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Abstract

Over the last several years the Laser Interferometer Gravitational Wave Observatory (LIGO)
has been making steady progress in improving the sensitivities of its three interferometers,
two in Hanford, Washington, and one in Livingston, Louisiana. These interferometers have
reached their target design sensitivities and have since been collecting data in their fifth
science run for well over a year.

On the way to increasing the sensitivities of the interferometers, difficulties with in-
creasing the input laser power, due to unexpectedly high optical absorption, required the
installation of a thermal compensation system. We describe a frequency resolving wave-
front sensor, called the phase camera, which was used on the interferometer to examine the
heating effects and corrections of the thermal compensation system. The phase camera was
also used to help understand an output mode cleaner which was temporarily installed on
the Hanford 4 km interferometer.

Data from the operational detectors was used to carry out two continuous gravitational
wave searches directed at isolated neutron stars. The first, targeted RX J1856.5-3754,
now known to be outside the LIGO detection band, was used as a test of a new multi-
interferometer search code, and compared it to a well tested single interferometer search
code and data analysis pipeline. The second search is a targeted search directed at the Crab
pulsar, over a physically motivated parameter space, to complement existing narrow time
domain searches. The parameter space was chosen based on computational constraints,
expected final sensitivity, and possible frequency differences due to free precession and a
simple two component model. An upper limit on the strain of gravitational radiation from
the Crab pulsar of 1.6 x 10-24 was found with 95% confidence over a frequency band of
6 x 10- 3 Hz centered on twice the Crab pulsar's electromagnetic pulse frequency of 29.78 Hz.
At the edges of the parameter space, this search is approximately 105 times more sensitive
than the time domain searches. This is a preliminary result, presently under review by the
LIGO Scientific Collaboration.

Thesis Supervisor: Nergis Mavalvala
Title: Associate Professor of Physics
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Chapter 1

Generating gravitational waves

This chapter describes gravitational waves and considers their generation from isolated

neutron stars.

1.1 General relativity and gravitational waves

From the simple experimental observation of the equivalence of inertial and gravitational

masses and the desire to incorporate the principle of relativity into a theory of gravity

was developed one of the most elegant and successful theories of physics, that of Einstein's

General Relativity [20]. It tells us that masses move along geodesics and that the curvature

of space-time along which mass moves generates the perceived gravitational force. In turn

space-time curvature is generated by the presence of mass and energy. This fact leads

General Relativity to predict the propagation of gravitational waves on space-time [40].

Consider the curvature encoded in the space-time metric g,, where

ds2 = gdx d x .  (1.1)

Here ds is the space-time interval or proper time of an observer who is at rest with the

coordinate system, dxl and dxv are the indexed coordinates of space-time and the Einstein

summing convention is assumed. From this most general case, let us consider the weak-field

limit where space can be considered mostly flat with a small perturbation on top of it,

which is a reasonable approximation to human scale laboratories on Earth. In this case the

metric g,, can be written as



ggi = 7guj + h(,.

where h,, is the perturbation (and thus holds the gravitational wave information) and ,,v

is the Minkoski metric of flat space-time equal to

-1 0 0 0

0 100
7/pv = .(1.3)

0 010

0 0 0 1

In order for a gravitational wave to propagate, it must satisfy the wave equation

h = (V2 - h, = 0. (1.4)

We neglect the static solutions to the wave equation, as we are interested in radiation which

changes with time as opposed to static Newtonian potentials. We are free to choose the

coordinate system in which to view the perturbation (gauge choice) and the one in which

the math is most clear is the transverse traceless gauge, in which freely falling masses move

along coordinate lines. In the transverse traceless gauge with the weak-field assumption,

the solution of a wave propagating in the x3 direction can be written as [40]

00 0 0

0 h h 0
h, (x, t) = cos 2rfGw -t]) (1.5)

0 hx -h 0 c

00 0 0 0

where h+ and hx are the two possible polarizations of the wave and fGaw is the frequency

of the gravitational wave.

1.1.1 Gravitational wave effects on test masses

Consider a h+ polarized gravitational wave acting on a pair of test masses at rest relative

to each other. Place both a distance L from the arbitrary origin of their common Lorentz

frame, one along the x1 axis and the other along the x2 axis. Apply the g,, metric to find

the space-time interval ds between the origin and each of the masses as a function of time.

(1.2)



As a h+ polarized gravitational wave propagates in the x3 direction, the ds between the

origin and the first mass will vary sinusoidally and be 1800 out of phase with the sinusoidal

variation of ds between the origin and the second mass.

One method to sample this change in ds is to propagate a laser beam from the origin to

each test mass and back. One can integrate along the laser's path from the origin to each

test mass to find a measurable quantity, the difference in the light's phase between the two

round trip paths:

L L

A = 2 Ig 2dx 2- 2-f Vlgxxlldx (1.6)
0 0

where A is the wavelength of the laser light and A4 is the difference in total accumulated

round trip phase by the laser light along the two paths. If the laser light round trip time is

small compared to the gravitational wave period, then the maximum total difference caused

by a h+ wave can be approximated by

2rL
a) L 2h+ r (1.7)

One can do the same calculations with the h× polarization or any linear combination of the

two.

1.1.2 Generation of gravitational waves

To gain insight into the generation of gravitational waves, we look to electromagnetic theory

as a guide. Electromagnetic waves are governed by the same wave equation except that the

electromagnetic field E replaces the perturbation h,,. If we restrict ourselves to waves

whose wavelength is much larger than the source we can use a multipole expansion. In the

same way acceleration of charge is necessary for electromagnetic waves, acceleration of mass

(and thus second derivatives of the moments) are necessary for gravitational waves. The

monopole of the expansion for both electromagnetic waves and gravitational waves does not

radiate due to the conservation of charge on the one hand and the conservation of mass

and energy on the other. We can move on to consider the gravitational equivalent to the

electric dipole [40]
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Figure 1-1: Effects of a passing gravitational wave on free masses and a laser interferometer.

• /

dg = p(r)rdxidx2dx3 . (1.8)

However, it is easy to see that the second derivative of dg will be zero because of the

conservation of momentum (mr = constant). The next higher moments are equivalent

to the magnetic dipole and the electric quadrupole. The gravitational equivalent to the

magnetic dipole is

Pg = p (r) r x v (r) dxldx2dx 3 . (1.9)

Again in this case there is no radiation, this time due to the conservation of angular

momentum (min x r = constant). Finally, with the quadrupole moment we lack any more

conservation laws to apply and thus have the first term in the expansion that can generate

radiation. The typically quoted reduced gravitational quadrupole moment is

I = p (r) dxddx, - ~J5,Tr dxdx 2dx 3

-, Jb--0

%- 

,0

zXZ

m r

F,

N

(1.10)

f



Thus in direct analogy to electromagnetism's potential [35]

A = -- (1.11)
R

where di is a charge dipole moment and R is the distance from the dipole to the point

where the potential is measured at, we can write

hJV = RRp,. (1.12)

Note that we are working in units where the gravitational constant, G, and the speed of

light, c, are set to 1. The factor of 2 comes from the correct tensor calculations which are

presented in detail in [40].

1.2 Continuous gravitational wave sources

For the majority of this thesis we will focus on one type of source of changing quadrupole

moment, a non-axisymmetric isolated neutron star. One can imagine such a star with a

bump on its surface or an equatorial bulge producing an eccentricity as shown in Figure

1-2. Consider a non-axisymmetric neutron star with the principle moments 111, 122, 133.

Let us assume it is rotating about the x3 axis with frequency fROT. In this case the second

derivative of the quadrupole moment tensor IA, is [56]

I, =

0

-167r 2f~OT (11 - 122) cos (47fROTt)

-321r 2 fOT (I11 - 122) sin (47rfROTt)

0

0

-327r 2f OT (/11 - 122) sin (47fRoTt)

167 2fROT (11 - 122) cos (47rfROTt)

0

I1-122 can be replaced in the above with E133 by using the definition of equatorial ellipticity

Ill - 122
E =

133

(1.13)

(1.14)

"



Using this I,, in Eq. (1.12) and choosing to observe the generated wave from a new

coordinate system with the X3 axis oriented at an angle i away from the axis of rotation we

get [56]

0 0 0 0

327r2f,2tEI33 0 - cos (4 lrfRoTt) (1 + cos2 (i)) -2 sin (4 .rfRort) cos (i) 0
R 0 -2 sin (47rfRoTt) cos (i) COS (4w7fROTt) (1 + COS 2 (i)) 0

0 0 0 0

(1.15)

This can be compared to Eq. (1.5) which allows one to read off h+ and hx and also note

that fGW = 2 fROT.

From the above Eq. (1.15) it is easy to determine what properties a detectable contin-

uous wave source would have. First of all, it must have some eccentricity. However there

are theoretical estimates of the maximum possible eccentricities supportable by neutron

stars. These estimates are based off of possible equations of state for neutron stars, which

are equations which define the relationship between the temperature, pressure and density

within the star. By surveying the more plausible equations of state one finds a maximum

ellipticity of - 10-6 [51] can be supported. Exotic equations of states for things such as

hybrid or quark stars, where the core is partially or completely made up of quark matter,

can have maximum ellipticities a factor of 100 larger. However, it should be noted that

such equations of state are considered by many astrophysicists to be speculative, and so

the ellipticities we infer from them may not be quite as plausible [42]. A more in-depth

discussion of ellipticities of neutron stars is covered in Section 5.2.

Secondly, the source needs to be rotating rapidly, due to the f 2 dependence of the

strain. It also needs to be within the LIGO detection band, which has a low end. around

50 Hz determined by seismic noise. Known pulsars have a maximum spin periods of a few

milliseconds, yielding maximum gravitational wave frequencies of about 1 kHz. In the case

of an isolated neutron star this means it needs to be young and not have radiated away



too much of its angular momentum. Thirdly, an ideal source should be as close as possible

since the strain at a detector is inversely proportional to the distance to the source.

By considering the known properties of neutron stars we can now make a quick estimate

of the maximum strength of gravitational waves reaching detectors on Earth. Typical radii

are of order 10 km and typical masses are around 1.4 M0  [40]. This leads to a typical

moment of inertia 104 5 g cm 2 assuming a rigid rotator. Using 1 kpc as a distance standard

and simply note any change in distance just produces an inverse change in the detect

strain. The above equations can be converted from natural units to experimentalist units

by including correct factors of G and c. Using the typical maximum values for frequency

and ellipticity yields a GW amplitude of the order h - 10-24(1 kpc/R) (/10- 6)(f/500Hz) 2

detected at Earth from a source 1 kpc away.

Angular Momentum
Vector

X2 frot
X1 , Towards

I • Observer

7

Figure 1-2: Diagram of a non-axisymmetric neutron star with a bump. The angle i is the
inclination angle between the axis of rotation and the direction to the detector.

Next we consider two isolated neutron stars that could make good candidates for detec-

tion by LIGO.

1.2.1 Potential source: RX J1856.5-3754

A potential candidate that meets several of the previously listed criteria is the isolated
neutron star RX J1856.5-3756. RX J1856.5-3754 is the closest known neutron star, at a
distance of - 120 pcs [31] [53], as determined by parallax measurements. While it is seen
in the optical by the Hubble space telescope, it was actually discovered in the X-ray by
the Rosat All Sky Survey in 1996 [54]. It does not emit detectably at radio wavelengths,



and thus was not in the original set of pulsar candidates being examined by LIGO. It

has a remarkably featureless x-ray spectrum which is well fit to a black body spectrum of

temperature 63.5 eV, although there is an excess in the UV-optical region of the spectrum

by about a factor of 7 from just the x-ray data fit [13]. A naive black body fit to the x-ray

data suggests that the star is of the order 4km in radius while a similarly naive black body

fit to the optical data leads to a star of radius of 14km [13]. The extreme mismatch between

these two fits indicates that one must model the effects of the neutron star's atmosphere to

understand the electromagnetic emission. At the time of considering RX J1856.5-3754 as a

source Chandra and XMM observations had not been able to detect any periodic variation

in the x-ray emission, having placed an upper limit of 1.5% on the pulsing fraction of x-rays

relative to the total x-ray flux [12].

A lack of spin period to focus on requires a blind search, although there are good

estimates of its age allowing us to limit the parameter space of the search, when coupled

with spin down energy calculations. Since the star is losing rotational energy as it radiates

away gravitational radiation, an equation relating the current rotation frequency and the

rate of change of that rotation frequency (the spin down rate) can be written. If sufficient

time has passed since the birth of the neutron star, such that the current rotation frequency

is small compared to the rotation frequency at birth, the ratio between the current rotation

frequency and the current spin down rate will become a function only of the age of the star.

If the age is known then at any given frequency, spin downs only up to a certain maximum

need be considered, limiting the spin down parameter space necessary to be searched. This

is covered in more depth in Section 5.3.

Age estimates for RX J1856.5-3754 come from considering its temperature and how

rapidly it cools, the lack of a visible super nova remnant, and possible associations with

other stars from a common starting point. Its high temperature and x-ray brightness

implies that RX J1856.5-3754 must be around 106 years old or younger, since the star has

not lived long enough to cool too much by thermal emission. On the other hand, there is no

visible supernova remnant, which implies an age greater than about 105 years, the length of

time most supernova remnants remain visible. RX J1856.5-3754's proper motion of - 0.33

masyr - 1 suggests that - 5 x 105 years is correct. Tracing RX J1856's trajectory back in

time finds it crossing the trajectory of run-away star ( Oph 5 x 105 years in the past [52].

They both may have originated in the Upper Sco OB association, where their paths meet,



before the supernova of the progenitor of RX J1856.5-3754 kicked them out.

While carrying out a gravitational wave search directed at RX J1856.5-3754 it was

found to have a spin period below the LIGO detection band by X-ray astronomers. It has

a period of 7 seconds with only a variation in the X-rays of 1.5%, the smallest ever seen in

an isolated X-ray pulsar [50]. However the methodology and resulting test of the code and

search pipeline performed using it as a target are still of use and thus it is presented here

and in Chapter 7.

1.2.2 Potential source: the Crab pulsar

The Crab pulsar and its surrounding nebula are remnants of a supernova that occurred

in 1054 AD approximately 2 kpc distant [17]. Its been well studied over a broad band of

electromagnetic frequencies from radio to gamma rays [38]. It produces very regular pulses

across the electromagnetic spectrum whose frequency and time evolution are known to high

accuracy. These electromagnetic wave pulses provide insight into the rotation rate and spin

down rate of the Crab pulsar and also act as a starting point from which to narrow down

directed searches for gravitational waves from the Crab pulsar.

The Crab has a known radio pulse frequency of ~ 30 Hz which implies the rotation

frequency is close to that. It also known to be spinning down at the rate of - 3 x 10-10

Hz/s [38] [28]. This information lets us calculate a naive classical upper limit on the strain

at an earth based detector of 1.4 x 10-24 and upper limit of 7.5 x 10- 4 on the ellipticity

of the Crab pulsar [43]. Thus the Crab is a good potential source because of its extreme

youth and rate of spin down, despite its distance. These radio observations also let us

narrow the parameter space down, but there is still some uncertainty left in how closely the

gravitational radiation period matches the radio pulse period [56].
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Chapter 2

Laser interferometer gravitational

wave detectors

This chapter will summarize the basics of a laser interferometer detector. It will then discuss

heating problems with certain optics which arose while trying to reach the designed input

laser power and how these problems were addressed with a thermal compensation system.

An in depth examination of the laser light inside the interferometer from before and after

this compensation system was used can be found in Chapter 4.

2.1 Laser interferometers

2.1.1 Introduction

One of the simplest and most sensitive methods for measuring the difference in length along

two paths is a Michelson interferometer. Figure 2-1 shows the full Michelson interferometer

combined with the two Fabry-Perot arms, discussed in Section 2.1.3 and a power recycling

cavity, discussed in Section 2.1.4. This setup is the heart of all three LIGO detectors.

These interferometers have been undergoing construction and commissioning for the past

decade and recently have gone through several periods of designated data collection. These

periods, during which the interferometer is left to simply run without constant upgrades

and commissioning, are refered to as science runs. The most recent science run, the 5th SO

far, started in November 2005 and was the first science run in which the interferometers

were operating at their designed sensitivity level.



At its most basic, a LIGO interferometer consists of a laser light source which is then

directed through a 50/50 beamsplitter. The transmitted and reflected beams travel along

perpendicular paths until reaching two end test masses (ETMs), which are highly reflective

mirrors. The reflected light from each mirror is then recombined at the beamsplitter. The

recombined electric field at the anti-symmetric (AS) port depends on the difference in the

optical paths of the two beams. The electric field at the AS port for this simple configuration

can be written as

EAs = Ein (rextbsrbsPi2x _ eytbsrbs i2oy) (2.1)

where Ein is the electric field incident on the beamsplitter from the laser source, Ox and

¢y are the phases accumulated by the light in a one way trip down each arm, tbs and rbs

are the field transmission and reflection of the beamsplitter, and rex and rey are the field

reflection of the end mirrors [3]. In reference to the earlier calculations in Section 1.1.1, the

A,1 of Eq. (1.6) would be equal to 2(%y - Ox).

2.1.2 Laser and mode cleaners

The main laser is a 10 Watt Nd:YAG laser from Lightwave, which operates at a wavelength

of 1064 nm. It is both frequency and intensity stabilized. The laser output is passed

through a pre-mode cleaner (PMC). This is a 21 cm long triangular cavity designed to filter

the spatial mode and intensity noise above about 1 MHz. It then passes through the mode

cleaner, another triangular cavity, with a 24.492 meter round trip. This cavity spatially

filters the light, only allowing a single mode to pass, while higher order modes pick up

additional phase and fall out of resonance. It also acts as a stable angular reference, as

misalignments become translated to higher order modes within the cavity and also fall out

of resonance [3].

2.1.3 Fabry-Perot arms

To increase the sensitivity of the basic Michelson interferometer, one would like to increase

L, the length of the arms, up until the length is comparable to the wavelength of the

gravitational waves, roughly 300 to 6000 km. At that point the approximations leading

up to Eq. (1.7), which shows the signal grows linearly with L, break down. Effectively,
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Figure 2-1: A diagram of a LIGO interferometer (taken from [3]). The purple light repre-
sents the input laser light. The blue line represents the resonant sidebands in the power
recycling cavity while the red line represents the carrier signal resonant in the recycling
cavity and the Fabry-Perot arms, as discussed in Sections 2.1.3,2.1.4, 2.1.5.

the light is picks up phase shifts from multiple cycles of the wave which cancel each other,

preventing any further gain in sensitivity. There are technical problems with building the

arms even 300 km long. One way to effectively make the arms longer is to have the laser

light make multiple trips down the same arm. As long as the time spent by the light in

the cavity is small compared to the period of the gravitational waves, this will significantly

increase the sensitivity of the instrument. However for changes occurring faster than this

storage time, the resulting signal will be attenuated relative to the lower frequencies in the

same configuration.

By turning the Michelson interferometer arms into resonating Fabry-Perot cavities, one

can increase the number of round trips the laser light makes. This adds technical complexity

in the form of an additional set of partially transmitting input test masses (ITMs) and the
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necessary feedback control systems to keep the Fabry-Perot cavities on resonance.

2.1.4 Power recycling cavity

In the case of the Michelson interferometer, the light interferes destructively in the direction

of the AS port and constructively in the direction of the incoming laser light. Instead of

just dumping the outgoing power, one can construct a cavity to take the outgoing light and

recycle it back into the interferometer. By adding a partially transmitting recycling mirror

between the laser and the beamsplitter a cavity can be made which recycles the power back

into the interferometer. This cavity also requires additional feedback control systems to

remain on resonance and generally provides a factor of 50 gain to the carrier, and a factor

of 26 gain to the sidebands when the input test masses are thermally tuned [5]. The recycling

mirror transmission was chosen to match the total round trip losses by the carrier in the

rest of the interferometer so as to couple all the carrier light into the interferometer [3].

The reason for using all available power is because of shot noise. The interferometer

operates on a dark fringe and thus very few photons carry the gravitational wave signal

to the AS port. Shot noise is due to the quantum fluctuations in the number of photons

reaching the detector. Shot noise scales as sqrtN, where N is the number of photons.

However, the gravitational wave signal scales with the power. and therefore the number of

photons, and so the signal to shot noise ratio scales as sqrtN [3]. By increasing the total

power we increase the interferometer sensitivity at the frequencies which are limited by shot

noise.

2.1.5 AS port

The electric field at the AS port is detected with a photodiode, which produces a photo-

electric current proportional to the average photon flux, or power, on the detector. For a

simplified calculation of the power at the AS port we assume the end mirrors have identical

reflectivity and are equal to 1 (i.e. re = ry = re = 1) and that the beamsplitter is a

perfect 50/50 (i.e. rbs X tbs = 1/2). Using Eq. (2.1) we can then write the AS port power

as

PAS= E*E = 4IEin12 (retbsrbs)2 sin(A ) 2 = IEi 2 sin(AO) 2 (2.2)



where we define AL = 0y - ¢z [3]. To produce signals that are at radio frequencies on the

photodiodes, the light entering the interferometer is first phase modulated to produce several

sets of sidebands. These sidebands are used in a Pound-Drever-Hall locking scheme [18] (see

also [23]), to keep the different cavities on resonance (or locked). One set of sidebands is

reflected by the mode cleaner, one set is reflected by the power recycling mirror, and the last

set is reflected by the input test masses, and resonate in the recycling cavity. This last set of

sidebands which resonates in the power recycling cavity is used to beat against the carrier

and produce the final gravitational wave signal channel at the AS port. An asymmetry of

0.356 m in the lengths between the BS and the two ITMs, called the Schnupp asymmetry,

causes the sidebands to come out the AS port. Nominally, the recycling cavity should be

almost critically coupled for the sidebands such that almost all the sideband light should

end up at the AS port.

