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Abstract

Every story about an event offers a unique perspective about the event. A popular
sporting event, such as a Major League Baseball game, is followed by several summary
articles that show different points of view. The goal of this research is to build a
computational model of perspective and build a system for automatically generating
multiple summary articles showing different perspectives.

My approach is to take a neutral summary article, reorder the content of that
summary based on event features extracted from the description of the game, and
produce two new summaries showing the local team perspectives. I will present an
initial user survey that validated the hypothesis that content ordering has a signifi-
cant effect on the users' perception of perspective. I will also discuss collecting and
analyzing a parallel corpus of baseball game data and summary articles showing local
team perspectives. I will then describe the reordering algorithm, the implementation
of the system, and a user study to evaluate the output of the system.

Thesis Supervisor: Howard Shrobe
Title: Principal Research Scientist
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Chapter 1

Introduction

This thesis defines the notion of perspective in concept-to-summary generation for

a baseball game, proposes one approach for modeling and automatically generating

multiple perspectives, and shows a system that implements the model of perspective.

Before we begin describing the details of the problem, let us consider the following

two excerpts about a major league baseball (MLB) game between the Boston Red

Sox and the Toronto Blue Jays in 2005:

Things looked almost too good to be true for the Blue Jays in last night's

fourth inning as they were laying another whupping on the defending

champions.

That's because Toronto's four-run lead and a faltering Boston Red Sox

pitcher in David Wells really were too good to last. The Jays slowly saw

their dream become a nightmare by the middle innings as Wells regained

his footing and the biggest Boston bats came to life.

Reality descended completely in the seventh as Manny Ramirez, contained

throughout the series, lofted a fly ball towards a mysterious right field

corner of this park that wound up being a decisive home run.

"Right there, I'm thinking it's a fly ball to right field," Jays pitcher Pete

Walker, reverting to a relief role in this one, said after Ramirez's two-run

blast handed Toronto a 6-4 loss in front of 35,268 fans at Fenway Park.



"So then, I started watching the ball and it started floating towards the

right field corner. Just from what I saw, the way it kept going out there,

I had a feeling it was going to sneak out."

The right-field corner at Fenway is a short porch with a waist-high fence

that has turned many a fly ball into a round-tripper. It's just one of the

advantages the Red Sox have used over the years and another reason why

no lead here is ever safe.

But there are two bigger reasons the Jays are back to six games behind

Boston, instead of four. One was the 11 runners the Jays wound up

stranding, including a pair in the ninth when Gregg Zaun flied out to

right on a Keith Foulke pitch he just got under. Foulke had also induced

Reed Johnson to fly out with two on to end the eighth.

-From the Online Edition of Toronto Star, July 3, 2005.

A season is all about evolution, a player finding himself, and, when called

for, management finding someone new. Plenty of that was on display

yesterday at Fenway Park on what was, beginning to end, an eventful,

entertaining day in the Back Bay.

There was Matt Mantei going - he's out a minimum of 3-4 weeks, and quite

possibly the season, with ligament damage in his left ankle. There was

Pawtucket lefthander Abe Alvarez coming - to replace Mantei, though

Alvarez's stay is unknown. There was David Wells fighting himself at

times, then fighting the umpires, completing his night after 6 2/3 innings

by getting ejected.

There was Manny Ramirez continuing to find his swing, launching his

ninth homer in his last 17 games to snap a 4-4 tie and vault the Sox to a

6-4 lead, which is how it ended against the pesky Blue Jays. And there

was Keith Foulke - in his first appearance since being taken out of the

yard by Cleveland's Travis Hafner, then taking his anxiety out on the fans

- inheriting two runners with two outs in the eighth and getting Sox killer



Reed Johnson to fly to right. He then held the Blue Jays scoreless in the

ninth, though he allowed two singles.

In fact, in the search for new beginnings, Foulke came out to a new theme

song last night. Scrapped was "Mother," by Danzig, a song Bronson

Arroyo chose for the Sox closer. Now Foulke comes jogging out of the

bullpen to Hank Williams Jr.'s "Country Boy Can Survive."

"It's time," Foulke said of the musical change. "You listen to the song

and you'll understand why."

Foulke was in position for the save, his 15th, thanks to Ramirez, who

powered the Sox to only their third win in 10 games this season against

Toronto. Ramirez did his damage with one vintage swing in the seventh

with David Ortiz aboard and nobody out.

Blue Jays reliever Pete Walker left a hanger on the outside corner, and

Ramirez stepped toward the mound, not the ball, and simply flung his bat

at it. The ball started toward right fielder Alex Rios before fading into

the fandom behind Pesky's Pole. The homer gave Ramirez 45 against the

Blue Jays, the most against Toronto by any player since the team entered

the American League in 1977.

-From the Online Edition of The Boston Globe, July 3, 2005.

The two excerpts above are from the online news sources for the two teams: the

Boston Globe and the Toronto Star. Although they are written about the same game,

the two articles are distinctively different in what and how they choose to tell in the

stories. The first article by the Toronto newspaper focuses on their initial lead being

blown away by a Red Sox homerun, and the missed opportunities that the Toronto

offense had throughout the game. The second article by the Boston newspaper focuses

on the team's various players either stepping up to fill their roles or failing to do so,

with Manny Ramirez and Keith Foulke being highlighted for their roles in this game.

This simple comparison shows that the same set of events that happened during and

around the game can be told in multiple versions of narrative. The overarching goal



of this thesis is to look at this problem of generating multiple summary articles of a

single event.

One big obstacle to this goal is that there are many dimensions along which the

articles differ. Some of those dimensions are based on content and are somewhat easier

to identify, such as the set of players discussed, specific game events mentioned, and

the team and player statistics in the game and previous games in the season. Others

are more difficult to pinpoint and almost impossible to measure, such as the writer's

opinions about the team, predictions for the remaining games in the season, and

emotions toward the home team and the opposing team. In fact, besides these two

articles, there are usually several more articles in each of the two newspapers on the

same game that also differ significantly from these articles along various dimensions.

Looking beyond the two newspapers, naturally there are other local and national

newspapers that also feature articles written about the same game. If you add online

sports news, personal blogs, and discussion boards on the Internet, there are literally

hundreds of stories that people tell about one single baseball game.

That problem of taking one baseball game and generating hundreds of articles that

are significantly different, in itself, is both not interesting and too difficult. It becomes

much more tractable and interesting if I can identify one important dimension along

which the articles should differ. I chose to look at point-of-view, or perspective as I

will call it throughout the thesis, for that one important dimension.

1.1 Motivation

The motivation for this work comes from the general observation that people enjoy

reading multiple stories about an event. At first, this seems counterintuitive in this

fast-paced world loaded with all kinds of information right at the fingertip of the user.

Why would he want to spend time reading multiple stories about one subject when

he can read one story each about multiple subjects? One answer is offered at the

BBC (British Broadcasting Company) news website:

Our users tell us that one of the things they value most about our service



1Te BBC ks not responsible for the content of externat
nternet sites

FROM OTHER NEWS SITES
ý Guardnian Unlimited Miliband: Russia has

big responsibility not to start new cold
war - 1 hr ago

Telegraph David Miliband tells Russia it
must avoid starting a new Cold War - 1
hr ago

ý Sky News Miliband Warning Over
Russia - 3 hrs ago

Reuters Russia-Georgia conflict raises
Black Sea tensions - 4 hrs ago

tAl Jazeera West condemns Moscow over
Georgia - 5 hrs ago

'About these results

Figure 1-1: BBC lists and links to other articles on the Internet.

is our policy of linking openly to other websites.

These links offer access to more detailed information, the chance to com-

pare sources or check out a different perspective on the same story.

- From BBC News on the Web at http://www.bbc.co.uk

This quote refers to a section in some of their news stories that link to other stories

about the same event. Figure 1-1 is an example of that section.

A similar approach is taken by the Major League Baseball (MLB) website at

http://www.mlb.com. For every game, they offer a comprehensive summary of the

game, including all the facts of the game (game description and box scores) as well as

two sides of the story, one for each team that played in that game. Figure 1-2 shows

an example of this.

Google News (http://news.google.com) is another example of offering users several

articles on a single topic (Figure 1-3). They also specify how many other articles they

can find using Google search, and that number is sometimes in the several hundreds.



Ir WRAP

Gain-breaking
contest
tan tBowne I MLS com

Seven players scored at teat one i
onlyone staer idint get a hit. as t
chased Andy Petitte and the Yanks
opener. However wthout rever J
Mateson ki•ng a ombers rally Ir
seventh, the Sox coul not have ge
game on the Rays In the At East.

Fut story

Red Sox Wrap >

More Red Sox Headlines
* Drw an't avoid DL stir
SRed Sox equash Yatkees' momentu
q.. -- f.IIAk, A... 0. 1-M.. W VI'

Figure 1-2: The Major League Baseball website features two wrap-up stories for every
game.

Clinton Rallies Her Troops to Fight for an Obama
Victory
New York Times - hour ago
By PATRICK HEALY DENVER - With her husband looking on tenderly
and her supporters watching with tears in their eyes, Senator Hillary
Rodham Clinton deferred her own dreams on Tuesday night and
delivered an emphatic plea at the Democratic Nationa.
r Video: Clinton's Speech Praised CBS
Free Press voter panel responds to speech Detroit Free Press
FOXNews - Reuters - Voice of America - Newsweek
all 7,848 news articles ,

Figure 1-3: Google News links several online articles on the same topic and also tells
the user how many other articles the Google search has found on that same topic.



1.2 Perspective

It is first necessary to define what is meant by the terms perspective and multiple

perspectives. The definition of perspective in this thesis is somewhat different from a

more traditional meaning of perspective or point-of-view in literature.

point of view The perspective from which a story is presented to the

reader. The three main points of view are first person, third person sin-

gular, and third person omniscient.[18]

There is work by [41] which uses that definition of perspective, where a computa-

tional system tries to infer the narrative character whose point of view is presented

in each sentence.

Our definition is much closer to that used in [23], where they look at ideological

perspectives of online articles on political, social, and cultural issues. They look at the

political domain of the issues between Israel and Palestine, and they try to infer, for

each online article, whether it is written from the Israeli perspective or the Palestinian

perspective.

This is an important problem, especially as the amount of textual information

available via Internet becomes larger every day. For every topic, there are many well-

written articles worth reading, but because of the huge amount of text, it is difficult

to identify which articles to read. With well-known sources such as the online versions

of large newspapers (e.g, The New York Times), the general perspective and attitude

of the journalists can be inferred just by knowing the source. However, with more

personal blogs and smaller-scale online journalism becoming more ubiquitous and

important, it is often difficult to know the perspective of an article without actually

reading the article, and for current events news stories where only partial stories

are told initially, the reader would not be sure which side's story they are reading.

Hence, work such as [23] that tries to automatically identify the perpsective of an

article is interesting and pertinent. On the flip side, it would be useful to be able to

automatically generate stories from multiple perspectives. Simply for applications,

if a user wants to read about an event from a certain perspective, he would simply



ask for an article to be written from that perspective, and an automatic generation

system would produce an article to suit his needs. An important side-effect of such

application building would be that we would be able to gain a deep understanding of

the computational model behind generating multiple perspectives.

This thesis looks at just that problem in the domain of baseball games. That

is, I examine the home team vs. visiting team articles, come up with an algorithm

for generating such articles, and build a prototype system. I assume that the two

opposing perspectives are expressed in the local newspaper articles of the two teams,

and I assume that the neutral perspective is expressed in the Associated Press articles

published on an ESPN website (www.espn.com). I confirmed these assumptions via

a user study, then I identified some key factors contributing to an article having a

certain perspective.

I model this problem as an instance of text-to-text generation (see [4]), a sub-

problem within natural language generation (NLG). NLG encompasses the vast prob-

lem of automatically generating text. Most NLG systems divide the generation pro-

cess into content planning and surface realization. Content planning spans the tasks

of choosing, ordering, and structuring the content into paragraphs. Surface realization

takes that planned content and produces sentences using either pre-made templates

or syntactic and lexical selection rules.

