a bit subtle and will be discussed below.

3.2.2 Relation with bulk geodesics

In the limit 3.24, the mass of the bulk particle goes to infinity with its velocity
remaining finite. We expect the propagation of such a massive particle should follow
geodesics. We now show that Z 3.36 has a simple interpretation in terms of geometric
quantities associated with a bulk spacelike geodesic.

Due to translational invariance in the (t,Z) directions, a bulk spacelike geodesic
is characterized by the integrals of motion:

dt .
E=-fz, §=r— (3.37)

where s is the proper distance*. The geodesic satisfies the equation

1(dr\* 1, ¢
?(E) B+ G-l (3.38)

Equation 3.38 is precisely 3.31 with the identification®

Z'=——, u=ik, k=iq (3.39)

where the sign for the first expression corresponds to have the geodesic moving away
from the boundary. &, of 3.29 can be identified as the proper velocity of the geodesic
along the r direction. Thus Z(u,k) (equation 3.36) can be associated with a bulk
(complex) spacelike geodesic with constants of motion E = —iu,§ = —ik. The

geodesic starts from r — +00, moves inward, turns around at a turning point r., and

4We treat geodesics which are related by a translation in ¢ and # directions as equivalent.
SSimilarly one finds the equation satisfied by W in 3.33 coincides with that for a timelike geodesic
with the identification d
r -

W=2, u=E k=7
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comes back to 7 — +o00. At the turning point 7, % =0 and

i) (Z_z _ 1) _g (3.40)

[

which is equivalent to equation 3.30.

Z(u = iE, k) can further be written as
Z(u=iE,k) = —BY(E,q) + § &(F,q) — L(E, q) (3.41)

where L(E, q) is the (regularized) proper length of the geodesic and t(E, ), Z(E,q)

are the displacements in the ¢ and & directions between the final and initial points,

r—00

LE,) = 2lim / dr ~logr
re \/f—i—Ez—;éqz
dr

HE,§) = 2E [
e f\f+E2 =4
00 dr
HE, Q) = 27 . 3.42
Te rz\/f_,_Ez_;ffqz (3.42)
Also note that ¢(E,q) and z*(E, g) can be obtained from Z by
0z o0z

This shows that L and Z are related by a Legendre transform.

3.2.3 Analytic continuation

For a given real (E,q), equations 3.37 and 3.38 specify a unique geodesic in the
Lorentzian section of the black hole spacetime. Given the relation 3.39 between
boundary theory momenta and bulk velocities, we need to consider complex geodesics
with general complex (E,§). It is important to note that (E,q) does not specify a
complez geodesic uniquely. Given a choice of root 7.(E, ) of equation 3.40 and a

contour in the complex r-plane from r = +o00 to r.(E,q), 3.42 define a complex
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spacelike geodesic in the bulk. For the same value of E, ¢, a different choice of
the root of 3.40 or a different contour which cannot be smoothly deformed into the
previous one defines a different complex geodesic. For a general complex (u, k), the
bulk geodesic which corresponds to Z(u, k) of the boundary theory can be identified
by the analytic continuation of the turning point r.(u,k) (equation 3.30) from the
k% > 0,u > 0 region.

The analytic continuation of r.(u, k) from the k% > 0,u > 0 region is not unique,
since for fixed k2, r.(u, k) has branch points in the complex u-plane at which it merges
with other solutions of 3.30. These are also branch points of Z(u, k). More explicitly,

the branch points u; of r.(u, k) are given by

u? =V (), (3.44)
where V(z) was given by 3.26 and z, are critical points of V(2), i.e.

V'(z)=0. (3.45)

Note that not necessarily all solutions of 3.45 correspond to the branch points of r..
It can happen that some of the solutions correspond to the merger of the other roots
of 3.30. Those solutions do not give rise to the branch points of Z(u, k) in the leading
order analysis.

For r.(u,k) and Z(u,k) to be single-valued, branch cuts have to be specified.
The locations of the branch cuts can not be chosen arbitrarily, since different choices
of branch cuts give rise to inequivalent analytic continuations, which will associate
different bulk geodesics to Z(u, k). Given that at finite v the only singularities of G+
in the complex w-plane are poles (see discussion after 2.44), the analytic continuation
of Z(u, k) must be unique and its branch cuts should coincide® with the lines of poles
of G at finite v. In section 3.1.1, in the discussion after equation 3.15 we have seen

this explicitly for d =4 and k£ = 0.

6This can happen if the spacings of the poles in w-plane are independent of v or grow with v
slower than the linear power.

69



Thus to properly identify which complex geodesic in the bulk is associated with
the large v limit of the boundary Wightman function G (vu, vk) for a given (u, k), we
need to determine the lines of poles of G, (vu,vk). When k = 0, the poles of G, (w)
in various dimensions were determined before in [75, 25, 71, 83] and were reviewed
in sec. 3.1. The poles for k # 0 will be determined in the next section and appendix
A5. In particular, we obtain a simple formula for the locations of the poles in the
large v limit.

To summarize, the large v limit 3.24 of the Wightman function G4 (vu, VE) is
given by the Legendre transform of the proper distance of a (complex) bulk spacelike
geodesic with integrals of motion £ = —iu and ¢ = —ik. The geodesic connects
two boundary points and is specified by a turning point r.(u, E) in the bulk. From
G, (vu,vk), one can use 3.43, 3.41 to find bulk geometric quantities like t(E, §), (E, §)
and L(E, g) for all (complex) values of F, g, which can be used to reconstruct the bulk
geometry’. As we will discuss more explicitly in the next chapter, as one varies (u, E),
the turning point scans over the full complexified bulk geometry and the boundary
correlation functions can be used to probe the regions beyond the horizon and near

the singularity.

3.3 Quasi-normal modes

In the last section we established an explicit relation between boundary momentum
space correlation functions in the large operator dimension limit and bulk geodesics.
As discussed there, to properly identify the bulk geodesic associated with G (vu, vk)
at a given (u, k), we need to determine the poles of G (vu,vk), which become dense
and appear as branch cuts of Z(u, k) in the large v limit 3.35. In this section we
develop new techniques to find poles of G, (vu,vk), which in the gravity language,
are also called quasi-normal frequencies.

The positions of the poles of G+ (vu, vk) for general k (including k = 0) in the large
v limit can be obtained by generalizing the WKB analysis of the last section to include

7This is in some sense a classical inverse scattering problem.
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higher order subdominant corrections. Near the positions of the poles, in addition
to 3.35, an infinite number of subdominant corrections become equally important.
When summing over them, one finds the locations of poles. In other words, the pole
lines are anti-stokes lines for an infinite number of subdominant contributions. We
present the detailed analysis of this more sophisticated WKB analysis in appendix
A5 and give only the final results here.

When v is large, we find that G, (w = vu,p = vk) has a line of poles starting at
each of the branch points u, of r.(u,k). As discussed around equation 3.44, at u,
two solutions to the turning point equation 3.30 merge together. We denote the two
turning points by 2r = z(rr) and zx = z(rk). The locations of the poles are then

given by the solutions the following equation

Z(zr, 2g) = im(1 + 2n), n=0,1,--- (3.46)
where?
Z(or, 25) = / ™ 4 k() (3.47)
zr

and k(2') = 1/V(z) — u? was defined in 3.29.

Equation 3.47 can be greatly simplified if u is close to u,. Let u = up + z with

z ~ O(v™1). Near 29 = 2r(up) = zx(up) we can approximate the potential V(z) as
Lo 2
V() V(20) + 502V (an)(z = )

where we have used equation 3.45. We then find that

_ Up T
2rx ~ z ta, a=2 ————an @) (3.48)

8The precise determination of the multi-valued function Z(zr, 2k ) is given in Appendix A5.
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and after integrating 3.47

~ ima? [82V(z0)
Z(ZT,Z_K) ~:':—2 2

= pinz (3.49)

with

_ . [8V
=127

Equation 3.46 then leads to the position u, of the poles

(3.50)

20

1.6
unzub+(n+-2—);, n=0,1,--- (3.51)
In terms of w = vu, the poles are uniformly spaced near wy, = vuy
1
Wn =wb+(n+ "2')6, n=0,1,--- (352)

with a spacing given by® 3.50 which is independent of v.

The branch of the square root in 3.50 should be chosen so that § points away
(when there are no bound states) from the real axis at u!°. In the infinite v limit,
the spacing in u goes to zero and the line of poles becomes a branch cut of Z(u, k).
In particular the phase of ¢ gives the direction of the branch cut.

To summarize, for large but finite v,

e 1. The locations of the first few poles, i.e. with w, — wj ~ O(1°), are given by

3.52.

e 2. For poles which are of order O(v) from w; in the w-plane, 3.52 is no longer

valid and one needs to use 3.46.

9The formula below does not apply to cases with V(29) = 0 or 82V = 0, for which the approxi-
mation breaks down.

10The determination of the sign in eq 3.50 follows from the analysis of Appendix A5. In the
language introduced there for fixed k there are poles in the region of the complex u plane where the
turning points Zr and Zx considered in 3.46 are both active. If the potential doesn’t admit stable
or unstable bound states there is only one active turning point in the vicinity of the real v axis.
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e 3. At fixed p = vk and v, the locations of poles near |w| — oo are given by 3.22
except for the log(2) factor which does not appear in this large v expansion.

Because of 3.21 the pole locations 3.22 are invalid in the limit 3.15.

3.3.1 Locations of poles in the large v limit: infinite mass

black hole
Let us now look at the explicit expressions of the branch points 3.44 and spacing 3.50
of the poles near the branch points for various dimensions. In this subsection we look

at the cases of an infinite mass black hole 2.5.

Let us first consider k£ = 0, in which case

V() = fr(2) =7 - 5

and equation 3.45 becomes

2r + sl 0 (3.53)
Among d solutions of 3.53 only

1
—~92\7 .,
r:(d22) i3

correspond to the merger of the turning point with the other roots of 3.30, leading to

four branch points

1
iz d—2\? d
= deqettd = : :
Up Cqe 4, C4 ( 2 ) d—2 (3 54)

The spacing of poles can also be easily computed from 3.50
§ = +Vdcse*? (3.55)

where each sign of 3.55 should be paired with that 3.54. Except for d = 4 (i.e. AdSs),
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3.55 is different from the spacings 3.22 at large w, which are (using 2.11)
5 Tz
0 = +d sin PR (3.56)

although they do point to the same directions. 3.55 and 3.56 do agree for d = 4.

The explicit expressions for the branch points and pole spacings for k% # 0 are
rather complicated since they involve roots of a cubic equation. We will only point
out some important features. For definiteness, we will restrict to k2 real, i.e. k is real

or pure imaginary. These are also the regions of main physical interests.

For k% > 0, the structure of poles is similar to that of k2 = 0. There are four lines

of poles. In particular, as k& — +oo, the branch points approach the real axis

2
1 l—f+—2 i —
up ~ + (k + 2 (g—) S ) (3.57)

and the pole spacings near the branch points are
i\ #
o~ +Vd+2 (-2-) e E 4 (3.58)

One can check the angle of the pole lines decrease monotonically as k? increases. Note
that in the k2 — oo limit, the pole lines become the light cone cuts of G at zero

temperature.

For k%2 = —¢? < 0, there are two additional lines of poles along the imaginary u

axis with branch points located at u, = +iE,. For ¢*> < 1, one finds that

a=2
2 d \7 % _di-=2

and

d
—_— 2
5= :I:i% (%2) g @, (3.60)

E, decrease monotonically to zero as g increases to 1. For ¢? ~ 1 the gap & between
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successive poles becomes § = id + O(q — 1).

vl
3

N _—

Figure 3-4: The potential 3.26 for —k* = ¢° > 1 admits bound states. In the z
coordinate the boundary is at z = 0 and the horizon at z = oc.

For ¢ > 1, the two lines of poles along the imaginary u-axis cross the real axis.
This is due to the fact that for ¢> > 1, the Schrodinger problem 2.34 contains bound
states, as is clear from the shape of the potential plotted in 3-4. The poles of the

lower branch which lie in the upper half plane are bound state poles.

NN LS

2N / \"

—-—u

w -

AN

®)
s,
o+

/.
\

~
N TN

Figure 3-5: The structure of the branch cuts for (a): k¥ = 0, (b): k% > 0, (c):
-1 < k? <0, (d): k2 < —1. At finite v, the branch cuts become lines of poles. We
also labeled the asymptotic regions by S or B, indicating whether the corresponding
turning point approaches the black hole singularity (S) or the AdS boundary (B).

In 3-5, we plot configurations of the branch cuts of Z(u,k) for various values of

k? from the structure of the pole lines.

75



3.3.2 Long-lived quasi-particles for strongly coupled SYM

theories on 53

za znin Zp Zyux Z YA

Figure 3-6: The figure at the left is a schematic plot for the potential V' (2) for k > k.
The resulting pole lines in G (vu,vk) are shown in the right plot. In the right plot
we only show the right half of the complex u-plane. The poles in the left half are
obtained by reflection with respect to the imaginary axis.

In this subsection we consider the pole structure of G, (w, p) for a finite mass black
hole 2.1 and 2.2.

For small values of £ € R, the potential V(z) 3.26 is a monotonically decreasing
function along the real z axis. The pole structure of G (vu,vk) is very similar to
that of an infinite mass black hole discussed in the last subsection and is captured
by 3-5. For larger k however there exists a critical value k. such that for & > k. the
potential is no longer monotonic and looks like in 3-6. At k = k. we have 2, = Zmas
and at z = Zpin = Zmez DOth the first and second derivative of V'(z) are zero. By
using the relation 2.8 between z and r and the explicit expression of V'(z) 3.26 k. is

the largest positive root of the coupled equations!!

%V(z) =0 = d(@2+d)k+(d-2)rP)p—-8Kri? =0,

%V(z)=0 = 2r_2k2ri 2 4 (d-2)rPp+dEip=0. (3.61)

UFor d = 4 eliminating r gives an equation (k2 — u)3 — 27p%k% = 0.
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For k > k. the position zy,in = 2(Tmin) of the local minimum and zp.; = 2(Tymez) of
the local maximum of the potential are given by the real and positive roots of the

equation:
dizV(z) =0 = 27 -2k 2 4 (d-2)rPu+dkiu=0. (3.62)

For large k > k. the solutions of 3.62 are approximatively given by the solutions of:
r* = k? and 2r%? = du. We see that there are 2 real positive solutions. The one

corresponding to Zmin I8 Tmin ~ VE.

The form of the potential 3-6 for £ > k. implies that it is classically possible for
a particle with sufficient angular momentum to be in a bounded orbit outside the
horizon of the black hole as the centrifugal potential provides. a barrier to its falling
in the horizon. Quantum mechanically however there will be a nonzero probability
for the particle to tunnel through the centrifugal potential barrier and be absorbed

by the black hole.

The situation just described ( 3-6 ) implies that the Schrodinger equation 2.34
in the large v limit has resonances whose energies are given by w, = vu, with u,

determined by

2% /z" dzyJu2 — V(z) = 2n(n + %), n=0,1, (3.63)

where w2, = V(zmin) < u2 < V(zmaz) = uZ,, and z,,2, are real solutions to

V(z) = u (see 3-6). The maximum energy for these quasi-stable states is Umgq-

These quasi-stable states can tunnel through the potential barrier between z, and 2z,

(see 3-6) to fall into the horizon, with a decay rate given by
e = exp (—21/ INZCE ug) : (3.64)
2p

For small n and large v the first few energy levels will be close to V(z,,) and it

is therefore possible to approximate the potential with its quadratic part. One can
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then get the following approximate formula for u,

_ 1 ’ 02V (2min) 1 _ 2
Up = Umin + N 2V o) (2 +n), n=0,1,---, Unin = V (Zmin) - (3.65)

For example for the large & limit discussed below equation 3.62, we find that 82V (2min) =
(f (Pmin) Y202V (rmin) ~ 8k? and then using 3.65:

2
Umin ~ Kk, Ups1 — Up ~ - (3.66)

The quasi-stable states described above generate poles in G (w,) which are very
close but not exactly on the real axis. The distance of the poles from the real axis
is inversely proportional to the decay rate of the corresponding quasi-stable states.

More precisely the poles in G (w,!) are located at
Wy = VU, £ LeTn (3.67)
T

From the boundary theory point of view, these poles in G,(w,!) can be inter-
preted as excitations generated by an operator O over the thermal equilibrium which
thermalize very slowly with a rate proportional to e ™». These excitations have a
natural interpretation of very long lived quasi-particle states in the boundary theory
on S¢!. In particular, for d = 4 this implies the existence of very long lived quasi-
particles for N = 4 SYM on S3. The existence of these long-lived excitations should
have to do with the fact that states with large angular momenta on S¢~! are highly
degenerate, since the dimensions of the representations of SO(d) grow like a power
with a.ilgular momenta. In general we expect excitations associated with states with
large of degeneracy should thermalize more slowly. The sharp appearance of these
quasi-stable states when k& > k. should be a consequence of the large N and large A
limit that we are working with.

As v — oo the poles of G (w, k) form branch cuts in the u = ¢ variable extending
on the real axis from Unip tO Umez- At Umae the branch cuts start deviating from the

real axis as depicted in 3-6, this is due to that for large |u| >> Umas the position of
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the branch cuts is qualitatively the same as the one for a monotonic potential.
To conclude this section, let us consider what happens to these long lived quasi-
particles in the infinite black hole limit 2.4, which describes the boundary theory on

R, In momentum space, the limit 2.4 can be described as

l

= finite, T= finite, T—o0. (3.68)

SlE

From this equation it can be readily checked from equations 3.61 that as T — oo (i.e.
p — 00), k, scales'? with T as T#%. 1t then follows that the frequencies (see 3.66)
and angular momenta of the quasi-particles scale with T at least as fast as T# > T,
which is much faster than 3.68. Thus we conclude that these quasi-particles are not
present in the spectrum of the theory on IR}, Indeed, as we discussed earlier the

potential V(z) for 2.6 is always monotonic and k. does not exist.

12The scaling of k. can be qualitatively understood E)y imposing that the approximate expressions
2

for rmin and rpy,q, valid at large k coincide that is 2kc+ = dp and by recalling that as y — oo the
temperature scales as T ~ p3.
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Chapter 4

Excursions Beyond the Horizon

4.1 Decoding the bulk geometry

In chapter 3 we used three different approximation methods to solve the Laplace
equation for a scalar field propagating in an AdS black hole geometry and to obtain
real-time thermal boundary correlation functions. Since that chapter is somewhat
technical, we briefly summarize here the main results obtained.

The method discussed in sec. 3.1.1 applies to d = 4 with [ = 0 and w not too
small. The explicit expressions for Gr(w) and G4 (w) were presented in 3.5 and the
poles of Gr(w) in the complex w-plane were given in 3.6. The large |w| limits of 3.5
along various directions in the complex w-plane were given in 3.9-3.14 and the large
operator dimension limit (i.e. large v) was given in 3.16.

The method discussed in sec. 3.1.2 and in detail in Appendix A4 applies to large
w, I = 0 and all dimensions. For d = 4, the results of sec. 3.1.1 were reproduced in
the overlapping region of validity. In particular, it was found that all the essential
features of the d = 4 results, including the locations of the poles and the asymptotic
behavior of correlation functions, generalize to other dimensions.

The WKB method developed in sec. 3.2 concerns the large operator dimension
limit (¥ — 00). The leading order expression for G (vu,vk) was given by 3.35-3.36.
Equation 3.36 can in principle be integrated for any u,k and general dimension d.

But the integrations are rather complicated except for d = 4,k = 0 and d = 2. The
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explicit expressions for various cases are presented in Appendix A6. For d =4,k =0,
the result agrees with 3.17-3.18 obtained in sec. 3.1.1. For d = 2, the result agrees
with that of Appendix A2 where the Laplace equation was solved exactly.

As discussed in the introduction, our main motivation is to understand how the
bulk geometry is encoded in the boundary theory, in particular the manifestations of
the regions behind the horizon and the presence of black hole singularities. The WKB
method of sec. 3.2 provides important tools for answering these questions. There we
found that for a given (u,k), G+(vu,vk) is given by the Legendre transform of the
geodesic length of a complex spacelike geodesic in the bulk, whose constants of motion
(E,q) along t, T are related to (u, k) by equation 3.39. The key question is then what
are the regions of the black hole spacetime that the corresponding geodesics probe
as we scan different values of (u,k). To answer this question, we can look at how
the turning point r.(u, k) of a geodesic varies with (u, k). The discussion of sec. 3.2.1
indicates that (e.g. from 3-3) 7.(u, k) always lies outside the horizon for any real u and
k. Thus to see whether regions inside the horizon can be probed we should consider
complex values of u and k. As explained in sec. 3.2.3, the analytic continuation of
r.(u, k) to complex values of u and k is subtle, since r.(u, k) contains branch points
and branch cuts have to be specified to make the analytic continuation unique. As
discussed there the locations of the branch cuts for r.(u, k) should coincide with the
locations of lines of poles of G (w,p) at finite v. We developed new techniques to
determine such quasi-normal poles in sec. 3.3 and Appendix A5. The results are
summarized in 3-5. We will now use 3-5 to discuss the analytic continuation of
r¢(u, k). We will show below that the analytic continuation to complex values of w, k
allows it to probe regions inside the horizon.

The behaviour of () in various parts of the complex u-plane (for a given k?)
can now be uniquely determined by analytic continuation from u > 0. In particular,
3-5 implies that the continuation should be done through the region around u = 0.

Let us first look at what are all the possible values of (u,k) for which r,(u, k)
approaches the singularity. From 3.30, when r, — 0, |u] — oo, because f blows

up at the singularity (large curvature effect). Conversely, |u| — oo implies either
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r1 — 0 or r; — oo. Thus along different directions to infinity in the complex u-plane,
the turning point approaches either the boundary or the singularity, the choice being
determined by the analytic continuation. The branch cuts in 3-5 divide the complex
infinity of the u-plane into various asymptotic regions. The regions which correspond
to either the singularity or the boundary are indicated in 3-5. Near the real u axis,
the turning point approaches the boundary as |u| — 400 as can be expected. As

|u| = +o0 near the imaginary u axis, the turning point approaches the singularity.

For definiteness, we will restrict our discussion below to real £? and u? and examine
in some detail how the turning point changes with u for fixed k2 for the metric 2.6 .

The discussion generalizes to.finite y as well.

| | w0 uo| | w0

2) b)

U@ - um

ol ol |

Figure 4-1: The potential U for (a): k% = 0, (b): k2 > 0, (c): -1 < k? < 0, (d):
k? < —1. The horizontal axis is r and vertical axis is U(r). The horizon is at r = 1.

For this purpose, it is convenient to visualize how the turning point changes with
u by treating equation 3.38 (or 3.31) as the motion of a one-dimensional particle of

energy E? = —u?, moving in a potentiall

v= s (541) »

!Note that the potential V is inverted since we work in the classically forbidden region of the
Schrodinger problem 2.34.
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with the turning point satisfying the equation

f <1 + g—) =u? (4.2)

In 4-1 we plot the potential U for various values of k* for d = 4. The discussions

below applies to all d > 3. Some important features of the plots can be summarized

as:

e 1. For k? > 0, the potential U is monotonic for real r > 0 with U(r = 0) — +o0
and U(oo) — —ooc. When u? > 0, the turning point r; > 1, i.e. it lies outside
the horizon. By continuing past 4% = 0 to 4% < 0 (corresponding to real energy
E for the bulk geodesic), the turning point lies inside the horizon. In particular,

as E? = —u? — +o0, the turning point approaches the singularity.

e 2. For k? = —¢* < 0, the potential U has a maximum at r,,,; > 0 with both
U(0) and U(oo) going to —oco. For ¢? < 1, Tmar < 1, i.e. it lies inside the
horizon, while for g2 > 1, 7,,,,, lies outside the horizon. Thus in the latter case,
the potential V has a minimum at r,,,, outside the horizon with V(r,,,;) < 0.
One can check that this remains true for the full potential V, 2.35 for v not too

small. This implies that the Schrodinger problem 2.34 can have bound states.

e 3. Denote u? = —E? = —U(Tmaz). For u = u, = +iE,, the turning point
reaches 7,4, U, are precisely the branch points of r; on the imaginary u axis
indicated in 3-5 ¢ and 3-5 d. When E? > E? = U(Tma), the corresponding
classical path has no real turning point and will hit the singularity. By giving
E a small imaginary part, one can nevertheless continue them beyond the sin-
gularity to a complex turning point. While naively these geodesics appear to
hit? the singularity, they are not good probes of it unless their complex turning
point is also close to the singularity, since the integration contour itself can be
smoothly deformed in the complex r-plane and the deformed contour does not

have to be close to the singularity if the turning point is not.

2or with a small imaginary part for E, they seem to get very close to the singularity
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The above discussions can be easily generalized to all complex values of k2 and u

using equation 4.2 . Generically, the turning point r; is complex.

