
Structured Methodology for Knowledge Acquisition in Kit
Component Selection

by

Richard Griffin Keiser

B.S. Mechanical Engineering
Carnegie Mellon University, 1994

Submitted to the Department of Mechanical Engineering
and the Technology and Policy Program

in Partial
Fulfillment of the Requirements for the Degrees of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING
and

MASTER OF SCIENCE IN TECHNOLOGY AND POLICY

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1997

@ 1997 Massachusetts Institute of Technology. All rights reserved.

Signature of Author:

Certified by:

Department of Mechanical Engineering
June, 1997

Dr. ýniel E.EVhitney
Thesis Supervisor epartment of Mechanic ngineering

Accepted by:
ichard De Neufville

Chairman, Ter o ogy and Policy Program

Accepted by:
Ain Sonin

Chairman, Department Graduate Committee

JUL 2 1 1997

SBRARi~EES

Structured Methodology for Knowledge Acquisition in Kit Component Selection

by

Richard Griffin Keiser

Submitted to the Department of Mechanical Engineering
and the Technology and Policy Program

in Partial
Fulfillment of the Requirements for the Degrees of

Master of Science in Mechanical Engineering
and

Master of Science in Technology and Policy
June, 1997

ABSTRACT

Knowledge-Based Systems (KBS or KB Systems), computer programs that incorporate
engineering or design rules into the design process, represent the next phase of evolution in the
product development process. Through the relationships of physical laws, geometric properties
and assembly features, KBS can automate many design steps, thereby decreasing project
development lead time, increasing worker productivity, and decreasing design errors, all
contributing to significant cost savings. There are also negative aspects to KB systems: automated
systems, once in place, may decrease creativity in the design process; they may be difficult to alter
to reflect changes in capabilities; in addition, these systems are difficult, time-consuming, and
costly to develop. Many of the benefits and drawbacks of a KB system are dependent not only on
the choice of process to be automated, but also on the development methodology for the KB
system. Many KB systems are not fully implemented because the automated system fails to meet
the ambitious goal of capturing all of the knowledge of the process within the rules it executes.
Other KB systems are unsuccessful because the rule set is not correctly identified. This is often
attributed to inadequate communication between the groups whose knowledge is to be embodied in
the rules and a lack of framework for developing rules. In this thesis, I propose a structure for the
process by which rules are built. This structure is embodied in a knowledge acquisition tool that
will (1) facilitate communication between functional and cross-functional groups to improve and
accelerate the development of rules, and (2) assist in the identification of rule exceptions and the
possibility of user interfaces with the system for "complexity management." Section 1 is an
introduction to KB systems. Section 2 formally defines KB systems and their components.
Section 3 describes the general steps in KBS development. Section 4 is an introduction to
knowledge acquisition tools. Section 5 presents the design of a knowledge acquisition tool,
KATMO, for rules development in selection processes. The methodology of this tool is comprised
of three steps: knowledge acquisition, knowledge organization and rule identification. In Section
6, an application of this tool to the development of a prototype KBS for a drill kit assembly is
described. Section 7 concludes with an exploration the policy implications of this work for
manufacturing firms engaged in the development of KB systems.

Thesis Supervisor: Dr. Daniel E. Whitney
Senior Research Scientist at the Center for Technology, Policy and
Industrial Development.

Acknowledgments

This thesis is dedicated to my parents whose guidance and wisdom brought me to the exciting and
challenging environment of MIT; to Elena for love and support; and to Mark whose success has
made me very proud.

I am also grateful to my Grandparents for their generous support of my studies and their frequent
correspondance which I very much enjoyed.

I am thankful to have had the opportunity to work with Charlie Fine and Dan Whitney, whose
insights and experience were a valuable asset to my development at MIT, and the completion of my
thesis.

In addition, I would like to thank Bill Bullock, Brad Gale, Linda Poole and Neal McCollum at
LMTAS for facilitating the project which is the subject of this thesis.

Special thanks to Mike Packer for his candor, accessibility and insight into aircraft production.

Special thanks to Steve Woods for warmly receiving me and facilitating my experience at Boeing.
Thanks to Mike Kerstetter for his valuable insight into KBS at Boeing.

Finally, I would like to thank David Seidel, Brad Leech, Matt Quinn, Danny Drake, Barry Kal,
Phone Wang, John Lumpkin, Roy Rajan, Steve Coffed, and Dave Kelly for their contribution to
this work and for making my experience at LMTAS enjoyable, entertaining and rewarding.

Table of Contents

ABSTRACT 3
ACKNOWLEDGMENTS 4
TABLE OF CONTENTS 5
LIST OF FIGURES 7

1. INTRODUCTION 8

2. INTRODUCTION TO KNOWLEDGE-BASED SYSTEMS 13
2.1 Defining Knowledge-Based Systems 13
2.2 Components of a Knowledge-based System 14

3. THE DEVELOPMENT OF KNOWLEDGE-BASED SYSTEMS 15
3.1 Goal Identification 16
3.2 Task Selection 16
3.3 Project Description and Planning 17
3.4 Knowledge Acquisition 18

3.4.1 Stages of Knowledge Acquisition 20
3.4.1.1 Identification 20
3.4.1.2 Conceptualization 21
3.4.1.3 Formalization 21

3.5 Representation 21
3.6 Testing 22
3.7 Implementation 22
3.8 Summary 23

4. KNOWLEDGE ACQUISITION TOOLS 24
4.1 Intelligent Editors 26
4.2 Interactive Acquisition Tools 27

4.2.1 KA Tools and Problem-Solving Strategy 28
4.2.2 KA Tools and Knowledge Acquisition Strategy 30

4.2.2.1 Interview Techniques for Knowledge Acquisition Tools 30
4.2.2.2 Modeling as a means for Knowledge Acquisition Tools 31

4.2.3 KA Tools and Knowledge Representation 33
4.3 Automated Acquisition Tools 35
4.4 Survey of Historically Important KA Tools 36
4.5 Need for a Production Capable Tool 37
4.6 Summary 38

5. KNOWLEDGE ACQUISITION THROUGH MATRIX 40
ORGANIZATION TOOL (KATMO)

5.1 Knowledge Acquisition through Interactive Interviewing 42
5.2 Knowledge Representation through Matrix Organization 46

5.2.1 Elements 47
5.2.2 Parameters 47
5.2.3 Influencing Factors 48

5.3 Parameter Isolation and Rule Identification 52
5.3.1 Standard Procedures 53
5.3.2 Selection Policies 53
5.3.3 User-Determined Selection 54

5.4 Complexity Management 55
5.4.1 High-Order Rules 55

5.4.2 Rule Exceptions
5.5 Summary

6. AN APPLICATION OF KATMO: POWERFEED DRILL COMPONENT
SELECTION

6.1 Introduction to Powerfeed Drill Equipment: Applications and Context
6.2 Powerfeed Drill Equipment and the Product Development Process
6.3 Case History
6.4 KATMO in Interactive Interviewing
6.5 KATMO in Knowledge Organization
6.6 Parameter Isolation and Rule Identification

6.6.1 Parameter Isolation for Non-coupled Elements
6.6.2 Parameter Isolation for Coupled Elements

6.7 KATMO's Output
6.8 Discussion of KATMO
6.9 Future work with KATMO

7. KNOWLEDGE-BASED SYSTEMS TECHNOLOGIES AND
BUSINESS POLICY
7.1 Policies of User Involvement
7.2 Policies for Achieving User Buy-In

7.2.1 Supporting Job Security
7.2.2 Choosing Desirable Tasks to Automate

7.3 KBS Technology and Technological Innovation
7.3.1 KBS Maintenance and Incremental Innovation
7.3.2 KBS Maintenance and Modular Innovation
7.3.3 KBS Maintenance and Architectural Innovation
7.3.4 KBS Maintenance and Radical Innovation

7.4 Policy Summary and Discussion
7.5 Implications of KBS Technology for the Manufacturing Organization
7.6 Summary

8. CONCLUSION

BIBLIOGRAPHY

APPENDIX A

APPENDIX B 99

List of Figures

Figure 1-1 Thesis Flow Diagram 10-11

Figure 2-1 Knowledge-Based System Structure 14

Figure 3-1 KBS Development Path 15
Figure 3-2 Scoring Grid for a Candidate Task 17
Figure 3-3 Knowledge Flow in KBS Development 19

Figure 4-1 The General Function of a Knowledge Acquisition Tool 24
Figure 4-2 Level of automation of KA tool construction vs. 25

complexity of the knowledge structure
Figure 4-3 Function of a Intelligent Editor 26
Figure 4-4 Function of a Interactive Knowledge Acquisition Tool 28
Figure 4-5 "Links among Knowledge Pieces" from SALT 32
Figure 4-6 Network Representation of MOLE Knowledge Base 33
Figure 4-7 Sample knowledge representation from EMYCIN 33
Figure 4-8 Framelike Data Structure of RLL 34
Figure 4-9 Function of a fully-automated KA Tool 35

Figure 5-1 KATMO's Functionality in the Context of KBS Development 41
Figure 5-2 KATMO's Interviewing Query Structure 43
Figure 5-3 Interviewing Algorithm 44
Figure 5-4 Display Format of KATMO's Interview 45
Figure 5-5 Knowledge Matrix: Blank Template 50
Figure 5-6 Knowledge Matrix (Unorganized) 51
Figure 5-7 Knowledge Matrix (Organized) 51
Figure 5-8 Sample Matrix Extraction (Non-coupled elements from Figure 5-7) 52
Figure 5-9 Sample Matrix Extraction (Coupled elements from Figure 5-7) 53
Figure 5-10 Loop Breaking via User Selection 54

Figure 6-1 Powerfeed Drill Assembly 60
Figure 6-2 Powerfeed Drill Kit Operating Environment 61
Figure 6-3 Powerfeed Drill Kit Specification Process 62
Figure 6-4 Interactive Knowledge Acquisition Structure 65
Figure 6-5 KATMO's Design Structure Matrix for Knowledge Acquired through 67

Interactive Interviewing (Unorganized)
Figure 6-6 Relevant Data Pieces of KATMO's Design 69

Structure Matrix (Unorganized)
Figure 6-7 KATMO's Design Structure Matrix (Organized) 70
Figure 6-8 Coupled Region of KATMO's DSM 71
Figure 6-9 Parameter Isolation 72
Figure 6-10 Sample System Rule for Motor Selection 73
Figure 6-11 Sample System Rules for Motor Selection 73-74
Figure 6-12 Final Rules for Motor Selection 74-75
Figure 6-13 Coupled Elements in Isolation and Corresponding Relationship 76

Figure 7-1 "A Framework for Defining Innovation" 82
Figure 7-2 KBS Policy Matrix 85

1. Introduction

Time-to-market with new products is an important issue for manufacturing companies: Fast

product development enables a company to react quickly to changing market needs and can

therefore be a source of competitive advantage.

The desire to improve and accelerate the product development process has led to several

organizational innovations over the past few years. These include:

Company focus:

Company structure:

Project Teams:

Companies now emphasize customer awareness as a key

component to developing successful products

Companies have become less hierarchical in order to

facilitate communication between managers and employees

Companies now use cross-functional teams to facilitate

communication across departments

One technological innovation that can facilitate productivity gains in product development is system

automation. By encoding knowledge into computer programs called Knowledge-Based Systems

(KBS or KB systems), many tasks may be automated [Masud]. One area where KB systems

present a significant advantage is in the execution of iterative tasks. Design iterations and revisions

are important drivers of lead time. By automating iterations, expert systems not only accelerate the

product development process, but also enable a company to quickly experiment with alternative

design solutions [Boeing].

There are other advantages associated with using KB systems:

Higher Quality:

Decreased Variability:

Expertise Retention:

Because these systems embody the knowledge of specialists or

domain experts, quality solutions are generated consistently.

Because the encoded knowledge is not applied in a subjective

manner, the variability of solutions can be reduced. In the case of

KB systems for component selection, decreased variability also results in

decreased inventory requirements (see 6.3).

By capturing expert knowledge and appropriating it to the

organization, KB systems retain skills after the departure of the

expert [Field].

KB systems are not, however, without drawbacks. The most immediate drawback is that expert

systems themselves require a long development lead time [Mills] and are expensive. These factors

may contribute to low level of manager support [Field]. In addition, many of the advantages

derived from KB systems have associated disadvantages:

Limited Applicability:

Decreased Creativity:

High Maintenance:

Because generating high quality solutions is dependent on the depth and

scope of the knowledge embodied in the KB system, the: KBS may only be

applicable to a small range of problems.

Decreased variability in solutions may also lead to decreased creativity. By

relying on an KB system, an organization may not consider all potential

design solutions or all potential methods of arriving at a solution.

Knowledge of systems and processes changes over time. As a result, a KB

system must regularly be updated and tested.

The successful development and implementation of KB systems is dependent on several factors

including: management and end-user support, the choice of the process to be automated, the

development methodology, and the choice of expert system tools.

Many expert systems are not implemented because the system fails to meet the ambitious goal of

capturing all of the knowledge of the process within the rules it executes. This goal is often

unrealistic because of the number of exceptions to the rules. Other systems are unsuccessful

because the set of expert knowledge is not correctly identified. This is often attributed to

inadequate communication between the system developers and domain experts, and a lack of

framework for developing rules.

While hundreds of tools exist to facilitate the development of expert systems, these tools are rarely

used by manufacturing companies or KBS consultants in the development of KB systems (see

Section 4.5). In fact, paper is still the most common medium for recording and analyzing solicited

knowledge [Concentra]. This situation reflects the need for further research in the domain of

knowledge acquisition and knowledge acquisition tools, particularly in the introduction of these

tools into production environments.

In this thesis, I propose a structure for the process by which rules are built. This structure is

embodied in a knowledge acquisition tool that will (1) facilitate communication between functional

and cross-functional groups to improve and accelerate the development of rules, and (2) assist in

the identification of rule exceptions and the possibility of user interfaces with the system for

"complexity management." Section 1 is an introduction to KB systems. Section 2 formally

defines KB systems and their components. Section 3 describes the general steps in KBS

development. Section 4 is an introduction to knowledge acquisition tools. Section 5 presents the

design of a knowledge acquisition tool, KATMO, for rules development in selection processes.

The methodology of this tool is comprised of three steps: knowledge acquisition, knowledge

organization and rule identification. In Section 6, an application of this tool to the development of

a prototype KBS for a drill kit assembly is described. Section 7 concludes with an exploration the

policy implications of this work for manufacturing firms engaged in the development of KBS

systems. The structure of this thesis is represented in Figure 1.1.

Introduction

Advantages and Disadvantages of KBS

Introduction to KBS

Definition of KBS Components of a KBS I

KBS Development Process

-- -- 'iteration

Identification

Conceptualization

Formalization

L Implementation

a.

Figure 1-1 Thesis Flow Diagram

Section 2

Section 3

III

Section 1

Knowledge Acquisition Tools (KA Tools)

-- I

Intelligent Editors Interactive KA Tools i Automated KA

Knowledge Acquisition Through Matrix Organization (KATMO) Tool

Interactive Interviewing Matrix Organization I Parameter Isolation

An Application of KATMO: Powerfeed Drill Component Selection

KATMO Illustration Complexity Management I Future Research

KBS Technologies and Business Policy

User Involvement User Acceptance KBS Policy Matrix

Figure 1-1 Thesis Flow Diagram

12

Problem Solving Strategy

Interviewing Strategy

Knowledge Representation
--- ------------I

Section 5

Section 6

Section 7

II |

II

I |

Section 4

2. Introduction to Knowledge-Based Systems

Knowledge-based systems are an outgrowth of a field of Artificial Intelligence, termed Expert

Systems, from the 1960s. Expert Systems initially focused on the construction of high

performance programs in specialized domains, a pursuit that sought to understand and encode

knowledge that underlies human expertise [Hayes-Roth et al.]. Initial successes in the field of

expert systems were achieved by Feigenbaum, who created "DENDRAL," an expert system that

interprets data from a mass spectrometer, in 1973. Further development in expert systems has led

to a set of principles, tools and techniques that are now referred to as knowledge engineering

[Hayes-Roth, et al.]. Today, types of expert systems are employed in high technology companies

throughout the world for thousands of different operations.