These sidebands are produced by using a Pockels cell to phase modulate the input light.

The laser light modulated once for one set of sidebands can be written as

Ein = Eoeir cos(nmt)

- Eo(Jo(F) + iJl ()e +immt + iJl(F)e-i ' mt (2.3)

_ J2(r)e+i2 mT _ J2(r)e-i2 mt)

(2.4)

where F is the modulation depth in radians, Qm is the modulation angular frequency, Jn is

the nth order Bessel function of the first kind, and Eo is the unmodulated field of the laser.

In the case of the sidebands resonant in the power recycling cavity, Qm 27r x 24.5 MHz

and IF 0.4. The output of the photodiode is demodulated at the modulation frequency

used to run the Pockels cell. The In-phase (cosine) and Quadrature-phase (sine) of the AS

photodiode are separately recorded.



2.2 Problems

2.2.1 Thermal heating and thermal compensation

The ITMs were designed with the concept that a certain amount of absorption would be

taking place leading to a curvature change due to thermal lensing, effectively the changing

index of refraction due to increasing temperature, when operating in a high input power (6

Watt) state. The power gain of 50 in the recycling cavity and gain of 130 in the arms means

roughly 300 W and 10 kW are circulating in the recycling cavity and arms, respectively, in

this high input power state. The expected absorption was about 1 ppm in the HR coating

and about 4-5 ppm/cm in the substrate. Through the initial science runs, during which the

LIGO interferometers were left alone to take data as opposed to being worked on directly

to improve sensitivity, the LIGO interferometers were operating below this expected high

power state and consequently had a slightly wrong radius of curvature for the ITMs and

ETMs.

However, during attempts to reach high power on the H1 interferometer, it became clear

that optics were absorbing far more then expected. At their nominal radius of curvature

at 6 Watts of input power, the gain in power in the sidebands is theoretically expected to

be Gsb = 30 [5]. However, a maximum gain of Gsb = 26.5 was measured at 1.8 Watts of

laser power into the mode cleaner, a much lower power than expected. At higher power,

the sideband power gain reduced along with the sidebands decreasing in spatial size. This

suggested that one or more optics of the power recycling cavity was absorbing too much

power.

Using spot size measurements on H1 at different IFO ports and at different heating states

[41], we were able to determine that ITMX was absorbing the most power, 34 ± 4 mWatt

per Watt of power into the mode cleaner, although ITMY was only a factor 2.6 less than

that. These in vacuum measurements were unable to distinguish between bulk substrate

absorption or coating absorption. However, since the power hitting the first coating layer on

the high reflectivity side of the ITM, which faces the Fabry-Perot arm cavity, is roughly 140

times the incident power, and the higher probability of surface contaminants, the absorption

is most likely due to the surface rather than the bulk. If one assumed all the absorption

were in the surface, then the ITMX coating would be absorbing 15±1.8 ppm and the ITMY

coating would be absorbing 5.6 ± 0.7 ppm. This is compared to the specification of 1 ppm.



One hypothesis is that contaminants were introduced to the surface during assembly and

installation and resulted in this large difference from specification to the actual absorption.

However, we don't have a definitive cause of the excess absorption. Based on these findings,

ITMX was replaced with a spare in June of 2005. Since the ITMs still had absorption

values above the design specifications, a system was necessary to compensate for the thermal

heating effects of the main laser.

A thermal compensation system (TCS) was originally studied by Ryan Lawrence [36]

and was designed to apply heating to the test masses as needed to correct the curvature.

This eventually led to the full system installed on the LIGO interferometers [48] [6]. The

final systems installed for each ITM, shown in Figure 2-2, consist of a 10 Watt C02 laser

operating at 10.6 ym wavelength that illuminates one of two interchangable mask patterns.

The laser light passes through a telescope with magnification of 26.5 and a ZnSe viewport

before reaching the high reflectivity side of the ITM (the side facing the arm cavity) of the

ITM. The 10.6 pm laser light is almost completely absorbed by the fused silica substrate of

the ITM.
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The two masks are an annulus pattern and a hole. The annulus is used to compensate

for too much heat being deposited by the main LIGO laser light. The hole in the center

is used to correct for insufficient heat to reach the desired curvature. These masks are

installed in the Fourier plane of the projection system. A Bessel mask further downstream

clips the higher order maxima of the Airy diffraction pattern, leaving only the central lobe

of the Airy disk. A polarizer on a rotation stage is used to adjust the power.

This system was successfully able to correct for the high power heating effects and

allowed the LIGO interferometers to reach operation at 6 Watt input laser power state. To

control the long time dependence of the TCS on the radius of curvature, a servo system was

devised and implemented. The full details of this system can be found in Stefan Ballmer's

thesis [5].

2.2.2 Mode and power mismatches and the AS_I signal

The carrier light resonates mostly in the 4 km long arms of the interferometer, and thus

their spatial mode is mostly dependant on the state of the arm cavities. The sidebands only

resonate in the power recycling cavity and thus the sideband structure is determined by

the state of the power recycling cavity. The deformation and thermal lensing of the ITMs,

due to their excess absorption, affects primarily the power recycling cavity. This causes the

two sidebands' power and spatial profiles to become mismatched with the carrier and each

other. Since the gravitational wave signal is detected by the beat between the carrier and

sidebands, poor matching will lead to excess noise.

To illustrate what poor matching can do, we write the incident light field on the AS

photodiode as

T = Ace-i ct + iA+e-i(wc+n • )t + iAe - i(W' -c~ )t (2.5)

where Q1m is the sideband modulation frequency, wc is the carrier frequency, and Ac, A+, A_

contains the modal content and the relative magnitudes of the carrier, upper sideband, and

lower sideband respectively. When the photodiode signal is demodulated at frequency

Qm, two signals are produced, the In-phase signal and the Quadrature-phase signal. Since

these are recorded by the AS port photodiode, these are labeled ASI and ASQ. The

interferometer is designed such that gravitational wave signals are only in AS_Q and the



ASI signal is zero.

We can write the power in each demodulated signal as

27,

PASJ = j -m * cos(Qmt) = (AcASb+ + A*Asb-) - (AAsb+ + AcAb (2.6)

and

PASQ = jm V* sin(Qmt) = (AcAsb+ + A*Asb-) + (A *Ab+ + AcAb_) (2.7)

where PASj and PAS_Q are the powers in the ASI and ASQ signals.

Note that when the sidebands have identical amplitude and modal content, namely

A sb+ = Asb-, PASI goes to zero, leaving only AS_Q with signal. However, if the overall

magnitude is different, effectively amplitude modulation of the sidebands, PASa no longer

identically cancels. In addition if the modal content of the sidebands are not identical, and

there are higher order modes present to beat with in the carrier, PASJ will again not cancel.

The higher order modes in the carrier and sidebands will also add noise directly to the

ASQ signal as well.

If the mismatches between the carrier and sidebands are severe enough, the excess

ASI signal can cause saturation of the RF electronics and mixers, resulting in loss of any

gravitational wave signal [3]. There is an electronic system in place to provide feed-back

that cancels out RF photo current on the diode caused by the ASI signal. This system

can correct up to 10 mApk photo current per diode. The control signal for this system is

recorded in the channel ASJCorr. However in high power configurations this correction

system proved to be insufficient [5]. The excess ASI problem was eventually solved with

the thermal compensation system running a correction servo designed to null the ASi_Corr

signal. It is important to examine the power and modal nature of the individual components

of the light in the recycling cavity with and without TCS correction, to ensure that it is

correcting properly. This examination is accomplished through the use of the phase camera,

a system whose basics and initial test case are described in Chapter 3. The examination of

the thermal states and TCS correction of the interferometer is covered in Chapter 4.



Part II

Spatial mode analysis
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Chapter 3

The phase camera: a frequency

sensitive wavefront sensor

The "phase camera" is a high-resolution wavefront sensor that measures the complete spatial

profile of any frequency component of a laser field containing multiple frequencies. This

technique is useful as a probe of the spatial overlap of the carrier field with each sideband

component exiting the output port of a gravitational wave interferometer. It was first

demonstrated to work at MIT [25] and then brought to the LIGO sites.

This chapter describes the functioning of the phase camera at a basic level, where it

detects only the beat signal between the carrier and sidebands. At the Hanford site, the

phase camera was first successfully used to test an output mode cleaner and confirm that

it was working as designed. That test is presented here to show the phase camera working

in a relatively simple to understand case on the actual interferometer. The addition of an

independant reference beam, described in Section 4.1.1, was necessary for the more complex

study of individual sideband and carrier components in different heating states described

in Chapter 4.

3.1 Mechanical details

The phase camera is the combination of a position scanning galvanometer and a New Focus

1811A RF photodiode. The galvanometer moves two mirrors in conjuction such that the

incoming light reflects off both in a spiral pattern and onto the photodiode at a rate of

about one full spiral scan every half second. The two output channels of the photodiode,



DC power and RF power, are then sampled at a rate of up to 4000 points per full scan. The

RF sampled points are then demodulated and passed to a computer, along with the position

read back of the galvanometer as shown in Figure 3-1. The demodulation can be done at a

frequency of 24.5 MHz, the difference between the carrier and sideband frequencies, and thus

looks at the beat between the carrier and sidebands of the incoming light. A reference beam

can be combined with the incoming light to produce beats with the carrier and sidebands

individually, allowing their individual demodulation, and which is described in Section 4.1
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Figure 3-1: Phase camera control setup. The galvanometers move a pair of mirrors, directing
the light in onto an 1811A RF photodiode. The RF signal from the photodiode, produced
when the carrier and RF sidebands beat at 24.5 MHz, is demodulated, and then sent to a
computer, along with the DC signal, where the signals are recorded. The computer sends
the signal for the next position to a digital to analog converter board, which converts the
signal into a control voltage which moves the mirrors to the next point in the spiral pattern.



3.2 Testing the phase camera and the output mode cleaner

The phase camera was used to help test and understand an output mode cleaner (OMC) on

the Hanford 4km interferometer [10]. This also presented an opportunity to test the phase

camera itself, to ensure that it was operating as expected.

3.2.1 Motivation for the output mode cleaner

Laser interferometers have problems associated with imperfect interference at the AS port,

due to poor beam quality. Excess carrier light in higher order modes will produces excess

shot noise while not contributing to the signal. Imperfect matching in the reflectivity of the

two arms will produce a static, TEMoo carrier field at the AS port, which when it beats

with the sideband light will produce noise in the signal channel. Any sideband field which

does not spatially overlap with the carrier does not contribute to increasing the optical

gain, but rather produces many detrimental effects like shot noise, acoustic sensitivity and

so forth [3].

A potential solution to poor output beam quality is to place an output mode cleaner

in the path of the AS port light before it reaches the AS photodiodes. By using a cavity

with sufficiently large line width, both the RF sidebands and carrier TEMoo modes could be

transmitted on the same resonance, while passively rejecting the higher order spatial modes.

The more recently adopted solution is for future upgrades to the LIGO interferometers is

to use only carrier light, without RF sidebands, a so called DC readout.

Experimental setup

The OMC was placed on the AS port of the Hanford 4k Interferometer as shown in Figure

3-2. This OMC was a solid spacer triangular cavity with a piezo-electric transducer (PZT),

a device which converts electrical field into length changes, attached to one mirror for

length control. It was designed to pass the TEM00oo carrier and sidebands through the same

resonance, while rejecting all the higher order modes. The cavity was held on resonance by

applying a small dither signal to the OMC length at 40 kHz, and using a lock-in amplifier

to generate an error signal from the transmitted light. A few useful parameters of the OMC

are shown later in Table 3.1.



Incoming light

We have modeled and taken data for the OMC in the two simplifying cases of the laser

reflected directly off an ITM onto the AS port, and of the interferometer being held on a

Michelson bright fringe with the RM and ETMs misaligned. In these cases we assume that

the modal content of the incoming carrier and sideband is essentially the same. However,

a beam scan of the light on the table showed the light to be astigmatic, complicating the

situation. The light had a first beam waist of 137pm along an axis rotated 250 counterclock-

wise relative to the OMC horizontal axis. The second beam waist of 107pm located 6.6 cm

after the first waist was along an axis rotated 250 degrees relative to the OMC vertical axis.

Initially, the OMC was mode matched to only the horizontal waist, treating that as the

only waist. However, during the testing process it was moved such that the transmission

through the OMC was maximized. All data present here is from this later situation.

Phase camera

In this experiment a 50/50 beamsplitter was placed at the output of the OMC, redirecting

half of the transmitted light to the phase camera. On the path to the phase camera, shown

in Figure 3-2, two lenses were placed so as to focus the light to the proper size to be

scanned. This means the phase camera photodiode was approximately 0.45 m from a waist

size of 150pm, resulting in a Gouy phase of nearly 7r/2 radians. The Gouy phase is the

phase difference between a Gaussian beam and a plane wave of the same optical frequency,

acquired by the Gaussian beam as it propagates through a focus. This effective phase shift

is different for higher order modes,

3.2.2 Theory and modeling

In the following sections a model for the astigmatic light from the interferometer reaching

the OMC, and then passing through the OMC, will be developed. This requires defining

a basis of modes affected by astigmatism, then transforming it into the OMC basis. By

comparing the relative power in the modes actually measured at the output of the OMC

with what we can determine if the OMC was built properly and performing as we expect.



Astigmatic beam

The Hermite Gaussian basis provides a complete set of solution for the fields which can

propagate inside or outside of the cavity [33]. These solutions for the electromagnetic field,

4', which have been normalized for power, have the form

T mn = n)Hm Vx Hn
2(m+n)m!n!r (z) () w(z)

x e(x2+y2 )/w 2(z) e-ik(x2 +y2 )/(2R(z)) eikz ei(m+n+l) tan-' [(zA)/(rw)]

(3.1)

where m and n are TEM mode numbers, x and y are the distance from the center of the

beam perpendicular to the direction of propagation, z is the distance from the waist in the

direction of propagation, w(z) is the radius of the beam at z, w0o is the radius at the waist,

R(z) is the radius of curvature of the beam front at z, A is the wavelength of light, k is the

wave number (27r/A), and Hm is the Hermite polynomial of order m.

This can be generalized for the incoming light by breaking up the symmetry between

the x and y axes and allowing them to have different waists and waist positions. In the

case of a Michelson locked on a bright fringe and also a direct reflection of the laser light

off an ITM, the light should be a pure TEMoo, distorted only by the astigmatism. Thus,

the incoming light can be written as

astigmatic(X, y', z') = 2(m+m!n (Z) W

x Hm (Zx)Hn( (3.2)
x e - [x/wx(zx)] 2 -[/wY(zy )]2 eik[(zx+ z v )/2]

Sei[m+(1/2)] tan- [(z•A)/(wW2)] ei[n+(1/2)) tan- W [(z2)/(Trw2)]

where zx and zy are the distances from the x aligned waist wox, and the y aligned waist

woy, respectively.



The OMC basis

The OMC cavity imposes several boundary conditions on the general Hermite Gaussian

solutions of Eq. (3.1). First, for resonance to occur, after each full round trip the phase and

amplitude must match. Second, at the curved back mirror the wave front of the beam must

match that of the cavity (neglecting the small incidence angle). Also note that, because of

symmetry, the waist of the beam inside the cavity must occur midway between the two flat

mirrors and equidistant from the curved back mirror. These conditions imply

= - ) 2 L(Ro - L) (3.3)

and

S(q + 1) + ( + n +1) cos - + -Mod 2 (m) (3.4)
Avo 7+ 2

where L is half the round trip length, Ro is the radius of curvature of the back mirror, Mod 2

is modulo base 2, and vo is the free spectral range (FSR). The FSR is equal to c/2L, where

c is the speed of light, and is simply the distance in frequency space between successive

transmission peaks of a given spatial mode. These transmission peaks are numbered by the

q parameter, since q+ 1 is the number of half wavelengths inside the cavity. The modulo base

2 term comes from the fact that the cavity is triangular, and that for odd mode numbers in

the direction parallel to the mode cleaner plane there is an additional 7r phase shift in the

round trip )due to an odd number of reflections in the horizontal plane). Table 3.1 provides

the values for these and several other related parameters of the OMC.

Table 3.1: OMC parameters

Cavity Finesse 30
Half of Round Trip Path (L) 50.75 mm

End Mirror Radius of Curvature (Ro) 75 mm
Free Spectral Range (vo) 2.95 GHz

Beam waist inside the OMC (wo) 109pm
Wavelength of Carrier light (A) 1064 nm

The important part of Eq. (3.4) is that for a given frequency of light, each (m + n)

needs a different length of cavity to resonate, due to the Gouy phase shift. This means the

OMC will decompose the incoming light into the Hermite Gaussian basis specified by its



geometrical parameters, and only let those modes whose (m + n) satisfy Eq. (3.4) to pass,

generally the carrier TEMoo mode. All others will be reflected back from the OMC. However,

because the mirrors of the OMC do not have perfect reflectivity, the range of frequencies

which can pass is broadened, allowing most of the sideband TEM0oo modes to pass. This

can be seen by looking at the transmitted light of the OMC, considering the reflection and

transmission at each mirror. Assuming no losses in the cavity and no transmission on the

end mirror, the complex amplitude of the transmitted light will be

2transmitted - 1 t2incident i (3.5)
1 - rTr 2

where

=2kL- 2(m + n + 1)cos - 1  1 - Mod 2 (m), (3.6)

tl = t2 represent the transmission of the mirrors, rl = r2 represent the reflectivity of the

mirrors, and assuming t? + r? = 1, for i = 1, 2. The k represents the wavenumber of the

light and varies due to the 24.5 MHz frequency difference between the carrier and sidebands,

resulting in a different transmission ratio for the carrier and sidebands of the same spatial

mode.

Decomposing into the OMC basis

In order to understand how the astigmatic beam of Eq. (3.2) passes through the OMC, we

need to decompose it into the Hermite Gaussian basis of the OMC, Eq. (3.1). This was done

in two ways, both of which resulted in the same decomposition. The first decomposition

was done by taking the inner product between the astigmatic beam and a particular OMC

mode, essentially the inner production between Eqs. (3.1) and (3.2). This inner product,

J mn~'astigmatic = amne (3.7)

yields the amplitude and phase of the TEMmn mode present in the beam.

The other method of decomposition started with creating a set of theoretical data with

Eq. (3.2), with the amplitude of the astigmatic beam stored at a series of x and y coordi-

nates. The simple model of



aooeioo00oo + aolei °~'o01 + aTo1eio o + Oa2e10 a0 2 2 + allel'11T] + a20ei2o 1 20 , (3.8)

where Tmn is the mrnn t h OMC mode, was then fit to this artificial data set. The amplitude

and phase of each of the modes (defined by Eq. (3.1)) is then left as a free parameter of the

model. After fitting, we normalize the model by scaling so that the TEMoo00 mode has an

amplitude of one and a phase of zero. This second method is very similar to the one used

to analyze the phase camera data. The results of the two decompositions are presented in

the first two columns of Table 3.2.2. The matches between modes from the two methods

are good, within ±0.02 in amplitude and ±110 in phase.

There are two additional decompositions which can provide insight, that of an astigmatic

beam without the 25' of rotation, where the two waists axes are aligned with the OMC axes,

and that of an astigmatic beam misaligned in vertical displacement coming into the OMC. In

the first case, the TEM11 mode completely disappears, leaving only the expected TEM02 and

TEM20 modes due to the mode mismatch. In the second case a vertical displacement of one

third the waist size of the OMC was somewhat arbitrarily chosen because of measurements

indicating alignment drift of this size on short time scales. This decomposition gives a

feel for what deviations to expect between the OMC model and the phase camera data.

The differences are mostly on the order of 15% for modes that are present in the perfect

alignment and the inclusion of several misalignment modes, such as the TEM01. Table 3.2.2

summarizes all of these decompositions.

Lastly, to calculate the effect of the astigmatic beam on transmission of the OMC, one

simply needs to apply Eq. (3.5) to each mode for both the carrier and sidebands, then add

all the modes back together for the carrier or sideband.

Decomposition versus Michelson bright fringe OMC scans

One straightforward experimental test of the astigmatic decomposition is to tune the OMC's

length such that modes other than the TEM00 become resonant and note the power of the

transmitted light. In practice this is done by applying a slowly increasing voltage to the

OMC's PZT to change the length of the OMC while continuously recording the power of



the light on transmission. By calculating the transverse mode spacing (TMS) from

TMS = - arccos 1 - (3.9)

we can easily match peaks with sets of degenerate modes, since a TEMmn mode will be

shifted in frequency from the TEMoo mode by (m + n) x TMS in units of free spectral range.