1.3 Challenges

An initial challenge of this work is the problem definition itself. There are infinite

ways to generate a summary article following any event, and since it is impractical to

come up with an algorithm that will try to generate as many of those as possible, it is

necessary to define the problem by deciding on a dimension along which the output

should vary. To make the problem easier to solve, a widely used dimension is ideal,

but to make the problem interesting, a conceptual and generalizable dimension should

be chosen, rather than some arbitrary feature of the domain. For example, it would

be easy to say that the dimension should be the set of players mentioned in the story,



but that dimension is not flexible enough to be generalized for all teams and varieties

of game situations. An added challenge is that I do not assume that a user model

of the audience is known, other than the very coarse model that represents only the

team that they are supporting. A lack of knowledge about the user implies that the

generated output should exhibit behavior that mimics human-generated output with

a wide audience in mind rather than targeting a specific user group with a known set

of interests [30]. Also, to take advantage of the widely available data and well-specified

game rules of the domain, automatically built knowledge of the game should be used,

as well as neutral articles as the starting point. Other concept-to-text algorithms

such as [21] also take advantage of widely available domain data, so lessons can be

learned from those previous systems and be applied to this problem as well. The last

challenge is to identify and propose a novel algorithm for a subtask within NLG that

would work well for this problem.

1.4 Problem Definition

I can look at the problem of multiple perspective generation at every level of NLG-

from content selection to lexical selection, but for this thesis, I further specify the

problem in two ways. First, rather than generating the articles from scratch, the

system takes an article written from a neutral perspective and makes transformations

on that article to produce two other articles, each from a different perspective. While

the assumption that there exists a neutral article to begin with may be significant,

it is not an unrealistic one, as neutral, or close to neutral articles are abundant for a

variety of news topics if one considers news sources such as Associated Press (AP) or

Reuters to be credible and near-neutral sources. In one sense, this is a simplification

of the problem because the generated output is a transformation of a document that is

already existing and written by a human writer. On the other hand, this specification

may enable the generation algorithm to be more generalizable if we can take advantage

of the neutral article in a way such that the process of domain knowledge acquisition

can be eliminated. If we can isolate the transformation algorithm to be domain-



independent given the neutral article, this specification would extend the algorithm

to be much more powerful. Although the prototype tested in this thesis does not

include that extension, I will show a preliminary experiment that looks promising.

Secondly, I chose to focus on the part of NLG that deals with content ordering.

Content ordering is an important subtask within NLG, and much work has been done

in it, but most of it has been pairwise ordering constraints, in which the algorithm

would decide whether sentence A should come before or after sentence B. I propose a

re-ordering algorithm that considers more than two sentences (or units of content) at

once, and I assert that content ordering alone can contribute to significant changes in

perspective. A more detailed explanation comes in a later chapter that explains why

working only with content ordering is enough for our prototype.

The problem definition boils down to the following hypothesis:

Ordering Hypothesis: Ordering of the content alone contributes sig-

nificantly to the perspective of a story. Hence, you can generate multiple

perspectives by taking a pre-determined set of content and reordering it.

I will show, through the rest of this thesis, that this hypothesis is true. The

first step is running an initial user survey about what factors of a text contributes

to perspective. The results of that survey indicates that ordering is a significant

factor in perspective. Then, the second step is building a system that is based on

this hypothesis. The system is essentially an implementation of content re-ordering

algorithm. The third step is evaluating that system such that, if the results of the

system output show the desired perspective, then I can say the ordering algorithm

above is valid.

1.5 Contributions

The major contributions of this thesis are presented and discussed in detail in the

following chapters in this order:



* multiple perspectives for summary generation: In the present chapter,

I have defined the problem of generating multiple summary articles of a base-

ball game with different perspectives. To make the problem tractable using

a computational model, I have narrowed it down to a content planning prob-

lem within text-to-text generation, and to justify that, I proposed the Ordering

Hypothesis.

* collecting and analyzing data for studying perspective in the baseball

domain: In Chapter 2, I will discuss how I collected and analyzed data for

studying multiple perspectives. The data consists of automatically downloaded

game data and local perspective articles to constitue a parallel corpus. This

chapter explains an important step in transforming textual domain descriptions

into feature vectors used in our computational domain model, as well as aligning

sentences in the parallel corpus with feature vectors in the domain model.

* describing user studies used for identifying potential sources of per-

spective: Chapter 3 presents the first user study in which users were asked to

rate various versions of the local team articles and neutral articles. By modi-

fying the original parallel corpus in four steps and having the subjects rate the

modified articles, the study was able to confirm the validity of the Ordering

Hypothesis.

* showing content reordering as an effective way to generate multiple

perspectives: Chapter 4 presents the details of the reordering algorithm and

how it is implemented in the prototype system. It describes the different order-

ing strategies found in the corpus, and how the ordering strategies are chosen

using a statistical weighting scheme.

* evaluating the prototype to show that the reordering algorithm works:

Chapter 5 discusses the user study for evaluating our prototype. The system

output was compared against baseline summaries, and statistical tests show

that the users rated the system-produced summaries as showing the desired



perspectives.

The last two chapters, 6 and 7 present discussions on related work and concluding

remarks. Chapter 6 situates this thesis within the related work in the areas of user

modeling, sentiment analysis, perspective analysis, and cognitive science and media

studies. Chapter 7 presents concluding remarks including contributions of this work

and future directions.



Chapter 2

Corpus Collection and Analyses

A substantial part of this thesis work was in choosing the domain, then collecting

and analyzing data for that domain. Although it is important to show generality and

extensibility of the model and algorithms by applying them across different domains,

it is first necessary to show that a newly defined problem can be solved in a specific

domain, in a proof-of-concept way. I chose the domain of baseball to serve this

purpose, and in this chapter, I will elaborate on the details of the domain and describe

the processes for automatically collecting baseball game data and corpus of news

articles. I will then illustrate how I used the game data to extract a semantically

rich domain model. Then, I will show the two stages of using the corpus of articles

to discover one way to model multiple perspectives. The first stage is aligning the

sentences in the articles with the corresponding game events, represented as feature

vectors, in the domain model. The second stage is finding patterns of the feature

vectors depending on perspective, thereby discovering a model of perspective based

on the corpus and the domain model.

2.1 Baseball Domain

Many previous works in NLP choose sports, such as soccer [1], basketball [31], and

other sports (*cite*) as the domain in which to test the ideas. There are a few good

reasons for choosing sports over other possible domains. First, there is a large body



of data to work with. Every day, there are many sporting events taking place, and

more importantly, being talked about in newspapers, television, and the Internet.

That results in hundreds and thousands of documents and transcripts to collect and

analyze. Secondly, unlike most other domains, sports games have well-defined rules

about possible events, timeline, and entities. For example, a baseball game has nine

innings, or eighteen half-innings. The two opposing teams take turns playing offense

and defense for each half-inning. The teams are made up of nine active players, and

their positions are pre-specified. For each batter coming onto face the pitcher, there

is a finite set of outcomes (e.g., homerun, strikeout) of that pitcher-batter interaction.

Thirdly, despite a well-defined set of rules, sports domains are fairly complex and rich.

There are different types of entities, players, teams, groups of players, coaching staff,

and they interact in ways that are analogous to everyday interactions among entities

in the non-sports domains. The events and timeline are also complex, in that events

in a game, and games in a season, can be organized hierarchically. In baseball, pitches

make up an at-bat, at-bats make up a half-inning, two half-innings make up an inning,

innings make up a game, and games make up a season. Those event and time units

are best represented in a hierarchical model, in which it would be possible to compute

and identify important relationships and transitions. Lastly, although the rules and

hierarchies are artifically constructed in the sports domain, many of the same types of

rules and hierarchies exist naturally in other domains. Interactions among people and

organizations, chronological ordering of events and their relationships, and unwritten

but unambiguous rules of interactions are ubiquitous in non-sports domains, and

hence many of the questions and answers discussed in this thesis are applicable to

other domains.

2.1.1 Game Data

The Major League Baseball (MLB) has 30 teams within the United States and

Canada, and each team plays approximately 160 games per season. I have collected

data for approximately 600 games from the 2005 and 2006 MLB seasons. For ev-

ery MLB game, the website of MLB (www.mlb.com) publishes game data consisting
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Figure 2-1: Pitch by Pitch Log of a Baseball Game

of two documents. The first document is a game log (see figure 2-1) , which is a

complete list of atBats in the game (see 2.1.2 for definition of atBat. There are at

least 3 atBats per half of an inning (top or bottom), and there are at least 9 innings

per game (except in extreme weather conditions), so there are at least 54 atBats per

game, but usually more. In our corpus, the average number of at-bats is 76.2 per

game. The second document is a boxscore, which is a list of each batter and pitcher's

performance statistics for the game. Currently I do not use the boxscore documents

in this work.

The game log is a complete pitch-by-pitch account of the game events. It describes

what happened for each pitch that the pitcher threw during the game. It includes

individual pitch-level outcomes such as strike or ball, as well as outcomes that result in

the end of the current at-bat, such as a strikeout, a hit (e.g., single, double, homerun),

and various non-strikeout outs (e.g., foulout, lineout). It also lists any runners on base,

whether they advanced to the next base on the play, and whether anyone crossed the

home plate to add to the score. Each line also includes the home and away team scores

at the end of the play, and the number of outs (0, 1, or 2) at the end of the play.

As such, each game log can be turned into an accurate and complete model of events

in the game, and patterns over those events can easily be computed. Some example

patterns that can be computed over the events include two-out scoring events, bases-

loaded third out, eighth or ninth-inning blown saves. Section 2.2 has a more detailed

description of the domain model and pattern computations.

It must be noted, however, that a game log does not contain events that are not

directly from the game. There are events that take place outside of the game itself

but are closely related to the game, such as player injuries, trades, and coaching



decisions. Those events are often very important and thus are described frequently

in game summary articles. The game summary articles also contain many player and

coaching staff quotes, expressing opinions and insights about the game. I chose not to

include the non-game events and quotes in this sytem, as the main focus of the thesis

is not about summary generation, but about perspective generation in summaries. If

the system can generate multiple perspectives with only the game event descriptions,

then it is not necessary to include the non-game events and quotes. Those extras may

be further studied as one of the next steps of this work.

2.1.2 Baseball Rules and Terms

The website of MLB (www.mlb.com) has a wealth of information on baseball rules

and terminology. Here I will present the ones that are used in my system.

* pitcher: the player on the defensive team who throws the ball. There is a

starting pitcher who starts pitching from the very beginning and pitches for

three to nine innings. He is the most important pitcher.

* batter: the player on the offensive team who tries to hit the ball. Almost every

batter also plays a defensive position, such as catcher, left-fielder, etc.

* atBat: a batter's turn in the batter's box consisting of a set of balls thrown

from the pitcher to the batter such that the outcome is either an out or an

advancement of the batter to a base including the home base, which would be

a home run.

* baseHit: a hit in which the batter safely advances to a base.

* walk: a set of four balls, as opposed to strikes, that automatically advances the

batter to the first base.

* RBI (runs-batted-in): a play in which one of the offensive players (either

already on base or the batter himself) safely reaches the home base and scores.



* inning: a set of atBats that result in three outs makes up a half-inning. An

inning consists of two half-innings, the first half is called top, and the second

half is called bottom.

2.2 Domain Model

In addition to the game logs, the MLB website (http://www.mlb.com) has team

rosters, listing all the player names and coaching staff in each team. Using the team

rosters, game logs, and basic knowledge of the structure of the baseball games, I built

a hierarchical model of the game, divided up into two parts, entities and events.

2.2.1 Entities

Entities are individual players, coaching staff, groups of players or staff, and the

entire team. The entities are structured hierarchically, where a team is made up of

players and coaching staff, and each player and staff member can belong in one or

more groups. Each player is represented by his first name, last name, and defensive

position (e.g., pitcher, first baseman), such that player lookup can be done by a

combination of those fields. Groups are formed dynamically for each game based on

entity and event features. Dynamically formed groups are based on defensive position

(e.g., pitchers) or game performance (e.g., batters with RBIs in the game). Groups

are useful for computing group performance, such as the pitchers' combined earned

runs (ER) or strikeouts. The system computes the group performance metrics but

does not yet use the group performance analysis in the generated summaries.

2.2.2 Events

The events in the game are also organized hierarchically. The smallest unit is each

pitch the pitcher throws. Then, the pitches make up an atBat, a series of pitches to a

particular batter. Three or more atBats make up a half-inning, and two half-innings

make up an inning, and finally, nine or more innings make up a game. The first step in



building a model of the game events from the game log is parsing the log such that each

atBat is turned into a feature vector using simple regular expression type patterns.

These are the features used in the system: inningNumber, atBatNumber, pitchCount,

homeScore, visitScore, team, pitcher, batter, onFirst, onSecond, onThird, outsAdded,

baseHit, rbi, doubleplay, runnersStranded, homerun, strikeOut, extraBaseHit, walk,

error, typeOfPlay.

