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Abstract

Normal human listeners have a remarkable ability to focus on a single sound or
speaker of interest and to block out competing sound sources. Individuals with hearing
impairments, on the other hand, often experience great difficulty in noisy environments.
The goal of our research is to develop novel signal processing methods inspired by
neural auditory processing that can improve current speech separation systems. These
could potentially be of use as assistive devices for the hearing impaired, and in many
other communications applications. Our focus is the monaural case where spatial
information is not available.

Much perceptual evidence indicates that detecting common amplitude and
frequency variation in acoustic signals plays an important role in the separation process.
The physical mechanisms of sound generation in many sources cause common
onsets/offsets and correlated increases/decreases in both amplitude and frequency
among the spectral components of an individual source, which can potentially serve as a
distinct signature. However, harnessing these common modulation patterns is difficult
because when spectral components of competing sources overlap within the bandwidth
of a single auditory filter, the modulation envelope of the resultant waveform resembles
that of neither source.

To overcome this, for the coherent, constant-frequency AM case, we derive a set
of matrix equations which describes the mixture, and we prove that there exists a unique
factorization under certain constraints. These constraints provide insight into the
importance of onset cues in source separation. We develop algorithms for solving the
system in those cases in which a unique solution exists. This work has direct bearing on
the general theory of non-negative matrix factorization which has recently been applied
to various problems in biology and learning.

For the general, incoherent, AM and FM case, the situation is far more complex
because constructive and destructive interference between sources causes amplitude
fluctuations within channels that obscures the modulation patterns of individual sources.
Motivated by the importance of temporal processing in the auditory system, and
specifically, the use of extrema, we explore novel methods for estimating instantaneous
amplitude, frequency, and phase of mixtures of sinusoids by comparing the location of
local maxima of waveforms from various frequency channels. By using an overlapping
exponential filter bank model with properties resembling the cochlea, and combining
information from multiple frequency bands, we are able to achieve extremely high
frequency and time resolution. This allows us to isolate and track the behavior of
individual spectral components which can be compared and grouped with others of like
type.

Our work includes both computational and analytic approaches to the general
problem. Two suites of tests were performed. The first were comparative evaluations of
three filter-bank-based algorithms on sets of harmonic-like signals with constant



frequencies. One of these algorithms was selected for further performance tests on more
complex waveforms, including AM and FM signals of various types, harmonic sets in
noise, and actual recordings of male and female speakers, both individual and mixed.

For the frequency-varying case, initial results of signal analysis with our methods
appear to resolve individual sidebands of single harmonics on short time scales, and
raise interesting conceptual questions on how to define, use and interpret the concept of
instantaneous frequency.

Based on our results, we revisit a number of questions in current auditory
research, including the need for both rate and place coding, the asymmetrical shapes of
auditory filters, and a possible explanation for the deficit of the hearing impaired in
noise.
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Chapter 1

Introduction

1.1 Overview

The source separation problem of which the multiple talker situation is one example has proved
formidable despite the wide attention and sizable literature it has generated. Fueling interest are
the many conceivable applications which could benefit from this type of technology. Better
performance of speech recognition and identification systems in noise, recovery of a speaker of
interest from a single channel tape recording of simultaneous speakers, transcription of a
musical score, improved resistance of critical communications systems to jamming, and
recovery of sonar signals from background clutter are all applications in which an audio signal

of interest must be isolated from the others.
We cite from the back cover of (Divenyi, 2005)

“The cocktail party effect—the ability to focus on one voice in a sea of noises—is
a highly sophisticated skill that is usually effortless to listeners, but largely
impossible for machines. Investigating and unraveling this capacity spans
numerous fields including psychology, physiology, engineering and computer

science.”

To this we could add acoustics, biochemistry, neuroscience and applied mathematics. While at
first, it may appear that biology is an inexact science compared to the hard sciences of physics
and chemistry, in reality, the inexactness is often in our inability to properly model the behavior
and interactions amongst the unfathomable number of components which comprise many
biological systems; each component, nonetheless, obeying precise and exact laws of chemistry

and physics. In this work, we attempt to set forth a few organizing principles and to share our
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way of thinking about the problem which can possibly be of use to the next generation of

researchers in unraveling the mystery of source separation.

The speech enhancement problem can be broadly categorized into two forms. The first case is
where the interfering signal has a well-defined structure, such as in a competing speech signal
or other signal possessing some regularity. The second case is where the interfering signal is
random or noiselike in structure. The focus of our work is the former case, where assumptions
on distinctive properties of the signal of interest versus those of the background may lead to
separability, although extension to the latter case may be possible, and we do some evaluations

of our systems in random noise, as well.

1.2 Biological Approaches to Source Separation

In general, there are various cues available to a listener to segregate sounds according to their
probable source. An important cue is the spatial relationship among the sounds in the listening
environment. If certain sounds appear to be emanating from one direction, and others from a
second direction, that likely indicates that there are multiple sources, and could be used as a
basis of separation. However, in general, determining the location of a sound source is a
binaural task, requiring two ears. The sound level and time of arrival differ slightly between the
right and left ear depending on the source direction, and these differences are used by the brain
to compute the location of the source. In this work we concentrate primarily on cues that can be
used in a monaural, or single channel system where spatial information is unavailable. In
addition, the binaural separation problem is itself rather complicated despite the availability of
additional cues, and certain techniques that we will develop for the monaural case may prove
useful for the binaural case, as well. To see why this might be so, consider that if two sources
coming from different locations have overlapping frequency spectra, one will not be readily
able to discern time of arrival and level differences from a simple comparison of the waveforms
measured at the right and left ears, as they will not simply be scaled or delayed versions of each
other, as would be the case for a single source. At the very least, further processing will be
needed to dissect the component mixtures within the two channels, and only then can

comparisons of level and time delay be made. Possibly, some of the methods we will develop

18



for analysis of waveforms in general, may be of use for this initial binaural processing step, as

well.

Another cue for grouping sounds is pitch. Many sounds, including vowels in speech and the
notes of various types of musical instruments such as the string and wind instruments consist of
sets of frequency components which are harmonically related to a common fundamental
frequency (i.e., are integer multiples of the fundamental). One could then classify all
components that form a common pitch as belonging to the same source, and distinct from other
sources of differing pitch. One difficulty with this approach is the fact that many types of
sounds are aperiodic and do not exhibit a harmonic relationship between their components.
These include unvoiced consonants, the percussion instruments, and many other kinds of
noiselike sources. In addition, even in cases where the sources are perfectly harmonic in nature,

there are other difficulties which will be discussed in Chapter 2.

1.3 Concept of Comodulation

The separation approach upon which we focus involves tracking comodulated components.
Comodulation refers to the property that for a given source, there are likely to be relationships
among its spectral components, such that they will start/stop at the same time and will rise/fall
in amplitude and increase/decrease in frequency at the same rate. These are due to the physical
mechanisms of generation of the original sound. Evidence that the auditory system is sensitive
to these types of cues in some form or another, is abundant in the literature. The extent to which
common frequency modulation is useful in source separation was explored by (McAdams,
1984) (Bregman, 1990) and others. Others have looked at the effect of mistuned (Lin and
Hartmann, 1998) or mistimed harmonics (Darwin and Ciocca, 1992), and found that if certain

limits are exceeded, then they are perceived as separate sources.

The simplest way to harness the property of comodulation would be to pass sounds through a
filter bank similar to the human cochlea, and look for those frequency bands whose envelopes
appear to be related. These are likely to emanate from an identical source, and to be distinct
from envelopes produced by other sources. The difficulty with such a scheme is that in those
frequency bands which contain energy from more than one source, the envelopes will be the

resultant of the amplitudes of all sources containing energy in those bands. This makes a direct
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comparison of band envelopes misleading. For example, if a source which is rising in amplitude
and a source which is falling in amplitude both contain energy in a particular band, the
envelope of that band may appear flat, and then be misinterpreted as belonging to a nonexistent
third source, since it is dissimilar both to those bands whose envelopes are rising and to those

whose envelopes are falling.

Even worse, if the frequencies of two sources overlapping within a band do not precisely match,
or are not perfectly coherent with respect to each other, then interference will occur, causing the
envelope of the band to fluctuate, and making determination of the modulation characteristics
of either source very difficult. For these reasons, many source separation algorithms include as
a caveat in their description that there must be a certain minimum frequency separation

between the harmonics of the respective sources.

Still another difficulty is how to determine whether a rise or fall in the magnitude of the
envelope of a source is caused by true amplitude modulation, or rather by frequency variations
which cause the signal to sweep along the passband of the filter and to be attenuated differently
at different points in time, in accordance with the frequency response of that particular filter,

thus making the output appear to vary in amplitude.

For the case of perfectly coherent, constant-frequency, amplitude-modulated sources, we have
formulated a set of matrix equations that describe the sound mixture. We prove that under
certain conditions there exists a unique factorization which isolates the contribution of each
source, and we develop algorithms for finding that solution when it exists. We graphically

demonstrate these on recordings of musical instruments.

From the form of the solutions to our matrix equations, it turns out that having unique onset
times is a major factor in separability. This corresponds well to what is known about the
cochlear nucleus, which is the first auditory processing center in the brain. The cochlear nucleus
contains cells called onset detectors which signal the beginning of a stimulus. We speculate that
their outputs may be input to a network of coincidence detectors (cross-correlators) which will
compare and group bands which share similar onset/offset times and rise/fall characteristics.
The cells in this network might be synchronized by means of clocking signals produced by

another group of cochlear nucleus cells, called choppers, which provide rhythmic timing pulses.
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To handle the more general case of incoherent and frequency-varying sources, we have
developed methods for tracking instantaneous frequency, phase and amplitude of mixtures of
sinusoids. These methods operate under the premise that by looking at the behavior of a signal
in multiple overlapping and closely spaced bands, we can get an unambiguous view of the
underlying components of the signal, something we cannot do from a single band alone. By
dissecting each band output into its constituent sinusoids, we avoid the previous problems
mentioned. Instead of looking at band outputs, we look at what set of sinusoids likely gave rise
to those band outputs. Each sinusoid can then be examined for amplitude or frequency
variation individually, without contamination from other nearby components. Furthermore, we
liberate each sinusoid from the coloring effects of the filters, thus providing a pristine view of
the true modulation characteristics of each component. We will see that these methods are
sensitive enough to resolve individual sidebands of speech harmonics, giving a discrete line

spectrum instead of the usual spread of energy across a range of frequencies.

The general goal is to find a reversible mapping between source components and filter bank
outputs. Given a set of filter outputs in filter space, we want to find a transformation back to
source component space. We would also like to know what is the minimum number of filters
necessary to achieve this. Finally we would like to prove that this mapping is in fact unique,
and that no other set of sources can have the same image in filter space. While work on some of
these issues is not complete, we believe that we have enough supporting evidence to validate

the general framework.

We note that there are some philosophical difficulties in terms of how to define a component.
For example, an amplitude-ramped constant-frequency sinusoid is probably perceived by a
listener as a single-pitch pure tone of increasing loudness. However, Fourier analysis suggests
that there are actually multiple, constant-amplitude, constant-frequency sinusoids combining in
particular phase relationships to produce that waveshape. There is energy in upper and lower
sidebands surrounding the original sinusoid. Should these sidebands be considered
components, as well? These types of thought problems serve to confuse matters, as it is certainly
more intuitive to define a component as a single sinusoid with time-varying parameters, rather
than multiple closely spaced sinusoids with constant parameters. We live in a world of change.

It seems unnatural to resolve changing signals into sets of constant components. We might
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initially try to distinguish between frequencies that appear to arise from purely mathematical
constructs, as opposed to those that can actually be related to the physical mechanisms of sound
generation, such as the natural modes of vibration of the source in question. We might consider
the latter to be the true spectral components of a signal, with the instantaneous amplitude
described by a modulation term corresponding to the strength of the excitation at each time.
Instantaneous frequency could, likewise, be defined as the frequency of those modes
corresponding to the instantaneous shape of the source configuration. This avoids the previous
ambiguity, at least conceptually, but we will find that there is probably a more accurate answer

when we analyze test results on modulated signals in Chapter 6.

We note that we can’t escape the Fourier viewpoint entirely, since it is essential for the
description of the linear systems and filter banks that we will use in our processing, but we
propose that it is possible to improve on its shortcomings in describing the experiences of a
changing world by using additional methods of analysis to obtain more precise and intuitively

useful information.

The basic approach used in this suite of algorithms is to construct filter banks with overlapping
exponential frequency response shapes. The reason for this choice will become clear later. By
comparing temporal features of individual channel outputs which will vary from filter to filter
due to the different weighting of frequency components, we can merge the various views into a
composite picture of the individual sinusoids comprising the audio mixture. Appropriate
subsets of sinusoids from this mixture can then be grouped on the basis of a choice of possible

criteria into separate audio streams to complete the separation process.

Our long term goal is to create a parallel, biologically plausible implementation of our
algorithm, both for its use as a model of neural processing, and for the increased computational
efficiency that this would provide. We look broadly to the auditory system for guidance in
attacking this difficult problem, but we can do no more than guess at the many possible
avenues of complex processing within its myriad pathways which might reasonably agree with
physiological data. Nevertheless, when we see parallels in our way of thinking with

physiologically plausible mechanisms, we will feel free to note the comparisons.
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The most important temporal features for the purpose of this work are the local maxima or
peaks of the waveforms of the individual band outputs. We have concentrated on this feature,
because it is a clear landmark that stands out within the complex twists and turns of an
auditory signal. It also has the advantage of providing amplitude as well as frequency and
phase information. This is in contrast to zero-crossings, for example, which may provide
frequency and phase information under limited conditions (Logan Jr, 1977), but do not readily
provide amplitude information. In addition, from looking at data from actual neural responses
in the auditory nerve, we believe that identification of local maxima is a key mission of early
auditory processing. It is well accepted that the probability of a spike firing is related to the
instantaneous amplitude of the wave cycle, with increasing probability as one approaches the
crest of the waveform. This is referred to as phase locking or spike synchrony (Johnson, 1980).
However, visual examination of the data seems to indicate that at the actual peak, there are
more spikes than can be accounted for by the sound level alone. The period histogram seems to
become very pointed at the instant of the peak due to the disproportionate number of spikes at
that point. Figure 1 which is taken from (Popper and Fay, 1992) illustrates the peakedness of the
neural response. Figure 2 from (Geisler, 1998) illustrates phase locking in the case of a mixture

of sinusoids. The response seems to track peaks of the sum.
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Figure 1. The increased neural response at peaks in the input waveform. Figure shows poststimulus time
histograms for the reponses of a single chinchilla cochlear neuron to 9450 Hz (top) and 500 Hz (bottom) tone
pips. Stimuli had rise and fall times of 4 ms, lasted 25 ms, and were presented every 150 ms. Histograms are
average of responses to 200 stimulus repetitions. The neuron’s CF was 9450 Hz and it had a CF threshold of
3 dB SPL and spontaneous activity of 59 spikes/s. Data from (Shivapuja, 1991) reproduced in (Popper and
Fay, 1992).
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Time (msec)

Figure 2. Neural response to a mixture of sinusoids appears to be synchronized with local maxima of
resultant. Responses to two-tone stimuli were recorded from a primary afferent neuron in the squirrel
monkey. The two frequencies —798 Hz (LF) and 1064 Hz (HF) —had a 3:4 ratio. When the sound level of the
high-frequency tone was greater (by 20 dB), the spikes virtually synchronized to that tone alone (A). When
the low-frequency tone was more intense (by 10 dB), the spikes largely synchronized to that tone (C). When
the tones were of equal strength, the spikes synchronized strongly to both tones simultaneously (B). Each
period histogram (plotted on the time base of the 266 Hz fundamental frequency) is fitted with a curve that
is the sum of the two sine waves, arbitrarily adjusted in phases and amplitudes to achieve the best fit of its
top (positive) half with the data. From (Brugge, Anderson, Hind et al, 1969) reproduced in (Geisler, 1998).
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We also use for motivation a personal observation of this author that dynamic range seems to
be extremely important for intelligibility of speech in noise. If transmission through hearing
aids is impeded, even through an ill-fitting earmold, it becomes much more difficult to hear
clearly in noisy situations. This is despite the fact that one can turn up the volume of the aid to
compensate for the reduced loudness. The explanation seems to be that increasing the volume
(multiplicative gain) causes increased peak clipping, since the maximum power output (MPO)
is fixed. The loss of peaks may be detrimental to separation tasks. The author found strong
support for this notion from an experiment performed by (Young Jr and Goodman, 1977). They
wanted to test the notion that if speech were mixed with stronger noise (competing speech), it
might be possible to improve intelligibility by clipping peaks of the mixture, thus equalizing the
energies of the two. In fact, they found that the opposite was true; the intelligibility of the
desired speaker was severely degraded by this type of processing. This is exactly as expected

from this author’s own experience.

1.4 Thesis Organization

This thesis is organized as follows: In Chapter 2 we review and categorize some of the work
done by other researchers in the field of source separation over the years. There is so much
literature that we can’t possibly cover or even be familiar with all of it, but we attempt to
include representative papers from some of the major directions that have been pursued.
Chapter 3 presents an introduction to the concept of comodulation, and examines the extent to
which various types of sound sources may be considered to be comodulated. It also contains
examples of situations in which the use of multiple channels helps to unravel ambiguous
situations, such as separating the contribution of AM and FM to the trajectory of a signal
component. Chapter 4 describes a matrix approach for separation of amplitude-comodulated,
constant-frequency musical signals under certain constraints, using the method of Non-
Negative Matrix Factorization. Chapter 5 describes work on separation of sinusoids suitable for
the more general case of frequency-modulated and amplitude-modulated signals. It contains
three algorithms for signal separation all of which seek to achieve the same goal of
instantaneous parameter estimation using local maxima of multiple bands, but which
accomplish this by different methods. Representative results are shown for each, and the

strengths and weaknesses of each are discussed. Chapter 6 describes tests on actual AM and FM
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signals including noise and speech signals and raises some surprising issues in interpreting the
results. Based on this we further discuss the question as to the conceptual definition of
instantaneous parameters, and how they can be of use in source separation. Chapter 7 discusses
an analytical approach towards computing a closed-form solution to the problem of parameter
estimation using local maxima of multiple bands. Since the algorithms of Chapter 5 are
numerical in nature, work is needed to build a mathematical foundation upon which these
algorithms can rest. The primary question is the uniqueness question, i.e., are there other
combinations of signals that would have the same distribution of local maxima across multiple
bands. Chapter 8 is a forward-looking summary and conclusion and contains suggestions for

future work.
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Chapter 2

Review of Previous Work

2.1 General Categories

A number of approaches have been developed for identifying the number of signals in an
environment and separating them according to their probable source of origin. These can be

categorized according to the particular feature of the sound sources which drives the separation

engine.