For the OMC, the TMS is 0.308 based off of the parameters from Table 3.1. To compare

the astigmatic decomposition to the data taken in this way during a bright Michelson lock,

we need to apply the OMC response function, Eq. (3.5), to the mode amplitude from

Table 3.2.2 while letting L vary, which lets us go through a free spectral range of resonant

frequencies. Then we take the power in each mode, sum them all, and plot as a function of

free spectral range. The final formula used is thus

A (ao Tcarrier(dL)1 2 + a arrier(dL) 12 + ...) (3.10)

where amn and Omn are amplitude and phase of mode mn from Table 3.2.2, Tmn(dL) is the

response of the OMC for mode mn for a given length change dL, and A is an overall scale

parameter. Note that we ignore the effects of the sidebands in this calculation since for the

bright Michelson lock the DC power is dominated by the carrier. Figure 3-3 shows a plot

of the scan data taken during a bright Michelson lock that is overlaid with Eq. (3.10) as a

function of dL. To produce amplitudes of the higher order modes that we can compare our

models to, we fit the scan data to

m+n=4
Power(dL) = Amn Tarrier(dL)I2  (3.11)

m,n

where the amplitudes Amn are the free parameters of the fit. Amn are just the square of

amn. Due to degeneracy between modes, we cannot completely distinguish Amn terms, but

we can compare the sums of the degenerate modes. Table 3.2.2 provides a comparison of

these sums from the model and OMC scan data, with all the values normalized to a TEM00oo

transmission of 1. Both Figure 3-3 and Table 3.2.2 show a very strong correspondence

between our model's prediction and the actual experimental result, especially when we

consider that the model assumes perfect alignment and thus predicts no misalignment modes

such as TEM10 and TEMo l .
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Figure 3-2: The triangular OMC cavity is show in relation to the full interferometer. It
is placed at the AS port to clean up the light reaching the AS photodiode. The red light
represents the carrier, while the blue light represents the sidebands. The phase camera was
placed at pickoffs before and after the OMC to capture the state of the light. The phase
camera images are from when the interferometer was held on a Michelson bright fringe and
are expanded in Figures 3-7 and 3-5. During this state, the RM and ETMs were misaligned.
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Mode Integration Fit Integration Method Integration Method
Method Method Misaligned Non-rotated

Amp. Phase Amp. Phase Amp. Phase Amp. Phase
00 1 0 1 0 1 0 1 0
01 - - - - 0.28 -155 - -
10 - - - - 0.13 25 - -
02 0.23 -67 0.24 -56 0.22 -43 0.28 -150
11 0.26 80 0.25 77 0.23 87 - -
20 0.21 31 0.22 26 0.22 32 0.47 39
03 - - - - 0.11 153 - -
12 - - - - 0.12 -63 - -
21 - - - - 0.05 -172 - -
30 - - - - 0.05 57 - -
04 0.07 -113 0.07 -113 0.06 -86 0.19 -136
13 0.11 23 0.11 21 0.09 43 - -
22 0.02 176 0.01 177 0.003 -161 0.02 38
31 0.10 111 0.10 103 0.09 117 - -
40 0.06 62 0.06 51 0.061 64 0.15 45
05 - - - - 0.041 101 - -
14 - - - - 0.06 -120 - -
23 - - - - 0.02 46 - -
32 - - - - 0.04 -46 - -
41 - - - - 0.02 -181 - -
50 - - - - 0.02 88 - -

Table 3.2: The mode column lists the mode mn number. All the amplitude columns give
the amplitude of the corresponding mode relative to the TEMoo which was fixed at 1. All
the phase columns give the phase difference from the TEAMoo mode, which was fixed at
phase of 00. The integration method decomposition was done by taking the inner product
between the astigmatic beam and a particular OMC mode, as described by Eq. (3.7). The
fit method amplitude and phase columns were done by creating a set of data then fit to a
simple model described by Eq. (3.8). The misaligned integration method gives the mode
amplitudes and phases entering the OMC misaligned in the vertical direction by one third
of a waist size. The non-rotated integration method gives the results for an astigmatic beam
without the 250 rotation, so that the waist axes are aligned with OMC axes.



Degenerate Modes Data Fit Model Misaligned Model
Mode (Power in modes) (Power in modes) (Power in modes)
1 even 01 0.1396 0.0784
1 odd 10 - - 0.0169
2 even 20,02 0.1040 0.1004 0.0968
2 odd 11 0.0633 0.0686 0.0529
3 even 03,21 0.0240 - 0.0146
3 odd 12,30 0.0232 - 0.0169
4 even 04,22,40 0.0066 0.0080 0.0073
4 odd 13,31 0.0214 0.0206 0.0162
5 even 05,23,41 0.0128 - 0.0025
5 odd 50,32,14 - 0.0056

Table 3.3: The degenerate mode column labels the resonances based on the order of the
modes which pass through. The break in the degeneracy between modes of the same m + n
value is due to the triangular nature of the cavity. For odd mode numbers in the direction
parallel to the mode cleaner plane there is an additional 0.5 FSR shift in resonance frequency.
The modes columns lists all the modes which resonated together in the OMC. The power
in modes is the sum of the power of all the resonant modes relative to the TEMoo, which is
scaled to 1. The data fit column comes from fitting the scan data to Eq. (3.10). The model
and misaligned models come from calculating the power from the amplitudes in Table 3.2.2
and then summing the approriate modes together.
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Figure 3-3: Plot of the OMC transmitted power versus detuning in units of FSR. The black
line is the actual data, the blue line is the model prediction and the red line is a fit to the
data. The fit was produced by fitting the data to equation Eq. (3.10).



What the phase camera should see

The phase camera sees the strength of the beat between the carrier and the sidebands,

by demodulating at 24.5 MHz. The sidebands are generated from the carrier via phase

modulation of the form

Eoei(wt+ r sin(,t)) n Eo [Jo(r)eiwt + J(F)ei(w+Om)t - Jl(F)ei(w- Qm)t] (3.12)

where Eo is the original carrier amplitude, w is the angular frequency of the carrier, Qm is the

frequency of the modulation, F is the modulation depth, and t is time. The approximation

on the right hand side of Eq. (3.12) is simply an expansion, followed by collection of

terms into Bessel functions of 0 th and 1st order. The first, second and third terms on the

right hand side are the carrier amplitude, the upper sideband amplitude, and the lower

sideband amplitude, respectively. Since the carrier and sideband see the same surfaces for a

bright Michelson lock or a direct reflection off an ITM, and the sideband generation should

only produce a frequency and amplitude difference between the sideband and carrier, it is

reasonable to assume that the modal content will be the same for both. In that case we

can write the individual field amplitude of the carrier and sidebands as

Acarrier = EoJo(F) (aooeiooT rier1Jo + aoleiol T0rier,0o+ -...

AOb+ = EJ 1 ( T) (aooeiooT oo + aoleTieoo1 b+ 1 + ...) (3.13)

Asb- = -EoJ 1 (F) (aooe oo& T- Too + aolei•o Tsbl o --sb-

(3.14)

where Tc trier is the OMC response, obtained from 'transmitted/ 1 incident from Eq. (3.5)

for the appropriate mode, and the 'Jmn are from Eq. (3.1) with the Gouy phases fixed to

match that of the experimental setup. The total field of the light can then be written as

Acarriereiwt + Asb+ei(w+R m)t + Asbei(w- Om)t. (3.15)

Demodulating the power in phase at an angular frequency Qm yields the in-phase

(Iphase), and 900 out of phase yields the quadrature-phase (Qphase) signals. These can be



explicitly written as

and

(3.16)2r(AcarrierA b+ + AarrierAsb-) = Qphase

2 ( Acarrier Asb+ + Acarrier A sb) = Iphase (3.17)

By replacing the amplitudes amn and phases Omn with the appropriate model values

we can create an I or Qphase map which is directly comparable to the measured phase

camera phase maps. The phase map in Figure 3-4 is created using the parameters from the

integration method of astigmatic beam decomposition listed in Table 3.2.2, with an overall

demodulation phase rotation such that all the higher order mode "junk" is in one phase

but not the other.

Q Phase (25 Mhz demodulation)

-6 -4 -2 0 2 4
X

Figure 3-4: Phase map generated from the OMC model, with the integration method pa-
rameters from Table 3.2.2. This shows spatial amplitude of the Qphase demodulation. The
demodulation phase rotation has been chosen such that all the higher order "junk" is in the
Iphase, leaving the TEM11 mode as the largest contributor to the Qphase signal.



3.2.3 Phase camera measurements and comparisons

Phase camera data

The following images were taken by the phase camera in two different states. The first was

when the OMC was locked with maximum light transmission while the interferometer was

held on a bright Michelson fringe. The second was when all the mirrors of the interferometer

were misaligned, except for ITMY and the BS, resulting in a direct reflection of light into

the AS port. The images are reproducible for a given state of the interferometer.
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Figure 3-5: The above images from the phase camera were taken on transmission through
the OMC when the interferometer was held on a Michelson bright fringe. The upper left
image shows the spatial amplitude of the DC signal, which should be made up mostly of the
clean TEMoo carrier signal. The lower left image is the spatial amplitude of the Iphase of
the demodulated RF signal, demodulated at Qm, 24.5 MHz. The fact that we see a TEMoo
mode in the Iphase implies there is some amplitude modulation or mismatch between the
sidebands, since otherwise the beat the sidebands produce with the TEMoo carrier should
cancel out. The lower right is the Qphase of the same signal. Our prediction for the Qphase
image from modeling the astigmatic beam passing through the OMC is Figure 3-4, mostly
the TEMoo mode which we see. The upper right is the overall amplitude of t.he signal

calculated from (Iphase) 2 + (Qphase) 2
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Figure 3-6: The above images from the phase camera were taken when only ITMY and the
BS were aligned, producing a direction reflection of light off ITMY, through the BS, and
to the OMC. The signals from which the images are generated are described in Figure 3-5.
The factor of 4 reduction in overall power is due to the loss of 50% of the light at the beam
splitter because of the ITMX misalignment. This also means the electronics background
noise stands out more in these images when compared to Figure 3-5.
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The DC power images show fairly clean TEMoo modes, indicating the OMC is in fact

transmitting mostly the mode we want. The factor of 4 drop in DC power intensity from

the Michelson bright fringe case to the direct reflection case is due to the loss of 50% of the

light at the beam splitter because of the ITMX misalignment. This also means the direct

reflection case is closer to the noise floor of the phase camera. The I and Qphases have

been rotated to match the same overall phase rotation chosen for the model, so that one

phase is expected to be flat and the other will contain the higher order modes transmitted.

The fact that we see a clear TEMoo mode in one phase instead of a flat plane implies some

amplitude modulation of the carrier and sidebands is being produced by or passing through

the OMC. The TEM11 mode image in the Qphase is reassuring, as it looks similar to the

model prediction from Figure 3-4.

To determine if the TEMoo mode present in the Iphase is due to the OMC or present

on the light before reaching the OMC, we look at phase camera images when the OMC was

removed. Figures 3-7 and 3-8 show the bright Michelson lock and an ITM direct reflection

respectively, without the OMC in the path. In the bright Michelson case the amplitude

modulation can be fully explained as being on the incoming light, since the ratio of the DC

power to the Iphase power is roughly the same or less for the OMC present and not present

cases as shown in Table 3.4. However, for the case of the direction reflection off an ITM,

the amplitude modulation seems to be greater after the OMC. However, in this case the

reflection was off ITMX rather than ITMY. The ratio of the Iphase signal is down by much

more than the expected factor of 2 in amplitude when comparing between the Michelson

bright fringe and direct reflection cases, while the DC amplitude is down by the expected

factor of 4. This indicates the sidebands in the ITMX direct reflection case were affected

by the reflection much differently from the ITMY case, and in such a way as to reduce the

overall amplitude of the beat between the carrier and sidebands.
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Figure 3-7: The above images were taken when the interferometer was held on a Michelson
bright fringe and without the OMC in the light path. The signals from which the images
are generated are described in Figure 3-5. Without an OMC to clean the signal, we see
some combination of astigmatic modes. When compared to Figure 3-7, the overall power
in the DC image is roughly the same, but the beat signal increases, which shows that the
sidebands are more affected by the OMC then the carrier. This is expected since the OMC
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their transmission.
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Figure 3-8: The above images from the phase camera were taken when only ITMX and the
BS were aligned, producing a direction reflection of light off ITMX which was then directed
to the phase camera. The signals from which the images are generated are described in
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beat signal is lower than expected, while the DC light (representing mostly carrier) is
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Table 3.4: Amplitude modulation comparisons

Data Set 1 Data Set 2 Data Set 3
Iphase/DC Iphase/DC Iphase/DC

Michelson Bright Fringe 2.28 2.48 2.45
With OMC

Michelson Bright Fringe 3.7 3.68 3.75
Without OMC

Direct Reflection 7.03 3.9 4.97
With OMC

Direct Reflection 3.12 3.18 3.2
Without OMC

Phase camera data and model comparison

To directly compare the models, we first need to set certain scale parameters. The easiest

method of getting these scale parameters is to fit the DC power data to AxIooT o(x +

Xoffset, Y + Yoffset, w), letting the overall amplitude A, the center position offsets Xoffset and

Yoffset, and w the waist size vary as free parameters. Fixing the offsets and waist size in

our model first makes the final stage of fitting to the model much easier. We then make

a nonlinear fit of Eqs. (3.16) and (3.17) to the data, treating E~Jo(J7)Jl(r) as a single

amplitude free parameter A in addition to the a00 and 800 free parameters. We use the

values from Table 3.2.2 as our initial guesses, and restrict the parameter space to about

±20% of those values. To determine the quality of the fit, we first determine the noise in

the data. By subtracting phase camera images from one another, and taking the standard

deviation of the resulting difference values gives us our a. We then use this to calculate our

X2 (normalized) merit functions with the values between 1 and 4, depending on how noisy

a particular image is, and whether it was the bright Michelson or direct reflection case.

However, the residuals show some distinct structure excess, perhaps some TEM00oo mixed

with TEM20 in the case of the direct reflection fits. The two fits of the Qphase, one for the

bright Michelson and one for the direct reflection in Figure 3.2.3 are typical of the sets.
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Table 3.2.3 gives the parameter values for the two sets of measurements, along with

the model values from Table 3.2.2, normalized to a TEMoo amplitude of 1 and a phase of

0. This comparison provides several insights. The large TEMol mode implies a significant

misalignment of the vertical axis between the incoming light and the OMC, on the order of

the waist size or the divergence angle of the light at the OMC. The TEM02, TEM11, and

TEM20 modes are consistent with being produced solely by the astigmatic nature of the

light. Ignoring the effects of a simple misalignment, the fact that the model matches the

data well implies the OMC is doing what it is expected to be doing. We get large amounts

of higher order modes on transmission of the OMC mostly due to the known astigmatism,

and that other additional problems or effects are not needed to explain the OMC output.

After testing finished on the OMC it was removed and returned to GEO. However, there

are plans for a new OMC to eventually be added to the LIGO interferometers in a future

upgrade. The phase camera system was next used to examine the interferometer light inside

the recycling cavity in different heating states with and without the TCS in an attempt

to understand how the ASI signal was being generated and corrected. Those results are

presented in Chapter 3.



Mode Model Misaligned Model Mich Bright Direct Reflection
Amp. Phase Amp. Phase Amp. Phase Amp. Phase

x - - - 0.802 - 3.889
A - - - - 258 - 99 -
00 1 0 1 0 1 0 1 0
01 - - 0.28 -155 0.43 71 0.50 62
10 - - 0.13 25 0.044 -15 0.066 2
02 0.23 -57 0.22 -43 0.30 -44 0.30 -72
11 0.26 80 0.23 87 0.256 100 0.20 100
20 0.21 31 0.22 32 0.27 11 0.27 11
03 - - 0.11 153 0.023 12 0.03 12
12 - - 0.12 -63 0.09 -70 0.04 62
21 - - 0.05 -172 0.06 -17 0.06 -38
30 - - 0.05 57 0.08 59 0.12 34
04 0.07 -113 0.06 -86 0.02 -90 0.02 -90
13 0.11 23 0.09 43 0.127 129 0.11 175
22 0.02 176 0.003 -161 0.03 191 0.03 191
31 0.10 111 0.09 117 0.10 131 0.08 91
40 0.06 62 0.061 64 0.04 82 0.04 82

Table 3.5: The X2 row indicates the X2 from the fit. The A factor indicates the factor
needed to rescale the TEMoo amplitude to 1. The amplitude columns indicate the relative
amplitude of the mode to the TEMoo and the phase columns indicate the difference in phase
from the TEMoo, which was set to 00.
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Chapter 4

Improving and applying the phase

camera

This chapter begins by describing the addition of an independent reference beam to the

phase camera which is necessary for looking at the carrier and sideband components of the

light individually. The chapter then focuses on how this improved phase camera system

was used to investigate the heating problems of the LIGO 4k interferometer. The system

was able to show a consistent progression through the different heating states of the inter-

ferometer and what the TCS was correcting that reduced the excess ASI noise and allowed

the LIGO interferometers to operate at their designed operating power and sensitivity.

4.1 Phase camera with reference beam

4.1.1 Experimental setup

Interferometer light

Since the carrier resonates both in the arms and the power recycling cavity while the RF

sidebands only resonate in the power recycling cavity, they effectively "see" different parts

of the interferometer. The Fabry-Perot cavities can be described by their finesse, which is

the FSR divided by the bandwith of the resonances and is inversely proportional to the

losses in the cavity, and their g factor, which is (1 - L/RITM)(1 - L/RETM) where L is the

length of the cavity, RITM is the radius of curvature of the ITM, and RETM is the radius

of curvature of the ETM. In the same way that the OMC prevented higher order modes to



propagate because of the Gouy phase shift (see Section 3.2.2), the Fabry-Perot arm cavities

suppress higher order modes. The cavities have high enough finesse, F = 219, combined

with their g = 0.33, that the higher order modes are suppressed by a factor of up to 60

compared to a resonant TEMoo mode.

The almost flat input mirrors of the power recycling cavity support many modes, in

which case the sidebands will tend to include higher order TEM modes. To understand

better what is occurring inside the interferometer, it is helpful to be able to separate the

carrier light from the sideband light. One way to do this is to introduce a reference beam

and measure the its beat note with the carrier and each RF sideband independantly.

Reference beam

A reference beam shifted off by 75 MHz from the main carrier frequency and then mixed

with the full interferometer light will produce a beat with the carrier at 75 MHz, a beat

with the upper sideband at 99.5 MHz and a beat with the lower sideband at 50.5 MHz, as

shown in Figure 4-1. For comparison, the carrier and sidebands beat at 24.5 MHz, and the

sidebands beat with each other at 49 MHz.

Carrier

24.5 MHz

4

Reference
75 MHz

24.5 MHz

99.5 MH2

50.5 MHz

Lower Upper
Sideband Sideband

Figure 4-1: This diagram shows the relative positions of the carrier, sidebands, and shifted
carrier reference beam in frequency. The carrier is 24.5 MHz from the sidebands and 75
MHz from the reference beam.



This reference light was generated by taking light directly from the output of the Light-

wave laser and passing it through an acoustic optical modulator (AOM) driven at 75 MHz,

as shown in Figure 4-2. This light was then coupled into a fiber optic cable which was run

from the laser table to the phase camera setup. A fiber to free space coupler was attached

to the fiber, and the resulting light was passed through a half-wave plate and a polarizing

beam cube so as to match the polarization of the incoming interferometer light. A beam

splitter was then used to combine the incoming interferometer light with the reference beam

before going on to the rest of the phase camera system.

4.1.2 Demodulation board redesign

It was quickly discovered that the overall phase of the reference beam varied on the order of

minutes, most likely due to thermal changes along the length of the fiber. In the time it took

to switch the demodulation signal to the demodulation board the signal phase could vary,

making it much harder to piece together the individual structure. The solution was to take

all the data simultaneously, essentially recording the DC signal, the carrier and reference

beat, the upper sideband and reference beat, and the lower sideband and reference beat at

once. The images taken are simultaneously directly comparable, since they all have identical

reference beam effects.

A redesign of the control and demodulation board was required, as the initial design

only could demodulate and record one signal at time. The new board design can be found

in Appendix B. Essentially, the demodulation channels and computer recording channels

were increased by a factor of four, and the computer software was updated to handle the

higher data rate.

The boards were assembled and tested at Hanford and performed satisfactorily before

being installed in the phase camera system.

4.1.3 Fitting and understanding the data

The use of a reference beam creates several challenges in understanding the output of the

data. The demodulated output of each channel is a combination of the reference beam

and the signal of interest (either carrier or individual sideband). The reference beam also

adds some noise. However, because of the new demodulation board where all the data is

taken simultaneously, at each point recorded in the scan the reference beam must affect the



carrier and sidebands in exactly the same way. This provides us with enough information

to seperate the carrier and sidebands from the reference beam in software.