2.1 Defining Knowledge-Based Systems

There exist many different terms in the academic literature referring to KB systems, these include:

expert systems, automated systems, knowledge-based expert systems, rule-based design systems,

etc. While some authors use these phrases interchangeably, others distinguish between terms.

One common distinction between KBS and expert systems is the notion that an expert system is a

smaller set of knowledge-based systems including only those systems enhanced with a computer

application [Masud]. Another distinction is that knowledge-based systems embody knowledge,

and that this knowledge is not necessarily expert knowledge [Smith; Schmoldt and Rauscher]. In

this thesis, I will conform in notation with those authors who choose to make this latter distinction.

Specifically, I will define a knowledge-based system as a computer system "which embodies

knowledge about a specific problem domain and can thus be used to apply this knowledge to solve

problems from that problem domain [Smith]."

2.2 Components of a Knowledge-Based System

Knowledge-based systems are comprised of essentially two main parts: a knowledge base and an

inference engine. In addition, there are usually subprograms to facilitate interactions between the

system and its environment; such as the user interface and interfaces for communicating with

external databases [Buchanan and Shortliffe]. The knowledge base is composed of formal rules,

definitions, facts, and expert level heuristics for solving or diagnosing problems [Edosomwan].

The inference engine provides an organized procedure and controls for applying the knowledge

base in solving problems [Edosomwan]. Figure 2-1 illustrates this structure.

r------------------------------------I
Knowledge-Based System

Inference

User Engine % External
USER A,

Interface Interface

K

Base

Figure 2-1 Knowledge-Based System Structure [Adapted from Buchanan and Shortliffe]

These components typically interact with the user in the following way. A user inputs information

concerning a particular problem. The user-interface then translates that information into a forth

understood by the inference engine. Based on that information, the inference engine accesses the

knowledge base and executes the relevant rules. The result of this execution is the solution

generated by the KBS. This solution is returned to the user.

3. The Development of Knowledge-Based Systems

The development of an knowledge-based systems is often a complicated, expensive, and time

consuming task: KBS development projects can last between several weeks and several years and

can cost, including implementation, more than $1M. An awareness of the costs of developing

knowledge-based systems served as an impetus for much research on the stages of knowledge-

based system development. Many models of this process have been developed (see for example

Buchanan et al., Schmoldt and Rauscher, Smith and Kandel, Weiss and Kulikowski, etc.). I have

based the diagram in Figure 3-1 on a schematic by Bachrach because it was derived from recent

contact with both companies using KBS applications and consultants who develop KBS systems.

I have combined elements of this diagram with research by Buchanan et al. for the purpose of

further discussing the Knowledge Acquisition phase, thus facilitating the explanation of knowledge

acquisition tools later in Section 4. Figure 3-1 represents the development process of a KBS as

discussed in this thesis.

Figure 3-1 KBS Development Path [adapted from Bachrach

and Buchanan et al.]

The process of developing a knowledge based system first begins with a decision to explore KBS

as a potential solution to a problem. While many other possible solutions may exist, and the

process by which companies decide to pursue system automation is important, these issues will not

be considered here. The development process discussed will therefore begin with the assumption

that the decision to develop a KBS has been made. The following sections briefly describe each

phase of the KBS Development model. A thorough discussion of these topics can be found in

Schmoldt and Rauscher, Buchanan et al., Payne and McArthur, and Morik et al.

3.1 Goal Identification

The process of KBS development begins with identifying the goals of the development process.

Several possible goals of this effort were identified in the introduction, these included: decrease

lead time, decrease variability, improve quality, etc. Understanding the purpose of the project will

help in narrowing down the number of possible tasks appropriate for automation [Bachrach]. For

example, if decreasing lead time for a complete design process is the project goal, the development

group might choose to analyze those tasks which either contributed significantly to lead time

individually or those tasks which involved many iterations. Once goals are clearly defined, and

several candidates for automation have been identified, task selection is performed.

3.2 Task Selection

Task selection involves the analysis, rating and evaluation of potential candidates for automation.

Because the success of a KBS application is highly dependent on the scope and complexity of the

task selected, this phase is critical [Laufmann et al.]. Various methodologies have been proposed

for evaluating potential tasks [Casey; Slagle et al., Laufmann et al.]. Laufmann et al. present a

thorough ranking system that rates a potential task on two levels of detail and along four

dimensions: clarity of goals and measures of success, appropriatenesg of task for a KBS,

availability of resources, and non-technical considerations (for example, organizational fit of

KBS). In this methodology, many criteria along each dimension are rated as either very positive

for a KBS application ("++"), positive ("+"), neutral ("."), negative ("-"), or very negative ("--").

The number of criteria receiving each ranking are then tallied and entered into a scoring grid for

evaluation. Laufmann et al. suggest several guidelines for the selection of tasks based on the

ranking. A sample scoring grid is depicted below.

Dimension Level One Level Two

++ + * -- wt. ++ + * - -- wt.

Goals 2 6 1 0 0 0 2 0 0 0

Appropriateness 0 2 2 0 0 7 45 11 4 0

Resources 0 4 0 0 0 2 7 1 0 0

Nontechnical 2 5 1 0 0 4 11 1 0 0

Figure 3-2 Scoring Grid for a Candidate Task [Laufmann et al.]

One advantage of the Laufmann method is that it not only indicates whether an application is well

suited to a KBS approach or not, but it also identifies along what dimension(s) the task is lacking

[Schmoldt and Rauscher]. It is therefore conceivable that a task initially judged to be deficient

along one or more dimensions, could be redefined, i.e. scope could be decreased, and then the task

could receive a favorable rating [Schmoldt and Rauscher].

3.3 Project Description and Planning

Once a particular task has been selected, the KBS development process continues by defining more

specifically the goals, scope, and schedule of the development effort. Bachrach identifies several

aspects of the project that should be clarified at this time. These include:

I. What the Application will do: Match project goals to application requirements.

2. What Knowledge is Needed to Develop the Application: Match application requirements

to potential knowledge sources (see 3.4.1.1 Identification).

3. How the Application will be Developed: Define more precisely the development steps.

4. How will the Developed System Interface with the Existing Environment: Understand

interface issues with external systems.

5. Who will Use the Application: Identify users and user interface issues and potential

affects of the application on existing jobs (see Section 7).

Another important step is the identification of the KBS development team members and its leader.

Forming a capable team for the KBS development process is important because of the cross-

functional nature of many KBS systems. Because many knowledge-based systems require

knowledge from several sources and this knowledge must be coded in a computer application,

team members with appropriate skills must recruited.

3.4 Knowledge Acquisition

Knowledge acquisition, or knowledge engineering, is the process of transferring and translating

problem-solving expertise from some knowledge source to a program [Buchanan et al.]. There are

many potential sources of knowledge, these include: human experts, textbooks, databases, and

past experiences. The role of the knowledge engineer is to interact with these sources, form a

knowledge model that represents the acquired knowledge, and encode this knowledge in a

computer program. This process is represented in Figure 3-3.

Knowledge Acquisition =M

Knowledge
Sources:

Experts
Textbooks
Databases
Experience

Knowledge

Base

Figure 3-3 Knowledge Flow in KBS Development. [Adapted from Schmoldt and Rauscher].

The knowledge acquisition phase of KBS development is widely recognized as the bottleneck;

there are several reasons for this:

1. Nature of Knowledge Storage. While an expert may fully understand his or her domain,

the manner in which the human mind stores knowledge can differ greatly from the

preferred structure of a computer program.

2. Semantics. Even people within the same organizations use different terminology to

describe the same processes or objects. Because KBS applications often require

knowledge from experts in multiple domains, establishing a common vocabulary can be

problematic.

3. Many Processes are not Organized in their Current Form. The process by which a task is

currently performed in a company may not be formal and may depend on many diverse

criteria. Because knowledge-based systems depend on rules and heuristics for

decision-making, unorganized processes may be difficult to capture with a KBS.

SKnowledge
Model

4. Difference in Knowledge Level between the Knowledge Engineer and the Human Expert.

Often the person acquiring knowledge for a KBS application, the knowledge engineer, is

not also the domain expert. In this case, the knowledge engineer must develop a certain

level of understanding to converse with the expert. This education process can be time

consuming.

3.4.1 Stages of Knowledge Acquisition

Literature on knowledge acquisition is abundant. Many variations and different descriptions of the

process have been formulated. Buchanan et al. assert that in the process of developing a KBS, the

knowledge engineer progresses through various stages. Buchanan et al. then identify five different

stages of knowledge acquisition: identification, conceptualization, formalization, implementation,

and testing. I have chosen to describe identification, conceptualization and formalization as stages

of knowledge acquisition, while discussing implementation and testing in the context of the entire

KBS development effort. In this manner, the explanation parallels the steps of the knowledge

acquisition tool introduced in Section 5. The next three sections are taken heavily from Buchanan

et al.

3.4.1.1 Identification

The knowledge acquisition phase of knowledge-based system development begins by identifying

the participants in the process. One manner in which this is done is through a series of interviews

of domain experts by the knowledge engineer. This process involves understanding the

knowledge and expertise of each domain expert. Based on these interviews, appropriate experts

are identified for consultation during the entire KBS development process. Another objective of

the identification phase is to more precisely describe the problem the system attempts to address.

This involves formal discussion of the aspects of the problem, its characteristics and its

subproblems. This understanding facilitates the conceptualization of the knowledge based system.

3.4.1.2 Conceptualization

During the conceptualization phase, the knowledge engineer and domain experts make explicit the

problem characteristics identified in the previous stage. Several important questions are addressed:

1. What processes are involved in the problem's solution?

2. What types of data are available?

3. Can a diagram of system hierarchy be built and can causal relationships be labeled?

Forming an accurate concept of the system is a long and iterative process, through which the

knowledge engineer must repeatedly interact with domain experts. The output of this phase is the

documentation of key concepts and relations.

3.4.1.3 Formalization

Formalization involves mapping the key concepts, subproblems and information flow

characteristics identified during the conceptualization phase into a more formal representation based

on knowledge engineering representation tools or KBS application structures. As such, this stage

focuses on matching or structuring the collected knowledge into a form that can be more easily

translated into a computer program. The important result of this stage is uncovering the underlying

model of the process by which the desired solution is reached.

3.5 Representation

Knowledge Representation completes the Formalization process (3.4.1.3) by coding the organized

knowledge into a prototype system [Smith]. There exist many possible knowledge representation

schemes. These include: IF...THEN...ELSE rules, frames & scripts, objects, networks and logic

[Schmoldt and Rauscher]. The representation chosen for the system should match the structure of

the selected knowledge-based application. The development of a prototype is very valuable

because it tests the adequacy and completeness of the formalization and the basic ideas describing

the system [Buchanan, et al.]. (Much research has been devoted to the domain of knowledge

representation. For a detailed treatment of this subject see for example Payne and McArthur,

Morik et at., and Marcus).

3.6 Testing

The testing stage evaluates the prototype system and the representational forms used to implement

it. This is done by running the system with examples and assessing the results. If manually

generated solutions to the examples exist, the KBS results can be compared to these results along

some performance dimensions. Sell identifies five dimensions of KBS performance; Schmoldt

and Rauscher add two final criteria:

1. Consistency: is advice free from contradiction?

2. Completeness: can the application solve any problem within its domain?

3. Soundness: can the system deliver correct answers

4. Precision: is the strength of answers in line with the data and knowledge on hand?

5. Pragmatics: can those for whom it was designed use it?

6. Representative: is the solution methodology representative of the intended design?

7. Robust: the application should degrade gracefully as the quality of input data is

reduced.

Often the testing phase will identify system deficiencies and require further interaction with domain

experts to improve the existing knowledge model; these measures may result in expanding the

knowledge base.

3.7 Implementation

Implementation is the introduction of the KBS into the design environment. Important aspects of

this process include educating the users of the system and the interfacing of the KBS with external

systems or databases. With respect to databases, it may be necessary to introduce translating

programs in order to facilitate communication between the KBS application and other programs or

sources. Reengineering of existing processes may be required to accommodate the KB system.

Another issue in system implementation is the impact of the KBS on the user and his/her job

function. These implications are explored in Section 7.

3.8 Summary

Knowledge-based system development can be viewed as a product development process that

moves through several stages: goal identification, task selection, project description, knowledge

acquisition, knowledge representation, testing and implementation. While this process is

represented as discrete phases, KBS development is a continuous process of learning and

structuring knowledge. Knowledge acquisition, the process of transferring and translating

problem-solving expertise from a knowledge source into a computer program [Buchanan et al.] is

critical to KBS development because this process captures and structures the knowledge upon

which the KBS is built. Because of the importance of the knowledge acquisition process and the

time and resources required to complete this process, many tools have been developed facilitate

knowledge acquisition. These tools will be discussed in the next section.

4. Knowledge Acquisition Tools

In the previous section, the KBS development process was described as a series of tasks through

which system goals are met by gathering and structuring knowledge about a system, and then

coding that knowledge into a KBS application. As discussed in Section 3, this process is both

time-consuming and costly. Because the Knowledge Acquisition phase of KBS development is

widely recognized as the bottleneck, much research has been devoted to developing tools to

facilitate this process. Knowledge acquisition tools serve as a link connecting the knowledge

source to the knowledge-based system:

Knowledge Sources
KA Tool

Domain Experts
Design Manuals
Experience, etc.

Knowledge-
Based
System

Figure 4-1 The General Function of a Knowledge Acquisition Tool

The capabilities of knowledge acquisition tools vary greatly. While some tools aim to enhance the

KA process by providing computerized means of amending rules and knowledge structures, called

"intelligent editors," other tools seek to fully automate the entire transfer of knowledge from its

source to a computer program via machine learning. Buchanan and Wilkins categorized several

well-known knowledge acquisition tools along two dimensions, complexity and level of

automation (see Figure 4-2). While this representation gives insight into the intended use of the

tools, Buchanan and Wilkins note that the representation does not reveal any information about the

quality of the tool.

Complexity

Arbitrary Programs:

Structured Objects:
Constrained Lisp

Control Knowledge:
Rules and Frames

Factual Knowledge:
Rules and Frames

Decision Trees:

Coefficients:

MACSYMA

Hand
Coded

AM
ONIX

CYC

ONCOCIN

MYCIN
NEOMYCIN

ASK

AQUINAS
MOLE
SALT
TEIRESIAS
DISCIPLE
LEAP
PROTOS

LEX
SOAR
STRIPS
CHEF
CLASSIFIERS
INDUCE
SEEK2
AUTOCLASS
CLASSIT
EBG
EBL
EGGS
KARDIO
XPLAIN
ODYSSEUS
GENETIC ALG.

ID3

BACKPROP

Level of automation
Intelligent Interactive Automatic
Editors Elicitation Methods

Figure 4-2 Level of automation of KA tool construction vs. complexity

of the knowledge structure [Buchanan and Wilkins]

As illustrated in the above diagram, there are essentially three types of knowledge acquisition tools:

Intelligent Editors, Interactive (or Semi-Automatic) Tools, and Automatic (or Machine Learning)

Tools. These tools are described in the following sections.