As we have seen in Chapter 1, separation schemes can be broadly categorized as either
monaural or binaural depending on the number of channels used to record the sources. Since in
many situations only a single channel is available for analysis, we will concentrate primarily on
monaural cues. In addition, we believe that understanding the monaural case is fundamental to
the design of any source separation system. We therefore mention briefly some of the multi-
microphone approaches that have been studied, but devote the bulk of this review to the

monaural literature.

We note that the focus of our work is the separation of audio sources. However, the methods
we develop ultimately lead back to the problem of separating closely spaced pure sinusoids. We

therefore include relevant material on both of these interrelated topics.

We note that many of the key papers related to auditory perception and source separation of
both speech and music are extremely well-reviewed in three recent theses by (A. L.-C. Wang,
1994), (Ellis, 1996) and (Scheirer, 2000) which we will summarize as part of Section 2.4. Between
these three works, one has a veritable cornucopia of knowledge from which to acquire a strong
grounding in the classical literature. We therefore concentrate most of our effort on papers

which have appeared since that time.
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2.2 Sound Direction

The appearance of sounds from multiple locations indicates the existence of multiple sources,
and classification of sources according to acoustical properties dependent on direction can serve
as a basis for source separation. In general, determining the location of a sound source is a
multi-dimensional task, requiring multiple microphones. The sound level and time of arrival
differ slightly between the sounds picked up by each microphone depending on the source

direction, and these differences may be used to compute the location of the source.

2.2.1 Auditory Beamforming

One method which makes use of these phase differences is auditory beamforming, which
enhances sounds from one direction at the expense of sounds from other directions. Some of the
earliest work in this area borrowed from theory developed for radio antennas. Early work on
these systems was published by (Widrow, Glover, McCool et al, 1975), (Griffiths and Jim, 1982)
and (Haykin, 1986).

The basic principle upon which these methods work is the use of multiple microphones to
receive the sound at different locations which are offset from each other by some fixed distance.
The sound, therefore, reaches the various microphones at different times, leading to phase
differences between the signals at each microphone. In order to combine the signals, one applies
the corresponding phase shift of each microphone as would be present in a signal from the
desired direction so that all inputs are in phase with each other. If one then averages the inputs
from each microphone, the desired signal will be in phase in all of the channels, but signals

from other, random directions will be out of phase with each other, thus tending to cancel.

A multiple microphone array hearing aid worn on the chest was demonstrated by Bernard
Widrow from Stanford University at the 2001 meeting of the Acoustical Society of America with
encouraging results (Widrow, 2001). The device consisted of a rather large plastic case which
was shaped to fit comfortably on a user’s chest. The largest dimension measured about 8 or 10
inches. It was anchored by a loop worn around the neck which also served as an induction coil
to couple the signal to the T-coil of subject’s hearing aids. A key attribute was that it made weak
or distant sources that were within its angle of reception sound as if they were much closer than

they actually were. Low whispers in a very crowded room became easily audible.
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The major disadvantage of this particular system, was that it should have been developed to be
worn on the head, as a headset. This would allow one to turn his head to face the desired
source, which is more natural and convenient than turning one’s body. In addition, because the
inductive loop was relatively far from the aids it introduced noise and attenuation, effectively
reducing usable dynamic range. A head mounted system would allow one to inductively
couple the signal from much closer range, or alternatively to directly couple the signal via the

hearing aid’s accessory shoe, providing a lower noise route.

Another general disadvantage of these types of systems is the loss of binaural information of the
usual kind, and the loss of all auditory stimulation from the back and sides. (Greenberg and
Zurek, 1992) have tried to address these types of deficiencies by partitioning the spectrum in
such a way that part is used to give directional gain, and part to give binaural information.
Other issues have been studied by (Peterson, 1989), (Peterson, Wei, Rabinowitz et al, 1990) and
others such as figuring the optimal number of microphones which should be used in these

arrays.

In general, these systems may be classified as fixed or adaptive, depending on whether the
weighting of the microphones is adjusted in real-time. The advantage of adaptive systems is
that they attempt to compensate for changes in the acoustic environment. However,

reverberation tends to confuse these algorithms dramatically.

2.2.2 Independent Component Analysis

Similarly, another multiple microphone approach which has gained favor in the last decade is
Independent Component Analysis (ICA) first developed by (Bell and Sejnowski, 1995), which in
its most common form, attempts to use statistical similarities and differences between channels
to sort out a mixture of n signals recorded by n sensors. The linear combinations of the various
signals picked up by each sensor are all represented by a single mixing matrix. The basic
premise is that due to the Central Limit Theorem, distributions of mixtures should have a more
Gaussian nature than distributions of separate sources. One therefore looks for the inverse (or
unmixing) matrix which produces the most non-Gaussian set of sources. Various criteria are
used by different authors to make this decision. Current algorithms do not permit movement
between the subjects and the various microphones (which would make it impossible for a single

mixing matrix to describe), and also do not perform well in reverberant environments. A good
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introduction is provided by (Hyvarinen and Oja, 2000). In an appendix we will have more to

say about ICA, and the similarities and differences with our work.

For the remainder of the chapter we review monaural methods which are the main focus of the

thesis for reasons described earlier.

23 Harmonic Relationships

An early approach to the separation problem used pitch as the primary cue, as we briefly
mentioned in Chapter 1. This method has been explored by a number of researchers with
varying degrees of success. (Shields, 1970) proposed comb-filtering the target speech around its
harmonic energy. (Lim, Oppenheim and Braida, 1978) implemented an adaptive comb-filtering
system, whereby a signal is added to a delayed version of itself, causing the resultant frequency
response to become periodic in frequency. (Parsons, 1976) described a pitch tracking algorithm
which tracked two speakers simultaneously by grouping spectral components according to sets
of harmonic relationships. First, the harmonics were determined from the FFT using a peak-
picking method. Then the fundamentals were calculated, using a scheme suggested by
(Schroeder, 1968) in which all possible submultiples of each harmonic are computed, and a
histogram is made. Those bins which have the most values are fundamentals of harmonic sets.
Harmonically related sets sharing one fundamental frequency can then be separated from sets
sharing another fundamental. The method assumes that the fundamentals are far enough apart
to be separable under the resolution limitations of the FFT. Among the difficulties facing these
methods is the fact that it can be difficult to identify competing sources due to the crossing of
pitch tracks. Furthermore, small errors in pitch estimation lead to high levels of distortion of the

output signal (Nishi and Ando, 1998).

2.4 Computational Auditory Scene Analysis

These approaches use various relationships between spectral components in attempting to
group and segregate them according to probable source. Important contributions include both
perceptual studies to identify cues which are likely used by humans in auditory scene analysis,
and computational algorithms that attempt to perform source separation using these cues. The

following paragraphs review work of both types.
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241 A Survey

(McAdams, 1984) synthesized a set of 10 harmonics of a 220 Hz fundamental, with the resulting
sound strongly resembling an oboe. He then applied 10% vibrato at 4 Hz to the even harmonics,
and kept the odd harmonics constant. He found that listeners perceived two instruments. One
was a clarinet-like instrument with a pitch of 220 Hz. The other was a soprano-like sound with
pitch of 440 Hz. He also found that sets of harmonics in which all components were modulated
coherently sounded more fused than ones in which the components were modulated

incoherently.

This author performed some similar informal experiments on harmonic sets in which the even
harmonics and odd harmonics were amplitude-modulated with different modulating
frequencies and phases. He, too, found that the percept of separate sources was obtained,
despite the harmonic relationships among all components. This was even stronger if the onset

times were different for the even and odd harmonics.

The conclusion from perceptual experiments of this type appears to be that both amplitude and

frequency comodulation play an important role in neural auditory processing.

(Bregman, 1990) conducted many experiments on listeners in an attempt to understand which
aspects of a signal are important in identifying the number and types of sources present. As an
example, he studied a situation in which frequency tracks approach each other and then move
away. He wanted to know whether listeners perceive them as crossing over and continuing, or
as bouncing and receding from each other. Bregman’s work is interesting as far as identifying
potentially useful cues in auditory scene analysis, but as a psychologist, he does not provide

algorithms for harnessing these cues.

(Cooke, 1991) and (Brown, 1992) looked at spectral components that follow related trajectories
in a time-frequency space, and attempted to separate those with dissimilar trajectories.
However, in cases where the signals overlap, the trajectories become difficult to follow and to
resolve. In a broad sense, our work is related to the ideas in their work, but as we have stressed,
the use of features from an auditory band as a whole without further attempts to get at the

underlying signals that give rise to those features may easily be misleading.
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Avery Wang (A. L.-C. Wang, 1994) used Harmonic Locked Loops which are linked Phase
Locked Loops that are tuned to harmonics of a common fundamental, in order to separate FM
signals from mixtures. These methods are based on recognition of the fact that there is often
frequency comodulation among components of a signal, and hence changes to frequency are
reflected proportionately across all harmonics. His method required a priori information on the
initial fundamental frequency of the signal in question, but could track changes, thereafter, to
the fundamental and harmonics. As his methods preserve phase, they allow for separation by

subtraction of that harmonic set from the remaining components.

Wang's thesis, in general, contains an excellent discussion on the differences between
parametric methods and nonparametric methods of spectral analysis, with many examples of
each. His knowledge of advanced mathematical spectral analysis techniques is quite impressive.
He defines Fourier analysis as non-parametric, and contrasts with parametric methods which
attempt to directly solve for the frequency variable w in fitting data to an equation of the type

asin(wt +¢). As we will see, the methods we will develop in utilizing the local maxima of

waveforms should be classified as parametric, and this will become evident when we look at
the actual equations. However, we note that mathematical methods in general have a way of
being consistent across disciplines, and although Fourier analysis may appear to be based on a
set of equations which is removed from the appearance of the original signal, however, since
those equations are derived from the orthogonality properties of trigonometric functions, and
since these follow from the properties of trigonometric integrals, which in turn follow from
trigonometric derivatives which follow from trigonometric limits and finally from the basic
addition formulas, Fourier methods are actually grounded in the same place. This will be seen
later in Chapter 6, when we discuss the dichotomy between the instantaneous view of signals
and the combinatorial view of infinite length, constant components. Basic trigonometric

identities can give the same results as Fourier analysis.

In short, we believe that the shortcoming of Fourier analysis is not that it is non-parametric, but
rather in the fact that it takes a long signal-length to give sufficient frequency resolution, and in
the fact that the length of the window influences whether orthogonality holds. If the window is
not perfectly matched to the signal frequency, then the orthogonality condition is not fulfilled,

as the integral of trigonometric functions over an incomplete cycle of a waveform is not limited
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to either 1 or 0, as orthogonality requires, but will depend on the start point and endpoint of the

interval.

Dan Ellis’s thesis (Ellis, 1996) contains much analysis of Bregman’s work, in addition to that of
many others. He distinguishes between data-driven and prediction-driven source separation.
These are alternately referred to in the literature as bottom-up and top-down processing,
respectively. The data-driven school of thought holds that to do separation, one must first
operate on the raw data at the acoustical and signal-processing levels to produce separate audio
streams, and these are then passed up to the higher brain centers where they can each be
interpreted or ignored, at will. The prediction-driven approach which he advocates holds that
the brain doesn’t need to separate the entire stream, but rather it looks for elements which it can

recognize in the mixture.

Ellis’s computational scheme involved breaking up a scene into various sound elements such as
periodic components, noise components, and burst-like components. Based upon what is likely
to be the upcoming sound type, a hypothesis is continually reevaluated about the origin of each.
The argument for this type of system is that humans are known to be able to fill in gaps and
missing syllables which are covered by noise. In the opinion of this school of thought it is the
extraction of understanding from the mixture that is the key, and not the actual separation of

waveforms.

We would like to respectfully disagree with this idea, and side with the data-driven school. The
reason is that it would seem that there need to be clear templates upon which the brain can
operate in order for it to be able to recognize information from one source or the other. A
jumbled and mixed audio stream will have features that differ from those of either source. It
seems to us unlikely that the brain’s pattern recognition engines can recognize anything familiar
in a mixture until it is separated and sorted. We can, however, see the opposing point of view in
an instance where certain harmonics of the voice are covered up by noise, while certain others
are not. In that situation, possibly the brain may recognize enough information from the clean
harmonics to be able to piece together the ones that are covered. We can accept that perhaps
there is enough redundancy in speech to decipher a message with only a portion of the
harmonics free from interference. This would seem to be true only if there were enough

unaffected harmonics to make out the general formant structure. Alternately, if the noise is
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variable so that at certain time instants only the desired source is heard, even though noise
frequently punctuates at other time instants, we can agree that in this case, as well, it may be
possible to piece together enough information without formal separation to understand the

message.

Eric Scheirer’s thesis (Scheirer, 2000) does not deal directly with source separation, but concerns
itself with extracting key information from a musical recording that describes the character of

the piece.
In his words:

“New models are presented that explain the perception of musical tempo, the
perceived segmentation of sound scenes into multiple auditory images, and the
extraction of musical features from complex musical sounds. These models are
implemented as signal-processing and pattern-recognition computer programs,

using the principle of understanding without separation.”

From his encyclopedic knowledge of the auditory processing literature, going back to many of
the classical papers in the field, there is one particular point which we consider extremely

relevant to our work. We cite the following:

“(Summerfield, Lea and Marshall, 1990) drew an explicit contrast between
“conjoint” grouping strategies, in which energy from each correlation channel is
split up and assigned to several sources, and “disjoint” strategies, in which the
channels themselves are partitioned between channels [sic?, B.D.].]. Their method
was a disjoint method; they do not provide psychoacoustic evidence for this
decision, but base it on the grounds of physical acoustics (“when sounds with
peaked spectra are mixed, energy from one or other source generally dominates
each channel.”) (Bregman, 1990) argued for a disjoint model, which he called the

principle of exclusive allocation.”

In our opinion this paragraph goes to the heart of our entire effort. We believe that there is no
basis to the disjoint model, and that it is the major stumbling block in designing a successful
source separation system. There is no way to short-circuit the absolute requirement to analyze

individual bands and dissect them, correctly allocating energy to each source. The difficulty in
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doing this is what has prompted many approaches to explicitly warn against situations in
which pitch tracks become closer than about 25 Hz. Our methods attempt to confront this issue

head on and to correctly perform this allocation.

We note that Scheirer’s review of Ellis’s work mentions the fact that both top-down and bottom
up approaches are used in his approach to interpreting audio scenes, and not exclusively the

top down approach, as we described earlier.

A further interesting point raised by Scheirer is in the interpretation of the McAdams oboe

experiment.

“ At one time, there was general agreement that the auditory grouping for these
sort of stimuli was governed by coherent frequency modulation. This is the
explanation promoted by McAdams in his presentation of experimental results
using these stimuli. However, this agreement no longer maintains; in particular,
(Carlyon, 1991; 1994) has argued on the basis of more extensive psychophysical
testing that the actual basis of auditory grouping in these stimuli is the
harmonicity of the signal. That is, as the even harmonics move away from exact
harmonicity with the odd harmonics, a pitch-based grouping mechanism selects

them as part of a different auditory group.

“The present [Scheirer's auditory-segregation] model does adhere to the
viewpoint that grouping is based on common modulation in these stimuli.
Future work should examine more closely the stimuli developed by Carlyon and
others to distinguish the harmonicity hypothesis from the common modulation

hypothesis.”

In 2003 an invitational workshop was held in Montreal, Canada to assemble many of the
researchers at the forefront of the Speech Separation field. There were 20 presenters, and a book
edited by (Divenyi, 2005) was compiled containing expanded articles by these researchers. The
book contains a rich collection of work on the current state of the field. We note, however, that a
number of those approaches are multichannel in nature, and hence outside the scope of this
work. The remainder of this subsection contains short summaries of relevant papers in

Divenyi’s book.
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Claude Alain (Alain, 2005) focused on the importance of mistuned harmonics in source
separation on the basis of physiological evidence from brain wave recordings showing
sensitivity to such occurrences. In general, experiments on mistuned and mistimed harmonics
are among the body of perceptual evidence that indicates the importance of proper grouping in

source separation.

Peter Cariani (Cariani, 2005) discussed neural timing networks for extracting precise temporal
information which could possibly be used for separating periodic sounds from noiselike
sounds, and which would also explain the sensitivity to mistimed harmonics. He cites (Kubovy,
1981) who demonstrated that abrupt changes in phase and/or amplitude of a harmonic can
cause it to “pop out” perceptually from a mixture. We note that it is has been a motivating
factor in our work that although phase seems to be unimportant in the perception of a single

sound, it may play a major role in separation, as we will discuss in Chapter 4.

Te-Won Lee (T.-W. Lee, 2005) described recent efforts to adapt the ICA formulation developed
for multiple channels to single channel use. We mention this, as our work relates to single
channel processing. We have made such an attempt ourselves to adapt ICA to this problem by
considering the envelope of each band to be analogous to a single microphone. We describe

further in an appendix.

Paris Smaragdis (Smaragdis, 2005) discussed the concept of redundancy reduction as a unifying
and motivating factor in the development of ICA. We note that our methods make extensive use
of redundancy, both with regard to the fact that speech and music contain multiple harmonics,

and with regard to the consolidation of similar information from multiple channels.

Sam Roweis (Roweis, 2005) described the use of Hidden Markov Models (HMM's) for grouping
similar harmonics. He, too, emphasized the idea of redundancy, and included as an example a
concept that we discussed earlier in the context of Ellis’s work, that a speech message may be
understood on the basis of a subset of the original harmonics, if the remainder are obliterated by

noise.

Richard Stern (Stern, 2005) discussed the problem of classifying which areas of a spectrogram
might be missing or corrupted by noise, and how to adapt processing methods to ignore or

reconstruct these missing features. His approaches are both single and multi-channel. In single
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channel approaches, he discussed the abundant psychophysical evidence that the trajectories of
harmonics are extremely important in grouping, including minor fluctuations
“micromodulations” in frequency and amplitude. He cited the experiments of Chowning
(unreferenced) and Bregman to bolster this. This is at the core of our work on comodulation. We
note that so many researchers have recognized the importance of common modulation in one
form or another, however, we emphasize that it is extremely difficult to detect due to the
interfering effects of sources on each other. Overcoming this problem is the focus of the major

part of our work.