4.1.1 UV/UV connection for physics beyond the horizon

The dependence of r; on u illustrates some interesting features in the relation between
bulk and boundary scales. For definiteness, we illustrate them using k% > 0. For real

u — +00, the turning point is given by
T R u— +00 (4.3)

i.e. the turning point approaches the boundary. When u decreases, r; also decreases.
The turning point r; reaches the horizon for u = 0 (see 4-1 a and 4-1 b) . This
behavior reflects a familiar feature of the AdS/CFT correspondence, called IR/UV
connection {63, 90], which relates long distances in the AdS spacetime to high energies

in the boundary theory.

When dealing with physics inside the horizon, there appears to be a new feature.
The turning point r; moves inside the horizon when u moves along the imaginary
axis from the origin. Let u = ¢E. Then as F increases, r; decreases. For £ — +o00,

we find that

k=0

™= — O . (4.4)
£ k#0

Lol

To probe deeper inside the horizon requires larger E. Since the singularity may
heuristically be considered as the UV of the bulk, we thus find a UV/UV connection
when dealing with the physics inside the horizon.
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4.2 Asymptotics of G, at finite k

In the last section, we found that the geometry around the black hole singularity is
encoded in the behavior of Yang-Mills correlation functions in the complex w-plane for
w — +i00. In this section we examine the manifestations of the singularity explicitly.
For this purpose, we need to extract the large |u| behaviors of the integrals 3.41-3.42
near the imaginary axis. The integrals in 3.42 are rather complicated for k* # 0
and general d. For an AdS; black hole, one can evaluate 3.42 explicitly in terms of

elliptical integrals and we collect the results in Appendix A6 3.

We present the large |u| behaviors of Z(u, k) as defined in 3.41 for a finite mass
black hole in AdSs using the results in Appendices A.6 and A.7. The features dis-
cussed below should apply to finite mass black holes in generic dimension too. For
definiteness we will restrict to k2 = —q? > 0, in which case the structure of branch

cuts and turning points in the complex u-plane is described in 3-5 a and 3-5 b.

First we consider the limit u — +o0o along the real axis. We find that
u 1~
Z = —uty + 2log (i—2~) +24 3 - Ma(k) (4.5)
n=1

where the upper (lower) sign corresponds to u — 400 (—00) and

0 Reu — +o00

o~
=)
Il

(4.6)

—i8 Reu — —o0

where M, is a polynomial in k2 and p of order at most k?*. The expansion 4.5 applies

3 Alternatively, one could extract the large |u| expansions directly from the integrals using Mellin
transformations, an approach which can in principle be applied to finite mass and generic dimensions.
In this way one can check that the results presented here are universal. This method, while general,
is also rather complicated and we will not illustrate it explicitly
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for any finite value of k. Equation 4.5 implies that for w — oo near the real axis

e (8) (1+0(%))  Rew— oo
Gi(w) ~ (4.7)
atip (+£)" e (1+0(3)) Rew— oo

This is precisely what one would expect based on conformal invariance? and is consis-
tent with the asymptotic expansion 3.9 which is the result of a different approximation

of G4 (w) valid for k£ = 0.

Having analyzed the asymptotic behaviour of Z(u, k) along the real u axis we can
now consider the case u — +ioco. Letting u = iE and taking ReE — +o00 along the

real E axis we find that Z has the following large £ expansion

E
Z=~toE+2log5+2+kzz

n=0

((kElﬂ)) ETA’“”ZIEZI—,‘I%(M (48)

where tg is
, ReE — +o00 (4.9)

and B was defined in equation 2.12. For ReE — —oc along the real E axis, one takes

E — —F in 4.8 except for the first term for which one uses instead
B
to = ——2", ReF — —0 (410)

In 4.8, T,(k) is a polynomial in k% and x up to at most k2*. L,(k) is a polynomial
of k? and p containing powers up to k?*. The expansions for other quantities in 3.42

are similar,

L = -2log(:l:§) .

“When real w — +00, one expects the correlation function to recover the zero temperature form.
The second line of equation 4.7 follows from the general properties of the Wightman function at
finite temperature.
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t = to—%-}-...

= 0+--- (4.11)

where --- in 4.11 denotes terms of similar structure to the last two terms in 4.8.

Since the first series in the expansion 4.8 contains negative powers of k, it breaks

down when k is small (O(E™?)).

The asymptotic expansions of Z(u, k) along the real and imaginary u axis for fixed
k are therefore extremely different. Along the real axis the expansion is valid for any
finite value of k while along the imaginary axis the limits ¥ — 0 and u — Fico do not
commute. While the physics of the spacelike geodesics close to the boundary is quite
indifferent to the presence of the transverse S® for small values of k as the geodesics
approach the singularity the effect of a small deviation of £ from 0 is important. This
is particularly evident from the expansion of x; whose first term is not linear in £ but

of order O (=)
When |kE| < /i the expansions 4.8 is replaced by

Z =—Ety+2log (+£) +2+ 52, ghrkn(e) (4.12)

k2E?
I

where € = and k,(s) are power series in €. For example, for n =1

ki(e) = ge + %62 + O(e?) (4.13)

The expansions for quantities in 3.42 are given by 4.11 but with - - - replaced by terms
of the same structure as the last term of 4.12. The appearance of the expansion
parameter ¢ for small k can be attributed to the presence of the branch point 3.59 at
2¢9E =~ p for large E. The expansion 4.8 applies in the limit |E] — oo for any given
finite k£, no matter how small. 4.12 is only relevant for the expansion near k£ = 0.
Note that 4.12 implies that the derivatives of Z over k evaluated at k = 0 diverge in
the large E limit®.

5The expansion in 4.12 can be generalized to other dimensions. In particular the divergent
behaviour of the derivatives of Z over k for E — too and k = 0 is a generic feature that will be
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Equations 4.8-4.12 imply that as w = vu — Zioco, the boundary correlation

function behaves as

oisnmgip i) N ovofE)) o

where the upper (lower) sign corresponds to w — +ico (—ico). Note that the cor-
relation function decays exponentially along these directions. The exponential decay
is controlled by the quantity . This behavior is due to the fact that for |E| — oo,
t(E,q) — const.

We therefore notice two main differences between the expansions of G (w,p) for

w — oo along the real and imaginary axes.

e 1 The exponential decay along w — +ico present in 4.14 cannot be obtained
by analytical continuation from the expansion 4.7 valid for w — +o00. This is

due to the presence of the quasi-normal pole lines.

e 2 While along the real w axis the finite p corrections organize in powers of w2

1

along the imaginary axis they organize in powers of w™2. Moreover along the

imaginary w axis these diverge in the limit p — 0 as the series expansion breaks

down for p ~ w™t.

Some further remarks:

e 1. While naively it appears from the second equation of 3.42 that #(E, q) is
an odd function of F, one has to be careful about the contribution of the pole
at r = 1 when analytically continuing the integral from the k2 > 0,u > 0
region. It can indeed be checked from equations 4.9,4.10, 4.6) that except for
the imaginary part of the constant term to, the rest of the function #(E,q) is
indeed odd in E.

e 2. Note that the leading behaviors of various quantities in 4.11 are universal.

They simply follow from the fact that as r; — 0, the geodesic becomes null. For

related in the next section to the presence of a singularity in the bulk

89



example, the constant ¢, in the expansion of t(u, l;) for u approaching imaginary
infinity is precisely the Schwarzschild time that it takes for a null geodesic to
go from the boundary to the singularity and to come back (recall 2.11). In
particular, the results apply without change to finite mass black holes (see ap-
pendix A7) and black hole in other d > 3 provided one uses the corresponding B

appropriate for each background.

3. While 4.14 and 4.7 were derived in the large v limit, it is important to
emphasize that they should hold for all v, since the limit |u| — oo should
coincide with the limit |w| = v|u| — oo regardless of the value of v. This can be
explicitly checked for AdS, black holes by comparing with the large w behavior
of Gia(w) = e737G, () described by 3.9 and 3.11 or for generic d > 3 by using

the results of the approximation described in appendix A4.

4. In the above we have computed only the leading order approximation to G
in the large v limit. It would be interesting to compute the next order in the
1/v expansion. In particular, the function Q(z) 3.25 will start contributing to
next order. Since Q(z) becomes singular at 7 — 0, it would be interesting to see
whether it yields new manifestations of the singularity in the boundary theory

correlation functions.

4.2.1 Light-cone limit

Another interesting limit is the light-cone limit v — 400 with k& ~ u. The results

for this case are derived for the y — oo rescaled metric 2.6 in appendix A7. We

have seen in section 3.3.2 that for finite u as k — oo there are branch cuts for the

function Z(u, k) starting at u ~ k on the real u axis. We also have seen in 3.57 that

these branch cuts do not reach the real axis in the limit u — oo for any finite k.

This feature shows up in the asymptotic behaviour of Z(u, k). Defining the variable

gz%;-—1wehavefork—+ooandg>>k"%:

1

Z = log(u® — k*) + 2 — log(4) + O(W
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The divergence as u? — k? = 0 however is not present for any finite k as the expansion
changes for g ~ k=3 reflecting the fact that the branch cuts 3.57 remain at a finite
distance from the real axis. There is no divergence for u ~ k and Z(u, k) remains

finite. At finite x4 on the contrary a singularity is present on the real u axis.

4.3 Manifestations of singularities in boundary the-

ories

We argued that for large w along the imaginary axis the boundary theory correlation
functions encode information about the region of spacetime beyond the horizon and
close to the singularity. In this section we will reconsider the asymptotic behaviour
of G4 (u, k) for large u imaginary and pinpoint two features which are manifestations
of the singularity.

As w = vu — %ioco, the boundary correlation function behaves as
r W i i
G+(Lu') ~ 1,-(1"—(1,,))5 (:F’LE) ei who (415)

where the upper (lower) sign corresponds to w — +ioo (—ico). We have obtained
this asymptotic behaviour using two different methods in section 3.1 and also in the
large v limit in the previous section. This result remains valid for finite v and for all
values of d > 2.

In the large v limit we have established a direct connection between the quantity

o (£22) o

appearing in 4.15 and the Schwarzschild time that it takes for a null geodesic to go
from the boundary to the singularity and to come back. The real part § in particular
measures the departure of the Penrose diagram (2-1 ) from a square as was first
pointed out in [28].

Notice that as tp # 0 the asymptotic behaviour of G (w) along the imaginary axis
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cannot be obtained by analytic continuation from the asymptotic expansion valid in

the limit w — +o0:

This reflects the presence of the quasinormal poles accumulating for |w| — co. They
separate the region probing the geometry outside the horizon from the region probing
the geometry beyond it. One particular case we have to pay particular attention to
is the BT Z black hole. As shown in appendix A2 in this case the quasinormal poles
lines are parallel to the imaginary w axis and separate a distinct asymptotic region
only for k € IR and k # 0. For k£ = 0 the quasinormal poles are on the imaginary w
axis.

For d # 2 at r = 0 we have a curvature singularity. One consequence is that
the transverse S;_; in the metric shrinks as 7 — 0. The geodesics that we take in
consideration to approximate G4 (vu) at k = 0 have zero angular momentum on the
Sq-1 and therefore are not sensible to the shrinking radius of curvature. However as
soon as we consider derivatives of Z(u, k) with respect to k at k = 0 we have from
4.13:

d2n

WZ(E’ k) |k=0N E2n E — o (4.17)

which diverge as E goes to infinity reflecting the fact that the transverse S;_; is
shrinking in size® as the turning point r, ~ % — 0. In the BT'Z case the situation
is different as there is no curvature singularity and the derivatives considered in 4.17

do not diverge as £ — oc.

Finally a generic consequence of the presence of the horizon is that in the Schrodinger
problem 2.34 the potential Vi(2) — 0 as z — oo. This is due to the explicit factor
of f(r(z)) in 2.36 which goes to zero at the horizon. Therefore the problem admits a
continuous spectrum; moreover for real values of  and w there are no bound states

and therefore all singularities in the Wightman function G (w) computed at N — oo

6in [27] a class of gauge theory observables directly sensible to this curvature divergence was
proposed
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and A — oo are away from the real axis. We have seen in 3.7 that as a consequence
their Fourier transforms will decay as ¢ — oco. In the absence of an horizon 2.34 only
admits bound states, the spectrum off all correlation functions is discrete (for S; of

finite radius) and they do not decay in time.

4.4 Discussions: Resolution of black hole singular-

ities at finite N ?

There are two limits in which the theory can be approximated by a continuous spec-
trum. One is the large N limit. For a typical many-body system, one expects the
spacing of the highly excited states to be of order A~¥, where in our case K is of
order N2, thus we expect the level spacing to be exponentially small in N2 when N
is large. In the large N one has a continuous spectrum. The other limit is the limit
of R — oo, in which case the theory lives on IR®. Due to the underlying conformal

invariance, this is the same as the high temperature limit of the theory.

In this chapter we established a direct relation between the large operator di-
mension limit of the boundary Wightman function G, (w, 7) and bulk geodesics with
integrals of motion £ = —iv~'w and ¢ = —iv~!p. In particular, we find that in
the complex w-plane, there exist lines of poles separating the complex w-plane into
several sectors (see 3-5). Roughly speaking, the sectors near the real axis describe
the physics outside the horizon while the sectors near the imaginary axis describe the
physics inside the horizon. At complex infinity, one either approaches the boundary
or the singularity. The presence of the curvature singularity of a black hole is re-
flected in a certain exponential falloff of G, (w, p) near imaginary infinity. The falloff
is controlled by a complex parameter B (introduced in 2.12) which characterizes the
black hole geometry. These results are quite generic and are applicable to finite mass
black holes in various dimensions.

The rich analytic behavior observed for G, in the complex w-plane is tied to

the fact that in the large V limit, the boundary theory has a continuous spectrum,
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even though it lives on a compact space. In the bulk, the continuous spectrum
arises because of the presence of the horizon. At finite N, no matter how large,
the boundary theory on an S%! has a discrete spectrum. In particular, the finite

temperature Wightman function should have the form

Gi(w) =21 e PPrpnd(w — E, + Ep) (4.18)

mmn

which is a sum of delta functions along the real w-axis, where m,n sum over the
physical states of the theory. G, in equation 4.18 does not have an unambiguous
continuation off the real axis. In particular, the procedures of analytically continuing
G, to complex w and taking the large N limit do not commute. Equation 4.15 arises
by taking the large N limit first and then doing the analytic continuation. This
appears to imply that at finite N, geometric notions associated with a black hole,
such as the event horizon and the singularity, no longer exist. This is not surprising
since the black hole geometry arises as a saddle point in the path integral of the
boundary theory in a 1/N expansion. If one does not use such an expansion, the
geometric notions lose their meaning.

Nevertheless, when N is large, in a typical situation the asymptotic expansion
in 1/N becomes an arbitrarily good approximation and the geometric interpretation
is valid. The presence of the black hole singularity seems to imply that for certain
questions such an expansion breaks down no matter how large N is’. That is, in
order to make the theory consistent, one has to take into account corrections non-
perturbative in N. In the boundary theory it is difficult to identify these questions,
since they are typically related to local physics inside the horizons. We hope the
relation between the boundary correlation functions and the bulk geometry we have
found may help to pinpoint such questions.

In the above we argued that the fact that the boundary theory on S¢! has
a discrete spectrum at finite N may indicate the resolution of the singularity at

finite N. The story becomes somewhat less trivial in the high temperature limit.

7One example of such a breakdown is in the long time behaviors of Lorentzian correlation func-
tions [64], although it does not seem to be directly related to the singularity.
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The boundary manifold decompactifies in this limit and the boundary theory has
a continuous spectrum even at finite V. In this case, one has to disentangle the
effects due to large N from those due to noncompact directions. We believe that
the analytic structure indicated in 3-5 may yield important clues for resolving this
issue. The presence of various lines of poles opens up new asymptotic regions near the
imaginary axis which describe physics inside the horizon. This might be considered
as a manifestation of the horizon in a boundary theory living on IR%™}. It would be
interesting to understand what happens to this feature and the exponential decay of
G+ near imaginary infinity at finite N. We have examined a few examples in free
theories at finite N. In these examples, all the poles in the complex w-plane lie along
the imaginary axis and no new asymptotic regions appear other than those associated

with the standard large frequency behavior.
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Chapter 5

The Arrow of Time and
Thermalization in Large N Gauge

Theory

As described in the introduction we now turn to investigate the physics of a continuous
spectrum and time decay in the large N limit of the boundary theory. This constitutes
a first step towards the achievement of the goal of understanding the resolution of
spacelike singularities in String theory. The plan of the chapter is as follows. In section
5.1.1 we introduce the subject of our study: a family of matrix quantum mechanical
systems including N = 4 SYM on S3. We highlight some relevant features of the
energy spectrum of these theories. Motivated by the classical mixing properties, we
introduce observables which could signal time irreversibility. The simplest of them are
real-time correlation functions at finite temperature, which describe non-equilibrium
linear responses of the systems. The rest of the chapter is devoted to studying these
observables, first in perturbation theory, and then using a non-perturbative statistical
method. In sec 5.2 we compute real-time correlation functions in perturbation theory.
We find that at any finite order in perturbation theory, the arrow of time does not
emerge. In sec 5.3 we argue that the planar perturbative expansion has a zero radius of
convergence and cannot be used to understand the long time behavior of the system.

In section 5.4 we give a simple physical explanation for the breakdown of perturbation
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theory. We argue that for any nonzero 't Hooft coupling, an exponentially large (in
N?) number of free theory states of wide energy range (or order N) mix under the
interaction. As a consequence small A and long time limits do not commute at infinite
N. In section 5.5 we develop a statistical approach to studying the dynamics of the
theories in highly excited states, which indicates that time irreversibility occur for
any nonzero 't Hooft coupling A. We conclude in section 5.6 with a discussion of

implications of our results.

5.1 Prelude: theories and observables of interest

In this section we introduce the systems and observables we want to study.

5.1.1 Matrix mechanical systems

We consider generic matrix quantum mechanical systems of the form

S = Ntr [a [Z ( (D,M,)? — —-w )] ~ [av ;) (5.1)

which satisfy the following requirements:

e 1. M, are N x N matrices and DM, = 8; —i[A, M,] is a covariant derivative.
One can also include fermionic matrices, but they will not play an important

role in the following and for simplicity of notations we suppress them.

e 2. The frequencies w, in 5.1 are nonzero for any ¢, i.e. the theory has a mass

gap and a unique vacuum.

e 3. The number of matrices is greater than one and can be infinite. When there
are an infinite number of matrices, we require the theory to be obtainable from
a renormalizable field theory on a compact space, in which case w, are integer

or half-integer multiples of a finite number of fundamental frequencies.

e 4. V(M,;A) can be written as a sum of single-trace operators and is controlled

by a coupling constant )\, which remains fixed in the large N limit.
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N = 4 SYM on S® is an example of such systems with an infinite number of
matrices (including fermions) when the Yang-Mills and matter fields are expanded
in terms of spherical harmonics on S (see e.g. [56, 2]). In this case, w, are integer
or half-integer multiples of a fundamental frequency wy = 1/R with R the radius of
the S%. The number of modes with frequencies w, = % increases with k£ as a power.

V(M,; A) can be schematically written as!
= N (VAV3(M,) + AVa(M.)) (5.2)

where V3 and V; contain infinite sums of single-trace operators which are cubic and
quartic in M, and ;M,. A = g%,,N is the 't Hooft coupling.

In this chapter we work in the large N limit throughout. Our discussion will
only depend on the large N scaling of various physical quantities and not on the
specific structure of the theories in 5.1 like the precise field contents and exact forms
of interactions. For purpose of illustration, we will often use as a specific example the

following simple system

S = %tl‘ fdt [(l)i]\ll)2 + (DtM2)2 - wo(Mz + M22) AMleMlel (53)

5.1.2 [Energy spectrum

5.1 has a U(N) gauge symmetry and physical states are singlets of U(N). One can
classify energy eigenstates of a theory by how their energies scale with N in the
large N limit. We will call the sector of states whose energies (as measured from the
vacuum) are of order O(1) the low energy sector. As motivated in the introduction,
we are mainly interested in the sector of states whose energies are of order uN? with
u independent of N, which will be called the high energy sector. The density of states
in the low energy sector is of order O(1), i.e. independent of N, while that of the

1The precise form of the interactions depends on the choice of gauge. It is convenient to choose
Coulomb gauge V - A = 0, in which the longitudinal component of the gauge field is set to zero. In
this gauge, M, include also non-propagating modes coming from harmonic modes of ghosts and the
zero component of the gauge field.
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high energy sector can be written in a form
QUE) ~ ™V’ E=puN? (5.4)

with s(u) some function independent of N. 5.4 follows from the fact that the number
of ways to construct a state of energy of order O(N?) from O(N?) oscillators of
frequency of O(1) is an exponential in N2. The presence of interaction should not
change this behavior at least for u sufficiently large. 5.4 is the reason why we restrict
to more than one matrix in 5.1 For a gauged matrix quantum mechanics with a single
matrix one can reduce the matrix to its eigenvalues and 5.4 does not apply. When u
is sufficiently large, s(u) should be a monotonically increasing function? of x and we

will restrict our definition of high energy sector to such energies.

For N' = 4 SYM, states in the low energy sector correspond to fundamental string
states in the AdS spacetime, while the states in the high energy sectors may be
considered as black hole microstates®.

A convenient way to study a system in excited states is to put it in a canonical

ensemble with a temperature T = % The partition function and free energy are

defined by (tr denotes sum over all physical states and H is the Hamiltonian)
Z =tre PH = ¢ PF (5.5)

We will always keep T fixed in the large N limit. Below low and high temperature
refers to how the temperature is compared with the mass gap of a theory*. As one
varies T, different parts of the energy spectrum are probed. For the family of matrix
quantum mechanical systems 5.1, there are two distinct temperature regimes. At low
temperature, one probes the low energy sector and the free energy F is of order O(1).
At high temperature F' is of order O(N?) and the high energy sector is probed. It may
seem surprising at first sight that one can probe the sector of energies of O(/N?) using

2That is, the theory should have a positive specific heat for u sufficiently large.
3Note that at a sufficiently high energy, the most entropic object in AdS is a big black hole.
4For example for N’ = 4 SYM on $3, low (high) temperature means T < & (T > &)
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a temperature of O(1). This is due to the large entropy factor 5.4 which compensates
the Boltzmann suppression. For N/ = 4 SYM theory at strong coupling, there is a
first order phase transition separating the two regimes at a temperature of order 1/R,
where R is the AdS radius [45, 96, 97]. A first order phase transition has also been
found for various theories in the family of 5.1 at weak coupling [88, 1, 2].

An important feature of the high energy sector is that the large N limit is like a
thermodynamic limit with N2 playing the analogous role of the volume factor. In this
limit the number of degrees of freedom goes to infinity while the average excitations

per degree of freedom remain finite. The thermal partition function
Z(B) = tre=PH = / dE Q(E)eE (5.6)

is sharply peaked at an energy Eg ~ O(N?) (with a width of order O(N)) determined
by

8S(E)

S s, = B,  S(E)=logQ(E) (5.7)

Note that the leading N dependence of S(E) has the form S(E) = NZ%s(u) (see
5.4) with u = E/N? characterizing the average excitations per oscillator degree of
freedom. Equation 5.7 can also be interpreted as the equivalence between canonical
and microcanonical ensemble®. Note that since F' ~ O(N?), the high temperature

phase can be considered a “deconfined” phase [93, 97).

5.1.3 Observables

In a classical Hamiltonian system, time irreversibility is closely related with the mixing
property of the system, which can be stated as follows. Consider time correlation

functions

Cas(t) = (A®'X)B(X)) - (4) (B) (5.8)

®In contrast such an equivalence does not exist for the low energy sector.
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where A, B are functions on the classical phase space parameterized by X. ®'X de-
scribes the Hamiltonian flow, where ®* is a one-parameter group of volume-preserving
transformations of the phase space onto itself. (...) in 5.8 denotes phase space average

over a constant energy surface. The system is mixing® iff [94]
Cag(t) — 0, t— oo (5.9)

for any smooth L? functions A and B.