L

4.1 Intelligent Editors

Intelligent editor programs facilitate the modification, expansion, and verification of information

inputted to the knowledge base. An editor assists a knowledge engineer or a programmer in

various ways. Most importantly, an editor acts as a translator between the user's understanding of

the knowledge and the coded form of that knowledge in the KBS knowledge base. This function

of an intelligent editor is represented in Figure 4-3. While the task of modifying the knowledge

base may be completed by anyone in the KBS development process, I have labeled the user,

"Knowledge Engineer."

Knowledge-Based System

Inference

I i
Editing

Programs

Translate

Code <- Use r

U ;l llllle

Interface

- 4-

Figure 4-3 Function of a Intelligent Editor

Buchanan et al. identify three important functions of intelligent editors, these include general

bookkeeping, helping the user avoid syntactical errors, and checking for semantic inconsistencies.

Payne and McArthur describe a fourth important function of editors, providing graphical

representations of knowledge.

I. Performing Bookkeeping Functions: General bookkeeping functions such as keeping track

of unfinished editing, recognizing modifications to the knowledge base, and maintaining records of

I

IKnowledge
Base

Knowledge as Code

dates, times and users altering the knowledge base are simple but important tasks in monitoring the

evolution of the KBS [Buchanan et al.]. Through the automation of these tasks, knowledge

engineers and programmers can focus on improving the content of the knowledge base rather than

documentation.

2. Avoiding Syntactical Errors: Editors with an understanding of the knowledge-based

system's building language with which they are coupled can recognize typographical and

syntactical errors made by the user during knowledge-base modification [Buchanan et al.]. Several

editors include such features as notifying the user of the error, and presenting the user with options

for amending the error [Buchanan et al.]. These features help the user maintain a data entry format

consistent with the language of the KBS code.

3. Avoiding Semantic Inconsistencies: Editors that check the semantics of the knowledge

base identify inconsistencies within the knowledge base structure. Such analysis is typically

performed by comparing the facts about objects in the knowledge base [Buchanan et al.]. Because

hierarchically organized representations make the interrelations between facts in the knowledge

base explicit, these systems are well-suited to semantic checking [Buchanan et al.].

4. Providing Graphical Representations: As the knowledge base expands, it becomes

increasingly difficult to understand the elements and interrelations of elements that reside in the

KBS [Payne and McArthur]. Graphical representations, such as causal loop diagrams or

repository grids (see Boose, 1985), enable the user to isolate and display relationships between

objects in the knowledge base. These representations can contribute to understanding of the

system [Payne and McArthur].

4.2 Interactive Acquisition Tools

Interactive acquisition tools expand upon the capabilities of intelligent editors by actively querying

the user for knowledge, translating that knowledge into a coded form, and then structuring the

knowledge to form a knowledge base. In contrast to intelligent editing tools which are used mainly

by either a knowledge engineer or a KBS system programmer, interactive acquisition tools are

typically designed for use by the domain expert [Klinker]. While this approach provides a more

direct link between the knowledge source and the KBS knowledge base, Buchanan et al. note that

such programs essentially replace one type of communication problem (expert to knowledge

engineer) with another (expert to program).

Knowledge

Engineer

Domain Expert

I- - --------- --- -----------

Knowledge-Based System

Inference

UT 1;,

Interactive

KA Tool

Solicit

Knowledge
I -

eI n gnLI

Interface
LJI

-- e----------

Figure 4-4 Function of a Interactive Knowledge Acquisition Tool

Despite this challenge, much progress and success has been achieved in the development of

interactive KA tools. The following sections describe three important elements that differentiate

interactive knowledge acquisition tools: problem-solving methods, knowledge acquisition

strategies, and knowledge representation forms.

4.2.1 KA Tools and Problem-Solving Strategy

McDermott defines a KBS's problem-solving strategy as its method of performing the

"identification, selection and implementation of a sequence of actions that accomplish some task

within a specific domain." Klinker elaborates on this definition:

Knowledge

Base

Knowledge as Code

A system's problem-solving method:

1. Establishes and controls the sequence of actions necessary to complete a task

2. Defines the order in which subtasks are executed in order to complete the overall task

3. Identifies the type of domain-specific knowledge that is applicable within each step,

thereby making the roles of different knowledge explicit

4. Defines the way knowledge interacts during problem-solving [Klinker].

While some automated knowledge acquisition tools do not presuppose a problem-solving method,

so called "general tools" [Klinker], many applications attempt to enhance their capabilities by

embodying a specific problem solving method. Such methods have been named, "Role-limiting"

and are defined as problem-solving methods that "strongly guide knowledge collection and

encoding [McDermott]."

In a detailed study attempting to establish a taxonomy of KBS problem solving methods,

McDermott identifies the following subclassifications of Role-Limiting problem solving methods:

Subclassification 1: Cover-and-Differentiate

Solution by proposing solution candidates and then seeking information about the problem that will

differentiate the candidates [see Eshelman].

Subclassification 2: Propose-and-Revise

Solution by proposing a value and then checking that value against all relevant constraints [see

Marcus]. If the proposed value is not acceptable, the value is revised and re-submitted.

Subclassification 3: Acquire-and-Present

Solution by identifying desired pieces of information, gathering the information via search and

query, and presentation of the information according to an appropriate strategy [see Klinker].

Additional discussion of problem-solving methods may be found [Boose], and [Schreiber et al.].

4.2.2 KA Tools and Knowledge Acquisition Strategy

Different knowledge acquisition strategies are employed by KA tools depending on the type of

problem the KBS is designed to solve and the manner in which the solution is to be achieved.

Two common techniques, interviewing and modeling are described in the following sections.

4.2.2.1 Interviews Techniques for Knowledge Acquisition Tools

KBS development entails the synthesis of knowledge from many sources. Different means of

acquiring knowledge may be better suited than others depending on the domain expert's

preferences and type of knowledge. In an analysis of the development of an expert diagnosis

system for personal illnesses, Kahn identifies eight interviewing strategies for eliciting knowledge.

While these descriptions reflect the domain in which they were developed, their mention here adds

insight to different means by which a knowledge acquisition tool can elicit information.

I. Differentiation: Seeking illness symptoms that provide leverage in distinguishing

between diagnosable events.

2. Frequency conditionalization: Determining if there exist background conditions under

which one cause is more or less likely to occur

3. Symptom distinction: Seeking out the special characteristics of a symptom that identify it

as having been cause by one rather than another event.

4. Symptom conditionalization: Eliciting conditions in which a symptom is more

strongly expected, given a problem.

5. Path division: Eliciting an intermediate symptomatic event that is produced by a

problem and leads to the end symptom.

6. Path differentiation: Eliciting intermediate events differentiate hypothesized events that can

result in otherwise similar symptoms.

7. Test differentiation: Distinguishing the reliability of different tests.

8. Test conditionalization: Determining the conditions under which the reliability of a test

may vary.

Another dimension in which interviewing tools can be differentiated is the order in which

questioning is structured: Top-down or Bottom-up. Marcus asserts that a bottom-up strategy is

more appropriate for soliciting knowledge from human experts who understand their individual

domains much clearer than how the different domains interact. When a goal or assembly can be

identified as the output of the system, a top-down approach decomposes the elements and

facilitates the identification of the interactions between system elements.

4.2.2.2 Modeling as a means for Knowledge Acquisition Tools

Certain tools use models and graphics as a means for knowledge acquisition. These tools are

designed to enhance the knowledge acquisition process by supplementing interviews with graphic

representations. One type of modeling tool, Causal Model Based Knowledge Acquisition Tools

(CMBKATs) is described by Charlet et al. CMBKAT's identify two types of knowledge upon

which the KBS is built: Heuristic knowledge and causal knowledge. Heuristic knowledge

describes the rules that are to be imbedded in the KBS; causal knowledge describes the

relationships between elements in the KBS [Charlet et al.]. Boose classifies seven other

techniques as forms of modeling.

1. Cognitive modeling: Models that captures the thought process and human problem-solving

method

2. Conceptual modeling: Models that build graphical or other multi-level models

3. Consistency analysis: Analysis of knowledge for consistency or completeness

4. Decision analysis: Probabilistic inference and planning using diagrams and related

techniques.

5. Domain Modeling: Models of the knowledge domain

6. Ontological and Linguistic Modeling: Language-based models

7. Simulation: Simulations to verify knowledge bases or produce rules.

As with the interviewing tools described in the previous section, modeling tools may pursue either

top-down, bottom-up or mixed acquisition strategy.

Many modeling approaches to KA derive their strength from their representations. Such models

present the KBS builders-either domain experts or knowledge engineers--with a graphic picture

of the knowledge base [Payne and McArthur]. In previous research, these graphics have taken the

form of causal loop diagrams, flow diagrams, matrices, etc. Examples of two possible

representations are given in figures 4-5 and 4-6.

Door-Opening Platform-Width Opening-Width

Car-Jamb-Return

Maximum
Car-Jamb-Return

Door Width Stringer-Quantity

Figure 4-5 "Links among Knowledge Pieces" from SALT [Marcus]

4 contributes to
-b rnntrainc

Worn
crankshaft
bearings,

Lack of
power

Worn
cylinders

Excessive
engine
noise

Ignition
problems

Engine
misfiring

Figure 4-6 Network Representation of MOLE Knowledge Base [Eshelman]

4.2.3 KA Tools and Knowledge Representation

Knowledge representation refers to the means by which KBS elements, their characteristics and

their interrelations are described within the KA tool. Different KA tools employ different

representations to describe the systems they model. The most common representation is decision

rules. Decision rules typically are in an IF... THEN... ELSE structure. Figure 4-7 is a sample of

the knowledge representation and rule language of EMYCIN, a KA tool for developing

consultation programs.

<rule>

<antecedent>

<condition>

<associative-triple>

(IF <antecedent> THEN <action> (ELSE <action>))

(AND { <condition> }+)

(OR {<condition> }+) I (<predicate><associative - triple>)

(<attribute> <object> <value>)

Figure 4-7 Sample knowledge representation from EMYCIN [van Melle 1981]

Another common representation is that of a data structure. Data structures capture relevant

information about each element in the system and display that information as a descriptive package.

Figure 4-8 illustrates the data structure of RLL, a complete expert system designed to build expert

systems. This figure is from Barstow et al.

M6-3

Isa: Manhole

FeedsInto: M6-2

LocatedUnder: (MainStreet and OakDrive)

M6-2

Isa: Manhole

FeedsInto: M6-3

LocatedUnder: (MainStreet and RidgeRoad)

(a)

(b)

Figure 4-8 Framelike Data Structure of RLL

One characteristic of this data structure is uniformity of notation [Barstow et al.] This characteristic

facilitates data organization within the tool.

Manhole

Isa: Set

Generalizations: (PhysObject, CircularObject, Artifact)

Examples: (M6-2, M6-3, ...)

Description: This represents the collection of all manholes.

Prototype: Typical Manhole

Many types of knowledge representations exist. While these will not be evaluated here, several

other representation schemes will be mentioned: hypotheses, findings, vectors of symbols, objects

with associated vector pairs, etc.

4.3 Automated Acquisition Tools (Machine Learning)

Automated acquisition tools attempt to automate the entire KBS development process, thus directly

connecting the knowledge source to the KBS, with little or no intervention from a knowledge

engineer or KBS programmer (see Figure 4-9). While automated tools share many of the design

issues as interactive tools such as knowledge representation, all information is processed

internally.

Knowledge-Based System----- ----
Knowledge-Based System

Figure 4-9 Function of a fully-automated KA Tool

Automated methods typically apply algorithms to make generalizations or induce knowledge from

given examples [Boose]. Much of this work falls under the category of induction, one focus area

of artificial intelligence. Inductive learning is the process of "acquiring knowledge by drawing

inductive inference from teacher- or environment-provided facts [Michalski]." This process

involves repeated operations of generalization, transformation, correction and refinement of

knowledge representations [Michalski]. Because knowledge at the source may be in any form,

usually some common representation must be achieved before an inductive process can begin.

Previous research has achieved inductive learning from many sources, these include:

spreadsheets, decision trees, textbooks, statistical data, and cases. While automated tools seek to

eliminate entirely the bottleneck of knowledge acquisition, most tools are still the subject of

continuing research.

4.4 Survey of Historically Important KA Tools

The literature on different KA tools is abundant. While a survey of all existing tools will not be

completed here, several tools are worth noting due to their historical and technological importance.

TEIRTERAS [Davis] is one of the first knowledge acquisition tools. TEIRESIAS is invoked

when a system user is displeased with the performance of the expert system. TEIRTERAS

determines the inadequacies in the expert system's knowledge base and then queries the user to

acquire that knowledge [McDermott and Dallemagne]. TEIRTERAS is oriented toward the syntax

of rule-based systems and heuristic classification [Buchanan and Wilkins].

EXPERT [Weiss et al.] is a general system for developing consultation models and has contributed

to many medical applications [Barstow et al.]. EXPERT's knowledge representation is comprised

of three components: hypotheses, findings and decision rules.

EMYCIN [van Melle et al.] is a general system for developing a consultation program that can

request data about a case and perform an interpretation or analysis. EMYCIN's knowledge

representation is comprised of production rules.

KAS [Duda et al., 1979] is a system for constructing rule-based diagnostic systems [Waterman

and Hayes-Roth]. KAS represents knowledge as either probabilistic inference rules (IF

<antecedent> THEN <rule-strength>etc.) or partitioned semantic networks [Waterman and Hayes-

Roth].

AQUINAS [Boose] is a collection of integrated tools that combine different strategies to build a

model of the system knowledge. These tools include objects for managing hierarchical structures,

uncertainty and induction. Knowledge in AQUINAS is represented in several forms including

rules, hierarchical trees and rating grids.

KADS [Wielinga and Breuker, 1986] is a model-based method that uses rapid prototyping as an

exploratory tool in the KA process [Smith]. KADS classifies the system knowledge to be acquired

into several levels and then uses this information to shape an informal model.

SALT is a knowledge acquisition tool that generates designs based on a process of proposing a

value, checking the values against relevant constraints, and then revising the values if constraints

are not met [Marcus and McDermott]. SALT is one of the first tools that treats problems of

construction (of a solution) rather than analysis (via decomposition for example).

EXACT [van Steenbergen, 1991] is a model-based knowledge acquisition tool for selection tasks.

EXACT was designed as a tool for knowledge engineers to use in structuring knowledge through

the design process. The tool proposed in the next section has many similarities to this tool.

4.5 Need for a Production Capable Tool

While the research on knowledge acquisition tool methodologies is abundant, and the number of

tools and test applications that have been completed is large, knowledge acquisition tools have not

become an important part of the development of KBS systems in American high technology

companies. In an informal survey of eight leading U.S. manufacturing companies and three

companies that specialize in creating KB systems, only one division of one manufacturing firm had

formalized KA software tools as part of the KBS development process [Bachrach and Keiser]. In

addition, not one of the companies whose core business is KBS system development used KA

tools. Some reasons mentioned for not using KA Tools are listed below:

1. Unfamiliarity: Several Companies were not familiar with existing KA tools and the

potential applications of those tools.

2. Limited Applicability: One KBS development company felt that each KBS project was

different and that no software tool would be applicable outside a very limited domain.

3. Immaturity: One company felt that KA tool technology was at present still to

immature for use in a production environment.

The aim of this thesis is not to survey each KA tool and to evaluate it against dimensions such as

range of applicability or product maturity. However, the author seeks simply to point out that the

infrequent use of knowledge acquisition and other knowledge-based system development tools

may suggest that previous tools have shortcomings.