DeLiang Wang (D. L. Wang, 2005) discussed the issue of goals and performance measures for
CASA systems. What are reasonable standards, and how should we evaluate performance? He
mentioned that the goal of actually generating two separate source streams may be unrealistic,
but suggested an alternate approach called the Ideal Binary Mask. The idea is that given a
spectrogram or other Time-Frequency representation, the aim is to label each cell with a 1 if it is
likely to come from the source of interest, or a 0 if it is likely to come from noise or an
interfering signal. Even if reconstruction is not attempted or possible, an accurate mask should
be considered a worthy goal. This will be relevant for our method of Chapter 4, where we
perform a graphical separation of sources. Wang mentioned work by (Weintraub, 1985), and
further extended by (Brown and Cooke, 1994) and (D. L. Wang and Brown, 1999) who have
devised methods for actual reconstruction based on a successful binary mask if gammatone
filter banks are used for the original T-F distribution. He also cited work by (Slaney, Naar and

Lyon, 1994) on methods for reconstructing phase from spectrograms and correlograms.

Wang also discussed an evaluation method based on quantifying the extent to which the score
of an automated speech recognition system is improved by the use of the CASA system in
question. Since the difficulty ASR systems have with noise is one of the motivating factors in

developing CASA systems, in general, this might be a natural benchmark of performance.

Wang listed some alternate goals to which various researchers have aspired, including the
study of biological mechanisms, and successful modeling of neurobiological data. To an extent,
our work attempts to do this, as well, as we have tried to explain various features of auditory
neurophysiological data, including the shape of auditory filters, and the function of temporal

phase-locking.
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Malcolm Slaney (Slaney, 2005) argued strongly against the idea that the brain can separate
sounds into separate streams. He brought evidence from a number of interesting phenomena,

including.

1) The ability of a native speaker of a language to fill in a part of a word obscured by a

cough, something the non-native speaker cannot do.

2) The McGurk effect in which visual perception of the speaker’s lips affects the
listener’s auditory perception (McGurk and MacDonald, 1976).

3) Experiments in which audio cues cause visual motion perception.

He also described the history and use of the correlogram, popular with many researchers and
featured prominently in the works of Ellis and Scheirer, earlier, which is a simultaneous plot of
the auto-correlation of each channel, resembling a spectrogram in certain respects, but with
enhanced temporal information. The time between maxima of a row corresponds to the period
of the underlying channel output. He discussed the possibility of separating a correlogram of a
mixture into two partial correlograms, and then further reconstructing the waveforms of each.
He briefly addressed the issue of how to compute the proper phase for each channel in the
course of this reconstruction. However, he believes, as before, that all this is not strictly

necessary, but rather that the brain can decode the message without reconstructing the streams.

2.4.2 Contrasts with Visual Scene Analysis

We note that there are some basic differences between auditory scene analysis and visual scene
analysis. In the most common visual scene analysis situation, one is presented with various
objects in a scene, in many different orientations, distances and sizes, some of which are
partially obscured by other objects. The task is to identify the objects in the scene, even though
only a partial view may be available for each. While this is not a trivial problem, it does differ
from auditory scene analysis in certain aspects that make it less difficult by comparison, in our
opinion. In VSA, each pixel in the image generally comes from only one object. The task is to
figure out where the borders lie between the objects, and to recognize the whole from the part.
One does not need to decompose pixels into separate objects, with a certain percentage of

energy allocated to one or another. In ASA, on the other hand, one has multiple sources
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superimposed on each other, and it is much harder to recognize what percentage of energy
comes from each source, and where each source begins and ends in time. An exact visual
analogy to ASA would occur in the uncommon situation in which one is analyzing a picture
taken as a double or multiple exposure. Most often, this kind of image occurs only in error, and
is discarded. The analysis of blurred images may also bear some similarity to the ASA problem
in that energy from multiple pixels must be properly allocated, but this involves a

deconvolution operation, and differs from the separation of additive sources.

2.5 Approaches based on Spectral Estimation

Spectral Estimation includes short-time Fourier magnitude and phase-based approaches
introduced by (Parsons, 1975), (Hanson and Wong, 1984), and further developed by (Naylor
and Boll, 1987) and others. For reasons we will explain shortly, these approaches typically are
limited in relying on strict stationarity conditions, the interferer to be much larger (e.g., 6-16 dB
larger) than the target speech, and/ or parametric models of the speech spectrum.

In a broad sense, these approaches may be seen as a modified form of spectral subtraction.
Spectral subtraction is a technique which was originally developed to separate speech from
random noise. If the noise spectrum could be estimated, then one could seemingly subtract it
and be left with the speech alone. Two well known problems with this method are that noise
changes over time, so that a past snapshot of the noise spectrum quickly becomes outdated; and
that many spectral subtraction algorithms ignore phase information. If one misestimates or uses
outdated information about the noise spectrum, one will be attenuating the wrong frequencies
and corrupting the speech. It is for this reason that stationarity is required, the noise spectrum is
assumed not to change. If one misestimates phase, one may in fact be adding noise, rather than
subtracting. Symptoms of these types of errors include “musical noise” in the reconstructed

waveform, in which spectral energy has been added that was nonexistent originally.

In order to extend the concept of spectral subtraction to the multiple talker problem and to treat
a competing speaker as noise, one must contend with the additional difficulty of estimating the
interferer’s spectrum at each interval due to the nonstationarity of speech. The counterintuitive
requirement mentioned above that the interferer be stronger, not weaker than the desired

(target) speaker is due to the fact that the better we can estimate the interferer’s spectrum, the

39



more accurately we will be able to subtract the unwanted energy and leave the target speech
unaltered. Hanson and Wong concluded that magnitude estimation alone of the harmonics
from the interfering speech spectrum was adequate to reconstruct intelligible speech, even
though phase estimates were obtained from the noisy speech mixture as a whole. While their
estimates of the interfering speech spectrum were separately obtained (using a priori knowledge
of the interfering spectrum, clearly not useful in realistic situations), their key contribution was

that the process of harmonic magnitude suppression was sufficient to preserve intelligibility.

Naylor’s extension uses the assumption of harmonicity combined with robust pitch estimation
to identify those regions of the spectrum that will likely have energy based on the fundamental
frequency. He tested four different methods of pitch estimation: 1) Cepstral Estimation (Noll,
1967); 2) Maximum Likelihood Estimation (Wise, Caprio and Parks, 1976); 3) Harmonic
Matching (Lim and Griffin, 1985); and 4) the Auditory Synchrony Model (Seneff, 1984). The
authors found that best results were obtained using the Maximum Likelihood estimator. In
cases where the interfering speech was controlled to be steady state, they report good
separation, even when estimation of the interfering speech spectrum is performed on the actual
mixture. One point which they note in their findings is that for real speech, harmonic lines are
not exact integral multiples, which is similar to what we have found in tests of our methods on

actual speech in Chapter 6.

2.6 Sinusoidal Modeling

(Quatieri and Danisewicz, 1990) used a sinusoidal representation of the speech signal to
separate closely spaced frequency components by using a least squares solution to resolve the
combined envelope formed by the two interfering speakers. The speech waveforms of two
talkers are modeled as harmonic sets. Each is broken up into frames of 20-30 ms long. These
frames are each multiplied by a Hann window. Since the speech is assumed to be a sum of
sinusoids, the net effect in the frequency domain is a sum of scaled and shifted transforms of the
window sequence. The value at each frequency component yields the amplitude and phase for
any corresponding harmonic in that frame. Interpolation is used to match up values across
frame intervals, with appropriate phase unwrapping to account for time evolution. The authors

demonstrate that if all frequencies are known a priori, then one can solve a set of linear
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equations to separate overlapping window transforms, and obtain separate amplitude and
phase parameters for each component. In addition, even if the two fundamentals alone are
known, one can still perform the separation using the assumption of harmonicity to obtain the
frequencies of higher order harmonics in each set. In the case where no a priori frequency
information was available at all, the algorithm used a gradient descent method to minimize the
error between the summed reconstructed waveforms and the original signal using the two

unknown fundamental frequencies as parameters.

In all cases, if any frequencies become closer than about 25 Hz from each other, then the matrix
becomes ill-conditioned, and an analytic solution cannot be found for that frame. This could
occur when pitch tracks cross, or even if a lower order harmonic of one speaker happens to lie
near a higher order harmonic of the second speaker. To overcome this, the authors suggest
using the previous or next frame as a guide to the trajectory of the pitch tracks so that current
frequency locations can be estimated. In the latter case where use was not made of a priori
frequency information, results were satisfactory only where pitch tracks were non-overlapping
and where the sound level of the desired speaker was approximately equal to that of the
interferer. Results were better for the first two cases. Because this method bears some similarity
to our approach which will be presented later, we have gone to greater lengths in our

description.

2.7 Coherence-Based Approach

(Cauwenberghs, 1999) used a wavelet formulation to exploit characteristic jitter among source
components as a basis for source separation. This led to an iterative time-domain correlation-
based search algorithm. The underlying assumption is that individual sources will never be

perfectly coherent with respect to each other.

2.8 Super-resolution Methods for Sine Estimation

Because of the limits of classical Fourier-based methods due to the time/frequency resolution
tradeoff, alternative methods have been developed to shorten the data-lengths and recording
times required for satisfactory parameter estimation. The following sections review some of the

modern methods for the separation of sinusoids. In virtually all of these approaches, the nxn
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covariance matrix formed by using a subset of n consecutive points of the data is
mathematically manipulated in some fashion or appears as one of the factors in a set of linear

equations which is then solved to yield the desired parameters.

2.8.1 Linear Prediction

One of the most popular methods is the use of particular assumptions on the nature of the
source to attempt to find the best fit (in the least squares sense) to a particular model and to
view the parameters obtained as being representative of the source. Among these are subsets in
which the source is viewed as having been generated by either a train of impulses in the case of
voiced speech, or by white noise in the case of unvoiced speech, which is then passed through a
filter which may be one of three general types. It may be a moving average (MA) type, in which
the output depends only on the current and past input samples. It may be an autoregressive
(AR) filter, in which the output depends on the current input and past output values, or it may
be a combination of both in which the output depends on the current input, and on past input
and output values (ARMA filter). In the frequency domain, by taking z transforms of the
respective difference equations, these take one of the following forms: The numerator is a
polynomial in z and the denominator is a scalar, (all zero model), the numerator is a scalar and
the denominator is a polynomial in z (all pole model) or both the numerator and denominator
are polynomials in z (pole zero model). In general, an all pole model can well recreate sharp
peaks in the spectrum, but not so well deep notches, and conversely for an all zero model, but
in practice, the all pole model has gained wider acceptability. The reasons are that the
mathematics is simpler and better understood, and that the lack of zeros can actually be
satisfactorily compensated for by increasing the number of points (the model order or number

of poles). The scalar term accounts for the overall strength of the signal.

Because the autoregressive or all pole model assumes that one can predict future values of the
data from past values (with appropriate fixed weights), it is also known as Linear Prediction. It
turns out that the same equations arise based on slightly different assumptions in the course of
separating a sinusoid from noise using the Maximum Entropy Method (MEM), thus these
methods are closely related. To determine the weights, one solves a set of linear equations
called the Yule-Walker equations (also known as the normal equations) in which the covariance

matrix multiplies the unknown weight vector to yield the vector of autocorrelations. While
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traditional methods of solution work fine, such as Gaussian Elimination, due to various
symmetries and redundancies which are properties of the autocorrelation function, there are
quicker and more efficient algorithms which have been developed, among them the methods of
(Levinson, 1947) and (Durbin, 1959). A byproduct of the Levinson recursion, is the computation
of intermediate terms which have a physical interpretation in the course of acoustic modeling of

the vocal tract as a set of tubes of differing cross sectional area.

Because the length of the data record is necessarily finite, at the beginning and end of the
record, the autocorrelation values are undefined and taken as 0, as they would depend on
nonexistent past or future values in each case. This could introduce inaccuracies in finding the
best-fit solution. To get around this, the set of equations can be truncated by eliminating rows
where there are any zero entries and then solved. This variation is known as the covariance
method. In this case, the resulting equations are similar to those derived under a different set of
assumptions known as Prony’s method (Prony, 1795). Prony’s method attempts to model a
signal as a sum of exponentials, and to find the FIR filter that best cancels it. For short data
records, the covariance method produces better results. If the signal is a true sum of

exponentials, Prony’s method produces exact results.

Increasing the model order generally increases accuracy, but can lead to false peaks in the
spectrum. In an attempt to separate the effect of the signal from noise on the shape of the
spectrum, (Tufts and Kumaresan, 1982) proposed the use of the Singular Value Decomposition
(SVD) to separate the contribution of the higher amplitude components which are ostensibly
due to the signal from the lower amplitude components which are ostensibly due to noise. By
selecting those eigenvectors corresponding to the largest eigenvalues and reconstituting, one
can compute a lower rank and more accurate approximation of the contribution to the inverse
of the autocorrelation matrix due to the signal alone. This variation is known as Principal

Component MA estimation.

2.8.2 Capon’s Method

Capon’s estimator (Capon, 1969) has been described as measuring the power output from a set
of adaptive filters that best null the noise process (minimum variance) at the output of each
filter. Whereas the periodogram uses the same filter shape for each frequency, in Capon’s

method the individual filters can change their shape to reduce response to energy outside the
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band of interest. As previously, the autocorrelation matrix appears in the defining equation, and
the spectral estimate is given by the suitably scaled reciprocal of the quadratic form of a vector

containing successive harmonic frequency terms and the inverse of the autocorrelation function.

(Kay, 1988) shows that Capon’s method can be shown to be equivalent to an averaging of AR
estimates of all orders up to the order chosen, and the inclusion of the lower order estimates
negatively impacts the resolution of the final result. Citing (Lacoss, 1971) he states that it is
better than the Bartlett method (a traditional periodogram based approach), but worse than the
AR method.

2.8.3 Pisarenko’s Method

Pisarenko’s method (Pisarenko, 1973) is based on a property of all positive-definite Toeplitz
matrices, of which every covariance matrix is an example, that it can be decomposed into a sum
of sinusoids plus white noise. In order to find the frequencies of these sinusoids, one computes
the minimum eigenvalue and its corresponding eigenvector. The elements of this eigenvector
turn out to be the coefficients of a polynomial whose roots are the frequencies of the sinusoids.
The noise power is equal to the value of the minimum eigenvalue. The amplitudes of the
sinusoids are then computed by back-substituting the frequency and noise terms into the
equation for the covariance matrix and a simple linear system of equations results for the

amplitude terms.

A drawback of this method is that it relies on perfect knowledge of the covariance matrix, while
for actual data the values can only be estimated. Because of this, its accuracy suffers, and in an
evaluation by Kay, he found that its performance is much worse than all the other methods of

this section. Errors in the calculated frequencies occur even when there is no noise.

2.8.4 MUSIC (Multiple Signal Classification Algorithm)

In order to correct the deficiencies of Pisarenko’s method, an alternate approach was suggested
by (Schmidt, 1986). This method avoids the factoring step to obtain the frequencies. Instead, one
makes use of the property that the signal subspace is orthogonal to the noise subspace. One
again computes the eigenvalues of the covariance matrix, but rather than assuming that the
noise subspace is entirely characterized by the minimum eigenvector, one chooses a threshold

value above which the eigenvectors are classified as the signal subspace and below which they
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are relegated to the noise subspace. One then computes an equation in which the denominator
is effectively a product of the signal subspace and noise subspace. When this is minimum for a

particular frequency (maximally orthogonal) the reciprocal determines the power of that

frequency.

A disadvantage is that a search must be made to find the frequencies, and some a priori
knowledge is required in terms of how many frequencies to look for, or the value of the cutoff
point which determines the dimensionality of the signal subspace as opposed to the noise
subspace. The overall accuracy of the method is reported by Kay as being acceptable if the SNR
is above 16 dB.

2.8.5 ESPRIT (Estimation of Signal Parameters via Rotational Invariance
Techniques)

While the MUSIC algorithm is considered to produce good results, as above, the required
multidimensional search is computationally intensive. A method for reducing this burden was
developed by (Roy and Kailath, 1989) and is highly recommended in the book and
accompanying lecture notes by (Stoica and Moses, 1997) and in the lecture notes of their
frequent collaborator, Juan Li. The ESPRIT method exploits symmetries in phase among time
samples at earlier and later times in a period of the waveform. When applied to radar direction
of arrival (DOA) problems, it requires the use of symmetrical arrays with a known spacing. In
either case, it requires a priori knowledge or an educated guess as to the number of sources 4.
An eigen-decomposition is performed on the combined arrays, and the columns corresponding
to the d largest eigenvalues are retained. This is then partitioned into two submatrices, one
containing all rows except for the last, and the second containing all rows except for the first.
Because of the properties of the particular symmetry between the arrays which is effectively a
rotational invariance, it turns out that the best fit of the data to the impinging signals is given by
the total least squares (TLS) solution. As explained by the authors, in usual least squares
calculations of Ax=Db, the matrix A is considered fixed, and the best fit vector x is calculated.
However, in this case, there may be noise with equal probability in either of the two
submatrices, therefore the method of TLS is employed which finds the best fit to the data with
the option of adjusting either. The net result is equivalent to matrix multiplication of the first

submatrix by the inverse of the second. The eigenvalues of this TLS solution matrix are then
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complex and their phase angles can be mapped to the digital frequencies of the sources. The
computational burden is much lower than for MUSIC, as the frequencies arise through an
analytic approach, and not through maximization via an exhaustive search over one or more

simultaneous parameters.

2.8.6 Comparison

For a superb head-to-head comparison of the results of eleven spectral analysis methods on the
same data set in both easy to read tabular and graphical formats, one should consult (Kay and
Marple Jr, 1981). They used three sinusoids and a region of colored noise. One immediately sees
that FFT based methods can only resolve frequencies further apart than the reciprocal of the
data set length in seconds (which we derive in Section 6.3), although two of the test sinusoids
were deliberately placed closer than this. Some of the other methods were able to resolve all of
the sinusoidal inputs, but only one, a variation of Prony’s method, was able to correctly provide
the amplitudes. This method produces results in the form of a line spectrum, as it assumes a set
of sinusoids, and tries to fit the data in a least squares sense. Because of this, the noise was not
well-represented, although some lines appeared in that region. Another advantage of Prony’s
method is that it provides phase information, while AR methods do not. His method actually
bears the most resemblance to our work, but a direct comparison is difficult, since our work
requires a filtering operation followed by an instantaneous analysis based on local maxima. The
data length benchmarks are therefore difficult to compare. In a single filtering operation, we can
analyze the frequency and amplitude progression of time-varying signals, while his method
assumes constant sinusoids. In, addition the length of time necessary to resolve a signal with
our method depends on its frequency, since the higher the frequency the closer the maxima.
Finally, our work depends on the sampling rate, as we need to precisely locate the maxima in
time, but precise specification of that relationship is difficult to quantify, and has been a matter
of judgment. Further complicating the matter is our use of interpolation which artificially

increases the number of data points, but introduces some noise.

