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Abstract

Annual influenza outbreaks incur great expenses in both human and monetary terms, and
billions of dollars are being allocated for influenza pandemic preparedness in an attempt
to avert even greater potential losses. Vaccination is a primary weapon for fighting in-
fluenza outbreaks. The influenza vaccine supply chain has characteristics that resemble the
Newsvendor problem, but possesses several characteristics that distinguish it from many
other supply chains. Differences include a nonlinear value of sales (caused by the nonlinear
health benefits of vaccination that are due to infection dynamics) and vaccine production
yield issues. In this thesis we present two models in the interface of operations and supply
chain management and public health policy.

In the first model, we focus on a supply chain with a government and a manufacturer.
We show that production risks, taken currently by the vaccine manufacturer, lead to an
insufficient supply of vaccine. Several supply contracts that coordinate buyer (governmental
public health service) and supplier (vaccine manufacturer) incentives in many other industrial
supply chains can not fully coordinate the influenza vaccine supply chain. We design a variant
of the cost sharing contract and show that it provides incentives to both parties so that the
supply chain achieves global optimization and hence improves the supply of vaccines.

In the second mode, we consider the influenza vaccine supply chain with multiple coun-
tries. Each government purchases and administers vaccines in order to achieve an efficient
cost-benefit tradeoff. Typically different countries have different economics sensitivities to
public outcomes of infection and vaccination. It turns out that the initiating country, while
having a significant role in the spread of the disease, does not receive enough vaccine stock-
piles. Our model indicates that lack of coordination results in vaccine shortfalls in the most
needed countries and vaccine excess in the regions where are not as effective, if the govern-
ments in the model act rationally. We show the role of contracts to modify monetary flows
that purchase vaccination programs, and therefore modify infectious disease flows.

Thesis Supervisor: David Simchi-Levi
Title: Professor
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Chapter 1

Introd uction

1.1 Influenza: Overview, Control and Operational Chal-

lenges

Influenza is an acute respiratory illness that spreads rapidly in seasonal epidemics. Annually

influenza outbreaks result in 250,000 to 500,000 deaths around the globe. The World Health

Organization (WHO, 2005) reports that the costs of health care, lost days of work and edu-

cation, and social disruption are between $1 million and $6 million per 100,000 inhabitants

yearly in industrialized countries. A moderate, new influenza pandemic could increase those

losses by an order of magnitude. The World Bank (Brahmbhatt, 2005) reports that the

present value of the economic losses associated a global pandemic can be up to $200 billion

for the US and $550 billion dollars for all high income counties (in 2004 dollars). This es-

timate excludes the outcomes for developing countries where health systems are much less

developed and mortality could be much higher.

This thesis provides background about influenza and vaccination, a key tool for con-

trolling influenza outbreaks, then highlights some operational challenges for delivering those

vaccines. Specifically we look at two different challenges which happen throughout this value

chain.

One challenge is the design of contracts to coordinate the incentives of actors in a supply

chain that crosses the boundary between the public sector (health care service systems) and



private sector (vaccine manufacturers).

Some experts suggest the U.S. government should promise to purchase a fixed

amount of flu vaccine-despite the cost and the likelihood that some of the money

would end up being wasted. Canada, for instance, has contracts with vaccine

makers to cover most of its population. ... That takes much of the risk out of the

company's business, but still lets it manufacture additional doses for the private

market... (Wysocki and Lueck, 2006)

I recently met with leaders of the vaccine industry. They assured me that they

will work with the federal government to expand the vaccine industry, so that our

country is better prepared for any pandemic. ... I'm requesting a total of $7.1

billion in emergency funding from the United States Congress... (Bush, 2005)

We then present a model of a government's decision of purchase quantities of vaccines, which

balances the public health benefits of vaccination and the cost of procuring and administering

those vaccines, and a manufacturer's choice of production volume. We characterize the

optimal decisions of each in both selfish and system-oriented play, then assess whether several

contracts can align their incentives. Due to special features of the influenza value chain,

wholesale price and pay back contracts are shown to be unable to fully coordinate decisions.

We conclude by demonstrating a variation of a cost sharing contract that can coordinate

incentives, improve public health cost-benefit outcomes, increase manufacturer revenues,

and increase vaccine production volumes. The Appendices in an Online Companion provide

mathematical proofs for the analytical results that are given below.

Another challenge is the design of contracts to coordinate the incentives of multiple gov-

ernments in the influenza vaccine value chain. One of the main reasons for such misaligned

incentives is that different countries have different economic sensitivities to influenza in-

fection which result in different objectives and hence in different decisions made by their

governments. For instance, most of the vaccine stockpiles are allocated to wealthier and

developed countries, such as the US or western European countries, due to high economic

costs of infection. On the other hand, the influenza epidemic typically starts from regions



in Southeast Asia which have a significant impact on the spread of the disease. However,

countries in this region are typically developing nations which are less able to afford vaccine

stockpiles to prevent an outbreak. We show that such an allocation of vaccines to different

countries is suboptimal from a central planner point of view. We then propose international

agreements that can achieve optimal vaccine allocation to different countries and hence can

greatly reduce the spread of the disease or even contain the epidemic right at the onset of

first infections.

Although the current influenza vaccine allocation might seem to benefit the richer coun-

tries, it can create international concerns such as the global spread of the disease. Since

2007, Indonesia stopped its voluntary sharing of the strains for human cases of the Avian

Flu to the World Health Organization (WHO), since they would not receive the benefit of

the vaccines produced from their samples and they couldn't afford to buy the vaccines on

their budget. They said:

What's in it for us? We share virus samples, and pharmaceutical companies make

vaccines from them that primarily benefit rich countries. Without better access

to vaccine, why should we share virus samples? (Garrett and Fidler, 2007)

Some more developed countries also agree on this perspective. Australia's Health Minister

Tony Abbott said:

Obviously it is easier for countries like Australia and Britain and America to

purchase vaccines than it is for poorer countries, such as Indonesia. I think it is

important that we work out fair international arrangements for ensuring that we

don't have a situation where some countries get the disease and others get the

vaccines. (Asian Economic News, 2007)

To address this concern, some countries have set forth initiatives to ensure that regions

that are the source of infection receive guaranteed vaccine stockpiles. Garrett and Fidler

(2007) offer a novel proposal to overcome the virus sharing impasse. They propose that

updated supplies of about 500 million doses of vaccine together with antiviral medicines,

protective masks, etc. be stockpiled in Hong Kong every year. They have selected Hong



Kong since it has shown 'absolute transparency regarding disease emergences going back

several decades'. Also Hong Kong is a dynamic center of virus research and it sits in the

middle of the region that has been the source of the bulk of all flu strains known to have

emerged over the last three decades.

We present a model of multiple governments' decisions of purchasing quantities of vac-

cines, whose optimal solution balances the public health benefits of vaccination and the cost

of procuring and administering those vaccines. We characterize the optimal decisions of each

of the countries with a game theory model in both selfish and system-oriented play. In the

selfish model, countries store vaccine stockpiles considering only their own benefit. In the

system-oriented setting, we assume a central planner, such as the WHO, allocates vaccine

stockpiles to the countries minimizing the overall financial and health-related costs of the

disease. It turns out that, not surprisingly, there are discrepancies between order quantities

under those two settings. The central planner requires more vaccines for the initiating coun-

tries, which have significant impact on the spread of the disease, and less for others. Such

a vaccine allocation increases the probability of containing the epidemic right at the onset.