4-6 Summary

Knowledge acquisition tools facilitate the elicitation and structuring of knowledge. The scope of

the capabilities of KA tools varies widely. Interactive KA tools emphasize the user's role in

generating the knowledge base, but attempt to guide the process in an efficient manner. These

tools can be described by their structure (general or role-limiting), problem-solving strategy,

knowledge acquisition strategy, and knowledge representation form. While many tools have been

developed, few have gained acceptance or use in production environments. The next section

presents the design of knowledge acquisition tool that aspires to implementation as a production

tool. This tool does not write or interpret code, cases or text, but rather acts simply as a interactive

knowledge structurer that decomposes assemblies into components and identifies linkages between

component parameters. While this tool has been used to develop a specific application, the

selection of kit components, it is not domain specific.

5. Knowledge Acquisition through Matrix

Organization (KATMO) Tool

This section describes the design of a prototype knowledge acquisition tool for selection tasks,

KATMO. KATMO's design resulted from a KBS development project which executed the

selection of powerfeed drill components used in aircraft assembly. While KATMO has not yet

been developed into software, its methodology was particularly effective in its test environment.

KATMO structure is consistent with a propose-and-revise problem solving methodology in which

it generates a list of required parameters for system elements and checks those parameters against a

list of available selection items. If no match is found, alternative elements or parameters of

elements are proposed, and the new values are checked against the list. KATMO's interviewing

strategy is one of hierarchical decomposition. This process seeks to decompose assemblies into

elements and then to parameters in order to capture complete knowledge about the parameter

relationships in the system. While KATMO's initial design does not seek to encode knowledge, its

intended representation structure is IF...THEN...ELSE... rules.

KATMO acts as a knowledge structurer to aid the KBS development team in the decomposition of

kit components, the organization of element parameters and relationships, and the identification of

rules relating parameters. KATMO is comprised of a three phase methodology:

I. Knowledge acquisition through interactive interviewing

2. Knowledge representation through matrix organization

3. Parameter isolation and rule identification

These phases are consistent with the knowledge acquisition steps in the KBS development model

proposed in Section 3. This model is again shown in Figure 5-1.

-I -- T a1itEration

Implementation

Figure 5-1 KATMO's Functionality in the Context of KBS Development

KATMO's intended use is the structuring of knowledge for selection tasks, where selection is

between existing solid parts. KATMO resembles EXACT [van Steenbergen], another KA tool for

selection tasks, along several dimensions:

1. Both tools are model-based--tools designed as models of a task. In this case, the task is

selection.

2. Both tools employ a "mixed initiative" [van Steenbergen] dialogue protocol for

eliciting knowledge-either the tool or the user can direct the interviewing process.

3. Both tools generate as an output a "knowledge document" describing the system, rather

than executable code for a KBS.

The above similarities reflect the design of the tool---an aid for structuring knowledge about a

system. While similar in structure, KATMO seeks to expand upon the capabilities of EXACT in

certain aspects. Specifically:

|

1. KATMO focuses on the process of selecting kit components that comprise an assembly.

This models adds the complexity of integration.

2. KATMO attempts to capture the sequential nature of design steps in the selection

process. This step is organized in a matrix based on work by Steward and expanded upon

by Eppinger and Eppinger et al.

3. KATMO recognizes that the existence of many rule exceptions may impede system

automation. To reduce this barrier, KATMO identifies locations for user interfaces for

"exception management."

The following sections describe KATMO's three phase design.

5.1 Knowledge Acquisition through Interactive Interviewing

Efficient development of KBS systems requires a complete understanding of the process for which

rules are written. Because most design processes span across functional and departmental

boundaries, specific process knowledge must be gathered from several sources. Assembling this

information is often an arduous task as designers, engineers and manufacturing experts struggle

with cultural, experience, and semantics differences in order to understand each other's concerns.

In response to this challenge, KATMO's knowledge gathering approach focuses on simplicity.

The knowledge gathering phase of the tool, Knowledge Acquisition through Interactive

Interviewing (KATII), was designed for use in both Integrated Product Team type environments

and one-on-one interviews. Under tool-directed interviewing, KATII questions the user(s) in a

systematic manner designed to hierarchically decompose an assembly. Because only one level of

the hierarchy is displayed at a time, users from different experience bases can begin to understand

each others' inputs on a very simplistic level; because the questioning structure probes to the very

bottom of the hierarchy, process complexity is fully captured. The tool also allows the user to

direct questioning to facilitate knowledge model enhancement and editing. In a group setting, the

interview questions are intended to be projected before the audience (much like a Powerpoint

presentation), in individual sessions, a computer screen will suffice.

The query structure of these questions is illustrated in Figure 5-2. This algorithm is more

completely represented as a flow chart in Figure 5-3. The display format of these questions is

shown in Figure 5-4. As noted above, the simplicity of these screens is a powerful tool for

increasing cross-functional understanding and facilitating communication. In addition, the use of

drawings of the components assembled in the kit will facilitate this knowledge acquisition process.

System Query

Identify a Kit Assembly:

What Elements Comprise this Assembly?

elementl

element2

element3

etc.

What parameters define "element 1 ?"

parameterl

parameter2

etc.

What influences "parameterl ?"

influencingFactor I/parameter

influencingFactor2/parameter

etc.

User Response

Etc.

Figure 5-2 KATMO's Interviewing Query Structure

*1

*2

Figure 5-3 Interviewing Algorithm

What Parameters Define a "Bushing?"

(a)

(b)

Figure 5-4 Display Format of KATMO's Interview

As illustrated in Figure 5-2, in the selection process KATMO acquires three types of inputs:

elements, parameters and influencing factors. These inputs and their organization in a matrix are

discussed in the next section.

USER: 1. Shank Outer Diameter

2. Shank Inner Diameter

3. Shank Length

4. Bushing Outer Diameter

What Factors Influence the "Shank Length?"

USER: 1. Tool Thickness

2. Tool-Part Distance

(a)

5.2 Knowledge Representation through Matrix Organization

Phase one of KATMO acquires system knowledge through interactive questioning of knowledge

sources (domain experts). This assembled information represents participant's current knowledge

of the system in its current state. While this information is certainly valid, as-is processes in

complex organizations rarely reflect their most efficient structures [Gross]. The role of the second

phase of the tool, Knowledge Structuring through Matrix Organization (KSTMO), is to organize

system information in a matrix according to a sequencing algorithm. This algorithm is designed to

minimize iterations by separating independent design parameters that can be evaluated separately,

from dependent variables that form loops.

This organization is achieved through the application of a Design Structure Matrix (DSM). This

representation offers an advantage over other formats (such as a PERT chart and SADT

documents) for system analysis by explicitly displaying information loops [Eppinger and Gebala].

A blank DSM is shown in Figure 5-5.

In KATMO, the information obtained in the knowledge acquisition phase is entered in a matrix for

organization. However, in order for this matrix to be correctly built, the data inputs obtained in the

first phase must be classified. Classification is important because much irrelevant data may be

obtained in the knowledge acquisition phase of the tool. In the interviewing process, KATMO

instructs the developers to name all parameters that "define" an element. This command is

structured in this manner in order to elicit complete information about an element so that users do

not overlook parameters critical to the selection process (and because it is very difficult to

intuitively know which parameters are important for the selection process and which are not).

However, only a subset of total parameters listed are important for the selection process-users

will likely list influencing factors and parameters that they believe to be-important to the system but

in fact are not. KATMO classifies data in order to identify the which data is relevant and to discard

unnecessary data from the system. The three types of data-elements, parameters and influencing

factors--are defined below.

5.2.1 Elements

In kit component selection, the elements are the items which are to be selected, i.e. they are the

components which are assembled to form the kit. The interviewing structure is designed to

decompose elements further to the parameter level in order to establish relationships between

parameters. While it is technically incorrect to relate elements directly to other elements (they are

really related on the parameter level), if an element is always associated with another element, this

may be the most efficient representation. This statement is clarified in the following example.

In automobile final assembly, the door of the car is assembled to the body. These elements are

related most explicitly on the parameter level: the dimensions of the opening in the car frame and

the diameter of the door hinge hole relate to the dimensions of the door and the diameter of the door

interface. However, if door x is always assembled to car frame y, it may be most efficient to relate

the elements directly.

5.2.2 Parameters

Parameters are attributes of an element that are necessary to completely describe that element. For

example, the parameters of an office trashbin include its dimensions (including the angles between

surfaces) its material, its surface finish, its color, etc. Without knowing the name of this object,

such a description would enable its complete definition. For selection tasks, some parameters are

important for selecting an element and some are not. I define three types of parameters:

Type-one parameters (tl): Those parameters necessary for selecting an element for its intended

purpose. In other literature, these parameters have also been called constraints.

Type-two parameters (t2): Those parameters associated with a selected element, that affect the

selection of another element.

Type-three parameters (t3): Those parameters that are necessary for completely describing an

element, but have no consequence on the selection process. For example, in a machining

environment, the color of tool may have no bearing on the selection of that tool, but it may

still necessary to for a complete description.

A parameter may be simultaneously type-one and type-two.

5.2.3 Influencing Factors

Influencing factors (if's) are those that influence the selection process, but are not parameters of

any element to be selected. Influencing factors are external influences on the system.

In order for KATMO's matrix to be built, the data types described above must be classified. The

identification of elements is easy: these are entered explicitly by the user. The differentiation

between parameter types (one, two and three) and influencing factors is more subtle. In

KATMO's interviewing structure, elements are defined by parameters (see Figure 5-3, *1), and

then the user is queried for factors that influence those parameters (see Figure 5-3, *2): "List

parameters that influence parameter Y." If parameter Y is influenced by another parameter,

parameter Y is necessary for the selection of the associated element and is a type-one parameter. If

parameter Y is not influenced by another parameter, it is not relevant for the selection of the

associated element but may still be important to the system. The remaining classification rules are

described below.

1. Parameter Y is an influencing factor if:

i. Parameter Y is not influenced by another parameter; and

ii. Parameter Y is not associated with an element; and

iii. Parameter Y does influence another parameter in the system.

2. Parameter Y is a type-two parameter if:

i. Parameter Y is not influenced by another parameter; and

ii. Parameter Y is associated with an element; and

iii. Parameter Y does influence another parameter in the system.

3. Parameter Y is a type-three parameter if:

i. Parameter Y is not influenced by another parameter; and

ii. Parameter Y is associated with an element; and

iii. Parameter Y does not influence another parameter in the system.

In KATMO, these classifications are used for the correct mapping of element-parameter

relationships in the matrix: these classifications determine the position of entries in the matrix.

Type-one parameters are selection criteria for an element: the row of an element receives an input

from each type-one parameter associated with that element. Type-two and type-three parameters

are determined only after the selection of the element. The rows of type-two and type-three

parameters receive an input from the associated element. Type-three parameters are distinguished

from type-two parameters in that the columns of type-three parameters are blank. (This signifies

that they influence no other data in the matrix). Type-two parameters have at least one entry in

their columns (signifying that they do influence other data in the matrix). These classifications in a

matrix are illustrated in 6.5.

Once all elements, parameters and influencing factors have been classified, a matrix mapping their

relationships can be built. In this matrix, system data are listed in the same order along both the

horizontal and vertical axis of the matrix. A solid red block within the matrix indicates that a

specific parameter or influencing factor in the corresponding column is influenced by the parameter

in the corresponding row. A blank or open template matrix is shown in Figure 5-5; a sample

matrix of unorganized information is shown in Figure 5-6. In this matrix, element 4 is influenced

by elements 2 and 6. The diagonals are blocked out because of the implied redundancy. In the

remainder of this section, the word element is used in matrices and discussions as a generic term to

illustrate the matrix organization process. The precise classifications of matrix data is again

described in the discussion of the application of KATMO in 6.5

element 1

element 2

element 3

element 4

element 5

element 6

element 7

el

e5

e6

e7

-K

a

- I

a

a

g
a
J
n

b\

i I

Figure 5-5 Knowledge Matrix: Blank Template

I_

I

a

a

g
a
1
re

I IP1 I

CD

CD
ý1

r

a

a

a
3

·n

a

a

a
J
n

C

-- m

I
I

I

element 1

element 2

element 3

element 4

element 5

element 6

element 7

el

e2

e3

e5

(bC

(b C

,,

CD
nA

Figure 5-6 Knowledge Matrix (Unorganized)

Once the Design Structure Matrix has been built, the matrix is organized. The organization

criterion defined for this application is the minimization of iteration steps within feedback loops.

This process therefore separates the elements into those that can be solved sequentially, and those

that cannot.

element I

element 3

element 7

element 2

element 5

element 6

element 4

CD

CDZt

el

e3

e7

e2

e5

e6

e4

-I

I I

4h

Figure 5-7 Knowledge Matrix

m

CD

cr, ct

CD
ct

Ch

4•

__

CD

:Z

F. -
I
h,

I n7 (

CD CD

I
I

I
I

(Organized)

In Figure 5-7, the first five elements (elements 1, 3, 7, 2 and 5) form a lower-triangular matrix.

This indicates that all information is feed-forward without the presence of a feedback loop. I have

termed such elements as non-coupled to signify that they do not require iterations to solve.

Conversely, elements 6 and 4 are coupled: element 4 requires information from element 6 and

visa-versa. (I.e. the loops lack causality, whereas the non-loops are causal.) In order to solve

these relationships a means for breaking the loop must be defined.

5.3 Parameter Isolation and Rule Identification

Once the sequence of the selection process has been organized, design or assembly rules can be

written for many of the interrelationships between process characteristics and influence factors. As

defined above, the relationships between element parameters that are identified in the knowledge

organization stage are primarily of two forms: coupled or non-coupled.

In order to develop these rules for both coupled and non-coupled cases, information is extracted

from the DSM, which describes the interrelationships of all elements in the process, and

represented as a simplified version of the Structured Analysis and Design Tool (SADT). This

modified SADT format shows only immediate predecessors influencing each element and serves to

isolate relationships. An example of such an extraction is given below.

element3 P element2

element7 I

Figure 5-8 Sample Matrix Extraction (Non-coupled

elements from Figure 5-7)

While the process of extracting information from the matrix does not alter any of the relationships

captured in the matrix, the isolation of elements serves to simplify the presentation for the

construction of rules [Lockheed].

Figure 5-9 represents the coupled parameters in isolation. In the case of coupled parameters, no

sequencing may be performed until the circular loop of interrelationships has been broken. I

propose three means to achieve this: standard procedures, selection policies and user-determined

selection. Additional information of treating feedback loops is given in Marcus.

element 4

element 6

Figure 5-9 Sample Matrix Extraction (Coupled elements from Figure 5-7)

5.3.1 Standard Procedures

When a circular loop between relationships is identified, it has not been fabricated, but was a part

of the existing design process. Accordingly, there currently exists a method---though the method

may be ad-hoc--for managing the loop. In order to break the loop, the KBS developers may

decide to incorporate existing standard procedures into the rule set. In the case of Figure 5-9,

standard procedures could dictate that element 4 is always chosen first, thus breaking the loop.

5.3.2 Selection Policies

Companies often seek to regulate the processes by which activities in the organization are

performed. For example, a company may have a policy of incorporating only standard fixtures

sizes into its assembly operations. In the same manner, a circular loop may be broken according to

a chosen policy that may be different from the current standard procedures. For example, in

Figure 5-9, management might decide that permitting element 4 to dictate element 6 has resulted in

excessive variability in design. As a result, a decision could be made to stipulate that while element

4 will still be chosen first, only a subset of all element 4's, may be considered as a design choice.

One plausible example of this is the decision to permit only standard fastener sizes to be used in

designs.

5.3.3 User-Determined Selection

In many cases, it may be impossible to use standard operating procedures or design policies to

break coupled relationships; this may be a result of the inherent complexity of the system. In this

case, KATMO follows the methodology described in the KA tool SALT [Marcus].