Some of these features, such as batter and typeOfPlay are extracted directly from

each line in the log that is being transformed into a feature vector. Some of the

features, such as inningNumber, team, and pitcher span multiple contiguous at-bats

and are extracted from the current line or in one of the lines going back a few at-bats.

The remaining features, such as onFirst, outsAdded, and runnersStranded are derived

from looking at the feature vector of the previous at-bat and following simple rules

of the baseball game. For example, onSecond is derived from looking at the previous

feature vector's onFirst value and whether the current play is one that advances the

runner one base. If onFirst is not null and the current play advanced runners, then the

previous feature vector's onFirst gets copied to the current onSecond. While I tried

to identify features that are important in a baseball game, later sections will show

that some of them were not used for analyzing and generating multiple perspectives,

as only a subset of the features were significant variables for our content reordering

algorithm. Here are descriptions of all the features and how they are computed from

the game logs.

* inningNumber: the ordinal number for an inning; 0 (top of first), 1 (bottom of

first), 2 (top of second), ... This is extracted directly from the first line in each

half-inning.

* atBatNumber: the ordinal number for the current atBat. This is a counter that

increments for each atBat line in the log.

* pitchCount: the number of pitches a pitcher throws for a particular atBat. This

is a count of strikes, balls, and fouls that are listed in the line of the atBat.



* homeScore: the current score (before the end of the current atBat for the home

team. This is extracted from the line.

* visitScore: the current score (before the end of the current atBat for the visiting

team. This is extracted from the line.

* team: the three-letter name of the offensive team. The two team names are

extracted from the beginning of the log, and for each half-inning, the offensive

team switches.

* pitcher: the name of the current pitcher. This is extracted from the line of the

current atBat.

* batter: the name of the current batter. This is extracted from the line of the

current atBat.

* onFirst: baserunner on first base, null if no one is on. This is parsed from the

previous line.

* onSecond: baserunner on second base, null if no one is on. This is parsed from

the previous line.

* onThird: baserunner on third base, null if no one is on. This is parsed from the

previous line.

* outsAdded: an integer value between 0 and 3 for the number of outs this AtBat

has generated. This is computed as the difference between the number of outs

in the previous atBat, and the number of outs after the current atBat.

* baseHit: an integer value between 0 and 3. 0 for no hit, 1 for a single, 2 for a

double, and 3 for a triple. This is parsed from the current line using keywords

"singled", "doubled", and "tripled".

* rbi: an integer value for the number of runs this AtBat has generated. This

is computed as the difference between the score in the previous atBat and the

score of the current atBat line.



* doublePlay: a boolean value. True if this AtBat resulted in a double play,

causing two outs to be added. This is parsed using the keyword "double play".

* runnersStranded: an integer value between 0 and 3 for the runners on base

when this AtBat has ended to add the final (third) out of the inning. This is

determined by looking at whether this atBat is the last in the half-inning, and

whether onFirst, onSecond, or onThird is non-null.

* homerun: a boolean value. True if the batter hit a homerun, adding one or more

points to their team's score.??This is identified by the keyword "homerun" in

the current atBat line.

* strikeOut: a boolean value. True if the AtBat ended with three strikes, adding

one out.

* extraBaseHit: a boolean value. True if this atBat resulted in an extra base hit

(a double or a triple), False otherwise. This is identified by keywords "double"

and "triple".

* walk: a boolean value. True if the atBat ended with four balls, advancing the

batter to first base and other baserunners if applicable.

* error: a boolean value. This is identified by the keyword "error".

* typeOfPlay: the final outcome of the atBat. Possible values include strikeout,

walk, foulout, lineout, popout, single, dobule, triple, homerun, fielderschoice,

etc.

Figure 2-2 shows an excerpt from a game log and how the lines are parsed into

feature vectors. Because of space limitations, this example leaves out several fea-

tures and shows the most interesting features. Occasionally, spelling errors and other

abnormalities in the game log causes the feature vectors to be partially incorrect,

but more than 99% of the time, the game logs are parsed correctly into the feature

vectors.
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Figure 2-2: An example of how a game log is parsed into feature-vectors.

2.2.3 Computing Over Feature Vectors

The feature vectors contain much information, but some simple computations can be

done over the feature vectors to gain more insight into the domain. Here are some

examples of computing over feature vectors:

* Two-out scoring plays: This is computed by looking at the values of the feature

outs and the feature rbi. If outs is two, and rbi is greater than 0, then this

feature is set to true, otherwise false.

* Lead-changing plays: This is a boolean value, set to true if teamAscore -

teamBscore has different sign (negative vs positive) for the current atBat and

the next atBat.

* Runners stranded: This is computed by looking at the values of the onFirst,

onSecond, and onThird, and the value of outs of the current and next atBats. If

any onXX has a non-null value, and outs at the end of this atBat is three, then

this is set to true.

* Number of extra-inning hits: This is a count of atBats in the half-inning for

which the value of playType is double, triple, or homerun.



These are just examples, and there are many more of these higher-order features

that can be computed by looking at the simple features of the atBats. The domain

model being used in the current system is flexible to allow these features to be com-

puted and added to the model for richer analysis.

2.3 Corpus of Summary Articles

In addition to the game logs and boxscores which serve the purpose of automatically

building domain models, I use online newspaper articles to build the corpus from

which to learn how the summaries are written from multiple perspectives. Since, for

every game, there are several articles written and published about the game, all from

different perspectives, collecting and analyzing those articles would reveal ways of

generating multiple perspectives based on the same set of events.

2.3.1 Choosing Sources

Following a baseball game, many online and print newspapers publish stories based

on that particular game. Even in a single newspaper, there may be several articles

about the game. Additionally, there are sports and personal blogs that also publish

online stories on the same game. To constrain the corpus such that data collection

is practical and data is consistent in terms of perspective, it makes most sense to

collect the main wrap-up stories from the major local newspapers of the two opposing

teams. That way, the two local team perspectives can be the target for the system

to model and generate. A simple and reasonable assumption would be that the

contributing factors to multiple perspectives are the major differences between the

two opposing teams' local articles. Of course, even if the corpus is constrained to

the main stories in the major local newspapers, there are confounding variables, such

as the specific journalist's style or the editor's biases, as well as the overall tone and

attitude of the newspaper toward its hometown team. However, by taking several

different sources and searching for common factors among them, much of those issues

can be eliminated.
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Figure 2-3: An example of a pair of local newspaper articles (online versions) for

parallel corpus.

Hence, I collected articles published on several online news sources. The MLB web-

site (www.mlb.com) publishes two articles for every game, written for each of the two

teams in the game. Each team has a unique sportswriter covering that team for the

entire season, so I use the MLB articles as one of our sources with the home/visit team

perspective. The ESPN website (www.espn.com) also has articles for every MLB game

including the main summary articles from the Associated Press (AP). I use the AP

articles as our neutral source. I also collected online local newspaper articles for MLB

teams in the American League East Division: Boston Red Sox (The Boston Globe at

www.boston.com), New York Yankees (The New York Times at www.nytimes.com),

Baltimore Orioles (The Washington Post at www.washingtonpost.com), Toronto Blue

Jays (The Toronto Star at torontostar.com), and Tampa Bay Devil Rays (The Tampa

Tribune at tampatrib.com). See figure 2-3 for an example of a pair of local newspaper

articles (online versions) on the same game.

""' ^~



2.3.2 Alignment

While the game logs are simple to parse into feature vectors representing baseball

events and entities, newspaper articles are much harder to analyze. In order to make

connections between an article and the domain model of the game built from the

game logs, the sentences must be aligned with the game event feature-vectors derived

from the game log. For example, a paragraph below describes events in the game,

and the sentences in the paragraph can be aligned to the at-bats in the game.

Podsednik started the three-run 10th inning by drawing a leadoff walk

from reliever Ambiorix Burgos (2-4). Podsednik moved to second on Bur-

gos' balk, the third of the series for the Royals (37-69), and scored on

Crede's well-placed grounder past the pitcher. Ross Gload doubled home

a run and Brian Anderson singled home an insurance tally, making An-

gel Berroa's home run off of closer Bobby Jenks (29th save) in the ninth

nothing more than statistical padding.

There is previous work on sentence-to-game event alignment, most notably by Sny-

der [35] who uses statistical learning algorithms on American football data to achieve

successful alignment results. I use a much simpler technique of tagging and keyword-

based matching. The articles were first tagged with player names and part-of-speech

tags, and simple pattern matching heuristics were used to automatically align the

sentences in the articles with game events. The player names were extracted from

the entity model of the baseball domain model, and the POS tagging was done with

the Stanford POS tagger [39]. Pattern matching heuristics looked for co-occurrences

of tags and words within a certain window (e.g., {player} AND "homerun" within 3

words), and the results from applying those heuristics were aligned with the at-bat

feature vectors computed from the game log. Testing on 45 hand-annotated articles, I

achieved a precision of 79.0% and recall of 79.2% for alignment. The average number

of at-bats in those hand-annotated articles was 8.

Figure 2-4 shows an example of how the sentences are aligned to feature vectors.
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Figure 2-4: An example of sentence to feature-vector alignment.

2.3.3 Content Overlap Analysis

In trying to discover the differences among the local team articles and AP article for

the same game, I looked at the overlap of content among the articles. The percentage

of overlapping content varies widely, mostly due to the way the games unfolded. For

example, many games are one-sided where one team simply dominates, and there are

just not enough events that are positive for the losing team. For those games, the

losing team's newspaper merely reports the result of the game without describing the

events of the game in detail. However, many games are close in score and number of

hits, and for those games I found a high overlap of content among all three articles.

Table 2.1 lists the number of atBats reported in common for a local article and the AP

article for the same game, averaged over 20 article-pairs. The first column shows the

percentage of atBats that are mentioned only in the AP article, the second column

shows the percentage of atBats that are mentioned only in the local article, and the

third column shows the percentage of content mentioned in both articles. Repeated

occurrences of the same atBat was counted only once.



11 AP Local AP, Local
Globe 15.5 23.3 72.4

NYTimes 13.7 19.2 78.2
WashTimes 18.2 15.5 80.3

MLB Red Sox 12.4 18.2 82.4
MLB NYY 14.4 18.7 80.3

Table 2.1: Percentage of non-overlapping and overlapping content between local and
AP articles.



Chapter 3

User Study I

This chapter presents a user study that was carried out in order to verify the definition

of the problem as discussed in the previous section. The overall goal of this research

is to model perspective in game summaries and build a prototype system that can

automatically generate summaries from multiple perspectives. However, since that

problem is much too broad, to make the problem more tractable, section 1.4 proposed

a hypothesis that would justify solving a sub-problem that is much narrower in scope.

The motivating factor for this hypothesis was the observation that, in the parallel

corpus of neutral and local team perspective articles, much of the game event content

overlaps among the three different perspective articles, but the content seems to

be organized in different ways. This user study was designed to test the following

hypothesis:

Ordering Hypothesis: Ordering of the content alone contributes sig-

nificantly to the perspective of a story. Hence, you can generate multiple

perspectives by taking a pre-determined set of content and reordering it.

To test this hypothesis, this user study takes the parallel articles from the corpus

and modifies them in stages such that the modified versions would reveal whether

1. original articles are judged to have different perspective

2. modified articles with only content aligned with the domain model retain the

different perspectives of the original articles



3. modified articles with only overlapping content retain the different perspectives

of the original articles

4. modified articles that use the same surface realization (sentence structure, lex-

icalization) retain the different perspectives of the original articles

To cut down on the number of articles per subject, steps 3 and 4 were combined

in this study. If this had produced results that showed that different perspectives

were no longer preserved, I would have separated out the two steps to see where the

loss had occurred, but since the results were positive, I can assume that combining

steps 3 and 4 did not lose the study's effectiveness in testing the ordering hypothesis.

Section 3.2 elaborates the steps 1 through 4 above and shows how the articles are

modified to test the ordering hypothesis.

3.1 Setup

Since the study is fairly simple in design and requires no special hardware or instruc-

tions, I conducted the entire study remotely through the Internet. The study was

approved by the Committee on Use of Humans as Experimental Subjects (COUHES)

at MIT. The wording of the questions was internally reviewed to prevent confusions

and confounding variables.

3.1.1 Web-Based Survey

The study was all done through a web-based survey using CGI scripts. Scripts were

run off of the MIT CSAIL web servers, and the answers input by the subjects were

automatically recorded into text files. The surveys were not timed, and subjects

were told so, but the time information was automatically collected through the CGI

scripts. The time information was not used in analyzing the results, and there was no

significant variation among different subjects or article types in the task completion

times.