The closest analogue of 5.8 for the matrix quantum mechanical systems we are

considering would be
Gi(t) = GlO)O0)]i) — (i|0(0)}:)* (5.10)

where |7) is a generic energy eigenstate in the high energy sector, and O is an arbitrary
gauge invariant operator which when acting on the vacuum creates a state of finite
energy of order O(1). More explicitly, denoting |¢o) = O(0) |Q2) with |Q2) the vacuum,
we require (¥o|H|o) ~ O(1). Note that for N = 4 SYM on S*, a local operator
O(t,Z) of dimension O(1) on S is not allowed by this criterion since O(t, Z) creates a
state of infinite energy. To construct a state of finite energy one can smear the local
operator over a spatial volume, e.g. by considering operators with definite angular
momentum on S2. Without loss of generality, we can take O to be of the form

O =tr(M,, - M,

Qng

Jor(Mp, -+ Mg,,) - tr(My, - -~ M, ) (5.11)

with the total number of matrices K = Y% | n;, independent of N. We will call such
operators small operators. The reason for restricting to small operators is that they
have a well defined large N limit in the sense defined in [98]. More explicitly, if

one treats the large N limit of a matrix quantum mechanics as a classical system,

SNote that mixing is a stronger property than ergodic which involves long time average. The
ergodic and mixing properties can also be characterized in terms of the spectrum of the Koopman
operator. For example, a system is mixing iff the eigenvalue 1 is simply degenerate and is the only
proper eigenvalue of the Koopman operator [94].
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then 5.11 with K ~ O(1) are smooth functions on the corresponding classical pase
space. From AdS point of view, such operators correspond to fundamental string
probes which do not deform the background geometry. If for all small operators O

and generic states |i) in the high energy sector
Gi(t) — 0, t — 0o (5.12)

one can say the system develops an arrow of time. In particular, 5.12 implies that
one cannot distinguish different initial states from their long time behavior (i.e. in-
formation is lost).

Energy eigenstates are hard to work with. It is convenient to consider micro-
canonical or canonical averages of 5.10, for example, the thermal connected Wightman

functions (see Appendix B1.1 for a precise definition of “connected” and the constant

C below)
Gi(t) =(0(1)0(0))5 = 3tr (e PHO®)O(0)) - C (5.13)

and retarded functions
Galt) = %tr (e [0(t),0(0)]) - (5.14)

We shall take the temperature T to be sufficiently high so that Eg determined from
5.7 lies the high energy sector. Equation 5.12 implies that”

Gr(t) =0, G4(t)—0, t— +o00. (5.15)

Note that Gr(t) measures the linear response of the system to external perturbations
caused by O. That Gg(t) — 0 for ¢ — oo implies that any small perturbation of the
system away from the thermal equilibrium eventually dies away. In a weaker sense

than 5.12, 5.15 can also be considered as an indication of the emergence of an arrow

75.12 in fact implies the following to be true for any ensemble of states.
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of time.

In frequency space, the Fourier transform® of 5.13 and 5.14 can be written in terms

of a spectral density function p(w) (see Appendix B1.1 for a review)

1
1 — e_ﬂwp(w)
© dw'  p(w')
—00 2T w —w' + i€ (5.16)

Gi(w) =

GR(U.)) =

5.15 may be characterized by properties of the spectral density p(w). For example
from the Riemann-Lebesgue theorem, 5.15 should hold if p(w) is an integrable function
on the real axis. Since other real-time correlation functions can be obtained from G
(or spectral density function p(w)) from standard relations, for the rest of the chapter,
we will focus on G only.

For N’ =4 SYM at strong coupling, it is convenient to take O to have a definite
angular momentum [ on S3. 5.13 and 5.14 can be studied by considering a bulk field
propagating in an eternal AdS black hole geometry and one does find the behavior 5.15
as first emphasized in [64]. In the bulk language, 5.15 can be heuristically interpreted
as the fact that any small perturbation of the black hole geometry eventually dies
away by falling into the horizon. Furthermore, by going to frequency space, one
finds that the Fourier transform G (w,!) has a rich analytic structure in the complex
w-plane®, which encodes that the bulk black hole geometry contains a horizon and

singularities. The main features can be summarized as follows [27]:

e 1. G, (w,!) has a continuous spectrum with w € (—o0, +00). This is due to the

presence of the horizon in the bulk.

e 2. In the complex w-plane, the only singularities of G4 (w,!) are poles. The
decay rate for G (t) at large t is controlled by the imaginary part of the poles

closest to the real axis, which is of order 3.

8We use the same letter to denote the Fourier transform of a function, distinguishing them by
the argument of the function.

9Similar things can also said about Gg(w,!) which can be obtained from G (w,!) using standard
relations.
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e 3. The presence of black hole singularities in the bulk geometry is encoded in

the behavior of G (w, l) at the imaginary infinity of the w-plane'®. In particular,
3a. G4(w,l) decays exponentially as w — +ico.

3b. Derivatives of G+ (w,!) over | evaluated at [ = 0 are divergent as w — ico.

As emphasized in [27], none of the above features survives at finite N, in which case!!

Gi(w) =27 Z e“ﬂE'"p,,mé(w - E,+ E,)
mn
has a discrete spectrum and is a sum of delta functions supported on the real axis.
This indicates that concepts like horizon and singularities only have an approximate
meaning in a semi-classical limit (large N limit).

To understand the information loss paradox and the resolution of black hole sin-
gularities, we need to understand how and why they arise in the classical limit of a
quantum gravity. In Yang-Mills theory, this boils down to understanding what physics
is missed in the large N limit and why missing it is responsible for the appearance
of singularities and the loss of information. With these motivations in mind, we are

interested in understanding the following questions

e 1. Can one find a qualitative argument for the emergence of an arrow of time

in the large N limit?

e 2. Does the analytic behavior observed at strong coupling persist to weak

coupling?

which we turn to in the following sections.

10See also [28] for signature of the black hole singularities in coordinate space.

"Note that even though A/ = 4 SYM on S° is a field theory, at finite N the theory can be
effectively considered as a theory with a finite number of degrees of freedom, since for any given
energy E, there are only a finite number of modes below that energy. Furthermore, given that the
number of modes with frequency -,’% grows with k only as a power, it is more entropically favorable
to excite modes with low & for E ~ O(N?) and modes with w, ~ O(N) are almost never excited.
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5.2 Non-thermalization in perturbation theory

In this section we consider 5.13 in perturbation theory in the planar limit. We will find
that real-time correlation functions have a discrete spectrum and oscillatory behavior.
Thus the theory does not thermalize in the large N limit.

In perturbation theory, G, (¢) can be computed using two methods. In the first
method, one computes Gg(7) with 0 < 7 < § in Euclidean space using standard
Feynman diagram techniques. G, (t) can then be obtained by taking 7 = it + €. An
alternative way is to double the fields and use the analogue of the Schwinger-Keldysh
contour to compute the Feynman function Gr(w) in frequency space [74], from which
G+ (w) can be obtained. In the Euclidean-time method it is more convenient to do
the computation in coordinate space since one does not have to sum over discrete
frequencies, while in the real-time method frequency space is more convenient to use.

We look at the free theory first.

5.2.1 Free theory

To evaluate 5.13 in free theory, it is convenient to use the Euclidean method. The

Euclidean correlator
GR(r) = (O(T)00)g5, 0ST<f (5.17)
with O of the form 5.11 can be computed using the Wick contraction'?
Mg (r) ME (0) = 42 e o 95 (7 = mB; wen Uy "U (5.18)

where gg) is the propagator at zero temperature

gg])(r;w) = 5%;6"""' . (6.19)

125ee e.g. [24] for a derivation of the following equation and some examples of correlation functions
in free theory.
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In 5.18 U is a unitary matrix which arises due to covariant derivatives in 5.1 and
can be understood as the Wilson line of A wound around the 7 direction. In the
evaluation of free theory correlation functions (- -), ; in 5.17, one first preforms the
Wick contractions 5.18 and then performs the unitary matrix integral over U, which
plays the role of projecting the intermediate states to the singlet sector. In the large
N limit, the U integral can be evaluated by a saddle point approximation. Note in
particular that [1]

U—-1, T — 0 (5.20)

Equation 5.20 indicates that the singlet condition should not play an important role
for states of sufficiently high energy.

For definiteness, we now restrict to theories with a single fundamental frequency
wp like N =4 SYM or 5.3. Wick contractions in 5.17 give rise to terms of the form
e™°" for some integer n, while the U-integral computes the coefficients of these terms.

Thus 5.17 always has the form

GP(r) = Y ca(B)e™” (5.21)

n=-A

where A is the dimension of the operator!3. Analytically continuing 5.21 to real time,

we find that
A .
W) = X caBemmnt (5.22)
n=-A
and
A
GPw) =21 3 ca(B)8(w — rup) - (5.23)
n=-A

Thus in the large N limit, the correlation function always shows a discrete spec-

13Note that for A’ = 4 SYM the dimension of M, is given by a. For other matrix quantum
mechanical systems without conformal symmetry one can use a similar definition in free theory. For
bosonic operators, A are integers.
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trum is quasi-periodic. The results are generic. If the theory under consideration
has several incommensurate fundamental frequencies, one simply includes a sum like
those 5.21 and 5.23 for each such frequency. The maximal number of independent
exponentials is 2%, where K is the total number of matrices in O.

It is also instructive to obtain 5.22 using a different method. By inserting a
complete set of free theory energy eigenstates in 5.13 we find that

1

G =5

S e7Pea ppeileaeelt (5.24)
ab

where |a) is a free theory state with energy €, and pg, = | (a|O(0)|b) |2. To understand
the structure of 5.24 we expand O(0) in terms of creation and annihilation operators

associated with each (My);j, from which we find that

e A. Due to energy conservation, O can connect levels whose energy differences lie

between —Awp and Awy, i.e. pgp can only be non-vanishing for |e, — €3] < Awy.

e B. O can only connect states whose energy differences are integer multiples of
wp i.€. pgp can only be non-vanishing for €, — €, = nwp with |n| < A integers

(or half integers if O is fermionic).

As a result, 5.24 must have the form 5.22. Note that the argument based on 5.24
applies not only to the thermal ensemble, but in fact to correlation functions in any
density matrix (or pure state).

To summarize, one finds that in free theory a real-time thermal two-point function
always has a discrete spectrum and is quasi-periodic in the large N limit. This implies
that once one perturbs the theory away from thermal equilibrium, the system never
falls back and keeps oscillating. This is not surprising since the system is free and
there is no interaction to thermalize any disturbance. Note that this is distinctly
different from the behavior 5.15 found at strong coupling. In particular, this implies
that the bulk description of the high temperature phase in free theory looks nothing
like a black hole. Also note that the story here is very different from that of the
orbifold CFT in the AdS3;/CFT; correspondence. There the mass gap in free theory
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goes to zero in the large N limit in the long string sector [65]. As a result, one finds
that free theory correlation functions in the long string sector do resemble those from

a BTZ black hole [64, 5].

5.2.2 Perturbation theory

In this subsection we use a simple example 5.3 for illustration. The general features
discussed below apply to generic theories in 5.1 including /' = 4 SYM.

In perturbation theory Gg(7) can be expanded in terms of A as

oo
Ge(r) =3 WGP (7) (5.25)
n=0
where Gg) is the free theory result. We will be only interested in the connected
part of Gg(r). Higher order corrections are obtained by expanding e/ 4V in the
path integral with V' given by the quartic term in 5.3. More explicitly, a typical
contribution to G{(r) in 5.25 has the form

="

n!

8 B
/0 dry - /0 dr (O(T)OO) V(1) - V(7)) 50 (5.26)

The free theory correlation function inside the integrals in 5.26 can be computed by
first using Wick contraction 5.18 and then doing the U integral. The general structure

of 5.26 can be summarized as follows:

e 1. The planar diagram contribution to G () scales like N°, while diagrams of
other topologies give higher order 1/N? corrections. The number R, of planar
diagrams grows like a power in 7, i.e. is bounded by C™ with C some finite

constant [92].

e 2. The 7-integrations are over a compact segment and are all well defined. A

typical term in 5.26 after the integration has the structure

9 (B) ek (5.27)
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where ! and k are integers. [ can take values from 0 to n, while k from —2n—A

to 2n + A where A is the dimension of O in free theory.

Analytically continuing 5.25 to Lorentzian time by taking 7 = it + ¢, we find

oo

G+(t,)) = 3G (1) (5.28)

n=0

where typical terms in G{(t) have the ¢-dependence of the form
gt (B)t'et ot (5.29)

with the range of [ and k given after equation 5.27. After Fourier transforming to
frequency space we find that at each order in the perturbative expansion G’Sf‘) (w) (and

thus the spectral density function p(w)) consists of sums of terms of the form
60 (1w — kuw) (5.30)

where the superscript [ denotes the number of derivatives.

One origin of ' terms in 5.29 is the shifting of frequency from the free theory value.
For example, suppose the free theory frequency is shifted to w = wg + Aw; + - - -, one
would get terms of the form 5.29 when expanding the exponential €“* in A. One
can in principle improve the perturbation theory by resumming such contributions
using Dyson’s equations. However, there appears no systematic way of doing this for
a composite operator 5.11. In Appendix B1.2, we prove that real-time correlation
functions of fundamental modes M, again have a discrete spectrum in the improved

perturbative expansion.

5.3 Break down of Planar perturbation theory

It is well known that at zero temperature the planar expansion of a matrix quantum

mechanics has a finite radius of convergence in the A-plane (see e.g. [92] for a recent
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discussion and earlier references). If this persists at finite temperature, properties
of the theory at zero coupling or in perturbation theory should hold at least for the
coupling constant being sufficiently small. In particular, from our discussion of last
section, one would conclude that real-time correlation functions for generic gauge in-
variant operators should be quasi-periodic and an arrow of time does not emerge at
small 't Hooft coupling. In this section, we argue that the planar perturbative ex-
pansion in fact breaks down for real-time correlation functions and thus perturbation
theory cannot be used to understand the long-time behavior of the system at any

nonzero coupling.

From our discussion in section 5.2, we expect the Euclidean correlation function
5.25 should have a finite radius of convergence for any given 7 € (0,3). After analytic
continuation to real time, the convergence of the expansion in Euclidean time implies
that 5.28 should have a finite radius A.(¢) of convergence for any given . However,
it does not tell how A.(t) changes with ¢ in the limit ¢ — oco. In this section we
argue that the radius of convergence goes to zero in the large ¢ limit. Note that the
convergence of the perturbative expansion depends crucially on how g,(:;) in 5.30 fall
off with n. We will argue below that the falloff is slow enough that perturbation
theory breaks down in the long time limit. In frequency space, one finds that n-th

order term in the expansion grows like n!!4.

We will again use 5.3 as an illustration. The argument generalizes immediately
to generic systems in 5.1. For simplicity, we will consider the high temperature limit

5.20 in which we can replace U in 5.18 by the identity matrix, e.g.

1 & 1
Mig(r) Min(0) = = 3= g9 (1 — mB;wo)dudy; = = 8udy; gu(r;w) (5.31)
N, N

where

ge(riw) = 5= (U +f@) W),  TE(0H)  (53)

4Note that in frequency space the relation between real-time and Euclidean correlation functions
is not simple, since Euclidean correlation functions are only defined at discrete imaginary frequencies.
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with

1
fw)= g7 (5.33)
Note that outside the range in 5.32, gg(7) is periodic.
For our purpose it is enough to examine the Wightman function for M;,
1
D = —AH . .
+() = 7ot (M ()M (0) (5.34)

An exactly parallel argument to that of the last section leads to the expansion

D.(t,)) = fj A" DM (1) (5.35)

n=0

where typical terms in Dﬁf’ )(t) have the t-dependence of the form
dy (B¢t (5.36)

The convergence of series depends on how dg;) fall off with n. For our purpose it is
enough to concentrate on the term with the highest power ¢ in each order, i.e. the

coefficients of " with given k. More explicitly, we will look at a term of the form

D, (t,A) = D) i CaNM" - (5.37)
n=0
where DS? ) is the free theory expression.

As before we will first compute 5.37 in Euclidean time and then perform an ana-
lytic continuation. Calculating ¢, explicitly at each loop order for all n is of course
impractical. Our strategy is as follows. We will identify a family (in fact infinite fam-
ilies as we will see below) of planar Feynman diagrams of increasing loop order and
show that their contribution to ¢, falls off like a power in n. Barring any unforseen

magical cancellation'®, this would imply that the perturbation series 5.28 has a zero

I5Note that since we are in the high temperature phase, in which supersymmetry is badly broken,
there is no obvious reason for suspecting such magical cancelations.
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radius of convergence in the ¢ — oo limit. The simplest set of diagrams which meet

our purpose are given by:

N’

Figure 5-1: A family of diagrams which indicates that the perturbation theory break
down in the long time limit. Black and red lines denote propagators of M; and M,
respectively.

- A = /g\
N N=

These graphs appear at orders d; = 2,d = 8,ds = 26, - - - of perturbation theory

where
di=3d;_1+2=3 -1, i=1,2---. (5.38)

We denote the contribution of each diagram by I';(7). For our purpose, it is not
necessary to compute the full graph. We will only need to calculate the term in each
graph with the highest power of 7, i.e. the term proportional to 7%. Also note that
in each diagram, the symmetry factor is exactly 1. Let us start with I';, which is

given by

8
Ty(r—7)= X /0 drydr gg(T ~ T1;w0)9E(T1 — T2 wo)gE(Ta — Tiwo)  (5.39)

Note the identity

g%('r; wo) = z_ij)zfz(wo) (eﬁ“’ogE(T; wO) + f'lf(g‘:(;o) gE(‘T; 3wo)> (540)

Now plug 5.40 into 5.39. It is easy to convince oneself that the term proportional to
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ge(T;3wp) in 5.40 will not generate a term proportional to 72 and we will ignore it.
The contribution of the term proportional to gg(7T;wp) can be found by noting the
identity

1 &

8
/(; dmdry ge(T — T1;wo0)gE(T1 — T2;Wo)9E(T2 — T W0) = EWQE(T —7'wp) (5.41)

The right hand side of 5.41 contains a piece %%5—’6%3 ge(T —7') plus parts with smaller

powers of 7 — 7'. Thus the term in 5.39 proportional to (7 — 7')? is given by

Ti(r—-1)= %(‘r —)gp(r —7) +--- (5.42)
where
o= %5{3 f = flwo) (5.43)

The term proportional to 7% for higher order diagrams I';(7) can now be obtained by

iterating the above procedure. A useful identity is

dridry ge(T — T1;w0)98(T1 — T25wo) (11 — 72)" gp(T2 — T'5W0) =
_(r =)t 1
(2we)? (n+2)(n+1)

ge(T — 7wo) + - - (5.44)

where we kept only the term with the highest power of 7 — 7/, as lower power terms
will not contribute to the terms in which we are interested. We find that the term

proportional to 7% in I';(7) is given by
Ti(1) = FA%7%gp(T;w0) + - - (5.45)
where F; satisfy the recursive relation

Fip=F3— 2

S 5.46
Y diga(dig — 1) (5:46)
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Thus F; can be written as
F=a? A (5.47)

with
i-1 1 3k
r= 1 () (649

A; in the large 4 limit can be easily estimated and we find
Ame 3% i1,

Summing all our diagrams together and analytically continuing to Lorentzian time

with 7 = it + ¢, we find that!®

oo d
L)~ DO Yo(-1) (%?) Fooo (5.49)

i=1

with h. given by

3 3 2
B £ _€220) (5.50)

ve 3f1+f)

Equation 5.49 implies that the radius of convergence in A is given by
1
Ac(t) ~ 7 (5.51)

which goes to zero as t — o0.

It is also instructive to repeat the computation of 5-1 in frequency space using the
real-time method. The calculation is straightforward and we will only summarize the
result. One finds that the contribution of I'; to the Feynman function Dp(w) grows

like d;!. Thus one expects that the perturbative expansion in frequency space is not

16Gince we are only interested in the asymptotic behavior of the sum for large ¢ we have replaced
F; by its asymptotic value.
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well defined for any frequency. Note that the non-analyticity in frequency space can
be expected since in going to frequency space one has to integrate the full real time-
axis and the Fourier transform is sensitive to the long time behavior. Also note that
the n! factorial behavior in perturbation theory often implies an essential singularity
at A = 0 (see also below).

We conclude this section with some remarks:

e 1. In the zero-temperature limit A, — oo and the set of terms in 5.49 all go to

Zero.

e 2. To simplify our discussion, we have only considered diagrams in 5-1. There
are in fact many other diagrams of similar type contributing at other orders in
A. For example, by including those in fig.2, one can get contributions for all
even orders in A rather than only 5.38. The qualitative conclusion we reached

above is not affected by including them!”.

o RN %

Figure 5-2: By including the diagrams on the left with all possible i, j, k > 0 we can get
contribution at every even order of A instead of 5.38. 'y denotes a single propagator.
Diagrams on the right can also contribute to the odd orders if 5.3 contains additional
interactions of the form trA%2B2.

e 3. By taking in consideration the diagrams on the left of 5-2 the sum in 5.49 is
extended !® to all even powers of At and is oscillating therefore the singularities
in At should lie on the imaginary axis. Let us suppose that for a given A\, D, (¢)

has a singularity in ¢ at g,/ with g, lying in the upper half plane'®. Now Fourier

17There are also potentially an infinite number of other sets of diagrams which can lead to the
behavior 5.51, e.g. one can replace I'; by any diagram whose highest power in t is the same as the
order of perturbation and then iterates.

18the value of h, also changes

19Note that g%/\ must also be a singularity of D (t).
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transforming D, (t) we find that
Dy(w) = /  dtet D, (t) (5.52)

The presence of g./\ and g}/ implies D, (w) contains a term of the form for

w>0
D, (w) ~ e“% (5.53)

Thus D, (w) contains an essential singularity at A = 0.

e 4. The n! behavior in perturbative expansion in frequency space (say in the
computation of Dr(w)) arises from a single class of Feynman diagrams. This
is reminiscent of renormalons in field theories [37, 59, 91]. In particular, when
Borel resumming the divergent series, depending on whether w is greater or
smaller than wy, the singularities on the Borel plane can appear on the positive

or negative real axis?, also reminiscent of the IR and UV renormalons.

e 5. Note that in the limit 7" — oo, h. in 5.50 scales with T as h, ~ ‘%231, ie.

3

W,
Ae(t) ~ =2 .
(1) ~ 2 (554)
For fixed A, we expect a singularity for D (t) at
3
“
t~ s (5.55)

Note that the right hand side of 5.55 is reminiscent of the magnetic mass scale for
a Yang-Mills theory (see e.g. [38]). However, in our matrix quantum mechanics,

there is no infrared divergence and it is not clear whether there is a connection.

e 6. The discussion can be straightforwardly applied to a generic theory in 5.1

with cubic and quartic couplings. In fact the argument also applies to a single

20Since we only have contributions to even order in A, we cannot make a conclusion from our
discussion so far.
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anharmonic oscillator at finite temperature, even though in that case one does
not expect the perturbative expansion to converge anyway?'. Similarly, the
argument also applies to a single-matrix quantum mechanics if one does not
impose the singlet condition. When imposing the singlet condition, the matrix
U in equation 5.18 cannot be set to 1 and our argument does not apply. Similarly
our argument does not apply to 5.1 in the low energy sector, in which U is
always important. Indeed using the results of [24, 30, one can show that to
leading order in the large N limit, correlation functions at finite temperature
can be written in terms of those at zero temperature and we do expect that the

perturbation theory has a finite radius of convergence.

e 7. Our argument indicates that perturbation theory breaks down in the long
time limit for a generic theory in 5.1. However, for any specific theory (say
N = 4 SYM theory) we cannot rule out magical cancelations which could in
principle make the coefficients of n-th order term much smaller than indicated
by the diagrams we find. If magical cancelations do occur in some theory, that
would also be extremely interesting since it indicates some hitherto unknown

hidden structure®.

5.4 Physical explanation for the breakdown of pla-

nar expansion

In this section we give a simple physical explanation for the breakdown of perturbation
theory in the long time limit. The discussion below should apply to a generic theory
in 5.1. For definiteness we use N' = 4 SYM as an illustration example.

We first set up some notations. We write the full Hamiltonian as

H=Hy+V(\) (5.56)

2lIn Appendix B3, we present an alternative argument for the breakdown of perturbation theory
for the case of a single anharmonic oscillator.

22Since we are working at a finite temperature, supersymmetry alone should not be sufficient for
the cancelations.
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with Hy the Hamiltonian of the free theory and V the interaction. We denote a free
theory energy eigenstate by |a) with energy €,. |0) is the (unique) free theory vacuum.
The energy eigenstates of the interacting theory H are denoted by [i) with energy E;.

|2 is the interacting theory vacuum. We can expand
[6) = >_ciala) (5.57)
with ¢;, satisfying

S leal = Y leal? =1 (5.58)

e~0(N?)

el

€~0(1)

Figure 5-3: The energy spectrum of free ' = 4 SYM on S is quantized. Typical
degeneracy for an energy level € ~ O(1) is of order O(1). Typical degeneracy for a
level of energy € ~ O(N?) is of order e2V?),

We first recall some relevant features of the free theory energy spectrum of N = 4
SYM on S%. Since w, in 5.1 are all integer or half-integer multiples of wy, = %,
the free theory energy spectrum is quantized in units %wo. Typical energy levels are
degenerate. The degeneracy is of O(1) in the low energy sector and of order ¢®V*)
in the high energy sector. The exponentially large degeneracy in the high energy
sector can be seen as follows. From 5.7 the density of states Qg(e) in the high energy

sector is of order eV,

Since the energy levels are equally spaced with spacings
order O(1), it must be that typical energy levels have a degeneracy of order eV,
Alternatively, the number of ways to construct a state of energy of order O(N?) from
O(N?) oscillators of frequency of O(1) is clearly exponentially large in N2.