We then assess whether there is a contract that can align incentives of all the governments

in order to ensure enough volume of vaccines at the right locations and respond affirmatively

in certain conditions.

1.1.1 Influenza and Influenza Transmission

Influenza is characterized by fever, chills, cough, sore throat, headache, muscle aches and

loss of appetite. It is most often a mild viral infection transmitted by respiratory secre-

tions through sneezing or coughing. Complications of influenza include pneumonia due to

secondary bacterial infection, which is more common in children and the elderly (e.g., see

http://www. cdc.gov/flu or Janeway et al. 2001). Martone (2000) puts pneumonia and

influenza together as the sixth most common cause of death in the US.

The various strains of influenza experience slight mutations in their genome through

time (antigenic drift). This allows for annual outbreaks, as previously acquired adaptive

immunity may not cover emerging strains. Every few decades, a highly virulent strain may



emerge that causes a global pandemic with high mortality. This may be caused by a larger

genomic mutation (antigenic shift), if the novel reassorted viral strain has a high case fatality

coupled with high human-to-human transmissibility.

The three pandemics that occurred in the twentieth century came from strains of avian

flu. The "Spanish flu" (H1N1) of 1918 killed 20-40 million people worldwide (WHO, 2005),

far more than died in World War I. Milder pandemics occurred in 1957 (H2N2) and 1968

(H3N2). The first killed around 70,000 Americans; the second around 35,000. The H5N1

virus is the most likely potential culprit for a future pandemic (http://www. who. int/csr/

disease/influenza/).

1.1.2 Vaccination as a Control Tool

Vaccines can reduce the risk of infection to exposed individuals that are susceptible to

infection (vaccine effect on susceptibility), and can reduce the probability of transmission

from a vaccinated individual that is infected with influenza (vaccine effect on infection)

(Longini et al., 1978, 2000; Smith et al., 1984). In a single homogenous population, vaccines

act on the basic reproduction number, R 0, the mean number of new infections from a single

infected in an otherwise susceptible population (Dietz, 1993). Colloquially, if Ro can be

reduced below 1, then the dynamics of a large outbreak can be averted. Let f' be the so-

called critical vaccination fraction, the minimum fraction of the population to vaccinate to

reduce the reproduction number to 1 when a single infected is introduced to an otherwise

susceptible population. Appendix A of the Online Companion provides precise definitions

for these terms. In a model with multiple populations similar concepts govern. We define

Rij to be the expected number of secondary infections in unvaccinated people in population

i resulting from a single randomly selected unvaccinated infectious person in population j.

The potential for an outbreak is determined by the dominant eigenvalue of the matrix of Rij

values (Hill and Longini, 2003).

Vaccination is seen as a principal means of preventing influenza. Although vaccination

policies may vary from country to country, particular attention is typically paid to those

aged 65 or more, health care workers, and those with certain risk factors (WHO, 2005).



Vaccination can be complemented with antiviral therapy.

Germann et al. (2006) argue that even if flu vaccine is poorly matched to the circulat-

ing strains, it can still drastically slow the spread of the disease or even contain a global

pandemic. Not only effective, vaccination is also cost effective. Nichol et al. (1994) found

that immunization in the elderly saved $117/person in medical costs. Weycker et al. (2005)

argue for the systematic vaccination of children, not only the elderly, as a means to obtain

a significant population-wide benefit for vaccination.

1.1.3 Operational Challenges in the Influenza Vaccine Supply Chain

Gerdil (2003) overviews the highly challenging and time-constrained vaccine production and

delivery process. We focus on the predominant method, inactivated virus vaccine production.

For the northern hemisphere, the WHO analyzes global surveillance data and in February

announces the selection of three virus strains for the fall vaccination program. Samples

of the strains are provided to manufacturers. High-volume production of vaccine for each

of the three strains then proceeds separately. Production takes place in eleven day old

embryonated eggs, so the number of eggs needed must be anticipated well in advance of the

production cycle. Blending and clinical trials begin in May-June. Filling and packaging occur

in July and August. Governmental certification may be required at various steps for different

countries. Shipping occurs in September for vaccination in October-November. Immunity

is conferred two weeks after vaccination. The southern hemisphere uses a separate 6-month

cycle. Within two 6-month production cycles, almost 250 million doses are delivered to over

100 countries per year. Saluzzo and Lacroix-Gerdil (2006) provide additional information,

particularly with respect to avian flu preparedness. Figure 1-1 provides a graphic summary.

There are several key operational challenges that are presented by the influenza vaccine value

chain.

A challenge at the start of the value chain is antigenic drift, which requires that influenza

vaccines be reformulated each year. Influenza vaccines are one-time Newsvendor products,

as opposed to all other vaccines, which closely resemble (perishable) EOQ-type products.

Not only are production volumes hard to predict, but the selection of the target strains is a
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Figure 1-1: Influenza vaccine time line.

challenge. Wu et al. (2005) develop an optimization model of antigenic changes. Their results

suggest that the current selection policy is reasonably effective. They also identify heuristic

policies that may improve the selection process. Kornish and Keeney (2006) consider the

strain selection's timing issue by considering the uncertainty in the vaccine production. They

look at the dynamic strain selection problem with alternatives that commit to one of the

several flu strains now and an alternative to defer the decision in order to gather more

information. They describe the optimal strategies for such a commit-or-defer decision.

Another challenge occurs toward the end of the value chain, after vaccines are produced.

That involves the allocation of vaccines to various subpopulations, and the logistics of tran-

shipment to insure appropriate delivery. Brandeau et al. (2003) argue that the traditional

cost-effectiveness analysis is not an effective tool when considering epidemic control problems

due to highly nonlinear cost functions. They combine epidemic modeling with optimization

methods to determine the optimal allocation of a limited resource for epidemic control. They

show that either of the objectives of minimizing total number of newly infected individuals

or maximizing quality-adjusted life years (QALY), are neither convex nor concave in general.

Under some conditions of the epidemic model parameters where these functions become ei-

ther convex or concave, they characterize the optimal decisions. For all other cases, some

general properties of the optimal policies are derived. Hill and Longini (2003) describe a

-r
ti
E



mathematical model to optimally allocate vaccines to several subpopulations with poten-

tially heterogeneously mixing individuals. Weycker et al. (2005) use a different, stochastic

simulation model to illustrate the benefits of vaccinating certain subpopulations (children).

Those articles do not discuss the logistics of delivery. Yadav and Williams (2005) propose

an information clearinghouse for vaccine supply and demand to provide a market overview

and to help to eliminate the gaming of orders and price gouging. They also propose the use

of demand forecasting tools, and regional vaccine redistribution pools to shift supplies from

areas with surpluses to areas experiencing shortages. Alternative production technologies,

such as attenuated live-virus vaccines, may be one way to improve reactivity and reduce the

dependence upon forecasts.