3.1.2 Participants

Eight subjects participated in the study using twelve games. They were recruited

through an email list used primarily for voluntary user studies. They were all MIT

students and researchers, ages 18 and up, native speakers of English, who watch major

league baseball (MLB) at least once in a season. They were asked for their favorite

MLB teams, but that information was not used for analysis because the surveys were

made up of games of a variety of teams, and being a fan of one team did not make

significant differences in the perspective judgments. Subjects were paid ten dollars in

cash or online shopping gift certificate. There were four women and four men.

3.2 Articles and Conditions in the Survey

For all four conditions, subjects were asked to rate each article on a scale of 1 to

5, where 1 is strongly Team A perspective, 3 is neutral, and 5 is strongly Team B

perspective. For exact wording of the survey as well as the original and modified

articles used, see Appendix A.

The games were chosen from our MLB database of games such that various teams

are represented, and various game outcomes are represented. Hence, games that

are one-sided, as well as close games, extra-inning games, and games with major

milestones (e.g., the starting pitcher's winning streak) are included and randomly

assigned order in the web-based survey.

For each game, the three original articles are from the two opposing teams' local

newspapers (online editions) and the Associated Press (AP) article as published on

http://www.espn.com. Although the articles are modified and presented here in the

order from the original articles to the fully modified (overlapping content) articles,

they appear in random ordering in the user surveys. This is because the users may

read the original article, remember parts of it, and be affected by the perspective of

that article when rating the perspective of the modified version.



3.2.1 Confirming Local Team Perspectives

The baseline condition is the comparison between the perspectives of the original

articles. Since there is not a good way to define what perspective is, I take an approach

that, measuring what the users perceive is a good way to quantify perspective. When

a user reads a baseball summary article and says that it seems to have been written

from Team A's perspective, then I assume that article was written from Team A's

perspective, and I average those numbers across all the subjects to get a measure

of perspective of an article. Of course, there is also the source information, so I can

simply assume, without user testing, that articles from Team A's local newspaper was

written from Team A's perspective. That is the assumption used for collecting the

corpus. Here, I am using the first part of the user study to ensure that assumption

is valid, and confirm that our user study design draws out valid ratings from the

subjects, and at the same time, come up with a quantitative metric for perspective.

So, to confirm that the home team and the visit team perspectives of the local team

articles are correctly perceived, I simply presented the AP and local newspaper articles

to subjects and asked them which team the articles were written for.

Here is an excerpt from an original version of the summary article.

Schilling was again beset by the long ball in the third, and this time it

was Crawford putting a solo shot over the wall in right to make it 2-0.

The Red Sox cut that lead in half with yet another mammoth homer from

Ortiz, whose towering shot sailed over the wall in right in the fourth.

"We righted the ship and we did some things, and David continues to be

the best hitter in the game," Schilling said.

The Red Sox tied it in the sixth when Kevin Youkilis lofted a sacrifice fly

to the warning track in left.

Schilling found himself in a sizable mess in the bottom of the sixth with

the bases loaded and just one out. One of those hits was an infield single

by Travis Lee that bruised Schilling on the right hand when he tried to

barehand it. But then he got fired up, striking out B.J. Upton and Tomas



Perez on 96-mph heaters to end the inning. In as demonstrative a moment

as Schilling has had all year, he wildly pumped his right fist as he walked

off the mound.

This excerpt will be used in the next two sections to illustrate how it would be

modified for the other two conditions.

3.2.2 Aligned Content

An intermediate stage between the baseline condition and the final testing condition is

the "aligned content" condition, where the original articles are modified such that they

contain only sentences that describe the game events (at-bats). That is, player quotes,

commentary about the team or players' historical performances, and any financial or

personal news were removed from the articles. This condition tests whether the game

event-aligned content alone is enough to deliver the same perspective as the original

article. This is an important step because the original articles do contain a substantial

amount of player quotes and other extra-game information. In future research, I may

try to incorporate the extra-game information as well, but that requires either adding

onto the domain model to include events outside of the game or adding to the system

the capability to analyze and generate sentences that are not aligned with the domain

model.

Here is one example of how the excerpt from the previous section would be modi-

fied in this condition by discarding the sentences that are not aligned with the events

in the domain model

Schilling was again beset by the long ball in the third, and this time it

was Crawford putting a solo shot over the wall in right to make it 2-0.

The Red Sox cut that lead in half with yet another mammoth homer from

Ortiz, whose towering shot sailed over the wall in right in the fourth.

The Red Sox tied it in the sixth when Kevin Youkilis lofted a sacrifice fly

to the warning track in left.



Schilling found himself in a sizable mess in the bottom of the sixth with

the bases loaded and just one out. One of those hits was an infield single

by Travis Lee that bruised Schilling on the right hand when he tried to

barehand it. But then he got fired up, striking out B.J. Upton and Tomas

Perez on 96-mph heaters to end the inning.

The quote in the second paragraph of the original excerpt was removed, and the

last sentence of the excerpt was also removed because it does not align with any game

event. However, phrases such as "whose towering shot sailed over the wall in right" at

the end of the first paragraph was left in even though that information is not available

from the automatically built domain model. This is because discarding extra-game

information was done at the sentence level, so if any part of the sentence aligned with

the game events, then the entire sentence was left in the modified article.

3.2.3 Overlapping Content

In the last condition, the article from the second condition is further modified in two

steps to produce the final article to test the validity of the ordering hypothesis. The

ordering hypothesis says that same content can carry different perspectives depending

on how it is arranged and ordered. Hence, the first step is to make the content of the

three articles the same by keeping only the sentences that are about the same game

events. If there are sentences that are aligned with game events that appear only in

that article, then those sentences are discarded.

In the second step, I replaced all the sentences with slot-filling templates, such

that all the articles shared the same surface form of sentences. This means that

the only difference among the three articles is the ordering of the content. Here is

an example of how the final modifications are made to the excerpt in the previous

section.

Crawford (TOR) hit a one-run home run in the third inning to make it

2-0. Ortiz (BOS) hit a one-run home run in the fourth inning to make it

2-1.



Youkilis (BOS) hit a one-run sacrifice fly in the sixth to make it 2-2.

Lee (TOR) hit a single in the sixth. Bases loaded, Schilling (BOS) struck

out Upton (TOR). Bases loaded, Schilling (BOS) struck out Perez (TOR)

to end the inning.

It is worth discussing how to design the templates for the user survey as well as for

the system that would generate the sumary articles. For this survey, I hand-crafted

the templates carefully such that the sentences are the same across the three different

perspectives. They may not be the same templates across different games because it

was not clear, at this point, how best to design the templates, but for the purposes of

this survey, it is only important that the three perspective articles (Team A, Team B,

and AP) use the same surface form, so that the subjects' perspective ratings can be

compared across the three perspectives. Section 5.4 discusses in more detail how the

templates were crafted for the system that generates the summaries, and although the

templates used for this user study were slightly different in the words and sentence

structures used, the basic ideas are the same.

3.3 Results and Discussions

Tables 3.1 and 3.1 show the average perspective ratings over the eight subjects for

Games 1, 2, and 3. Each column is the intended perspective of the original and

modified articles, and each row represents one of the three conditions described in

3.2. To prove the validity of the Ordering Hypothesis, we are looking for perspective

ratings to be significantly different, with Team A column being close to 1, AP column

being close to 3, and Team B column being close to 5. As shown in the table 3.2, the

average perspective ratings do show that trend, and for games 1 and 2, the ratings

are significantly different for the three perspectives, for all conditions, as analyzed

using ANOVA at p < 0.05.

The results for Game 4, however, show the same trend, but the ratings are not

significantly different across the three perspectives. The perspective ratings for the



Game 1 Team A AP Team B
Original 1.38 3.50 4.63

Aligned Content 1.50 3.25 4.38
AP Content 1.75 3.13 4.00

Game 2 Team A AP Team B
Original 2.25 2.75 3.75

Aligned Content 2.38 3.63 3.88
1*

AP Content 2.50 3.38 3.63

Table 3.1: Perspective ratings, averaged over eight subjects, for Games 1 and 2.
Columns are the intended perspectives of the original articles, and rows are the mod-
ifications made for each condition. ANOVA results show significant difference among
the three perspectives, at level p < 0.05.

Game 3 Team A AP Team B
Original 1.38 3.50 4.63

Aligned Content 1.50 3.25 4.38
AP Content 1.75 3.13 4.00

Table 3.2: Perspective ratings, averaged over eight subjects, for Game 3. The ANOVA
results do not show significant differences in perspective ratings for the last condition.

AP article and Team B article are not much different, especially for the last condition,

AP Content, where we have just the ordering information preserved. This is because

the content in the original AP article is decidedly one-sided. In cases where the game

is a significant one-sided win, there is usually very little, in terms of the game events,

to talk about for the losing team. Thus, taking the same content and reordering

contributes some, but not much, to generating the desired perspective. For this type

of games, the factors that contributed to the Team B perspective in the original

condition is most likely the way the events are interpreted, shown by player and

coaching staff quotes, or extra-game events and issues, such as what the team has to

do to win next time. These one-sided games happen in about quarter of the total

games, so it is not an insignificant portion, but the others, for which the Ordering

Hypothesis is valid, make up 75% of the games. Moreover, as the results show in

table 3.2, the difference in perspective, although not statistically significant, does

carry over to the last condition.



To sum up the results of the user survey, although one game out of five did not

show significantly different perspective ratings for the final condition, four of five

games did. This shows that the Ordering Hypothesis is valid, because in the final

condition, the articles were modified using the same content as in the neutral arti-

cle, replacing the sentences with canned templates, and preserving only the content

ordering information from the original perspective articles.



Chapter 4

Reordering Algorithm

This chapter presents the reordering algorithm, the driving force behind the multi-

perspective generation system described in Chapter 5. After a short summary of the

background on ordering algorithms, the chapter is divided into two sections. The

first section discusses ordering strategies that were identified in the parallel corpus

described in section 2.3. The second half of this chapter discusses choosing the best

ordering strategies given a desired perspective, where the optimal choice is one that

maximizes the sum of weights learned from the corpus.

4.1 Background

Content ordering is a well-studied problem within natural language generation. It

assumes that content selection has been already done, and the problem is selecting

the optimal ordering of the content such that the resulting text is coherent and easy-

to-read. Content ordering is part of many applications such as spoken dialogs [36] and

multi-document summarization [4]. In the earlier works, planning was the method of

choice (cf. [8], [26]). Recent trends have turned toward methods that learn ordering

constraints from the corpus (cf. [12], [20]). In all of these applications, however, they

look for the single most effective ordering for delivering the content in an easy-to-read

and accurate way. The ordering problem here in this thesis differs in that the solution

should be more than one ordering, and those orderings must make the generated text



to exhibit different perspectives.

4.2 Ordering Strategies

As the first step in trying to solve the ordering problem, I looked to the parallel

corpus described in section 2.3 to discover what kind of ordering strategies were used

by the journalists. Before discussing each of the ordering strategies, let us look at an

example of the same content in different ordering. Here are excerpts from two articles

written on the same game.

Damon helped create the winning run after reaching base on a one-out

single against closer Chris Ray in the ninth. With two outs, Damon tried

to steal second, and it appeared as though catcher Ramon Hernandez had

thrown him out, which was the call made by umpire Lance Barksdale.

But the ball popped out of second baseman Brian Roberts' glove, and

after Damon pointed that out to the ump, he was called safe, giving Jeter

a chance to come through.

Jeter, who hit third for the first time since Sept. 28, 2003, had already

driven in the go-ahead run in the seventh, only to watch the Yankees'

bullpen give up the lead in the eighth.

Melvin Mora hit a hard grounder to third, where Miguel Cairo, playing in

place of A-Rod, had trouble controlling the ball. Cairo picked it up and

fired to first for the second out, but the tying run came home on the play.

The Yankees regained the lead in the seventh, as Jeter singled in the go-

ahead run against Todd Williams. Melky Cabrera later scored on a Kurt

Birkins wild pitch, giving New York a two-run lead.

Ron Villone threw a scoreless seventh, but after allowing a one-out hit by

Lopez in the eighth, he was pulled in favor of Scott Erickson. Erickson

hit Jeff Conine to put the tying run on base, then served up a double to

Luis Matos, scoring Lopez.



Torre intentionally walked Roberts to load the bases, bringing in Farnsworth

to face Mora. Cairo's misplay on the grounder tied the game, but after

the Yanks intentionally walked Miguel Tejada, Farnsworth came back and

retired Hernandez for the third out.

Damon and Jeter took it from there, combining to produce the go-ahead

run in the ninth. Farnsworth made it stand up, retiring Baltimore in order

to close out the game.