Now let us turn on the interaction V() 5.2 with a tiny but nonzero A\. We will
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focus on the high energy sector. Given that free theory energy levels are highly
degenerate, one would like to apply degenerate perturbation, say to diagonalize V
in a degenerate subspace of energy E ~ uN? and of dimension e®™"). For this
purpose we need to choose a basis in the degenerate subspace. This is a rather
complicated question, due to difficulties in imposing singlet conditions?3. However,
when p is sufficiently large we expect the singlet condition not to play an important
role?*. So to simplify our discussion we will ignore the singlet condition below. A
convenient orthonormal basis of energy eigenstates for H, are then monomials of

various oscillators (appropriately normalized), i.e.

N
I IT (ME5)™ o) . (5.59)
a §j=1
In the basis 5.59, if the full theory is not integrable, V' can be effectively treated
as an (extremely) sparse random matrix®. The sparseness is due to that each term
in V can connect a given monomial state to at most N* other states, where k is an
O(1) number?. Randomness has to do with the large dimension of the subspace and
to the fact that there is no preferred ordering for the states within the same subspace.
Diagonalizing V', we thus expect, from general features of a sparse random matrix

(see Appendix B2,B4 for a summary),

e 1. The degeneracy of the free theory will generically be broken?".
e 2. A number of states of order €?™*) will mix under the perturbation.

e 3. The typical level spacing between energy levels should be proportional to the

inverse of the density of states and is thus exponentially small, of order e~ W),

23The trace relations are important for states of such energies.

24 As remarked earlier, in the high temperature limit the saddle point for U (in 5.18) approaches
the identity matrix.

25Here we restrict V to a single energy level. When including all energy levels V' is banded and
sparse. The banded structure is due to energy conservation.

26This is because each term in V is a monomial of a few matrices.

27For Yang-Mills theories on S3, there are remaining degeneracies associated with the isometry
group SO(4) of $%. Except when one considers the sectors with very large angular momenta on S8,
typical representations of SO(4) are rather small and should not affect our general argument.
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The story is in fact a little more intricate. We expect the degenerate perturba-
tion to be a good guide if the spread of energy eigenvalues after diagonalizing
V in a subspace is smaller than the spacings between nearby energy levels. The

spread I of eigenvalues of V' can be estimated by (see Appendix B4)

~T5 =3 [{alV[p) |* ~ O(N?) (5.60)
a#b

for any nonzero A, where the sum restricts to a degenerate subspace. Note
that 5.60 only depends on that V is a single trace operator and does not depend
on the specific structure of it. That I' ~ O(N) implies that it is not sufficient
to diagonalize V' within a degenerate subspace. It appears more appropriate
to diagonalize®® it in a subspace with energy spread of order O(N). Thus in
addition, we expect that:

e 4. an interacting theory eigenstate |i) is strongly coupled to free theory states

|a) within an energy shell of order O(N).

This statement will be justified in the next section from a somewhat different per-
spective. That I' ~ O(N) for any nonzero X in the 't Hooft limit indicates a tiny A

may not really be considered as a small perturbation after all.

Various features discussed above when turning on a small X are clearly non-
perturbative in nature. However, it may be hard to probe them directly using Euclid-
ean space observables like partition functions and Euclidean correlation functions.
These observables probe only average behaviors within an energy difference range of
order O(T') or larger and thus may not be sensitive to the changes in level spacings at

smaller scales?®. In contrast, real-time correlation functions are much more sensitive.

Z8This statement is of course only heuristic since there is no sharp criterion to decide what should
be the precise size of the subspace. However, we expect the N scaling should be robust.

290f course if one is able to compute Euclidean observables exactly, one should be able to extract
all the interesting physics. After all, real-time observables can be obtained from Euclidean ones by
analytic continuation. It is just often the case that real-time physics is encoded in a very subtle way
in Euclidean observables.
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For example, consider the Lehmann spectral decomposition of G4 (t), i.e.

G.() = %tr (e##0()0(0))

1 —BEAi(Es—E:)t| /- .
= 2 2 e PEHETER Go(0))5) (5.61)
i\j
where we have inserted complete sets of energy eigenstates |¢) of the interacting theory.
From 5.61, it is clear that G(t) can in principle probe any small energy differences,
provided one takes ¢ to be large enough. This explains the breakdown of perturbation
theory in the long time limit observed in G, (t). At large N, the A = 0 and t — oo

limits do not commute. We conclude this section the following remarks:

e 1. The argument presented in this section, while strongly indicating that the
planar perturbation theory should break down in the long time limit, does not
however tell us why it breaks down at a time scale 5.55. It would be interesting

to have a concrete physical understanding of the relevance of 5.55.

e 2. Asdiscussed as the end of section 5.3, the same Feynman diagram calculation
of that section would indicate that the perturbation theory for anharmonic
oscillators (say take N = 1 in 5.3) also breaks down at a time scale 5.55. We
emphasize that while from the Feynman diagram point of view the discussion
for anharmonic oscillators is almost identical to that for a matrix quantum
mechanics (except that for matrix quantum mechanics one restricts to planar
diagrams), the underlying physics for the breakdown of perturbation theory is
rather different. In the case of anharmonic oscillators, the issues discussed in
the earlier part of this section do not arise. See Appendix B3 for a discussion

on the underlying reason for an anharmonic oscillator.

5.5 A statistical approach

The argument of section 5.4 shows that the planar perturbation theory breaks down

in the large time limit, but it does not tell us what the long time behavior is. Non-
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perturbative tools are needed to understand the long time behavior of real time cor-
relation functions in the large N limit. Here we develop a statistical approach, taking
advantage of the extremely large density of states in the high energy sector. In this
section we outline the main idea and the results, leaving detailed calculations to
various appendices. The statistical approach enables us to derive some qualitative
features satisfied by the Wightman function for a generic operator at finite tempera-
ture, including that it has a continuous spectral density function and should decay to
zero in the long time limit. The features we find here are also shared by the Wightman

function at strong coupling found from supergravity analysis.

Our starting point is the Lehmann spectral decomposition of G, (t) 5.61,

G.(t) = %Zi,j e BEHE=E)t .. (5.62)
where
pii = | ({O0)]7) I* = |Oy/* (5.63)
In momentum space
Go(w) = %Z ¢ P5§(w + E; — E;)py; - (5.64)

1,7

Matrix elements O;; can in turn be expressed in terms of those of free theory using

(i was introduced in 5.57)
Oy = ({lO0)|5) = > _ cicio (alOB) = 3~ c,cjoOas (5.65)
a,b a’b

where we have inserted complete sets of free theory states and Oy, = (a|O(0)|b).

Since for sufficiently high temperature, the sums in 5.64 and 5.65 are peaked at
an energy with an extremely large density of states, one should be able to obtain
the qualitative behavior of p;; and G4 (w) from statistical properties of O, and c;,.

As discussed in the last section, in the interacting theory, we expect typical level
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spacings scale with N like e OW ®). In the large N limit, E; can be considered as
taking continuous values. Note that this by itself does not imply that G4 (w) has a
continuous spectral decomposition, since it is possible that p;; only has support for
states with finite energy differences. We argue below that p;; has nonzero support
between states with any E; — E; € (—00,00), which is independent of N, and thus

G+(w) does have a continuous spectrum.

Let us first look at the statistical behavior of ¢;,. For this purpose, consider the

following density functions

pa(E) = Z |C'ia|26(E - Ez) (566)

xi(€) = D _ lciald(e — €a) (5.67)

pa(E), first introduced by Wigner [95], is also called the local spectral density function
or strength function in the literature®. Using normalization properties of c;,, one finds

that

/ dE po(E) =1, / de xi(€) = 1 (5.68)

pa(E) can be considered as the distribution of interacting theory eigenstates of energy
E coupling to a free theory state |a). Similarly, x;(e) gives the distribution of free
theory states of energy e coupling to an exact eigenstate |¢). The mean and the

variances of the two distributions are given by

E, = / dE E p,(E) = (a|H|a) (5.69)

0a=T2 = [dE(E-TF.)pu(E) = S lavin P (5.70)

30These density functions have been frequently used in quantum chaos literature, see e.g. [31]

124



& = [ deexi(e) = B — (ilVIi) (5.71)

5= A2 = [ de (e — &) X(Biy€) = Sy (V1) (5.72)

E, and T, give the center and the spread of interacting theory energy eigenstates
coupling to a free state |a). Similarly, € and A; give the center and the spread of
free theory states coupling to an interacting theory energy eigenstate |i). I'; can be
considered as a measure of correlation among energy levels of the interacting theory
(since states whose energies differ by I, could couple to the same free theory state
and are thus correlated). A; characterizes the range of free theory states which are
mixed by perturbation. Note that the heuristic discussion after equation 5.60 implies

that A; ~ O(N), which we will confirm below using a different method.

Individual energy eigenstates are rather hard to work with. We will consider
microcanonical averages of 5.66 and 5.67. After all, for 5.62 and 5.64 we only need the
behavior of p;; averaged over states of similar energies. We will denote the average3!
of x;(€) over interacting theory states of energy E by xx(e) and similarly the average
of p,(E) over free theory states |a) of similar energy € by p.(E). Since the averages
involve a huge number of states and the large N limit is like a thermodynamic limit
in the high energy sector, we will assume that xg(€) is a smooth slow function®? of E,
i.e. it depends on E only through E/N2. Similarly p.(E) is assumed to depend on e
only through ¢/N?. The center and variance of xg(e) and p.(E) will be denoted by
€(E), Z(E) = A%(E), E(e), and o(e) = I'*(¢) respectively3®. These quantities should
also be slow functions of E or € as they inherit the property from xz(e) and p.(E).

31More explicitly, the average can be written as

1
xse) = Q(E) E.-E(Ez—;,E-HS) X 679)

where § is small enough that Q(E) does not vary significantly in the range (E — §, E + §).

32Note that a function f(E) is considered a slow function if it can be written in a form f(E) =
N°g(E/N?), where g(z) is a function independent of N.

3which can also be obtained by the average of various quantities 5.69-5.72 to leading order in
large N.
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In the Appendix B4 we estimate these quantities and find that

Z#E) = N2g()\E/N?)
S(E) = N2h()\ E/N?)
E(e) = N?§()\e/N?)
o(e) NZ2h(\,e/N?) (5.74)

We emphasize that the large N scalings above only depend that V is given by N
times single trace operators. Given that the underlying theory is not integrable and
the extremely large number of states, we will thus approximate ¢;, for fixed i as a
random unit vector which centers at € with a spread of order A; ~ O(N).

Now we turn to the statistical properties of Og. Our earlier discussion for V in the
free state basis 5.59 can be carried over to any operator O of dimension O(1). Thus
O,y can be considered as an sparse banded random matrix. The matrix is banded
since from energy conservation O can only connect states whose energy difference is
smaller than the dimension of 0. Note that even though O, is sparse, for each row
(or column), the number of nonzero entries grows with N as a power.

To summarize, we will assume the following statistical properties for ¢;, and O,:

e 1. For a given 1, ¢;, is a random unit vector with support inside an energy shell
of width O(N). In particular, the ¢;, satisfy the same distribution for |a) of the

same energy.

e 2. Oy is banded sparse random matrix, with the number of nonzero entries

growing with N as a power.

Now consider any two states |¢) and |j), with energies E; and E; respectively, for
which w = E; — E; ~ O(1). One finds that € —¢; ~ O(1) and the energy shells of the
two states overlap significantly. Given that the number of nonzero entries in a row
or column of O, grows with N as a power and that each element of ¢;, satisfies the
same distribution, one concludes from 5.65 that O;; should have support for any w =

E;— E; ~ O(1) and G(w) has a continuous spectrum for w € (—o0, +00). Note that
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the fact that A ~ O(N) is crucial for having a continuous spectrum w € (—00, +00).
Suppose A ~ O(1), the spectrum cannot extend to oo due to energy conservation.

One can further work out more detailed properties of p;;. Leaving the detailed
calculation in various appendices, we find that (after averaging p;; over states of

similar energies)

1
pee = gy Al B) = e P A(w; E) (5.75)

where Q(E) and S(E) = log 2(E) are the density of states and entropy of the inter-
acting theory respectively and

E\+E,

E=2,

CL):EI_Ez.

Equation 5.75 is derived in Appendix B6 along with properties of A(w; E) stated
below. Some useful formulas used in the derivation are collected in Appendix B5.
A(w; E) can be expressed in terms of an integral of xg(e) and €(E) (see equations

(G.3) and (G.8)) and satisfies the following properties:

e 1. A(w; E) is an even function of w, i.e.

A(—w; E) = A(w; F) (5.76)

e 2. Asw — o0

A(w; E) e 2Bl g(E) = 2227 (5.77)

e 3. A(w,E) is integrable along the real axis and can at most have integrable

singularities of the form

1
|w — wy|os’

Alw; B) x a, <1. (5.78)
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e 4. Ap(w) depends on E only through E/N?, i.e. it can be written as

Aw; E) = Alw; ), k=5 (5.79)
and A is a function independent of N.

Note that property 2 implies that in the large N limit, pg, g, ~ 0 for E; — E ~ N¢
with a > 0.

The expression for G, (w) in momentum space can now be obtained by plugging

5.75 into 5.64 and using a saddle point approximation. We find that

1
Giw) = 5 [dBe B SESESER oy, BIN?)

e s

= T Aw, up) (5.80)
where
_ B OS(E)|
Hg = NQ, oFE 55 = ﬂ . (581)

Note that since in the large N limit, £ can be treated as continuous and p;; has
support for any energy difference, it is appropriate to approximate the sum in 5.64 by
an integral. Also from the second line to the third line we have used that the quantity
inside the bracket depends on F slowly and performed a saddle point approximation.

We conclude this section with some remarks:

e 1. G, (w) has a continuous spectrum with w € (—00, +00) in the large N limit

(note that w does not scale with V).

e 2. Since A(w, ) can at most have integrable singularities of the form 5.78 on
the real axis, after a Fourier transform to coordinate space, G (t) must go to
zero in the limit ¢ — oo. If A(w;p) is a smooth function on the real axis, then

G, (t) must decay exponentially with time.
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e 3. Considering the last line of 5.80 as a definition for A(w;p), for N' =4 SYM
on S® at strong coupling, the corresponding A(w; ) can be found by solving
the Laplace equation for a scalar field in an AdS black hole geometry and be
expressed in terms of boundary values of renormalizable wave functions for the
scalar field [27]. In particular, A(w;u) found at strong coupling satisfy all the

properties 5.76-5.79 (it is a smooth function on the real axis).

e 4. It should be possible to obtain an explicit expression for A(w;u) (and thus
G +(w)) using the expressions found in the appendices (e.g. equation (G.3)) if
one can find the density functions 5.66 and 5.67 for a sparse banded random
matrix with varying density of states. While those for constant density of
states have been discussed in the literature (see e.g. [31]), not much appears to

be known for the non-constant density of states.

5.6 Discussions

In this chapter we first showed that in perturbation theory, real-time correlation
functions in the high temperature phase of 5.1 have a discrete spectrum and the
system does not thermalize when perturbed away from thermal equilibrium. We then
argued that the perturbative expansions for real-time correlation functions break
down in the long time limit. The breakdown of perturbation theory indicates that at
large N the A — 0 and ¢ — oo limits do not commute. The reason for the breakdown is
that a wide energy range (of order O(N)) of degenerate free theory energy eigenstates
mix under the interaction. The level spacings in the energy spectrum of O(1) in the

free theory become e=O).

As a result, real-time correlation functions develop a
continuous spectrum for any nonzero A. The continuous spectrum was argued from
a statistical approach developed in section 5.5, where we also show that real-time
correlation functions should decay to zero as ¢ — oo and the system becomes time
irreversible.

We should emphasize that our arguments in this chapter are qualitative in nature

and far from foolproof. For example, instead of being a random vector, ¢;, could have
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some structure (e.g. being very sparse) within the range of its spread, in which case

our statistical argument will not be valid.

It is also important to emphasize our results only apply to the high energy sector
and in the low energy sector (or in the low temperature), there is no indication of
breakdown of the planar expansion. In particular the results we describe here are not
inconsistent with that the sector near the vacuum might be integrable in the large N
limit [68, 13, 20, 55, 86, 14].

Our results indicate that there is a large N “phase transition” at A = 0, i.e.
physical observables undergo qualitative changes in the limit A — 0. The “phase
transition” we find here is somewhat unusual, since it is not manifest in the Euclidean
quantities like the partition function. The partition function appears to be smooth
in the A — 0 limit. The “phase transition” is in real-time correlation functions and
their Fourier transforms. Real-time correlation functions decay to zero at large time
at any finite A, while oscillatory for A = 0. In frequency space there is an essential
singularity at A = 0.

It would be interesting to understand whether one can continue the physics at
small A to large A. If there is no further large N “phase transition” in A, we expect
that the analytic structure of various correlation functions observed at strong coupling
should also be present at small A. Such structure include the signatures of black hole
singularities [28, 27] and the bulk-cone singularities [52].

Given that an arrow of time emerges for small X in the large /N limit, it is natural
to ask what should be the string theory interpretation of the high temperature phase
for N = 4 SYM on S? at weak coupling, or from the microcanonical point of view,

what is the bulk interpretation for a generic state in the high energy sector.
From the parameter relations in AdS/CFT,

21 Gy 1

_ 18 218

D 3'sy

one might conclude that at weak coupling A < 1, [, > R, i.e. the string length [,

is much bigger than the AdS curvature radius R. However, it seems unlikely one can
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give an invariant meaning to the statement. For example, even starting with a metric
with R < I,, one could perform a field redefinition of the form g,, — gu+0o'Ru+---.
In terms of new metric one then has R ~ [,. Thus it seems to us that even for A < 1,
the corresponding bulk string theory should describe a spacetime of stringy scale,
rather than sub-stringy scale. This is also expected from the gauge theory point of
view. At weak coupling the only mass scale is the inverse radius of the sphere and
there are no other lighter degrees of freedom. Thus the string scale has to be of the
same order as that of the AdS curvature scale.

Can one interpret the bulk configuration corresponding to the high temperature
phase at weak coupling as a stringy black hole? It seems to us the answer is likely
to be yes. Let us list the properties that the corresponding bulk configuration should
satisfy as expected from gauge theory, assuming there is no further large N “phase

transition” between weak and strong couplings:

e 1. The bulk configuration should have an entropy and free energy of order
O(1/93)-

e 2. The object absorbs all fundamental probes (since boundary correlation func-

tions decay with time).

e 3. The bulk geometry should have a horizon (since the boundary theory has a

continuous spectrum).

e 4. The bulk configuration is likely to have singularities (since the signatures of
the black hole singularities in gauge theory at strong coupling cannot disappear

as the coupling is changed if there is no phase transition).

5.A generic matter distribution will collapse into such a configuration (since in
the boundary theory, a generic initial state will approach the thermal equilib-

rium).

6. Results in [1, 88] indicate that the Euclidean time circle in the dual geometry

for the theory in the high temperature phase should become contractible3?.

34Note that this alone cannot imply that the bulk geometry is a black hole since even at zero cou-
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From the properties above, it seems appropriate to call it a stringy black hole.
Finally let us mention that it is possible that a stronger version of equation 5.75

holds, i.e. for two generic states |i), |j) in the high energy sector,

1

Pij = Q—(E')'A(w; E)YRy;, (5.83)
with
E= E—;El w=E—E,

and R;; a random matrix. Equation 5.83 is considered to be the hallmark of quantum
chaos [78, 85]%. Thus it is possible that ' = 4 SYM is chaotic in the high energy
sector. Such a chaotic behavior, if it exists, might be related to the BKL behavior

near a spacelike singularity [18].

pling the time circle becomes contractible. As we argued earlier in this chapter real-time correlation
functions in free theory do not behave like those of a black hole.
35Tt has also been argued in [85] that if 5.83 holds, then thermalization always occurs.
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Chapter 6

Conclusion

In the first part of this thesis we have considered an eternal Schwarzschild black hole
embedded in AdSs. For large enough mass this classical supergravity background is
dualto N =4 SU(N) SYM at finite temperature in the large N and large coupling
A limit. The question we tried to address was if and how the gauge theory correlators

probed the region beyond the horizon and near the singularity of the black hole.

By considering two point wightman functions G (w) of scalar operators of large
conformal dimension we established a direct relation between the complex w plane
and the Penrose diagram of the spacetime. For each complex w a particular spacelike
geodesic gives most of the contribution to the correlator. For real values of w the
geodesic does not probe the region beyond the horizon; as w — oo it stays closer and
closer to the boundary of spacetime. For imaginary values of w however the geodesic
enters the region beyond the horizon and comes closer and closer to the singularity
as w — %00. By studying this limit we pinpointed two features of the correlation
function which directly reflect the presence of the singularity in the bulk spacetime.
One of this signatures in particular, the exponential decay of G, (w) as w — Fioo,
persists without change as the dimension of the operators is made smaller as can be
established by computing the correlation function in many different approximation

schemes.

Some avenues of future research that stem from these results are the following:
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e Extend the analysis to higher point correlation functions. These should encode
the singularity in more striking way as their computation involves integrating

interaction vertices over the bulk geometry.

o The relation between imaginary frequencies and bulk geometry should be in-
vestigated further. The usual UV/IR correspondence in AdS/CFT associates
the energy scale of objects in the CF'T side with the "distance” of their duals
from the boundary; can we establish an intuitive dual description of the time

coordinate inside the horizon?

e The CFT evolves according to the bulk Schwarzschild time; is there a dual
description for the proper time as measured by observers falling freely into the
black hole? It can be that an answer to this question could be obtained by
analyzing the behaviour of bulk to boundary correlators instead of limiting us

to the boundary to boundary case.

e The eternal black hole solution is a background of choice due to its high degree
of symmetry. Is it possible to generalize our analysis to a gravitational collapse

scenario?

Having established the presence of signatures of the bulk singularity in the CFT at
large N and large coupling A the question arises to try to use them to understand how
the singularity is resolved by stringy (finite \) effects or quantum gravity (finite N).
As N is made finite the gauge theory has a discrete spectrum for any A preventing
the analytic continuation of correlators to imaginary frequencies. The signatures of
the singularity we have found therefore disappear. It could still be though, that even
in the large N limit finite X is sufficient to resolve the singularity. A first step towards
the understanding of this issue is that of determining what is the physical origin of
the continuous spectrum in the CFT in the large N limit.

As we have seen in the introduction the presence of a continuous spectrum in
the CFT is related to thermalization and the presence of an arrow of time and an

horizon in the bulk description. On the other end its presence requires the large
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N limit necessarily as for any finite A the CFT is a bounded quantum mechanical
system. In the second part of this thesis we addressed the question of how an arrow
of time arises in the CFT in the large N limit and for what values of the coupling it
happens.

Working in the large N limit we first established that at no finite order in pertur-
bation theory a continuous spectrum is generated. We also found strong indications
that the perturbative series does not converge for any nonzero value of A at high
enough temperature. We gave the following interpretation to this breakdown of per-
turbation theory: at high temperatures the gauge theory probes properties of the
spectrum at energies of order N2. In the free theory at these energies the energy
levels are extremely degenerate eV ?. As soon as a nonzero interaction is turned on
states with energies differing by O(AN) interact strongly and produce a very dense
spectrum which appears as continuous in the large N limit. We also established that
the resulting correlation functions have spectral properties compatible with those

found at strong coupling using the black hole background.

This analysis provides some indications that the singularity could survive string
corrections and be resolved only by quantum gravitational effects. If this were true
the states in the gauge theory of energy O(N?%) would be dual to the microstates of
a stringy black hole. In order to be able to substantiate this assertions however the

following problems have to be addressed:

e Even if A is small we have established that the large N perturbation theory
breaks down at high temperature signaling the presence of a large N phase
transition at A = 0. It would be useful to develop the tools necessary to establish
the presence at small A of the singularity signatures described in the first part
of this work. This goal could be reached either by explicit resummation of the
perturbation theory series or by improving the statistical methods introduced
in the last chapter. Also these should be extended from the toy models taken
in consideration so far to the case of gauge theories reduced on S? if an explicit

comparison with the strong coupling results is sought.
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e It would then be necessary to exclude the presence of a phase transition at finite
A in the large N limit which would prevent us to follow the singularity present

at large A to the small coupling regime.

e Finally we could study the resolution of the singularity due to quantum gravi-

tational effects by looking at the gauge theory at finite .