The main drawback of Kay and Marple’s excellent summary is that it is now dated, and
additional methods have cropped up since, some of which we have mentioned. We are not

aware of a similar, more current review at this time.
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2.9 Recent Work on Time-Frequency Analysis

29.1 Norden Huang’s Method

Norden Huang (Huang, Shen, Long et al, 1998) recently proposed a curious method for
separating a signal into functional shapes which capture different characteristics of the behavior
of the original signal. One forms the upper and lower envelopes of a signal by means of two sets
of splines, one interpolating between the local maxima and the other interpolating between the
local minima. One then computes the mean of these two curves and subtracts from the original
signal. One repeats the process until (a) the residual has the same number of zero-crossings as
extrema, or the numbers differ by at most 1; and (b) the mean of the upper and lower envelopes
is zero, i.e., they are symmetrical about the x axis. When this occurs, one has obtained the first
Intrinsic Mode Function (component) of the data. One then subtracts this and repeats the
process to find the next IMF. The method differs from the work we have done, in that our work
is focused on analyzing and separating sinusoidal components on the assumption that the
signals of interest contain harmonic structure, such as in music and voiced speech. Huang's
method does not assume this, and is actually not suited for this. His method may be useful in
analyzing fluctuations in nonlinear oscillators for example. However, when it comes to
separating two constant-frequency sinusoids, it fails, as he illustrates in an example. His results
seem to produce two signals, one of which corresponds to the fine structure, and one to the
overall envelope. But in fact, the reality is that two closely spaced sines are actually causing the
pattern. In this author’s opinion, this is a fundamental weakness with his method, in that it tries

to fit shapes in a superficial manner while ignoring the root cause of these shapes.

In addition, the method has many ad hoc criteria for when to stop the sifting (subtractive
iterations). Too much sifting will actually degrade the results.! Our methods are concerned with
uncovering the underlying sinusoids that make up a complex signal, not with trying to fit the

shape with various splines or processes based on them, and the like.

! This author finds the fact that Huang's results occasionally degrade with increasing iterations to be a major
drawback, as it should be axiomatic that all results of iterative algorithms are only valid at convergence. One
should not arbitrarily report results from earlier iterations, if later iterations become unsatisfactory or if
convergence is not achieved.
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2.9.2 The Reassigned Spectrogram

(Fulop and Fitz, 2006) describe a method which has been proposed, forgotten, and reinvented a
number of times in the literature, but which has not received widespread popularity, possibly
due to confusion about correct implementation, proper interpretation of results, and possible
advantages. They collected three versions of the algorithm and attempted to compare results

against each other and against conventional spectrograms.

The basis of the method is that possibly better precision along the frequency axis, and better
alignment along the time axis can be obtained by moving various time-frequency points (cells)
to other locations in the spectrogram. The basis for doing this is to compute the instantaneous
frequency for each channel (channelized instantaneous frequency or CIF) and the group delay
at each time (localized group delay or LGD) according to the following two equations,

respectively:

W= g?arg[X(w, 1)]
(2.1) i 5
t=t— 6—warg[X(w,t)]

If, for example, in a given channel the CIF calculation indicates that a certain frequency is
present which differs from the center frequency of the filter for that channel (i.e., the transform
of the window sequence shifted to the center frequency of that channel), then the cell is
relocated to the new position given by the CIF, and not the center frequency of the band.
Similarly, if the group delay at a given time shows the occurrence of a particular frequency at a
time value other than the normal reference point at the center of the window, then the cell is

relocated to that time.

It would help if the authors included additional elucidation of the motivation behind this
alternate system of referencing frequency and time. Do these shifts occur over distances far
enough so as to place the new location outside the range of the original window? If so, how
does one reconcile the apparent presence of energy within the passband of the original filter
with the claim that this energy is actually located at some other frequency bin which is
calculated by the CIF? Similarly, if temporal adjustments are allowed that are large enough to
shift energy to a completely different windowed segment of the signal, how does one explain
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the appearance of energy in the original segment, if there was none at that time? Using the CIF
and LGD to obtain refined estimates within a single time-frequency tile would seem to be a
useful innovation that agrees with intuition, but using them to rearrange tiles would seem to

benefit from further explanation.

In addition, the authors need to make the assumption that only one source has energy in a
given band, otherwise the instantaneous frequency will be invalid. As we have discussed, this

goes against our experience that overlap within a band is common.

These questions notwithstanding, the authors do raise a number of good points in their
discussion of the shortcomings of conventional analysis, especially with regard to the
“smearing” of modulated signals, and how the use of additional processing may clarify matters.
In this general manner, their goal is similar to ours, however, the techniques we have developed

are completely different.

The results do show sharper traces in certain cases than obtained with conventional
spectrograms, but in other cases, they seem to fail to resolve harmonics that are visible
conventionally. We will have more to say about the interpretation of instantaneous frequency in

Chapter 6.

2.9.3 The Local Vector Transform

(Ito and Yano, 2007) present a method for improved pitch and amplitude tracking of mixtures
of signals in the presence of nonstationarities. They begin by noting the deficiencies of
conventional methods including the need for local stationarity within the analysis window, the
dearth of accurate methods for determination of amplitude, and recurrent dissimilarities
between the reconstructed waveforms and the originals. To improve, they use a formulation in
which phases and amplitudes of component sinusoids are each expressed as 3-term Taylor
series, rather than as arbitrary functions of time. The task then becomes to try to determine the
Taylor coefficients of each parameter. They begin by showing that were indeed the phase and
amplitude of an actual sinusoid to be given by such a 3-term sum, then the spectrum could be
well-approximated by a closed-form function of the 6 Taylor parameters. These in turn could be
determined from the spectrum by successive differentiation of the spectral shape with respect to

angular frequency. For actual signals which are not of the form of a 3-term sum, good results
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can be obtained if the phase and amplitude functions can be approximated by this form within
a time segment close to the point of analysis. If variation is too rapid, then tracking errors will
occur. Additionally, the power of neighboring components must be negligible at the spectral
peak of the component under analysis or else interference errors will occur. This limits the
utility of the algorithm to lower order speech harmonics only, since for higher order harmonics
spectral spread increases to the point at which energy of one harmonic may overlap with

energy of a neighboring harmonic.

This again underscores the repeated difficulty of parameter estimation in the presence of
competing signals which we have seen is so often specified as a caveat in the case of many of

the conventional and newer algorithms, and which our own methods are designed to overcome.

Advantages of the Local Vector Transform methods over conventional methods are the ability
to calculate parameters directly without iterations, and the incorporation of phase information

which provides for more accurate reconstruction.

Results shown by the authors on synthesized speech comparing the LVT method to
autocorrelation methods, cepstral methods and the reassigned spectrogram of the previous
section seem to show that the best frequency determination accuracy is produced by the LVT
method, with the reassigned spectrogram a close second. For amplitude determination, the LVT
was an order of magnitude better than the reassigned spectrogram and conventional spectral
peak picking methods, with the reassigned spectrogram actually faring a bit worse than the

conventional peak picking method.

2.10 Conclusion

There is a wealth of further information on source and speech separation in the literature. We
have reviewed only those aspects which relate most strongly to our work. There are numerous
promising routes that are being explored in many institutions, but a common unifying theme is
that related modulation patterns seem to be universally acknowledged as playing a strong role

in the separation process.

Our own approach to source separation shares some similarities with the general CASA

approach in the fact that it attempts to look for common features among spectral components.
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But, as we will see in the following chapters, in certain aspects it is more mathematically

rigorous in the method in which it handles overlapping or ambiguous cases.
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Chapter 3

Aspects of Comodulation

3.1 Introduction

Having introduced comodulation in Chapters 1 and 2, we now examine the concept in more
detail, and explore the applicability and limits of using it as a basis for auditory source
separation. In the next few sections, we look at spectrograms of various musical instruments to
gauge the extent to which comodulation applies. We will then discuss certain ways in which the
property of comodulation may be traced to the mechanisms of sound generation in those
instruments. We will focus on both amplitude and frequency comodulation. Our source
separation algorithms in Chapter 4 will depend on amplitude comodulation. An abundance of
psychophysical data emphasizes the importance of frequency comodulation in source
separation, as well. We discuss a further condition, which we term phase comodulation, that
leads to an interesting graphical description of signals which have this property, but which we
have found is not an accurate model of most realistic sound sources. We discuss why this may
be the case. After that we contrast two broad approaches in using comodulation for source
separation, which we term a priori and a posteriori comodulation. We then demonstrate that an

assumption of comodulation can reduce certain ambiguities in the characterization of signals.

3.2 Application to Music

In the next chapter we will develop a comodulation-based algorithm for separation of musical
sounds. It is therefore useful to examine some properties of musical instruments and their effect

on the extent of comodulation.
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3.2.1 Timbre

Musical instruments differ from each other in two primary ways. The first is in the relative
weighting of the spectral components, i.e., the various overtones produced by the instrument;
and the second is in the time progression of the sound. Both affect the perception or color of the
note, and this quality is usually termed timbre. It is not an easily defined concept, as it does not
correspond to any one physical property. Different instruments emphasize different harmonics
due either to the particular sound production mechanism of the instrument, or to filtering by
the resonances of the instrument. In addition, a piano will never sound like a violin, even if the
harmonic ratios were the same. Since a piano string is struck suddenly, the sound has a
different time evolution than does the sound of a violin which is excited by means of the more

gradual bowing process, or a horn which is produced by a vibrating column of air.

The time progression of a note is often described in terms of an attack, decay, sustain, and
release (ADSR). The attack is the immediate buildup to a high level of amplitude as soon as the
note begins. It then decays rapidly to a smaller value, and sustains close to that value for some
period of time. Finally, as the note is released, it falls back to zero with some characteristic time
progression. Within the sustained portion of the note, certain instruments are often varied in
amplitude to produce a more pleasing effect. This is known as tremolo. The overall amplitude
behavior can be captured by a time-dependent modulation function which we will describe and

use in Chapter 4.

Figure 3 through Figure 6 taken from (Higgins, 2001) show the ADSR characteristics in

graphical format for the general case, and for a number of specific instruments.

level AD SR

SUSTAIN

fime

Figure 3. The four general time characteristics of a musical note: Attack, Decay, Sustain and Release. From
(Higgins, 2001).
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Figure 4. The envelope shape of a struck string such as in a piano. From (Higgins, 2001).
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Figure 5. The envelope of a plucked string such as in a guitar. From (Higgins, 2001).]
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Figure 6. The envelope of a bowed string, such as in a violin. From (Higgins, 2001).

3.2.2 Sample instruments

We present a series of waveform plots and spectrograms of various instruments from the
McGill University Master Samples collection. This database contains a catalogue of sounds
produced by many different types of instruments with each note played by a world-class
musician on the finest instrument available of that type. For each instrument, we first illustrate
a waveform plot, a conventional spectrogram plot (from the top), and then two 3-D plots of the
spectrograms at angles of elevation of 45 degrees. The first 3-D plot in a set shows the lower

harmonics towards the front. Since these are often the strongest, and have a tendency to obscure
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the weaker, higher harmonics, we then show a reverse plot with the higher harmonics towards
the front. The conventional, top view generally best captures frequency modulation, while the
3-D views are more useful for viewing amplitude modulation. Spectrograms were computed
using a Hann window of 30-45 ms depending on the instrument, with an overlap of 90%.
Sampling rate was 11.025 KHz for the piano, and 22.050 KHz for the remaining instruments.
FFT length was 1024. While these would be considered narrow-band spectrograms in speech
analysis, in music the fundamental can vary over a wider range, and hence the choice of
parameters that will give the best tradeoff in time and frequency resolution may need to be

found with some trial and error.

We begin with the altoflute which strongly exhibits amplitude comodulation.
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3.2.3 Altoflute
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Figure 7. Top left: The waveform of an altoflute playing G3. Note the strong up and down modulation
envelope which can be attributed to tremolo. Top right: Spectrogram of the altoflute. Harmonic traces are
close to horizontal, indicating constant frequency. Strong evidence of amplitude comodulation in
synchronous rise and fall of most harmonics (red color). Bottom left: 3-D mesh plot of spectrogram. Note
rise and fall of most of the harmonic traces in unison. Bottom right: Reverse view with higher harmonics
shown in front.

From the spectrogram plots of the altoflute in Figure 7, it is clear that the envelopes of the
preponderance of the harmonics are strongly correlated with each other and with the envelope

of the original time waveform. The possible exceptions of the first and second harmonics may
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be due to the body of the instrument absorbing energy at its resonant frequencies during
periods of maximal excitation, and re-emitting it at periods of minimal excitation, thus
smoothing the amplitudes of those harmonics. In other words, the body of the instrument acts
as an acoustic filter. Overall, amplitude comodulation well-describes the behavior of this

instrument.
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3.2.4 Violin
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Figure 8. Top left: The time course of a violin playing G6. There are strong amplitude fluctuations in the
envelope which may be related to the vibrato applied by the musician as discussed in the text. Top right:
The spectrogram of this violin note clearly illustrates the effect of vibrato on the harmonics. The
frequencies of all the harmonics vary almost sinusoidally in lock step. Strong frequency comodulation is
apparent. Bottom left: 3-D mesh plot of spectrogram. The harmonics of the violin appear to exhibit some
amplitude modulation related to the vibrato movement in addition to the more obvious frequency
modulation. Bottom right: Reverse plot with higher harmonics shown in front.

The violin, shown in Figure 8, is usually played with a musical effect known as vibrato to give a
richer and more pleasing sound. Vibrato is a rhythmic back and forth vibration of the finger on

the keyboard at about 4-7 Hz depending on the musician’s style. (In this example, we can
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visually estimate the vibrato frequency as about 15 cycles in 2.8 seconds or 5.4 Hz.) This back
and forth movement effectively lengthens and shortens the active part of the string, thus raising
and lowering the frequency of the fundamental and all harmonics. Since, as can be seen from
the spectrogram, the frequencies of all the harmonics move in lock step with the frequency of

the fundamental, it is properly an example of frequency comodulation.

As an aside, we note that the percentage variation of the movement of all frequencies is the
same. The higher frequencies move more than the lower frequencies. For this reason, if one
desires to capture common frequency variation, one might want to select wider filters for the
higher frequencies than for the lower frequencies, using a logarithmic pattern so that the
variation within all filters will be similar. This type of an arrangement corresponds to a
constant-Q filter bank, rather than a constant-frequency structure. It is thought that auditory

filters may resemble this type of design in certain respects.

What is curious is the apparent variation in amplitude, as well, that can be seen in both the time
waveform and in the 3-D mesh plots of Figure 8. The motion of the musician’s finger may have
a rhythmic damping effect, that may affect amplitude, as well as frequency. In addition,
changes in frequency or phase may affect the relative addition and cancellation of spectral

components whose magnitudes contribute to the overall time envelope.
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3.2.5 Trumpet

10000 ==

8000 o=

o IS AL S (S D
» Wy UL MO TNy

Frequency

H [o2]
o o
o o
o o

Frequency (Hz) 00 Time (s) 10000 ~ 4 Time(s)

Figure 9. Top left: The time waveform of a muted trumpet playing C4. The envelope shows a gradual,
steady decrease in amplitude. Top right: The spectrogram shows slight frequency modulation in the
horizontal harmonic traces. The frequency variations of all harmonics are strongly correlated. Bottom left:
The amplitude envelopes of all the harmonics of the trumpet exhibit the same gradual, steady decrease as
does the overall waveform, and are strongly correlated with each other. The first trace corresponds to the
excitation. Bottom right: Reverse view with higher harmonics shown in front.

The trumpet is noteworthy, as it exhibits both strong frequency and amplitude comodulation
across all harmonics. There are some variations and fluctuations in the fine structure of the

various harmonic envelopes which we will discuss further in Section 3.2.7 on the bass clarinet.
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Note that the lowest frequency spectral component appears to be the excitation in the form of
pulses of air from the point of contact between the mouth and the instrument. These produce a
rough envelope shape. The effect of the body of the instrument in many cases is to smooth out
these variations by acting as a filter. The instrument alternately absorbs and releases energy at
those frequencies close to its natural body resonance modes. In many instruments the higher
frequency harmonics appear more jagged than the lower harmonics, presumably because they
are farther from the natural resonance frequencies, and do not benefit from this smoothing

effect.

Bowed instruments similarly appear to have roughness in their excitation due to the movement
of the bow against the strings which we will briefly describe in Section 3.6.5. The body of these
instruments also acts as a filter, and helps to radiate the sound, as well. Here, too, the lower
harmonics are smoother and their envelopes appear to track each other more closely, whereas

the higher harmonics are more jagged and do not move in lock step.
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3.2.6 Piano
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Figure 10. Top left: The time course of a piano playing the note G4. The envelope exhibits the characteristic
attack, decay, and sustain described in the text. Top right: Spectrogram of the piano note. The harmonics do
not exhibit any frequency variation, as there is no way to do so on a piano. The lower frequency noise at
beginning of note is probably due to percussion noise of key strike. Bottom left: Mesh plot of piano
spectrogram. Amplitudes are not correlated, thus comodulation is not an accurate model of the behavior of
piano harmonics for reasons discussed in text. Bottom right: Reverse view with higher harmonics shown in

front.
The piano is not capable of frequency variation, as the strings are fixed. As can be seen in Figure
10, the amplitudes of the harmonics do not appear to be correlated. A possible explanation for

the difference between the piano and some of the other instruments we have examined is that
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the piano is only struck at the beginning of the note. Hence, the entire response may be
characterized as a transient response. Each harmonic may have its own characteristic mode of
resonance which is independent of the others, and hence a different time course. In contrast,
those instruments which are continuously driven such as the wind instruments and the bowed
instruments all share a common excitation. When this excitation becomes stronger or weaker,
the harmonics will tend to follow in a similar manner. Thus, those instruments are better

candidates to fit an amplitude comodulation model.