This thesis is concerned with two challenges in the middle of the value chain: (1) the

design of contracts that align manufacturer choices for production volume and the need for

profitability, and governmental choices that balance the costs and public health benefits

of vaccination programs, and (2) the design of contracts that align different governmental

choices that balance the costs and public health benefits with different priorities. Special

characteristics of the influenza vaccine supply chain that differentiate it from many other

supply chains include a nonlinear value of a sale (the value of averting an infection by vacci-

nation depends upon nonlinear infection dynamics), and a dependence of production yields

on the virus strains that are selected for the vaccine. In a different stream of work, Sun et al.

(2007) look at a model to allocate a fixed volume of drugs to multiple countries, which is

similar to the second point above. They consider the resulting game between countries and

compare it to the optimal solution of a central planner. Our model differs from Sun et al.

(2007) work in several ways. First and foremost, we focus on contractual agreements between

governments to achieve the global optimum solution. There is also a fundamental difference

in the epidemic models. Sun et al. (2007) use a multivariate Reed-Frost model to represent

the infection dynamics by looking at the first two stages of the disease development. This

two-period approach, under some conditions, allows for a supermodular game with some

convexity-like properties of the objective functions. In this thesis, however, we use the stan-

dard SIR compartmental model (Longini et al., 1978) combined with the next generation

matrix method (Hill and Longini, 2003) to model the spread of the epidemic. This way we



are able to model the entire epidemic season and compute the final outcome of the disease.

With such an infection model, the cost functions turn out to be neither convex nor concave.

The game between countries are also neither submodular nor supermodular.

Current production technology for inactivated virus vaccines, market forces, and business

practices also combine to limit the ability to stockpile vaccines, limit production capacity, and

slow the ability to respond to outbreaks. Governmental and industry partnerships may help

to improve responsiveness (U.S. GAO, 2001; Pien, 2004; Bush, 2005; Wysocki and Lueck,

2006; Asian Economic News, 2007; Garrett and Fidler, 2007). The ideal way to structure

those partnerships is an open question. This thesis addresses one dimension of that multi-

faceted question.

1.1.4 Relation to Operations Management Literature and an Overview

This work relates to the operations management literature in three ways. First, this thesis

considers the random production yield of influenza vaccine production, a Newsvendor setting.

Silver (1976) considers random production yields in an EOQ setting, and shows that the

optimal lot size is a slight modification of usual EOQ. Yano and Lee (1995) review approaches

to lot sizing in the presence of five different types of yield randomness. We assume perfect

correlation, which is what they call stochastically proportional yield, and which has been

studied by Shih (1980) and Henig and Gerchak (1990).

Second, this thesis relates to the supply contract literature (Lariviere, 1999; Cachon,

2003). One stream in that literature focuses on optimizing the terms of a contract so as to

improve supply chain coordination. Examples of these contracts include buy-back contracts

(Pasternack, 1985), revenue sharing contracts (Cachon and Lariviere, 2005) and option con-

tracts (Barnes-Schuster et al., 2002). The objective is to characterize contracts that allow

each party to optimize its own profit but lead to a globally optimized supply chain.

The first model that we propose in this thesis is similar to the Newsvendor situation with

an exchange of demand uncertainty by production uncertainty. Since the buy-back contract

coordinates the supply chain for the Newsvendor (Pasternack, 1985), one could expect that

the corresponding contract with uncertain yield (i.e., a payback contract) should be able



to achieve the same. We will show that this is not the case for our model. On the other

hand, we show that a cost sharing contract that accounts for a manufacturer's effort can

coordinate such a supply chain. That is, while contracts like payback, which only depend

on the production output, do not align the manufacturer's incentive, contracts that take into

account the production effort are able to do so by shifting enough risk due to uncertain

production yields from the supplier to the buyer.

The pricing strategy proposed below to coordinate incentives in our general setting is

nonlinear. This is, of course, not the first work to use nonlinear pricing as a coordination

mechanism. For example, Bernstein and Federgruen (2005) show that in a single supplier,

multiple retailer environment, coordination is possible when retailers face additive (or mul-

tiplicative) price-dependent demand. They show that a linear price-discount sharing (PDS)

scheme along with a buy-back scheme may be used to coordinate the supply chain for multiple

non-competing retailers. In the case of competing retailers, there exists a Nash Equilibrium

for the retailers where coordination may again be achieved via a nonlinear PDS scheme cou-

pled with a buy-back scheme. Our model differs from Bernstein and Federgruen (2005) in

that we consider yield variability and risk for the manufacturer, rather than random demand

for a buyer, and the nonlinearity in our contract is directly induced by the nonlinearity in

the value of a sale due to epidemic dynamics.

The cost functions in the second model of this thesis are nonlinear in general. In fact

those cost functions are neither convex nor concave. They also are not sub- or super-modular

functions with respect to their parameters which make the analysis a bit more involved. We

show that a cost sharing contract that accounts for the contribution of each country in the

global cost function can still coordinate such a system.

The third way in which our work relates to the operations management literature is

via the intersection of operations management modeling and disease modeling. In addi-

tion to articles that are cited below, Kaplan et al. (2002) assesses operational decisions for

vaccination policy, with capacity constraints, to respond to smallpox bioterrorism attacks.

Su and Zenios (2004) examine the role of queueing and patient choice in kidney allocation.

Giine§ et al. (2004) examine service capacity and quality in the context of breast cancer

screening. Zaric et al. (2008) merge an inventory model with an anthrax outbreak model to



assess inventory management decisions for bio-terror preparedness. See also Brandeau et al.

(2004) and references therein. To the best of our knowledge, the current thesis appears to

be the first to link supply contract design with epidemic modeling in order to provide a

system-wide cost benefit analysis.

Chapter 2 and Chapter 3 focus on a model with one manufacturer and one government.

Section 2.1 presents a model to assess contractual mechanisms that align manufacturer risks

and incentives with governmental health care policy objectives for influenza vaccination.

Section 2.2 and Chapter 3 analyze the first model. Chapter 4, then considers a model with

multiple governments.





Chapter 2

A Government/Manufacturer Supply

Chain - Case of Piecewise Linear

Attack Rate

In this chapter and next we analyze a supply chain consisting of one manufacturer and one

government. We first develop the general model for this supply chain in Section 2.1 and

consider two different cases, (1) when the initial exposure to infection is extremely small,

and (2) when the initial exposure to infection is somewhat large. The first case leads to

a piecewise linear form for the total number of infected individuals as a function of the

vaccination level in the population. The second model, however, leads to a strictly convex

number of infected population as a function of the vaccination level. Section 2.2 analyze the

first model and Chapter 3 considers the second model.

2.1 Joint Epidemic and Supply Chain Model

This section links two distinct streams of literature. The epidemic literature provides epi-

demic models and cost benefit analysis for interventions such as vaccination (Murray, 1993;

Hill and Longini, 2003), but does not address logistical and manufacturing concerns. The

supply chain literature addresses logistical and manufacturing concerns in general, but does



not address the special characteristics of the influenza vaccine supply chain that are high-

lighted above.