The final hope and the motivation of our study is that of giving a contribution
to the understanding of spacelike singularities and their resolution in string theory.
As we have seen a possible window to this problem is provided by the AdS-CFT
correspondence. Progress in this direction, besides providing us with further hints as
to the structure of a theory of quantum gravity could give us new tools and ways to

look at gauge theories which could find a useful application elsewhere in the future.
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Appendix A

Appendix A

A.1 Bulk propagators in the Hartle-Hawking vac-

uum

In the Hartle-Hawking vacuum (see e.g. [22]), one has the mode expansion
® dw
®)p® (@Dt
6= Z / 27r)d“ P (HOH0, + HO b)) (A1)
where

HY = coshf,¢( + sinhf, ¢,
H‘g)) = coshé, ¢(2)*+Slnh9w¢ 1)* . (A.2)

#1? denote a complete sets of normalizable modes supported only in the right (R)

and left (L) quadrants of the black hole spacetime respectively, i.e.

¢(l) B { e—ﬂut+iﬁxr—d—;1¢wp(r) R
R ;
2 = { . (A.3)

e—a.:t+iﬁxr—'—‘;—1¢wp (r) L
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Yup is given by the solutions of 2.34 which satisfy the boundary conditions 2.40-2.41.

It is an even function of w. In A.2, 8, is given by
tanhf, = e % .

b‘(j; satisfy the commutation relations
%, b,

((‘.)7’);,] = (27r)d6(w - w’)d(ﬁ_ ﬁ')&ija 7:7.7 = 132

Plugging in A.1 into 2.28 one finds that when both points are located in the right

quadrant, the expression for G; in momentum space is given by

Go(w, B 7, ') = B (7)™ Y (r)p () (A4)

If instead one of the points is located in the left quadrant, then one finds the Fourier

transform of the corresponding quantity (which we denote by Gi2) is given by
g12(w, nr, TI) = e-—%ﬂwg_*’ (va; T, 7‘,) (A5)

A5 gives rise to 2.27 when taking 7,7’ — oco. By passing we note that the bulk
Feynman and retarded propagators in the momentum space are given by (with both

points in the right quadrant)

. N a1 [ dw'’ 1 1
Gr(w,pin) = ()% [ S () (r)
d-1 [0 dw' 1

Gr(w,pir,7') = ()77 Yrp(r)Purp(r') (A.6)

o 27 w?— (w+i€)?

Introducing the spectral density function

0,37, = 5 (Y P W), (A7)
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one finds that various propagators can be written in terms of p as

/ eﬁw !
Gilw,psrr) = —5—gplw,pir,r)
= du' p(o, p;7,7)
—00 27 w —w' + 1€

Gr(w,p;r,r") =

Grwpinr) = Grlw,pin™) + Z5—sp(w,piT) (A8)

which is exactly what one would expects of a thermal theory.

A.2 BTZ

In this appendix, we look at the example of a non-rotating BTZ black hole [7] in
which case the corresponding boundary G, can be found exactly. In particular we
will be able to check explicitly the relation between the bulk geodesics and the large

v limit of G proposed in the main text.

A.2.1 Exact solution
For a non-rotating BTZ black hole, the metric can be written as
ds? = —fdt* + %drz + ridx? (A.9)
with
f=rt-1 (A.10)

and z a periodic variable. The complexified temperature is B = 2ir that is § = 0

and the Penrose diagram 2-1 is a square. The tortoise coordinate z is given by

T =cothz . (A.11)
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The potential 2.35 becomes

2 1
+ 3 1
V, = (rz—l)p 4-|—1/2——]

r2 4
2 1 2 1
+ = —_— =
= P 24 2 24 (A.12)
cosh*z  sinh“z
Changing variables in 2.34 to
1 1

= 1 —_—— e —.
y r2  cosh’z

and letting
iy ryl
wwp—_—y2 (1 —y)2+4w(y)

w(z) satisfies the hypergeometric equation

d2
y( —y)ﬁ— [c—(a+b+ 1)y —abw =0 (A.13)
with parameters
W+ W=
a=q++zw2p, b=q++zw

1
) c=1+iw, q+:§(1+’/)

Various functions defined in 2.46 are then given by

iw yyl w+p
g(y)=y2(l—y)2+4F<q++z 5 gy it 5 2q+,1—)

(A.14)
and
B vyl Wt
haly) = (%)2(1—3/)2*41’(%“ 2p,q++z 2p1+zw y)
_%w _ w+
met) = (4) 7 -0 (o - iS5t - ) (A19)

One finds that

9(4) = = (haf(,p) — haf(—w.p) (A.16)
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with the Jost function

_ 2w HT (2, )T(1 — iw)
f(w,p) = " T(gy — iZR)T (g, — i%2)

(A.17)

It then follows from 2.52

Gy = ioyl(er — 52T (g — i952)0(gy +i%42)T (g4 +i%52)  (A.18)
A.2.2 Structure of poles

a) b) . .

) # d)

Figure A-1: The structure of poles for G4 for (a): p? = 0, (b): p? > 0, (c): —12 <
p? <0, (d): p> < —v% In (d), the blue dot in the upper half w-plane correspond to
a bound state.

The poles of A.18 arise from zeros of f(w,p) and f(~w,p). Equation A.17 has

two lines of zeros at
W= _27‘("’ + q+) =D W= —27'('"’ + q+) + D, n=0,1,--- (Alg)
We consider p = ivg (¢ > 0) pure imaginary, then zeros of f are at

w=—i(2n+1) — (1 +g), w=—i(2n+1) +iv(g - 1), n=0,1,---
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When ¢ > 1+ %, there are zeros on upper half plane at
w=1iv(g—1)—1, w(g-1)—-3i, -+, iw(g—1)—2m—1)i (A.20)

where m satisfies ¥(g—1)—(2m—1) > 0 and v(¢g—1) - (2m+1) < 0. A.20 correspond
to the bound states of the system. The structure of poles for G, is plotted in A-1.

For p? > 0 the lines of poles do not lie on the imaginary w axis and therefore in

the limit 3.15 divide the asymptotic u = ¢ plane in four different asymptotic regions.

A.2.3 Asymptotic behavior of G,

We now examine the behavior of G, in the limit of large w along various directions

of the complex plane. For real p > 0 we find that

r

aip (8 woe

4ar _w g 27w _
G, ~ 4 o (%) e w— —o0 (A.21)

2
_——(F?:)V (%—') Y e™ ™  y — +ico

\

The opening of four distinct asymptotic region in the w plane for p? > 0 is reflected

in the different asymptotic behaviour for w — oo along the real and imaginary axis.

A.2.4 Large v limit

We now consider large v limit with w = vu and p = vk. Then equation A.18 can be

expanded as

Gi(w,p) =2we"? (1+0(e™)) (1+0(™) (A.22)
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with

Z =nu+A,logA, +A_logA_+ A logA, + A_log A_ (A.23)
and
1, i -1 i

In the large v limit the series of poles become branch cuts with the branch points
located at
u=+xk+i or u¥=-(1%ik)?

The branch cuts are parallel to the imaginary axis.

A.2.5 Geodesic approximation

One can check that equation A.23 can be obtained using the geodesic approximation
3.41 and 3.42. The real physical momenta k£ and u correspond to complex geodesics
with pure imaginary E = —iu and ¢ = —ik, while real bulk geodesics with real E,q
describe behaviors of G, along the imaginary axis. More explicitly, various quantities

in 3.42 can be integrated directly to obtain

L(uk) = —-;—log(A+fL.A_;1_)
1 ALA i
t(u, k) = §log (A’LA;)—?'B
z(u, k) = -—-;-log (ﬁ*%‘) (A.24)
—-A4

We note that for £ > 0 real, u — +ico, we find that
t~ —im, IR —IiT

which reproduces the third line of A.21. Note that in this limit the geodesics becomes
approximately null and its turning point (given by r? = —-Z—;) approaches the singu-

larity. The fact that ¢ is pure imaginary is a consequence of that the Penrose diagram
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of a BTZ black hole is a square.

A.3 Solutions to 3.2

Without last two terms in 3.2, the equation reduces to the hypergeometric type. To

see this explicitly, considering a change of coordinate

r? — r2 2+ 13y
=tanh?p= —20 2_ 0T 719 .
y = tanh®p T2 T Ty (A.25)
where the horizon is at y = 0 and the boundary is at y = 1. Let
_1 -1
u(y) =" (1 — )" "2w(y) (A.26)
with
1 ih 1
P=-2”—EZ1 0z =5(1%v), v=vitm?

then w(y) satisfies the standard form of the hypergeometric differential equation
w dw
y(1 —y)W— [c—(a+b+1)y]gy———abw—0 (A.27)

with parameters

wB wB ih
b-—q_—'4—7?, a—q_-i--za, C—2p—1—‘—2-' (A28)

We now write down various solutions with specified boundary conditions and various
functions discussed in sec. 2.3. The solution hgr(w,y) specified by equation 2.46

corresponds to

hr(w,y) =4/Ze“TF(a,b,c;9) (A.29)
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where + is constant independent of w. Then by working out the behavior near the

boundary we obtain

i (_TOTO) o as o TEN) s
hats) = |5 (s 03+ 500 + T 3 4 o)

with § and g as defined in 2.46. From the above expression using 2.54 and 2.48 and
2.52 we find that

2r \ 2 I(-v) P32 -4B)r(dfe 4+ 4B)
GR(UJ) =2 (IBI) I‘(Vl; l-\(l v wB)r(va_‘_wB)

G2 = ey ()T (42 - £8)-
T4 -E)r (g +E)r (e + ¥ (A.30)

4

Forv=n, n=1,2,--., equation A.30 should be replaced by

where P, is a polynomial of order 2n

r(1+"—ﬁ)r(lfg—"+§

2 4

and ¥(z) is the Digamma function. When we use A.31 to compute G2 we obtain
exactly the same expression as the non-integer case ??. For integer v = n, ?? can

also be written as

T 2T 1
G — | Qanlw — A.33
= (F( ))? (lBl) () cos (% + “’TB) cos (%’5 + %) ( )
with @2, another polynomial of order 2n

(i )

Q2n( )_F(lgn—%g)r(
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A.4 An alternative approximation

In this section we present another approximation of Gg(w) and G (w) which applies
when |w| is sufficiently large. The method described below was developed in [25, 71
to find the quasi-normal modes of AdS black holes. While not explicitly discussed
there, approximate expressions for Gr(w) for large |w| can be easily extracted from
the discussion of [25, 71], which we reproduce here. First the approximation and its
regime of validity are briefly reviewed then we use it to determine the asymptotic
expansion of Gg(w) and G4 (w) for real and imaginary w.

In order to find Ggr(w) we start from the Schrodinger problem 2.34. Various
solutions with different asymptotics at the boundary or at the horizon are defined in
2.46. In particular the solution hgr(w) is a linear superposition of the solutions g(w)

and g(w):
hr(w) = C_g(w) + C4+g(w) (A.34)

Then from 2.54 we get Gr(w) = -gi Therefore we must find approximate expressions

for Cy and C_.

We start with the Schrodinger equation 2.34 in the tortoise coordinate:

_ d2¢wl

dz?

+ ‘/l(z)lpwl = wzwwl (A35)

where the potential V(z) is defined implicitly via r as:

o) = £0) ((2z + d4—;22) 1yl I_L_(d4_;71_)_) (A.36)

v was defined in 2.26 and the field ¥/(2) in eq A.35 has been expanded in spherical

harmonics on S® (€ is a point on S3):

dw .
€, z)= —e ¥y (&)Yul(z
1/)(t,e, ) ;[ 21‘,6 l(e)¢ l( )

Below for notation simplicity, we will suppress the subscript w [ on . We are
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interested in approximating the differential equation A.35 for large |w| with Bessel
equations both near the singularity (r = 0) and close to the boundary (r — o0).
When the regions of validity of these approximations overlap it is possible to match
their solutions to obtain an approximation to hg valid for any z. In the following we
will consider d > 2 and p fixed and we will find the values of v and [ for which the
approximation works.

At the singularity 7 — 0, one has z & 2+ 7577%" and the most divergent term

in the potential is:

prd-12 1
4r2d=2 T 4z — z)?

Vi(z) = — (A.37)
1
Notice that this term of the potential is equal to w? for r = r+ = (ﬁ(":—l))ﬁ
The potential A.37 would give an equation of Bessel type, however for [ or v large
there are terms in the full potential proportional to :—i and ;ﬁ’% which could dominate
over both w? and —%:I,Z for certain values of 7 ~ 0 . In order for this not to be

the case we must impose that these terms are < w? at 7 = r+ that is:

Putt « =R g wid
P« oot (A.38)

If these conditions are satisfied A.37 is the only contribution to the potential to be

considered for all values of  not close to the boundary.

It is useful to introduce a parameter j such that when z — 0 the potential behaves

like:

22
V(z) = ;-1

We will consider the equation for arbitrary j and we will recover the results for j = 0

by continuity. With A.39 equation A.35 reduces to a Bessel equation and

Y(2) ~ As(2mu(z0 — 2))3 i p(w(z0 — 2)) + A-@rw(z0 — 2))E_j(w(z - 2)) . (A40)
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This solution is a valid approximation everywhere except near the boundary (r ~
00 z ~ 0) as the term (¥*> — )r? in the potential becomes dominant over w? for

r ~ O(w).

Near the spatial boundary , we have z ~ % and,

21
Vi(z) = (1/2 - -}I) r (_32_4) (A41)

With A.41 equation A.35 also reduces to a Bessel equation and we find that
W(z) ~ By(2rw2)7J,(wz) + B_(2nwz)3J_,(w2) (A.42)

That is by comparing the asymptotic form at the boundary with 2.46 :

¥(z) = (2mw)} [’1“(’1%7) (%) s+ F(‘1B_:7) (5)" g(z)} . (A)

This form of the solution is valid everywhere except near the singularity r(z) ~ r*

We would like to find B, , B_ in A.42 and A.43 for the solution hy defined in 2.46
hr(z) = ¥(z) ~ e“%, zZ— 00 (A.44)

In the large w limit, the validity region of A.42 overlaps with that of A.40. In order
to match these solutions unambiguously, it is convenient to take their arguments wz
and w(z — zp) real so that they exhibit an oscillatory behavior. For this purpose we
will match these solutions along the line z = sz, s € R in the complex z-plane
and take wzy real. The matching will give us expressions for B,, B_ along the curve

w = Ay’

in the complex w-plane. We will then obtain their behaviors for other
values of w by‘analytic continuation. In order to understand what are the values of z,
to use we impose that there are no branch points for V(z) between the positive real
z axis and the straight line 2 = sz, because otherwise the asymptotic behaviour of

the solution for Re(z) — 400 cannot be considered the same as the one on the real
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axis given by A.44 . By considering the determination of the function r(z) described
in appendix A8 we then see that the two possible values for z, are given by % and %.
The straight line z = sz, starts at 2 = 0 for s = 0 reaches the singularity at s =1
and finally approaches the horizon for s — +00. We cannot therefore match directly
the form of the solution at the boundary z = 0 A.42 with the expected behavior at
z — oo as the matching line goes through the singularity. We will therefore first

match A.44 and A.40 and then A.40 with A.42.

Consider first 2y = -(ﬂ' —if) = ? For w2y real, we need w = Azy'. We will first
consider A € R_. For z = sz, and s — 400, using the asymptotic expansion of the

Bessel function we find that A.40 can be written as
w(z) ~ <A+e—i1r 143 + A_e—iwp—zﬂ> ew(z0—2) 4 (A +A -m!_l) —iw(z0—2)

The purely ingoing boundary condition A.44 at the horizon requires that the coeffi-

cient of e~# vanishes, which leads to

m— e (A.45)

The asymptotic behavior of 9(z) for 0 < (1 — s) < 1, and |w(z — 20)| > 1 can
be obtained by rotating the argument (2, — z) of the Bessel function of an angle =
counterclockwise in the complex plane!. Using the fact that around z = 0 we have

Js(e7z) = e~ J4(2) we obtain
¢(Z) ~ ( mﬁ_ﬂl +A emng) iw(z—20) + (‘4_'_63:'74-1-}'1’2 +A_e3i1r$1—zl)) e~ w(z—2)

The asymptotic form of A.42 for 0 < s € 1 |wz| > 1 is given by

¢(z) N (B.,.e —i:r!:+2vz i B_e—iwgi—m/z) e_i‘u " (B+eing1;+2y2 n B_eingl;zuz) eiwz (A.4ﬁ)

!in such a way not to cross the branch cut emanating from z = zg as described in appendix A8
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Matching the two expressions above we find that

—24,e" P sin(nj) = e it (B+e”i7r2_v +B_ei£é!)
24, e T2 sin(’—;l) = &wntD (B¢ + B_eY) (A.47)

which gives

By _ cos (—— +wzg — £ In(2 cos(J—))) (A48)
B_ cos( +wzp — £1n(2 cos(L))) '

For A > 0, the steps are exactly parallel except that in this case it will be convenient
to change the sign of the arguments of all the Bessel functions. We find that the

matching gives us

ot o g (A.49)

Starting from the other value of zo = (8 +i8) = 2, one finds that for w = Az5" and
A€ Ry

B, cos( + wzy ~ -ln(2cos(’—)))

A.50
B_ cos (—7 +wz — 3 ln(2 cos(-%))) ( )

and for A € R_
% _ i (A.51)

A.4.1 Retarded propagators

The above results can be used to obtain the asymptotic expansion of the retarded
propagator Gg(w,!) along four directions in the complex w plane. The retarded

propagator for O in momentum space in the large w limit is given by

Cr(w,l) = 21/1"8+ ;( )2”% (A.52)
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From A.48-A.51 we thus find that:

o 1. Forw=MB"", \€ R_ we have:

—v) cos[— % ﬂg—gn )] (—w\*
) L_ e Lg Zﬁiiii (3) (+0(3)) @

e 2. Forw= B!, A€ R, we have:

Gr=2 FIE(_V’;)( ) ¢mim (1+0( )) (A54)

e 3. For w = AB"!, X € R, we have:

_ . I(=v) cos[% + “B _ imn(2cos(L))] (w\* 1
Cn=2v I'(v) cos[—zﬂzg + B _ 11n(2cos(Z))] (5) (1 +0 (;;)) (A.55)

e 4. For w= AB~!, )\ € R_ we have:

GF =2 Flf(’y)) ("‘”)2 imv (1+0( )) (A.56)

Note that the most singular term at r ~ 0 in the A.36 only appears through the

shift —%In(2cos(Z")). This factor diverges for j — 1 as the corresponding term in
the potential disappears . Another interesting case is j = -23; for which in d = 4 the
differential equation reduces to hypergeometric form for { = 0. In this case the exact
form of Gg(w) has been found in Appendix A3.

For j = 0 we find poles in Gg(w) at:

Wn B

dm (1 +v 1 - dr (1+v i
- 2 = ——= _ = = een
( 7 +n+2log( )), Wn B( 5 +n 2log(z)), n=0,1,
It is important to notice that the asymptotic expression for Gr in A.54 can be
obtained from that A.55 by an analytic continuation in the complex plane w-plane
through the real axis. This makes us believe that A.53 and A.55 can be trusted also

to give the correct subdominant pieces in the expansion for large w along the positive
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real axis:

Gr(w) = 21/%%26“"” (%)2” -
. [1 + 4i cos (%) sin(mv)e?w= + ] (1 +0 (é)) (A.57)

Note that the leading order terms reduce to the zero temperature result, which follows
from conformal invariance. The coefficient of the subdominant part is controlled
by coefficient j of the most singular term A.39 in the wave equation A.35 at the
singularity. In particular, the subdominant term in A.57 goes away for j = 1, at

which case A.39 vanishes. From A.57 we also find that

G, = _4VFI§(‘V’;) (‘12’_)2 sin(mv) [1 — 4cos (’—2?) cos (wr - 32@) e-%"*] (1+0 (:—)))

Similarly A.56 can be obtained from A.53 by analytic continuation through the neg-

ative real axis and we conclude that on the negative real axis (i.e. w < 0)

Gr(w) = 21/%%26’"’” (%w)m’ [1 — 4icos (%) sin(mv)e® 4 .. ] (l +0 (l))

w

G, = 4urlf(_y’;) (‘7‘”)2 sin(mv)e? [1 — 4cos (223) cos (1/7r + %B—) e%é] (1 +0 (-:;))

We can also find the asymptotic expansion of Gg on the imaginary axis. For w € iR~

we get:

Gr(w) = 2VFI£(_UI;) (%)zu (1 — 2isin(7v)sinh (ﬂ_zw_) sec(%r)e"'*ﬂzE + ) (1 +0 (%))

while for w € iR*:

a0 =25 () (10 (1))
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For w € iR~ we also get:

Gy =-2v Fl.(,(_VI;) (z—;—)) > sin(mv) sec (12]-) s

A.5 A more sophisticated WKB analysis

A.5.1 general remarks
By performing the rescaling 3.24 equation 2.34 in the large v limit reduces to:

(%% -V(z)+ uz) P(z) =0 (A.58)

we want to find the form of g(z) defined in 2.46 for = — oco. From there using

2.52 we will obtain an approximate expression for G (u).
Define Z(2, z) = [ dzk(z,u) where (2,u) = 1/V(z) — u?

2

Zg

II

Figure A-2: Pattern of Stokes lines near a turning point

Close to a generic point 2y the lines of constant imaginary part for Z (2, z) do not
intersect. However whenever V(2) = u? there are three of these lines? converging
towards 2 at a 2F angle; these are called Stokes lines. On each of these Z(z, 2) € R
and so the exponential factor ﬂ(z,u)’%ei"z(""”) in the WKB approximation to the

solution is real and either decreasing or increasing along the line. Both x(z,u)~% and

2More than three lines is not a generic situation and is not considered

153



Z(zy, 2) are multi-valued functions around z, and we will define them by introducing a
branch cut extending from z, in region I7 in A-2 . Suppose now Z(2, 2) < 0 along line
1; then in the WKB approximation of the solution decreasing along 1 only the term
k(z, u)_%e"z(z"’z) is present in regions I and I1. We will find the WKB expansion of
this solution in region 111 by applying the principle of exponential dominance stating
that crossing a Stokes line the coefficient of the dominant term in the expansion does
not change. The term n(z,u)‘%e"z("”z) is the dominant one on line 2 and so its
coefficient is continuous and doesn’t change while crossing it. However in region 171
we can also have a contribution proportional to k(z,u)~2e*Z(%:2) which will be the
dominant one along line 3. In order to find its precise coefficient we analytically
continue the expansion we have in region I/ up to line 3 but in doing so we cross the
branch cut and so we get —ik(z,u)~3e=*2(0?), Then in region III the asymptotic
expansion is:

Y(z) ~ K(z,u) "2 (2007 — jevZ(02))

If instead the branch cut were in region I we would have obtained in analogous way:
¥(2) ~ Kk(z,u) "3 (#2002 4 jevZG02))

Given a turning point 2z its Stokes lines cannot intersect unless in another turning
point which is not a generic situation and is excluded in what follows 3 and therefore
divide the complex z plane into three regions. Two cases are possible:

a) The origin and +o0 are in the same region then z; is called inactive

b)they are in different regions and 2 is an active turning point.

For each active turning point imagine shading the regions in which the origin and
+o00 are; the intersection of all the shaded regions will be called active region in the
following. Starting from the region containing the origin we can order the regions
which are active by adjacency up to the one containing +o0.

For every turning point there is a region which doesn’t contain neither 0 or +oo.

3these non generic cases are the ones that divide the parameter space in regions with topologically
distinct patterns of Stokes lines
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It is therefore possible to choose the branch cuts defining \/—V_(7)_——u—2- and Z in such
a way that they do not cross into the active region.

Then in the active region we can globally define two wave-forms exp(+£vZ(2, 2)).
For each wave-form the Stokes lines where it is dominant or subdominant are fixed

by the sequence of active turning points as shown in figure.

Figure A-3: schematic representation of the active region. The red dashed lines are
branch cuts while the arrows are in the direction of decreasing real part for Z

The WKB approximation to the desired solution is then given by choosing the
appropriate coefficients of the two wave-forms in each region. When we cross one of
the Stokes lines the coefficient in front of the wave-form which is dominant along that
line does not change while the coefficient of the other wave changes according to the
appropriate connection formula. Two cases are possible and are shown in figure (the

arrows represent decreasing Z(zo, 2)):

Figure A-4: Stokes line diagrams for the two cases of the connection formula at a
turning point

Suppose we start with the wave Aexp(vZ(2o, z)) + Bexp(—v.Z(z, z)) in region I
then in the first case the first term is dominant while crossing the Stokes line and so

its coefficient doesn’t change. By applying the connection formula we get in region
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II:
Aexp(vZ(2, 2)) + Bexp(—vZ (2, 2)) + iAexp(vZ(20, 2r) — vZ (21, 2))
while in the second case the dominant term is the second one and we obtain:
Aexp(vZ(20,2)) — iBexp(—vZ(z, 2zr) + VZ(2r, 2)) + Bexp(—vZ(2, 2))

The application of the method just described to the specific case of the black hole
background is in principle straightforward once the pattern of stokes lines correspond-
ing to the values of k and u of interest is determined. Unfortunately the range of
possibilities is quite extended and we will content ourselves to determine what are the
turning points that give the dominant contribution to the result in various regimes
and determine the position of quasi-normal modes.