When SALT encounters a loop, it notifies the user of the situation, identifies the parameters in the

loop, and allows the user to specify the values of one of the parameters so the system can continue

solving. This process is illustrated for the loop in Figure 5-9. Note that the information pieces

presented to the user are those which influence the elements in the loop (see Figure 5-7 for

verification), additional information could be provided if desired.

Figure 5-10 Loop Breaking via User Selection

This methodology for breaking loops discussed can be expanded to apply for deterministic

relationships as well. I have termed this general concept, complexity management.

5.4 Complexity Management

Even if relationships are deterministic, that does not necessarily imply that rules can be written to

accurately describe the process. If rules are high-order (defined below), or if there exist many

exceptions to the rules, building the necessary knowledge base may be impossible or not

economically viable. These two cases are described below.

5.4.1 High-Order Rules

The way in which elements are chosen in a selection process may be very case sensitive. Certain

components of a system may be appropriate only if three or four (or more) circumstances are

present. I propose one measure of the complexity of any given rule to be the number of statements

included in that rule necessary to specify the desired outcome. I refer to this measure as the order

of the rule. Thus, an n-order rule, requires n statements to specify the conditions of selection.

The following is a plausible example of a 4th-order rule for selecting a drill bit:

IF (a material = Titanium) AND

IF (the hole diameter < 0.500 inches) AND

IF (the hole depth > 1.25 inches) AND

IF (use of coolant? = TRUE)

THEN (drill bit = DBIT152)

Rather than attempting to construct high-order rules (I have chosen an order of 5 or greater to be

considered a "high-order" rule) to specify the selection of every possible element in the system,

KATMO permits system developers to identify points of user intervention to break loops. In this

scenario, as discussed in 5.3.3, the KBS would present the user with the relevant pieces of

information and allow the user to decide. For example, in Figure 5-7, if the relationship between

elements 3, 7, and 2 were very complex, rather than developing rules, the values of elements 3 and

7 (which influence element 2) could be presented to the user and the user could determine element

2.

5.4.2 Rule Exceptions

Rules in spoken languages, in engineering, and in systems in general often have exceptions. Rule

exceptions pose problems for KB systems because they can usually only be incorporated by

specifying high-order rules. If a rule has many exceptions, the rule-writing process may

degenerate into hard-coding and/or the knowledge base may become difficult to manage. As an

alternative to writing high-order rules for rule exceptions, I again propose to apply the notion of

user interaction to the system. By presenting the user with the information pieces needed to make a

selection, the system obviates the need for complex and tedious rule-writing while leveraging user

knowledge.

5.5 Summary

KATMO is a knowledge acquisition tool that involves three phases: knowledge acquisition,

knowledge organization, and parameter isolation for rule development. The power of this tool is

derived from the simplicity of the user interface and the design structure matrix used to organize

interrelationships. Sections 5.2.1-5.2.3 describe the data types included in the matrix. These

specifications are critical to correctly identifying parameter-element relationships. Sections 5-3 and

5-4 describe rule writing and the management of rule complexity. These are important features of

KATMO. Rules become cumbersome and difficult to capture if they require high-order statements.

Many automated applications have failed in the past because of their attempts to capture all

knowledge within their knowledge bases, without providing the user effective means of interacting

with the KBS. The failure of such systems undermines the credibility of automated design

systems. The design structure matrix of KATMO facilitates the identification of potential points of

user interaction. This allows KBS developers and users to efficiently manage rule exceptions and

preserve a certain level of "engineering judgment" within the system. The advantage of this feature

is that it enables users to selectively automate portions of a complex network. In this manner, the

capabilities and applications of the KBS can be greatly expanded.

By recognizing through its design that KA tools are but one tool that may facilitate the KA process,

rather than a panacea to the KA bottleneck, KATMO aspires to implementation in many user

environments. The following section presents the use of KATMO's methodology in the

development of rules for powerfeed drill equipment.

6. An Application of KATMO: Powerfeed Drill

Component Selection

This section presents an application of the KATMO development tool to the selection of kit

components for powerfeed drill equipment. This project resulted in the creation of a prototype

knowledge-based system that is currently being expanded to a production system at a large

aerospace company. Before exploring the use of KATMO, it is important to explain the selection

process and context in which KATMO was employed.

6.1 Introduction to Powerfeed Drill Equipment: Applications and

Context

While the aerospace industry inspires romantic sentiments from both enthusiasts and engineers

alike, much of a plane's design integrity depends on the less glamorous field of holes and

fasteners. Accurate holes are critical to good airplane design for several reasons:

1. Variations in the size and placement of holes on one part affect the placement of adjacent

parts. Depending on the nature of the error, the fatigue life of the part may be adversely

affected.

2. Variations render expensive tooling jigs (costing as much as $2 Million each) useless, as

the assembly no longer will fit.

3. Variations result in panels that do not match closely. Outer panels that are not smooth are

associated with negative aerodynamic effects and may deteriorate from advanced

capabilities such as stealth.

4. Variations in parts increase the assembly's susceptibility to stress fractures or failure.

These considerations have resulted in the development of a serious "science of drilling holes," in

which holes with tolerances as small as 0.0050 inches are required on dimensions such as the

center-center hole alignment. To meet these demands, several companies supply complex and

expensive powerfeed drills and components. Powerfeed drill equipment is "positive feed"

meaning that once the feed mechanism is engaged, the drill bit will extend a predetermined amount

(typically 0.001-0.002 per revolution of the drill). The feed mechanism is mechanically coupled via

gear reduction to the primary motor. Powerfeed drills require additional components such as a

bushing to "lock" the drill in place to support reactionary loads from the drill. This enables the

powerfeed equipment to provide a consistent drilling force resulting in high quality holes. In

contrast, standard drilling equipment requires that the operator push against the material being

drilled; this is very tiresome, nearly impossible with some materials, and deters from the accuracy

of the hole [Seidel]. Assembled powerfeed drill kits typically cost between $3,000 and $5,000.

Powerfeed drill set-ups, or kits, can comprise many elements. These typically include: a motor, a

nose piece, a bushing collar, a chuck, a cutting tool, and a bushing. These components are shown

in a standard assembly in Figure 6-1.

ling
Motor Nose Piece Bushing

Collar

Chuck Cutting Tool

Figure 6-1 Powerfeed Drill Assembly

The powerfeed drill kit assembly is inserted into a tool fixture, or jig, which lies on top of the part

to be drilled. This tool jig secures the kit to facilitate secure and accurate drilling. The operating

environment of the powerfeed kit is shown in Figure 6-2.

v

Motor Assembly /
Tool Part

Figure 6-2 Powerfeed Drill Kit Operating Environment

6-2 Powerfeed Drill Equipment and the Product Development

Process

The product development process in the aerospace industry can be thought of, at a high level, as

sequential but over-lapping phases that include: identifying product requirements, conceptual

design, detailed design, tool design and assembly operations design. In the context of the

specification of powerfeed drill equipment, once a part is designed, a tool is built to assist in the

manufacturing and assembly of the part, and then based on characteristics of both the part and tool

design, a drill kit is specified (see Figure 6-3). Because of the precision at which holes must be

drilled, drill equipment must be matched exactly to the drilling requirements.

Part Design

Tool Design

Drill Kit Drill Kit

Specification 1. Motor
2. Drill Bit

etc.

Figure 6-3 Powerfeed Drill Kit Specification Process

6.3 Case History

This project began as an effort to increase the efficiency and quality of the delivery of powerfeed

drill kits. In the year prior to the development effort, incorrectly assembled kits and procurement

delays associated with kit components resulted in the near shut-down of a main assembly line at an

aerospace company. The specification of powerfeed drill kit components was judged well suited

for enhancement through automated design because there exist heuristics for component selection.

However, there were considerable technical and organizational challenges to the development of

the system. In particular, the amount of data on kit components was sizable and its analysis

complicated: there were thousands of unique components. The tremendous amount of kit

component inventory resulted from an unregulated design process in which part designers

specified any configuration of hole sizes and tool designers built more kits components to match

each new design. In this process, part designs were passed to tool designers, who in turn passed

their designs to shop workers who assembled the drill kits. This sequential process did not take

into account the availability of kit components or alternative combinations of kit components that

could be used to fulfill the same tooling requirement.

Because the end product was a discrete assembly of known components, the process of

decomposing the assembly and mapping the interrelations of components seemed a logical

development path. In searches of academic literature concerning selection tasks, this approach was

confirmed to be viable. Through the process of knowledge acquisition, the importance of

representation tools for capturing that knowledge became clear. After the knowledge had been

assembled in several forms (SADT charts, spreadsheets, input-output statements), a matrix was

selected for knowledge organization because of its explicit capture of feedforward information and

feedback loops. The individual pieces of knowledge about components in the system that were

acquired through the development of the KBS were not new to the organization. However, the

assembly of that knowledge in the resulting knowledge document enabled the organization to better

understand the process by which powerfeed kits were developed. In addition, through the analysis

of the assembled information, methods for selecting elements were determined that were

previously unknown.

The prototype KBS demonstrated the potential quality and efficiency of the process. The benefits

of this system are many: (1) By using "expert knowledge" to assemble kits, components are

assembled correctly the first time, eliminating work-arounds; (2) Because kit component

specification is automatic, kits can be quickly reconfigured to meet Engineering Change

Notifications; and (3) Because kit component specification is electronic, statistical data on kits can

be captured quickly and efficiently--this enables the reuse of a smaller set of kit components for

many design configurations, which in turn enables inventory reduction. In a preliminary analysis

of specified kit component data, powerfeed equipment inventory could be reduced by an estimated

40%.

The KBS development process with KATMO will be explained in detail in the three following

sections.

6.4 KATMO in Interactive Interviewing

The first phase in applying KATMO is acquiring knowledge through interactive interviewing. As

described in Section 5-1, KATMO's interviewing tool can be either algorithm-led, or user-led.

The following example will be described as if the system's algorithm was directing the elicitation

of knowledge.

KATMO's interactive interviewing process is top-down in structure and begins with requesting the

name of the assembly. Consequently, the tool seeks to decompose the assembly interactively.

This is done by first, understanding the elements that comprise the assembly, and second, by

eliciting parameters of those elements. KATMO's interviewing structure proceeds until no further

decomposition is desired. Then, data types are classified and fed into a design structure matrix for

organization. Through this decomposition, the tool seeks to obtain "complete" information about

elemental and parametric interrelations. If an unidentified parameter is entered as an influencing

factor, KATMO inquires for further information about the new parameter and that parameter is

entered into the system.

Eliciting all of the parameters of an element is a difficult task. Many parameters are not readily

identified or are thought to be of no significance by the developers. I recommend two approaches

for collecting information:

I. Define as parameters all characteristics necessary to fully describe the object without a

name.

2. Analyze a database or ordering brochure for the element. Identify all the parameters

necessary to distinguish one element from another.

The above techniques were employed in the development of the prototype KBS discussed in this

section. The interviewing process was executed in both team and one-on-one engagements.

Figure 6-4 presents the results of this interviewing. An abridged schematic is shown for

presentation.

System Query

Identify a Kit Assembly:

What Elements Comprise this Assembly?

elementl

element2

element3

etc.

What parameters define a "Motor?"

parameterl 1

parameter2

etc.

What influences "Motor Speed?"

influencingFactor I/parameter

influencingFactor2/parameter

etc.

User Response

Powerfeed Drill Kit

Motor

Nose Piece

Bushing

Capacity

Max Stroke

Part Material

Hole Diameter

Etc.

Figure 6-4 Interactive Knowledge Acquisition Structure (Abridged)

6.5 KATMO in Knowledge Organization

Once information has been collected, it is classified automatically according to the algorithms

described in 5.2. Then, this information is entered in a matrix for organization. While many tools

address the issue of knowledge organization well, KATMO seeks to incorporate sequencing

information into its rule building structure. Accordingly, KATMO employs a Design Structure

Matrix to illustrate element interrelations and organize information according to sequencing

algorithms. This process is similar to that performed by DeMAID [Rogers], a software program

that optimizes matrix structures according to a specified algorithm.

Through KATMO's Knowledge Organization phase, information collected through interactive

interviewing is displayed in matrix form with element names, parameters and influencing factors

on the vertical and horizontal axes. A red square denotes a relationship. For presentation, an

abridged version of the matrix developed for powerfeed drill equipment is shown. Complete

matrices are given in Appendix A. Figure 6-5 shows that matrix in its "unorganized" form.

material stack

hole diameter

part thickness

gap
clearance

breakthrough

motor type
mrntnr (2fl(,itv

motor stroke length
motor

motor weight

mAtnr matArisl

drill bit material

drill bit flute

drill bit diamter

drill hit

nose piece threading A
nose piece length

nose piece

ot ol thickness

tool hole diameter

tool

Figure 6-5 KATMO's Design Structure Matrix for Knowledge Acquired through

Interactive Interviewing (Unorganized)

An analysis of the above matrix yields information about the data types in the system. Material
stack, hole diameter, part thickness, gap, clearance and breakthrough are Influencing Factors: they
are not a characteristic of any element in the system (their rows are blank), but they do influence
the selection of elements.

In addition, all three parameter types are present. Five parameters are associated with the motor:
motor type, motor capacity, motor stroke length, motor material and motor weight. The first three

0

,2.

0CDi
>e

mc

--

II

msl m mw ma

--

dl

i--

Y

dbm dbf

At 0
(D

thd

I-

hI

U "

U -

d npa

--

LPt

U

U
I

npl

mt

U

il ttk

II

m

ha

cl

bt

mt

me
msl

m

mw

mm

btclms

iI

p

U

U

'I

n I

I I

thd j
t

III

1
dM t

MHbi
l d

I m m I m m I_ m II

m

m

m

m N

m

m

ammm

m

II

n

m

n

i

m

m

m

m m

m

m

m

m

m

m

u

m

m

m

m

'I m

..----a m

m

m

m

m

r

m

I

m

I I -.... ,ml m

_ _ ._ m

m II I_

m m,,mm•

i
•m

parameters (motor type, motor capacity and motor stroke length) are the selection criteria for the

motor (type-one parameters). Motor stroke length is both a type-one and type-two parameter: it is

both necessary for selecting the motor, and it affects two other parameters in the system. Motor

weight and motor material are type-three parameters: they are necessary for fully describing a

motor, but are superfluous for the selection of elements--this is clear in the matrix as no red

squares appear in the columns of these parameters. As type-three parameters have no bearing on

the selection process, they should be excluded from the matrix. A revised matrix is presented in

Figure 6-6.

In practice, it is not necessary for the user of KATMO to develop such a detailed knowledge of the

data types in the system--the classification is made automatically by KATMO and can be

determined from the matrix as illustrated above. However, in organizing a selection process--with

or without KATMO-it is critical to determine which system data are important for selection and

which are irrelevant. As previously mentioned, the classification of data reflects the relationships

underlying the selection process-in KATMO these relationships are captured by the position of

influence entries (red squares) in the matrix. Incorrect classification reflects incorrect information

about which parameters are critical for selection of an element. As the relationships between

parameters and elements are used to write rules, the quality of the knowledge represented in the

developed KBS system will be negatively affected.

material stack

hni dianmptPr

part thickness

clearance

breakthrou h bt
motor type mt
motor ca acity mc

motor stroke length msl

motor

drill bit length
drill bit material

drill bit flute

drill bit diamter

drill bit

nose Diece threadine A

l J I__ -I I" I-- IA " "- "'" - " "- L

msl hd Dtl g cl bt I mtlmclmsll m
- I Y Y 1 I V V

-4-4 1-4 * -I.