- From the MLB New York Yankees, June 2, 2006

The game turned with two outs in the ninth inning, when Baltimore

catcher Ramon Hernandez made a perfect throw to nab Johnny Damon

on an attempted steal. Second baseman Brian Roberts put the tag down,

but Damon slid and knocked the ball from his glove. Damon was ruled

out - then safe - and wound up scoring the decisive run in a 6-5 win.

New York's Derek Jeter wound up driving Damon in with a soft single

to right field, but the steal grabbed most of the attention. Second-base

umpire Lance Barksdale made an emphatic out call, but things changed

on the tag attempt. When the second baseman brought his glove up,

without the ball, the umpire changed his mind.

Baltimore closer Chris Ray was walking off the mound after the throw,

but he had to go back to face Jeter. The right-hander, who's still 14-for-14

in save opportunities, said Jeter beat him with a good piece of hitting.

Jeter did the same thing in the seventh, when he hit a single to break a

3-3 tie. New York (32-21) scored another run on a wild pitch from Kurt

Birkins, but the Orioles forced a tie game in the eighth. With one on and

one out, the Yanks went to Scott Erickson, who hit a batter and gave up a

run-scoring single. The O's tied the game on a ground ball to third base.

Shortstop Miguel Tejada singled twice in the early innings and scored

Baltimore's first two runs. The Orioles (25-30) didn't score again until



the sixth, and they did it with small ball. Corey Patterson dropped a

two-out bunt up the first-base line and reached on an error. Patterson

stole second on a pitchout and scored on a subtle single up the middle.

The Yanks did their early damage via the long ball. Andy Phillips cracked

a solo shot in the fifth to put them on the board, and one inning later,

Jason Giambi gave the road team a brief one-run lead with a two-run

blast over the right-field scoreboard. Giambi hit a long foul right before

his homer, and Baltimore starter Kris Benson left after Patterson tied the

game.

- From the MLB Baltimore Orioles, June 2, 2006

The two excerpts are from the MLB website (http://www.mlb.com), where for

each game, a team journalist from each of the two teams writes a story for that team

site. Comparing the two excerpts, several differences are visible. First, as noted in

section 2.3.3, much of the content overlaps between the two. This is true even though

the two articles are from the two local team perspectives. Ordering of the content,

however, differs quite a bit, thus again confirming the hypothesis that ordering is

a significant factor in deciding perspective of an article. One thing to note about

ordering is that the same event (e.g., Damon's steal) appears in different contexts.

That observation is key to identifying the ordering strategies below.

4.2.1 Feature-Based Content Ordering Strategies

In the following sections, I will illustrate several ordering strategies found in the

corpus. The strategies are for a segment of an article in the corpus, usually spanning

one or more paragraphs. The segments themselves must be ordered, and that will be

discussed in 4.2.2.

Chronological Ordering

An ordering strategy based simply on the chronological ordering of events is the easi-

est for the baseball domain where the chronology of events (atBats) is clearly defined.



Barzilay, et al. [5] has found that chronological ordering works well for multidoc-

ument summarization where the article is mostly event-based. Ironically, a purely

chronological ordering strategy is not used very frequently, even if we ignore repeated

content where the most important events are mentioned at the very beginning and/or

end of the article and consider only the middle portion of the article. In our corpus,

only two out of ten, on average, articles show a chronological ordering. The follow-

ing excerpt is an example of such an article where a portion of the article is purely

chronological and is counted as an instance of the chronological ordering strategy.

Wakefield allowed just a hit and a walk through three innings before falling

behind 3-1 in the fourth. The Yankees loaded the bases with no outs on

a single by Derek Jeter and walks to Jason Giambi and Alex Rodriguez.

Hideki Matsui's groundout to Youkilis drove in one run and Robinson

Cano singled in two.

Boston tied it in the fourth when Alex Cora and Youkilis singled before

Loretta bunted into a forceout at third. Ortiz loaded the bases with a

single before Manny Ramirez singled in one run and Nixon tied it with

an RBI groundout to first.

-From espn.com article on Boston vs New York game on May 1, 2006

A clear advantage of using this strategy is that, given the set of events to be

included in the article and the description of the game in the form of inning-by-inning

game log, the ordering of the content is trivial.

Inning-Based Ordering

A subset of the chronological ordering strategy is an inning-based ordering strategy

where a set of events from the same inning are grouped together into one segment,

and those events within the segment are chronologically ordered. The following is an

excerpt that shows the inning-based ordering strategy.



The Rays fought back in the seventh with consecutive singles by Toby

Hall, Aubrey Huff and Damon Hollins to cut the lead to 6-2 before Lee's

sacrifice fly made it 6-3. Gathright then hit one off the left-field wall for

what appeared to be an RBI double, but Hollins fell rounding third base

and did not score.

With runners on second and third and two out, Julio Lugo stepped to the

plate and hit a ball deep to left field that looked like a three-run homer

over the Green Monster. Unfortunately for the Rays, the ball took a hard

left just before reaching the foul pole. Lugo then struck out to end the

inning.

-From the mlb.com Tampa Bay Devil Rays article on May 26, 2006

In an inning-based ordering strategy, not all at - bats need to be included in

the text, but usually the at - bats that advance the baserunners and those that add

to the score are included. To organize the content in this strategy, simply look at

the value of the inningNum feature of events, then group those that have the same

inningNum value. This is a very frequent strategy, as the corpus shows about eight

out of ten articles in which a portion of the article uses the inning-based strategy.

Player-Based Ordering

Another frequently used ordering strategy is based on entities, such as a single

player or a set of players (e.g., relief pitchers). Sometimes, although rare in a non-

commentary article, an entire story is based around a single player and his perfor-

mance in the game. A monumental milestone, such as breaking the most number

of homeruns by any player in history, may elicit several articles, regardless of team

perspective, on a single player. Here is a more commonplace example of player-based

ordering strategy.

The two moonshots that Glaus provided paved the way for Toronto's

latest victory. The third baseman's second shot - his eighth of the season



- came on a 2-0 offering from Baltimore reliever LaTroy Hawkins. With

Toronto trailing 3-2, Glaus sent the pitch over the 25-foot wall in right

field for a three-run blast.

His 4-for-5 showing also helped snap a two-week long slump. Entering

Monday's game, Glaus had hit just .154 since April 18 and saw his average

drop from .348 to .259. The solo homer that he hit off Baltimore starter

Erik Bedard in the second inning was his first in 10 days.

"I got a couple pitches up and I was able to take advantage of it," Glaus

said. "It's just one of those days. I was able to find some holes and hit

some balls on the barrel, which was nice. It's been a while."

Glaus came a few feet shy of having three home runs in the sixth inning,

when he sent another pitch from Bedard off the wall in left-center field.

He later scored when Shea Hillenbrand chipped in an RBI single. Glaus

added a ground-rule double in the ninth, and finished the day with four

RBIs. -From the mlb.com Toronto Blue Jays article on May 1, 2006

This strategy requires looking at a few different features because a player may

have been involved in an atBat event as a batter, pitcher, or as a baserunner (features

onFirst, onSecond, and onThird). In the example above, Toronto player Glaus is

the batter in most of the atBats, but in the sentence "He later scored when Shea

Hillenbrand chipped in an RBI single", Hillenbrand is the batter and Glaus is a

baserunner.

PlayType-Based Ordering

Another frequently used strategy is based on types of play, or, the result of the atBat.

For example, all the homeruns in a game may be grouped together into a paragraph.

Some play types, such as doubles or double plays are more frequently used to group

the content together, rather than others such as foul-outs or singles. The following

excerpt shows the play type doubles being used as an ordering strategy. Often, the



play type feature is used in conjunction with the team or other entity-based feature.

Thus, all the strikeouts by one team or one pitcher may be grouped together.

All four runs off Josh Towers came on run-scoring doubles by Mike Lowell,

Adam Stern and Kevin Youkilis. -From the mlb.com Toronto Blue Jays

article on April 11, 2006

This strategy is rather simple to identify, as only the play Type, and sometimes

team and player features are used as the grouping feature.

Scoring-Based Ordering

One of the most important events in a baseball game are atBats that add score. A

run-scoring atBat happens when the batter and/or a baserunner safely reaches the

home plate on a hit, a walk, or a defensive error. There are hits, walks, and defensive

errors that do not result in runs scored, so a run-scoring play is rarer in a game than

a non-run-scoring play, and those scoring plays deserve extra attention. Furthermore,

the runs scored determine the winning team and the losing team, so keeping track of

when and how the runs are scored is important in describing the events of the game

to the readers of the article.

Aside from Sexson's home run in the sixth, Johjima - who had the first

three-hit game of his career - had an RBI double in the inning. Betancourt

bounced a two-run double into left field and Jose Lopez later added an

RBI triple. -From the mlb.com Seattle Mariners article on May 1, 2006

Team-Based Ordering

Another entity-based ordering strategy is using the team feature. This is not very

discriminative, since there are only two teams in the game. However, it is most often

used with another grouping feature, such as scoring. There are often extra-game

features, such as the team's overall performance or rank in the division, but since this

thesis does not deal with extra-game features, that type of content is discarded and

not considered in ordering decisions.



The Yankees regained the lead in the seventh, as Jeter singled in the go-

ahead run against Todd Williams. Melky Cabrera later scored on a Kurt

Birkins wild pitch, giving New York a two-run lead. -From the mlb.com

New York Yankees article on June 2, 2006

4.2.2 Learning and Using Grouping Features

Table 4.1 shows an illustration of the different ordering strategies used in grouping

feature vectors. The actual feature vectors have many more features, but for illus-

trative purposes, only a subset is shown here. Recall that the feature vectors are

sentences in an article in the parallel corpus aligned with the domain model for the

game associated with the particular article. Since there are many features and or-

dering strategies, the reordering algorithm needs to identify the features to use for

assigning the atBats to appear in the same segment. I used a simple counting of most

frequent feature values of the corpus to derive these features. This comes from the

intuition that the players whose names appear most frequently in the articles for a

local newspaper tend to be important topics for those stories. So I aggregate all the

local team articles and rank the feature values including pitcher and batter names

and play types (e.g., homerun, single, strikeout). To turn a neutral article into a local

perspective article, I take the atBats that should appear in the article, look at the

feature values that are shared among them, and find the highest-ranked feature value

for that team. Any remaining atBats are arranged in chronological order.

Once the features are learned from the parallel corpus, they are used to find the

optimal set of ordering strategies for the entire article in the following way.

* For every possible grouping of content (feature vectors)

1. For each group

2. Compute the score wfn

- Wf is weight computed for feature f that is shared by all the vectors

in a group



Batter Pitcher Play Inning AtBat onFirst Runs Outs
Ramirez Sanchez homerun 1 3 Cora 1 1
Ramirez Sanchez homerun 6 48 Ortiz 1 0

Ortiz Sanchez homerun 3 14 none 1 0
Ortiz Sanchez homerun 4 20 Cora 1 1
Ortiz Sanchez double 6 47 Cora 1 0

Varitek Sanchez foulout 4 21 none 0 1
Nixon Sanchez single 4 22 none 0 2
Lowell Sanchez double 4 23 Nixon 1 2

Table 4.1: An illustration of how different features are used for grouping content.
The features in boldface are the grouping features for that group of feature vectors.
Each set of feature vectors delimited by double horizontal lines represent content in
that paragraph.

Batter Pitcher Play Inning AtBat onFirst Runs Outs
Ramirez Sanchez homerun 1 3 Cora 1 1

Ortiz Sanchez homerun 3 14 none 1 0
Varitek Sanchez foulout 4 21 none 0 1
Nixon Sanchez single 4 22 none 0 2
Lowell Sanchez double 4 23 Nixon 1 2
Ortiz Sanchez homerun 4 20 Cora 1 1

Ramirez Sanchez homerun 6 48 Ortiz 1 0
Ortiz Sanchez double 6 47 Cora 1 0

Table 4.2: An example showing how different feature weights would
ings. The feature vectors from the previous table are rearranged
that grouping features are chosen differently.

change the group-
in this table such

- n is the number of feature vectors in that group

3. Do this for all features shared by the feature vectors in the group

* Repeat for all possible groupings

* Find the grouping that maximizes the score wfn

Because of the grouping feature weights that are learned for each desired team's

perspective, the same set of feature vectors are fed into the algorithm above and

assigned a different optimal ordering. This is how the system would output different

orderings based on the perspective that it wishes to generate. Table 4.2 illustrates how



the same feature vectors in table 4.1 are rearranged according to different grouping

features.