We use simplified epidemic and supply chain models to focus on contractual issues be-

tween a single government and a single manufacturer. The single government is intended to

represent centralized aggregate planning decisions for vaccination policy. The government

initially selects a fraction f of a population of N individuals to vaccinate. Given the demand

by the government, the manufacturer then decides how much to produce. Production vol-

ume decisions are indexed by the number of eggs, nE, a critical factor in influenza vaccine

production. Production costs are c per egg. The actual amount produced, nEU, is a random

variable that is indexed by a yield, U. The U.S. GAO (2001) reports that the strain can

strongly influence the production yield. In this model, we assume that the yield U has a

continuous probability density function gu(u) with mean p and variance a 2, independent of

nE. This assumption means that the yield is affected by the specific strain of the virus, and

may vary from year to year, more so than from one statistically independent batch to the

next within a given production campaign. We discuss the potential of a small probability of

losing all production, due to quality problems for example, at the end of Section 2.2.1.

The manufacturer then sells whatever vaccine is produced, up to the amount initially

requested by the government (a maximum of Nfd doses, where N is the population size,

and d is the number of doses per individual). Unmet demand is lost, and excess vaccines

are initially assumed not generate any revenues (due to drift and shift of strains). Later,

Section 2.2.2 allows excess vaccines to be purchased at a lower price, along the lines of the

analysis of the 'usual' Newsvendor model when secondary markets are present.

When acting separately, the government seeks to minimize the variable cost of procuring,

Pr, and administering, Pa, each dose, plus the total social cost due to infection, bT(f), where

T(f) is the total expected number of infected individuals by the end of the influenza season,

and b is the average direct and indirect cost of an influenza infection (Weycker et al., 2005,

provide estimates of such costs). Define f to be the maximum fraction of the population for

which the net benefit of administering more vaccine is positive, and define f similarly with



respect to both vaccine procurement and administration costs,

f = sup{f : bT'(f) + paNd < 0, for f such that T'(f) exists} (2.1)

f = sup{f : bT'(f) + (pa + pr)Nd < 0, for f such that T'(f) exists}. (2.2)

The epidemic model determines the number of individuals, T(f), that are infected by the

end of the influenza season. While vaccine effects and health outcomes may vary by subpop-

ulation, and vaccination programs can take advantage of that fact (Weycker et al., 2005),

we simplify the model in order to focus on contract issues for production volume, rather

than including details about optimal allocation of a given volume. We use a deterministic

compartmental model of N homogeneous and randomly mixing individuals that start out

Susceptible to infection, but may also be infected and Infectious, or Removed upon recovery

from infection, a standard SIR compartmental model that is a reasonable model for the nat-

ural history of infection of influenza (Murray, 1993). The fraction of susceptible, infectious

and removed individuals (S(t), I(t), and R(t), respectively) in the population varies as a

function of time t according to a deterministic differential equation (see Appendix A of the

Online Companion).

We assume that a fraction f of the population is vaccinated, and that a fraction 0 of

those vaccinated are immune to infection (so R(t) = f4 for t < 0). At the start of the

influenza season, at time t = 0, a fraction X of the remaining susceptible population that

becomes infected due to exposure from exogenous sources, so that S(0) = (1 - fo)(1 - X)

and I(0) = (1 - fV)x. The total number that become infected during the influenza season

is T(f) = Np, where the so-called attack rate p (see the Online Companion or Longini et al.

1978) satisfies

p = S(0)(1 + I(0) - e-Rop). (2.3)
S(0)

The critical vaccination fraction is f' = (Ro - 1)/(Roo) when Ro > 1 (Hill and Longini,

2003).

Rather than deriving results via such an implicit solution from the epidemic model, we

derive results for a nonincreasing T(f) > 0 with specific general characteristics. When the



values of all of the epidemic and vaccine parameters are known, Appendix B describes why

it is reasonable to consider two functional forms: a piecewise linear T(f) when X is close

to 0, or a strictly convex T(f) when X is sufficiently large. This removes the details of an

implicit solution for an epidemic model from the supply chain analysis. Section 2.2 handles

the piecewise linear case. Chapter 3 handles the convex case.

2.1.1 Generic T(f) and Parameter Uncertainty

In practice, the basic reproduction number Ro, the initial fraction of susceptibles that become

infected due to exogenous exposure X, and the vaccine efficacy V are unknown at the time that

the order quantities are chosen. It may be hard to precisely predict these parameters, due to

the evolutive nature of the strains. Even for annual influenza strains, such as H3N2, a new

"cluster" of drift variants tends to appear every 3-5 years (Plotkin et al., 2002; Smith et al.,

2004).

The above generic approach to modeling the number infected, T(f), is important because

it also allows for an analysis when the values of epidemic and vaccine parameters are un-

known. A probability distribution can be used to describe these types of uncertainty about

the epidemic and vaccine parameters parameters, based upon past experience with strains

that are similar to those that are selected for the current year's formulation. A Bayesian

would do this with a prior distribution. Let T(f; Ro, X, 0) make the parameter values for

(2.3) explicit. When parameters are uncertain, then T(f) = E[T(f; Ro, X, 0)] describes the

number of infected individuals, in expectation, based upon information that is available at

the time a vaccination fraction is selected. This is compatible with the expected-value mod-

els in the remainder of the thesis that assume risk-neutral decision makers, but requires an

assumption that there is no stochastic recourse to change the vaccine order quantity between

the time the order is originally placed and the time that the influenza season begins, due

to additional data about the strain. This last assumption is presently reasonable. More

advanced influenza surveillance systems and modified production seasons may make the as-

sumption less reasonable in the future, at which case an explicit stochastic recourse model

may become more appropriate.



Table 2.1: Summary of Notation for the Manufacturer-Government Supply Chain.

Supply Chain

nE Number of eggs input into vaccine production by the manufacturer

U Random variable for the yield per egg, with pdf of gu(u), mean M, and variance a2

d Doses of vaccine needed per person

c Unit cost of production for manufacturer, per egg input

Pr Revenue to the manufacturer from government, per dose of vaccine

Pa Cost per dose for government to administer vaccine

b Average total social cost per infected individual

Z Number of doses sold from manufacturer to government

W Number of doses administered by government to susceptible population

Infection Transmission

N Total number of people in the population

Ro Basic reproduction number, or expected number of secondary infections caused by
one infected in an otherwise susceptible, unvaccinated population

f fraction of the population to vaccinate announced by government to manufacturer

T(f) Total expected number infected during the infection season, a function of the fraction
vaccinated

X The fraction of susceptibles that are initially infected due to exogenous exposure

I(0) The initial fraction of infected people introduced to the population

S(O) The initial fraction of susceptible people in the population

7P Vaccine effects on transmission, including susceptibility and infectiousness effects

v Linear approximation to number of direct and indirect infections averted by a
vaccination

A bTotal number of infected individuals if nobody is vaccinated

f' The critical vaccination fraction (fraction of population to vaccinate to halt
outbreak)

f The maximum fraction for which (free) vaccine can be cost-effectively administered

f The maximum fraction for which vaccine can be cost-effectively procured and
administered

k Relates vaccination fractions and vaccine production inputs, k = fNd/nE



For example, when X is close to 0, T(f; Ro, X, 4) will be shown to approximate a (con-

vex) piecewise linear function. An expectation of convex functions is convex, so T(f) =

E[T(f; Ro, X, 0)] is convex, for an uncertain Ro, V' and a small X. When the parameters have

a continuous distribution, this may result in a strictly convex attack rate. If the distribution

implies a convex, but not strictly convex, attack rate, the sensitivity analysis in Appendix B

suggests that our proposed coordinating contract may still be effective if there are small

errors that are introduced by approximating the convex attack rate with a strictly convex

attack rate. Results for a strictly convex T(f), then, may also be useful when parameters

are uncertain.