Being V' (2(r)) a single valued function of r it follows from the discussion in Ap-
pendix A8 of the function 7(2) that V(z) will have branch points at those points z
for which r(z) = 0. In the following we will use the determination for 7(2) described

in Appendix A8 which has the following properties:

e 1 Re(z) — +o0 corresponds to 7(z) approaching the horizon. z = 0 corresponds

to the boundary.

e 2 The only branch points present for Re(z) > 0 are located at z = % +1 n'g
where n € Z. For any branch point the branch cut extends on a line of constant

imaginary part for z towards Re(z) = —o0.

e 3 This determination is such that V(z +i2) = V(2)

A5.2 k=0

We will now apply the method just described to the determination of the dominant

contribution to G4 (u) when k = 0 for different values of u. For u around the origin
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4 there is only one active turning point T (and its periodic images) which is the one
considered in 3.30 for 4> € R*. This is the turning point represented in 4-1 a). The
pattern of Stokes lines is represented in figure for Re(2) > 0 and Im(u) > 0. The thick
lines are the branch cuts extending from the singularity S at z = % +22Hi8 neZ

while the boundary at z = 0 is denoted by B.

Figure A-5: Pattern of Stokes lines for Re(z) > 0 and Im(u) > 0

Requiring Z to be continuous in the active region fixes it up to a sign. In the
following we will conventionally choose the determination of Z in the active region
in the following way: For any two points 2z, 2z = 2; + z‘g the quantity Z(z1,22)
must be the same due to the periodicity of the function V(2). By computing it for
Re(z) — +00 we obtain: Z(2y, z9) = +iu fgg dz. We will choose the sign of Z such
that Z(21,22) = —gu

For z in zone I in figure the WKB wave-function corresponding to g(z) is:
¥ ~ Ax(z,u) 2exp(vZ(ar, z))
A = lim exp(vZ(e, zr))e’ = exp(vZ*(0, 21)) (A.59)

with Z*(0, 2) = lim._o(Z (e, 2) + v 1log(e))

Applying the rules given above we get for z € II III IV.

1
“in particular |u?| < |f(r.)| where r, = (_gd_—zz)_g)?
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Y ~ A(z,u) "% (exp(v2 21, 2)) + iexp(—v Z(er, 2))
Y ~ Ak(z, u)_%(exp(uZ(zT, 2)) + texp(—vZ(zr, 2))[1 + exp(2vZ (21, z1,))])
Y ~ Ak(z, u)'%(exp(vZ(zT, 2)) + iexp(—vZ(zr, 2))[1 + exp(2vZ (27, 21,)) + exp(2v 2 (21, 21,))])

For z — 400 we will get:

. )
— exp(2vZ(zr, 21,))

¥ ~ Ar(z,u) 3 (exp(v2(er, 2)) + iexp(—v2(ar, 2))[5

then we can use the fact that as zr, = 2r —I—ig the quantity exp(2vZ(zr, z1,)) = e ™8

to obtain

euuﬂ/2

Y~ An(z,u)_%(eXP(VZ(zT’ z)) + im

exp(—vZ(zr, 2))) (A.60)

/

We see then that the factor -Qﬁhiz‘%m arises naturally due to the periodic nature

of the potential. For z — +o00 we have Z(z2r, z) ~ iuz.

The function g(z) can be written as a linear superposition of hg, hy defined in
2.46 .

0(057) = 5= (~F(w)ha(u2) + f(- (i) (A1)

It would seem that this expression is inconsistent with the form of the solution we
found as the coefficients in front of e*“* and e~*** are not related by u — —u.
However the form of the W K B approximation to g(z) does not have to be continuous
in u. In fact A.60 was found for Im(u) > 0 while for Im(u) < 0 the following

expansion is valid

—vuf3/
W ~ Ax(z,u)" 2 (exp(—vZ(2r, 2)) — i ° i

zmexp(uz (21, 2))) (A.62)
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In function of f(u) we then have the following expression for G,:

Gi(u) = () f s (A.63)

For z — oo we have Z(zr, z) ~ tuz so that by using the formula above we can write
for G4 (u):

Gi(u) = 2ue~ 2 (02r)

evub /2

The factor S hGudD)

in the result for the asymptotic behaviour of ¢ for z — oo
simplifies in the expression for G..

Next we will consider how the expression we just found changes as u increases.

A.5.3 The k=0 case for large u

Increasing u the pattern of Stokes lines changes as a second turning point becomes
active. For [u| — oo with Re(u) > 0 and Im(u) > 0 we will denote with 7" the turning
point for which zr — 0 and with K the turning point for which zx — %(ﬂ’ +1i8). For
increasing |u| then T approaches the boundary while K approaches the singularity. It
is important to realize that if we increase u along the real axis from 0 the turning point
considered in 3.30 and used in the previous computation valid for small u approaches
the boundary and becomes T while if we increase u from 0 along the imaginary axis
it approaches the singularity and becomes K as described in section 4.1.

For |u| large and some value of arg(u) we have Re(Z(zr, zx)) = 0 and the Stokes

lines configuration is easiest to picture:

Figure A-6: Stokes lines configuration sketch for large |u|

Also pictured is a schematic representation of the active region. In this case too

an infinite succession 7, and K, of images of the turning points is active.
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Given the configuration of turning points we have to apply the connection formula
at T K Ty K1 T; K, .. counterclockwise. Proceeding as before we will have for z in

the active region between T and K

P(z) ~ K(z, u)—éeuz*(o,zr) (euZ(zT,z) + ,ie-—uZ(zT,z))

Then by using the connection formula at K we get:
¥(2) ~ K(z, u)--}j V2" (0r) (gvEard) | jo-vEGra)(] 4 E(ran)))
By repeating the steps for T; and K; we obtain:
¢( z) ~ n( z, u)'% euZ'(O,zT)( evZ(er2) +1 e—VZ(zT,z)(l + e2uZ(zT,zK)) (1 + ezu2(zT,zT1)))
so that for z — +oo

-1 2*(0,27) vZ(27,2) . —vZ(27,2) WEZ(2r,2x) 28V’uﬁ/2
Y(2) ~ k(z,u) " 2e e + e (1+e )

sinh(vuf/2)
We can then use A.61 to obtain:

1

_ w2 O2ry
G+ = 2ve 14+ eZuZ(zT,zK)

Along the line in the u plane for which Z(zr, 2x) is imaginary we have poles located
at Z(2r,2x) = i(2n+1)Z. The integral Z(zr, zx) can easily be evaluated explicitly

For d = 4 and we obtain for the position of the poles:

_ 47 (1 +n)
Un=Tg\2
where n € N.

When u is tilted toward the real axis T and K move in the direction of the red

arrows exp(Z(er, 2x)) << 1 and G ~ 2ve~ %" (027) 5

5For u close to the real axis the Stokes lines configuration changes and some subdominant terms
coming from the line of poles complex conjugate to the one just described appear however Zr
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For u tilted towards the imaginary axis T' and K move in the direction of the blue
arrow exp(Z(zr,2k)) > 1 and:

1

~ ~2v2*(0,2x)
14 ewZ (21,2K) 2ve

G, =2we™ ¥ 2*(0,21)
In this case then for |u| large the dominant contribution probes the geometry near

the singularity.

A54 k#0

For £k € R and small there are new solutions to f(r)(1 + %2-) = 0 lying near the
singularity but the turning points giving the dominant contribution to G (u) are the
same as for k = 0 except for the fact that their position will depend continuously
on k. The approximate solutions for G (u) are the same as before except that the
integral defining Z(u) has to be evaluated at finite k.

However as described in section 3.3.2 for finite 4 when & becomes greater than a
critical value k() the potential on the real z axis changes from being monotonically
decreasing to the one depicted in 3-6 . There is a region between z,;, and z,,, for
which the potential is an increasing function of z.

For Umin < U < Umq, there will be poles along the real axis as described in section
3.3.2. The pattern of turning points resulting in this situation is quite complicated

and is not considered in detail here.

A.6 Explicit expressions of the integrals 3.42

In this appendix we will derive explicit expression for 3.42 in terms of elliptic integrals.
In the d = 4 case this can be done for generic values of £ and k. Ford =3 andd =7
we are able to perform the integrations only for & = 0.

We will first present the results for d = 4 and then show how they simplify for

k = 0. This limit is interesting because it can be compared directly to the expressions

continues to give the dominant contribution to G.
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3.18. The fact that 3.18 coincide with the k = 0 limit of the integrals 3.42 is a check
of the consistency of the semi-classical approximation to G+(w) described in section
3.2 and the approximation to G (w) described in section 3.1.

We will then write expressions for 3.42 valid for d =3 and d = 7in the k =0

case. Finally we collect some definitions and results on elliptic integrals that we use.

A.6.1 The d =4 case

For k? = —q?® # 0 the various integrals in 3.42 can be expressed in terms of elliptic

integrals as follows.

First we change the integration variable in 3.42 to y = r%. The turning point

equation 3.40 becomes:

7 (e (1- L)+ ) - (A.64)

=P+ (E* - @+ 1) —yp+ ) +pd” =y —y) Yy —y3) (Y — 12)
Also we introduce wg and wy such that
yfr@)) =y +y—p=(y—wo)(y — wy) (A.65)

Let y; be the solution corresponding to the turning point then the integrals 3.42

are rewritten as:

oE, _ o0 y%dy
(£:9) /m (y — wo)(y ;l w)y/(¥ — 1) — ¥3) (¥ — 92)
Eq = qf" y A.66
w5a) q/w VY —y) @ — 33)(y — 3) -

Vydy
lima—eo — 2log(A
- (/ To-mu-wem = ))

Introducing the following definitions:

L(E,q) =

o = B¥ ( ) ¢ = Ba=wo
y1i—y2 Yy—ys Y1—wo
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¢ =B =W 4= arcsin(,/a) (A.67)

h—w Y1a

the ¢ integral can be written as

Ve (1 - sx?) 2dx c [
t=B [ e (1—§x2'1—§x2) (A.68)

with

28y} (A.69)

(va —vz)% (y3—y1)(wo—w1)

A.68 can then be cast in the following form:

— va (c— 30,)2 3 (c— sa)2 22__3
) B/o \/(1 = x*)(1 - sx?) (C(l -£x?)  T(1-:x?) + (sa) = )

This can be expressed directly in terms of elliptical integrals F'[¢, m] and II[n, ¢, m]
(defined in appendix A.6.4):

= 2E(ys — y1) (y3 — wi)wp € b5
Lo (wo - wl)\/y1(y3 —yy2)(zs - wo)(y3 — "-Ul) < yyl —w - I [;,4’, ] +
_(7_“’%11[ 3 ] + (wo —wl)( )F[¢, ]) (A.70)

The same substitutions applied to the L integral yield:

A2 Vidy
L(E,q) = I — 2log(A AT
B = (/yl V=) —v5)(y — 1) ool )) A7

= [}EEOZ( y:ilyz (sa F [gb, s] + (1 — sa)Il E,(Z, s]) - log(A))

where ¢ = arcsin (ﬁ%—:—%)

For = we get:

(A.72)

2
z(E,q) = g————==F|0, s
(5:0) =4 yl(ys—!h) [¢ }
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The elliptic integrals that appear in the previous expressions have branch points

when one of the following occurs:
sin*(¢) = a = % that is for y; = ys.
sin(@) — oo corresponding to a — oo that is for y; = y.

Branch cuts for the various integrals then start at those values of E and q for

which the turning point coincides with another solution of the turning point equation

3.40 8.

A6.2 d=4and k=0

In the k£ = 0 limit one of the solutions to the turning point equation A.65 is at y = 0.
This solution is not the turning point as it does not change with E therefore we can
choose it to be y,. Then the quantity s defined in A.67 is equal to 1 in this limit and
the previous expressions A.70 and A.72 can be written in terms of logarithms using

the formulas in the last section of this appendix. We obtain:

4= 2B ( wo 14+y/c )
(wo—w1) \ /(yo—wo)(y1—wo) log(l_‘ﬁ) +

__2E wy 142
(wo—w1) ( e ey log (1—_—\5» (A.73)

By writing A.65 as y? + y(E? — wp — w;) + wow; this expression can be cast as:

L V& log((E—\/J—mw—«aTwM)Jr
wo—wi P \(E = it — yEn) (E = v/ + yo)
Vi log((E+\/uTo+\/u71)(E—\/Fo+\/Ul)) (A7)
Wy — W (E—\/uTo‘~\ﬁd_1)(E+\/UTo-\/u—).1-)

5As we have seen in appendix A5 at these values there can be a topology change in the active
region and a new line of poles can form. When the mass parameter v is taken to oo these poles
merge to give a natural prescription for the position of the branch cuts of Z(u,k) as described in
section 3.3.
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Then using 2.14 we can express the complexified temperature in terms of wy and w;

as B = —2mi(,/w1 — /wp)~! and obtain” :

t(u=1iE) = Zﬂ';r- log (jtg;) - z—— log (A+A+) —Z- (A.75)
where
Aizﬁ"r:};u L] A =@ii-if’s,

—_— _e ,
Bl ~ V2 R
and g is the phase of B.
In the same way in the limit y, = 0 we get for L(FE, 0)

L =log(y1 — y3) (A.76)

which following the same steps can be transformed to read:
1 . -
Lu=1E)= ~3 log(A+A+A_AL) (A.T7)

The branch cuts in A.75 and A.77 are straight lines extending radially from :t%"
and :l:% to oo as follows from the discussion of section 3.3. A.75 and A.77 coincide
with 3.18 ; therefore the approximation described in sec 3.1 for gives in the limit 3.15

the same results as the semiclassical approximation developed in sec 3.2 when k& = 0.

A63 d=3, d=6

For d =3, 6and k = 0 it is also possible to evaluate 3.42 in terms of elliptic integrals
following a similar procedure.

For d = 3 we will define y = r and the three solutions to f(y) = 0 will be
denoted with wgy, w;, w, while the three solutions to the turning point equation
y(f(y) + E?) = 0 will be denoted with y;, 2, y3. In a similar way for d = 6 we
will define y = 72 and the three solutions to f(r(y)) = 0 will be denoted wp, w;, ws

while the three solutions to y2(f(y) + E2?) = 0 will be denoted 31, 32, ys. In both

"the constant is fixed by requiring lim,, +o £(1) = 0 with the branch cuts extending radially to
oo and the usual determination for the logarithms
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cases y; will correspond to the turning point. Then the results for the ¢ and L integral

are:
for d=3
" — 4E(ys — 1) .
(wo — w1)(wo R wa) (w1 — w2) /Y1 (Y3 — ) .
(w1 - 'UJQ)’LU (wo - 'U)z)’wl
’((yl T e L AL I e ey AL R

(wo - wl)wz y%(wo — wy)(wo — wz)(wl — W)
+(y1 — ws)(ys — ws) [ 3 ] (ys — y1)(ys — wo)(ys — w1)(ys — wz)F 1@ S])

where ¢ = gé‘:%’,— and all the other quantities are as defined in A.67 .

_T A idy B
L(E, ) = limr—co (2 J V1) y~v3)(y-v2) 210g(A))

=1imA_,°°4(, [ (sa F[3,s] + (1 - sa)T1 [£,8,5] ) —%log(A)) (A.79)

where ¢ = arcsin (\/aA= ay—2

for d=6
= 2E(ys — 1)
(wo — wi)(wo — wa) (w1 — wp \/yl Y3 — yz)
— wa)uy (wo — wa)w}
((yl wo) Y3 — wO) [ ,¢1 ] (yl wl)(y3 — wl) [ ¢, ] (A.80)

+ — wy)w) [ d),] y3 (wo — wi)(wo — wp) (w1 — wy) F[¢,s])

(y1 wz)(ya wy) (y3 — 1) (ys — wo)(y3 — w1)(ys — w2)

the expression for L is the same as in A.79 but ¢ = arcsin (\/Eﬁjzfy%)

A.6.4 conventions for elliptic integrals

We define the following integrals

sin{¢) dt
Mroml = R
dt

V(1= 2)(1 - mt?)

sin(¢)
Flp,m] = 11[0,¢,m| = [
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T 1 dt
Klml = F[—’m]—/ Ja-8)1-mp)
EW]=/VZTf (A.81)

The functions II[n, ¢, m| and F[¢p,m] for fixed n, m have branch points located at:
sin(@) = :I:% and ¢ = oo. Conversely for fixed ¢, n they have branch points at

m = and m = oo. It then follows that K[m] has branch points located at

sin (¢)
m=1m=o00
The following formulas are used to obtain the explicit series expansion of K[m] for

mn~ —1:

d _ E[m]- (1 - m)Km]
d_n;K[m] - : ]2m(1[—]m)
d Elm| - K[m

from which one obtains:
K[m] = K[-1]+ %(21{[—1] — E[-1)(m+1) + T16-(5K[—1] —3E[-1]))(m +1)* + ...(A.83)

We also use the following formulas 8 to obtain A.73 and A.76 :

TI(n, arcsin(v/a), 1) = (flo (H \/\/"__“) —2log (b”li:‘/_z))
F(arcsin(va), 1) = log (f/;“_}/;) (A.84)

A.7 Asymptotic behaviour of Z(F,q)

In this appendix we study the asymptotic behaviour of Z(E,q) for E — co along
the real and imaginary axis for d = 4. First we consider ¢ = 0 and then q¢ # 0

with g fixed. I this last case the asymptotic expansion along the imaginary E axis

8which can be found for example in www.functions.wolfram.com

167



is radically different from that along the real axis which is invalid for ¢ ~ O(E™1).
For ¢ < O(E~1) a different expansion along the real E axis is presented. Finally we

consider the case E ~ ¢ > 1 for the reduced metric 2.6.

A.7.1 q=0

We will first consider what is the asymptotic behaviour of t(E,q) , L(e,q) and
Z(E,q) for d = 4 and q = 0 in the two limits £ — Fo00 and u© = iE — +oco. We have
to expand the explicit expressions A.75 and A.77. The branch cuts in the logarithms
extend radially to co. With this choice of branches the following holds for u — Zoo.

. 2i X an(p
t(u) = Zto - Z +z§2n 27(”_3
L(u) = -2log ( ) 2(2 + 1) a"(” (A.85)
Z(u) = —ut0+2log< )+2+Z n(/-")
where the a,(u) are polynomials in g and:
0 Reu— +oo
8 Reu— —c0
For E — +oo the expansion is instead:
HE) = t ——+Z2 o onltt)
- = E2n+1
L(E) = —2log (2) + Z(2n +1)(— )”g;—(z? (A.87)
E n
Z(E) = —“Eto + 210g (:}:—2-) +24+ Z(—l)naE—(;:)
n=1

168



where

g ReE — +00
to = (A.88)
—-g ReE — -0
The expansion for £ — oo and u — oo are related by setting £ = —iu except

from terms coming from the choice of determination of the logarithms in A.75 and
A.7T7. As we will see for g # 0 the situations is very different and the expansion along

the imaginary and real u axis are qualitatively different.

A.7.2 q+#0 case

Next we will expand the expressions we have obtained in appendix A6 for 3.42 when
k = iq € R nonzero and E — +o00 or u — *oo with k held fixed. To do so we need

first to expand the solutions to the turning point equation A.65 which is given by:
k2
e (f(r(y)) (1 + ;—) + E2) =0 (A.89)

One of the solutions is of order O(E?) while the other two solutions are of order

O(E~1). By denoting with y; the large solution we can parameterize them as:
n=—(E>+k*+14+2d) ys=d+e yp=d—e (A.90)

where both e and d are small in the limit |E| — oo. d and e have the following

expansions:
1 2n
d = §=:1(E) Pa(k, )
1 2n+1
e = k2 (-——) (K, A91
2wk | g ) @k (A.91)

where P, @ are polynomials in k2 and . P, is at most O(k?") while Q, can be
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O( k4n) 9.
Notice the following:

e 1 The radius of convergence of the expansions is determined by the merging
of one or more solutions y;. For example the expansion for e breaks down for
small &; this is due to the fact that for ¢ = —k% =~ 152 the two small solutions
coincide and e ~ 0. The radius of convergence of the series is determined by

the position of this singularity.

e 2 The series expansion of e? is non singular in the k ~ 0 limit as it can be

expressed in terms of d using A.93

e 3 For k ~ E all the terms in the series expansions for e and d are potentially of

9This can be obtained as follows. First by plugging the parametrization A.90 in the turning point
equation A.89 we get the following equation for d:

8d®+d® (8+8k*+8E%) +d (2+6k* +2k* +4E? + 4K E* + 2E* - 2p) —p— E*p+ K> + k* + K E* =0

This equation has only one solution which is small in the limit of large E and for it d ~ E~2. By
writing d = gE~2 the equation for d can be cast as

29+89°+6gk®+29k*—2gpu 892 +8g%k*  8g%
B tTE  TES

from which it is apparent that d = gE~2 will have the expansion:

E? (2g+K —p)+4g+k —p+4gk* +k* +

d=Y_ P.(k*pE™" (A.92)

n=1

where P, (k?, 1) are polynomials in k% and p of degree at most k*". The first term of the series is
P2, ) = $(u— K?).

By matching the terms of order ¥ in (y — 1)(y — y2)(y — y3) and in A.89 we get the following
equation for e:

et =-2d-3d>—k*~2dk* —2dE*+p (A.93)
from which upon using the expansion A.92 follows:

e? =Y Fu(k* pE" (A.94)

n=1
where F,(k2, 1) are polynomials in u and k? up to order k2". As the first term in the expansion is
given by F;(k2, ) = uk? by taking a square root we get for e:
k 1 2n
=25 (55) Qulbn (4.95)
n=0

with Qn(k, 1) polynomials in k2 and p of order at most k*"
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the same order. This also is a reflection of the merging of two of the solutions

for k=+iE+1.

Having determined the expansion of the solutions to the turning point equation A.89
for |E| — oo and fixed k # 0 we can proceed to find the expansion for the functions
t(E,k) Z(E,k) z(E,k)

First let’s consider the case © — +o0o. From the discussion in section 4.1 the
turning point is the large positive solution that is y; ~ u? in our parametrization.
We want to expand the expression A.72 for z(E, k). For this we first consider the
quantities a and s defined in A.67 which can be expanded as follows in function of e

and d.

1 —2n

a = ;%Pn(e, d, k*)u?

s = dte + ! > Kn(e,d, K )u?" (A.96)
2¢e e’

where P, and K, are polynomials in the indicated variables of order at most k**. Be-

fore substituting the expansions for e and d it is useful to make a further observation.
The elliptic integral F[sin~*(y/a), s] has the following expansion valid for small a:

Flsin™ va,s] = va y_ ca(s)a™ (A.97)

n=0

where c,(s) are polynomials in s of order at most s*. Then As k2, e, d < u? we can
expand the expression for z(u, k) as follows:
—2ik o a ik 1
£ = —————F[sin"'(Va),s] = =2ik,[———— 3 ca(s)a” = == Y —=Dn(e,d, k?)
Vi (ys — 32) yi(ys — ¥2) 1% u? Fgun "
where Dj,(e, d, k) is a polynomial in the three variables.
At this point we observe that exchanging the two solutions y, and y; (that is
e and —e) and leaving the turning point unaltered cannot change the result so the

D, (e, d, k?) have to be even in e. Therefore the expansion is non singular in the k — 0
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limit and using the previous results A.91 for d and e we get the following:

F= —ik (Z (%)Zn M,(,D(k)) (A.98)

n=1
where M (k) are polynomials in k? and u of order at most k*"

We could use a similar method to expand t(u, k) and Z(u, k) too but it is simpler
to take advantage of the relations 3.43 existing between the various integrals. This
method leaves undetermined a contribution to Z(u, k) independent of k which can be

fixed using the form of the expansion valid at £ = 0 obtaining:

1 2n+1
t=1i nzzjl (2nk?) (E) M, (k) — i8,2(x, 0)
Z=% 8 (1%)2" Mi(k) + Z(u, 0)

Z(u,0) = —uty + 2log ( ) +2+ Z an(u) (A.99)

where the expansion for Z(u,0) is the same as in A.86 and the M,(k) are also poly-

nomials in k? and p of order at most k*".

As expected none of these expansions is singular in the limit ¥* ~ 0. This is
because for u — F00 the turning point y; is very far from the two close solutions y,

and Y3-

The situation is very different in the E € R case for which the turning point in

the integrals 3.42 approaches r = 0 as E — +0o0. We then parameterize y; y3 y2 as:
p=d+e ypp=d—e yp=—-E*-k-1-2d

where y; is the turning point. In this case the solution y; is very close to the turning
point and can coincide with it for k ~ O (E~!). We therefore expect the asymptotic

expansion we will obtain to be singular in the k¥ = 0 limit.