What is unusual in the behavior of the individual harmonics is that, in general, transient
responses tend to decay with time. An example is the decaying exponential response of an
electric circuit with an RC time constant. In the case of the piano, it appears that some of the
harmonics become stronger at times. This would seem to indicate that much complex coupling
exists between the various resonant modes and possibly with the housing and other
components of the piano, as well. Energy may be transferred from one mode to another, thus
strengthening some harmonics at the expense of others in a back and forth manner. A general
observation appears to be that the higher frequency harmonics have a shorter time constant

than the lower frequency harmonics.

An additional observation is that at time 1.6 seconds, the time waveform appears to approach a
minimum and then increases. Possibly this might be due to relative phase fluctuations among
the various harmonics causing alternating constructive and destructive interference at various

points in time.

Finally we note the existence of double harmonic lines at times 3500, 4000 and 4500 Hz and
above. The explanation seems to be due to the fact that piano strings do not exhibit perfect
harmonic behavior, but rather the exact overtone frequencies are non-integral multiples of the
fundamental. At least one author attributes this to the fact that the wave speed in a string is not
constant, but actually depends slightly on frequency. Because of this, dispersion occurs, and the
overtones are actually a bit sharp, increasing with the number in the series. We cite from

(Scavone, Abel and Berners, 2007) the following paragraph.

The actual relationship between the fundamental and the overtones is given by

o =nf1[l+(n2"1)”
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where f, is the frequency of the n” harmonic and f; is the frequency of the

fundamental. For a solid wire without wrapping (of a second wire around it for

extra mass, as is done on some of the piano keys):

_ wd*Y
~ 128T1?

]

where d is the diameter of the string, Y is Young's modulus (a measure of the

stiffness of the string), T is the tension, and L is the length of the string.

The n? term gives rise to the nonintegral relationship among the frequencies of the overtones.
Because of this, the lowest notes on pianos are usually tuned flat, so that their overtones will be
in tune with the higher fundamentals, and the higher strings are tuned sharper so they will be

in tune with the overtones of the lower strings.

The double lines, therefore, come about because the fundamental or overtones of a given string
may be close enough to the fundamental or overtones of another string which corresponds to
the same note, but located an octave higher or lower. This might set in motion sympathetic
vibration that will excite the second string, as well. However, the higher overtone frequencies of
the first string will not exactly correspond to the higher overtone frequencies of the second
string due to the nonintegral relationship of overtones to fundamental in a piano. The net result
will be lines of higher overtones that do not exactly match, since they originate from different

strings, and correspond to a different harmonic number 7 in each string.
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3.2.7 Bass Clarinet

Frequency

Amplitude

05 1 15 2 25
Time (s)

10,

Amplitude
Amplitude

1
s
o

5000
Frequency (Hz) 00 Time (s)

Figure 11. Top left: Time waveform of bass clarinet playing A#2. Top right: Spectrogram of bass clarinet.
Harmonics do not exhibit any frequency variation. The richness of the sound may be due to the very high
number and density of strong harmonics. Bottom left: 3-D mesh plot of spectrogram of bass clarinet. The
excitation is smoother than for other wind instruments, but the higher harmonics become more and more
jagged with increasing harmonic number. See text. Bottom right: Reverse plot wih higher harmonics shown

in front.
We note that, as can be seen in Figure 11, the excitation of the bass clarinet seems smoother than

we have seen in other wind instruments so far, but the higher harmonics still become quite

jagged. This may be due to the types of interactions we noted in the case of the piano, where
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energy appears to be transferred from one resonant mode to another in a back and forth
manner. The mechanisms by which this may occur are beyond the scope of this thesis.
Alternately, the large, heavy body may smooth low frequency components of the excitation,

while the higher components are unfiltered.
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3.2.8 Oboe
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Figure 12. Top left: Time waveform of an oboe playing C5. The up and down modulation is due to
musician’s tremolo. Top right: Spectrogram of oboe. No frequency variation is observed, but amplitude
variation can be seen in the intensity of traces. Bottom left: 3-D mesh plot of spectrogram of oboe.
Amplitude variation can be observed due to tremolo. Although most harmonics show clear amplitude
variation, the peaks and troughs of the various harmonic envelopes do not coincide with perfect synchrony.
Bottom right: Reverse plot with higher harmonics shown in front.

The tremolo of the oboe in Figure 12 is apparent in both the time waveform and in the mesh

plot of the harmonic envelopes. However, the harmonics do not move exactly in step as they
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did in the case of the altoflute. Various factors and interactions, some of which we have

examined in earlier sections, may prevent perfect synchrony among spectral components.

3.3 Relevance to Speech

3.31 Source-Filter Model

While we might have expected musical instruments to be candidates for displaying high levels
of comodulation, in speech we should be more skeptical from the outset. The main reason is
that speech is thought to follow a time-varying source-filter model. This model divides the
speech production system into an acoustic source entity which models the vibration of the vocal
folds of the glottis, and a filter entity which models the effect of the vocal tract. The vocal tract
consists of the pharynx, and the oral and nasal cavities. These may be thought of as tubes. The
pharynx and oral cavity are considered to be the main pathway, while the nasal cavity is
considered to be a side branch. By modifying the shape (cross-section) of particular locations
along the vocal tract, the resonant frequencies of the chamber are changed. These modifications
are effected by motion of various muscles. Among them are muscles which extend and retract
certain cartilaginous structures in the lower part of the vocal tract. The tongue muscle also does
a major part of the work, elevating and lowering different regions to constrict or enlarge the
effective cross sectional area of the significant portion of the vocal tract that is within its reach.
This extends from way back at the base of the tongue all the way to its tip where it may make
contact with various surfaces of the palate and/or teeth. The jaw and the lips also move in

controlled manners to modify the resonances of the system.

3.3.2 Formants

Because of their importance in speech analysis, there is a specific term associated with the
resonances of the vocal tract. These regions of the frequency spectrum are known as formants.
The first four are thought to be significant for distinguishing the different sounds that comprise
spoken speech. The frequencies of the set of formants change for each sound in accordance with
the configuration of the vocal tract. The width and shape of these resonances have been
characterized by a number of authors (Fant, 1960), (Stevens, 1999). Good agreement with
acoustic theory has been achieved via the use of models of the vocal tract which attempt to

approximate the system as a set of concatenated tubes of differing cross sections. The number,
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length and width of the tubes is chosen for the particular sound and for the particular speaker.

Men have longer vocal tracts than women, and women have longer vocal tracts than children.

3.3.3 Vowels

In the case of vowels, the glottal source emits a series of pulses which are rich in harmonic
content. The fundamental frequency for men ranges from about 80-160 Hz, while for women it
ranges from about 160-320 Hz. Those harmonics which fall within the region of a formant are
emphasized while those which do not fall near formants are attenuated. It is the effect of the
formants that alters the sound so that we recognize the particular vowel being spoken. Note
that the situation here is quite different than music. In music, the distinguishing characteristic
that differentiates one note from another is the fundamental frequency or pitch of the note. The
relative amplitude of the harmonics affects only the timbre, as we discussed previously. In
vowels, it is the relative amplitude of the harmonics that determines which vowel is spoken. In
speech, except in tonal languages like Mandarin Chinese, pitch does not affect the
determination of which phoneme is heard. Rather, pitch is used to convey context and intent,
and to emphasize particular words or phrases. For example, in a question, the pitch rises
towards the end of a sentence, whereas in a statement, it tails off. An exclamation has still a

different form. The study of the use of pitch or intonation in speech is known as prosody.

Pitch also differs from speaker to speaker, and this is one of a number of distinguishing

characteristic of a particular voice.

3.34 Consonants

The speech production system for consonants is different than for vowels. Whereas for vowels
there is a single source in the glottis, for consonants many alternate means of sound production
are employed. Various clicks or noise bursts formed by the sudden opening or closing under
pressure of particular landmarks in the vocal tract generate plosive sounds such as the stop

consonants /p/, /t/, /k/. The forcing of air through or against various surfaces creates

turbulent swooshing sounds such as the fricatives /s/, /[/, /f/.

In addition to the unvoiced consonants, above, there are voiced analogs of the stop consonants,

such as /b/, /d/, /g/; and voiced analogs of the fricatives such as /z/, /3/, /v/. Voiced
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consonants also include the nasals, /m/ and /n/. In these consonants, a hybrid of voicing and

plosive or frication sounds are generated.

While formants play a role in consonants as well as vowels, however, because the analysis of
consonants is very complex, involving noiselike, aperiodic waveforms, we will not focus on
those sounds in this thesis. We will note that amplitude comodulation may be applicable to
aperiodic sources, as well, in the sense that one can control the overall level of a fricative
without perceptibly altering its frequency content. However, one would need to define just
what is being comodulated, as the frequency spectrum becomes continuous, rather than a set of

discrete harmonics.

3.3.5 Continuity in Speech

A point which must be mentioned when analyzing speech is the fact that formants and pitch do
not change abruptly when transitioning between phonemes. Rather, parameters change
gradually and flow from one into the other. This is known as anticipation, in which one begins

to set up the vocal tract for the next sound before the previous one is concluded.

3.3.6 Radiation Resistance

In addition to the source and filter characteristics, there is a final frequency-dependent factor
that is used in vocal-tract models to account for the radiation resistance of the termination (at
the lips). This attenuation is due to the fact that the sound must leave the 1-dimensional vocal
tract and begin to propagate 3-dimensionally in open space, causing a loss of pressure due to

the change in impedance.

3.3.7 Singing

We note a few observations on the acoustics of singing from (Scavone, Abel and Berners, 2007).
Singing combines aspects of speech with aspects of music. On one hand, the vowels must retain
some of the features of spoken vowels such as emphasis of specific harmonics to be
recognizable. On the other hand, pitch now becomes important for conveying melody, and the
pleasantness of the timbre must be maximized. The vowels and voiced consonants dominate, as

music is primarily concerned with periodic vibrations.
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To achieve these somewhat contradictory ends, the following methods seem to be employed.
Singers are sometimes able to tune their formants to match one or more harmonics of the sung
pitch. The first formant usually contributes most to the timbre, due to its lower frequency and
higher amplitude, being closer to the fundamental. Singers sometimes modify the sound of a
vowel to improve musical tone. It has been observed that singers appear to make use of an
additional formant located at about 2500-3000 Hz known as the “singer’s formant” which is
independent of the particular vowel and pitch, and which adds brilliance and carrying power to
the voice. It is attributed to a lowered larynx and widened pharynx, which forms an additional

resonance cavity within the vocal tract.

The louder amplitude levels desired by the singer are produced via increased airflow to the
glottis, and this causes more rapid glottal closures. The consequent sharper contours of the

injected airflow yields higher frequency energy to the voice.

Table 1 summarizes some characteristics of speech, music and singing.

Speech Music Singing

e Speaker e Determines note e Determines note

characteristics. heard. heard.
itch
Pitc e Prosodic effects. e Follows melody o Follows melody

e (Aesthetic) o (Essential) e (Essential)

e Determines vowel e Timbre or quality of | ® Determines vowel
heard. note. heard.

e Governed by vocal- | # Determines e Governed by
tract resonances instrument heard in formants
(formants). combination with

¢ Presence of

Harmonic Weighting | ¢ Some variation ?nh:;ja?[{on additional singing
among speakers. envelope. formant.

¢ (Essental *  (Aesthetic) " Vowels 1o enhance
timbre.

o (Essential)

Table 1. Contrasts between the use of pitch and the relative weighting of harmonics in speech and music.

From the table it is apparent that what is essential in normal speech is aesthetic in instrumental
music, and what is essential in instrumental music is aesthetic in normal speech. A vowel will
completely change if the relative harmonic amplitudes are altered. The words hit, height, hate,

heat, hot, hat, hut would all be indistinguishable from each other. However pitch will not affect
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the word that is heard. In instrumental music, on the other hand, if we change the harmonic
weightings, we may change the perceived instrument or the quality of the sound, but the song
would still be recognizable. Yet, if pitch is altered, then the note becomes completely different,

and the song would no longer be the same.

In the case of singing, a hybrid of normal speech and instrumental music is employed. Pitch is
important for melody which takes the place of the prosody of normal speech. For this reason, it
is difficult to distinguish between a statement and a question in singing (without understanding
the words), as the use of pitch for melody displaces its normal usage for prosody. Vowels are

still determined by formants, but modifications are made to enhance timbre.

3.3.8 Amplitude Comodulation and Speech

From all of the above, it should be apparent that it will be somewhat difficult to fit an
amplitude-comodulation model to actual speech data. In the case of speech that includes
multiple speech sounds or units (phonemes), there cannot be uniform amplitude modulation of
all harmonics in the speech sample, since in order to produce different phonemes, it is necessary
to emphasize and deemphasize the amplitude of different harmonics for each phoneme. The
time-varying vocal-tract filter selectively, not collectively, adjusts the amplitude to the correct
relative value for the desired phoneme. In addition, as we have seen, at the beginning and end
of a phoneme the vocal tract already begins to modify itself in order to segue into the next

phoneme in a seamless manner.

If there is a way to accommodate an amplitude comodulation model in speech, it is more likely
to work within a single phoneme, away from the boundaries of the preceding or following
phoneme. In a steady-state protracted vowel, one might expect that raising or lowering the
volume of one’s voice should affect all harmonics equally. However, even in this region there
are complicating factors, because increasing the driving force, i.e., the subglottal pressure,
causes pitch to rise (Catford, 1988). That will introduce a degree of frequency modulation into
the signal, as well. In addition, the naturalness of the human voice depends on many
phenomena that might be termed irregularities, but which actually give the voice a pleasant
quality that distinguishes it from a mechanical buzz. These include frequency fluctuations
(jitter), amplitude fluctuations (shimmer), aspiration noise, pitch doubling, and many other
effects that may be amplitude-dependent, and cannot be captured by a single modulation
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coefficient. In passing, we note that, carried to the extreme, irregularities are detrimental to the
sound of the voice and are associated with pathological conditions like creakiness, hoarseness,

or roughness, etc.

For the above reasons, amplitude comodulation would be expected to be of more limited use in
speech then it is in music. However, we note that onsets, which are a subset of amplitude
comodulation, can be applicable in speech, as well, as all harmonics across the board are likely
to start and stop together at the onset or offset of voicing. This may occur fairly often within a
sentence, as consonants, especially the stop consonants, punctuate the flow of sound, and
periodically interrupt and restart it. In Chapter 4, we will describe an algorithm which depends

on the presence of onsets and offsets for source separation.

3.3.9 Frequency Comodulation and Speech

While amplitude comodulation may be more difficult to utilize in speech for the reasons
described, frequency comodulation would be expected to be more useful, assuming one could
develop an algorithm to harness it effectively. The reason is that the filtering effect of the vocal
tract is assumed to be linear for all practical purposes. Linear filters cannot generate or alter
frequencies, but can only modify the amplitudes and/or phases of the input signal. Because
frequencies will, for the most part, be unchanged by the vocal-tract filters, common frequency
variation should still be observed after the filtering process. The amplitudes of harmonics may
change relative to each other, but frequency tracks will remain multiples of the fundamental.
The periodic attribute of the glottal source we noted earlier mandates this behavior. In Chapter
5, we will analyze actual speech recordings, and verify that this is indeed the case. We will then

describe work on algorithms which attempt to track frequency variations.

34 Comodulation: A Priori or a Posteriori

In the next chapter, comodulation will be used in an algorithm to dissect a mixture of sources
into its constituents. The individual harmonics of each source will be found by the algorithm as
it attempts to find the best fitting set of source signatures and modulation vectors (to be
defined) that could explain the data. The parameters (amplitude and frequency) of the
harmonics of each source are determined by the algorithm. Source segregation is performed on

the data as a whole. Comodulation serves as a constraint in limiting the universe of possible
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solutions. We refer to this type of scheme as a priori comodulation. We do not provide to the
algorithm in advance the parameters of the waveforms. Rather, the algorithm calculates how
much energy to allocate to each source in those frequency regions where there is overlap
between harmonics of both sources, based on the behavior of other frequency regions. That is
actually the ideal method of applying comodulation to the separation problem. Unfortunately,
it is extremely difficult to design such an algorithm for frequency-varying cases. The immediate
reason is that the curving of the harmonic lines makes the trajectories difficult to capture in
conventional matrix form. But a more basic reason is the difficulty of constraining the now

much larger set of possibilities to a single, unique solution.

In Chapter 5, we will look at alternate approaches for using comodulation for source separation.
We will first use other methods which we will discuss later to independently determine the
parameters of each spectral component in the mixture. We can then group them together on the
basis of common modulation characteristics. We refer to this as a posteriori application of

comodulation.

Although this is not as elegant an approach as is the a priori application of comodulation, it has
an advantage in that it allows one to handle deviations from completely perfect comodulation

which are expected, based on our observations of real world signals.

3.5 Reduction of Ambiguity

We would like to examine a few conceptual difficulties in the definition of modulation. (A. L.-C.

Wang, 1994) in his thesis raises an interesting question. If we define a signal as

(3.1) x(t) = a(t)sin(wt + @)

can we separately define a modulation term, and an instantaneous frequency term? He says that

we cannot, since we can always find some function w(t) which satisfies

x(t)

(3.2) w(t) = arcsin a(h) —¢

In other words, we can’t unambiguously attribute amplitude changes to a modulation or

envelope term, when they could in fact be due to frequency changes. (This argument requires
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some care, as the arcsin function will become complex if the absolute value of its argument

exceeds 1.0.)

We furthermore raise an additional question: We know that beating (constructive and

destructive interference) can produce changes in the amplitude of the resultant.

For example, if we have

s, = sin(w;t + ¢,)

3.3 )
33) s, =sin(w,t +¢,)
using trigonometric identities, the sum can be written as

(wy +wy)t + (¢ +65)

(34) x=s,+85,=2cos (wl—wz)t+(¢1_¢2) : !

2 2

sin

where we have a slowly varying cosine envelope modulating a more rapidly varying sine
carrier. In fact, this has the mathematical form of double-sideband suppressed-carrier (DBSC)
modulation. If we look over a short time region, we might wonder whether we have beating of
two signals, or a single signal which is being modulated by a cosine. We specify a short region,
since over longer regions, the waveform doesn’t look like what we would ordinarily refer to as
a regular amplitude-modulated waveform, i.e., with a full carrier, since in the beating case, the

waveform undergoes certain phase reversals which do not happen in a regular AM waveform.