Chapter 5

Multiple Perspective Generation

System

The previous chapter presented the algorithm for reordering the content feature vec-

tors. This chapter describes the entire system for generating baseball summaries from

multiple perspectives.

5.1 System Overview

Like many other NLG systems, the multi-perspective generation system consists of

three main parts: content selection, content ordering, and surface realization. Figure

5-1 shows graphically how the system takes an AP article and a game description,

then generates the two perspective articles. On the top left is the AP article, and on

the right side of it is the game description parsed into feature vectors. The sentences

in the AP article are aligned with the feature vectors to produce a set of feature

vectors to be used as content for the perspective articles. This part completes the

first step, content selection.

For the second part of the system, the reordering algorithm described in Chapter

4 is used for content planning.

Finally, for the third part of the system, the reordered content, represented as

feature vectors, is turned into a set of sentences through the template-based surface



Oriz made his presence felt with a
solo shot to center in the ?ir. that lust
seemed to keep carrying.

An inning ater, Orfti was back for
more, unloading on a SanchlIz
offering for a two-run blas to right.

Lowel!, looking comfortable in his old
haunts, ripped a d cviV high off the
wall in left later in the inning to make
it a 7-1 lead for the Sox.

crisp sanchez grndout 4 18 2 4=ýll/ I I A" ll

Ortiz hit a one-run homerun in the

third inning. Then, Lowell hit an RBI lowell snchez double 4 23 1 6
double in the fourth. Nixon hit a nixon sanchez single 4 22 0 6
single, and Ortiz hit a 2-run homerun. ortiz sanchez homerun 4 20 1 4

Figure 5-1: An overview of the generation system.

realization described below in section 5.4.

5.2 Content Selection

Since the Ordering Hypothesis, validated using the user study in Chapter 3, states

that neutral content can be turned into an article with a local team perspective just

by reordering, the system just takes the neutral content (from AP article) for content

selection. However, I ran a small experiment to see whether content selection can be

automatically done using feature vectors if a neutral article was not in the corpus.

I tagged ten MLB games using AP (Associated Press) articles. For each atBat

represented as a feature vector, if it is mentioned in the article, it is tagged as sig-

nificant. I used a supervised learning approach using Weka[42], a Java-based tool

for experimenting with various machine learning algorithms for inferring whether a

feature vector should be tagged significant or not. A ten-fold cross-validation on the

ten games using the alternating decision tree (ADTree) gave an overall accuracy of

92.8%. Using the confusion matrix, recall and precision on retrieving the significant

plays were 85.5% and 82.4%, respectively. I used the standard recall and precision

definitions in the information retrieval community, where recall measures how much



of the ground-truth the system was able to retrieve, and precision measures how ac-

curate were the retrieved items. The precision and recall numbers are low relative to

accuracy because there were many non-significant events that are considered only in

the accuracy numbers.

This relatively simple experiment shows that content selection for picking out

neutral content (as in AP article) is not difficult. This means that, even if the system

does not have neutral articles to start with, it can first to content selection based on

supervised learning on the features, then use that content as if it came from a neutral

article. Since, for this thesis, the corpus already has neutral (AP) articles, the system

simply uses the neutral articles for content selection. Besides simplifying the content

selection process, this has the added advantage that accuracy and completeness of

content is somewhat guaranteed, as much as one can expect from AP articles.

5.3 Content Organization and Ordering

Content organization and ordering is a step in natural language generation that takes

a predetermined set of contents, organizes them into paragraphs, and orders them.

In a recent book that presents a comprehensive overview of NLG [32], Reiter and

Dale discuss document structuring, the part of an NLG system that organizes and

orders content, as an essential part of NLG for making multisentential text readable

and understandable. Content organization and ordering has been studied in the

context of many NLP applications including summarization [24] and concept-to-text

generation [21]. These and other previous work on content organization and ordering

have focused mainly on readability of the generated output, and thus much of the

effort has been on discourse and sentence-to-sentence coherence. In contrast, in this

thesis, content organization and ordering is used as a means to induce a certain

perspective of the generated output rather than focusing on coherence. However, it

is shown in (add citation) that there are multiple ways to order content that result in

coherent text, so producing multiple orderings to induce different perspectives does

not mean that coherence or readability of the text must be sacrificed.



Another major difference of this work is that the content organization and ordering

is done globally, whereas much of the previous content ordering research focuses on

looking at sentences one by one. One instance of this is to model the ordering problem

as a pairwise decision between sentence A and sentence B, deciding whether A << B

or B << A, where x << y means that x should come before y. Another way to

model the problem is to look at it as a Markov process, that is, figuring out what

the nuh sentence S, should be, given the n - 1 th sentence Sn-1. Although these two

simplified approaches of the problem are used often, they make strong independence

assumptions, and the models do not capture interactions that involve more than

two sentences. For example, the presence of sentence C may reverse the ordering

of sentences A and B, such that A << B is the preferred order over B << A, but

B << C << A is preferred over A << C << B. The organization and ordering

algorithm used here takes the entire set of sentences in the summary article and

determines the ordering for all the sentences.

Ordering of the content is explained in three steps. First, different ordering strate-

gies found in the corpus are described with examples of each strategy. Then, using

statistics from the corpus, the different strategies are compared in the way they con-

tribute to perspective. Lastly, the algorithm for using the ordering strategies to

produce multiple perspectives is described.

5.4 Surface Realization Using Templates

Once the content is organized and ordered, the feature vectors must be turned into

sentences. There are two steps to do this. The first is slot-filling templates, and the

second is simple aggregation. Templates are use in many NLG systems, as they are

simple to build requiring very little expertise. They are relatively difficult to maintain

if new types of sentences must be added to the system, so many of the large-scale

NLG systems use rule-based realizer [13] or stochastic surface realization [2][27]. For

the purposes of this research, templates are sufficient, as the types of sentences needed

is finite. Once the templates are used to generate sentences, a simple heuristic for



aggregation is used, such that phrases that are repeated in a paragraph are omitted.

For example, the following paragraph is aggregated to produce a simpler paragraph:

Boston scored 4 runs in the second. In the second inning, MLowell (BOS)

hit a 1-run double. In the second inning, AStern (BOS) hit a 2-run double.

In the second inning, KYoukilis (BOS) hit a 1-run double.

After aggregation, the paragraph becomes:

Boston scored 4 runs in the second. First, MLowell (BOS) hit a 1-run

double. Then, AStern (BOS) hit a 2-run double. Then, KYoukilis (BOS)

hit a 1-run double.

After aggregation, the generation process is complete.



Chapter 6

System Evaluation

This chapter starts by a general discussion of issues in evaluating natural language

and summary generation systems. Then, it will describe the user study carried out in

order to evaluate the performance of the perspective generation system. The results

of the user study show that the system is successsful in generating summaries with

the desired perspective.

6.1 Evaluation for NLG

It is not easy to evaluate a multiple perspective summary generation system. A

summary generation system, even without the additional problem of multiple per-

spectives, is difficult to evaluate well because there are many aspects of the system

that can and should be evaluated. The goal of a summary generation system is to

produce accurate, easy-to-read, and concise summaries, so a system-generated sum-

mary should be evaluated for its document planning, content selection, and surface

realization for accuracy and style. What makes NLG evaluations more difficult in

general than most NLU evaluation is that it is difficult to evaluate a generation sys-

tem automatically, so much of evaluation is driven by human judgments [25]. Recent

efforts in devising automatic evaluation metrics in machine translation, such as BLEU

[29] and NIST [10] have led to a similar development of automatic evaluation for NLG

(cf. [3], [19], [22]), and they have been met with both enthusiasm and criticism. A



proposed automatic metric, such as ROUGE [22], attract trial from the community

(cf. [40]) because successful automatic metrics would be useful, efficient, and would

serve to compare different systems. However, there has been criticism that automatic

metrics based on relatively simple pattern matching, such as n-grams, are not good

measures of well-written texts [33]. With the goal of testing the effectiveness of the

automatic evaluation metrics, Belz and Hovy compared the automatic metrics with

human judgments to see whether they are correlated [6], and they show that some of

the automatic metrics do correlate with human judgments, but they conclude that

it is best to use the automatic evaluation metrics as a way to supplement human

evaluation.

When using human judges to evaluate NLG systems, the judges can evaluate

the system output for its own qualities, or they can evaluate the system output

comparatively against a baseline or a reference text. Comparative evaluation is useful

and efficient in many applications where reference or baseline text is readily available.

Comparative evaluation is used in other related fields such as NLG for spoken dialog

systems (cf. [27]). For the system here, I chose to use comparative evaluation because

of two reasons. First, it is relatively simple to produce baseline and reference texts

for comparison. Second, and more importantly, the goal of this research is to produce

summaries with different perspectives, so the success of the system is measured in

terms of whether the system-produced summaries differ in the human judgments of

perspective. Automatic evaluation using metrics similar to ROUGE may be used in

the future to analyze how the system output compares to reference texts.

6.2 User Evaluation

A user evaluation of system output was designed similar to the user survey presented

in Chapter 3. In order to show whether the perspective generation algorithm de-

scribed in Chapter 5 was successful, users were asked to read system output as well

as reference and baseline summaries to judge the perspective of the summary. The

exact wording of the question, as well as the system output and reference summaries



used, is in Appendix B.

6.2.1 Web-Based Survey

As in the first user survey, this user evaluation was conducted on-line using CGI

scripts, and the users' answers were automatically collected into text files.

6.2.2 Participants

There were fifteen users who participated in the study. They were recruited using an

email list primarily used for recruiting experimental subjects. They were paid $15

for their time, either in cash or Amazon gift certificate. Seven of the fifteen subjects

were MIT students or researchers, and the other eight were non-MIT affiliates. They

were all ages 18 and up who are native speakers of English. They also agreed that

they watch at least one MLB game per season, and they were asked for their favorite

team, but that information did not have any effect on the results. There was not

one team that a majority of the subjects were fans of. If the subjects were fans of

one particular team, it would be possible and useful to design a survey such that the

subjects would be asked whether they like one summary over another, where one of

them would be written from that team's perspective. This alternative experimental

design may be used in future studies for a more discreet way to measure perspective.

6.2.3 Summaries Evaluated

Subjects were asked to judge twenty summaries, five games, four summaries per game.

The games were chosen for variety, such that various teams were represented, as well

as different types of games: one-sided game, close game, game with a monumental

event, and a non-eventful game. The four conditions were chosen to be two baseline

summaries and two system output summaries.

* Neutral: This is the AP content organized in the same order as the original AP

article. The AP article is modified such that non-aligned content is discarded



(e.g., player quotes), and sentences are replaced with templates described in

5.4.

* Chronological: This is a summary where the content ordering is purely chrono-

logical. Content from the AP article are organized into paragraphs by innings,

paragraphs are ordered chronologically, and sentences within paragraph are also

ordered chronologically. Sentences from the original AP article are replaced with

templates described in 5.4.

* Team A: This is the system output written from team A's perspective. This is

the AP content arranged in the order to produce the Team A perspective, as

described in the reordering section 4.2.

* Team B: This is the system output written from team B's perspective.

The order in which these summaries appeared in the surveys were varied, such

that, for each game, any of the four different conditions appeared first, and the rest of

the ordering was also counterbalanced. The games were presented in the same order,

but that should not cause any confoundings in the results. The subjects' ratings were

converted into numeric values, such that a strong Team A perspective gets a score

of 1, a neutral perspective gets a score of 3, and a strong Team B perspective gets a

score 5.

6.3 Results and Discussions

The subjects' perspective ratings were averaged over all 15 subjects, and analysis of

variance (ANOVA) was run to compare the perspective ratings for each condition for

each game. Table 6.1 shows the mean values of the perspective ratings for all games

and conditions. For games 1, 2, 3, and 5, ANOVA results show that the independent

variable (four different conditions) is a significant factor in the perspective ratings.

For game 4, there is no sigificant difference among the four conditions. This is an

exceptional case, and it is probably because game 4 was a one-sided game, where all

the content in the AP article was related to the winning team's offense.



1 Game 1 Game 2 1 Game 3 1 Game 4 1 Game 5
Team A 2.75 2.38 2.73 3.50 2.00

AP 3.64 3.86 3.63 3.27 2.75
Team B 3.88 4.27 4.25 3.63 3.3

I Chron 11 3.40 1 4.13 3.29 1 3.39 1 2.29

Results of ANOVA
factor in games 1, 2,

for User
3, and 5.

Study 2. The independent variable was a

Gamel Team A AP Team B Chron
Home 0.03 0.02 0.09

AP 0.45 0.39
Away 0.13

Table 6.2: Results of Pairwise t-test for Game 1.