Since we record DC power of the light we know the total sum of the power of the four

signals. This suggests the following method for calculating the amplitude effects of the

reference beam. We know that

PDC = A2 + A2b + Ab+ + A2ef (4.1)

where PDC is the recorded DC power level. By taking the sum of the squares of the Iphase

and Qphase for each demodulated signal we can calculate the total power in the IFO light

times the reference beam power, writing

Stota AAcrAre/ + AsbA e/ + Asb+A ef = Aef(Acr + Asb_ + Asb+) (4.2)

where the Stotal is just the sum of the signals. Multiplying Eq. (4.1) by A 2 reand substituting

in our known sum of signals, we get the following equation

A4 ef - A efPDC + Stotal = 0. (4.3)

This can be easily solved for A 2e which can then be in turn be used to find just Acr, Asb-,

and Asb+. Figure 4-3 shows a horizontal and vertical cut of the power data before and after

this calculation was performed, effectively IAcr 2 and IAcrAref, to make it easier to see the

difference in the spatial power of the signal. The data was taken from a state with 6 Watts

of power input to the interferometer, and when the TCS was running. It also shows the

calculated reference beam power, IAref 2, which was then scaled up by a factor of 10 so

as to fit in the plot. One problem with this method is when the electronics noise becomes

an appreciable part of the total signal coming from the phase camera, the above equations

break down (and sometimes predict imaginary powers). In those regions of low signal to

noise (roughly one sigma in the electronics noise) the data was ignored, resulting in blank

sections in those plots that use Eq. (4.3) to calculate the effects of the reference beam.

One test of the effectiveness of this method is to take the individual sideband and carrier

signals, and mix them in software in the same way they mix on the photodiode to produce

an image which can be directly compared to the recorded one omega signal. For example,



the lower plot in Figure 4-4 shows a one omega signal in a thermally tuned state, such that

the ASI noise was minimized with the use of the TCS. To begin, we define a set of Iphase

and Qphase sideband signals as function of an overall rotation fitting parameter. For the

lower side band we can write

Isb-,rot(Osb-) + iQsb-,rot(Osb-) =

(Isb- COS( 0sb_) + Qsb- Sin(0sb-)Qsb-)

+ i (Qsb- coS(Ob-) - Isb- sin(Osb_)) (4.4)

where the rotation angle Osb- rotates the overall phase of the entire lower sideband data set.

The upper sideband is the same except with 0 sb+ as its rotation angle fitting parameter.

Lastly an overall amplitude factor a were used as a third fitting parameter in the least

squares fit.

The full equation fit was

a[(Isb-,rot(Osb-) + iQsb-,rot(sb-))(Icr - iQcr)

+ (Isb+,rot(Osb+) - iQsb+,rot(sb+)) (Icr + iQcr) + complex conjugate]

(4.5)

That least squares fit produced the top plot in Figure 4-4 which appears to be in good

agreement with the measured carrier on sideband signal in the lower plot.
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Figure 4-3: The top plot shows a horizontal profile of phasecamera data from when the
interferometer had 6 Watts of power input and the TCS was on. The bottom plot shows a
vertical profile for the same case. The blue line is the power in the carrier only. The red
line is the calculated reference beam only, scaled up by a factor of 10. The green line is the
carrier signal combined with the reference beam, effectively the measured 75 MHz signal
from the phase camera, and has been scaled to match in power. The x-axis is in millimeters
as measured at the position of the phase camera photodiode. By dividing out the reference
beam and associated noise from it, the carrier shape gets closer to the Gaussian profile one
expects of a TEMoo mode.
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The data analysis on a single phase camera scan that uses the reference beam proceeds as

follows. First the averaged dark noise is subtracted off from the data. The dark noise is just

the signal recorded from the phase camera when no light is incident on the photodetector.

Then the data is calibrated according to the photodetector response, including the effects

of a 3 dB roll off at 125 MHz. The demodulation board calibration is then taken into

account, which was measured before hand by using calibrated test signals in place of the

photodiode. Lastly, the reference beam amplitude effects are calculated and removed as

indicated previously.

4.2 H1 in different heating states

By using the phase camera to look at the inteferometer light as the optics go from receiving

no heating, to optimal heating, and then to too much heating, we can understand what the

effects of heating are on the interferometer light and determine how it affects the ASI noise

and the final sensitivity of the instrument.

Data was taken in four different heating states by the phase camera in the month before

the S5 science run began. The data was taken from a pickoff inside the recycling cavity,

giving a view of both resonant sidebands and the power recycled carrier, as opposed to the

dark port carrier which should mostly cancel itself. In each case the interferometer was

allowed to settle into the state for a half hour, roughly the thermal timescale of the ITMs.

The first, which we will refer to as the "No TCS" state, was with no thermal compen-

sation at a low input power (only 1.8 watts incident on the interferometer). The second

state, "Tuned TCS", was at a low input power but with thermal compensation system set

such that ASI signal was nulled. The third, "Reversed TCS", was at a low input power but

with the thermal compensation system set to make the thermal problems worse, effectively

switching the direction of the correction effects and mimicking what the interferometer does

at high input power without correction. Lastly a set of data was taken while in the nominal

high power configuration (6 watts incident on the interferometer) with an early iteration

of the thermal compensation servo running, which we will refer to as the "Power up with

TCS" state.

Table 4.2 lists some relevant recorded parameters of each state. The NSPOB channel

refers to a pickoff on the beamsplitter which measures the sideband on sideband signal at



49 MHz. This signal is then normalized by the input power. The AS_DC is refers to one of

the AS port's photodiode DC currents, which is a measure of the total light incident on the

photodiode. ASi_Corr is the Iphase AS port photodiode correction signal which is used to

prevent saturation of the AS port photodiode.

4.2.1 Discussion of phase camera results

Table 4.2 lists ratios of the carrier to sideband power and the sideband to sideband for

various states as measured by the phase camera. To make understanding of these easier, let

us assume for the moment that the modes are perfectly matched, and that the only difference

is the overall power of the carrier and the individual sidebands. With this assumption,

predictions can be made based on the recycling gains and the relative amplitudes of the

carrier and sidebands at the input to the interferometer.

In the cold state, the interferometer had known sideband recycling gain, Gsb, of roughly

13 in power. The highest Gsb achieved in a thermally tuned state was 26 [5]. With good

spatial overlap of the upper and lower sidebands, the NSPOB signal should be proportional

to Gab. If we take into account the modulation depth F = 0.4 and a carrier gain G, of 50

we would predict a ratio of roughly 88 for the carrier power relative to the an individual

sideband's power for the cold, untuned state. For a thermally tuned state with Gsb = 26,

we would expect the ratio of roughly 44.

The phase camera shows a mean ratio of 95 for the no TCS state and a ratio of 53 for

the good TCS state between the carrier and sideband power. Comparing the actual ratio of

of NSPOB of 395/220 = 1.8, and the ratio of the mean value of the power measured by the

sidebands in the two states of 95/53 = 1.8, we find good agreement. Similarly we expect

297/220 = 1.4 and 500/220 = 2.3 based on the NSPOB values in the Reversed TCS and

Power up states relative to the No TCS state. The phase camera finds 95/49 = 1.9 and

95/40 = 2.4 for the Reversed TCS and Power up states relative to the No TCS state. These

comparisons are summarized in Table 4.1. Here the the Reversed TCS state is in very poor

agreement with the NSPOB signal, which suggests poor spatial matching of the sidebands

might be the dominant effect.

As noted in Section 2.2.2, the ASI signal can be generated either by an amplitude

difference between the sidebands or higher order carrier modes beating with higher order

sideband modes. Table 4.2 lists the ratio of the power in the upper sideband to the ratio



Table 4.1: NSPOB and sideband power ratios

No TCS Tuned TCS Reversed TCS Power up
with TCS

NSPOB ratio 1 1.8 1.4 2.3

(relative to No TCS case)
Ratio of Sideband Power 1 1.8 1.9 2.4
(relative to No TCS case)

of the power in the lower sideband for the various states, which should be compared to the

ASiCorr signal on the same table. In the Tuned TCS case, where the ASICorr signal has

effectively been nulled, the upper and lower sidebands have an average mismatch smaller

than the uncertainty of the overall measurement. Effectively, they have been balanced in

power successfully by the TCS system.

In the No TCS state the upper sideband is around 9% larger than the lower sideband,

which accounts for the non-zero ASICorr signal. The Power up state also has a similar

amount of mismatch with, but in the opposite direction with more lower sideband than

upper sideband. In both cases, approximately 5% to 15% mismatch required the same

correction on the AS photodiode.

The Reversed TCS state interestingly has a very close match in overall power in the

sidebands, but required over twice the correction as the No TCS and Power up states. This

implies a spatial mismatch is dominating the ASICorr signal. An example set of images

from the Reversed TCS state is present in Figure 4-5. If we compare with example images

from the other three states, shown in Figures 4-6, 4-7 and 4-8, we see the spatial form of the

sidebands are severely distorted, with a corresponding distortion in the carrier on sideband

24.5 MHz signal. Certainly in the No TCS and Tuned TCS states, the sidebands have a

much better spatial distribution matching the extent of the carrier.

The Reversed TCS case in Figure 4-5 clearly shows a mismatch between the spatial

extent of the sidebands and the carrier. This affects the carrier on sideband beat resulting

in only a small, non-symmetric portion of the carrier contributing to the AS photodiode

signal. The plot of the difference of the amplitudes between the two sidebands clearly shows

a mismatch, which is large when compared to the other heating cases. So even though the

total power in the sidebands are similar, the difference in spatial structure results in poor

beating and less NSPOB signal. There is a small difference in the position of the peaks as



Table 4.2: Heating states and phase camera power ratios

No TCS Tuned TCS Reversed TCS Power up
with TCS

NSPOB (counts) 220 395 297 500
ASICorr (counts) -200 0 -450 -200

Carrier/USB 90 ± 2 52 ± 2 50 ± 2 42 ± 2
Carrier/LSB 99 ± 4 54 ± 2 49 ± 3 38 ± 2

USB/LSB 1.09 ± 0.05 1.03 ± 0.04 0.98 ± 0.05 0.9 ± 0.05

measured at the phase camera, roughly 10% of the waist size of the sidebands in this case,

where the waist size is the radius where the amplitude of the sideband falls by 1/e.

The No TCS case in Figure 4-6 has the sidebands matching the carrier in spatial extent,

although their overall power and structure are different from each other. These differences

can lead to ASI signal when the sidebands are beat against the carrier. The sideband on

carrier signal, effectively seen at the AS port photodiode, is the same size as the carrier

signal, with a null band due to the difference in the curvature of the sidebands and carrier

signals on the phase camera photodiode. The asymmetry in the carrier on sideband signal

is due to the structure in the sidebands.

The Tuned TCS case in Figure 4-7 shares many similarities with the No TCS case,

except that the sidebands look more Gaussian, are better balanced in power and shape,

and the carrier on sideband signal is somewhat cleaner, with less overall power present.

Even though the central peak is slightly higher than in the carrier on sideband image than

in the No TCS case, there is less "junk" in the outer sections, reducing the overall power.

All these changes indicate less ASJ signal should be seen by the AS photodiode and that

the ASl_Corr signal required to balance it should decrease relative to the No TCS case,

which was in fact the observed effect.

The Power up with TCS case in Figure 4-8 shows effects similar to the Reversed TCS

case, namely smaller spatial extent for the sidebands, although not to the same degree.

This is because the TCS servo, which was designed to null the ASl_Corr signal, was not

fully tuned at the time this data was taken, and resulted in less compensation than was

required. The unusual shape of the carrier on sideband signal is related to the squashed

nature of the sidebands, although it is not precisely understood where the source of the

asymmetry relative to the carrier is coming from. Due to time constraints before the start



of LIGO's 5th science run, data collection from different points of the interferometer were

never completed, limiting our ability to understand the source of these differences. One

possibility is uneven absorption and heating in the ITMs by the main interferometer laser.

Comparing the sidebands we see the lower sideband is spatially smaller than upper sideband,

but with nearly twice the peak power at its center. Such amplitude mismatches as noted

earlier are a clear source of ASI which needs to be corrected.

Taken together the images from the various heating states show a trend of shrinking

sideband spatial extent with increased heating of the ITMs, whether by the main interfer-

ometer laser, or the TCS system operating in such a way as to add heat. They also show

significant differences between the sidebands in spatial shape, especially in the high power

state. However, they also show with a properly tuned TCS system, these differences in the

sidebands can be reduced, balancing their overall and peak power, producing a better match

between each other and the carrier, which corresponds with a drop in the necessary ASI

correction and allowing for higher power operation with the same AS port photodiodes and

electronics.
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Chapter 5

Neutron stars, spindown models,

and estimating upper limits of

sources

This chapter describes some basics of neutron stars and discusses some basic models used

to estimate potential gravitational wave signals. When looking at sources with missing

information, such as neutron stars with unknown spin period and spin down, it is useful to

make estimates for the best possible cases to determine if its worth putting computation

time into the search. There are several simple but very informative calculations one can go

through in this regard.

5.1 Neutron stars and pulsars

Neutron stars are the end point of stellar evolution for intermediate mass stars, those

starting with a mass of roughly 6 to 15 M® [37]. Lighter stars will become white dwarfs

while more massive stars will end as black holes. As the nuclear fuel of a star becomes

exhausted, a core grows within an expanding outer shell, the total gravitational collapse of

the core being prevented by electron degeneracy pressure. If the mass of the core grows

greater than 1.4 MD, the electron degeneracy pressure is no longer great enough to prevent

further collapse of the core. It begins to rapidly collapse until stopped by neutron degeneracy

pressure. However, by this time the collapse has released a large amount of gravitational



potential energy in a few seconds, producing a supernova. Most of the original mass is

blown off during the supernova, but the remainder of the star still has a mass on the order

of 1 M-.

Neutron stars for which there are measured masses typically are found near 1.35 M(_.

The theoretical upper limit on the mass of a neutron star is somewhere around 3 M.,

and is dependant which equations of state are used, which relate the density, pressure and

temperature inside the star. Using the more plausible equations of state the radius of a

typical neutron star is - 10 - 11 km. Modeling a neutron star as a sphere with uniform

density allows us to estimate the moment of inertia, I, as 1038 kgm2. This moment of

inertia more of a scale rather than an exact number, because of the differences between

possible equations of state and other particular details of any given neutron star. After

comparing a range of equations of states, Cook, Shapiro and Teukolsky found a range of

0.5 x 103" to 8 x 1038 kg m2 for the moment of inertia [15].

Pulsars are observed from the regular electromagnetic pulses that they emit. These

pulses are due to the magnetic field of the generating star, whose axis in general is not

aligned with the rotation axis. As the star rotates, the magnetic field produces magnetic

dipole radiation, which would be highly beamed out from the magnetic poles and sweep

across space. If that beam intersects with a detector on Earth, it will be observed as a short

pulse, whose period is directly related to the period of rotation of the star. Periods of pulsars

vary from tens of seconds to milliseconds. The necessary rotation rates to produce pulses

with these periods means pulsars must be neutron stars, as other less compact stars can't

rotate that fast and remain together. Observations of the power and frequency of pulsar

emission provides insight into the strength of the magnetic field necessary to produce them.

The estimated field strengths vary from 1012 Gauss down to 108 Gauss, depending on the

pulsar. These dipole field strengths are consistent with the collapse of a normal star with a

polar field of order 100 gauss and the flux being convserved in the collapsing stellar material.

The strongest polar fields of order 1012 Gauss occur in young pulsars, with spin periods

of order tens of milliseconds. The majority of pulsars have fields of order 1010 Gauss and

spin periods of order seconds. There is a third population, refered to as millisecond pulsars

because of their spin periods of order 1 millisecond. These millisecond pulsars are the oldest

pulsars and have magnetic fields as low as 108 Gauss [24]. In general, the spin period of the

pulsar pulses decrease with time (and thus decreasing frequency), with a measured rate of



changes in the period over the period, P/P, between 10-18 to 10-12 s- 1 . However, in the

case of millisecond pulsars, they instead seem to have been spun up (and in some cases still

being spun up) by accretion from a low mass companion star. This is supported by the fact

that well over half of millisecond pulsars are found in binaries. Millisecond pulsars appear

to be a smaller population of the primary body of pulsars, found through out the galaxy

and especially in globular clusters, with a longer lifespan but much lower re-birth rate [37].

There is an estimated active population of 105 to 106 pulsars in our galaxy, although

only about 1500 have been observed due to selection effects and strength of the signals [37].

Most of these observed pulsars are within a layer 1 kpc thick centered on the galactic plane

and within a radial distance of about 10 kpc of the center of the galaxy. Most have high

velocities, presumably from the initial supernova explosion which formed them, and are

moving away from the plane at around 200 kms - 1. This is consistent with an origin of

within 100 pc of the galactic plane and their lifetime of roughly 10 million years for their

active stage. Using the current estimated numbers of pulsars, their lifetime of 10 million

years, and assuming a roughly constant birth rate would imply a population on the order

of 109 neutron stars (out of the 1011 total stars) in our galaxy [37].

5.2 Estimated deformations of neutron stars

It is important to consider the ellipticities of neutron stars as this plays directly into the

strength of any gravitational wave reaching us and influences heavily what we can detect.

Both the maximum and most likely ellipticities of neutron stars are highly uncertain [2].

An upper limit estimate on the maximal deformation supported by the rigidity of a neutron

star's crust is [51]

emax ~ 5 x 10 7 (i2 (5.1)

where a is the breaking strain of the solid crust. The numerical coefficient is small mostly

because the shear modulus of the inner crust, where most of the crust's mass is located,

is smaller than the pressure by a factor of 103 . Shear modulus is the shear stress over the

shear strain and as it goes to zero, the crust becomes a liquid which can't support non-

axial deformations. Thus, the small shear modulus results in a small maximum ellipticity.

Equation (5.1) uses the fiducial breaking strain of 10-2 since that is approximately the best



terrestrial alloys have. However, for a perfect crystal with no defects 7 could be as high as

10-1, or several orders of magnitude smaller for amorphous solids or a crystal with many

defects [32].

There have been suggestions that exotic and speculative star types could support larger

maximum e values. The highest ellipticity model is that of a solid strange-quark star which

has [42]

emax, 4 x 10-4 (12) (5.2)

The reason this maximum e value is so high is due to the high shear modulus, which for

some strange star models can almost be as large as the pressure. Another speculative but

more robust model is the hybrid star. Such a star would consist of a normal neutron star

outside a solid core of mixed quark and baryon matter, extending from the center to just

below the crust. Such hybrid star models have a maximum ellipticity of [42]

Emax 9 X 10-6  (5.3)

However, the maximum supportable ellipticity is not the same as being able to achieve

the maximum ellipticity in practice. We can consider a few mechanisms that might produce

ellipticity in a neutron star. In the case of young pulsars, as they spin down it is likely

stresses build up, possibly because of reduced centrifugal force due to slowing rotation, until

the crust is forced to change shape and crack. Such cracking could produce deformations

or "mountains" on the surface. It is unclear how long it would take gravity to smooth out

these deformation after cracking, which could possibly leave long lived distortions [14].

Strong internal magnetic fields can also produce ellipticities in neutron stars. Such fields

if not aligned with the rotation axis, could produce non-axisymmetric deformations due to

magnetic tension, effectively pulling on the matter of the star. A strong dipolar field not

aligned with the rotation axis in a star with a superconducting interior, which has expelled

all the magnetic field lines from the superconducting region, could lead to deformations of

order 10- 6 [11]. This deformation would result in gravitational wave emission at both the

rotation frequency and twice the rotation frequency.

Torodial magnetic fields could also generate ellipticity. Differential rotation immediately

after the core collapse which formed the neutron star can produce large internal toroidal



magnetic fields. The magnetic fields lines trapped with in the different layers are effectively

wrapped into a toroidal shape as they rotate at different speeds around the star. Dissipation

within the star would tend to drive the symmetry axis of this toroidal field toward the star's

equator, the orientation which maximizes ellipticity. For toroidal magnetic fields on the

order of 1015 Gauss, an ellipticity of order - 10-6 would occur [16].

5.3 Energy considerations

Neutron stars when born will in general have some spin angular momentum. This angular

momentum acts as an energy reservoir which is used to power various phenomenon including

radio pulsation, ejection of particles from the surface, and gravitational waves. Each of

these activities cause the star to spin down over time which will reduce the frequency of

any emitted gravitational waves. This evolution of the spin period turns out to be large

enough that it needs to accounted for during any gravitational wave searches of reasonable

length. It also gives insight into how the parameter space of ellipticity, frequency, and

emitted gravitational wave strength is populated by isolated neutron stars. Neutron stars

with companions can undergo spin up via accretion and will tend to an equilibrium state

between the spin up and the spin down mechanisms, thus the following arguments do not

apply in such cases. In this section we will derive equations describing the spin down and

then apply them to the case of gravitational radiation.

Let us assume an isolated neutron star has a moment of inertia I and angular frequency

Q so that we can write the kinetic energy as

Ekin = I•2. (5.4)

If we take the time derivative of the energy we have

Ekin = fiQ . (5.5)

If we assume that all of the energy loss is due to a single emission mechanism, we can

consider a general relationship between the rate of change in the angular frequency, 2, and

the angular frequency, Q, of the form



(5.6)

where K is the torque function which contains all the physics of the torque causing the spin

down and n is the braking index. The braking index has a value of 3 for spin down due to

dipolar magnetic radiation and a value of 5 for spin down due to gravitational radiation.

This can be seen from the fact that the power emitted in dipolar magnetic radiation goes

as the 4 th power of frequency while the power in gravitational quadrupole radiation goes as

the 6th power of frequency. Eq. (5.5) relates this power emission to Q and t2 to get n.