For some values of and distributions for Ro, X, 4, we will show (in Section 3.3 and Ap-

pendix B) that the value of T(f; Ro, X, 4) and T(f) may initially be concave decreasing,

then convex decreasing. Section 3.3 demonstrates how to coordinate contracts when T(f) is

an initially concave then convex, decreasing function.

Before deriving the results described above, we first complete the statement of the supply

chain optimization problems.

2.1.2 Game setting

The epidemic and supply chain models above define a sequential game. The government an-

nounces a fraction f of the population for which it will purchase vaccines. The manufacturer

then decides on a production quantity, indexed by nE, in order to maximize expected profits

(minimize expected costs), subject to potential yield losses and market capacity constraints.

The manufacturer problem is:

min MF = E [cnE - prZ] (net manufacturer costs)
nE

s.t. Z = min({nEU, fNd} (doses sold < yield and demand) (2.4)

nE > 0 (nonnegative production volume).

So that the optimal production level is not zero, n* > 0, we assume:

Assumption 1 The expected revenue exceeds the cost per egg, prp > c, so vaccines can be

profitable.



Given that assumption, we characterize the optimal production quantity. The optimal pro-

duction level is characterized by an equation that resembles the optimality newsvendor equa-

tion, except that a conditional expectation replaces a conditional probability.

Proposition 1 For any random egg yield, U, with pdf gu(u), and given the government's

vaccine order quantity f Nd, the optimal production level n* for the manufacturer is deter-

mined by
fNd

fo n*E
(2.5)ugu(u)tdu= -.

Pr

Proof: The expected cost function for the manufacturer is

MF(nE) = cnE - PrE[min{nEU, fNd}]
fNd

= cnE-pnEE[min{U, n
Nd fNd

= CE -- pnE ugv(u)du +L gu(u)du)
nE

= cnE - prnE ugu(u)du - PrfNd gu(u)du
nE

So to get the minimum of MF we need to see the behavior of its derivative:

fNd

-c pjfnE= C-Pr
0

ug(u)d-pE f Nd fNd)]

ug(u)duE )gU( nE n(-

-PrfNd[ -gU (fNd)( fNd-E n.
fNd

=c - p jfnE
0

ugu(u)du

Note that aF pr [( (fNd u( > 0 so the first order optimality condition is suf-
EE nE

ficient. Hence the optimum production quantity nE is solution of the following equation:
fNd

fo*E ugu(u)du = pr. O

A useful corollary follows directly.

Corollary 1 If c, Pr, gu(u), N and d are held constant, then the relationship between the

fraction of people to be vaccinated, f, and optimum production level, n', is linear. That is,

there is a fixed constant, kG, such that kGn* = f Nd.

OMF

OnE

I \



The government problem is to select a fraction f that indexes demand, knowing that

the manufacturer will behave optimally, as in (2.5), and may deliver less, in expectation,

than what is ordered due to yield losses. The government may order some excess (even

f > f), in order to account for potential yield losses. In this base model, we assume that

the government purchases up to the amount it announced, but will administer only those

doses that have a nonnegative cost-health benefit.

min GF = E [ bT( W) + PaW +r- Z ]fNd
s.t. Z = minrnEU, fNd}

W = min{nEU, fNd, fNd}

ug[(u)du = -

nE 0O

(net government costs)

(doses bought < yield and demand)

(doses given < doses bought, cost effective level)

(manufacturer acts optimally)

(fraction of population)

(nonnegative production volume)

(2.6)
Such a two-actor game has a Nash equilibrium (Nash, 1951), which we will identify below.

2.1.3 System setting

The system setting assesses whether the manufacturer and government can collaborate via

procurement contracts to reduce the sum of their expected financial and health costs, to a

level that is below the sum of those costs if each player acts individually as in Section 2.1.2.

System costs do not include monetary transfers from government to manufacturer. Formally,

the system problem is

min SF = E [bT(-dd) + paW + cnE] (total system costs)
f,nE

s.t. W = min{nEU, fNd, fNd} (doses given < yield, demand, cost effective level)

0 < f • 1 (fraction of population)

nE > 0 (nonnegative production volume).
(2.7)

This formulation does not explicitly link f and nE together, since we seek system-optimal

behavior rather than local profit-maximizing behavior.
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Figure 2-1: The fraction of the population infected during the outbreak (or attack rate, p)
as a function of the fraction vaccinated (f), for different values of the fraction of susceptibles
that are initially infected (X) and the basic reproduction number (Ro).

2.2 Piecewise Linear Number of Infected

Figure 2-1 plots the attack rate, p, which is directly proportional to the total number in-

fected, T(f), as a function of the initial fraction of susceptibles that become infected due to

exogenous exposure, X, and reasonable values of Ro for influenza transmission (Gani et al.,

2005; Rvachev and Longini, 1985; Longini, 1986). If there are few that are initially infected

due to exogenous exposure (small X, or small I(0)/S(0)) and the parameters are accurately

known, then Appendix B in the justifies the following piecewise linear approximation for

T(f),

T(f) = A-Nf, Off' (2.8)
0, f' lf 1,

where v is interpreted here as the marginal number of infections averted per additional

vaccination, and A is the number of infected individuals if nobody is vaccinated.

We seek structural results to compare the values of the game equilibrium and system

optimum. With this approximation for T(f), the maximum cost-effective number of individ-

uals to vaccinate equals the critical vaccination fraction, f = f'. The government's objective



function from Problem (2.6) is

GF = E [bmax{A- v W ,} +PaW+prZ] . (2.9)

The manufacturer problem is the same.

The system's objective function from Problem (2.7) is

SF= E maxA-- W- 0,+PaW+cE (2.10)

2.2.1 Optimal solutions for game and system settings

This section describes the equilibria of the game setting and the optimal system solution for

the manufacturer and government. It assumes that the parameters of the model in Section 2.1

are given. A series of assumptions and results are developed to show that the optimal system

solution requires a higher vaccine production level than in the game setting. Section 2.2.2

uses those results to design contracts that create a new game, to get the individual actors

to behave in a system optimal way.

The following two assumptions will be useful in the this chapter and next. If Assumption 2

were not valid, then even free vaccines would not be cost effective. Assumption 3 is a

somewhat more restrictive.