Notice that for k € R we can deform the integration contour for the z integral

A.67 which originally runs from y; to +oo to run from y; to —oco and rewrite it as
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follows:

L <
n \Jyy— vy —ys)y — "
dy dy

/:: \/y(y y1)(y — ys)(y — v2) +/yz V= v — vs)(w — 1)

2
= ——F[—,s] S S— 2 Y (A.100)
\/ Y1(ys — 312) 2 Y/ (Y3 — 1)
where
r ga!yl—ﬂz 2
5 = wln-w) sin®(y) = yl—-yz

The second integral is qualitatively the same as the one occurring for u2 > k? > 0
because y; which plays the role of the turning point goes to —oo while the other two
solutions approach 0. Its expansion is similar to A.98 and is not singular in the £ ~ 0
limit.

To obtain an expansion for the first integral we notice that for F — 0o using the
expansions A.91 the parameter s = 282=¥2) approaches —1. Around s = —1 the

v (33—v2)
elliptic integral K[s] = F [g, s] admits a Taylor expansion in (s + 1) (see A.83 ):

Kls} =) an(1+s)" (A.101)

By considering the structure of A.91 the following expansion follows after some alge-

bral?:

2 _ —_}_ n+i o
yl(ys—yz)K(S) g(kﬁE) T (k) (A.103)

where TV (k) is a polynomial in k2 and p of order at most k2.

10First it is useful to express the integral in terms of the solutions y; using A.101 :

2

T K =2 0t tnls — 1) " i~ + )" (A102)

The factor (2y1y3 — y2(11 + y3)) is easily seen to depend only on e? and therefore has an expansion
in powers of E~2. This is not the case for (y1(ys — y2)) which instead will have an expansion like
the one for e in A.91 . In particular (¥1(ys — y2)) ~ /EKE + O((kE)~!) from which we get that the
expansion of A.102 will be of the form indicated.
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As expected this series reflects the presence of the branch point approximately

located at ¢° = —k? =~ k3.

Summing the nonsingular contribution at k = 0 from the second integral in A.100

and using the same method as for u — co we get for the expansions of ¢(E, k) and

Z(E, k):

HE,k) = —ik (go (F},ﬁ)ﬂé TO®) + 3 (é—)zn Lg})(k))

HEk) = — _O(n+-;-)k2 (PE—L\/H) iTn(k)—Zl(?nkz) (%) " Lak) — 952(E,0)
n~+—2

Z(E,k) = 2,’“2(\/;711@) T(k)+zk2( ) La(k) + Z(E, 0)

Z(E,0) = —Eto+210g( )+2 Z( 1) “:‘E;:) (A.104)

where the expansion for Z(E, 0) is the same as in A.88 while L, and T;, are polyno-

mials in k and p of order at most k2"

In the regime |kE| < |/ and E? >> 1 the previous expansions are invalid. Instead
we introduce the parameter ep = —k*E? and expand e and d for E — oo and € ~ 0.
The expansion for d can be obtained by substituting ¥* = —euE~2 in A.91 which is
non-singular as kK — 0. For e we can use A.93 to find that the double expansion for

e? starts as p?(% + €)E~* + O(E~°) from which we get:

1 n p—2m
CZE'Z‘ Z bn,m(ll‘)E E 2

n=0,m=0

where the by, , (1) are polynomials in p.

For k = 0 one of the solutions to A.89 is at y = 0. As we chose y; to be the turning
point and y; to be large in the limit £ — oo we therefore must have y3 =d —e = 0.
As a consequence d — e — 0 as € — 0 and this implies that:

_(d—e)(E*+Kk*+1+3d+e)
T (d+e)(E2+Kk2+1+3d—e)

~ O(e)
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Therefore we can expand K|s) around s = 0:

K(s] ~ ) bys"

n=0
By substitution we get:

~%k

= —=K(s) = —ik (1) m e A.105
Vy(ys —v2) () =~ n_oz,:n_o (u) E ( )

with h(u) polynomials in p. Then also Z(E, k) will have a similar expansion:

8

Z(E,€) =~Ety+2log(+£) +2+ 520 ey gokmn(n)  (A.106)

with k() polynomials in p. Notice tat these expansions are only valid for k at most

of order O (E~!). For any finite value of k A.104 have to be used instead.

A.7.3 The light-cone limit

We consider in the 4 — oo case 2.6 in d = 4 the regime u? ~ k? >> 1 with both u
and k£ real. The computation follows closely the steps leading to A.99 and A.104 .

Define the following quantity g = (u?/k% —1). The turning point equation A.65

now reads:
v —gkP—y—-k*=0 (A.107)

The turning point y; is always real and y; > 1. For ¢ > 0 we can parameterize
y1 =k’9—2d ys;=d+e y, =d— e while for g < 0 the parametrization will be
=k?’9—2d yy=d+e p=d—e

The quantities d and e have the following expansion :

d = 5 Lm0 n(9) googmm
e = Zn_ob (Q)W (A.108)
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where a,(g) and b,(g) are polynomials in g.

This series expansion diverges for g°k* = § = O(1). This is due to the fact that
in this regime A.107 can be approximated with §® — §52 — 1 = 0 where § = yk3 and
this last equation has coincidental solutions ! for § = —3 - 43. Therefore for g of
order one all three solutions are of order k3 and for ¥ — oo one can approximate
them with the solutions to §3 — §§% — 1 = 0 times k3. The resulting expressions for
x(k,g) Z(k,§) t(k,g) are not transparent therefore we will consider in turns the
limits g >> k™5 and —1 < g < —k~3.

In the first case looking at the expansions for d and e we see that the situation is
essentially similar to the previous computation for finite 2 > 0 and u? > 0. In fact

by using A.108 we see that also in this case a ~ O(Z5) while s is finite as in A.96.

Then we can argue that in the expansion of

—2ik

Y F o, —2ik cn(s)a
Vu(ys — v2) sl = yl(y3_y2)z )

only even terms in e are allowed obtaining:

T =

1
ir = — S pl
r gk = n (g) g3nk4n
. \/1 + 2 1
-1t = Z ( ) 3nk4n
1
Z = log(u — k"‘) +C+ = %4 S P95 e (A.109)

n=0

where the P()(g) are polynomials in g and C = 2 — log(4).
The expression for Z shows a logarithmic behaviour in u? — k% however its regime
of validity is restricted to u? — k? > k3 that is 9> k3

For negative values of g instead we can parameterize the solutions as:
p=kg-2d yy=d+e ys=d—e

With the d and e expansions still given by A.108 . The turning point solution y;

1for real k the two merging solutions are not the turning point y;
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is now closer and closer to 1 as ¢ — —1. In this case we can proceed as in A.100 and
change the contour of integration obtaining after manipulations which track precisely

A.100 - A.104 the following expansions:

iz = (- 9)"2_:()11(1) (9)—= _an knz_:oQ(‘)(g) 3nk4n (A.110)
it = o)+ (-0t T L0+ Y S o0
Z = k)t o S L) +log(k2 W)+ 5 T 00) o

where the L(g) and Q(g) are polynomials in g and the function z(g) has the following
explicit form: 3T+ g — 2K([-1]2Fi(—4,3,1,1+ g) while t(g) = 2/T+ g2/(g); this
expansion too is not valid for g ~ k5.

For g ~ k=3 all the y; scale as ¥%/3 and Z ~ O(k°) interpolating between the
expansions above.

The fact that the logarithmic divergence as k = u present in A.109 and A.110 is
resolved as g ~ k=% is due to the fact that in the 4 — oo limit the branch points 3.57
for Z(u, k) remain at a finite distance from the real axis. Conversely at finite y for

k ~ u large the branch cuts stretch along the real axis as described in section 3.3.2.

A.8 Tortoise coordinate

In this appendix the analytic structure of the function r(z) will be described in some
detail and we will present its determination used in Appendices A.4 and A.5.

First recall the definition of the tortoise coordinate.

2(r) = / ” dr'?% (A.111)

where f(r) =71 +1 - 5.
The solutions of f(r) = 0 will be denoted in the following by r; i =0,1,..,d — 1
in particular rp is the positive real solution corresponding to the horizon. Also the

residues at r; in the integral for z(r) will be denoted as Res(r;) = £. Then 5 = 3
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the inverse temperature of the black hole.

In order to obtain a definite value of z(r) we have to specify a particular contour
connecting oo to r. Suppose that one particular contour C is chosen and the value
z¢(r) is obtained. All the possible values of z corresponding to the same point will
be 2(r) = z¢(r) + 2i ¥4} a;8; where a; € Z and will form a lattice in the complex
z plane. Some choices of the a; determine the same point as, for example, o; = 1
for all ¢ is equivalent to a; = 0 due to the fact that the sum of the residues must
be zero as f(r) ~ r? for r ~ co, moreover in the case that d is even for each r; also
—r; is a solution of f(r) = 0 and the sum of the corresponding residues is zero. This
lattice is simple in the case of d = 3, 4, 6 for which one has a triangular, rectangular or
hexagonal lattice respectively. In the other cases the lattice points will be generically
dense in the complex z plane. We can give a unique prescription for z(r) by imposing
that the contour C cannot cross a set of lines starting from the r;. For example we
can take these lines as propagating from 0 to the r; radially but this is only one of
many possible choices 2. These lines will then be branch cuts for the function z(r).

Some properties of the function z(r) which will be useful in the following are:
e 1 The behaviour for r — o0 is 2(r) ~ 1
e 2 The behaviour for r ~ r; is 2(r) ~ —%"r log(r — 73).

e 3 The behaviour for r ~ 0 is 2 ~ (;i—:l——;u + 2(0) where 2(0) is any one of its

possible values. Viceversa r ~ ((d — 1)u(z — z(O)))ﬁ

From the last item in the list above we see that the function r(z) is not single
valued. The following is the description of the particular determination of this func-
tion that is used in the appendices A.4 and A.5. Notice that for r ~ rp the function
r(z) = 1o+ exp(‘%") is periodic with period i-‘g—. In fact the lines of constant real part
for z(r) around ry are topologically S; around ro. This is valid only for Re(z) greater
than %. At this value of Re(z) the line passes at r =0 for z = %+i§(n+ 1) nel.

These points are then branch points for the function r(2). We will choose the branch

12note that this choice works due to the fact that the sum of the residues must be 0
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cuts propagating from them to have constant imaginary part and to go towards
Re(z) = —oo. By following this prescription for all branch points we find a deter-
mination of r(z) such that r(z + zg) = r(2). With this choice of determination for
Re(z) > 0 the only branch points are those described z = % +i8(n+1) nez.
Suppose to approach the horizon from the boundary on the positive real r axis
then this corresponds to moving on the real z axis from 0 to +o0c. Going around fo
clockwise of an angle 7 in the 7 plane corresponds to shifting the imaginary part of z
by %. Then going from 7y to 7 = 0 on the real axis corresponds to moving along a line
of constant imaginary part from z = oo to z = E%@. We then see that by denoting

with C the contour just described connecting 7 = oo to 7 = 0 we obtain 7‘45 = [o -ﬁ;—).
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Appendix B

Appendix B

B.1 Self-energy in the real time formalism

In this appendix we first review some basic properties of real-time correlation func-
tions. We then prove that the spectral density functions of fundamental fields in
5.1 have a discrete spectrum after the resummation of the self-energy diagrams a la

Dyson.

B.1.1 Analytic properties of various real-time functions

Various real-time thermal Wightman function for an operator O are defined by

Gi(t) = —;—tr (ePHo)0(0) - C

G_() = S (ePmOOOW) - C
Gr(t) = 0()G.(t) +0(-t)G_(2),
Galt) = i8(t)5tr (7 [O(1), 0(0)])

Calt) = —i0(—t)%tr (e#[0(t), 0(0))) (B.1)
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where Z is the partition function and C is a constant to be specified below. It is also

convenient to introduce

Ga(t) = G4(t — 18/2) (B:2)

which can be obtained from G4 (t) by an analytic continuation.

By inserting complete sets of states in B.1, G, (t) can be written as

1 ) ) )
Gi(t) =72 e Fite Bl o (B.3)
i

where i, j sum over the physical states of the theory and p;; = | (i|0(0)}5) |*. Com-
paring B.3 and B.1, C is chosen to be

C = % Z e—E’ﬂ Pii (B4)

Note that C is chosen so that the Fourier transform of G4 (t) does not have a “contact”
term proportional to 6(w). Assuming the convergence of the sums is controlled by the
exponentials, it follows from B.3 that G, (t) is analytic in ¢ within the range —3 <
Imt < 0. Similarly G_(t) is analytic for 0 < Imt < 8 and Gya(t) for —£ < Imt < &.

Introducing the spectral density function
pw) =1—eP) 5, (2m)é(w ~ E; + E;)e PEip; (B.5)

then the Fourier transforms of B.1 can be written as

Gw) = T—phl)

GpWw) = e G, (w)=e™G_(v) = ﬁl—h@p(w)
_ [P )
Gaw) = = [ I ric
Galw) = _/_oo 27 w —f)gj?—ze
Gr(w) = Ggrw)+iG-(w) (B.6)
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From B.6 we also have

plw) = —i(Gr(w) - Ga(w)) (B.7)

We also note that the Euclidean correlation function in momentum space can be

obtained from

GR(iw;) l 2 0
GE(wl) = y wm=—, lE€ Z (B8)
Galiw) 1<0

Some further remarks:

e 1. From B.5-B.6,

p(—w) = -pw),  Gu(-w)=Gn(w), Gr(-w)=Galw). (B9)

e 2. For a theory with a discrete spectrum, from B.5, the spectral function p(w)
and G, (w) are given by a sum of discrete delta functions supported on the real

axis, while Gr(w) is given by a discrete sum of poles along the real axis.

B.1.2 Self-energy in real-time formalism

In this section we consider real-time correlation functions of fundamental fields M,
in perturbation theory using the real-time formalism. We denote various quantities
in B.1 with O = M, by D_(,f’ ), Dg") etc and will suppress superscript a from now on.
We prove that the corresponding spectral density functions have a discrete spectrum
after the resummation of the self-energy diagrams & la Dyson. For simplicity, we will
consider the high temperature limit so that we can ignore the singlet projection (see
5.20).

In the real time formalism [74] the degrees of freedom of the theory get doubled
(see also [19]). For each original field (type 1) in 5.1 one introduces an equivalent field
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(type 2)* whose interaction vertices differ by a sign from the ones for fields of type 1.
Vertices therefore do not mix the two different kind of fields but propagators do and
are written as a 2 X 2 matrix. For example, in frequency space the propagator for M,

(in the interacting theory) can be written as D,y(w),a,b = 1,2 with each component

given by
Dy (w) = DFgw)’ Dap(w) = Dji(~w)
Duw) = Zo—pw),  Dn() = Du(w) (B.10)

Dy, can be diagonalized as

Dy(w) 0
Dgyp=U , U (B.11)
0 D3 (w)
with
U coshy sinhy N e sl - 1 (B.12)
= , coshy = ————, sinhy= ——=—— .
sinhy coshy 7 Vel — 1 7 Vel — 1
and
—iDp(w) w>0
_ . fd  p(w)
Dy(w) =1 2 w—w +iew (B-13)
—iDs(w) w<0

The last expression in B.13 implies that when analytically continued from the positive
real axis, Dg(w) cannot have singularities in the upper half w-plane. Similarly when
analytically continued from the negative real axis, Dy(w) cannot have singularities
in the lower half w-plane. Note that Dy(w) can have a discontinuity at Im(w) = 0.
If Dy(w) does turn out to be analytic on the real axis, then it can have singularities
only on the real axis in the limit ¢ — 0, which in turn implies that Dg, D4 and Dp

can have singularities only on the real axis in the limit ¢ — 0.

n a path integral derivation these correspond to the fields whose time argument is ¢ — io and
we will take 0 = %
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We will now show that Dy(w) obtained using the Dyson equation from any finite
order computation of the self-energy is a rational function with singularities only on
the real axis. This implies that the spectral function p consists of a sum of finite

number of delta functions supported on the real axis.

Note that the Dyson equation can be written as

1 1 ~
= —(w B.14
D@ DP@) ) (B:14
where
©____t
by = e (B.15)

is the free theory expression and II(w) can be computed from the perturbation theory
as follows: (i) Compute 2 x 2 matrix II,5(w) from the sum of amputated 1PI diagrams

for the propagator in real time formalism; (ii) Diagonalizing II,;(w) using B.12, i.e.

gy =U fI(w) ° U B.16
ab = ( 0 ﬁ*(w)) . ( )

That II,, can be diagonalized using U is a consequence B.11.

Now expanding D, and II in power series of A

Dg = D!(JO) + )\Dgl) + )\2D§2) 4.

0 = MIW 4+ 2200 + ... (B.17)
from equation B.14 we have
D = pPED)DO,  DP = DOET1®) DO + DO (IIW) DO (1) DY, ... (B.18)

{From our discussion in section 5.2 (applied to fundamental fields), at any finite order
in perturbation theory p(w) consists of sums of terms of the form 5.23. Plugging such

.

a p(w) into B.13 one finds that Ds(,")(w) is a rational function and is analytic on the
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real axis at each order in the perturbative expansion (i.e. there is no discontinuity at
Im(w) = 0). Using B.18 we find that II™(w) must also be a rational function and
analytic on real axis. This in turn implies that the resummed Dy(w) found from B.14
is a rational function and analytic on real axis. We conclude that the singularities
of D, must lie on the real axis and there are only a finite number of them at any
finite order in the computation of the self-energy II. From B.13 the spectral density

function must be a finite sum of delta functions supported on the real axis.

B.2 Energy spectrum and eigenvectors of sparse

random matrices

In this appendix we summarize features of eigenvalues and eigenvectors of a random
sparse matrix found in [81, 69, 82]. Consider an M X M real symmetric matrix A
whose elements A;; for ¢ > j are independent identically distributed random variables

with even probability distribution f(A;;). Let f(z) be of the following form:
f(z) = (1 - a)d(z) + ah(z) (B.19)

where 0 < o < 1 and h(z) is even and not delta-function like at z = 0. Let the
variance of h(z) be v2. The parameter o measures the sparsity of the matrix: for
each row or column of the matrix there will be on average aM = K elements which
are different from zero. K is called the connectivity of the matrix. When K < 1 it
is possible for eigenvectors to be localized in a subspace with dimension smaller than
M. For K > 1 in the large M limit no such localization occurs and the matrix has

to be diagonalized in the full M dimensional space.

When K > 1, the density of states reduces to Wigner’s semicircular law in an

expansion in K~1:

o(E) = 2731,2 VITTZE (14 0(K™)) (B.20)
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Where E is the eigenvalue value and T' is given by:
I? = Kv*(1+O(K™)) (B.21)
Notice that Kv? is the average value of

T3 =2 Ayl (B.22)

J#i
over the rows or columns of the sparse matrix. The first correction to p(E) gives
a change in the edge location, however there also are nonperturbative tails to the

distribution which for £ > I'" assume the form:

o(E) ~ (%—) - (B.23)

Their effect is to make the spectrum unbounded.

Denote by T the orthogonal change of basis matrix which brings A to diagonal
form for K > 1. T has a random uniform distribution over the group of orthogonal
M x M matrices. Therefore the eigenvectors of A are a random orthonormal basis
of the total space which means that apart from correlations® which are negligible
in the large M limit their elements are independently distributed gaussian random
variables with mean 0 and variance ﬁ In particular the eigenvectors are completely
delocalized. Therefore for large K the situation is similar to that for the Gaussian
Orthogonal Ensemble (GOE).

B.3 Single anharmonic oscillator

It is clear that the argument presented in section 5.3 applies to the real time correla-

tion functions of a single anharmonic oscillator at finite temperature3(with changes

2which are due to normalization conditions.
3This section is motivated from a discussion with Steve Shenker.
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of combinatorial factors)

5= [at (%f - %x2 - %)\m“) . (B.24)

For example one can conclude that the perturbation theory for

D () = («(t)2(0)), (B.25)

should diverge at a time scale 5.55 for T' >> wy (we set wp = 1 in B.24). Here we give

an alternative derivation of this. Inserting complete sets of states in B.25 we find that

D,({t)=2Z""! Z [ (n|z|m) lze'BE"'it(E'"'E") (B.26)

n,m

where Z = ¥, #E» and |n) are interacting theory eigenstates. If we are interested

only in contributions of the form (At)" we get:

- —BE® _is(E®_EO)_it\(ED _ gD
Di(t) = Zi* T | (nalm), [2e=050 ~#ER-BD—E-ED | (B.27)

n,m

where quantities with index 0 are computed in the free theory and AE(!) are the

energy shifts at first order in perturbation theory. Equation B.27 can be evaluated as

1 o0 , )
D+(t) — §Z(—)—l z(n + 1)[e—ﬂ(n+%)—zt(1+%(n+l)) + e—ﬂ(n+%)+zt(1+%(n+1))] 4. (B.28)

n=0

which can be summed to give

D, (¢ - ~ B.29
+0) 2PHE 1)z 2P —1)2 (B.29)

In B.29 there are double poles at
t= iz‘%é + kli—ﬂ, keZ. (B.30)
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If one resums the diagrams discussed in section 5.3, one would then get simple poles
and the positions of the poles are further away from the real axis than those of B.29
indicating that there are some positive contributions not captured by the class of

Feynman diagrams. Some remarks:

e 1. Note that the reason for the behavior B.28-B.30 can be attributed to the
fact that the first order energy shift!

MEL, — ED)  An (B.31
+ n

e 2. The above argument shows that the divergence of perturbation theory at
t~ % has nothing to do with the standard argument of the breakdown of
perturbation theory by taking A — —A. Indeed the behavior here is due to a

single class of diagrams not due to the n! growth of the number of diagrams.

e 3. The way the perturbation theory breaks down for a matrix quantum me-
chanics in the high energy sector appears to be very different from the above
discussion for a single oscillator. More explicitly, let us write B.27 for the matrix

case as
(0) . ) (0)y -
Di(t) = Z5* L &5 3| (n|Mm), [Pe= (B ~E-MER-ED) .. (B 32)
n m

As we discussed in the main text, the sum over m in the above equation will
involve an exponentially large number of states with free theory energies ranging
over of order O(N). A naive estimate of E{) — E{) also gives order O(N).
Unfortunately the story appears to be rather complicated and we have not able

to extract a divergent time scale 1/AT from B.32.

“Note the following behavior also eventually breaks down for large enough n due to level crossing.
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B.4 Estimate of various quantities

We now estimate 5.69-5.72 after averaging them over states of similar energies. We
will be interested in how these quantities scale with N in the large N limit. An
important property that we will assume below for these averaged quantities is that
they are slow-varying functions of € or E. In the large NV limit, we can then estimate
them using the corresponding thermal averages, which can in turn be expressed in
terms of various correlation functions at finite temperature. For example, the thermal

average of X; is
5 1 & -85 1 _BE
£(8) = 5 S5 = - [ dBeEQ(B) £(E) (B.33)

where X(E) is the microcanonical average and Q(E) = e5(®) the density of states.
Since X(F) is a slow-varying function of E, we can perform a saddle point approxi-

mation of the last expression, yielding
(E) ~ £(8g) (1+0(1/N?)) (B.34)

with g determined by Q%(EE—) = Bg. Using the last equality of 5.72 we can write i(ﬂ)

as

1 —BE:l /-1xrl -
Z 5 PR VL) P
5,547

= (V(O)V(0), (B.35)

£(8)

where (V(0)V(0)), denotes the connected Wightman function as defined by B.3.
From the standard large N scaling argument B.35 is of order O(N?) (recall that we
include a factor of N in the definition of V'). Thus unless B.35 is zero at leading order

we conclude that X(F) can be written in a form

(E) = N?h()\, E/N?) (B.36)
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where h(), 1) is a function independent of N. An exactly parallel argument can be
applied to o(e) in which case B.35 is replaced by expectation values in free theory

and thus we find that
o(€) = N?h(\,¢/N?) (B.37)

for some function A.

As another example, let us look at the thermal average of 5.71,
S~ e, = [ dE ePPQ(E)e(E) ~ €(E, B
=S e = — [ dBePEQ(B)E(B) ~ e(Ep) (B.38)
Using the last equality of 5.71, the left hand side of B.38 can in turn be written as
Eg— (V)4 (B.39)

where (V)5 is the thermal one-point function of V' in the interacting theory and scales

with N as O(N?). Thus we can write

g¢(E) = N%g(\, E/N?) (B.40)
for some function h. An exactly parallel argument yields

E(e) = N%G(\, ¢/N?) . (B.41)

To summarize, we find that the averaged values of I'(¢) and A(E) are both of order
O(N) in the ‘t Hooft limit for any nonzero A. Thus in the large N limit, both the
correlation length between interacting theory energy levels and the energy range that

the free theory states are mixed under perturbation go to infinity.
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B.5 Some useful relations

In this appendix we derive some important relations which will be used in Appen-
dix B6 to derive the matrix elements of an operator O between generic states in the

high energy sector.