Let us look at an example consisting of plots of two waveforms shown in Figure 13 and Figure
14, respectively, the first produced by beating, and the second produced by 100% modulation.
In each case, the phases were 0. We seek to understand the differences between the resultant
waveform of a pair of interfering sines at 20 and 22 Hz, and a single sine of frequency 21 Hz
with appropriately applied modulation. From Equation 3.4 with phases 0, the equation of the
first plot is:

x=5,+5, =2c0s (0 —wZ)t]sin’(w1 Z%)t]

Substituting the values in the text we have:
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x = sin[27(20)¢| + sin [2r(22)¢]

(35) = 2cos zﬂ-w zﬂw]

sin[
= 2cos[2n(1)t]sin[27(21)¢]

This is shown in Figure 13.

In Figure 14, we added a carrier, and doubled the modulation rate to match the first figure. (The
need for this doubling is that when we add a carrier, we prevent the modulation term from
going negative. This prevents the phase shifting that occurs with suppressed carrier
modulation, and appears to reduce the number of lobes by one half. As long as we are
consistent, we can double the modulation frequency during the following discussion in each

case without affecting the thrust of our argument.)

It was thus generated by using

x =[1+ cos(w; —w, )t]sin

(w, -; w, )t]

(36) =[1+ cos2m(22 — 20)¢|sin |2

(2z+20)t]
2

=[1+ cos2m(2)t]sin [2m(21)t]
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Figure 13. The sum of 20 and 22 Hz sinusoids. Envelope exhibits beating pattern from constructive and
destructive interference at the 2 Hz difference frequency.
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Figure 14. Cosinusoidal amplitude modulation of 2 Hz applied to 21 Hz sinusoid. Note similarity to beating
pattern of sum in previous figure. Envelopes of both cases exhibit 2 Hz variation.
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A comparison of these two plots indicates that they are quite similar. We maintain that, for
example, looking at the region from 0.45 to 0.55 seconds in both plots that there is really no
obvious way to tell whether there are one or two signals.2 As a matter of fact, Fourier analysis is
based on the principle that all waveforms (satisfying certain fairly common conditions) can
actually be produced by beating many sinusoids of constant amplitude and infinite length
against each other. This includes AM and FM signals. So we are left with a disturbing ambiguity
in our description of signals. It is especially troubling if we are trying to do source separation,

and can’t determine whether we have one or two sources to begin with.

However, the assumption of comodulation may clarify matters. Granted, that by looking at the
first harmonic alone, the situation is indeterminate, however, by looking at additional

harmonics, we will show that the situation becomes clearer.

As an example, let us examine the second harmonic of the previous two cases, the case of

beating and the case of AM modulation.

In the case of beating, we now have

3.7) x = sin[2m(40)t]+ sin[27(44)¢]
In the case of modulation, we now have

(3.8) x =1+ cos2m(2)t]sin[2m(42)t]

Figure 15 and Figure 16 show the situation in each case.

2 (Terhardt, 1974) and others cited in (Hartmann, 1998) actually conducted tests on listeners to determine what
differences in percept, if any, distinguish between beating and modulation. Both are perceived as having an
element of roughness due to the fluctuating envelope. Our work in this section suggests that in the absence of
additional harmonics, it would be difficult to distinguish the two. This author is not aware if similar tests using
multi-harmonic signals have been performed that might measure any advantage in the latter situation.
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Sum of Second Harmonic of 20 and 22 Hz sinusoids
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Figure 15. The sum of the second harmonics of the 20 and 22 Hz signals at 40 and 44 Hz, respectively. Note
that the beat frequency is now at the 4-Hz difference frequency of the second harmonics.

Modulation of Second Harmonic of 21 Hz sinusoid
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Figure 16. 2-Hz amplitude modulation of Figure 14 now applied to the 2nd harmonic of the 21-Hz carrier.
Envelope still exhibits 2-Hz variation. Note difference from Figure 15, where 4-Hz variation was observed.
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It is apparent that the summed waveform of the 2nd harmonics will beat at twice the frequency
as that of the fundamentals, while the modulation envelope of the second harmonic will remain

at the same frequency as the envelope of the fundamental, assuming comodulation.

This is one example of how the redundant structure of speech and music may help in the
interpretation and separation of an audio scene. The use of multiple harmonics might serve to
reduce ambiguity by distinguishing interference due to multiple sources from modulation of a

single source.

In Chapter 5 we will look at another major redundancy in auditory signal processing. That is
the use by the auditory system of multiple overlapping filters, so that each frequency

component appears in multiple channels.

3.6 Phase Comodulation: Scaling

It turns out that if we impose an additional condition on an amplitude- or frequency-modulated
source, an interesting time-domain interpretation arises. This requirement is that the relative

phase among the spectral components remains fixed. We term this phase comodulation.

3.6.1 Amplitude Comodulation: Vertical Scaling

A useful way to think about comodulation is as a scaling, either an expansion or contraction of

the signal. Consider a signal which can be written as the sum of a set of spectral components.
(3.9) x(t) = a,e/

where 4,, w, and ¢, are the amplitudes of the frequency and phase of the nth spectral

component, respectively. If this signal is amplitude-comodulated, then we can write it as
(3.10) X' ()= a)(H)e/tH
where

(3.11) a, (t)=a,m(t)
and m(t) is the shared modulation function of the entire source, i.e., all the components. Note

that we have considered 4, (t) to be a function of time. This is a different perspective than the
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Fourier concept of constant-amplitude sources which add in such a manner so as to produce a

function of time.

Making this substitution we get
(3.12) f.) Zm e](w t+6,)

Since m(t) does not depend on 7, as all bands are modulated by the same factor, then we can

factor out m(t) and write as

(3.13) x'(H)= m(t)z a, e/t o)
We see that
(3.14) x'(t) = m(t)x(t)

This shows us that amplitude comodulation can be viewed as a simple amplitude-scaling of the
original signal. If m(t) is less than 1, then we have a contraction in the vertical direction. If

m(t)is greater than 1, then we have a dilation in the vertical direction.

3.6.2 FM Comodulation: Horizontal Scaling

For the following discussion we use a similar set of spectral components, but with one
important addition. We require all components to be harmonically related. As before, we begin

with
(3.15) x(H) = Z a el nt o)
But now we further specify that

(3.16) w, = nw,

We therefore have
(3.17) x(t)=> a,e/ e

where w, is the fundamental frequency.
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We recall from study of elementary signals and systems that such a signal will be periodic. An
integral number of periods of all harmonics will exactly fit in the time interval of the

fundamental period, and as a result, the entire pattern will repeat in the next cycle.

Let us now assume that the source is frequency-comodulated, with the additional requirement

of phase comodulation. We then have

(3.18) wy = kw,
and
(3:19) =9

We can then write the new signal as

(3.20) ()= a, pl(matt+47)
If we make the substitutions above, we have

(3.21) x(t)="3 a,efntton
This can be rearranged as

(3.22) x'(t) = Z eI okt+é)
But this can be rewritten as

(3.23) x'(t) = x(kt)

which is simply a time-scaling of the original signal. That is equivalent to a horizontal dilation
or contraction. Since we scale each component by the same amount, we maintain the overall

shape of the signal.

We emphasize again that this will only hold if the relative phases remain unchanged from their
original values, i.e., under the condition of phase comodulation. If the physical mechanisms that
vary the frequency or amplitude of the waveform do not preserve phase, then scaling will not

occur.

83



3.6.3 Phase Comodulation: Time-Domain Perspective

The physical picture that results from the above discussion is that to build a perfectly phase-
comodulated signal, one begins with a particular waveshape corresponding to a single cycle of
a periodic?® signal. We refer to that particular shape as a motif, and it is characteristic of the
particular sound source. A series of these motifs is then concatenated to form a chain of similar
shapes. The chain may be stretched and compressed both vertically and horizontally, as
desired. A mixture of sources is formed by adding this chain to another chain which has some
other motif and a different pattern of horizontal and vertical scaling. The object of
comodulation-based source separation is to separate the signals and recognize that the very
complex pattern that emerges in the sum is composed of very simple repeating building blocks
which have merely been stretched or compressed. Figure 17 shows an example of 3 different
types of signals which were all derived from repeating motifs in the preceding manner, but
whose sum in the bottom plot is quite difficult to decipher. The first plot is a sinusoidally FM-
comodulated set of 5 unity-amplitude, zero-phase harmonics. The motif is a period of a 5-
harmonic set. The modulation is rhythmic contraction and dilation in the horizontal direction.
The second plot is a ramped amplitude-comodulated triangle wave. The motif is a single period
of a triangle wave, and the modulation is a vertical stretching. The third is a sinusoidally
amplitude-comodulated square wave. The motif is a single period of a square wave, and the

modulation is a vertical stretching and compression.

The resultant bears very little resemblance to any of the others. Although comodulation is an
important cue for separation of signals, it is still extremely difficult to reverse-engineer the
mixture. The simple, orderly patterns obliterate each other when added together. This is true
even if perfect phase comodulation holds, which as we will see in the following discussion, is
not an accurate model for realistic sources. Correctly partitioning a sum of signals into parts

that preserve particular relationships among components is the central problem in this thesis.

3 Strictly speaking, once we modulate the signal, it won’t necessarily be periodic anymore, but we use the term
loosely.
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Sum of 3 modulated signals of differing motif

|
0 0.5 1 1.5 2 2.5 3
10 T T T T T

()]
-g w | ’U
it —
s O
< -10 ! | I I |

0 0.5 1 1.5 2 2.5 3

Time (s)

Figure 17. Top plot: a set of 5 unity-amplitude, zero-phase harmonic sinusoids frequency-comodulated by a
sinusoid. The carrier fundamental is 10 Hz with frequency deviation of +/- 4 Hz. The modulating frequency
is 1 Hz. 2nd plot: A square wave of frequency 10 Hz amplitude-comodulated by a ramp of amplitude ¢. 3rd
plot: A square wave of frequency 10 Hz amplitude-comodulated by a sinusoid of frequency 1 Hz. Bottom
plot: The sum of the first 3 signals. Very difficult to discern any of the motifs or modulating patterns.

3.6.4 Waveforms: Cycle to Cycle Comparison

We now look closer at the waveforms of some of the instruments we have studied in Section 3.2
to see whether they conform to what we would expect for a perfectly phase-comodulated
instrument. Each pair of plots in the following three figures (Figure 18, Figure 19, and Figure 20)

is taken from the same recording of the sustained note, but from two different regions in time.
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Two segments of Oboe C5 waveform
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Figure 18. Two time segments from same oboe note are shown which illustrate the greater cycle-to-cycle
similarity seen in the shorter term over that seen in the longer term. Perfect scaling is not observed due to
factors discussed in text.

Two segments of Clarinet A#2 waveform
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Figure 19. Two time segments from same clarinet note are shown which again illustrate the greater cycle-to-
cycle similarity seen in the shorter term over that seen in the longer term. Perfect scaling is not observed
due to factors discussed in text.
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Two segments of Violin G6 waveform
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Figure 20. Two time segments of same violin note are shown. In this case even in the short term one does
not see great cycle-to-cycle similarity. Perfect scaling is not observed due to factors discussed in text.

In all 3 cases, the nearby waveshapes are fairly similar, as can be seen by examining two cycles
in close proximity to each other. However, as we move apart in time, the waveshapes become
different, and do not scale, as can be seen by comparing a few cycles from the top plot of a pair
with a few cycles from the bottom plot of a pair. From a visual estimation it is apparent that
perfect phase comodulation is not a completely accurate model for any of these three
instruments. Nevertheless, as we saw earlier, amplitude and/or frequency comodulation

models alone can still be useful for describing the behavior of these instruments.

3.6.5 Why Imperfect Scaling Occurs

A possible reason why perfect scaling is not observed, in the case of constant-frequency
instruments like the oboe and clarinet, is the fact that the resonant modes may not all be excited
in perfect unison. Sound generation in instruments which have a reed is quite complex. There
may also be variations in coupling between the mouth and instrument which affect the
amplitude of some modes more than others. Movement of the instrument may affect this
coupling. This may explain why, within short time segments, the waveshapes seem to scale,

whereas over longer time intervals, the scaling becomes less accurate. As the musician changes
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his position, the coupling will change. In addition, when playing louder, coupling may change,

as well, due to the different configuration of the mouth needed to blow louder sounds.

In the case of the piano, we have seen in Section 3.2.6 that the overtones are nonintegral
multiples of the fundamental, and this violates the assumption of Section 3.6.2, thus we cannot
expect scaling for that reason. The explanation is that because the overtones are nonintegral
multiples, the composite waveform cannot be periodic as we explained before, since an integral
number of overtone periods will not fit within the period of the fundamental. At the next cycle
(of the fundamental) the overtones will therefore not be in the same phase relationship as in the

previous cycle, thus causing a difference in shape from one cycle to the next.

For frequency-varying instruments, if scaling is to hold, in addition to the requirement of
frequency comodulation, the relative amplitudes of the harmonics must remain unchanged, as
well. In the case of the violin, an important consideration which works against perfect
amplitude comodulation is the fact that most of the sound is radiated from the body, and not
from the strings. The sound is coupled from the string to the body through the bridge. Near the
bridge, between the lower and upper surfaces of the hollow body is wedged a sound post that
transfers energy from the upper to the bottom surface. As the body vibrates, the sound escapes
through the “f” holes in the upper surface of the body. However, since the body has its own
particular resonances, it acts like a filter. Because of the characteristic frequency response of the
body, as frequency varies, some harmonics will be boosted more strongly than others. This will
upset the relative amplitude relationships among the harmonics, as some will move closer and
some farther from frequencies of resonance. This will upset the amplitude comodulation

requirement.

Other considerations that affect the relative amplitude of harmonics are the position at which
the bow meets the string. For a plucked string, it is well known that the position at which the
string is plucked will affect the amplitudes of certain harmonics. For example if one plucks a
string in the middle, it will silence the second harmonic. The reason is that the second harmonic
requires a node in the middle of the string. This allows the two halves of the string to vibrate in
the characteristic double loop standing wave pattern. But plucking a string in the center
produces an antinode at that point. Since a node is not present at that location, the second

harmonic will be absent.
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In a violin, the motion of the bow is often analyzed as a pulling and sliding motion. Friction
between the string and the bow pulls the string in the direction of the bow. (Violinists use rosin
to increase this friction.) Once the string reaches a tension that is greater than the frictional
force, it slips backwards, until it is pulled forward again by the moving bow. Therefore, bowing
can be thought of, in a sense, as a plucking excitation. Since the bow is liable to move slightly in
a lateral direction, as no violinist can pull the bow completely perpendicularly to the strings,

this will slightly vary the harmonic content of the note, as well.

A final factor limiting scaling in musical instruments is simple phase incoherence or jitter that

disrupts phase relationships among harmonics.

In speech, among factors which would prevent perfect scaling are possible dissimilarities in
glottal pulses from one to the next, especially under conditions of changing amplitude and
frequency which are normal in the course of conversation and prevent a speaker from sounding
monotonous by giving expression to the voice. Another factor was discussed in Section 3.3.1,
the action of the vocal-tract filter which selectively boosts certain harmonics over others. Time-

varying changes in its configuration differentiate vowels from one another.

3.7 Summary

In summary, while perfect phase comodulation appears to be rare in real sound sources and
hence perfect scaling is not observed, nevertheless, there are still fairly strong relationships
among the amplitudes and frequencies of many of the spectral components of these sources that
can potentially be exploited in source separation. In Chapter 4, we begin work on using

amplitude comodulation as a basis for separation of constant-frequency sources.
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Chapter 4

A Mathematical Analysis of Amplitude
Comodulation

4.1 Introduction

As we have discussed in earlier chapters, amplitude comodulation refers to common amplitude
variation among spectral components that is observed in many types of sound sources. In
Chapter 2 we reviewed a number of psychophysical studies that support the idea that
comodulation may play an important role in perceptual grouping of sound components. In this
chapter, we develop an approach that uses amplitude comodulation as a basis for auditory
source separation. We present a derivation of the equations governing a comodulated system
for the case of constant-frequency sources. We prove a theorem giving necessary and sufficient
conditions for uniquely decomposing a sound mixture into its constituent sources. A
consequence of these conditions is an understanding of the importance of common onsets and
offsets in source separation. Finally we present an algorithm for computing the solution in those

cases where one exists.

4.2 Initial Intuition

As mentioned in Chapter 1, a simple separation scheme based on comparing channel outputs
from a filter bank and grouping those bands with similar envelopes together, will likely lead to
unreliable results due to the fact that bands containing energy from multiple sources may well
have different envelope shapes than either source alone. This will likely cause confusion as to
the true number of sources. Figure 21 illustrates such an occurrence. Looking at the right hand

column (red waveforms), on the basis of shape alone one might conclude that there are three
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sources, a rising, a falling and a stationary source. In truth there is only a rising source and a

falling source, with the middle band representing an overlap or summation of the other two.
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Figure 21. Example of 2 in-phase sources overlapping in middle band of a 3-band system. First source has
components in bands 1 and 2, and is modulated by an upward sloping ramp. Second source has components
in bands 2 and 3, and is modulated by a downward sloping ramp. Resultant waveform for each band is
shown in right hand column. The middle band has a flat envelope, although it does not represent a new
source.

The problem then is three-fold. Given a sound sample, (1) How do we correctly determine the
number of sources? (2) How do we accurately determine the contribution of each source to the
total energy in each band? And (3), if we find a solution, is it unique, or can another set of

sources be found which will yield the same result?

In the following discussion all sources are assumed to be constant in frequency.

4.3 Source Representation

We represent each source i of the set of r sources by a column vector s, =[s;(f,),s,(f,),---5;(f, )]

which we call a spectral signature. The elements s,(f;) of this vector represent the relative

92



amplitudes that would be output from filter j in a filter bank of n filters, were source i to be

present alone. At this point we make no specifications on the nature or number of filters in the
filter bank. The name source signature is appropriate since it reflects the fact that the
distribution of the amplitudes of the various spectral components is unique to that type of
source, i.e.,, each musical instrument will emphasize certain overtones and attenuate others
depending on the acoustic properties of the instrument. These include the type of instrument
such as wind, string or percussion; the method of excitation such as whether produced by
bowing, plucking or striking; and the physical dimensions and material properties of the
instrument. It should be noted that in many cases, a complete mathematical description of all
the complex interactions between the various parts of the instrument and its support structures,
and the resultant effect on the natural modes of the instrument is very difficult to achieve.
Whole books have been written just on the physics of the violin. As we noted earlier, in some
cases the frequencies of the overtones will not be harmonically related. It is this wide variation
that gives each instrument its unique tonal qualities or timbre. We discussed most of these
points in greater detail in Chapter 3. We operate under the assumption that the source signature

remains constant for the duration of the note.