Assumption 2 The expected health benefit of vaccination exceeds the administration cost,

vb - pad > 0.

Assumption 3 The expected health benefit of vaccination exceeds the cost of administering

and procuring the doses, vb - (Pa + pr)d > 0.

Proposition 2 Let fS, nS be optimal for the system setting with objective function in (2.10).

If Assumptions 1 and 3 hold, then (1) all values of fs that are between f' and 1 are optimal;

and (2) nE satisfies

E ug(u)du= vb (2.11)
o d Pa



Proof: To show these results, we analyze SF in two different regions, f < f' and f Ž f'.

Let SFI(f, nE) denotes the value of SF when f < f', and likewise SF2(f, fE) is the value

of SF where f > f'. Note that if f _ f' then W = Z = min{nEU, fNd}, and the value of

SF1 is

fNd

SF1(f,nE) =b (A - vU)gu(u)du + b(A - Nuf) gu(u)du
o0 d inEnE

'Nd

+ PanE
E

ugu(u)du + pa(fNd) f g(u)du + CnE
nE

(f :5 f').

For f > f', given that A - Nvf = A - Nvf' = 0, the value of SF is

f'Nd fNd

nE  nEU nESF2(fnE) b (A - v- )gu(u)du + PaE
2(d f g uodd

+ pa(f'Nd) d gu(u)du + cnE
nE

ugu(u)du
(2.13)

(f > f').

The limits of integration in the right hand side of (2.13) use f', not f. In order to get the

overall optimal values for fs, rs, we solve the following two subproblems.

SF1 = min SF1

s.t. 0 < f < f'

nE > 0

SF2 = min

s.t.

Optimality conditions for subproblem SFI: The KKT conditions, if f :< f', are,

-Nvb i gu(u) du + paNd d g(u)du)du + -Oo = 0
nE n E

fNd

ugu(u)du + p, fo nE ugu(u)du + c - ( = 0

ý(f - f') = Oof = opnE = O ; , o0, > 0,

SF2

f' < 1f

nE > 0

vb "E
d o

)212.(



where the first equation is obtained by taking the derivative with respect to f and the

second equation is obtained by taking the derivative with respect to the nE. Moreover

0, 6p, 0 are KKT multipliers of constraints f < f', f > 0, nE _ 0, respectively. Recall that

Assumption 3 implies that Assumption 2 is valid. Note that if Assumption 2 were not valid,

then the second equation of KKT conditions would require ýO > 0, and the third equation

would imply that n* = 0.

We are interested in the case where nE > 0, f > 0 which is a conclusion of Assumption 2.

This implies that 00 = c = 0, and the KKT conditions simplify:

[- Nub + paNd] jd g(u)du+ = 0
fNd

[- + Pa] ugu(u)du+ c= 0

( - f')=o ; 0

In the first equation above, Assumption 2 suggests that ( > 0. If ( > 0, the last of the

KKT conditions would give rise to f* = f'. So SF1 will always get its minimum at the

extreme f'. The optimal nE in this case can be obtained from the second equation of the

KKT conditions and using the fact that f* = f', and

f'Nd

j ugu(u)du = vb (2.14)
d Pa

The left hand side of this equation can take any value from 0 to 1p = E[U] by varying n).

Assumption 1 together with Assumption 3 implies that the right hand side is strictly between

0 and p. These assumptions therefore guarantee a solution to (2.14).

Optimality conditions for the problem SF2: If f Ž f', then SF2 does not depend

on f (the vaccination fraction declared by the government does not change the value of

objective function). It follows that all values f' < f < 1 are optimum and so the first part

of the claim is proved.



Now SF2 is a function of nE only and the derivative of GF with respect to nE is

fSF2 Ndb
= (-- +Pa) ugu(u)du + c.

Note that 7=9SF= (L - Pa)( l• )( 'Nd )gu(fNd), which is nonnegative by Assumption 2,

hence SF2(nE) is a convex function on nE and the first order optimality condition is sufficient.

By getting the root of the derivative of SF2 above, we can see that the optimum nE for SF2

is the same as the solution of (2.14). So the optimum value for nS satisfies the same equation

in both cases. O

Observe that if Assumption 3 does not hold, then vaccines at market costs are not cost

effective. To see this, set f = min{f, f'}. Then for all 0 f < 1,

fNdoo
bjE ( ,bEU J ,

GF(f,nE) > b (A - v )gu(u)du + b(A - Nvf) gu(u)du
nE

+(Pa + P)nE rE ugu(u)du + (pa +pr)(fNd) fk gu(u)du
nE

JNd

SbA + nE Pa + pr)d - vb) E ugu(u)du

+fN((Pa +Pr)d - vb) J gu(u)du.
nE

If vb - (P + pr)d < 0, then GF(f, nE) > bM for all f, nE > 0, and fG = nG = 0 would be

optimal.

Given Assumption 3 and Proposition 2, we can compare the values of (2.5) and (2.11) to

obtain Corollary 2.

Corollary 2 Let fs, rS be optimal values of the system problem and define ks = '. Let
fG, ne denote optimal values of the game setting and define kG = f G.Nd If Assumption 3

E

holds, then ks < kG.

The concept k = fNd that relates vaccination fractions to vaccine production volumes is

useful below.



Proposition 2 characterized the optimal vaccination fraction and production level for the

system setting. We now assess optimal behavior in the game setting. (2.5) indicates that it

suffices to characterize the optimal vaccination fraction, which then determines the optimal

production level in the game setting. Notice that the optimal vaccination fraction depends

upon problem data in the game setting, unlike the system setting.

Proposition 3 Let fG, nG be optimal solutions for the game setting, and set kG - fGNd

If Assumption 3 holds, then fG > f'. Furthermore, fG = f, if and only if

(-vb + Pa Pr) ugu(u)du + prkG j gu(u)du > 0.
d Ik G

(2.15)

Proof: We break this into two subproblems, as with SF1 and SF2 above. Define GF1 to be

the objective function for subproblem GF1, which handles the case where f < f'. Then

= b (A-v u)g(u)du + b(A - Nuf) gu(u)du

S Ek G uu dG I u()du
= bM - nE ugu(u)du - Nf gu(u)du

+(Pa + Pr) nE f 9U u ) d + g

bM + nEk ug(u)du - Nb gu(u)du

kGWG

= bM +nE (--v--1 + a 1- Pr) kG ugu(u)du + kG 00 u(

00 g(u)du = 1)

(f Nd = nEka )

u)du]

By Assumption 3, the coefficient of nE in the last equality is negative, so the optimum

value for nE in GF1 lies on the upper boundary, where f = f'. This proves the first part of

the claim.