By taking the time derivative of Eq. (5.6) we can solve explicitly for the braking index

in terms of observables IQ, Q, and Q. The braking index is then just [43]

n = (5.7)Q2

If such values are known, by observation of radio pulsations for example, it gives us insight

into what mechanisms might be causing the spin down.

In the case of unknown frequency and spin down rate, we can find a relation between the

frequency and spin down if we know the approximate age of the neutron star and assume

the ellipticity is constant. By using Eq. (5.6) we can solve for Q? as a function of time.

Moving all the factors of Q and Qa to one side, we can integrate with respect to time with

the boundaries set at zero, the time of initial angular frequency Q0, and the current time

tage, which corresponds to angular frequency it. This is written as

Kdt = (5.8)

and after performing the integration we get

Ktage = 1 (5.9)
(n - 0_ Do

If we assume that the current rotation frequency is small compared to the initial rotation

frequency, Qt << Q0, we can write a simple relation between the current frequency, the

current rate of frequency change, and the approximate time since the neutron star was

born (also known as the spin down age). This approximation is good to 1% in the case of

gravitational radiation, the n = 5 case, when Qt/Qo < 0.3. Using this approximation and



the fact that K = Ol/n, from Eq. (5.6), we solve for tage to get

1 Ot 1 f
tage = -- . (5.10)

n-1 t n-1 f

We can now apply the above derivations to the specific case of gravitational radiation.

We know that the gravitational wave luminosity is equal to [40]

1 ... ... UV
Lgw = 5 (IUvI ) . (5.11)

We already know uv, for a non-axisymmetric neutron star with some ellipticity e from Eq.

(1.13) so we can substitute it in and simply get

Lgw = 3 6I2 2. (5.12)

If we make the assumption that spin down is due only to gravitational wave emission

we can simply set the energy loss, Ekin equal to the gravitational luminosity, Lgw,. This is

a best case assumption as then all the energy leaving the star is in a form we can detect. If

other energy loss processes are occurring this will increase the energy loss and spin down,

resulting in slower spinning stars and weaker signals. Having made this assumption, we can

calculate an upper limit on the gravitational wave strain at Earth if we know the distance,

frequency and spin down rate, such as for the Crab pulsar [43]. This is done in Section 5.6.

In the case of unknown frequency and spin down rate, we can use Eq. (5.13) to limit

the range of parameter space that needs to be consdiered if the age of the neutron star is

known. As can be seen by comparing Eqs. (5.5), (5.6), and (5.12), the braking index n is

equal to 5 for gravitational radiation. This lets us rewrite Eq. (5.13) as

1 1t 1
1, £ _ ~1= f (5.13)tage = - f

for the gravitational case. This relationship is useful in setting up searches for gravitational

waves from isolated neutron stars with partially known parameters. If we know an approxi-

mate age we can estimate the largest possible strain reaching a detector here at earth across

all frequencies and what ellipticity of the neutron star makes it possible.



5.4 Differences between GW and EM pulses

For targeted searches with radio pulse data, such as the Crab pulsar, it is important to

consider physical situations in which the gravitational wave frequency might differ from the

electromagnetic frequency or multiples of it. If the frequencies are not exactly matched,

then a wider search may be necessary to cover the parameter space sufficiently, so as not

to miss the true frequency and spin down of the gravitational radiation.

5.4.1 Free precession

The case of steady rotation, when the principle axis and the inertial axis 13 are aligned was

introduced in the Chapter 1. This results in gravitational radiation at twice the rotation

frequency, QGW = 22. In this case, a hot spot which is producing the radio pulses will

come around once per rotation of the pulsar, producing a pulse frequency of 2EM = 2. In

this simple case, we only need to look at exactly twice the electromagnetic pulse frequency.

If the rotation axis of the Crab pulsar is not aligned with the principle axis, it could

precess like a top [56] [30]. Let us consider the slightly more complex situation of biaxial

free precession. In this case, I1 = '2 < 13. We define a constant angle 0 between the body's

third principle axis X3 and the total angular momentum vector J axis of rotation, which

has an inclination angle i relative to the direction of the observer as shown in Figure 5-1.

We then have two rotation periods described by

4 J= (5.14)
Il

and
3 = 3 1 (5.15)
I1

where 9 represents the inertial space X3 axis angular velocity and 0 represents the body

frame precessional angular velocity.

In this case gravitational waves can be calculated to have the form

h+ = 2• 2E sin(0) [(1 + cos2(i)) sin(0) cos(26t) + cos(i) sin(i) cos(0) cos(t)] , (5.16)
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Figure 5-1: Diagram of a neutron star with a bump on one side. The angle 0 is the
angle between the 13 moment of inertia and the angular momentum vector. The red circle
represents the location where the EM pulse emission is being generated. The angle A
is the angle between angular momentum vector and the point on the surface where the
EM emission occurs. The angle i is the inclination angle, the angle between the angular
momentum vector and the vector towards the detector.

and

hx = 21 csin(0) [cos(i) sin(0) sin(2 t) + sin(i) cos(0) sin(#t)] (5.17)

with 6 = (3 - I1)/I1 and r being the distance to the source.

However, the electromagnetic pulses have a more complicated frequency in this case.

Let us define the angle between the pulsar beam and the X3 axis as A. If in general A / 0
then there will be modulation of the electromagnetic pulse frequency.

When the angle 0 is larger than the angle A, the pulse would be seen when the x 3 pulsar

axis passes close enough to the observer's line of sight. During the body's precession time

the observer would pass through the pulsar radiation beam from many different directions.



For the precession to be invisible, the pulsar beam would have to both be nearly axisym-

metric and could not have any observable linear polarization. Any net linear polarization

would rotate through 360' during a precession time, since the orientation of the electromag-

netic emission source would rotate completely around the body axis. The electromagnetic

This effect has not be been observed [56]. In this case, the average electromagnetic pulse

frequency is just ý. This can be seen from Figure 5-2. The rotation about the star's 13

axis primarily changes the orientation of the source while the rotation about the x3 inertial

frame axis brings the pulse around like a light house. For this case, we can write

0 > A = (~EEM) = ý. (5.18)

The angle A being larger than the angle 0 is more likely to be occurring without pro-

ducing observable effects in the radio timing. In this case the mean electromagnetic pulse

frequency is the sum of precession angular velocity, ,, and the inertia space X3 angular

velocity, 0. This can be seen from Figure 5-3, where the electromagnetic source point is

being rotated about the star by both the inertial space angular velocity and the angular

velocity about the 13 axis. The observer always passes through the pulsar beam from ap-

proximately the same direction, so no significant changes in pulse profile or polarization

would be expected. A simple knife beam model of the pulsar radiation pattern gives the

result for small 0 that during a precession time pulses arrive early and late by a phase

of up to 0/ tan(A), with sinusoidally varying phase shift. We can write the time averaged

electromagnetic pulse frequency for this case as

0 < A e (sEi ) = b + o (5.19)

By comparison, the gravitational wave emission would be observed at Q and 29.
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Figure 5-2: Exaggerated diagram of a biaxially symmetric neutron star with A < 0. The
electromagnetic emission pulse frequency is determined by the angular velocity q, as the
star rotates around the inertial space axis x 3. The rotation about the 13 moment of inertia
axis of the star will cause small variations in that pulse frequency, but which average out
over many precession cycles. The rotation about the 13 axis will also result in a changing
orientation, which if linear polarization is present, will result in that polarization rotating
through 3600 over the course of a single precession.
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Figure 5-3: Exaggerated diagram of a biaxially symmetric neutron star with 0 < A. The
inertial space x3 angular velocity, ý and the body axis angular velocity, ý, on average add
together to determine the total angular velocity of the electromagnetic wave source. This
is because the rotation vectors are close and the electromagnetic source never passes in
between the X3 and 13 axes. The rotations are in the same direction in this case, where as
in the case shown in Figure 5-2, the body axis angular velocity adds as often as it subtracts
from the overall angular velocity, which when averaged over time doesn't modify the q
rotation rate. This also means the electromagnetic source is always in approximately the
same orientation when facing an observer. It can not flip over, relative to this diagram, by
passing in between the X3 and 13 axes.
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In the more complicated case of triaxial precession, where Ii < 12 < 13, one needs to

make some assumptions to be able to determine approximate waveforms. If we assume

0 << 1, which is just a small wobble angle, (13 - II)/II << 1, which is small oblateness,

and (I2 - I1)/II << (13 - 1)/I, , which means the non-axisymmetry is small compared to

the oblateness, then the wave form can be approximated by [55]

h - (12 - I1) cos(2(¢ + )t)+ - (13 - I1)0 cos(qt)+ _ (13- I1)0s(2os(2t) . (5.20)

Each term in this equation is an approximation with different prefactors being neglected,

hence the somewhat unusual usage of -, where x+ - y means x plus terms which look like

y. From Eq. (5.20) we can see that we have gravitational wave emission at the frequencies

of 2(q + /), q and 2q. For electromagnetic pulses we expect the same as in Eq. (5.19) and

Eq. (5.18).

5.4.2 Two component model

Some neutron stars are observed to have sudden increases in pulsation frequency, which are

usually called glitches [37]. These spin ups generally decay away on various time scales.

One possible explanation for this is that pulsars consist of two components, such as a

crust component and a core component, rotating at different rates. For the Crab and a

few other young pulsars approximately a fraction of 10- 5 of the spin-down is reversed

during the glitch. The decay time varies on the order of days to months. We can use this

information to produce an estimate of the maximum frequency difference between the two

components and thus between the electromagnetic and gravitational frequencies, since the

electromagnetic pulse frequency will be tied to the crust while the gravitational frequency

could be tied to the core.

One way to approach this information is with a coupling-torque model. First for the

crust we define its rotation frequency fi and its moment of inertia Ii. For the core we

similarly define its rotation frequency f2 and its moment of inertia 12. If we allow the spin

down torque to act on just one component, say the crust, and couple the two components

with a friction-like torque we can write [29]



Iifi = -a(fl - f2) - T (5.21)

and

12f2 = a(fl - f2) (5.22)

where a parameterizes the strength of the coupling torque and T > 0 is the spin down

torque. The spin down torque T effectively is IQ from section 5.3, with the exact evolution of

Q dependent on whether the slow down is due to electromagnetic or gravitational radiation

or perhaps some other mechanism. One can show that the steady state lag, Af, is then

TTc
Af = fl - f2 = (5.23)

where

c = - + (5.24)
a 1l I2

and is the coupling timescale on which transients are damped out. This could be expected

to come into play after a glitch occurs.

We now use the results of Section 5.3 to estimate a spin down age. This is the timescale

on which the pulsar slows down. We begn by using Eq. (5.13) and noting that the torque

T is T = 27(fi1 1 + f2/2). We define a new f such that

Ilfl + I2f2
f = (5.25)

II + 12

We then note that the torque T is T = 27(fil1 + f212) = 27f (I1 + 12). We solve for f and

substitute into Eq. (5.13). This then lets us write the steady state spin down timescale as

1 2rf (11 + I2)

n-1 T

This is just the timescale on which the pulsar takes to spin down to its current frequency

of f from some sufficiently fast initial frequency, as described in section 5.3.

We now use Eq. (5.26) to substitute for the torque in Eq. (5.23) and rewrite it as

Af = 1 2f 11 + 12 (5.27)
n - 1 Tss I1



This relates the lag between the two components to two observed timescales, the glitch

recovery timescale and the spin down age. The steady state spin down age can be approx-

imated by the age of the neutron star, which in the case of the Crab pulsar is 103 years.

Since we observe the neutron star returning to its original spin down rate on a timescale of

weeks or months, it is believed that this is also the timescale associated with coupling of

the two components.

We identify the torque T with the electromagnetic torque. There would be a gravita-

tional wave torque, but we assume the electromagnetic dominates. Given that glitches in

the Crab pulsar always spin it up, this seems like a reasonable assumption. If we included

the effects of a gravitational wave torque in the above equations, it would simply make the

lag between the two frequencies smaller.

Assuming I, is of the order or larger compared to 12 makes (1i + 12)/11) of order 1,

which is reasonable since we are associating component 1 with the crust [37]. In addition

as the difference between the two components is small compared to frequency of the crust's

rotation, we can use fl as a good approximation to the frequency f. Using all of the above

facts, plus the Crab pulsar's braking index of n = 2.5, we find an upper estimate of Af of

3 x 10- 3 for the Crab pulsar, which is in fact small compared to its 29.77 Hz pulse frequency.

5.5 Application to RX J1856.5-3754

In the specific case of RX J1856.5-3754, we did not have a known frequency or spin down

values. However we did have a reasonable estimate of the age, somewhere between 105 and

106 years old, and its distance of about 120 pc. By equating the age of the star with its

spin down age, and assuming a typical moment of inertia, I = 1038 kg m2, we can solve

for epsilon as a function of the neutron star's possible current frequency, to determine if its

consistent with reasonable neutron star models. Similarly, we can calculate the best case

strain at any given current frequency to determine if its detectable within the LIGO band.

To begin with, we replace ! in Eq. (5.6) with (-1/4)(Qt/tage). We then solve for E and

get

Oc 0-2 - (5.28)Since goes as this will 128 tage 4 (5.28)

Since E goes as Q-2 this will cancel with the normal frequency dependance to the 2nd power



, so that the final maximum strain is not dependant on the frequency. Using Eqs. (5.28)

and (1.15) we can write the h+ and h, strains as a function of Q to get

1

(jh+ = (1 + cos 2(i)) (5.29)

and 1 •IE)1

Ihx = ( (2 cos(i)) . (5.30)

In the case of pure gravitational spin down, the strain is only a function of age, irregardless of

the current spin frequency. In Figure 5-4 the ellipticity is plotted versus potential frequency

at three different possible ages for RX J1856.5-3754, along with the expected strain at each

age. In these plots, it is assumed that the neutron star has a typical 1038 kg m2 moment

of inertia and the signal has been averaged over possible inclination angles. Also factors of

G, the gravitational constant, and c, the speed of light, were reintroduced to get the units

into more traditional form. Similarly in Figure 5-5 we plot the 1st spin down value, which

is the first derivative of frequency with respect to time, versus current frequency. In the

next chapter, we will look at the detectability of these strains.
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Figure 5-4: The top plot shows the expected ellipticity if all of the spin down of RX
J1856.5-3754 was due to gravitational radiation for three different possible ages. The lower
plot shows the best case strain of the gravitational waves reaching Earth. Other spin down
mechanisms at work in addition to gravitational radiation would move the ellipticity lines
down, requiring less ellipticity but at the same time, reducing the strain reaching the Earth.
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Figure 5-5: The expected 1st spin down value if all the spin down was due to gravitational
radiation as a function of current frequency. The younger ages have higher spindown since
the neutron star will have have had less time to spin down from its initial frequency. To
reach the same current frequency as an older age estimate, but in less time, it must be
spinning down faster.

5.6 Application to the Crab pulsar

The Crab has been observed enough by radio telescopes that we know its frequency f, its

1st spin down parameter, which is df/dt, and also its 2nd spin down parameter, which is

d2f/dt 2. The Crab has a frequency of 29.77 Hz, a 1 st spin down of -3.73 x 10-10 Hzs - 1,

and a 2 nd spin down of 1.24 x 10- 20 Hz s- 2 , taken from the Jodrell Pulsar Timing Bank

near the beginning of LIGO's fifth science run [28]. So far we have been working in units

where c = G = 1, but it is easy to convert to more conventional units for the following

calculations. If we assume the Crab pulsar has a typical moment of inertia of I = 1038

kg m2 we can calculate the necessary ellipticity e needed to cause the spin down seen.

10-15 32 G22Q5 (531)t = -3.7294045 x 10- 15 Hz/s = I2 2 5 (5.31)
5 c 5
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Solving for E gives

E= 5 5 1 2 (5.32)32 G Q5 I

and a value of 7.5 x 10- 4, again assuming a standard I = 1038 kg m2 [43]. It then becomes

a simple matter to calculate the strain using Eq. (1.15) here at Earth if we know the Crab's

distance, which is about 2 kpc. This provides an upper limit on the strain of 1.4 x 10-24.

It is interesting to note that while we have been assuming a moment of inertia I = 1038

kg m 2 there have been suggestions that the Crab's moment of inertia could be up to three

times larger than this typical value [7] [34]. This would in decrease the necessary ellipticity

to explain the spin down by a factor of 11/2, down to 4.3 x 10- 4 , and increase the upper

limit on the strain by the same factor, up to 2.4 x 10-24.

We also have information for the 2nd spin down value and can use it to calculate the

braking index, n. When we calculate it value from Eq. (5.7) we come up with something

close to 2.5, rather than the 5 of gravitational emission, or even the 3 of dipolar magnetic

radiation. This indicates that some additional energy loss mechanisms must be occurring.

In 2000 Palomba published a paper using the braking index of 2.5, along with the age

of the Crab, to derive upper limits on the ellipticity and gravitational wave emission. He

began by assuming the total spin down,!2 was due to two components

S= = GW + Qother (5.33)

where aGW is due to gravitational radiation and has a braking index of nGW = 5 while the

Qother component is due to some unknown emission and which has a braking index nother

which is allowed to vary below 3.

He then defined a ratio

Y() GW = KGW (5-nother) (5.34)

fother Kother

By solving for Gother in terms of the ratio Y(Q) and substituting into Eq. (5.33) he wrote

= KGWQ5  1 +Y (Q) (5.35)
which can be solved numerically to produce a set of sol()utions for This set of solutions

which can be solved numerically to produce a set of solutions for Q. This set of solutions
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depend on the ellipticity, which is contained in KGW, on nother and on the initial angular

velocity 2Q0 . By using the known age of the Crab and choosing the solution with the smallest

nother consistent with an overall n = 2.5, he was able to arrive at an upper limit on ellipticity

of 3 x 10- 4 . This corresponds to an upper limit on ho of 5.5 x 10-25 [43].
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Chapter 6

Search methods

This chapter describes several continuous gravitational wave search methods and discusses

their merits in directed searches.

6.1 Search codes and constraints

When looking for a continuous wave gravitational source there are several limiting factors

which determine the final sensitivity one can achieve. The fixed constraints include the

quality and quantity of data available, and also the amount of computation power available.

These are combined with the size of the parameter space, which includes position in the sky

and frequency parameters of the source, to determine the final sensitivity. Larger searches

in parameter space necessarily turn up more outliers due to noise, which in turn degrades

any upper limits that might be made from them. Thus, any continuous wave search must

weigh these different constraints to determine the optimal method of search to be used.

One can use coherent or incoherent methods to sift the data for a weak, but consistently

present source. A coherent search will create a signal template with the known parameterse

of the source and convovle it with the data. This will produce the most sensitive search since

one is looking for the signal with an exact match and utilizes all the data available [19] [27].

An incoherent search will break the data up into shorter time segments and Fourier trans-

form them with the fast Fourier transform algorithm (FFT) and then add up the power at

individual frequencies from each data segment. These shorter transformed data chunks are

usually referred to as short Fourier transforms (SFTs) [39]. Since phase information is lost

between segments, the sensitivity is necessarily worse, but gains in computational speed.
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6.2 Detector response function

In order to estimate our final sensitivity, it is necessary to understand how an incoming

gravitational wave interacts with the our detector. We will follow the derivation by Jara-

nowski, Krolak and Schutz in [27]. This will then factor in to our calculation of overall

sensitivity of the LIGO detectors to RX J1856.5-3754 and the Crab pulsar.

The dimensionless detector's response function h is defined as the difference between the

wave induced relative length changes of the two interferometer arms and can be computed

from the following formula [27]

h 1 [hab(t)ftl ]  1 [hab(t)i2] (6.1)
h(t) = - l h- •

where h1 and h 2 are the unit vectors parallel to the interferometer arms. The order of

arms is defined such that f1 x h2 points outwards from the surface of the earth. hab is the

3-dimensional matrix of the spatial metric perturbation produced by the wave in the proper

reference frame of the detector, or in other words, just the spatial components of h,, as

defined in Eq. (1.5) but transformed to the detectors frame. We can compute h,b by

hab = M(t)hab(t)M(t)T  (6.2)

where M is the 3-dimensional orthogonal matrix of transformation from the wave Cartesian

coordinates, written (x, Y?,W ,W), to the Cartesian coordinates in the detector's proper

reference frame, written (Xd, Yd, zd), and T indicates transposition of the matrix. If we

choose the direction of the gravitational wave propagation as the +zw direction we can

write in the wave's frame that

h+ (t) hx (t) 0
hab ) = x (t) -h+(t) 0 (6.3)

0 0 0

where we have absorbed all the time dependence and distance factors into h+ (t) and h x (t),

which represent the two independent wave polarizations. If we consider Eqs. (6.1) through

(6.3) it becomes apparent that the detector's response function h is a linear combination of

the functions h+(t) and hx (t). This lets us write
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h(t) = F+(t)h+(t) + Fx (t)hx (t)

where F+ and F× are called the beam-pattern functions.

The Earth's rotation rotates the detectors along with it causing the beam-patterns F+

and Fx to be periodic functions of time with a period equal to one sidereal day. Ideally

we want to determine the time dependence of F+ and Fx and also their dependence on

the source's position and orientation, in terms of right ascension a, declination 6, and the

wave's polarization 0.