We assume that at every instant of time each source vector is modulated by some multiplicative
factor. Since we have made the previous assumptions that all sources are constant in frequency,
and that all frequency components are amplitude-comodulated, this factor scales the amplitude
of all frequency components produced by that particular source by the same amount. No
individual adjustments of the amplitude of an isolated frequency component are assumed to
occur. In other words, one expects that within the duration of a given note the instrument as a

whole may get louder or softer, but its properties will not change.

For each source i of the set of r sources, we represent the time series of instantaneous
amplitude values by a row vector m, =[m,(t,),m,(t,),...,m;(t,)] which we call the modulation
vector. Each element of the modulation vector m,(t,) represents the amplitude of source i at a

particular instant k of the set of m time points. The product of a source vector by its

modulation vector gives the contribution to the auditory scene due to one particular source.
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The resultant of all sources is represented by a matrix B whose rows are frequency bands and
whose columns are time points. This matrix can be thought of as being similar to a spectrogram.

We have:

4.1) B=sm, +s,m,+...+sm,
We can consolidate all the 7 column vectors s, into a matrix S, and all the r row vectors m,

into a matrix M . We then have compactly B=SM as shown below for a 2 source case.

42) B |=[ss, o ]‘
| m, |
4.4 Determination of Number of Sources

We maintain that for a system of constant-frequency, amplitude-modulated sources with no
noise present, the number of sources is given by the rank of B. The reason is that since each
column of B is composed of a linear combination of the source vectors (columns of S), each
must lie in the space spanned by those vectors. The rank of a matrix gives the dimension of the

column or row space.

4.5 Source Identification

Our goal, then, is given B try to find S and M. One can immediately see that S and M cannot
be uniquely determined to better than a multiplicative factor and a permutation of the columns
of S and rows of M. Le,, if one multiplies S by an arbitrary scalar, and divides M by the same
scalar the result will be the same. Similarly, if one makes a permutation of the columns of S (by
postmultiplying by a permutation matrix P ), and makes a corresponding inverse permutation
on the rows of M (by premultiplication by P™'), the product will be the same. However,
neither of these is significant. To eliminate the multiplicative ambiguity one need only
normalize the columns of S to any suitable factor, and adjust the rows of M by the inverse of
that factor. And on closer examination, the permutation ambiguity is not really bothersome
either, as it is merely an ordering issue, i.e., a question of which should be labeled source 1 and

which source 2. The source and modulation characteristics of each source are still the same as
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they were originally, since even after the permutation operations each column of S is still
multiplied by the same row of M ; they both get reordered in the same manner, as we explain

later.

The major problem is in the fact that if one finds any valid solution S for the set of spectral
signatures, then any linearly-independent combination of the columns of S is also a solution.
Le, let S and M be solutions to the equation B=SM. Let A be any invertible matrix. Form
the matrix §'=SA in which each column is a linear combination of the columns of the original

S . If we now compute M’ = A'M , then we have:

43) S'M'=SAA"'M=SM=B

So the set of solutions must be narrowed if comodulation is to give useful results. We seek a
constraint that sufficiently limits the solution set, but which is physically meaningful. We
propose the following: All elements of matrices S and M must be nonnegative. Since the
columns of S represents the source signatures, it is reasonable that all elements be nonnegative.
Physically that corresponds to the fact that S can be thought of as a measure of the power
spectral density of the sources which is a nonnegative quantity. Similarly, we lose no physically
meaningful information by requiring M to be nonnegative, since it represents the source
strength at each instant which is an unsigned quantity. We are doing nothing more than

discarding the negative solution of a quadratic when it is not physically meaningful.

4.6 Uniqueness Theorem for Non-Negative Matrix Factorization

We now prove the following theorem. If a matrix B is formed as the product of two
nonnegative matrices S and M so that B=SM, there exists no other pair of nonnegative
matrices into which B can be factored, except for those matrices that are simply permutations
and scalings of the rows and columns of S and M, provided the following conditions hold:
Every column of § must contain at least one nonvanishing element for which the elements in
the corresponding position of all other columns vanish. Similarly, each row of M must contain
at least one nonvanishing element for which the elements in the corresponding position of all

other rows vanish.
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We start by proving the case where S has 2 columns and M has 2 rows. We then extend to the

r dimensional case.

4.7 Proof

Let S be a matrix containing 2 columns all of whose elements are nonnegative and let M be a

matrix containing 2 rows all of whose elements are nonnegative. If we can find an invertible

matrix A such that the matrices $'=SA and M'=A"'M both satisfy the nonnegativity

constraint, then the decomposition is nonunique. If no such matrix A can be found, then the
decomposition is unique. Note that one can easily show that any other solution S’ to the
equation B=S'M’' can always be reached from a starting solution S by multiplication by a

square matrix A, so there is no loss of generality in considering S’ to be of the form S'=SA.

To see this we begin with

(4.4) S'M'=SM=B

Multiply both sides by M'" to get

4.5) SM'M'T =SsMM'"

M'M'" is now square and invertible since the rows of M’ are linearly independent by
assumption, if they are to represent distinct sources. We can therefore multiply both sides by
M'M'T)7" to get

(4.6) S’ =SMM""M'M'")"

which is of the form S’ =SA where

4.7) A=MM"(M'MT)"

We now turn to the question of whether the pair S'=SA and M'=A"'M satisfy the

nonnegativity constraint. We proceed by examining the effect of A and A’ on the rows and
columns of S and M, respectively. It is well known in linear algebra that any invertible square

matrix A can be written as a product of elementary matrices

(4.8) A=EE, .. E

n
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where each elementary matrix E; produces a single elementary row operation on the matrix
immediately to its right (E, is assumed to operate on the identity matrix I). The possible

operations are:

1) Swapping of one row with another (permutation).
2) Multiplication of a row by a scalar.
3) Addition of a multiple of one row to another.

We have then:

(4.9) S'=SE,E, ,...E

and

(4.10) M'=E'E,'...E;'M

We note that in most texts the elementary matrices are discussed in terms of row operations
only, and multiply on the left. However they produce the same effect on columns when
multiplying on the right, as can be seen by taking transposes. We examine each operation one at
a time, considering the form of the corresponding elementary matrix and its effect on the
columns of S when multiplied on the right; and in addition, we consider the form of the
inverse of each elementary matrix and its effect on the rows of M when multiplied on the left.
In the case of column permutations, the form of the elementary matrix is simply the
corresponding permutation operation performed on I. The inverse is simply the reverse
permutation (i.e., the one that will give back the original column order). Since both the
elementary matrix and its inverse contain no negative elements, no negative numbers are
generated by either one when right multiplying on S to get S’, or when left multiplying on M
to get M'. Hence a matrix S’ formed as a permutation of the columns of S will yield another
nonnegative solution when multiplied by a matrix M’ formed by the inverse permutation of
the rows of M . However, as noted above, a solution found in this manner is a trivial reordering
of the same sources as in the original solution, since a particular column of S is still multiplied

by the same row of M as before, only they are now row 2 and column 2 instead of row 1 and

97



column 1. This is true due to the fact that every permutation matrix P has the property that its

inverse equals its transpose

(4.11) Pl=p"

So starting with the equations

(4.12) S’ =SP
(4.13) M =P 'M

and taking transposes of the last equation we have

(4.14) M'T=M"(P )" =M"P

and we see that P has the same effect on the rows of M as on the columns of S, i.e., they are
shuffled in the same sequence, and the pairings do not change. We may therefore ignore these
solutions in a discussion of uniqueness, since although they are nonnegative, they contain no

new possibilities for describing the sources.

For the next category of elementary column operation, the case of multiplying a column by a
scalar, the appropriate E matrix is formed by multiplying the corresponding column of I by
that scalar. To form the inverse E matrix, the same column of I is multiplied by the reciprocal
of that scalar. If the scalar is negative we have no threat to uniqueness. The corresponding
column will be negative in both E and E' and the effect on S’ and M’ will be to create
negative values in both, since the original S and M were assumed nonnegative. Hence no new
solutions can be generated that satisfy the nonnegativity constraint. However, in the case of a
positive scalar, both E and E™' will be nonnegative, so the products S’ and M’ will perforce
also be nonnegative, seemingly indicating the existence of additional solutions meeting the
nonnegativity constraint, and dealing a blow to uniqueness. However, closer examination
reveals the following. When an entire column of S is multiplied by a scalar, that is equivalent to
boosting the energy in all bands of that source by that scalar factor. But when M’ is formed by
multiplying by E™' on the left, the corresponding modulation vector for that source (row of M)
will be multiplied by the reciprocal of the same factor. This simply means that one can
alternately describe the same source as having twice the band energies, but half the modulation

strength which yields the same physical output. The ambiguity can be made to disappear by
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simply normalizing the source signatures (columns of S) one at a time to a suitable value such
as by setting each ¢° column norm to one, and making the inverse adjustment (reciprocal of the
normalization factor for that source) to the corresponding modulation vector, which weeds out

these uninformative solutions and thereby preserves uniqueness.

The final possible column operation that needs to be considered is the addition of a multiple of
one column to another. The corresponding E matrix for this operation is, as before, the matrix
which results when this operation is performed on I. If for example, ¢ times column 1 is to be

added to column 2, we would have

1 ¢

4.15 E=

The inverse of this operation is the addition of —¢ times column 1 to column 2. So the form of

E'is

(4.16) E'= ‘

Let us now consider the effect upon S from being multiplied on the right by E to give S’.

Clearly, since E has no negative elements (with no loss of generality we assume that ¢ is
positive), S’ will not have any, either. However, in this case, E' will have a negative element,
—e . We need to study the effect of this negative element on the product M’ =E'M. Writing

the equations for the individual rows m, and m; of M and M’, respectively, we have:

m; =1m, —em,

(4.17)

/
m, =0m, +1m,
If there is no time point where m, vanishes while the corresponding element of m, is
. . . ;. pe
nonvanishing, then one can always find a nonzero ¢ small enough so m; is positive

everywhere, and the solution B=SM is nonunique, since M’ also satisfies the nonnegativity

constraint. However, if m, is zero at some point where m, is nonzero, and vice versa (by

symmetry), then there is no way to make all elements of M’ positive unless ¢ is zero, in which

case E=E™ =1, and there exists only one solution. By duality this holds for the columns of S.
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(Start by assuming that ¢ is negative, and —¢ is positive, and compute S'=SE where, as

before,

1 ¢

(4.18) E=|) ,

and use similar argument.)

4.8 Interpretation

Before continuing with the proof for the multidimensional case, we pause to consider the
implications of the theorem. The impact of the theorem on source separation is as follows: In
order for a set of amplitude-modulated constant-frequency sources to be uniquely separable on
the basis of amplitude comodulation, each source must have at least one point in time at which
it is a soloist, all other sources being silent. In addition, each source must have at least one
frequency point in its spectral signature which it shares with no other sources, meaning that the

frequency is unique to that source, and at no time does any other source emit that frequency.

4.9 Multidimensional Case

The extension to the multidimensional case is straightforward. Every elementary matrix E,
which has a single off diagonal element ¢, in row i and column j will have an inverse E;'
which has a single off diagonal element —¢, in the same position. This will force M’ to contain
a negative element if at some time instant an element of row j of M vanishes while the
corresponding element in row i does not, unless ¢; is zero. If for each pair of rows there is such

a point in which an element of one row of the pair vanishes while the corresponding element in

the other does not, then the only way to prevent the occurrence of any negative elements in M’

is for the off diagonal element ¢; in each matrix E, to be zero. In that case

(4.19) E =E'=1 Vk
SO
(4.20) S'=SA=SE,E,,...E, =S,
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and

(4.21) M =A"'M=EE,'...E,'M=M,

and the solution is unique.

One final caveat which must be considered in the multidimensional case is whether a negative

element in M’ or S’ introduced by one of the earlier elementary matrices in the series

E E, _,...E, could be canceled out by one of the later matrices, such that the end result would be

a pair of matrices 8’ and M’ which are materially different from S and M but yet are still able
to pass the nonnegativity test. In actuality, that could never happen, because under the
conditions of the theorem each source must have a frequency point and a time point at which all
other sources vanish. And since the only effect of this third category of elementary matrices
when multiplying on the right of S is to add a multiple of one column to another, (or a multiple
of one row to another, in the case of the inverses multiplying on the left of M) such a negative
value cannot be removed by addition of a multiple of any other column of S (or row of M, in

the latter case) since all of them will have a zero in the corresponding position.

410  Simple Proof for Square Case

In order to make the theorem a bit more plausible, we offer a very simple proof of uniqueness
for the case of the nonnegative decomposition of a square matrix, which is a special case of the
general theorem which holds for any size matrices. Consider an arbitrary nxn source matrix

S, and a modulation matrix M equal to the identity matrix I of the same size.

(4.22) M=I

Then for this case,

(4.23) B=SM=SI=S§.

We now want to decompose B into S and M and want to know if the solution is unique. We

have clearly at least 2 choices.

(4.24) B=SI,

or
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(4.25) B=1IS.
These two solutions are different. In the first, the source is S while the modulation is I, while

in the second the source is I while the modulation is S. The only way in which the two

solutions can be the same, is if

(4.26) S=1I

(up to a scaling and permutation which we ignore because of their triviality, as explained
earlier). This means that to guarantee uniqueness, the form of S must be similar to the form of
I meaning that it contains only one nonzero element in every row and every column. This
would then match the conditions of the theorem as stated above, that for uniqueness each
column of S must have at least one location at which it is nonzero and at which all remaining
columns are zero at the corresponding location; and that each row of M must similarly have at
least one location at which it is nonzero and at which all remaining rows are zero at the

corresponding location.

411  Examples

In order to more clearly illustrate the implications of the theorem, we first provide an example
of a source/ modulation matrix pair which does not meet the criteria of the theorem, and whose
product, therefore, has multiple sets of nonnegative factors. We then provide an example of a
source/ modulation pair which does meet the criteria of the theorem whose product has no

other sets of nonnegative factors.

4111  Example 1: Non-Unique Non-Negative Decomposition

Start with the source vectors s, and s,.

(4.27) s, =|1

(4.28) s, =0

Form S from the column vectors s, and s,.
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0
(4.29) S=[1 0
1

O = =

Let the modulation vectors m; and m, be as follows:

(4.30) m=1111111111 1
(4.31) m=[198.763J5.4232.10

Form M from the row vectors m, and m, .

11111111111

(4.32) 11987 65 432.10

Compute B=5SM giving

(4.33) B

g = R
T G Y
W k=
N ==
- e
)

1
1
.6

I
- =
Ul =

1
1
9

o B

However, the product of the pair S’ and M’ where

11
(4.34) S'=[1 1

01
and

0123 45 6.7 8391

! __
(4.35) M=l 9876054232410

gives the same matrix B.

The reason for the nonuniqueness is because in the first source/ modulation pair, the second
row of M has no time point at which it is nonvanishing while the first row is vanishing. In
other words, at no time is source 2 a soloist, because source 1 is constantly playing. In the
second pair, although each of the sources in M’ is now a soloist at one instant, however, there
is no band in S’ where source 1 has a frequency component and source 2 doesn’t, since source 2

has a component in every band.
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As an aside, note that as explained earlier, the second set of sources, S’, was formed from the

first set by the following simple linear combination:

s, =1s, +0s,

4.36
(4:36) s, =1s, +1s,

4.11.2  Example 2: Unique Non-Negative Decomposition

We now show a source/modulation pair which does meet the requirements of the theorem, and

has no other nonnegative factorization.

(4.37) S

M
S = =
_ O

and

01 .2 3 45 6.7 891

(4.38) M=l 98765432010

As before compute B=SM giving

0 1 3 45 6.7 8 091
(4.39) B=11 11111111
1 9. 6 5 4 3 210

In this example, both source 1 and source 2 have frequency bands not shared by their

counterpart, and both also have a point in time at which they are soloists.

4.12  Solution by Inspection

4121 Method

While we have thus far proved the existence and uniqueness of a solution if the proper
constraints are met, we have not discussed how to find this solution. It turns out that if the

conditions which we have set forth are met, then factorization can be performed by inspection!

Let us look at a previous example.

104



012 3 456738391
(4.40) B=1 1111111111
19 87 65 43 210

The theorem states for the nonnegative factorization to be unique, each source must be a soloist
for at least one time instant and have at least one frequency component which is not shared by

any other source.

The effect of these conditions on the product will be that embedded somewhere in the product
matrix will be the elements of a matrix with form similar to the identity matrix I, of size
corresponding to the number of columns in S and number of rows in M. Those rows which contain
elements of 1 are proportional to the modulation vectors. Those columns which contain elements of 1 are

proportional to the source signature vectors.

In the matrix above, the top left corner contains a zero of I, therefore, the top row is
proportional to one of the modulation vectors. In fact, it is the rising ramp m,; we used in the
example. The bottom right corner contains another zero of I, therefore, the bottom row is

proportional to another of the modulation vectors. It is the falling ramp m, we used in the

example.
(4.41) m=012234356.7 891
(4.42) m=19 87 65 4.3 2.1 0

Since a zero of Iappears in the left column of the matrix, therefore the left column is
proportional to one of the source vectors. It is s, , one of the source vectors we used earlier. And
since a zero of Iappears in the right column of the matrix, therefore the right column is

proportional to another of the source vectors. It is s,, the other source vector we used earlier.

(4.43) s, =|1
1
(4.44) s; =1
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4.12.2 Formal Proof

The proof of this is easiest to see by using block matrix multiplication. If one partitions a matrix
into separate rectangular blocks, they can be multiplied in the same manner as individual
elements are multiplied in regular matrix multiplication. (In general, there are some conditions
on the shapes of the blocks, but for our purposes, one can easily verify that the method works

the way we will use it.)

To begin we note that the soloist conditions on the modulation vectors can be stated as a
requirement that there be an identity matrix appended or embedded into the rest of the

modulation vector. L.e., we can write the matrix M as

(4.45) M=[I M;]

where I is the appropriate rxr sized identity matrix and M; a block containing all the

remaining columns of M. The reason for this is that having a single source on and all other
sources off for one instant of time means that in the column of M representing that time instant
there may be only one nonzero element, corresponding to the single source which is on. This is
equivalent to one of the columns of an identity matrix. Since each source must have one such
instant, there must be present all the columns of an identity matrix. Note that although the off-
diagonal elements must be 0, the diagonal elements do not necessarily have to be 1. However,
this will not affect anything, other than multiplying the entire row in question by a constant in
the final result. Also note that although the columns of the identity matrix need not be next to
each other in the usual order, this will also not affect anything, since transposing the columns to
form a standard shaped identity matrix will only transpose those same columns in the final

result. They can then be transposed back to where they were originally.
Similarly we can write the unique frequency conditions on the source signatures as

I

(4.46) S=|g.

for exactly the same reasons. In this case since each source must have a unique frequency
shared by no other, there will be a row corresponding to the unique frequency of that source

which contains a nonzero element in the column containing the spectral signature of that
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source, and with zeros at all other positions. That row is equivalent to a row of I. Since all

sources must have such a frequency, there must be present all the rows of I.