Next, we ran a pairwise t-test for the 4 games that showed significant effect of the

independent variable, games 1, 2, 3, and 5. We tested whether Team A and Team B

show significantly different perspective ratings, as well as Team A and AP, Team B

and AP, Team A and Chron, and Team B and Chron. We expect that there would

be small p-values for the Team A and Team B pair, as well as the Team A/B and the

two baseline AP/Chron conditions. As expected, the p-values shown in the tables are

small, meaning the system output shows significant difference in perspective ratings

for those pairs.

Gamel Team A AP Team B Chron
Home 0.01 0.00 0.02

AP 0.12 0.49
Away 0.67

Table 6.3: Results of Pairwise

Table 6.1:
significant

t-test for Game 2.

"



Gamel Team A
Home

AP g
Away V

Table 6.4: Results of Pairwise t-test for Game 3.

Gamel
Home

AP

II Team A I

Awayll

AP Team B Chron
0.15 0.00 0.39

0.03 0.31
0.00

Table 6.5: Results of Pairwise t-test for Game 5.

AP
0.02

Team B
0.00
0.06

Chron
0.14
0.41
0.03I

1· ·

I
!

- ·



Chapter 7

Related Work

This chapter looks at previous research in psychological literature and media studies,

as well as related work in the computational modeling research.

7.1 Multimedia Analysis and Generation

Creating a biased story has been explored in Bocconi [7]. Theirs is a very interesting

system that retrieves video interviews based on a user's point of view. When a user

wishes to make an argument (e.g., "U.S. should not go to war in Afghanistan"),

the system searches the interviews to provide evidence in support of the argument,

therefore creating a biased documentary. The goals of our project overlap with theirs,

but the appraoches are different. The inspirational part of their system is the use

of rhetorical structure in creating a story with which to support an argment. For

the interview database, they analyze and annotate the audio manually and use the

annotations in retrieving the appropriate interviews. An important part of our system

is to understand, using external data, the semantics of the events, thus automatically

generating annotations of semantic features for the video clips.

There is a large body of work in sports video analysis. Earlier work was focused

on rule-based systems for video indexing [45] [37], and recent projects have used

statistical pattern recognition for detecting significant events in sports videos [44]

[43]. There is interesting work in sports video summarization [38], but it is mainly



based on metadata, rather than automatic detection of events.

7.2 Sentiment Analysis and Generation

In a related field, one important area of recent progress has been in sentiment analysis.

Work such as [28] has identified a critical problem and a well-designed solution for

extracting information from the Web. Sentiment analysis is related to this work in

that it tries to figure out the viewpoint of a text, but the question it asks is whether a

text has a positive or a negative rating toward a product. While much can be learned

from the sentiment-analysis community, both our problem and our approach differ

quite a bit. First, the problem of measuring bias does not seek an answer from a

binary, or even finite, set of choices. Second, our approach looks at the content of

the text and how it differs from the content of another text. More details about the

approach will be presented in later sections.

7.3 Psychology and Media Studies Literature

There is a large body of psychology literature about perspective-taking (cf. [34]),

which is an ability of humans to comprehend someone else's point of view. A large

part of this research is about physical viewpoint, and very young children acquire

this ability, shown by the fact that he understand what he sees may not be exactly

what his mother sees from the other side. Later on, children acquire the ability to

do perspective-taking about beliefs. Although he knows there is a piece of candy in

a crayon box, his friend, who has not seen the inside of the box, does not think that

there is candy in there. All of this is related to language and story-telling, as children

who are able to complete persepctive-taking tasks show a good command of second

and third personal pronouns [34].



7.4 Perspective Classification

There has been recent work by [23] on classifying perspective. They have collected,

from online news sources, articles about the political situation in Israel and Palestine.

The online source they use, the Bitter Lemon corpus, is divided well into articles from

the Israeli perspective and the Palestinian perspective. That characteristic of the

corpus enables them to use the corpus for training a statistical classifier for inferring

whether an article is written from the Israeli or the Palestinian perspective. This

is certainly interesting work and has close connections to this thesis. One of the

interesting aspects of their work is that the corpus is open to others, so comparions

can be done with alternative inference algorithms. The reordering algorithm here,

for example, can be modified such that it can be used for analyzing perspective of an

article. There is certainly much future work to be done for perspective classification,

and looking at content planning and ordering is one interesting direction.

7.5 User Modeling

The user modeling community such as [30] has also done similar research in text gen-

eration for specified audiences. There are two major differences between their work

and this work here. First, the user modeling community assumes a much deeper

knowledge of the user preferences and experiences. Here in this work, the only as-

sumption about the potential reader is the team that they prefer. There are no other

knowledge required, such as how well the user knows the domain or what kind of

language he/she prefers to read. Secondly, much of [30] relies on rules hand-crafted

for each type of user. The contribution of this work is that the content reordering

strategy is learned through the grouping feature weights which are learned from the

parallel corpus.



7.6 Content Ordering

Content organization and ordering is a step in natural language generation that takes

a predetermined set of contents, organizes them into paragraphs, and orders them.

In a recent book that presents a comprehensive overview of NLG [32], Reiter and

Dale discuss document structuring, the part of an NLG system that organizes and

orders content, as an essential part of NLG for making multisentential text readable

and understandable. Content organization and ordering has been studied in the

context of many NLP applications including summarization [24] and concept-to-text

generation [21]. These and other previous work on content organization and ordering

have focused mainly on readability of the generated output, and thus much of the

effort has been on discourse and sentence-to-sentence coherence. In contrast, in this

thesis, content organization and ordering is used as a means to induce a certain

perspective of the generated output rather than focusing on coherence. However, it

is shown in (add citation) that there are multiple ways to order content that result in

coherent text, so producing multiple orderings to induce different perspectives does

not mean that coherence or readability of the text must be sacrificed.



Chapter 8

Contributions and Future Work

This thesis has looked at perspective and generating multiple perspectives in a concept-

to-text generation. The major contributions of the work are problem definition, cor-

pus collection, and prototype building and evaluation. The problem of generating

multiple perspectives for a game summary has not been explored before, and this the-

sis has introduced that problem and narrowed it down to a computationally tractable

problem by introducing and validating the Ordering Hypothesis. It may seem obvi-

ous, but it is an important discovery that neutral content can be transformed into

non-neutral articles by regrouping and reordering content. It is also important that

the two user surveys established a simple way to measure perspective. A similar

survey can be used in situations where the sources of the text are not well known,

meaning the perspective of an article is not readily obvious.

The corpus collected and described presents one way to begin thinking about what

is needed to study perspective. The baseball domain is a good first step in trying

a computational model of perspective, and the parallel corpus of game data and

local newspaper articles will serve as a good database of domain models and aligned

articles. The features identified are useful for using statistical learning algorithms for

content selection and planning, and we have shown that the features are useful in

selecting content and ordering the feature vectors.

The reordering algorithm presented in this thesis is much different from previous

work in content planning in that the overall goal of the algorithm is to produce



a desired perspective. Furthermore, the reordering algorithm takes advantage of the

parallel corpus and uses a corpus-based learning algorithm. This will make the system

generally applicable to other domains.

The system takes very simple approaches for content selection and surface real-

ization, and that highlights the importance of content ordering on perspective, and

the system evaluation shows that the system produces the desired perspectives suc-

cessfully. In all, the problem definition, corpus collection, reordering algorithm, and

multi-perspective generation system combine to make this thesis a good proof of con-

cept from which to delve deeper into the important problem of perspective generation.

8.1 Content Selection

There are many future directions for this work, and content selection and surface

realization, the two other components of NLG, are good candidates. We showed that

simple statistical learning can be done on the features to select content for neutral

articles. A similar approach can be taken for generating content that has a certain

perspective. Although the Ordering Hypothesis states that content ordering is a

significant factor in producing multiple perspectives, choosing the content differently

may also contribute significantly to multiple perspectives.

8.2 Surface Realization

Surface realization is another component of NLG that can be explored. It is an easy

guess to make that lexicalization, aggregation, and syntactic structure will contribute

to different perspectives. For example, just a simple change of the sentence "Pitcher

X gave up a home run to batter Y" to "Batter Y hit a home run off of Pitcher X"

would probably make a signifiant difference in how the user perceives the perspective

of that sentence. Similarly, changing the way the named entities are lexicalized, for

example "David Ortiz" versus "Big Papi" assumes the readers' preferences for certain

teams and players, and will make a significant difference in the readers' judgment of



perspective.

8.3 Other Domains

This thesis explored only one domain, that of baseball summaries. That was a good

first-time domain because domain modeling can be done relatively easily, and there is

tons of data that can be automatically collected and analyzed. However, because the

spots domain is somewhat different from other domains that do not have a well-defined

set of rules, it may be interesting to see if a similar system can be built in domains such

as politics or finances. I believe important concepts, such as the Ordering Hypothesis,

will generalize to other domains, but it will be difficult to implement many parts of

the system because certain automatic analyses done for baseball cannot be done as

easily in other domains. For example, I used baseball game descriptions to produce

feature vectors of events, but such a clean model of the domain is just not available

for non-sports domains. Nevertheless, there is much interest in other domains, and I

would like to explore some of those as the next step of this work.

8.4 Statistical Learning

There was some simple statistical learning done in this thesis for content selection

and content planning. However, much more can be done with different models and

algorithms. Since the parallel corpus can be very useful for statistical learning, it

would be good to take advantage of that resource. Also, the learing done in this work

was very specific to each team. It would be much more desirable to have a more

general model based on home versus visiting team, or winning versus losing team,

such that it would be not required to have a corpus for a selected team in order to

produce a summary article from that team's perspective.

In other domains, such as politics where a well-defined domain is difficult to get

automatically, it may be much more important to use statistical learning for many

other components of the system. The events themselves can be learned automatically,



such that we can use a group of articles about one event and build a probabilistic

event model.

The field of NLP and NLG are evolving such that subjective measures, such as

sentiment and opinions, are becoming into focus. Perspective is another one of those

subjective dimensions of text, and it will become more and more important to look

at perspective as an important problem to look into. If this thesis can convince the

NL community of that and serve as a starting point, then that would be the biggest

contribution of this work.



Appendix A

System Evaluation

This section has the actual surveys used in user study 1.

In the following 15 pagess, you will read summaries of 5 baseball games, 3 sum-

maries per game, for a total of 15 game summaries. At the top of each page, there

will be a table of game results-an inning-by-inning scoring of the game. Look at the

game results, then read the game summary below it, and then answer the question

at the bottom. There is no right or wrong answer.

Baseball Summary 1 A different lineup produced the same result for the

Devil Rays on Wednesday night.

The Rays tallied just four hits, even though manager Joe Maddon tried

to provide his team a fresh outlook when he fiddled with the front end of

the lineup, and couldn't find enough production despite a pair of home

runs.

A four-run fifth inning was too much for the Rays to overcome as they

lost to Minnesota, 7-2, at the Metrodome. It was the club's sixth straight

loss - the longest losing streak of the season and worst second-half start

in franchise history.

The Rays, who are a season-high 16 games under .500, have dropped nine

of 10 game and 11 straight to the Twins since 2004.



"Before the break we looked wonderful, and now we don't look so won-

derful," Maddon said. "We have to get better than that."

Minnesota starter Brad Radke (8-7) tossed seven innings and allowed just

four hits, including a pair of solo home runs. After struggling in the first

couple of months this season, Radke hasn't lost since June 3.

The Rays' four hits tied their season low, done four times previously,

including Tuesday night against Francisco Liriano.

"Sometimes there are extenuating circumstances to your demise, and we'll

have to just keep battling until we get through it," said Maddon, noting

the team's tough-luck run of facing strong pitching.

The new lineup couldn't beat Radke, but it did end a couple of cold streaks

for the Rays.

Designated hitter Jonny Gomes, who hit in the second spot for the first

time this season, homered in the sixth inning to snap an 0-for-21 streak.

The blast was Gomes' 19th home run of the season and his first hit since

the All-Star break.

Third baseman Ty Wigginton, who had missed the last four games with

a strained back, collected two of Tampa Bay's four hits. He ended an

0-for-16 streak with a single in the fifth.

"It was definitely nice to get back out there," said Wigginton, who added

that his back felt fine, even after making a diving stop at third.

Rays starter Jae Seo (0-4) lasted 5 2/3 innings and gave up 11 hits and

seven runs. The Twins took the lead with a four-run fifth inning that

began with a leadoff homer by Rondell White, who hit another homer

two innings earlier to tie the game.