For the second part, similarly define GF2 to be the government objective function for

the case f > f'. Use the fact that T(f) = 0 for all f > f', and the optimal manufacturing

GF (f, nE)



constraint, f = -Ek , to obtainNd

GF2 (f, ,E)

OGF 2

OnE

02 GF2

S'Nd f'NdkG

=b E(uA----)gu(u)du + E p neE ugu(u)du+ pr.nE ju (u)du

+ pa(f'Nd) i gNd g(u)du + pr(fNd) gu(u)du
nE

f'Nd f'Nd
nE nEU n

E

=b (A - v )gu(u)du + Pan E ugu(u)du

+ pa(f'Nd) gu(u)du + Pr, E ugu(u)du + k u(u)du

=(- +Pa) jNd ugu(u)du + p 8 ugu(u)du k gu(u)du

vb f'Nd f'Nd
S- Pa) 29u(d EE RE

for f > f'. Note that fd < kG. By Assumption 2, 2 0, so GF2 is a convexfnE - G s ofunction of nE. To find the minimum it suffices to look at the sign of its first derivative. If

Condition (2.15) holds, then Assumption 2 implies that aGF2 > 0 on f > f', so that the
8nE -

minimum of GF2 for f E [f', 1] is obtained at f'. The optimum for both GF1 and GF2 lead

to the claimed optimum, namely fG = fl.

If Condition (2.15) does not hold (i.e. (-d +Pa+fpr) •k ugu(u)du+p,kG fk, gu(u) du <

0); then because of the convexity of function GF2 on nE (non-decreasing derivative), there

are two cases:

Case 1: 3TE ; E = 0. In this case clearly the optimum values for the f, nE are the

following: nE = E, G = kGn E/Nd.

Case 2: If nE(1) denotes the maximum nE corresponding to f = 1 (i.e. nE(1) = 1) and

still aGF2 <0 then fG =1, G Ete = 1, E n hE(l).

Combined, the two cases complete the proof. O

Although it may seem, at first glance, that the condition in (2.15) depends on fG through

kG, this is not true. Given the problem data, the value of kG is determined by (2.5),

independently of the values of fG and nEG . The condition in this claim is therefore verifiable

by having the initial data of the problem.



Intuitively, the inequality in Condition (2.15) shows that if b is sufficiently higher than

the other costs, then the game pushes the government to order a higher amount of vaccine

than the amount specified by the critical vaccination fraction, f'. It is possible to have both

equality and strict inequality, based upon numerical examples (not shown).

Theorem 1 uses our results on the optimal production level in the system setting, Propo-

sition 2, and the game setting, Proposition 3, to prove the main result of this section: optimal

production volumes are higher in the system setting than in the game setting. The intuition

behind Theorem 1 is that the manufacturer bears all the risk of uncertain production yields

in the game setting and hence is not willing to produce enough.

Theorem 1 Given Assumption 3 and the setup above, ni > nQ.

Proof: Proposition 2 shows that fG > f'. We consider the two cases fG = f' and fG > f,

separately, and prove that both cases lead to the relation n > nE.

Case 1: fG = f'. Using the inequality in Corollary 2 (i.e. ks < kG) and using the

definitions of kG, ks it immediately follows that ni > nG, as desired.

Case 2: fG > f'. (Proof by contradiction.) Assume to the contrary that nS < n.

First of all we obtain the sign of G[QF2] As in the proof of Proposition 3, there are two

cases for n. If the condition in case 1 of Proposition 3 holds, then [GF2] =0. If case 2

holds, then GF2  < 0. In either case, the following relation is true:
s, eF L• n

9GF2 ] < 0 (2.16)

On the other hand,

_GF2 vb +Prj
] =(-- + Pa) ugu(u)du+ Pr ugu(u)d prkG gu(u)du

kb 0vb +p,,)I ugu(u)du+prp ugu(u)du +p,k G gu(u kG

=(--- +P a) )+J+pukuud gpv'b C _ c+ pkG g(u)du
a+ Pa)d dj Pa k

=prkG gu(u)du > 0



The inequality in the second line comes from the assumption nri < n¶, and with Assump-

tion 2. The third line is valid by (2.5) and Proposition 2. But the last inequality contradicts

(2.16), so nG > ns is false. L[
Before closing this section, we examine the potential that the entire vaccine production is

lost with some probability C > 0. Such a significant loss of production was experienced by a

manufacturer in 2004 after contamination concerns were raised (FDA, 2005). In particular,

suppose that the cumulative distribution function for the vaccine yield is Gu(u) = C + (1 -

() fo gu(s)ds for some density gu(u) that represents the conditional density of the yield,

given that catastrophic production loss does not occur. The following proposition notes that

the optimal production quantities for both the game and system problems decrease as the

probability of catastrophic production loss increases, as might be expected given the revenue

implications of such an event.

Proposition 4 Suppose that the production yield is a mixed distribution with Gu(u) =

Pr(U < u) = ( + (1 - () 0o gu(s)ds for some density gu(u). Then both nE and nS decrease

as C increases.

Proof: We first show the claim for nS. Suppose that the yield is changed from having a

density function gu(u) to the more general CDF Gu(u), which is essentially a shift from

( = 0 to C > 0. The effect of that change on the system's objective function is equivalent

to multiplying the function SF in Problem (2.7) by (1 - () and adding (bT(O). A shift in

SF by the constant CbT(O) does not change the optimal decisions. We can therefore find

the optimal system decisions by using the ideas of the proof of Proposition 2, except that

all integrals in (2.12) and (2.13) are multiplied by (1 - ().

Using the same logic as in the proof of Proposition 2, we can show that fs can be any

number in the period [f', 1]. To determine the production quantity, the straightforward

generalization of (2.11) for Gu(u) with ( E (0, 1) indicates that the optimal nE satisfies

E ugu(u)du = -
1 -( -Pa



The right hand side of this last equation increases with (. Because ugu(u) > 0, this implies

that the integrand in the left hand side does not decrease with (. With other parameters

fixed, an increase in C therefore decreases (or, does not increase) n .

To show that nG also decreases in (, we first show that kG increases with (. Notice

that the manufacturer problem is the same as in Proposition 1 except that all integrals are

multiplied by (1 - (), so that

k0
cugu(u)du ,

as claimed. Now we show that nE decreases in (. As in system problem, we can show that

the government's objective function, GF, is multiplied by (1 - () and increased by CbT(0).

All of the optimality conditions in the proof of Proposition 3 are still valid then, except that

integral terms in the definition of GF1 and GF2 would be multiplied by (1 - (). Again we

come to the two cases discussed at the end of Proposition 3.

Case 1: In this case since all terms of GF are multiplied by (1 - (), we can simply divide

both sides by the same term and get:

f'Nd c0
OGF 2  (-vb +Pa) nE ugu(u)du + p, ugu(u)du +PrkG du = 0

Observe that the term Pr f0C ugu(u)du + prkG fk gu(u)du is an increasing function of kG

As we discussed before kG is also an increasing function of (, which implies that the term
f'Nd

(- + Pa) fo '
E ugu(u)du should be decreasing in C. Thus nE is decreasing with C and the

claim is proved in this case.

Case 2: In this case we know that nGE = 1Nd Since kG is increasing in (, the result easily

follows. O

It is also easy to show that for a given governmental order fraction f, a higher probability

C of no production yield results in a lower optimal manufacturer production volume.

We now assume C = 0 for the balance of the thesis to simplify the analysis.