FT

I I

- I - I - 6-4- -

nose piece length npl
nose piece

tool thickness ttk
tool hole diameter thd
tool

Figure 6-6 Relevant Data Pieces of KATMO's Design

Structure Matrix (Unorganized)

Once knowledge has been displayed in a matrix form, it can be organized according to any number

of algorithms: in KATMO the algorithm minimizes feedback loops. The organization of the matrix

in Figure 6-6 is shown in Figure 6-7.

dbl dbm did

I-

,i

d

1-

1-

m-

ni-

i-

l-

dbf

-I

-- 4-4-~

nU

urn
I I I
II I 1

U' 4141

1
II

· · · · · · ·

· · luurr~ ur ·

· · · · ·

· I· I.mmi/ i

" '

aMaa

M

I

·

--

I

i

-- ~----~-~
m""' II i m I

i "' " i i i

......•_-- •

ttkIdi

material stack ms

hole diameter hd
part thickness

gap
clearance cl

breakthrough bt
motor type

motor capacity
EI
me

motor stroke length Imsl
motor

drill bit material

drill bit flute

drill bit diamter

tool thickness

ms

ttkl

hd

I
-E

tool hole diameter Ithd

nose oiece threadin

g

A

* ,----1-,.--

~---
drill bit length dbl
drill bit d
nose piece length

nose piece
n'lnoepec -ip

Figure 6-7 KATMO's Design Structure Matrix (Organized)

As discussed in Section 5, organized information is either coupled, indicating a circular loop, or

non-coupled, indicating that given the available information, the relationship is deterministic.

Figure 6-8 highlights the coupled regions in the matrix, all other relationships are non-coupled.

mt mc msl m db.n dbf dbd ttk thdcl tbt
.4

-

-L

I

I

I I

--

1

m m m m m m n

II

n

~

111

m m m

m m m m m

m m n m m m m m

m

m

I

I

I

m

m

I m

--

-

m

-

m

-

m m m

- -
-

- -

m

-

--

-

m m m m m m

. .

amaaaa•l l mmma nmw l l

/

material stack

hole diameter

part thickness

gap

clearance

breakthrough

motor type
motor capacity

motor stroke length

motor

drill bit material
drill bit flute

drill bit diamter

tool thickness

tool hole diameter

tool

nose piece threading A
drill bit length

drill bit

nose piece length
nose piece

ms

hd

Pt

cl
bt

mt

mc

ms]

m

dbm
dbf

ttk

thd

t

dbl

d

n

ms

U

I

I

hd

I

I

Ut

I

I

I

I.

I

I

cl

U
U

bt

I

I

I

mt

I

I

mc

I
I

msl

I

m
.Wk

I

p

dbff

I

I

dbf dd ttk thd

I-

.M__n~a

I I

I

I
Figure 6-8 Coupled Region of KATMO's DSM

(indicated by the blue rectangle)

As illustrated above, most elements were non-coupled. This indicates that given the required

information, the relationship between parameters is deterministic. In contrast, there is a coupled

relationship between drill bit length and nose piece length. This indicates that both elements

influence each other simultaneously.

I:

Cm --

I

pa
L t

6.6 Parameter Isolation and Rule Identification

The final step in KATMO's methodology is to isolate parameter relationships for the identification

of rules. It must be stressed that interrelationships between elements do not link elements directly,

but rather, link parameter(s) associated with that element. These parameter and element

relationships are captured in the interviewing process.

While the process of isolating parameters does not alter any of the information presented in the

KBS, its presentation as a linkage of two or three properties, as opposed to network of every

system property (which is what the complete matrix reflects), served to simplify the specification

of rules. Parameter isolation will be discussed in two sections, for coupled and non-coupled

elements, respectively.

6.6.1 Parameter Isolation for Non-coupled Elements

Parameters that are non-coupled can be specified without iteration. Figure 6-9 illustrates the

isolation of three non-coupled parameters extracted from the matrix in Figure 6-8.

material stack i motor capacity

hole diameter

Figure 6-9 Parameter Isolation

This representation shows that both the material stack and the hole diameter influence the motor

capacity.

Once parameters have been isolated, rules between elements are identified. Figure 6-10 shows a

sample rule for the above relationship. (In this example, motor capacity was measured in terms of

maximum hole diameter size per material).

ruleExI

material stack

hole diameter

rule Ex1:

motor capacity

IF (material stack = aluminum)

AND (hole diameter = 0.250 in)

THEN (motor capacity for aluminum, > 0.250 in)

Figure 6-10 Sample System Rule for Motor Selection

Because the above rule stipulates only the conditions for determining motor capacity, and motor

capacity is but one parameter that defines a physical motor, this process must continue until a

complete set of rules for the motor can be determined. From the matrix in Figure 6-8, three

components-clearance, motor capacity and motor stroke length--define which motor should be

selected. These rules are developed below.

part thickness

gap

breakthrough

ruleEx2:

ruleEx2

motor stroke length

(motor stroke length) 2 (part thickness) + (gap)

+ (breakthrough)

(a)

(b)

Figure 6-11 Sample System Rules for Motor Selection (Cont'd.)

Having defined the three parameters that determine the selection of a motor, the motor can be

identified. The motor can be selected in one of two ways: either the data from the rules can be

collected and then used to query a motor database, or individual rules may be built for the selection

of each motor. In the case where there exist many motors, querying a database is most efficient,

however, when only a few motors exist, writing individual rules for each motor is acceptable.

Figure 6-12(a) integrates the previous rules for motor selection in a list that can be used to query a

database of possible motors. Figure 6-12(b) gives an example of a rule for the selection of one

motor from a database of motors in stock or a catalogue. (It is not necessary to assemble all

relevant parameters before executing a database query. A query could be performed for each

parameter independently before their assembly).

(a)

ruleEx3

clearance e motor type

ruleEx3: IF (clearance Ž 40 in) then (motor type = Straight)

ELSE (motor type = Right Angle)

motor capacity: (for aluminum, 2 0.250 in)

motor stroke lth: (> Y)

motor type: Straight

(a)

(b)

Figure 6-12 Final Rules for Motor Selection

In this selection application, both database querying and formal rule building were executed. With

respect to database queries, the query must usually be associated with a policy in case the query

returns no matching element. For example, Figure 6-12(a) outlines the three parameters against

which motors in a motor database are compared. If the query is executed and no matches are

found, without a policy for re-submitting the query, the KBS cannot proceed further with the

selection process. A policy which modifies one or more of the parameter values and then re-

submits the query, would make the system more robust. In the context of the motor parameters in

Figure 6-12(a), if no matches were returned in the first query, the motor capacity requirements

could be increased, and the new set of parameters could be submitted. More detailed examples .of

database queries with KBS rules are given in Appendix B. An awareness of the parameters of

elements in the database is key to both devising rules for selection and gathering parameters to

submit in a database query.

6.6.2 Parameter Isolation for Coupled Elements

As defined in'section 5.2 and illustrated in Figure 5-8, coupled elements form a circular loop that

must be broken in order to solve the system. Sections 5.3.1 - 5.3.3, defined three means of

ruleEx5: IF (material stack = titanium/aluminum)

AND (hole diameter 5 0.313 in)

AND (hole depth 5 1.250 in)

AND (clearance 2 40 in)

THEN (motor = MOTOR150)

uncoupling coupled systems. Figure 6-13 represents a loop of coupled elements from the matrix in

Figure 6-8 and identifies the relationship linking them.

Figure 6-13 Coupled Elements in Isolation and Corresponding Relationship

In the relationship shown in Figure 6-13, all parameters have been defined except the coupled

parameters, drill bit length and nose piece length. In order to solve the system, a policy must be

devised for breaking the loop. In this case, there were several available nose piece lengths and

fewer drill bit lengths. A decision was made to break the loop by stipulating that a standard drill

size of 5" would be used.

6.7 KATMO's Output

As discussed in the introduction of section 5, KATMO's output is not code, but rather, a

knowledge document. This document is comprised of two components: the design structure

nose piece length

drill bit length

(motor stroke length) + (drill bit length)

(nose piece length) + (gap) + (part thickness) + (breakthrough)

matrix mapping relationships and the parameter isolations. These documents serve as a roadmap to

the coding of the KB system. By not attempting to bridge the gap between knowledge acquisition

and executable code, KATMO is more versatile in its application to a number of KB programs.

6.8 Discussion of KATMO

KATMO's methodology facilitates the generation of a KBS by providing an efficient way of

soliciting and structuring knowledge. The tool however, has not been developed into software and

thus cannot be fully evaluated. One aspect of KATMO's knowledge acquisition process that may

proves challenging for users of the tool is in the decomposition of elements to the parameter level

and the identification of parameter links. For example, domain expert may be very familiar with

the concept that the X nose piece is used with Y motor, but not familiar with the fundamental link:

between the outside threading on motor Y which interfaces with the inside threading of nose piece

X. Another aspect of the tool that requires validation is the process of automatic parameter

classification. This method was developed after the development of the prototype KBS and has

not been tested in a production environment.

6.9 Future work with KATMO

To fully evaluate and further develop KATMO will require first, that the methodology presented

here be embodied in a software tool, and second, that additional KBS applications be developed

following the methodology. These applications should be pursued to production maturity as this

provides both the greatest test of the methodology and the greatest opportunity for learning.

Additional KBS applications will also determine if KATMO has uses other than component

selection. In quick development experiments, KATMO's methodology has also proven effective in

the construction of items (much like the KA Tool SALT [Marcus]). This should be further

explored. Through experimentation, the quality and capabilities of the tool will be augmented.

7.0 Knowledge-Based Systems Technologies and

Business Policy

The introduction of knowledge-based systems and the use of knowledge acquisition tools in a

business environment must be regarded in the same manner as the introduction of any new

technology: as a tool that presents potential benefits, but one that is not without consequences for

the user environment. An understanding of these consequences and the ability to pursue policies

that encourage the acceptance of the technology is critical to successful implementation. In the

following sections, issues of business policy will be discussed with respect to KBS

technologies--KB systems and KA tools. In particular, policies concerning end-user involvement

with system development, user acceptance of the technology, and KBS maintenance in the context

of technological innovation are addressed.

7.1 Policies of User Involvement

The success of a KBS development project cannot be evaluated in a binary manner with

implementation as the only criterion. Equally important is user "buy-in"--acceptance and use of

the new system by the user. In a study of thirty-four software development projects (including

expert systems), Leonard-Barton and Sinha found that the degree and type of user involvement in

the development process related strongly to project success [Leonard-Barton]. Leonard-Barton

describes four models of user involvement. These are defined below.

1. Delivery Mode, or "Over the Wall:" No end-user involvement in the development

process. The development team conceives and develops the product based on its

perception of user needs.

2. Consultancy: Periodic consultation of end-users by the development team concerning the

desired functionality of the product.

3. Co-development: Users are included in the development team. Strong influence of the

final product by members of the user community.

4. Apprenticeship: Users assume full responsibility for the design and development of

the product with software developers serving only as guides with programming

capabilities.

While noting that all levels of user involvement can result in project success, certain circumstances

seemed more appropriate for each method. In particular, Leonard-Barton concluded that when

work in the user environment was well established and the process or system was well

understood, consultancy-level user involvement seemed sufficient interaction for project success.

In contrast, with novel systems or highly specialized applications, co-development was essential

[Leonard-Barton].

In company interviews conducted by Keiser (see 4.5), OEM employees were not optimistic about

the potential for success of KBS development efforts that included low-level or moderate-level user

involvement. According to those companies interviewed, high-level user involvement---co-

development or apprenticeship-was essential to the success of the project. (Because Leonard-

Barton's data includes software systems other than KBS, this statement does not necessarily

contradict those results).

In practice, there may be many impediments to achieving the desired level of user involvement.

For example, managers may be reluctant to free up workers for participation in a KBS

development project when that project is not directly funded under their budget and there are no

local financial rewards associated with the project's success. Another scenario in which

appropriate level of user involvement may not be possible is when the KBS project requires

knowledge and skills from an adversarial labor union. In this case, delivery mode involvement

may be the sole option.

Either of the above scenarios can hinder the development of a KBS, as most KBS development

efforts require knowledge from numerous participants, and the use of some KA tools, such as

KATMO, derive much of their benefits from use in team environments. Currently, some

companies attempt to address the first issue of conflicting manager objectives by permitting

employees to charge hours to projects rather than to departments. While this practice does remedy

the completely contrary situation in which one manager pays an employee to work on a the project

of another manager, it does little to balance time constraints and distribute appropriate rewards. A

non-frequent occurrence is that a manager pulls a KBS team participant from the project whenever

projects directly under his/her control need attention.

One solution to aligning conflicting managerial obligations may be to treat KBS project planning in

a manner similar to large, company-wide development projects. In the case of the latter, planning

and projecting resources requirements are established up front by all parties involved. In this

scenario, rather than one department "owning" the project and employees from other departments

being "leased" for their contribution, all managers whose employees are involved in the project will

have an incentive for supporting its development.

7.2 Policies for Achieving User Acceptance of KBS Technology

Knowledge-based system are a tool for improving performance within a company; their appeal is

derived from their ability to automate time consuming or difficult tasks, thus decreasing

development time. Whenever a task is automated, the job function of the person formerly assigned

to that task is altered. Understandably, user resistance to the technology may be encountered as a

worker recognizes that his role and responsibilities are changing and possibly diminishing. This is

particularly difficult when the worker has unique domain knowledge and is asked (or assigned) to

participate in the development of the very technology that may obviate his position. In an effort to

bolster employee commitment to automated systems, some companies have sought to reduce

employee anxiety by not threatening job security and through the choice of systems to be

automated.

7.2.1 Supporting Job Security

Unlike introducing a system such as an automated assembly line which can be designed miles from

its future environment and then introduced to replace an entire line of workers, KBS usually

automates only a portion of an entire design or manufacturing process. In addition, KBS

introduction usually requires both the knowledge and the support of those workers who will

interact with the system. Galvanizing the participation of these individuals is impossible if the

knowledge they share will be used to displace them or their co-workers. As a result, companies

must make explicit their intentions of enhancing the capabilities of its workers through KBS

technology rather than replacing them. As one KBS developer noted, KBS projects are very easy

to sabotage. Even if the system is developed successfully, workers who feel threatened can refuse

to use the system, or can deliberately misuse the system. Consequently, companies may have

significant difficulties in trying to develop quality KBS systems without supporting the job security

of their current workforce. By promoting job security, employees will be more apt to contribute to

KBS development.

7.2.2 Choosing Desirable Tasks to Automate

An additional step that companies can take in garnering support for KBS is through the tasks they

choose to automate. Many employees prefer some elements of their job function to others. For

example, a design engineer may enjoy designing parts more than checking the manufacturability

data of those parts. By automating iterative and time consuming tasks--or any task a worker

would rather not do--KBS enables a worker to increase the time he spends on tasks he enjoys

[Ford]. By selecting to automate tasks that workers dislike, companies can quickly generate user

support of a KBS project.

7.3 KBS Maintenance and Technological Innovation

Henderson and Clark define four types of innovation that affect products and companies:

incremental innovation, modular innovation, architectural innovation, and radical innovation.

These categories and their definitions are given below.

Linkages
between
Components

I.
Unchanged

Changed

I

Core Concepts

Reinforced

Figure 7-1 "A Framework for Defining Innovation [Henderson and Clark]"

1. Incremental innovation refines and extends an established design, while improvement

occurs in individual components.

2. Modular innovation changes only the core design concepts of a technology; the

linkages between components are unchanged.

3. Radical innovation establishes a new dominant design and a new set of core design

concepts that result in changes to the linkages between components.

4. Architectural innovation change the linkages between the components of a product, while

leaving the core design concepts unaltered [Henderson and Clark].