Figure 6-1: Diagram of a Interferometer located on the Earth's surface. ~2r is the Earth's
rotation rate, A is the latitude, and r, is a reference phase which defines the position of the
Earth in its diurnal motion at t = 0. The inset shows a pair of interferometer arms as if
looked down on from above. The angle ( is the angle between the arms (900 in the case of
LIGO) while 7 is the angle between East and the arm bisector.

We can write the matrix MA as

AM = AM3M 2M AM (6.5)
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where •l 1 is the transformation matrix from the wave frame coordinates to the celestial

frame coordinates, M12 is the transformation matrix from celestial coordinates to the car-

dinal coordinates and .13 is the transformation matrix from cardinal coordinates to the

detector proper reference frame coordinates. The definition of these coordinate systems are

as follows: In the celestial sphere coordinates the z axis coincides with the Earth's rotation

axis and points towards the North pole, and the x and y axes lie in the Earth's equatorial

plane, with the x axis pointing towards the vernal point. In cardinal coordinates the (x, y)

plane is tangent to the surface of the Earth at the detector's location with the x axis aligned

in the North-South direction and the y axis aligned in the West-East direction, and the z

cardinal axis along the Earth's radius pointing outwards from the surface of the Earth. In

detector coordinates the z axis coincides with the z axis of cardinal coordinate and the x

axis is along the first interferometer arm. With these definitions we can write M1 , M12, and

M13 as follows

sin a cos b - cos a sin 6 sin 7 - cos a cos'(' - sin a sin 6 sin cos 6 sin i

S= - sin a sin '? - cos a sin6 cos cosa' sin cos sicos sin ll- sin sin cos cos cos

- cos a cos 6 - sin a cos 6 - sin 6

(6.6)

sin A cos(r, + Qrt) sin A sin(r, + Q t) - cos A

M2 - sin(Or + rt) cos(r, + Qrt) 0 (6.7)

cos A cos(,r + Qrt) cos A sin(~, + Qrt) sin A

- sin(y + (/2) cos(y + (/2) 0

3 = - cos(' + (/2) - sin(-ý + (/2) 0 (6.8)

0 0 1

In the above equations A is the latitude of the detector's site, Qr is the rotational angular

velocity of the Earth, 4 r is a deterministic phase which defines the position of the Earth in

it diurnal motion at t = 0, such that Or + Qrt coincides with the local sidereal time of the

detector's site, -y is the angle measured counter-clockwise from East to the bisector of the

interferometer arms, and ( is the angle between the interferometer arms. These angles are

shown in Figure 6-1 for reference. The vectors f 1 and f12 in the detector's reference frame
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are ni = (1, 0, 0) and n2 = (cos((), sin((), 0).

By using Eqs. (6.1)-(6.8) and the relevant definitions we can algebraically determine

the following expressions for F+ (t) and Fx (t):

F+(t) = sin() [a(t) cos(2,0) + b(t) sin(20)] (6.9)

and

Fx (t) = sin(()[b(t) cos(24) - a(t) sin(20)] (6.10)

where

1
a(t) = sin(2'y)(3 - cos(2A))(3 - cos(2[a - tr - £rt])

16
1
1 cos(27) sin(A)(3 - cos(26)) sin(2[a - tr - art])
4

+ 1 sin(2y) sin(2A) sin(26) cos(a - Qr - Ort) (6.11)4
1
- cos(2y) cos(A) sin(26) sin(a - Qr - )rt)
2
3

+ - sin(2y) cos2 (A) cos2(6)4

and

b(t) = cos(2y) sin(A) sin(S) cos(2[a - Or - Qrt])

+ sin(2y)(3 - cos(2A)) sin(6) sin(2[a - phir - Qrt]) (6.12)4
+ cos(27) cos(A) cos(J) cos(aO - ~ r- t)

+ sin(2y) sin(2A) cos(S) sin(a - Qr - .rt)2

With the explicit equations for the F+ (t) and Fx (t) in hand, it is possible to look at the

response of the detectors to an average source. The averages of F2(t) and F2 (t) are both

equal to 1, when averaged over right ascension, declination, polarization, and integrating

for sufficiently long periods (longer than a few days).
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6.3 Signal form in terms of Doppler and amplitude parame-

ters

We can write a general, elliptically polarized gravitational wave in the reference frame of

the source as [47]

h+ (r) = A+ cos(b(7-)) (6.13)

h, (7) = A sin(e(r))

where A+ and Ax are amplitudes containing the detector's response function that depends

on the wave's polarization and source inclination angle and 7 is the time at which the wave

left the source. If we assume a quasi-monochromatic signal with slowly-varying intrinsic

frequency f(T), the signal phase (7-) can be Taylor expanded as

(7) = o + (7T), () = - f ( 7 r ef) A 7 k+l (6.14): (ko + 1)!
k=O

where A7 = 7 - 7Tref and Tref is the reference time at which the initial phase 0Q and the

s + 1 spin parameters f(k) = dkf(T) are defined, i.e. the 1st spin down parameter, the 2nd

spin down parameter, etc.

From an Earth based detector's frame the signal amplitude of an isolated neutron star

is modulated by the time dependent antenna patterns F+ (t) and Fx (t) and also Doppler-

modulated by the relative motion of the detector with respect to the source. We can write

a relation between the detector arrival time t of a wave-front that left the source at time

T(t). If we consider a neutron star at sky position h, defined in equatorial coordinates as

h = (cos 6 cos a, cos 6 sin a, sin 6) in terms of right ascension a and declination 5, and at a

distance d(t) then we can write

T(t; h) = t A(t; ) -d(t) (6.15)
c

where

r(t). fi
A (t: h) f AE (t; h) + As.c(t; fi) (6.16)

c
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and where r(t) is the vector from the solar system barycenter to the detector on Earth.

Here Aso is the general-relativistic Shapiro delay caused by the gravitational field of the

sun and AE® is delay caused by the gravitational redshift and time dilation at Earth [49].

Both of these effects are much smaller than the LK± Roemer-delay term, which is simply

the difference in the propagation time of the wave to reach the solar system barycenter and

the detector. [47]. In the case of searching for a signal, the time dependent distance d(t) is

typically treated as constant and neglected, which involves no loss of generality since any

effects can be absorbed into the frequency evolution of the source. We can now write the

measured strain signal h(t) as

h(t; A, A) = F+(t; i, 4)A+ cos(qo + ¢(t; A))

+ Fx (t; fi, P)Ax sin(Co + ¢(t; A)) (6.17)

where we define the set of four "amplitude parameters" as A - {A+, Ax, x', 0o} and we

define a set of "Doppler parameters" A _{f(k), i}.

Using 6.9 and 6.10 we can separate h(t)'s dependence on the amplitude and Doppler

parameters and write

4

h(t; A, A) = H"h (t; A) (6.18)
C-=1

in terms of four basis waveforms

hi (t; A) = a(t; ft) cos[0(t; A)]

h2(t; A) = b(t; h) cos[4(t; A)]

h3 (t; A) = a(t; h) sin[O(t; A)]

h4(t; A) = b(t; ft) sin[O(t; A)] (6.19)

and the amplitude vector Hl is defined as
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H1 = A+ cos(oo) cos(24') - Ax sin(6o) sin(2V!')

H2 = A+ cos(Oo) sin(2P) + Ax sin(oo) cos(2 ,)

H3 = -A+ sin(0o) cos(24') - Ax cos('o) sin(2 )

H 4 = -A+ sin(0o) sin(2 ) + Ax cos(oo) sin(2 p) . (6.20)

In the case of a non-precessing triaxial neutron star, as described in Section 1.2, the

amplitudes A+ and Ax can be written as

1A+ = -ho(1 + cos2(i)), A = ho cos(i), (6.21)

where ho is the overall amplitude. From Section 1.2, it is 64x72f 2 cI633/R. In more traditional

units and using fGW = 2f (i.e. looking at a frequency twice the rotation rate) we can rewrite

this as

4w2G E133 f'W
ho = 4 J2w (6.22)

c4 R

It should be noted that for other types of continuous wave generation, different relations

hold between the rotation frequency and the gravitational wave frequency. For example,

free precession emits near the rotation frequency and twice the rotation frequency. However,

the above representations of A+ and A, can be used without loss of generality since the

mapping between {ho, cos(i)} and {A±, Ax } is one to one.

6.4 The F statistic: a coherent search method

The use of the F statistic as a search method was developed and first presented by Jara-

nowski, Krolak, and Schutz in [27]. The search code was developed by the LIGO Continuous

Wave pulsar group [46]. I will present a short summary here of the method.

One method to extract that signal is the method of maximum likelihood detection. A

key part of this method is the likelihood function A, a kind of probability distribution

that expresses the likelihood that our data is described by a particular model or set of

parameters. By finding the signal parameters which maximize A, by taking the derivative
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of A with respect to those parameters and setting it equal to zero to find the extrema, we

effectively find the best match in the data to our possible signal. The signal parameters

which maximize A are called the maximum likelihood estimators. The maximum of A

determines the probability of detection of the signal. If the maximum of A exceeds a

certain threshold determined by the false alarm probability we can afford, we say the signal

is detected.

We begin by making the assumption that the noise in the detector is an additive, sta-

tionary, Gaussian and zero-mean process. Then the data x we get from the detector when

a signal h is present is

x(t) = n(t) + h(t) (6.23)

where n(t) is our noise. The log likelihood function has the form

log A = (xlh) - 2(hlh) (6.24)

where the scalar product (*..) is defined by

(xjy) =4Aj0 i(f)y*(f)df (6.25)

where " denotes a Fourier transform, * denotes complex conjugation, and Sh is the one

sided spectral density of the detector noise.

The gravitational wave signal consists of a narrowband component around the frequency

f, twice the rotational frequency. We can assume that over the bandwidth of the signal

Sh(f) is nearly constant, stationary, and equal to Sh(fo) where fo is the frequency of the

signal h at t = 0. With this assumption the detector noise term can be factored out of the

inner product integral. By using the defintion of the Fourier transformation, we can change

the frequency domain intergral of Eq. (6.25) into a time domain integral, a more convienient

form for periodic source analysis. Thus the above scalar product can be approximated by

2 To /2

(xh) T i / x(t)h(t)dt (6.26)( Star (fo) -To/2
where To is the observation time starting at t = -To/2. We introduce a new scalar product,
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2 To/2
( ) - x(t)y(t)dt, (6.27)T0 -To/2

without the detector noise term and normalized by the observation time. We instead include

these terms explicitly in the log likelihood function. The log likelihood function for this

signal with this new scalar product is approximately given by

log A 2- (x h) - (h h) . (6.28)
Sh (fo) 2

The maximum likelihood estimators can be found by maximizing the following normalized

log likelihood function

1
logA' = (xl h) - -(h h) . (6.29)

2

The normalized log likelihood function has had its explicit dependence on the spectral

density of the noise in the detector removed.

The signal h depends linearly on the four amplitudes H". These in turn depend on

the parameters ho,O,ji, and 0o and are independent. In a search where not all of these

parameters are known, we must find the maximum of log A as a function of the unknown

parameters.

If we insert Eq. (6.18) into Eq. (6.29) we can write

1
log A'(x; A, A)= A"x, - A1A"M,, (6.30)

2

where

Xu -(x h/m7 ,) (6.31)

and

M1,_v(A) = (h/, h). (6.32)

With these we can now maximize logA over A" to obtain the maximum likelihood estimators

APL from the data x(t) by

= log A -'-0 lo AA' = 0 " A, (6.33)
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where M1aMaV = 6~. Placing these maximum likelihood estimators back into Eq. (6.30)

we obtain a new partially maximized detection statistic

2F(x; A) = xgMLVx, (6.34)

which is called the F-statistic. Since we have maximized over the amplitude parameters,

the F-statistic only depends on the Doppler parameters A. In the presence of a signal, the

expectation value of the F-statistic with perfectly matched Doppler parameters, A = Asig,

is given by 4 + p2, where p is the optimal signal to noise ratio. It is shown in [27] that

p = (hlh) (6.35)

and that this scales as h0 - for a single detector. One can show, again in [27] that 2F

is a random variable with a X2 distribution with 4 degrees of freedom and a non-centrality

parameter p2. The probability density function of this is

pi(F) = e-(F+)/2 ( ) (6.36)

where I/ is the modified Bessel function of the first kind of order one. In the absence of

signal, when p = 0, this reduces to a central X2 distribution

F
po(2F) = e-F . (6.37)

2

With these probability distributions we can compute the false alarm and false dismissal

probabilities for a threshold 2Fc and a signal to noise p. The false alarm probability is

simply the integration 6.37 from the threshold 2F, to infinity. In a Frequentist framework

it represents the limiting fraction of 2F values which exceed the threshold, given an infi-

nite number of identical trials on Gaussian, stationary, white noise. We can perform this

integration to get

PFA(2Fc) = po(2F)d(2F) - (1-F e-_F . (6.38)
2Fe 2

For example, if we choose a 1% false alarm rate for a single template search, the necessary

cutoff is 2F, , 13.3 [46]. The false dismissal rate is the integration of 6.36 from negative
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infinity to the threshold 2F, for the given signal to noise p. In general this needs to be

integrated numerically. As an example, if we use the cutoff derived from a 1% false alarm

for a single template search and require a false dismissal rate of 10%, we find a p 1 4.5.

6.5 Coherent vs incoherent templates and unknown param-

eters

When determining what type of search to perform, it is important to consider how the

computation costs scale and the relative gains in sensitivity for that cost. The computation

cost is most easily expressed in the number of templates needed to cover a given parameter

space for a given type of search. Searching each template, which defines the sky postion

and frequency evolution of the source to be looked at, takes the same amount of time, and

thus the computation scales directly with the number of templates.

XWe also need to consider the sensitivity scaling of the search, which is a function of the

coherence time, Tcoh, which is effectively the length of time over which we integrate, keeping

track of all the parameters of the signal including both phase and power. In the case of

a fully coherent search, this Tcoh is equal to the total amount of data analyzed, Ttotal. In

the case of an incoherent search, where short segments of data are converted via FFT and

then combined ignoring phase, Tcoh is the length of the individual segments. In that case,

Ttotal = NTcoh, where N is the number of segments.

As we integrate, the mean power in the noise goes as 1/Tcoh. The signal to noise in

terms of power therefore goes as Tcoh. Note that the strain we want to detect, ho, is an

amplitude rather than a power. The detectable strain is therefore proportional to 1/-Tcoh,

remembering that a smaller signal is easier to detect with higher signal to noise. So for a

fully coherent search which simply uses Tcoh = Ttotal the detectable ho goes as 1/V Ttota.

In the case of an incoherent search of N segments of fixed length Toh,. the individual

segments have a mean noise power of 1/Tcoh, but when added incoherently the power of the

noise scales as 1/(VNTcoh). The signal to noise of the incoherent search therefore goes as

Tcoh = vTtotalTcoh. The detectable strain then scales as 1/(TcohTtotal) /4 . The coherent

search is therefore more sensitive than the incoherent search. However, depending on the

size of the parameter space, the coherent search may require orders of magnitude more

computation time.
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In order to calculate the number of templates, we begin with defining the resolution of

the search in terms of frequency, which sets the scale of how far templates can be in the

parameter space before losing information. Then we must consider that for a sufficiently

large f, or other higher order derivative, the frequency of the source will move by more

than the resolution over the length of a search. That makes it necessary to cover the 1 st

spin down space with templates. Similarly, how well the source location is known needs to

be compared to the resolution in sky position.

The resolution in frequency for either the coherent or the incoherent search, Af, which

determines the maximum spacing in frequency of the templates is 1. With this spacing, a

signal exactly matched to one template would show up with half the power in an adjacently

placed template. Thus the number of frequency points needed to reasonably cover a search

from a minimum frequency fmin and a maximum frequency fmax is just f!m--axmi•. Most

blind continuous wave LIGO searches use a minimum frequency of 50 Hz, motivated by the

performance of the detectors at low frequency, and a maximum frequency of 1 kHz, which

is motivated by the fastest pulsars seen.

Next, we need to consider how a signal might evolve over the course of the measurement.

We start from Eq. (6.14) and derive the Taylor expansion of the frequency as a function of

time at the solar system barycenter (SSB) by writing

d f f6.39)
=f = fo + (T - To) + (T- To) 2 + (639)

where ( is the phase of the signal, T is the time at the SSB, and To is the start time at the

SSB. We can translate this to the detector frame of reference here on Earth by using Eqs.

(6.15) and (6.16) to write

dt -D dT v - 1 - + - To +  tTo +.
dt dT dt c 1! c 2! c

(6.40)

where V is the earth's velocity relative to the SSB, ft is the unit vector pointing from the

Earth to the source, F is the vector from the Earth to the SSB, and t is the time at the

detector on Earth. The above treatment neglects the daily rotation that the detector will

under go on the surface of the earth, but the exact same methodology can be applied to
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include those effects. This also neglects the small general relativity corrections.

So with this expansion we now consider grid points with differing f which are necessary

to map the spin down parameter space. It is important to note that we consider each

parameter of the parameter space separately. We hold all the other parameters fixed while

calculating the spacing of that single parameter. We begin by considering the mth grid

spacing in f space while holding the frequency, fo, the higher order derivatives such as f,

and the sky position all constant. This can be written as( 6 -)t f + m f.f
f +)= 1+ mf t+- -To + t+- -To +...

f ·1( =c 1! c 2! c

(6.41)

where f is the first templates frequency time derivative and Af is the spacing between

templates in f space. The difference between the mth template and mth + 1 cannot be

larger than the resolution Af. If we choose a spacing such that they are equal then we have

Af = fi ( + 1) - f (m) = 1 + -(t + - - to - (6.42)

The maximum value for -7n is ~ 480 seconds and thus the difference could be at most

twice this at - 960 seconds. This compared to the days or months of most LIGO observation

runs, defined as T,,,,n = t-to, will be quite small and can be neglected. Similarly, the Earth's

orbital velocity relative to the SSB is small when compared to the speed of light, so 1+ C

can be approximated as 1. Using Af = we get the maximum spacing in f space.

Simply

Af 1
/ f_ (6.43)Trun TohTrun (6.43)

However the boundaries to search within in f space are not quite as clear as in the f

space case. The maximum f we might be expected to see from a star spinning down only

to gravitational radiation is discussed in 5. However, for the general case of f proportional

to nth power of frequency is ( )- . Thus a reasonable upper estimate is to drop the

prefix - and set fa,, equal to - where tage is spin down age below which we will not

look for sources. We then a number of 1st spin down points equal to f-TcohT,,ntaqe
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For sufficiently long runs or sufficiently young targets a 2nd spin down parameter will

be necessary (and in principle even higher orders but for the searches considered here the

2 nd spin down is the highest order necessary). Following a similar procedure as for the 1st

spin down case, it can be shown that the spacing is Af = and an upper limit on

the necessary number of points is f TcohT2rge 2

Lastly we need to consider the resolution in terms to of points on the sky. We once

again go back to Eq. (6.40), noting we can represent v. fti with lvI cos 0 where 0 is simply

the angle between the Earth's velocity and the vector pointing from Earth to the source.

Let us now consider the mth template, but with the spacing in the 0 rather than i, while

holding the frequency parameters constant. We can write

V(I cos (0 + mA 0) f r -Ft T rf -ft
(M)= 1+ A fo+ t+-. To +- t+ - To +...

c 1! c 2! c

(6.44)

where AO is our spacing in angle. We again set equal the different between the mth and

mth + 1 points equal to Af, neglect i, but also assume sin(AO) c 0 A to get

Af= vsin (0) A 0 (f + Trun + ... . (6.45)

Solving for A0 and using fmax for the largest contributing term of fo + fTrun + ... we

find

c 1
Aomin = (6.46)

Vmax fmaxTcoh

We can now look at the total number of templates necessary for coherent and incoherent

searches. In the case of incoherent searches, since the Tcoh is fixed, the templates only scale

as Tr3un, one factor of Trun from the 1st spin down and two factors of Trun from the 2nd spin

down. However in the case of coherent searches, it scales as Trun since Tcoh = Trun. A single

template using either an incoherent or coherent search code takes approximately 1ps per

1800 second SFT when run on a single node of a cluster, such as those at the Hanford LIGO

site or the Caltech cluster. Given that the time to run a single template is proportional

to the amount of data in both coherent and incoherent searches, the total computational

cost scales as Tr4un for incoherent searches while coherent searches scale as Tr9n. In directed
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searches, if the position of the target is known to better than 0O then the coherent search

scales as T7run

If the parameter space can be kept sufficiently small so that the coherent search is

computationally possible, then because its sensitivity scales as the square root of the amount

of data available, compared to the fourth root of the amount of data available for incoherent

searches, it is the better choice. For the searches presented here, it was possible to keep

the computation time to days or weeks on a cluster, which is what prompted the use of the

coherent F statistic code over an incoherent method..

6.6 Exact grid spacing

NWe have just discussed the scaling of the number of templates with the search parameter

space, but we began with the statement that 6F is simply 1/Tcoh. We need to consider

how to quantify how good that spacing is, and whether we need to increase or decrease it

from this nominal value. The overall scaling will remain the same, but it affects the exact

number of templates we choose.