We then have
I
(4.47) B=SM=|_ (I M|
SR
Multiplying these two matrices, we obtain
448 M
(448) ISz S:M;

But the first r rows of this block matrix are nothing other than the set of modulation vectors.

The first r columns are none other than the source signatures. So the proof is complete.

412.3 Implications

An intuitive understanding why this should be true can be gained from thinking about the
conditions for the theorem. If we have a frequency which is unique to a source, then we can
simply read off the modulation vector by looking at the row in the matrix B which corresponds
to that frequency. It will not contain a contribution from any other source, so it will be
proportional to the modulation vector of that source, only. Similarly, at a time in which a source
is a soloist, no other source makes a contribution. We can therefore read off the relative spectral
weights of that source by looking at the column of B which occurs at that point in time. It must

be proportional to the source signature.

4.13  Alternating Iterative NNMF Algorithm

We introduce an additional method for performing non-negative matrix factorization on
matrices which meet the constraints we have outlined. While the solution by inspection gives
the most insight into the nature of the problem and the interaction of the various matrices, the
following algorithm is useful for cases in which noise or other non-idealities are present. This is
because it finds the best-fitting factorization given the circumstances at hand. The solution by
inspection might not be as useful if the rows are not exact multiples of the same modulation
vector, or the columns are not perfect multiples of the identical source signatures. In those cases,

the basis vectors might not be immediately recognizable. In Chapter 3 we discussed that this
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might indeed be the case for real instruments and real voices. We noted that harmonics do not

always move in lock step for reasons we discussed.

We present without formal proof the following alternating iterative algorithm which

decomposes a matrix into two nonnegative factors provided the uniqueness conditions of the

theorem are met. If the conditions are not met and multiple solutions exist, it may or may not

converge to some valid solution, but the results are unpredictable.

The algorithm requires the user to specify the rank of the matrix to be decomposed. This is used

to set the sizes of the factors, since an nxm matrix can be factored into two matrices of arbitrary

sizes nxq and gxm where g can be any integer.

The steps are as follows:

1)
2)

3)

4)

5)

6)

8)

9)

Start with matrix B of size nxm. Specify rank of B as r.
Size S as nxr,and M as rxm.

Initialize S with positive uniformly distributed [0,1] random values. (Matlab®:

rand).

Check rank of S. If less than r, add random values (as before) onto S. (This

prevents errors from singular matrices.)

Compute least squares solution for M to SM=B. (Matlab®: M=S\ B where “\’ is
the Matlab® mldivide operator).

Set any negative values in M to 0.

Check rank of M. If less than r, add random values (as before) onto M. (This

prevents errors from singular matrices.)

Compute least squares solution for S to SM=B. (Matlab®: S=B/M where ‘/’ is the
Matlab® mrdivide operator).

Set any negative valuesin S to 0.
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10)  Compute £* norm of each column of S and divide each column by its respective

normalization factor so each column is separately normalized to 1.

11)  Multiply the corresponding rows of M by the same set of normalization factors
used for columns of S so that each product of column i of S multiplied by row i of

M is unchanged.

12)  Iterate from Step 4 until there are no more negative valuesin S or M.

4.14  Results: Amplitude-Modulated Harmonic Sets

4.14.1  Description of Signals

Figure 22 shows results for a synthesized mixture of 2 sets of 5-harmonic sequences. The first
had a fundamental of 200 Hz, and the second a fundamental of 400 Hz. Sampling rate was 10
KHz.

The frequencies of each set were as follows*:

Set 1 Set 2
Fundamental 200 400
2nd Harmonic 400 800
3" Harmonic 600! 1200
4™ Harmonic 800 1600
[5" Harmonic 1000 2000

Table 2. Frequencies of components in each of two 5-harmonic sets.

Each harmonic in both sets had unity amplitude and zero phase.

In keeping with the conditions of the theorem that each source needs to be a soloist for at least
one point in time, the first set is started earlier than the second set, and the second set ends after
the first set. In addition, each set has some frequency components which are unique to that set,
and not found in the other set. Both sets contain the frequencies 400 Hz and 800 Hz.
Spectrograms of the two original sets are shown in the two plots in the left-hand column of the
figure. Proceeding to the plot in the second column from left, we show a spectrogram of the

sum of the two harmonic sets.

4 Note: Frequencies of fundamentals and harmonics were adjusted slightly to fall in center of FFT bins
(discussed in Section 6.3), which for a 10 KHz sampling rate and length 256 FFT, are at multiples of 39.0625 Hz.
Hence, true frequencies of fundamentals fall at 195.3125 Hz and 390.6250 Hz, respectively. This has no impact
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4.14.2 Explanation of Results
The two plots in the third column from the left of Figure 22 show the result of the algorithm’s

attempt to factor the spectrogram of the sum into two modulation vectors and two source
signatures. Note the sharp drop in level of the first modulation vector at 0.667 seconds which
corresponds to the turn-off step of the first harmonic set. Similarly, the second modulation
vector exhibits a sharp rise in level at 0.333 seconds which corresponds to the turn-on step of the
second harmonic set. Note that the peaks in the plots of the two recovered spectral signatures

correspond with high accuracy to the frequencies of the sources.

The final column shows the reconstruction of the sources from the pair of recovered spectral
signatures and modulation vectors. The first spectral signature is multiplied by the first
modulation vector to obtain the first recovered source spectrogram, and the second spectral
signature is multiplied by the second modulation vector to obtain the second recovered source

spectrogram.

4.14.3 Evaluation of Performance and Sources of Error

For this simple case, the results are in excellent agreement with the original spectrograms.
Reconstructed spectrograms are virtually indistinguishable from the original plots. The
modulation vectors show slight deviations from true step shapes, but this appears to have

negligible effect.

Note that we have not created an actual audio recording from the output spectral signature and
modulation vectors. Since the algorithm depends on nonnegativity, we must use the absolute or
squared value (magnitude only) of the FFT coefficients. Because we discard phase, we cannot
obtain a true output signal with this method. It is, of course, possible to synthesize signals at the
frequency of the peaks in the spectral signatures, and to use the modulation vectors to modulate
those signals, thus giving an artificial reconstruction of the sources. More exact methods for
reproducing a signal from a spectrogram or other auditory representations have been examined

by (Slaney, Naar and Lyon, 1994), and (Yang, Wang and Shamma, 1992).

on discussion.
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Figure 22. (Previous page). First Column, Top: Original Spectrogram of 200 Hz 5-harmonic series. First
Column, Bottom: Original Spectrogram of 400 Hz 5-harmonic series. Second Column: Spectrogram of
mixture of both series. Third Column, Top: Recovered spectral signatures of each series. Third column,
bottom: Recovered modulation vectors of each series. Fourth Column, Top: Separated and reconstructed
spectrogram of first 5-harmonic series produced by taking outer product of recovered blue spectral
signature in top plot of third column with recovered blue modulation vector in bottom plot of third column.
Fourth Column, Bottom: Separated and reconstructed spectrogram of second 5-harmonic series produced by
taking outer product of recovered green spectral signature in top plot of third column with recovered green
modulation vector in bottom plot of third column.

4.15 Results: Mixture of Clarinet and Oboe

4.15.1  Description of Signals

We next looked at a more realistic auditory scene produced by recordings of actual musical
instruments from the McGill University Master Samples (MUMS) collection. We selected the
recording of the bass clarinet playing A#2 and the oboe playing C5, the two of which we have
discussed in Chapter 3. Both of these instruments do not exhibit frequency variation within a

note, and meet the criteria of our theorem.

The sampling rates were 22,050 Hz for each. The onset of the oboe was delayed slightly with

respect to that of the clarinet to meet the conditions of the theorem, as before.

The results are shown in Figure 23. Note that the clarinet, being a very low-pitched instrument,
has a low fundamental, and very tightly spaced harmonics. The oboe has a higher fundamental,

and thus more loosely spaced harmonics.

4.15.2  Explanation of Figures and Results

As before, the first column in the figure shows the original spectrograms of the two
instruments. The second column shows the spectrogram of the sum. The next column shows the
recovered spectral signatures and the modulation vectors for each instrument. The last column

shows the product of the modulation vectors and the spectral signatures.

The format of the plots for this and succeeding cases are presented in exactly the same format as

in the previous case, and need not be re-explained.

4.15.3 Evaluation of Performance and Sources of Error

We note visually that separation is fairly good. One of the reconstructed sources has mainly

closely spaced harmonics, corresponding to the clarinet, while the other has more widely
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spaced harmonics, corresponding to the oboe. However, there is slightly more residual energy
at the off times than in the previous trial. In addition, there is more residual energy from the
competing instrument. We can attribute some of this to noise. However, in actuality, there is
another reason, as well. We have assumed that instruments are in fact perfectly comodulated,
i.e., that the amplitudes of all harmonics move in lock step. However, as we discussed in the
Chapter 3, that is not exactly the case. Harmonics of a given instrument do not always start and
stop at exactly the same times, and are not perfectly correlated.. This may also account for some
of the error, as it then makes it impossible to find a single modulation vector that fits all the

bands, and instead the algorithm will be forced to average or find the best fit.

4154 Tremolo

We note that the modulation vectors computed by the algorithm demonstrate fairly prominent
amplitude fluctuations. These correspond well to the sound actually heard in the recording. As
we discussed in Chapter 3, this musical technique is known as tremolo, in which a musician
varies the amplitude of the instrument rhythmically to give a pleasing effect. It is especially
pronounced in the oboe. This gives further confidence in the ability of the algorithm to capture

realistic acoustic parameters.
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Figure 23. (Previous page). First Column, Top: Original Spectrogram of clarinet playing A#2. First Column,
Bottom: Original Spectrogram of oboe playing C5. Second Column: Spectrogram of mixture of both
instruments. Third Column, Top: Recovered spectral signatures of each instrument. Third column, bottom:
Recovered modulation vectors of each instrument. Fourth Column, Top: Separated and reconstructed
spectrogram of first instrument produced by taking outer product of recovered green spectral signature in
top plot of third column with recovered green modulation vector in bottom plot of third column. Result
bears similarity to clarinet in top plot of first column in terms of timing and harmonic spacing. Fourth
Column, Bottom: Separated and reconstructed spectrogram of second instrument produced by taking outer
product of recovered blue spectral signature in top plot of third column with recovered blue modulation
vector in bottom plot of third column. Result bears similarity to oboe in bottom plot of first column in
terms of timing and harmonic spacing,.

4.16 Results: Mixture of Violin and Oboe

416.1 Description of Signals

We next discuss the performance of the algorithm in the case of a frequency-modulated
instrument. We use the recording of the violin playing G6 which we have analyzed in Chapter
3. As before, the recording was obtained from the McGill University Master Samples database.
The note contains prominent vibrato. We mixed that with the recording of the oboe that was

used in the previous trial.

The sampling rates were 22,050 Hz for each. As previously, the onset of the oboe was delayed
slightly with respect to that of the violin to meet the soloist conditions of the theorem. However,
the constant-frequency requirement of the theorem is deliberately not satisfied by our choice of

the violin due to the vibrato, as we will discuss.

4.16.2 Evaluation of Performance and Sources of Error

As can be seen in Figure 24, the results are extremely poor, as predicted. Looking at the
rightmost column, one does not see any evidence that separation has occurred. Both plots look

essentially the same, as far as the amplitude and frequency of the harmonics is concerned.

The reason for this is that the frequency variation prevents the use of a constant source-
signature term to describe the relative amplitude of the spectral components. In any one band,
the amplitude will rise and fall with time as a given harmonic enters or leaves the passband of
that filter. The previous representation of fixed ratios between the amplitudes of each band no
longer applies. As a result, the modulation vectors cannot multiply any one source component
for the duration of the note. Instead they see various bands getting louder and softer and

turning on and off in a seemingly unrelated manner. As the harmonic leaves one band, it enters
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another band, and so one band is falling in amplitude at the same time another is rising in
amplitude. The amplitude variation of one band does not correlate with the amplitude variation
of other bands.5 Because of this, the modulation vectors degenerate into useless rapid variations
which merely look like noise as can be seen in the lower plot in the 34 column from the left.
When multiplying by the source vectors which themselves are imprecise because of movement

in frequency, the result is the unstructured and incorrect reconstruction in the right hand plots.

5 It may actually be negatively correlated with the adjacent band, and possibly this can be exploited in some
manner, although not with the current formulation.
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Figure 24. (Previous page). First Column, Top: Original spectrogram of violin playing G6. First Column,
Bottom: Original spectrogram of oboe playing C5. Second Column: Spectrogram of mixture of both
instruments. Third Column, Top: Recovered spectral signatures of each instrument. Third column, bottom:
Recovered modulation vectors of each instrument. Fourth Column, Top: Separated and reconstructed
spectrogram of first instrument produced by taking outer product of recovered green spectral signature in
top plot of third column with recovered green modulation vector in bottom plot of third column. Result
bears some similarity to oboe in bottom plot of first column in terms of delayed onset time, but little
separation is noted in spectrum, as discussed in text. Fourth Column, Bottom: Separated and reconstructed
spectrogram of second instrument produced by taking outer product of recovered blue spectral signature in
top plot of third column with recovered blue modulation vector in bottom plot of third column. Result
bears some similarity to the violin in top plot of first column in terms of early onset time, but little
separation is noted in spectrum, as discussed in text.

4.17 Results: Out of Phase Harmonic Sets

417.1  Description of Signals

To illustrate further the potential problems caused by an algorithm which ignores phase, we
show what happens when we repeat the algorithm on the harmonic sets of Section 4.14, as
before, but with one major change. We reverse the phase of all of the members of the first set of

5 harmonics.

4.17.2  Evaluation of Performance and Sources of Error

As can be seen from the plot of the summed signals in the second column from left, in those
regions where there is overlap of harmonics of the two sets, there is complete cancellation of the
signal. In effect, those harmonics have been turned off for that amount of time. The algorithm
must then fit this unusual pattern in which some harmonics start at time t=0, and end at

t=2/3 seconds, some start at t =1/3 and continue until =1 second, and still others start at
t=0, continue until t=1/3 seconds, and then restart at t=2/3 and continue until t=1

second. But we have requested of the algorithm to look for only two sets of modulation vectors
and two sets of source signatures. The result will have to be some compromise. As can be seen
in the plots in the 314 column from left, the modulation vectors that were computed have
nonuniform heights rather than the simple on or off step function shapes that they are supposed
to have. This is because there is less energy at the points of overlap as compared to the ends.
Similarly, the source signature vectors are of unequal heights. This too, is because the
overlapping bands seem to have less energy overall than the other bands, since they appear to

be off during the central portion of the signal duration.
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The algorithm can only find the best fit, and is forced to give compromised results given the

constraint of only two source signature and modulation vectors.
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Figure 25. (Previous page). First Column, Top: Original Spectrogram of 200 Hz 5-harmonic series, now with
phase of pi for each harmonic. First Column, Bottom: Original Spectrogram of 400 Hz 5-harmonic series
with phase of 0 for each harmonic . Second Column: Spectrogram of mixture of both series. Note
cancellation in regions of overlap. Third Column, Top: Recovered spectral signatures of each series are not
of 5 equal amplitudes due to cancellation in regions of overlapping harmonics. Third column, bottom:
Recovered modulation vectors of each series do not show simple on/off step behavior due to regions of
cancellation in time. Fourth Column, Top: Separated and reconstructed spectrogram of first 5-harmonic
series produced by taking outer product of recovered blue spectral signature in top plot of third column
with recovered blue modulation vector in bottom plot of third column. Fourth Column, Bottom: Separated
and reconstructed spectrogram of second 5-harmonic series produced by taking outer product of recovered
green spectral signature in top plot of third column with recovered green modulation vector in bottom plot
of third column. Results show unequal amplitudes among harmonics of both series, and show tri-level
behavior, rather than correct bi-level on/off behavior.

We further discuss the issue of phase and present an additional example in Section 4.19.

4.18 Relation to Auditory Scene Analysis

4.18.1 Onsets

A point underscored by the theorem is the importance of onsets in the separation process. As
we have had occasion to mention previously, many current auditory scene analysis algorithms
employ onset detectors in one way or another based on psychophysical evidence seeming to
indicate that they are important factors. In Chapter 1, we mentioned studies of mistimed
harmonics on number of sources perceived, as such an example. Perhaps we are now in a
position to understand mathematically why this might be so. An onset in a particular band
represents a point where there is a change from zero to nonzero in the modulation of that band.

This serves as the most unambiguous marker for a separable source.

4.18.2 Comodulation Masking Release

From the requirements of the theorem, we also see the importance of a well demarcated spectral
signature in the separation process. This may explain results found by (Grose and Hall III, 1996)
who studied comodulation release from masking (CMR). The concept of comodulation masking
release is that if a tone is buried under a region of noise whose frequency range overlaps the
frequency of the tone, subjects will have trouble hearing the tone. However, if similarly
modulated noise is added whose frequency range is outside the region of the tone (flanking
bands of noise), the subject is better able to detect the tone. The explanation is most likely that
the subject groups the similarly modulated noise regions together, and is therefore able to

differentiate the unmodulated tone from the blanketing comodulated noise. In this particular
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study, involving detection of a multicomponent signal presented against a background of
multiple modulation patterns, the authors found that subjects did better when the independent
modulation patterns were restricted to relatively discrete frequency regions. They concluded
that the release from masking is more effective when the noise regions are narrow in
bandwidth, as compared to when the noise regions are very wide in bandwidth. According to
our theorem, having a frequency component in which a source is a soloist is a requirement for
separation based on comodulation. If the noise regions are too wide, then there may not be such

a frequency or range of frequencies.

4.18.3 Future Refinements

The application of these theoretical results to actual auditory scene analysis will require
refinement before they can be implemented in a practical system. In the real world, sources
change in frequency as well as amplitude, as for example in the case of speech. In addition, the
issue of how to partition the frequency axis arises, since according to the theorem, the finer we
partition the axis, the greater the chance of achieving uniqueness, as we require each source to
have at least one frequency which is not overlapped by other sources. On the other hand, if the
partition is made too fine, than we sacrifice time resolution necessary for tr<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>