Overturned

Incremental Innovation Modular Innovation

Architectural Innovation Radical Innovation

These concepts add insight into the role of KBS and its appropriateness for automating certain

systems in a manufacturing organization. Issues of KBS maintenance become important in the

presence of innovation, which implies some level of change of knowledge. KBS maintenance is

discussed in the context of the different types of innovation identified in Figure 7.1, and is then

linked back to policies of KBS task selection. The concept of "product architecture," defined by

Ulrich as "the scheme by which the function of a product is allocated to the physical components,"

also adds insight to the discussion.

7.3.1 KBS Maintenance and Incremental Innovation

As defined on the previous page, incremental innovation entails the refinement of components of a

product. In the context of powerfeed drill kits, such innovation might include changing the angle

on a drill bit to provide a more precise hole, or improving the design of a nosepiece to allow better

chip disposal. These examples reflect a change in knowledge of an individual component, or

element, in the kit. While important to identify, these innovations present no great problem to an

existing KBS system---the KBS can easily be edited to incorporate the new knowledge into its

existing knowledge base.

7.3.2 KBS Maintenance and Modular Innovation

As did incremental innovation, modular innovation implies no direct change to the linkages

between components in the system. However, modular innovation is more far-reaching in that it

involves the introduction of new elements in the system. Again using the example of powerfeed

drill equipment, a modular innovation might be the substitution of a drill motor with a "drill gun"

(an imaginary product used here only for illustration), which produced a hole through punching

rather than drilling. The net result of this innovation for the KBS is a substitution of one "module"

of knowledge with another; however, the architecture of the system remains the same.

7.3.3 KBS Maintenance and Architectural Innovation

In architectural innovation, the elements of a system are reconfigured in a new way, while

knowledge about the functionality of individual elements does not fundamentally change. An

example of such a change might be the re-design of a motor to incorporate the nosepiece, thus

combining the functionality of two components in one. In this case, the functionality of the

formerly separate nosepiece--to provide a link between the motor and the bushing collar and to

provide chip disposal--has not changed, but the interface between the nosepiece, motor and

bushing collar has been altered. With architectural innovation, despite some components

remaining unchanged, the interrelations described in the KBS system are no longer valid. (This is

equivalent to reconfiguring the relationships illustrated in the matrices presented in 5. and 6.). The

previous KBS is thus inadequate to address the design challenges of the new system.

7.3.4 KBS Maintenance and Radical Innovation

Radical innovation involves fundamental changes to a system's components and the relationships

between components. An example might be the replacement of powerfeed equipment with

equipment that dispenses a high-strength curable material which could be used to bond parts

chemically, rather than fasten them mechanically. In such an example, virtually all knowledge

captured within the existing KBS is obsolete; an entirely new system would need to be developed.

Potential difficulties in KBS maintenance with respect to the level of maturity of the technology to

be enhanced with a KBS also have implications for initial KBS task selection. Mature technologies

are presumably past stages of radical innovation. Mature systems are widely understood, can be

easily decomposed and thus, may be good candidates for KBS technology. These systems may

undergo incremental or modular innovations, which result in improvement, but do not change the

structure of the system. In contrast, immature or developing technologies undergo periods of

radical innovation, which profoundly alter the architecture of a product or system. Under such

levels of change, the development of a KBS may be a futile exercise, as the acquired knowledge

quickly becomes obsolete. Therefore, in order to achieve a maximum return for the effort invested

in developing KBS systems, mature systems may be better candidates for automation as their

processes, and the associated knowledge, are less likely to change in a manner that would obviate

the KBS.

7.4 Policy Summary and Discussion

The policy issues discussed in the preceding sections are summarized in the matrix below.

policy issue suggested policy impediments/nsks

1. end-user involvement in high-level user involvement -conflicting management
KBS development objectives

-user resistance to
technology

2. encouraging user use KBS as a means to company desire for
acceptance of KBS enhance, not replace productivity returns
technologies workers

choose to automate tasks that does the automation of these
workers want to automate tasks provide real savings to

the company?

3. task selection in the automate mature processes does the automation of these
context of technological tasks provide real savings to
innovation the company?

Figure 7-2 KBS Policy Matrix

As noted, there are impediments or risks associated with each policy. In particular, the issue of

company savings is raised twice with respect to task selection. While a workers may be

enthusiastic about the automation of the mundane and tedious aspects of his/her position, those

tasks are not necessarily those which can provide the largest productivity gain for the company.

This point also applies to the policy of automating only mature technologies: established

technologies may be well functioning and not be large drivers of product development lead time or

process inefficiencies. Therefore, before committing resources to any KBS project, a cost-benefit

analysis must be performed to determine the potential financial impact of the KBS application.

Another issue of policy concern is that of replacing workers. The policy recommendation is to

emphasize worker enhancement rather than worker replacement. While guarantying job security is

the most desirable outcome from the employee point of view, in the long-run it is unrealistic. KBS

technology is attractive to companies because it replaces human effort in certain areas, enabling

fewer employees to accomplish the same tasks. The substitution of automated systems for human

engineers or designers in turn enables cost-cutting and productivity gains. While it is unlikely that

companies will be able to develop KB systems if employees believe they will be immediately

replaced those systems, in the long-run, the need for productivity improvements will likely lead to

such a substitution. The substitution of automated systems for employees is however, also

associated with risks. If KBS is used to replace workers by automating systems that undergo

architectural or radical innovation-- which renders the KBS obsolete, the company may find itself

in the precarious position where the technology it has used to capture valuable knowledge is now

obsolete, and sources of that knowledge are no longer available.

7.5 Implications of KBS Technology for the Manufacturing

Organization

Unlike upgrading a single unit of the manufacturing organization such as one machine in a

production line, KB systems (and other automated manufacturing technologies) are powerful

because they can serve to integrate knowledge of cross-functional tasks [Hayes and Jaikumar].

This integration brings employees together along the goal-oriented lines of the system to be

automated. Unfortunately, this integration is subject to obstacles.

The process by which KATMO creates a knowledge document is first by gathering information,

second, organizing that information, and third, isolating pieces of the system for automation. This

methodology derives its strength from the explicit identification of element and parameter

relationships and their effective organization. This methodology also highlights elements that have

no relationship. A similar methodology has been applied to the organization of company tasks for

the completion of a large automotive development project [Eppinger and McCord]. This example

will be discussed because it highlights parallel issues in developing KB systems:

In reorganizing a group or company to complete a task, first the process steps are identified. Then,

process steps are organized according to the most efficient or otherwise desirable sequence. The

organizational structure that is identified through this process organization, however, rarely reflects

the current organization of the company [Gross]. For example, instead of a manufacturing team

being co-located with a design team to assess a production plan, their separation may result in

additional process steps and iterations such as "Design Team sends Manufacturing Plans to

Manufacturing Team in Plant A for Approval," "Manufacturing Team makes Changes to

Manufacturing Plans," "Send Manufacturing Plans back to Design Team," "Change Design," etc.

These steps, and much time and money, could be eliminated given an alternative team organization

which encouraged a closer contact between the design and manufacturing team. The process of

mapping process steps, enables a company to (1) identify value added and non-value added tasks

and then eliminate them in the pursuit of increased efficiency and productivity [Womack], and (2)

identify alternative organizational structures that better address the objectives of the company

[Eppinger, Gross].

Unfortunately, both eliminating tasks and reorganizing company structures requires flexible

organizations in which managers readily relinquish and accept authority over employees.

Relinquishing authority however is often seen as tantamount to demotion [Boeing]. In many

manufacturing companies, as managers are promoted they increase both their salary and

responsibility in terms of the number of people they supervise. A diminution of their supervision

is seen as an attack on their status and is fought vigorously [Boeing].

This example is relevant for KBS because KBS development and implementation also imply

changes to the work and system-user environment. Organizing a task for automation requires a

formal structuring of the process. This structuring reveals the inefficiencies of the current process.

Re-organizing these processes often requires shifts of managerial control. As a result, the decision

to alter company processes, like company organizational structures, often require the vision and

intervention of top-level management.

7.6 Summary

The successful introduction of KBS technologies is not dependent solely on the quality of the

development methodology or any tools used in the development process. Business policy issues

such as involving users in the KBS development process, achieving user support of KBS

technologies, and selecting tasks for automation that provide long-term benefits to the company are

also important to KBS project success. In addition, KBS introduction may have far-reaching

implications for the organizational structure of the company, requiring top-level management

initiative. An understanding of the benefits and challenges of KBS along both technology and

policy dimensions is important for the successful introduction of the technology.

8. Conclusion

Knowledge-based systems and knowledge acquisition tools are exciting technologies that present

the potential to automate many design tasks, enabling companies to decrease lead-times and

increase quality. In this thesis, the design of one tool for facilitating the development of KB

systems, KATMO, was introduced. This tool is comprised of three phases: knowledge

acquisition through interactive interviewing, knowledge structuring through matrix organization,

and parameter isolation and rule identification. The intended used of KATMO is in the structuring

of knowledge relating to selection tasks. A detailed explanation of the structure of this tool was

given in Section 5. In Section 6, the application of KATMO to the development of a prototype

KBS for the selection of components in a powerfeed drill kit was described. This application

highlights features of KATMO which include a means for determining an explicit mapping of

system element and parameter relationships, and complexity management-the process of

identifying locations where rules are difficult to capture, and introducing policies or user interaction

to manage the interrelations. This process enables selective automation in which the elements of a

system which can be easily captured with rules are automated, and more difficult relationships are

left for the user to manage. Selective automation extends the applicability of automated systems.

In Section 7, business policy issues with respect to KBS technologies were addressed. In

particular, the importance of involving users of KBS in the development process and the means for

achieving user acceptance of the technology were discussed. Finally, the role of KBS in the

context of technological innovation was analyzed. This revealed the potential inappropriateness of

KBS to novel systems because these systems are likely to change frequently and profoundly,

obviating the knowledge captured in the KBS knowledge base.

While KB systems are themselves an immature technology, their application in production

environments has resulted in many successful systems. KA tools however, despite their large

potential to accelerate the KBS development process, have not been widely employed in production

environments. This thesis hopes to further research toward the development of a production ready

KA tool.

Bibliography

[Bachrach] Bachrach, H., "Formal methods for the development of Design Automation
Applications," Masters Thesis, MIT, 1997

[Barstow, et.al] Barstow, D.R., Aiello, N., Duda, R.O., Erman, L.D., Forgy, CL, Gorlin, D.,
Greiner, R.D., Lenat, D.B., London, P.E., McDermott, J., Nii, H.P., Politakis, P., Reboh, R.,
Rosenschein, S., Scott, A.C., van Melle, W., Weiss, S.M., in Building Expert Systems, Hayes-
Roth, F., Waterman, D.A., Lenat, D.B., Addison-Wesley Publishing Company, Reading, MA,
1983

[Boeing] Interviews at The Boeing Company

[Boose, 1991] Boose, J.H., "Knowledge Acquisition Tools, Methods, and Mediating
Representations," in Knowledge Acquisition for Knowledge-Based Systems, IOS Press, Ohmsha,
Ltd., Amsterdam, 1991

[Boose] Boose, J.H., "A survey of knowledge acquisition techniques and tools," in Readings in
Knowledge Acquisition and Learning, Buchanan, B.G., Wilkins, D.C., Morgan Kaufmann
Publishers, San Mateo, CA, 1993

[Boose and Bradshaw] Boose, J.H., Bradshaw, J.M., "Expertise transfer and complex problems:
Using AQUINAS as a knowledge-acquisition workbench for knowledge-based systems," in
Readings in Knowledge Acquisition and Learning, Buchanan, B.G., Wilkins, D.C., Morgan
Kaufmann Publishers, San Mateo, CA, 1993

[Buchanan, et.al.] Buchanan, B.G., Barstow, D., Bechtal, R., Bennett, J., Clancey, W.,
Casimir, K., Mitchell, T., Waterman, D.A., in Building Expert Systems, Hayes-Roth, F.,
Waterman, D.A., Lenat, D.B., Addison-Wesley Publishing Company, Reading, MA, 1983

[Buchanan and Shortliffe] Buchanan, B.G., Shortliffe, E.H., Rule-Based Expert Systems,
Addison-Wesley Publishing Company, Reading, MA, 1983

[Buchanan and Wilkins] Buchanan, B.G., Wilkins, D.C. (editors), Readings in Knowledge
Acquisition and Learning, Morgan Kaufmann Publishers, San Mateo, CA, 1993

[Casey] Casey, T., "Picking the Right Expert System Application," Al Expert, Sept., 1989, pp.
44-7

[Charlet and Gascuel] Charlet, J., Gascuel, O., "Knolwedge Acquisition by Causal Model and
Meta-Knowledge," Proceedings of EKAW-89, Third European Workshop on Knowledge
Acquisition for Knowledge-Based Systems," Paris, July 1989, pp. 212-26

[Concentra] Interviews with Concentra

[Davis] Davis, R., "Interactive transfer of expertise: Acquisition of new inference rules," in
Readings in Knowledge Acquisition and Learning, Buchanan, B.G., Wilkins, D.C., Morgan
Kaufmann Publishers, San Mateo, CA, 1993

[Davis] Davis, R., in Rule-Based Expert Systems, Buchanan, B.G., Shortliffe, E.H., Addison-
Wesley Publishing Company, Reading, MA, 1983

[Edosomwan] Edosomwan, J.A., "Ten Design Rules for Knowledge Based Expert Systems," in
Expert Systems, Botten, N.A., Raz, T., Industrial engineering and management press, Institue of
Industrial engineers, Atlanta, Georgia, 1988

[Eppinger et al.] Eppinger, S.D., Whitney, D.E., Smith, R.P., Gebala, D.A., "Organizing the
Tasks in Complex Design Processes," ASME Design Theory and Methodology Conference,
Chicago, IL, 1990

[Eppinger and McCord] Eppinger, S.D., McCord, K.R., "Managing the Integration Problem in
Concurrent Engineering," MIT Sloan School of Management Working Paper, no. 3594, August,
1993.

[Eshelman] Eshelman, "MOLE: A Knowledge-Acquisition Tool for Cover-and-Differentiate
Systems," in Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer Academic
Publishers, Boston, MA, 1988

[Eshelman et al.] Eshelman, L., Ehret, D., McDermott, J., Tan, M., "MOLE: A tenacious
knowledge-acquisition tool," in Readings in Knowledge Acquisition and Learning, Buchanan,
B.G:, Wilkins, D.C., Morgan Kaufmann Publishers, San Mateo, CA, 1993

[Field] Field, J.D., "A Rule-Based Design System for Aircraft Engine Tooling," Masters Thesis,
MIT, 1992

[Ford] Interviews with Ford

[Gebala and Eppinger] Gebala, D.A., Eppinger, S.D., "Methods for Analyzing Design
Procedures," Design Theory and Methodology, DE-Vol. 31, ASME, 1991

[Gross] Interviews with Dr. David Gross, The Boeing Company

[Hayes and Jaikumar] Hayes, R.A., Jaikumar, R., "Manufacgturing's Crisis: New
Technologies, Obsolete Organizations," in Strategic Operations, Hayes, R.H., Pisano, G.P.,
Upton, D.M., The Free Press, NY, NY, 1996

[Hayes-Roth, et.al.] Hayes-Roth, F., Waterman, D.A., Lenat, D.B., Building Expert
Systems,Addison-Wesley Publishing Company, Reading, MA, 1983

[Hendersen and Clark] Henderson, R., Clark, K., "Architectural Innovation: The reconfiguration
of existing product technologies and the failure of established firms," ASQ, 35, pp. 9-30, 1990

[Kahn] Kahn, G., "MORE: From Observing Knowledge Engineers to Automating Knowledge
Acquisition," in Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer
Academic Publishers, Boston, MA, 1988

[Keiser and Bachrach] Phone interviews were conducted between January, 1997 and May, 1997
with KBS developers and employees at several companies.