For the case of the F-statistic coherent search method, we begin to consider this by

defining the mismatch p, the difference between the F value exactly at the signal, which we

will call Fmatch and its value at the different position where our search grid told us to place

a template, which we will call Fsearch. The small offset in template space we will label dx"

such that xz = f, X, = a, 2  ,= 3 =, X4 = f. We can then write

Fmatch - Fsearch
m - (6.47)Fmatch

In the local limit as the grid spacings dx" goes to 0 and neglecting effects due to ampli-

tude parameters, the mismatch in Eq. (6.47) can approximately be written as

m = gdz"dx"• (6.48)

The metric components were worked out by Ian Jones, Ben Owen, and David Whitbeck,

and later tested by Reinhard Prix [45]. To do so they used an epicyclic (or Ptolemaic) motion

of the detectors to account the effects of the Earth's motion on the incoming signal. This

was done so that an analytic expression could be used to derive the metric components
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explicitly and reduce the amount of numerical computation during searches. We can write

the metric components of interest (f, f, f) using the shorthand fk = dkf dtk as

(7rT) 2

gff 3
(27r)2Tk+2 f (6.49)

gff = (6.49)gffk= (k + 1)(k + 3)
(27rfT)2T j + k

gfjfk= (j + 1)(k + 1)(j + k + 3)

(6.50)

We can create a new metric with the frequency projected out, using the analytic formula

Y= 9_ - g9fgfv . (6.51)

Explicitly substituting in 6.49 into 6.51 we can solve for the diagonal metric components,

which we then can use to define our spacings in the individual subspaces of the overall

parameter space. We get
(27r)2Tj+k+

2

7pr =(6.52)
(j + 2)(k + 2)(3 + j + k)

and the spacings are just

df - m
=gVff

df = (6.53)

df= M

(6.54)

There is a slight discrepancy in the definitions between the code and this spacing. For

example the code uses f(t) = f + ft + ft 2/2 + ft 3 /6... when calculating the final frequency

to look at, while the metric does not take into account the additional factor of 2 or 6 for the

higher order spin downs. Effectively a prefix of n! should be added to the spacings where n
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is order of the derivative associated with the spacing.

6.7 Interferometer sensitivities

The overall sensitivity we can detect is highly dependent on the sensitivity of the inter-

ferometers used since their noise hides the actual gravitational wave signals. One method

of estimating Sh(f), the single-sided power spectral density, is to take the SFTs, which

are simply 1800 second long Fourier transforms, averaging the absolute magnitude at each

frequency and normalizing by the 1800 seconds. Thus

1 ISFTN(f) 12

Sh(f) = N TSFT (6.55)
i=1

where ISFTv(f)| is the absolute value of the N th SFT at frequency f and TSFT is the

length of time used to make each SFT. Typically, the noise is reported as the .Sh.

6.8 Estimating limits of detection

We now have developed sufficient tools in the chapter to be able to make estimates for the

smallest signal a single template or a multiple template search could find.

We begin with the optimal signal to noise ratio p. Using Eq. (6.35) and the same

reasoning leading up to Eq. (6.26) we can write

E2 To/2 1/2
p (hIh) ( Mh(t)] 2[h dt (6.56)

) Sh(fo) }-To/2

where fo is our gravitational wave frequency, typically twice the rotation frequency. We

then use Eqs. (6.17) and (6.21) to re-write this while dropping the cos and sin terms which

oscillate about the frequency of the gravitational wave so that

2 (1 C os 2()) 2  Fo/ dt+ (6.57)

For an all sky survey, to find the average optimal signal to noise ratio, we could average this

equation over all right ascensions, declination, polarizations and inclination angles which

would give
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4 h2 To
< p2 >a,6,0• - •T (6.58)25 Sh(fo)

Lastly, we can then solve this equation for ho in terms of the observation time, the noise

in the detector, and the required signal to noise ratio for 1% false alarm and 10% false

dismissal rates to get

ho 25p2 Sh(f) 11.4 (6.59)
4 To

where we have used the p r 4.5 for a single template search from section 6.4.

The more interesting case is that for the targeted search, where we is average over all

right ascensions, polarizations and inclinations while fixing the declination of our source, for

either the Crab pulsar or RX J1856.5-3754. In this case, results depend on the detector's

location, whether Hanford, Washington or Livingston, Louisiana.

For the Hanford detectors and the Crab pulsar we obtain

< p2 a,,i 0.1418h T0  (6.60)
Sh(fo)

while for the Livingston detector we get

< P2 h2To
< p2  0.1670 To (6.61)

Sh (fo)

In the case of RX J1856.5-3754 and the Hanford detectors we have

< p2 >,, h2 To

,,i 0.2127 (6.62)
Sh(fo)

and for the Livingston detector we have

< p2 >u,~, & h2To

< p2 >a,,it 0.1951 . (6.63)195 1 Sh(fo)

Thus, for a single template search, the final detectable signal strength for the Crab would be

roughly ho 11.6 To while for RX J1856.5-3754 it would be about ho 5 10.1 fo)
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Chapter 7

Searches and results

This chapter describes the use of directed search of RX J1856.5-3754 as a test to compare the

versions 1 and 2 of the ComputeFStatistic code. Version 2 of the ComputeFstatistic code

is then used for a search of the Crab pulsar over a physically motivated parameter space.

These results are presently under review, and should, therefore, be considered preliminary.

7.1 RX J1856.5-3754 directed search

The ComputeFStatistic code, whose basic principles were described in Chapter 7.2.1, has

been used in several previous searches [2]. At the time a search for RX J1856.5-3754

was under consideration, a newer multi-interferometer search code was becoming available,

which we call the version 2 code. The fundamental difference between these codes was the

version 2 code took the data from all three interferometers simultaneously, to calculate a

single 2F value, while the original code could only deal with a single interferometer at a

time. As validation test of this newer code, we ran both the original search code and the

version 2 code and compared their results.

7.1.1 Parameter space chosen

The search parameter space was chosen to extend from 50 Hz to 250 Hz, using 13 days of

data (624 SFTs). This was based on the estimated computation time of , 2 weeks on the

LIGO Hanford computer cluster and a total of 7 x 1010 templates to be searched. It included

the frequency band of highest sensitivity of the interferometer, around 130 Hz to 150 Hz. In

that band it was estimated the search would be able to place better direct upper limits on
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the gravitational radiation than the theoretical upper limit calculations from Section 5.5,

assuming RX J1856.5-3754 was 105 years old and spinning down purely to gravitational

radiation. In addition, the 1st spin down (dF/dt) parameter space was selected so that it

covered ages of 105 years and older, by using Eq. (5.13). This meant the 1st spin down

parameter space covered increased linearly with the frequency searched.

7.1.2 Search results

For a search using 7.1 x 1010 templates, and assuming Gaussian white noise, we would

expect a 1% false alarm 2F cutoff value of 66. The overall search would have an expected

largest 2F value of 58. The calculation methods are described in Section 7.2.1.

The largest 2F values for every 0.25 Hz band for H1 and L1 for the version 1 search

code are shown in Figures 7-1 and 7-2, and for the combined search with the version 2 code

in Figure 7-3. In each case, the floor of 2F of approximately 40 is expected based on the

number of templates in each 0.25 Hz search band. That estimate is based on the probability

density function for the F statistic when only Gaussian noise is present. The slight trend

upwards is due to the fact that the number of templates increases at higher frequencies, so

as to cover a sufficient 1st spin down space.

By itself H1 has three large templates above what might be expected from Gaussian

noise at the 1% false alarm level. These features are associated with known lines present in

the instrument itself during the S4 run. They correspond to 60 Hz line noise, a 16 Hz comb

(which is a collection of narrow lines at all multiples of 16 Hz caused by noisy electronics)

with a particularly large spike at 112 Hz, and the leakage from one of the hardware injected

test pulsars near 194 Hz. It is not clear why the 7th harmonic of the 16 Hz comb was so large

relative to the background noise, when compared to the other harmonics. L1 individually

has a very complex "forest" of events, due to known instrument lines. In this case, the

easiest way to reduce the number of lines was the coincident step, which is described in the

next section.
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Figure 7-1: Plot of the largest 2F values every 0.25 Hz for the H1 search with the version 1
code. The expected value for any particular 0.25 Hz band is around 40, with slightly higher
values expected at higher frequencies because there are more 1st spin down values covered
and thus more templates searched per 0.25 Hz band. The line at 60 Hz is due to 60 Hz
power line noise, the line at 112 Hz is due to a 16 Hz comb, and the line at 194 Hz is due
to a hardware injected pulsar.

Frequency
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Figure 7-2: Plot of the largest 2F values every 0.25 Hz for the Li search with the version
1 code. The forest of lines are due to many narrow and strong instrument lines, such as a
37 Hz comb, 60 Hz power lines, and other combs. As in the H1 case, the expected value is
roughly 40, increasing at higher frequencies as the number of templates increases per 0.25
Hz band.
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Figure 7-3: Plot of the largest 2F values every 0.25 Hz for the combined H1 and L1 search
with the version 2 code. The forest of lines we see is mostly due to the instrumental lines
present in L1. The expected value is roughly 40, increasing at higher frequencies due to
additional templates searched 0.25 Hz band.

7.1.3 Version 1 coincidence step

To improve the upper limit results of two individual interferometer searches, one can set

a coincidence window in frequency space and find the largest coincident events. This step

resulted in a 5- 10% increase in sensitivity with a coincidence window of 10- 5 Hz, approx-

imately 10 bins to either side in frequency space. The mean 2F value for the largest H1

templates every 1 Hz before requiring coincidence was 43.6, but dropped to 39.4 for events

in coincidence with L1. Similarly, the mean 2F value for the largest L1 templates every

i Hz was 62.6 before the coincidence step and 56.5 after. Figure 7-4 show the largest 2F

templates remaining after the coincidence step. The coincident largest templates still have

a few remaining large events. Near 60 Hz is the usual 60 Hz line noise. The lines at 74

and 111 Hz correspond to a 37 Hz comb present in the L1 data. The 194 Hz line was the

injected test pulsar leakage.
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Figure 7-4: Plot of the largest 2F values surviving the coincidence requirement, every 0.25
Hz. There are several lines surviving the coincidence step such as the 60 Hz power line
which is present in both interferometers, lines corresponding to a 16 comb, and also with
the hardware pulsar injection at 194 Hz.

7.1.4 Upper limit injections

Both versions of the code used Monte Carlo injections to produce upper limits in 1 Hz wide

search bands. These injections are done by choosing an ho injection strength, randomizing

the signal parameters, and injecting a fake pulsar signal into the data. This is then searched

for with the same search method as the full search, but restricted to a small volume of

parameter space surrounding the injection. If the resulting search produces a value above the

cutoff, it is considered found. After enough injections (approximately 4,000) are performed,

the confidence of the upper limit can be calculated from the total number of injections found

divided by the total number of injections. The injection sets are repeated with different ho

values until the ho value which produced a confidence of 0.95 was found in each 1 Hz band.

In the version 1 case, the cutoff was determined by the sum of the log of the largest

coincident 2F values in the 1 Hz band. This was compared to the sum of the log of the 2F

values from an identical injection into both H1 and Li's data. In the version 2 case, the

cutoff was simply the largest 2F value found within the 1 Hz band.

129

- i

-1



7.1.5 Final comparison

The version 1 and 2 upper limits for each 1 Hz sub-band are shown in Figure 7-5. For

reference, the spectrum of the H1 and L1 interferometers at a time of good sensitivity

are also shown in Figure 7-5, scaled by a factor of 100. For a single interferometer the

expected upper limits would be 37 Sh/Tobs. This was calculated by taking into account

the declination of RX J1856.5-3754, the detector response functions, the 1% false alarm

cutoff and a 95% confidence for the upper limits. The method of this calculation is detailed

in Section 7.2.3.

The ratio of the version 1 upper limits to the version 2 upper limits are shown in Figure

7-6. An improvement on the order of V/ is expected from the version 1 to the version 2

code since it uses both sets of data to compute the final 2F value, effectively integrating the

noise floor for twice as long. The exceptions where the version 1 code does better occur in

the presence of extremely strong instrument lines present in only one of the interferometers.

For example, near 147 Hz and 221 Hz the version 2 code produces unusually high upper

limits. This is due to a comb of narrow lines at multiples of 37 Hz present in Li. Near

these two points, the Li data dominated the 2F calculation, and thus resulted in unusually

high cutoff values. The version 1 coincidence search did not see these as H1 did not have

any large coincident templates. These narrow lines in L1 were eventually removed when an

oscillator was replaced on March 10, 2005.

What this tells us is that when using the version 2 code, we need to check for lines in

individual interferometers to ensure we are not seeing very loud events which are in reality

restricted to only one interferometer. With that caveat however, the version 2 code performs

better than the coincidence method with the version 1 code. These lessons were ported over

to the next targeted search performed, that of the Crab pulsar.
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Figure 7-5: Plot of the upper limits for the version 1 and version 2 searches. Plotted for
reference are the strain of the H1 and L1 interferometers scaled down by a factor of 100.
We find that a majority of the very large upper limit values correspond to line features
seen in the interferometers. The unusually high upper limits at 148 Hz and 221 are due to
the extreme 2F values found in the search for those bands, which in turn translates into a
higher upper limit. These large values were due to a 37 Hz comb of lines in L1.
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Figure 7-6: Plot of the ratio of the version 1 upper limits to the version 2 upper limits. The
few exceptional points where the version 2 code does worse than the version 1 code were
in locations where a very strong and narrow line feature determined the largest 2F value
found. This is turn resulted in larger upper limits, since the largest 2F value determines
how large the injections need to be to be counted for upper limits. The fact that these
particular lines were not present in H1 meant that the coincidence method was better at
those particular points. In cases where large features are present in both interferometers,
such as near multiples of 60 Hz, the version 2 code does significantly better.
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7.2 Crab wide parameter search

A time domain search has already been carried out using LIGO data targeted on the exact

radio ephemeris available for the Crab pulsar [1]. However, as noted in chapter 5, there

are several physical mechanisms by which the electromagnetic pulse frequency could differ

from the gravitational wave frequency. At a frequency difference of 3 x 10- 3 Hz between the

electromagnetic pulse and gravitational wave frequencies, this search would be roughly 105

times more sensitive than the exact single template search, simply because of the resolution

of the search for 9 months of data is about 4 x 10-8 Hz. Thus, the wide parameter search

presented here on the Crab pulsar is complimentary to that search effort.

7.2.1 Chosen search parameter space and results

Chapters 5 and 7.2.1 describe the competing constraints in determining the final parameter

space to search, namely the computational cost of the search, the expected sensitivity, and

physical motivations.

If we consider the free precession models described in Eqs. (5.16) through (5.20) we find

a maximum difference between 2 fEM and fGw of order 2efEjM. For e we can consider the

discussion from Section 5.2 and take the largest reasonable values of order 10- 5 for hybrid

stars. These combined would give a band to search of order 6 x 10- 4 given the Crab's radio

pulse frequency of 29.777 Hz. The two component model using Eq. (5.27) and the Crab's

parameters also gave an estimate on the order of 6 x 10- 3. These both have an overall form

of

fGw = 2 fEM(1 + 6) (7.1)

where 6 is corresponding to the small variation these models induce in the gravitational

wave frequency, and is of the order 10- 4 for these models. The associated search space is

AfGw = 62fEM. One way to estimate the variation in 1st and 2nd spin downs is to realize

that

fGW = 2 (FEAM(1 + ) + fEMS . (7.2)

If we assume that fEM/f/EM is of the order of 6/5 or smaller, then we are left with a largest
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1st spin down search band of

Afcw ~ 3fEMS. (7.3)

The above assumption corresponds to assuming the gravitational wave frequency spins

down at a rate close to the electromagnetic wave frequency. In particular, for the case of

free precession we are assuming that the geometry of the precession, essentially the wobble

angle, evolves only on the spin-down timescale. For the two component model this would

correspond to the steady state lag that occurs after all the glitch transients have died out.

If we take another derivative with respect to time we get

fGW = 2fEM(1 + 6) + 4fEM + 2fEM6 . (7.4)

If we are willing to assume that fEM/fEM and 6/6 are of the same order as fEM/fEM, we

can determine a 2nd spin down band of

AfGw = 8fEMS . (7.5)

This is equivalent to assuming the rate of change of the gravitational wave frequency spin

down is close to that of the rate of change of the electromagnetic wave frequency. Plugging

in the Crab frequency parameters from Table 7.1 into fEM/fEM and fEM/fEM, we do find

that they are explicitly of the same order, roughly 3 x 1010 to 8 x 1010.

Given 6 ~ 10- 4 and the Crab pulsar's frequency parameters, this suggests choosing a

parameter space 6 x 10- 3 Hz wide in frequency space, 1.2 x 10-13 Hz wide in 1st spin down

space, and 1 x 10- 23 wide in 2nd spin down space, all centered on twice the radio pulse

frequency and frequency evolution of the Crab pulsar. The relevant Crab parameters for

the start of the S5 run are detailed in Table 7.1 [28]. A single sky point was all that was

necessary due to the well known position of the Crab pulsar.

At the time of this writing, we have access to a majority of the data from LIGO's

fifth science run, which has been running since November 4, 2005. However, a large glitch

occurred in the Crab pulsar on August 23, 2006 and its uncertain what effect this would

have on the gravitational wave frequency evolution. That glitch is thus a natural stopping

point in data consideration. This leaves approximately nine months of data available to be
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searched. From that nine month data stretch we created 8798 SFTs from H1, 6649 SFTs

from L1, and 9877 from H2.

Using the discussion from Chapter 7.2.1, we find this parameter space requires roughly

8.1 x 106 templates when using all the available SFTs. This is with a mismatch parameter

of 0.15, which injections show causes a loss of roughly 5% in sensitivity from an exactly

matched template. The full search on all three LIGO interferometers with the necessary

Monte Carlo upper limit injections takes approximately one day on 100 nodes on the LIGO

Caltech computing cluster.

As for final sensitivity, this is affected by both the number of templates and the region

of frequency space needed from the LIGO interferometers. For Gaussian noise, the final

expected sensitivity scales slowly with templates, as shown in Figure 7-7. However as we

increase the parameter space we also add in more noise from the surrounding frequency

bins, especially that caused by the 60 Hz lines. This is apparent in the case of L1 which is

discussed in the following sections.
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Figure 7-7: Plot of the relative sensitivity of a multi-template search relative to a single
template search as a function of the number of templates
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Table 7.1: Crab parameters at the start of S5

Frequency 29.7772 Hz

1 st Spin down -3.7292 x 10-10 Hz/s

2nd Spin down 1.2426x- 20 Hz/s 2

Right Ascension 1.4597 radians
Declination 0.3842 radians

Expected and actual largest templates

Given our parameter space with 8.1 x 106 templates, we can estimate the expected largest

2F value that will be found, and also a 1% false alarm cutoff value, assuming Gaussian noise.

Starting from the noise probability density function, po in Eq. (6.37), we can calculate the

probability Pbelow that a single template is at or below a cutoff 2F of 2F,. That is

P' fFc 1 (1+ ) F -)(6)

Pbelow (Fc) = po(F)dF = 2 + (7.6)

To find the probability of N templates being below 2Fc we simply raise Pbelow(Fc) to the

Nth power. To find the probability of one or more templates being above the cutoff we only

need to calculate

PFA 1- Plow (Fc) . (7.7)

We can then numerically solve for the 2Fc such that PFA is equal to 0.01. We find that

2F, = 46 for N = 8.1 x 106. This is effectively a 3a level of confidence requirement on a

positive detection result.

We can also calculate the expected largest 2F value found. In this case we want N - 1

templates being below our expected 2 Fe, our expected 2F value, and one template being

between 2Fe and 2Fe + dF. We can write the probability distribution for 2Fe in N trials as

pN (2Fe) = Fe- F (1 - Pbelow,(Fe))N 1 (7.8)2
We can then compute the expected maximum 2 Fe numerically in N trials as

S2FePN(2Fe)d(2Fe) (7.9)

which for N = 8.1 x 106 is 39.
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When we look at the actual result from the full search we find it to be very consistent

with Gaussian noise with no signal present. We find an maximum 2F value of 38.27 which

is below our threshold of detection and very close to our expected value of 39.

7.2.2 Upper limits

Monte Carlo injections

With our largest 2F values being below a 1% false alarm cutoff, we now turn to setting

upper limits on the maximum gravitational wave strain coming from the Crab pulsar. This

is done by Monte Carlo injections. The following methodology is applied.

Choose an initial injection strength, ho, that we think is near the minimum detectable

level. We fix right ascension and declination to that of the Crab pulsar. Then randomly

choose polarization, inclination and initial phase from all possible values. Randomly choose

frequency, 1st spin down, and 2 nd spin down within the parameter space of the search.

With the signal now defined, inject it into the actual data via software. Search for this

injected signal. To save time we search only a small space surrounding the signal, including

±2 template spacings in frequency, 1st spin down, and 2nd spin down. If the largest 2F

value found in this injection search is greater than the largest 2F value found in the actual

search, we declare the signal found. We then repeat until we have reached our desired

number of injections, at which point we calculate our confidence of that injection run. The

confidence is simply the number of injections declared to be "found" divided by the total

number of injections made. If the confidence of the injection run is over 0.95 we decrease

our injection strength and repeat the run. If the confidence is less than 0.95, we increase

the injection strength. We also decrease our step size if we cross the 0.95 confidence level

between injection runs. This eventually settles on the injection level which is found 95% of

the time. In this way we find the 95% confidence upper limit value.