B.5.1 Density of states

The conservation of states implies that the density of states Q(E) of the full theory
and Qp(€) of the free theory should be related by

de(E)

QUE) = Qo(&(E)— 7= (B.42)
which implies
1 dE) _de(E) 1 df FeAE)
UE) dE ~ dE Qo(e(B)) de lm) | EE

In the large NV limit the second term in the above equation should be of order O(1/N?).
Thus we find that

_ e e BEE)
BE) = bo(e(E) s (B.43)
with
1 dQE) 1 d
We also expect that
éE(e)) ~ ¢ (B.45)

Note that all the above relations are valid only to leading order in V.
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B.5.2 Properties of xg(¢) and p.(E)

Consider the microcanonical average of 5.66 and 5.67, which we denote as p(F) and

xEe(€) respectively. From 5.66 and 5.67 one should have

p(E) = o dxs(). (B.46)
From 5.68 we should also have
[ dexs(e) =1 (B.47)
and
/ dE p.(E) = 9—01(5 / dEQ(E) xp(e) = 1. (B.48)
Given that

&(E) = / deexnle), T(E) = AXE) = / de(e —e(E))*xa(e)  (B.49)
we can write xg(e) as
xe(€) = fe(e —€(E)) (B.50)

with fz a function which has a spread of A(E) ~ O(N). Since we expect fg(w)
to fall off quickly to zero in the large N limit outside the range (—3A(E), 1A(E)),
equations B.47 and B.48 lead to

/_ : dw fa(w) = 1 (B.51)
and
o - QE) _
/_ B e EE) =1 (B.52)
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Changing the integration variable of B.52 to ¢ = €(E) and using B.45, we find that

Qo€ , Qo(e
[ 2 G fele= ) = [ do frglo) B = 1 (B.53)

where in the second expression we have replaced fE(e') by f'E”(e)- This is because, as a
function of e—¢’, the spread of f is of order O(N), while E(¢') ~ E(e)+0(55%) ~ E(e).

The second expression of B.53 can now be written as
o0 (E
/ dw fa(w)e PoEEN — 1 (B.54)
—00
Equations B.51 and B.54 can be written in a more symmetric manner as
(o ¢] o0
/ duw e38EW ge(w) = / dw e 3PE® g () =1 (B.55)
—00 —00

where we have introduced a function

ge(w) =e ~38(B)w ;g) f& (dz(g)w) . (B.56)

Equations B.55 imply that gg(w) should fall off faster than e~ 3PBN g5 1 — +oo0.

B.5.3 A relation between matrix elements and correlation

functions in free theory

In this subsection we derive in free theory a relation between the matrix elements of
an operator O between states in the high energy sector and correlation functions. For
simplicity we consider theories with a single fundamental frequency wyp, like N' = 4
SYM or 5.3.

The Lehmann spectral decomposition for frequency space Wightman function

Gﬁ?’ (w) of some operator O in free theory can be written as

GO (w) Ze Bea pop 6 (w — €5 + €4) (B.57)
ZO ab
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where psp = | (a|O(0)|b) |°>. Due to energy conservation, © can only connect levels
whose energy differences lie between —Awy and Awyp, where A is the dimension of O,

i.e. pgp can only be non-vanishing for |e, — €| < Awp. We can thus rewrite B.57 as
A
GO(w) = 2 Gid(w — kuwp) (B.58)
with

1 -
Gp = - e Z Pab

Zo a ep=€q+kwo

- 21; 3 e By (a) (B.59)

where }°, .. denotes that one sums over |b) whose energy is given by €, = €. Note here
we have assumed that the free theory energy levels are equally spaced as in N’ = 4
SYM theory on S2. We also introduced

@)=Y pa (B.60)

ep=€q+kwo

We now separate the sum a in B.59 in terms of energies and degeneracies, i.e.

=2

€ €g=€

We thus find that
G = & N p, (e (B.61)
where we have introduced the micro-canonical average of pi(b)for energy e

Pr(€) = Zpk( N(e Y - (B.62)

aee €a=€ ¢ =€+kuwp

We expect that the microcanonical average py(€) should be a slow varying function

of ¢, i.e. it can be written in a form N°f(e/N?) for some constant a. In the large N
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limit since N (e)e P is sharply peaked at €4 specified by, one can perform a saddle

point approximation in B.61 to get

Gk = Pi(eg) + - (B.63)

From B.57 we thus find that
G1(w) =) Pr(ep)d(w — kwo) (B.64)
k

In the large N limit since the connected part of G4 (w) scales with N as O(N?), thus
we find from B.64 that

Pi(ep) ~ O(N°). (B.65)

B.6 Derivation of matrix elements

In this appendix we give a derivation of 5.75. The main object of interests to us is

pij = D lcial’lcivpas
b

= ;lqa|22 I Y (B.66)

k ey=eqat+kuwg

Due to the sparse and random nature of p,;, one cannot naively approximate the
sums over a and b in by integrals. Instead one must be careful with the discreteness

nature of the sum. Note that

Z |Cjb|2Pab ~ Tj(ea + k) Z Pab = Cj(€a + k)pr(a)

ep=€a+kwp ep=¢at+kwo

which can be justified as follows. Inside a given energy shell, p, can be treated as
a random sparse matrix. Thus one can treat the summand as a random sampling of
lc;o|2. Since the number of sampling points goes to infinity (as a power in N) in the

large N limit, we can approximate |c;s|? by its average value of the energy shell. We
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now have

pij = Z Z lcmlzcz (€a + k)por(a)
= ZECJ(GH Y lcial*px(a)

€g=¢€

= EkSZcJ(w k)N (€): ()i (€) (B.67)

In the second line above we separated the sum over all states a into the sum over the
energy and the sum over states in each energy shell. In the third line we replaced
the sum in an energy shell by its average values. The replacement is all right since
2

|cia|* and pi(a) are completely independent variables, so the average of their product

should factorize.

Now given that all quantities in the last line of B.67 are averaged quantities, we
approximate the sum over € by an integral. Averaging i,j over states of the same

energy and using 5.67, we find

b= 5 [ ey xm(e + Mxe (@7

= ;/@% fe,(e+k — &) fE, (e — &) Pr(€)

dp 1 1 - -
NGt r il fe.(p+k+ §A12)fE1 (p— §A12) Pr(p + €@12) (B.68)
with
1 de(E
G2 =¢(E2), €2 = E(E(E1)+'€(E2)) =¢€(E), A2 =€(Ey)—¢€ = ii(E)
where
E= El—;—lzz, w = E]_ - E2
Equation B.68 can be further simplified as
1 0o 1 1
PEE = h—(E_ Z Giz(k) /_m dpge(p+ K + Ew) ge(p— 5‘4’)
= A(w E) (B.69)

Q(E
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with

_la e _ .1
Glz(k) =€ ;ﬁo(elz)kﬁk(elz), K= i) ) k (B70)
dE

and gg(w) was defined in B.56. Note that from equation B.64, G}, are essentially the
Fourier components of free theory correlation functions. A(w; E') should be a smooth
function of w since the integral in B.69 appears to be well defined for all w. It is easy

to check that
A(-w; E) = A(w; E) (B.71)
since G12(k) = G12(—k). Further as w — oo, we find that

A(w; E) o e 28BNl (B.72)

Now let us examine possible singularities of A(w, E) on the real axis. We start
with the definition B.50 of fz. Since xg(¢) is the average of 5.67 over states of similar
energies, frp(w) must be a real positive function of w € R. Then the function gg(w)
introduced in B.56 should also be real and positive as €(E) is a monotonous function
of E. The positivity and normalization conditions B.55 imply that gg(w) can at most

have integrable singularities of the form®
W) N T, w-ow, o<l (B.73)

Note that the closer «; is to one the smaller is K; from the normalization requirement.

Now let us look at the definition B.69 of A(w; E),

A(w; E) = ¥4 Gra(k)s(w + k) (B.74)

5Such integrable singularities can only arise if ¢;; have accumulation points in the large N limit.
While it appears unlikely that this can happen, we do not have a rigorous proof at the moment.
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where
s(w) = /oo dx gg(z + 1w) ge(z — -l-w) . (B.75)
—o0 2 2

Note that the finite sum over k in B.74 cannot introduce singularities in w therefore
we focus on s(w). As gg(w) falls off faster than e~ 2Bk ag w — +o0, the integral
in B.75 is convergent for x — #fo0o0. Thus we only need to worry about possible
divergences arising from the middle of the integration range. Integrating B.75 we
find that

/ : duos(w) = [ Z dzgr(z) f_ o; dygn(y) (B.76)

which is finite by B.55 . Therefore the only singularities allowed for s(w) are of
integrable kind ITJTI:TJF with @ < 1. We can find the locations of w, in terms of
(integrable) singularities of gg(w) as follows. Since gp(z — tw) and gp(z + 3w) are
both integrable the only possible divergences of B.75 are at values of w for which
the integrable singularities of two function sit on top of each other. This happens
for w = w; — w; where the w; are the locations of the singularities for gg(w). For
w = w; — w; + € with € small the integral B.75 near x =~ }(w; + w;) can be written

as K;K; [°5 dyTFII—"flh/_Jr;lﬁ'—-’ where § is some multiple of €. By rescaling we see that

25 €
it behaves as ¢*~*~%. Therefore the integral s(w) can at most have a singularity of
the form '—“;_%—:'%F;witha=a,-+aj—l <1

Thus we conclude that on the real axis A(w;E) can have at most integrable

singularities of the form

1
fw — w,loe’

A(w; E) x a, <1. (B.77)

199



200



Bibliography

[1] Ofer Aharony, Joseph Marsano, Shiraz Minwalla, Kyriakos Papadodimas, and
Mark Van Raamsdonk. The hagedorn / deconfinement phase transition in weakly
coupled large N gauge theories. Adv. Theor. Math. Phys., 8:603-696, 2004.

[2] Ofer Aharony, Joseph Marsano, Shiraz Minwalla, Kyriakos Papadodimas, and
Mark Van Raamsdonk. A first order deconfinement transition in large N Yang-
Mills theory on a small S3. Phys. Rev., D71:125018, 2005.

[3] Vijay Balasubramanian, Per Kraus, and Albion E. Lawrence. Bulk vs. boundary

dynamics in anti-de Sitter spacetime. Phys. Rev., D59:046003, 1999.

[4] Vijay Balasubramanian, Per Kraus, Albion E. Lawrence, and Sandip P. Trivedi.
Holographic probes of anti-de Sitter space-times. Phys. Rev., D59:104021, 1999.

[5] Vijay Balasubramanian, Per Kraus, and Masaki Shigemori. Massless black holes
and black rings as effective geometries of the D1-D5 system. Class. Quant. Grav.,
22:4803-4838, 2005.

[6] Vijay Balasubramanian, Donald Marolf, and Moshe Rozali. Information recovery
from black holes. Gen. Rel. Grav., 38:1529-1536, 2006.

[7] Maximo Banados, Claudio Teitelboim, and Jorge Zanelli. The black hole in
three-dimensional space-time. Phys. Rev. Lett., 69:1849-1851, 1992.

[8] T. Banks and W. Fischler. Space-like singularities and thermalization. 2006.

[9] Tom Banks, Michael R. Douglas, Gary T. Horowitz, and Emil J. Martinec. AdS
dynamics from conformal field theory. 1998.

201



[10] J. L. F. Barbon and E. Rabinovici. Very long time scales and black hole thermal
equilibrium. JHEP, 11:047, 2003.

[11] J. L. F. Barbon and E. Rabinovici. Long time scales and eternal black holes.
Fortsch. Phys., 52:642-649, 2004.

[12] J. L. F. Barbon and E. Rabinovici. Topology change and unitarity in quantum
black hole dynamics. 2005.

[13] N. Beisert, C. Kristjansen, and M. Staudacher. The dilatation operator of N = 4
super Yang-Mills theory. Nucl. Phys., B664:131-184, 2003.

[14] Niklas Beisert and Matthias Staudacher. Long-range PSU(2, 2|4) bethe ansaetze
for gauge theory and strings. Nucl. Phys., B727:1-62, 2005.

[15] Jacob D. Bekenstein. Black holes and entropy. Phys. Rev., D7:2333-2346, 1973.

[16] Jacob D. Bekenstein. Generalized second law of thermodynamics in black hole

physics. Phys. Rev., D9:3292-3300, 1974.

[17] Jacob D. Bekenstein. A universal upper bound on the entropy to energy ratio

for bounded systems. Phys. Rev., D23:287, 1981.

[18] V. A. Belinskii, E. M. Lifshitz, and I. M. Khalatnikov. On a general cosmological
solution of the Einstein equations with a time singularity. Zh. Eksp. Teor. Fiz.,

62:1606-1613, 1972.

[19] M. Le Bellac. Thermal field theory. Cambridge, New York: Cambridge University
Press, 1996.

[20] Iosif Bena, Joseph Polchinski, and Radu Roiban. Hidden symmetries of the
AdS(5) x S® superstring. Phys. Rev., D69:046002, 2004.

[21] M. V. Berry. Infinitely many stokes smoothings in the gamma function. Proc.
Roy. Soc. Lond., A434:465, 1991.

202



[22] N. D. Birrell and P. C. W. Davies. Quantum fields in curved space. Cambridge,
Uk: Univ. Pr. ( 1982) 340p.

[23] J. C. Breckenridge, Robert C. Myers, A. W. Peet, and C. Vafa. D-branes and
spinning black holes. Phys. Lett., B391:93-98, 1997.

[24] Mauro Brigante, Guido Festuccia, and Hong Liu. Inheritance principle and non-

renormalization theorems at finite temperature. Phys. Lett., B638:538-545, 2006.

[25] Vitor Cardoso, Jose Natario, and Ricardo Schiappa. Asymptotic quasinormal
frequencies for black holes in non- asymptotically flat spacetimes. J. Math. Phys.,
45:4698-4713, 2004.

[26] Lance J. Dixon, Jeffrey A. Harvey, C. Vafa, and Edward Witten. Strings on
orbifolds. Nucl. Phys., B261:678-686, 1985.

[27] Guido Festuccia and Hong Liu. Excursions beyond the horizon: Black hole
singularities in Yang-Mills theories. I. JHEP, 04:044, 2006.

[28] Lukasz Fidkowski, Veronika Hubeny, Matthew Kleban, and Stephen Shenker.
The black hole singularity in AdS/CFT. JHEP, 02:014, 2004.

[29] Ben Freivogel, Steven B. Giddings, and Matthew Lippert. Toward a theory of
precursors. Phys. Rev., D66:106002, 2002.

[30] Kazuyuki Furuuchi. From free fields to AdS: Thermal case. Phys. Rev.,
D72:066009, 2005.

[31) Y. V. Fyodorov, O. A. Chubykalo, F. M Izrailev, and G. Casati. Wigner random
banded matrices with sparse structure: Local spectral density of states. Phys.

Rev. Lett., 76(10):1603-1606, Mar 1996.

[32] Yi-hong Gao and Miao Li. Large N strong/wesk coupling phase transition and
the correspondence principle. Nucl. Phys., B551:229-241, 1999.

[33] R. Geroch and G. Horowitz. Global structure of spacetimes. In *Hawking, S.W.,
Israel, W.: General Relativity*, (1979).

203



[34] Steven B. Giddings. The boundary S-matrix and the AdS to CFT dictionary.
Phys. Rev. Lett., 83:2707-2710, 1999.

[35] Michael B. Green, J. H. Schwarz, and Edward Witten. Superstring theory.
vol. 1: Introduction, vol. 2: Loop amplitudes, anomalies and phenomenology.
Cambridge, Uk: Univ. Pr. ( 1987) ( Cambridge Monographs On Mathematical
Physics).

[36] Brian R. Greene, David R. Morrison, and Andrew Strominger. Black hole con-
densation and the unification of string vacua. Nucl. Phys., B451:109-120, 1995.

[37] David J. Gross and Andre Neveu. Dynamical symmetry breaking in asymptoti-
cally free field theories. Phys. Rev., D10:3235, 1974.

[38] David J. Gross, Robert D. Pisarski, and Laurence G. Yaffe. QCD and instantons
at finite temperature. Rev. Mod. Phys., 53:43, 1981.

[39] S. S. Gubser, Igor R. Klebanov, and Alexander M. Polyakov. Gauge theory
correlators from non-critical string theory. Phys. Lett., B428:105-114, 1998.

(40] J. B. Hartle and S. W. Hawking. Path integral derivation of black hole radiance.
Phys. Rev., D13:2188-2203, 1976.

[41] Sean A. Hartnoll and S. Prem Kumar. AdS black holes and thermal Yang-Mills
correlators. JHEP, 12:036, 2005.

[42] S. W. Hawking. Particle creation by black holes. Commun. Math. Phys., 43:199-
220, 1975.

[43) S. W. Hawking. Black holes and thermodynamics. Phys. Rev., D13:191-197,
1976.

[44] S. W. Hawking. Breakdown of predictability in gravitational collapse. Phys.
Rev., D14:2460-2473, 1976.

[45] S. W. Hawking and Don N. Page. Thermodynamics of black holes in anti-de
Sitter space. Commun. Math. Phys., 87:577, 1983.

204



[46] S. W. Hawking and R. Penrose. The singularities of gravitational collapse and
cosmology. Proc. Roy. Soc. Lond., A314:529-548, 1970.

[47) Stephen Hawking. The occurrence of singularities in cosmology. III. causality

and singularities. Proc. Roy. Soc. Lond., A300:187-201, 1967.

[48] C. P. Herzog and D. T. Son. Schwinger-Keldysh propagators from AdS/CFT
correspondence. JHEP, 03:046, 2003.

[49] Gary T. Horowitz and Juan M. Maldacena. The black hole final state. JHEP,
02:008, 2004.

[50] Gary T. Horowitz and Joseph Polchinski. A correspondence principle for black
holes and strings. Phys. Rev., D55:6189-6197, 1997.

[51] Veronika E. Hubeny. Precursors see inside black holes. Int. J. Mod. Phys.,
D12:1693-1698, 2003.

[52] Veronika E Hubeny, Hong Liu, and Mukund Rangamani. Bulk-cone singularities
& signatures of horizon formation in AdS/CFT. JHEP, 01:009, 2007.

[53] W. Israel. Thermo field dynamics of black holes. Phys. Lett., A57:107-110, 1976.

[54] Clifford V. Johnson, Amanda W. Peet, and Joseph Polchinski. Gauge theory
and the excision of repulson singularities. Phys. Rev., D61:086001, 2000.

[55] V. A. Kazakov, A. Marshakov, J. A. Minahan, and K. Zarembo. Classical /
quantum integrability in AdS/CFT. JHEP, 05:024, 2004.

[56] Nak-woo Kim, Thomas Klose, and Jan Plefka. Plane-wave matrix theory from
N = 4 super Yang-Mills on R x S. Nucl. Phys., B671:359-382, 2003.

[57] M. Kleban, M. Porrati, and R. Rabadan. Poincare recurrences and topological
diversity. JHEP, 10:030, 2004.

[58] Igor R. Klebanov and Edward Witten. AdS/CFT correspondence and symmetry
breaking. Nucl. Phys., B556:89-114, 1999.

205



[59] B. Lautrup. On high order estimates in QED. Phys. Lett., B69:109-111, 1977.

[60] Albion Lawrence and Amit Sever. Holography and renormalization in lorentzian

signature. JHEP, 10:013, 2006.

[61] Miao Li. Evidence for large N phase transition in A/ = 4 super Yang- Mills
theory at finite temperature. JHEP, 03:004, 1999.

[62] David A. Lowe and Larus Thorlacius. Comments on the black hole information

problem. Phys. Rev., D73:104027, 2006.

[63] Juan M. Maldacena. The large N limit of superconformal field theories and
supergravity. Adv. Theor. Math. Phys., 2:231-252, 1998.

[64] Juan M. Maldacena. Eternal black holes in anti-de-Sitter. JHEP, 04:021, 2003.

[65] Juan M. Maldacena and Leonard Susskind. D-branes and fat black holes. Nucl.
Phys., B475:679-690, 1996.

[66] Donald Marolf. States and boundary terms: Subtleties of lorentzian AdS/CFT.
JHEP, 05:042, 2005.

[67] Samir D. Mathur. The fuzzball proposal for black holes: An elementary review.
Fortsch. Phys., 53:793-827, 2005.

[68] J. A. Minahan and K. Zarembo. The bethe-ansatz for N' = 4 super Yang-Mills.
JHEP, 03:013, 2003.

[69] A D Mirlin and Y V Fyodorov. Universality of level correlation function of sparse
random matrices. Journal of Physics A: Mathematical and General, 24(10):2273-
2286, 1991.

[70] Suphot Musiri, Scott Ness, and George Siopsis. Perturbative calculation of quasi-
normal modes of AdS Schwarzschild black holes. Phys. Rev., D73:064001, 2006.

206



[71] Jose Natario and Ricardo Schiappa. On the classification of asymptotic qua-
sinormal frequencies for d-dimensional black holes and quantum gravity. Adv.

Theor. Math. Phys., 8:1001-1131, 2004.

[72] R. G. Newton. Scattering theory of waves and particles. McGraw-Hill Education
(January 1967), Chapter 12.

[73] R. G. Newton. Scattering theory of waves and particles. McGraw-Hill Education
(January 1967).

[74] A. J. Niemi and G. W. Semenoff. Finite temperature quantum field theory in
Minkowski space. Ann. Phys., 152:105, 1984.

[75] Alvaro Nunez and Andrei O. Starinets. AdS/CFT correspondence, quasinormal
modes, and thermal correlators in N =4 SYM. Phys. Rev., D67:124013, 2003.

[76] R. Penrose. Singularities and time asymmetry. In *Hawking, S.W., Israel, W.:
General Relativity*, 581- 638.

[77] Roger Penrose. Gravitational collapse and space-time singularities. Phys. Rev.

Lett., 14:57-59, 1965.

[78] Asher Peres. Ergodicity and mixing in quantum theory. I. Phys. Rev. A,
30(1):504-508, Jul 1984.

[79] J. Polchinski. String theory. vol. 1: An introduction to the bosonic string, vol.
2: Superstring theory and beyond. Cambridge, UK: Univ. Pr. (1998).

[80] Joseph Polchinski, Leonard Susskind, and Nicolaos Toumbas. Negative energy,
superluminosity and holography. Phys. Rev., D60:084006, 1999.

[81] G. J. Rodgers and A. J. Bray. Density of states of a sparse random matrix. Phys.
Rev. B, 37(7):3557-3562, Mar 1988.

[82] Guilhem Semerjian and Leticia F Cugliandolo. Sparse random matrices: the
eigenvalue spectrum revisited. Journal of Physics A: Mathematical and General,

35(23):4837-4851, 2002.

207



[83] George Siopsis. Large mass expansion of quasi-normal modes in AdS(5). Phys.

Lett., B590:105-113, 2004.

(84] Dam T. Son and Andrei O. Starinets. Minkowski-space correlators in AdS/CFT
correspondence: Recipe and applications. JHEP, 09:042, 2002.

[85] Mark Srednicki. The approach to thermal equilibrium in quantized chaotic sys-
tems. Journal of Physics A: Mathematical and General, 32(7):1163-1175, 1999.

[86] Matthias Staudacher. The factorized S-matrix of CFT/AdS. JHEP, 05:054,
2005.

[87] Andrew Strominger and Cumrun Vafa. Microscopic origin of the Bekenstein-

Hawking entropy. Phys. Lett., B379:99-104, 1996.

[88] Bo Sundborg. The Hagedorn transition, deconfinement and A" = 4 SYM theory.
Nucl. Phys., B573:349-363, 2000.

[89] Leonard Susskind, Larus Thorlacius, and John Uglum. The stretched horizon
and black hole complementarity. Phys. Rev., D48:3743-3761, 1993.

[90] Leonard Susskind and Edward Witten. The holographic bound in anti-de Sitter
space. 1998.

[91] Gerard 't Hooft. in The Whys of subnuclear physics, Proc. Int. School, Erice,
Italy, 1977. Plenum, New York.

[92] Gerard 't Hooft. Counting planar diagrams with various restrictions. Nucl. Phys.,
B538:389-410, 1999.

[93] Charles B. Thorn. Infinite N(c) QCD at finite temperature: Is there an ultimate
temperature? Phys. Lett., B99:458, 1981.

[94] A. Avez V.I. Arnold. Ergodic problems of classical mechanics. Redwood City,
Calif. : Addison-Wesley, the Advanced Book Program, 1989.

208



[95] E. Wigner. Characteristics vectors of bordered matrices with infinite dimensions.

Ann.Math., 65:203, 1957.

[96] Edward Witten. Anti-de Sitter space and holography. Adv. Theor. Math. Phys.,
2:253-291, 1998.

[97] Edward Witten. Anti-de Sitter space, thermal phase transition, and confinement
in gauge theories. Adv. Theor. Math. Phys., 2:505-532, 1998.

[98] Laurence G. Yaffe. Large N limits as classical mechanics. Rev. Mod. Phys.,
54:407, 1982.

209