[Klinker] Klinker, G. "KNACK: Sample-Driven Knowledge Acuqisition for Reporting
Systems," in Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer Academic
Publishers, Boston, MA, 1988

[Laufmann et al.] Laufmann, S.C., DeVaney, M., Whiting, M.A., "A methodology for evaluating
potential KBS Applications," IEEE Expert, V5, Number 6, Dec., 1990,
pp. 43-61

[Leonard-Barton] Leonard-Barton, Dorothy, Wellsprings of Knowledge, Havard Business
School Press, Boston, MA, 1995

[Lockheed] Interviews at Lockheed Martin Corporation

[Marcus] Marcus, S., "SALT: A Knowledge-Acquisition Tool for Propose-and-Revise
Systems," in Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer Academic
Publishers, Boston, MA, 1988

[Marcus and McDermott] Marcus, S., McDermott, J., "SALT: A knowledge acquisition language
for propose-and-revise systems,"in Readings in Knowledge Acquisition and Learning, Buchanan,
B.G., Wilkins, D.C., Morgan Kaufmann Publishers, San Mateo, CA, 1993

[Masud] Masud, A.S.M., "Knowledge-Based Systems and Industrial Engineering," in Expert
Systems, Botten, N.A., Raz, T., Industrial engineering and management press, Institue of
Industrial engineers, Atlanta, Georgia, 1988

[McDermott] McDermott, J., "Preliminary Steps Toward a Taxonomy of Problem-Solving
Methods," in Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer Academic
Publishers, Boston, MA, 1988

[McDermott, et al.] McDermott, J., Dallemagne, G., Klinker, G., Marques, D., Tung, D.,
"Explorations in How to Make Application Programming Easier," Knowledge Acquisition for
Knowledge-Based Systems, IOS Press, Ohmsha, Ltd., Amsterdam, 1991

[Michalski] Michalski, R.S., "A theory and methodology of inductive learning," in Readings in
Knowledge Acquisition and Learning, Buchanan, B.G., Wilkins, D.C., Morgan Kaufmann
Publishers, San Mateo, CA, 1993

[Mills] Mills, Robert, "Engineering Software: Mechanical Design," CAU, Volume 10, Issue 12,
December, 1991, pp. 14-22

[Morik et al.] Morik, K., Wrobel, S., Kietz, J-U., Emde, W., Knowledge Acquisition and
Machine Learning: Theory, Methods, and Applications, Academic Press Inc., San Diego, CA,
1993

[Motoda et al.] Motoda, H., Mizoguchi, R., Boose, J., Gaines, B. (editors), Knowledge
Acquisition for Knowledge-Based Systems, IOS Press, Ohmsha, Ltd., Amsterdam, 1991

[Nielsen and Walters] Nielsen, N.R., Walters, J., Crafting Knowledge-Based Systems, John
Wiley & Sons, Inc., New York, New York, 1988

[Offutt] Offutt, D., "SIZZLE: A Knowledge-Acquisition Tool Specialized for the Sizing Task," in
Automating Knowledge Acquisition for Expert Systems, Marcus, Kluwer Academic Publishers,
Boston, MA, 1988

[Payne and McArthur] Payne, E.C., McArthur, R.C., Developing Expert Systems, John Wiley &
Sons, Inc., New York, New York, 1990

[Rogers] Rogers, J.L., "DeMAID: A Design Manager's Aide for Intelligent Decomposition
User's Guide," NASA Technical Memorandum 101575, March, 1989

[Rogers et al.] Rogers, J.L., McCulley, C.M., Bloebaum, C.L., "Integrating a Genetic Algorithm
into a Knowledge-Based System for Ordering Complex Design Processes," Artificial Intelligence
in Design, Kluwer Academic Publishers, Netherlands, 1996

[Schmoldt and Rauscher] Schmoldt, D.L., Rauscher, H.M., Building Knowledge-Based Systems
for Natural resoure Management, Chapman & Hall, New York, New York, 1995

[Seidel] Description provided by David Seidel, LMTAS

[Sell] Sell, P.S., Expert Systems: a practical introduction, John Wiley & Sons Inc., New York,
1985

[Slagle and Wick] Slagle, J., Wick, M., "A Method for Evaluating Candidate Expert Systems
Applications," AI Magazine, Vol. 9, No. 4, 1988, pp. 44-53

[Smith] Smith, P., An Introduction to Knowledge Engineering, International Thomson Computer
Press, London, 1996

[Smith and Kandel] Smith, S., Kandel, A, Verification and Validation of Rule-Based Expert
Systems, CRC Press, Ann Arbor, MI, 1993

[Steward] Stewar, D.V., Systems Analysis and Management: Structure, Strategy and Design,
Petrocelli Books, NY, 1981

[Ulrich] Ulrich, K., "The Role of Product Architecture in the Manufacturing Firm," MIT Sloan
School of Management, Oct., 1992

[van Steenbergen] van Steenbergen, M.E., "EXACT: A Model-Based Knowledge Acquisition
Tool for Selection Tasks," IEEE/ACM International Conference on Developing and Managing
Expert System Programs, IEEE Computer Society Press, Los Alamitos, CA, 1991

[Weiss and Kulikowski] Weiss, S.M., Kulikowski, C.A., A Practical Guide to Designing Expert
Systems, Rowman & Allanheld Publishers, Totowa, New Jersey, 1984

[Womack and Jones] Womack, J., Jones, D., Lean Thinking, Simon and Schuster, NY, NY,
1996

Appendix A:

mator mt

matrial aatck me

to diamr Ae

motoolhke a mt
motol dimension a mda

motor dimesion b b

uhinck

chuck bodv lent chi

drillit length bt

dll bit material m

drill it fate itt

dn lbit diameter

drilibit db

tool thickness tt

tool hole diameter thd

lcr

collar stop width aw

collar iner diameter ad

bmthi outer diameter bc

huhin shank id bi

bching bodak d be

1hiaea h i

noe tpce threa..di

noae mceth ea d2

aooe oe nmt

spindle lengt l

7ushi

I

I

I

I

c.M
M,

lid

0

0

SI
13

I

0
I

S

S
I

II

g

nI
dI

I

I

I

I
I
II

I
I
I
I
I

I
I
I

I

I

Complete Matrices

bt

II

ml

I

I

meI

I

I

I
I

I
I
I

I
I

~
I

I
I

I

mdl

i0

0

I

I

mla

0

mlb

SML

7-
6-

6-

c

.M

C
Ir

Ir

3
-r

13
3

3
I

I
II
I
I
3
I

I
I
I
I
I
I
I
I
I
I
I
I
3
I
I

Ii,

S

U

dbm

IIhr

S
U

S
U

RIm

I
I

I

Z_
db

II

Figure A-1 "Unorganized" Powerfeed Matrix

* Tool is listed as an element but is not part of the selection process. Tools are designed and
include many design features. The selection process above determines two parameters of a tool.
For that reason, the tool element was included in the matrix.

thal

I

I

Ut

0
I

S I

W-bi-

S
U

b

U-i

hI

0

I
0

il

I

S

data type

if

if

if

if

if

if

tI
tl

t1

element

t23

element
12

tl

tI

tl
ti

element

tl

tl

element*

element

t2

tl

tli

tl

tl

element

tl

element

12

t

--

I

~

I

~

I

I
I
I
I

I

S

S,

S

I

I

I

CI

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I
I
I

Ie

i

I

III
I

II
I
I

I
I_ rip2

...

|

U.5. 7 -

3 -. -. p~ inr twloR~ n

C _;.- - - Ir
7;'4c ii

IMa llm "b I c .1 IEblo lf IdI t I1hd I c 1mid Ib I s b bI b nI pl .pl

P

.

- 1, 1T mr I I

:1:t t tLL I -I 1: J I I ltl 1:1±1:1: I

t

ci
I

I

1.

...
.

...

1...

....

-

1
-
-

m

_

-

-

dat yn

if

if
if

if
if

t1I

ti

tlelement12element

11
tl

tl

ti
element

12

12
t1I
ti

t11

element

I

I

policy introduced

coupled reeion

Figure A-2 "Organized" Powerfeed Matrix

policyl: gap policy type: Selection Policy
The gap between the bushing and the part depends on the design of the tool and the location of thepart to be drilled. While the gap is not a constant distance for every hole, a policy was devised to
assign the gap a value so other elements could be calculated. Following the computation, that useris asked if the gap value is correct. If it is not the case, a new value is entered and the selectionprocess is re-initiated. The gap value is asked after one iteration because in most cases, theassigned value is valid.

policy2: spindle length policy type: Selection Policy
The spindle of the motor is adjustable. In order to execute the computation, a value was assignedto the spindle. In the case of the need for fine tuning, the actual spindle length can be adjustedduring the kit assembly process.

*1
o5 tou.N~

hole diameter

I

I

I-
I

-

I
bt

I

-i:i
i

-

i

-

i

hd

cl

Itt

mt
mc11

ada
bod7
isi

hio

I

m

U: I :r I I: I: I I: I: I:

cleatace

breakthrough

motortype

motor capacity

motor stroke length

motor

motor dimension a

motor dimension b

chuck
chuck body lenth

drill bit mateial

drill bit flute

dill bit diameter
tool thickness

tool hole diameter
tool

collar

collar stop width

collar inner diameter
bushing outer diameter

bushine shank id
bushing shank od

ti

tI

12

tl

tl

element

clement

Illr~~~L -I -I i -t~

hshina Iknoth

nose imet hýnd I

I l

i·iI:I: I - I - Ltr t t t :1:

.________ ---..

0 T.

&I [n V IpI n

rrrll I I I I Irll I I I I I I I I I I I I Ir

i rTI I I rl I I I 1 IrT I I I I I I I I rl

I

...

I-

-

-

1

1..

...

.

.

lllllrl 1

bushing
- - - - - - - -

• I

I a 1 1 1-
•1 ,--I =4 -- Iki4,= Jl-----lii'-------J--il'--iL--I mL.•L•

-

...

-

·---7-I I I.,,,

-- m- - - - - - - - - - - -
,-i, -) 1,i I I I I I I -- P P-- • -I I--,I- --F

drill bit
.mm. i mmm4..---:

I I I I I I I I I I I.

policy3: drill bit length policy type: Selection Policy
The drill bit length and the nose piece length form a loop. Because these are parameters defining
elements, the selection process cannot be executed without breaking this loop (Red square in drill
bit row). Because more nose piece lengths existed than drill bit lengths, drill bit length was
assigned a value. The procedure is to query a database for a certain drill bit length value. If no
matches are found, the system modifies the value and re-executes the query.

material stack

hole diameter Ihd

at thaickness

cleamace cl

breakthrough bt

motor type mt

motor caacty
motor stroke mlength d
motor m

motor dimension a mda

motor dimen•ton b

chuck c

chuck bod lent lb I

cbl

drilibit material en

drill bit flute dl

drill bit diamcter M

drill bit db

tool thicknes tt

tool hole diameter thd

tool t

collar c

collar wto idth w

collarinner diamnete rcid

bushing outer diameter hod

huahing shank id bai

bushing shank ad baa

bushing length bIbhi
bushing bb
ise lace threadI i

noie lthted2

ii

now piece length al

nose p

ms

I

eI

i

lI

S

S

at

e

I

ci

I
S

Sl

mtt

U

meI

I

I

I

I

I

I

I

1.
1.

I
I

ma]

9

U

Qda

S

mdb c

I

I

I
I
IIII

II
I

I

F
LII
I
II

I
--

I,

I

I

dbl

I

I

ibir dbi ibm

I

I,

0

,t

S
U

S

I
thd

|

t C

i-

can

aII

US

Cad

I

I

bai

1

bso

|

data type

bl

I

b

I
SI

!L2 ci

I
* policy determines value.

Figure A-3 Policy Managed Matrix--Solved System

--

I

II

~

I

I

if

if

if

if

if

if

tl

11tl

tl

element

(2

t3

element

t2

tI

tl

II

t11

element

tl

tl

t11

element

t2

t2

tl

tl

tl

ti

element

tII

tl

t2

tl

delement

Appendix B: Rule Set

Sample Data
(disguised)

databasel
Motor Hole Diameter Canacitv tr Max Stroke Lngeth motor dimension A Chuck Chuck Body Nose Piece Thread I

M15D-S125 Al-0.375, Ti-0.313 Right Angle 1.250 0.375 Chkl 0.5 1.578-18NS-LH
MI6D-SI25 AI-0.500, Ti-0.375 Straight 3.000 0.500 Chk2 0.75 1.578-19NS-LH
MI7D-SI25 AI-0.375, Ti-0.313 Straight 3.000 0.500 Chk2 0.75 1.578-20NS-LH

rulel

IF (material = Ti) AND (hole diameter < 0.375) AND (part thickness < 3.000) OR
IF (material = Al) AND (hole diameter < 0.500) AND (part thickness < 3.000)
THEN (Motor = MISD-SI25). Element Defined: Motor

Chuck

database2
part material drill bit material drill flute

Composite/Aluminum Cobalt R
Titanium High Speed Steel L
Fiberglass Carbide L
Al/Ti/AI Cobalt R

rule2
hole diameter drill bit diameter

drill diameter = hole diameter - 0.05"

Query drill database for diameter, if match, accept, if no match
drill diameter = hole diameter - 0.075"

repeat with increments of 0.025".

rule3: policy
drill bit length

Query drill database for drill bit length = 5". if match, accept, if no match
drill bit length = 5.5".

repeat with increments of 0.5". Element Defined: Drill Bit

database3
drill bit diameter drill bit diameter

lower bound tool hole diameter tool thickness ollard collar stop
0 0.199 0.375 0.375 Cl 0.490 1.250 0.645

0.2 0.399 0.438 0.500 C2 0.620 1.500 0.450
0.4 0.599 0.500 0.500 C3 0.950 1.500 0.450
0.6 0.799 0.500 0.750 C4 1.500 1.500 0.500

Element Defined: Collar

database4
Collar Nose Piece Thread2

Cl 1.578-18NS-LH
C2 1.578-19NS-LH
C3 1.578-19NS-LH
C4 1.578-20NS-LH

database5
collar id bushin od _

0.490 0.500
0.620 0.650
0.950 0.100
1.500 1.600

100

rule4
drill bit diameter bushing shank id

bushing shank id = drill bit diameter + 0.002"

Query bushing database for bushing shank id, if match, accept, if no match
bushing shank id = drill bit diameter + 0.005"

repeat with increments of 0.003".

rule5
tool hole diameter bushing shank od

bushing shank od = tool hole diameter -0.100"

Query bushing database for bushing shank od, if match, accept, if no match
bushing shank od = tool hole diameter -0.200"

repeat with increments of 0.100".

rule6
part thickness bushing shank length

bushing shank length = part thickness + 0.02" (gap value)

Query bushing database for bushing shank length, if match, accept, if no match
bushing shank length = part thickness + 0.04"

repeat with increments of 0.020".

Query bushing database with all assembled parameters:
bushing shank id
bushing shank od
bushing shank length
bushing od Element Defined: Bushine

rule7 7
Nose Piece length upper bound

motor dimension a + 0.25" (spindle value) + Chuck Body + Drill Bit Length <=
Nose Piece Length + Collar Stop Width + Bushing Shank Length + Breakthrough

rule 8
Nose Piece length lower bound
Motor Stroke Length + Motor Dimension A + 0.25" (spindle value) + Chuck Body + Drill Bit Length >=
Nose Piece Length + Collar Stop Width + Bushing Shank Length + Part Thickness + 0.02" (gap value) Breakthrough

Query bushing database for nose piece length.

Query bushing database with all assembled parameters:
nose piece length
nose piece thread I
nose piece thread2 Element Defined: Nose Piece

Selection Process Completed.

101