Down, 2-1, with one out and runners on the corners, Minnesota's Nick

Punto hit a 1-2 pitch down the right-field line for a triple. He scored on

a sacrifice fly two batters later.



"It came down to the at-bat with Punto," Maddon said. "I can't say it

was an awful pitch. He gets a breaking ball and put it right down the

line. [The Twins] work good at-bats."

Minnesota tacked on two more runs in the sixth with three consecutive

two-out hits - the last two off reliever Shawn Camp, who replaced Seo

after Jason Bartlett ripped an RBI triple.

Right fielder Greg Norton homered in the second inning, giving the Rays

an early 1-0 lead. The ball just cleared the wall in left, reaching the first

row of seats. Carl Crawford and Rocco Baldelli - both moved down in

the order to third and fourth, respectively - combined to hit 0-for-8.

The Rays look to prevent a four-game sweep Thursday against Johan

Santana and try to win one game on the road trip before returning home

for series against Baltimore and Anaheim.

"It's real frustrating," Gomes said. "It's not like no one doesn't want to

spark the first [win], it's not like no one's trying. We just have to go out

and get them and not sit back and watch."

Baseball Summary 2 of 12 Struggling through perhaps his worst season,

White hit two home runs Wednesday night to lead the Minnesota Twins

to their sixth straight victory, 7-2 over the Tampa Bay Devil Rays.

Since coming off the disabled list on July 15 with a strained left shoulder,

White has gone 8-for-14 with three home runs and six RBI. Before that

he had no home runs and 16 RBI.

Brad Radke won his fourth straight decision for Minnesota, which has won

18 of 23 overall and 19 of the last 20 at home. Radke (8-7) allowed two

runs and four hits in seven innings, while striking out four and walking

none.

Greg Norton and Jonny Gomes both homered for the Devil Rays, who

have lost a season-high six in a row. Tampa Bay has lost 11 straight to



the Twins dating to 2004.

Jae Seo (0-4) allowed seven runs and a career-high 11 hits in 5 2/3 innings.

Seo has lost all four of his starts since being acquired from the Los Angeles

Dodgers on June 27.

Norton hit his sixth homer off Radke in the second inning to give Tampa

Bay a 1-0 lead, but White hit his first of the game in the bottom of the

inning.

White led off the fifth with his third homer of the season, a 410-foot shot

that made it 2-1.

The Twins went up 5-1 in the fifth on Nick Punto's two-run triple and

Michael Cuddyer's sacrifice fly.

Gomes homered in the sixth to snap an 0-for-19 slump.

Jason Bartlett had an RBI triple and Luis Castillo added a run-scoring

single in the sixth to make it 7-2.

Baseball Summary 3 of 12 An impressive night on Wednesday, when Ron-

dell White belted two home runs and a double in the Twins' 7-2 victory

over the Devil Rays, officially signaled the rebirth of the power hitter the

club had expected when it signed him in the offseason.

White's first homer came in the second inning, when the Twins trailed,

1-0. The 395-foot blast to left field off Devil Rays starter Jae Seo knotted

the game at 1.

The game remained tied until White's next at-bat in the fifth. Leading

off the inning, White delivered another shot to left - this one carrying 410

feet to put the Twins up, 2-1.

The best part of White's night may have come when he came to the plate

for his final at-bat. White was greeted by the fans with a standing ovation,

to which White tipped his helmet.



White's homer in the fifth sparked a four-run inning courtesy of a two-run

triple by Nick Punto and an RBI sacrifice fly by Michael Cuddyer. The

hit by Punto extended his hitting streak to 12 games.

More runs were added to the team's lead in the sixth, as the Twins

drove home two on a Jason Bartlett RBI triple and an RBI single by

Luis Castillo.

Radke (8-7) allowed just two runs, both coming on homers, on four hits.

Besides the two mistakes, Radke was able to show good command, issuing

no walks and throwing just 87 pitches over seven innings. Radke has not

lost since June 3.

Baseball Summary 5 of 12 The A's picked up what should have been a

feel-good win Wednesday, downing the Orioles, 5-1, behind a homer and

three RBIs from Frank Thomas, Eric Chavez's first homer in more than

a month, and seven brilliant innings from Barry Zito.

A fine win it was for the A's, who maintained their slim lead in the

American League West by winning their second consecutive road series.

Chavez, who has been battling tendinitis in both forearms and entered

the game batting .133 (12-for-90) over his past 25 games, gave Oakland

a 4-0 lead when he took Orioles starter Kris Benson (9-9) deep to right

field with one out in the sixth inning.

Thomas, who had given the A's a 2-0 lead with a two-run single with two

out in the first, hit his 20th homer of the year two pitches after Chavez's

blast, sending a Benson fastball 410 feet into the left-field bleachers. Oak-

land's third run came when Bradley, who led the A's with three hits,

homered to right with one out in the third.

Zito (10-6), who idolized Benson in his late teens, was brilliant in their

first head-to-head matchup; Oakland's ace faced three batters over the

minimum in the first six innings while Benson was giving up five runs on

nine hits and a walk.



The O's finally broke through in the seventh, when Kevin Millar doubled

and scored on a bloop single by Ramon Hernandez. Kotsay was then

charged with two errors after mishandling Corey Patterson's grounder

and flipping past Zito at the bag to put runners at the corners with one

out, but Zito got out of the jam by getting Chris Gomez to hit into an

inning-ending double play.

Baseball Summary 6 of 12 Zito pitched seven innings of five-hit ball, Frank

Thomas homered and drove in three runs, and Oakland defeated Kris

Benson and the Baltimore Orioles 5-1 Wednesday.

Milton Bradley and Eric Chavez also homered for the Athletics, who took

two of three from Baltimore to improve to 5-2 since the break. After

beating up on Boston and Baltimore, the A's get a day off before beginning

a weekend series against the Detroit Tigers.

Zito (10-6) helped, pitching five solid innings against the Red Sox in a

15-3 win. He now has 53 wins after the break since 2000 - second in the

majors behind Bartolo Colon (54).

Against Baltimore, the left-hander allowed only one runner past first base

through the first six innings while Oakland built a 5-0 lead. It was the

14th time in 21 starts he has gone at least seven innings, and the 12th

time he yielded two runs or fewer.

Ramon Hernandez drove in a run for the Orioles, now 9-23 when the

opposition starts a left-hander.

Benson (9-9) gave up five runs and nine hits in losing his fourth straight

start. He yielded all three Oakland homers, but it was only the fourth

time in 21 starts this season that the right-hander allowed as many as five

earned runs.

Thomas put Benson in a hole in the first inning. With two outs and

runners on second and third, Thomas lined a two-run single to left for a

2-0 lead.



Bradley's fourth homer - his first since April 23 - made it 3-0 in the

fourth.

In the sixth, Bradley hit a ball down the left-field line but tripped over

first base and was tagged out while he headed for second. Chavez followed

with his 15th homer, and two pitches later Thomas hit No. 20 for a 5-0

lead.

In the Baltimore seventh, Millar hit a one-out double, advanced on a

passed ball and scored on Hernandez's bloop to right. Corey Patterson

then reached on an error, but Zito ended his strong outing by getting

Chris Gomez to hit into a double play.

Baseball Summary 7 of 12 Byrd threw six strong innings to help end Los

Angeles' eight-game winning streak, Ben Broussard hit a two-run homer

that snapped Lackey's scoreless string at 30 2/3 innings, and the Cleveland

Indians stopped their own five-game skid with a 6-4 victory Wednesday.

Byrd (7-6) allowed three runs, 10 hits and no walks over six innings to

improve his career record against the Angels to 3-0, including a three-hit

shutout for Kansas City in 2002.

Juan Rivera homered in the fourth for the Angels, his 14th this season

and eighth in 15 games - including the two he hit during Tuesday night's

7-5 victory. Vladimir Guerrero had a pair of RBI singles.

Aaron Boone also homered and Jhonny Peralta hit a go-ahead single for

Cleveland. Bob Wickman worked the ninth for his 15th save in 18 at-

tempts.

Right fielder Casey Blake preserved Byrd's 5-3 lead in the sixth with a

sensational, diving grab of Chone Figgins' slicing fly toward the line with

two on.

Lackey (8-6) gave up five runs and 10 hits over 4 2/3 innings after throw-

ing consecutive shutouts against Oakland (one-hitter) and Tampa Bay



(five-hitter). The right-hander, trying for his fourth straight double-digit

strikeout game, fanned seven and walked five while working with runners

on base each inning.

Lackey threw 45 of his 107 pitches during the first two innings and stranded

five baserunners. His luck ran out in the fifth, when Cleveland scored five

runs for a 5-2 lead.

Broussard was 1-for-14 lifetime against Lackey

which came after a walk to Victor Martinez.

season was only the second homer given up by

starts.

before his tying homer,

Broussard's 12th of the

Lackey in his last seven

Peralta gave the Indians a 4-2 lead with his third straight hit, a two-

run single that landed just inside the right-field line. Rookie Joe Inglett

capped the rally with a run-scoring single, his first RBI in the majors.

Boone's fifth homer made it 6-3 in the seventh against Brendan Donnelly.



Appendix B

System Evaluation

This section has the actual surveys used in user study 2.

In the following 15 pagess, you will read summaries of 5 baseball games, 3 sum-

maries per game, for a total of 15 game summaries. At the top of each page, there

will be a table of game results-an inning-by-inning scoring of the game. Look at the

game results, then read the game summary below it, and then answer the question

at the bottom. There is no right or wrong answer.

Survey 1A Summary 1 of 4 for Game 1

Toronto scored 2 runs in the eighth. Top of eighth, FCatalanotto (TOR)

hit a 2-run homerun.

Toronto had hits in the first, second, and seventh. Top of first, VWells

(TOR) hit a single. Then, SHillenbrand (TOR) hit into a doubleplay

with runners on base. Top of second, AHill (TOR) hit a double. Top of

seventh, BMolina (TOR) hit a single.

Boston scored 4 runs in the second. First, MLowell (BOS) hit a 1-run

double. Then, AStern (BOS) hit a 2-run double. Then, KYoukilis (BOS)

hit a 1-run double.

Boston scored 1 run in the seventh inning. DOrtiz (BOS) hit a 1-run

homerun.

The final score was Toronto 3, Boston 5.



Survey 1B Summary 1 of 3

Boston scored 4 runs in the second. First, MLowell (BOS) hit a 1-run

double. Then, AStern (BOS) hit a 2-run double. Then, KYoukilis (BOS)

hit a 1-run double.

There were 2 homeruns in the game.ibrL In the seventh, DOrtiz (BOS)

hit a 1-run homerun.ibri In the eighth, FCatalanotto (TOR) hit a 2-run

homerun.ibribrL

Toronto had 1 hit in the first inning.jbrZ First, VWells (TOR) hit a sin-

gle.ibrL Then, SHillenbrand (TOR) hit into a double play with runners

on base.ibriibrq

Toronto had hits in the second and seventh.ibrL Top of second, AHill

(TOR) hit a double.ibri Top of seventh, BMolina (TOR) hit a single.ibr•ibri

The final score was Toronto 3, Boston 5.ibrq

Survey 1C Summary 2 of 3

Toronto had 1 hit in the first inning. First, VWells (TOR) hit a single.

Then, SHillenbrand(TOR) hit into a double play with runners on base.

Boston scored 4 runs in the second. First, MLowell(BOS) hit a 1-run

double. Then, AStern(BOS) hit a 2-run double. Then, KYoukilis(BOS)

hit a 1-run double.

There were 2 homeruns in the game. Bottom of seventh, DOrtiz(BOS)

hit a 1-run homerun. Top of eighth, FCatalanotto(TOR) hit a 2-run

homerun.

Toronto had hits in the second and seventh. Top of second, AHill(TOR)

hit a double. Top of seventh, BMolina(TOR) hit a single.

Final score was Toronto 3, Boston 5.

Survey 1D Summary 3 of 3



Toronto had 1 hit in the first inning. First, VWells(TOR) hit a single.

Then, SHillenbrand(TOR) hit into a double play with runners on base.

Top of second, AHill(TOR) hit a double.

Boston scored 4 runs in the second. First, MLowell(BOS) hit a 1-run

double. Then, AStern(BOS) hit a 2-run double. Then, KYoukilis(BOS)

hit a 1-run double.

Top of seventh, BMolina(TOR) hit a single.

There were 2 homeruns in the game. Bottom of seventh, DOrtiz(BOS)

hit a 1-run homerun. Top of eighth, FCatalanotto(TOR) hit a 2-run

homerun.

Final score was TOR 3, BOS 5.
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