It is important to note how many injections are sufficient for a run. The number of

injections are sufficient if over multiple injection runs at the same strength, the confidence

level does not vary too much, say of the order 1%. Having performed a test run with 36000

injections and breaking it into 9 sets of 4000, we find that the confidence value of each small

set stayed within 95.3% and 96.2% when the confidence value from all the injections was

95.6%. This is shown in Figure 7-8. This suggests that 4,000 injections are sufficient to
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determine the confidence level to within 1%.
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Figure 7-8: Plot of the confidence for 9 sets of 4000 injections compared to the confidence
for all 36000 injections.

Upper limit result

Having performed the upper limit injections on the search, the upper limit on the strain

coming from the Crab pulsar was found with ho = 1.6 x 10-24 at a confidence of 95.5%

with 20000 injections. This upper limit holds over the parameter space of the search.

7.2.3 Checks on the search result and upper limits

Several checks were performed to determine if the search and upper limits were performed

correctly. First, data from each individual interferometer (i.e. H1, H2 and L1) was run

through the entire analysis pipeline by itself. These were then compared to a set of software

generated Gaussian white noise also run through the analysis pipeline.

SFT noise

Our cuts on the data set used to generate our SFT segments were minimal. The only data

removed was from periods out of lock, had bad or non-existent calibration lines, was during
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periods of high winds over 30 mph, or within 30 seconds of a lock loss. This means that

when we look at individual SFTs it is no surprise that within our frequency band of interest,

there are periods were the noise was significantly louder than others. Figure 7-9 shows the

mean noise in a frequency band from 59.52 to 59.58 Hz in terms of the one sided power

spectral density. This is the band size the search code considered when calculating S /2UYVVLLIIUVIUIJ· ~~~ ~U '~~ VUI~UUIL~ UI~ J~UI~II~VU ~VI~L~I~ VVI~II~C~lrU~lrll h "U
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Figure 7-9: Plot of spectral density of strain in the 59.52 to 59.58 Hz band versus SFT (in
chronological order) for H1 (top), H2 (middle), and L1 (bottom). The many lines coming
out of the noise floor for each interferometer shows the non-stationarity of the noise over
the course of the S5 run. In order to get a good estimate of the noise floor a noise weighting
scheme is necessary in order to deal with this non-stationarity.
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These large variations are dealt with in the search code by applying a weight factor

based on a running median with a window size of 50 bins. Effectively, for a given data

segment, the noiser the frequencies surrounding the one we are interested in the less weight

we give to that portion of the data. Since each SFT corresponds to 1800 seconds of data,

each bin is 1/1800 = 5.55 x 10- 4 Hz wide. The median value of these bins is effectively set

as the noise floor for the frequency under consideration. In the analysis the calculation is

weight by 1/w(f) where wa(f) =< Sa,k(f) >k where <>k denotes the median over k bins

and So,k denotes the noise of k bins of the ath SFT. The weighting minimizes the impact

excessively noisy segments have on the search.

In order to estimate the effective noise under this weighting scheme, we need to perform

a similar weighting on the SFTs. This is done by calculating the mean value of all the bins

within a window size of 50 bins and associating that value with the central frequency. We

denote this as < SFTi(f) >a indicating the ith SFT and an average of a bins. We then

calculate < 1/ < SFTi(f) >a> 1 where in this case <>i denotes averaging over all SFTs.

This is effectively estimates the double sided power spectral density. Finally we convert to

the one sided power spectral density and take the square root to get it into the usual form
1/2of S 2 . This method produces the plot in Figure 7-10.

In addition to running on data from the three LIGO interferometers, the above was also

carried out on a Gaussian white noise data set, which was treated as if being generated at

Hanford and using the same number of SFTs as H1. This data set was created with a S/2

value of 4 x 10-22 with the code lalappsMakefakedata. When looked at in the same way

as above, it produces Figures 7-11 and 7-12. From Figure 7-11 we see that the SFTs are of

the correct strain and in Figure 7-12 shows that our noise is effectively white, varying by

less than 0.1% over the frequency band of interest.
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Figure 7-10: Estimate of spectral density of strain for the all three LIGO interferometers
in the frequency band of interest for the Crab pulsar. H1 has the best noise performance,
followed by L1 and then H2. However, L1 has a large trend upwards with increasing
frequency indicating the presence of an instrumental line feature.
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Figure 7-11: Plot of spectral density of strain versus a Gaussian white noise data set SFT
(in chronological order). This particular data set has been generated with an expected
4 x 10- 22 spectral density of strain.
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Figure 7-12: Estimate of spectral density of strain versus frequency for the entire Gaussian
noise fake data set. This shows the estimation method is working properly, since the
estimated strain shown here is within 0.5% of the expected value of 4 x 10- 22.
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Individual interferometer search results

The individual interferometers were run through the search pipeline and none of them

produced a template with a 2F value beyond the 1% false alarm cutoff of 46 for 8.1 x 106

templates. The largest 2F value for H1 was 43.67, for H2 was 37.02, and for L1 was 30.43.

The largest 2F value for the Gaussian Noise data set was 35.83. These can be compared

with the overall search's largest 2F value of 38.27 and also the expected largest 2F value

assuming 8.1 x 106 templates of 39.

Using Eq. (6.37) we can estimate the expected number of templates with a given 2F

value assuming Gaussian noise and normalizing by the total number of templates in the

search. This can be plotted directly against the actual number of templates falling within a

band of 2F values. Because the interferometers spanned slightly different time periods due

to their duty cycle, the number of templates used by each individual search was slightly

different. The H1 search used 7.9 x 106 templates, the H2 search used 8.1 x 106 templates,

and the L1 search used 7.3 x 106 templates. The Gaussian Noise test was based on SFTs

with the same time stamps as the H1 SFTs and thus also used 7.9 x 106 templates. The

Figure 7-13 shows the expected plotted against the actual in each of these cases. Note that

the full search does not record templates with a 2F value below 20 for data storage reasons.
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Figure 7-13: For H1 (upper left), H2 (upper right), L1 (lower left) and the full multi-
interferometer search (lower right) are shown plots of the number of templates returned by
the search with 2F values within a band versus the expected number. In the case of L1
there are far fewer large templates than one would expect primarily due to non-random
features in the L1 spectrum. The full search being below expected is mainly due to this
disturbance in L1.
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Figure 7-14: Plot of the number of templates returned by a search on a Gaussian noise fake
data set with 2F values within a certain band versus the expected number. The fact that
the Gaussian noise matches the expected value implies that deviation from the expected in
Figure 7-13 for L1 is due to the non-Gaussian nature of the noise rather than a bias in the
search pipeline.

146



The first thing to notice in these Figures is the actual interferometer results tend to be

below the expected value, while the Gaussian noise data set is at the expected level, most

strikingly apparent in the case of L1. Since the Gaussian noise data does not show any bias,

this must be an effect of the non-Gaussian and non-stationary nature of the interferometer

noise. By comparing the extreme case of L1 to the H1 case we can gain some insight.

We first go and look at the surrounding noise, as shown in Figure 7-15, and compare

it with the somewhat cleaner case of H1 in Figure 7-16. There is the obvious large 60 Hz

peak in both H1 and L1 caused by 60 Hz line noise. In addition, there appears to be more

structure in the L1 case. If we go back to the specific band of interest in Figure 7-10 we

note that the L1 noise increases by about 15% over the band relative to its mean value,

where as in H1 and H2 the variation is less than 3% of its mean value. Suggesting that

the L1 search is more on top of 60 Hz "wings" and associated noise than the respective

searches in H1 and H2, but all are obviously non-white to some degree. In this case, our

assumptions of Gaussian stationary white noise is poor for L1 hence leading to a break

down of our predictions based on Eqs. (6.36) and (6.37). The final upper limits, discussed

in Section 7.2.3, are not affected by more than a few percent because we use the largest 2F

value found in the search as the cutoff, rather than a theoretically calculated cutoff. The

direction of the bias comes from the fact that a non-random instrument line brings up the

effective noise floor without affecting the Gaussian distribution of noise on top of it. Since

the F statistic is proportional to the square of the optimal signal to noise, this leads to a

corresponding drop in the F statistic values found.
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Figure 7-15: Plot of the weighted noise in L1 from 59 to 60 Hz. Distinct steps are visible
in the noise, indicating some non-random instrumental effect is raising the noise floor.

v 1-
2 2

-r"
N

Ig

€-

6'

Frequency [Hz]

Figure 7-16: Plot of the weighted noise in H1 from 59 to 60 Hz.
is the 60 Hz line due to power line noise, while around 59.5 Hz
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2F distribution in parameter space

We can also take a look at the distribution of the 2F values within the parameter space

searched, to check if it looks like a random distribution as opposed to clumping near an

obvious signal or line. These are shown in Figures 7-17 and 7-18. The templates returned

with large 2F do look uniformly distributed except possibly in the case of L1, which as

already noted in Section 7.2.3 seems to have a broad feature in the noise.

If a strong narrow line were present, it would manifest itself as a diagonal line of large

(redder in the plot) values from the upper left trailing to the lower right. This is because

of the negative spin down values are being applied to the templates starting frequency over

the course of the run to determine what frequency to look at. Larger spin down values (in

an absolute sense) results in lower frequencies being searched for that particular template,

meaning a narrow line feature will be seen by templates with high frequencies and large

spin downs or low frequencies with small spin downs. This suggests that there is no narrow

line feature in the searched frequency band causing unusually large results.
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Figure 7-17: For H1 (upper left), H2 (upper right), L1 (lower left) and the full multi-
interferometer search (lower right) are shown plots of the distribution of 2F values greater
than 25 in the parameter space searched. The color signifies the 2F value, red is larger
and blue is smaller. For H1, H2 and the multi-interferometer search the distributions look
uniform, while L1 looks different due to a combination of fewer results to work with and
the broad noise feature present in the L1 spectrum. No strong narrow line features appear
to be present in any of the interferometers.
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as a comparison to the Figures in 7-17 since this fake data set was created without any line
or broad spectrum features.
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Expected individual interferometer upper limits

Given the maximum 2F values found for each individual interferometer and the Gaussian

noise test case, one can use Eq. (6.36) to estimate the injection strength necessary to have

95% of the injections exceed the respective maximum 2F values. To do so also requires

taking into account the detector response functions since the injections have varying polar-

izations and inclination angles which non-trivially affects the effective detectability of the

injection. Lastly, Eq. (6.36) applies to templates perfectly matched to the signal, which is

not the case in our search or Monte Carlo injections.

In order to determine the effect of perfectly matching templates, an additional Monte

Carlo injection set was performed on the H1 search but with the follow up searches each

placed exactly at the injection. The 95% confidence level for strain was found to be 2.12 x

10-24 HZ- 1/ 2 , compared to the actual H1 95% confidence level of 2.25 x 10-24 HZ- 1/ 2 . This

suggests that the grid spacing worsens the upper limit by making it larger by roughly 5%,

which should be taken into account when using Eq. (6.36) to make predictions.

We can use Eq. (6.57) along with the detector response functions with the known

positions of the Hanford and Livingston detectors, shown in Table 7.2 [4], and the fixed

right ascension and declination of the Crab pulsar, to write the following

h2T
< p2 >= A(O, i) h (7.10)

Sh

where A(O, i) encodes the detector response function dependance on just the polarization

angel b and inclination angle i.

The function A(~, i) can be calculated from the detector response functions [27] by fixing

the declination of the source and averaging over the right ascension. The function A(', i)

for the Hanford and Livingston locations are plotted in Figures 7-19 and 7-20. It effectively

represents the changing response of the interferometers for different possible polarizations

of the wave and for the different possible inclination angles of the source relative to the

interferometers. By considering this function over the entire injection space and using the

calculated p in Eq. (6.36) we can calculate the overall expected 95% confidence level, or at

any other desired confidence level. It should be noted because of the 95% confidence level

requirement, the lowest 5% of values from Figures 7-19 and 7-20 determine the effective

detection threshold, as opposed to an average over the whole parameter space. In any
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case, these expected values can then be directly compared to upper limit injections at and

around the 95% confidence level derived from actually performing the injections. These are

shown in Figures 7-21. As seen in the plots, the difference between the expected and actual

confidence values are less than 5%.

The good agreement between the actual and expected values shows that the analysis

pipeline is working and that the results are consistent with being generated by mostly

Gaussian noise. The upper limits seem to be reasonably robust in the face of the noise

features in L1 since we used the largest 2F value found of 30 which effectively factors in the

real distribution of the noise into the upper limits. So while the noise in L1 is not perfectly

Gaussian, actual signals above the noise floor are still detected without problems.

Table 7.2: Positions of Hanford and Livingston detectors

Detector Latitude (degree) Longitude (degree)
Hanford 46.45 N 119.41 W

Livingston 30.56 N 90.77 W
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Figure 7-19: Plot of the function A(O, i) for Hanford. Effectively, the physical response of
the interferometer as a function of the incoming wave's polarization and source inclination,
with the sky position fixed to that of the Crab pulsar. Redder colors correspond to higher
values of A(0, i).
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Figure 7-20: Plot of the function A(p, i) for Livingston. Effectively the physical response of
the interferometer as a function of the incoming wave's polarization and source inclination,
with the sky position fixed to that of the Crab pulsar. Redder colors correspond to higher
values of A(V), i).
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Figure 7-21: For H1 (upper left), H2 (upper right), L1 (lower left) and a search on a set
of Gaussian noise fake data (lower right) are shown plots of the expected confidence versus
injection strength of the Monte-Carlo injections. The position of the curves are determined
by the Crab pulsar's sky position, the function A(O, i), the noise in the individual interfer-
ometers, along with the largest 2F value found in the individual searches. The shape of the
curves are determined by Eq. (6.36). The difference between the expected and actual values
is in general less than the uncertainty in the upper limit result for runs of 4000 injections,
which gives us confidence in the upper limit values produced by the search pipeline.
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7.2.4 Constraining energy loss in the Crab pulsar

With a strain upper limit of 1.6 x 10-24 that we have confidence in, we can now turn to the

question of what we can say about the Crab pulsar.

Equation 6.22 relates our ho upper limit to the moment of inertia, ellipticity, distance

and spin frequency of the Crab pulsar. We know the Crab pulsar is located 2kpc distant,

and we know the radio frequency is 29.777 Hz. If we make the assumption that the Crab

pulsar has the a typical neutron star's moment of inertia of 1045 g cm 2, we can calculate the

maximum ellipticity the Crab pulsar could have. In this case, we calculate Emax = 8.5 x 10 - 4 .

This corresponds to a gravitational luminosity of 4.6 x 1038 erg/s. These values are larger

than the indirectly calculated values of Emax = 3 x 10- 4 and 1.6 x 1038 erg/s estimated by

Palomba [43].

However, there is a good deal of uncertainty in the moment of inertia of the Crab pulsar,

and as noted earlier it might be up to a factor 3 larger than the canonical value [7] [34].

For a value of I of 1.59 x 1038 kg mn2 or higher we begin beating the canonical upper limit

on the Crab pulsar's gravitational wave emission. For a value of I of 3 x 1038 kg m2 we

can constrain the energy loss due to gravitational waves within the search parameter space

to less than 53% of the total spin down energy loss of the Crab pulsar. The relationship

between ellipticity and the moment of inertia is plotted in Figure 7-22. The ratio of the

energy loss due to gravitational radiation versus the total spin down energy loss is plotted

in Figure 7-23.
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Figure 7-22: Plot of the upper limits generated by this search on ellipticity as a function
moment of inertia compared to that of the canonical upper limit calculation. The area
above the green line is effectively excluded by theoretical calculations, while the area above
the blue line has been excluded by direct measurement in this search.
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Figure 7-23: Plot of the ratio of gravitational energy loss upper limit to total spin down
energy loss as a function of moment of inertia. Ratio values greater than 1 indicate we
are not constraining the Crab pulsar's energy budget of its spin down at that moment of
inertia.
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Figure 7-22 effectively shows the excluded regions of ellipticity and moment of inertia

parameter space. The area above the green line is excluded by theoretical calculations,

while the area above the blue line is excluded by direct measurement in this search. The

wedge to the right of the crossing point is effectively the additional information the search

is providing.

In Figure 7-23 values above one are effectively unphysical and thus the search is ef-

fectively providing no information in that region. However, for the higher values of the

moment of inertia, we are providing a directly measured constraint on a portion of the

Crab pulsar's energy budget of the spin down. This direct measurement is interesting, be-

cause even though there are estimates of the Crab pulsar's spin down energy budget, the

uncertainties involved in those estimates leave a significant portion of the budget available

for gravitational wave emission.

We will briefly consider the total spin down energy budget of the Crab pulsar. If we take

the Crab pulsar's frequency and 1st spin down values, and let the moment of inertia range

from 0.5 x 1038 to 8 x 1038 kg m2 [15], the total energy available is E = 47r2 lff = 2 x 1038

to 1.6 x 1039 erg/s. This energy loss can be made up of several components in addition to

the gravitational wave emssion, including the observed electromagnetic emission from the

pulsar and the surrounding nebula, and also the nebula's accererating expansion.

The Crab pulsar's black-body thermal emission is a very minor component, less than

3 x 1034 erg/s, assuming a 10 km radius star [26]. The total bolometric luminosity of the

Crab nebula is roughly 1 - 2 x 1038 erg/s [17]. Lastly, the energy necessary for the nebula

expansion could be between 3 x 1038 and 9 x 1038 erg/s [8] [9]. The uncertainties in the

nebula expansion estimates are large due to the uncertainty in the mass of the Crab Nebula

itself, which is between 2.8 and 6.4 M® [21]. Using these values, we can estimate the total

loss to non-gravitatoinal wave mechansims as being between 4 x 1038 and 10 x 1038 erg/s.

In comparing the possible range of rotational energy loss, 2 x 1038 to 1.6 x 1039 erg/s

based on possible moments of inerita, to the non-gravitational wave losses, 4 x 1038 to

10 x 1038 erg/s, we see there is a large variation in the difference, which we might attribute

to gravitational radiation. From this comparison, we might estimate that anywhere from a

negligble to 75% of the energy loss might be in the form of gravitational radiation. This then

makes limits from the search presented here or from the narrow time domain search [44]

useful in understanding the overall energy budget.
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Part IV

Conclusion
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Conclusion

In the first half this thesis, we describe the LIGO interferometers and the phase camera

subsystem. We discuss how the phase camera was used to understand an output mode

cleaner placed at the AS port of the interferometer and how it was shown to be working as

expected. We also discuss the thermal compensation system, and how it was a necessary

component for the interferometers to reach high power (and higher sensitivity) operation.

We examine the impact of the thermal compensation system on the AS port light through

the use of the phase camera. We compare different states of thermal compensation in order

to understand how the light changes to reduce signal in the Iphase of the AS port photo-

diodes and reduce the need for a correction servo, whose limit had previously determined

the maximum laser power LIGO could use.

In the second half of this thesis, we performed a single target search for continuous

gravitational wave emission from the nearby star RX J1856.5-3754 using data from LIGO's

4t h science run. While a periodicity in RX J1856.5-3754's X-ray emission was found be-

low the LIGO search band, the search itself was still a useful test of a newly developed

multi-interferometer F-statistic code and an application of targeted search methods. This

experience was directly applicable to a second search looking for continuous gravitational

wave emission from the Crab pulsar, searching over a wide parameter space to compliment

very narrow targeted searches already performed. This parameter space was chosen based

on physical motivations, computational constraints, and expected final sensitivity. Using

data from the first nine months of LIGO's 5th science run to perform the search, no gravita-

tional wave signal was found. Monte Carlo injections were used to place a Frequentist upper

limit on the gravitational wave strain from the Crab pulsar of ho = 1.6 x 10-24 at a 95%

confidence level. This result is currently under review by the LIGO Scientific Collaboration,

and as such should be treated as preliminary.
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As LIGO's 5th science run finishes, we can look forward to examining the entire data

set, which extends the possible depth of targeted continuous wave searches. In addition a

period of upgrades to the LIGO interferometers aimed at improving their sensitivity by a

factor of 2 [22] is scheduled to start soon after, extending the reach of gravitational wave

searches even further.
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Appendix A

Table of acronyms

Definitions of acronyms
ACRONYM DEFINITION

RM Recycling Mirror
BS Beam Splitter
ITMX Input Test Mass, X-Arm
ITMY Input Test Mass, Y-Arm
ETMX End Test Mass, X-Arm
ETMY End Test Mass, Y-Arm
TCS Thermal Compensation System
PSL Pre-Stabilized Laser
PMC Pre-Mode Cleaner
PC Pockels Cell
MC Mode Cleaner
OMC Output Mode Cleaner
AOM Acoustic-Optical Modulator
PZT Piezoeletric Transducer
NSPOB Normalized Sideband Power Pick-off Beamsplitter
ASI Anti-symmetric Port Photodiode In-phase Signal
ASiCorr Anti-symmetric Port Photodiode In-phase Correction
USB Upper Side Band
LSB Lower Side Band
Iphase In-phase
Qphase Quadrature-phase

Table A.1:
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Appendix B

Phasecamera demodulation and

control board schematic
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