2.2.2 Coordinating Contracts

The objective of this section is to design contracts that will align governmental and manu-

facturer incentives. There are a variety of contracts in use, include wholesale pricing (CDC,

2005). Recent support by the U.S. Dept. of Health and Human Services (2004) to a major

manufacturer for the development of a stable egg supply resembles a payment that is pro-

portional to effort, a characteristic that is shared with the cost sharing contract below. We

show that wholesale or pay back contracts can not coordinate this supply chain. We then

demonstrate a cost sharing contract that is able to do so.

Wholesale price contracts

In wholesale price contract, the supplier and government negotiate a price Pr. Unfortunately,

the system optimum can not be fully achieved just by adjusting the value of Pr.

Proposition 5 There does not exist a wholesale price contract which satisfies the condition

in Assumption 3 and coordinates the supply chain.

Proof: The proof of Theorem 1 shows that there does not exist a wholesale contract which

coordinate this supply chain. That proof proceeded in two cases. The first case requires

n > ng . For full coordination, we require n = nE for some pr. In case 2, nS = nE for

some Pr implies that 2 > 0, which would not be true for the optimizer of GF. O

Pay back contracts

In a pay back contract, the government agrees to buy any excess production, beyond the

desired volume, for a discounted price Pc (with 0 < pc < pr) from the manufacturer. This

shifts some risk of excess production from the manufacturer to the government, and would

typically increase production. Since the buy-back contract coordinates the supply chain for

the Newsvendor (Pasternack, 1985), one could expect that the corresponding contract with

uncertain yield (i.e., a payback contract) should be able to achieve the same.

We show that the pay back contract does not provide sufficient incentive to coordinate

the influenza supply chain, unlike typical supply chains, for any reasonable value of Pc. Full

coordination will be shown to be prevented by the combination of yield uncertainty and a



maximal purchase quantity (a government is unwilling to buy vaccine beyond the amount

ordered). Assumption 4 defines a reasonable Pc as one that precludes the manufacturer from

producing an infinite volume for an infinite profit.

Assumption 4 The average revenue per egg at the discounted price is less than its cost,

PclY < c.

The pay back contract increases the manufacturer's profit by adding the revenue associated

with nEU - min{nEU, fNd} doses of excess production. This changes the manufacturer

problem from Problem (2.4) to

min MF = E cnE - PrZ - pc(nEU - Z)
rE I I

s.t. Z = min{nEU, fNd}

nE > 0.

By adapting the argument of Proposition 1, the optimal production level n* can be shown

to satisfy
INd

c-cE / (2.17)4E ugu(u)du = c - P (2.17)
o Pr - Pc

The effect of this contract on the government problem in Problem (2.6) is to change the

objective to

GF= E bmax, {A ,0} +aW +rZ + p(nEU -Z)

and to change the "manufacturer acts optimally" constraint, which determines the optimal

production input quantity nE as a function of f, from (2.5) to (2.17).

Denote the optimal values of this pay back contract problem by f , nN . Set kN =

Proposition 6 If Assumptions 1, 2 and 4 hold, then there does not exist a pay back contract

which could coordinate this supply chain. In fact, under any pay back contract, the resulting

production level is less than the optimal system production level, nN < nE.

Proof: Note that fo ugu(u)du = _. By rewriting the GF in terms of values of f, nEPr -Pc



and by replacing f = k-n we have:

GF(nE) = b (A - v )gu(u)du + PanE J ugu(u)du + Pa(f'Nd) g (u)du
n
E

+(Pr - P) E ugu(u)du + (Pr - Pc) (kN E) g(u)du + pcpnE

By Assumption 2, a• - (= - Pa) •f'N- ( fNd) 0, so GF is a convex function on nE.

The optimal value of GF can therefore be found by setting its derivative to zero:

OGF vb fo
f'Nd

OE =(W +Pa) ugu(u)du + pc

+ (Pr - Pc) [ ugu(u)du + kN j gu(u)du

f'Nd

=- +Pa) E ugu(u)du +c+ (Pr - Pc)kN gyu(u)du

The last inequality comes from (2.17). The last term indicates implicitly that nEN < . TO

see this, plug ns into the last terms, use Proposition 2 and using the fact that Pr > Pc, to

obtain 9G = (Pr - Pc)kN f• gu(u)du > 0. That implies that n < ns .  O
E

Proposition 6 suggests that compensating the manufacturer for having excess inventory is

not enough to achieve global optimization. Indeed, a pay back contract does not compensate

the manufacturer when the production volume (nE) is high while the yield (nEU) is low.

The cost sharing agreement described below is designed to address this issue.

Cost sharing contracts

In a cost sharing contract, the government pays proportional to the production volume nE

at a rate of Pe per each egg. Such an agreement decreases the manufacturer's risk of excess

production, and provides an incentive to increase production. Here, we describe a contract

that increases production to the system optimum, f', E.

With the cost sharing contract, the manufacturer problem is:

min MF = E[(c - pe)nE - Pr Z]
nE



s.t. Z = min{nEU, fNd}

nE 2 0.

The optimality condition for nE given f follows immediately, as for the original problem,

nE ugu(u)du e (2.18)
o Pr

Cost sharing increases the government's costs, changing its objective function to

GF = E [bmax{A - vd ,O} +PaW +PrZ +PenE]. (2.19)

The cost sharing contract therefore results in the following optimization problem for the

government.

minGF = E [bmax{A- VV W, +PaW +rZ +p E]E
f d

s.t. Z = min{nEU, fNd}

W = min{nEU, fNd, f'Nd}
fNd

fo n E ug(u)du c - Pe
Jo Pr

0<f <1

nE > 0.

Denote the optimal solutions of this problem by fe, neE, and set k• = fend

For any given Pr, choose p, > 0 so that -P = . Such a pe exists since Pr < - Pa.pr 7:N'Pa d

If p, is chosen this way, then ke = ks. Further, if pr satisfies Assumption 3, such a Pe not

only moves ke to kS, but it aligns the vaccination fractions and production volumes, as in

Theorem 2. Intuitively, this occurs because Pe is the manufacturer's effective cost per egg

divided by its benefit per vaccine, and it equals -, the system's effective total cost per

egg divided by the system's total benefit per vaccine.

Theorem 2 If Assumption 3 holds and Pe is chosen so that e = , then the optimal



values (fe, n,) for Problem (2.19) equal (f', nS), so this cost sharing contract will coordinate

the supply chain.

Proof: First we show that fe > f' by showing that optimum value for GF1 for f E [0, f'] is

always obtained at f'. By replacing f = Y- we get GF1 to be only a function of nE:

d )gEU• •unEIdeu•b(A N
GFi(nE) = b k(A - nE)gu(u)du + b(A - Nv. ) j gu(u)du

+(Pa + Pr)nE ugu(u)du + (Pa + pr)(knE) j gu(u)du + PenE

Now by taking the derivative of GF1 with respect to nE we obtain that:

OGF1  vb fko vb P'"
onE d o

+(Pa + Pr) ugu(u)du + (Pa + Pr)ke j gu(u)du + Pe

= (-vb + Pa) s ug(u)du + r ke ug(u)du (2.20)

+ (- +Pa + Pr) ke gu(u)du +Ped ke
vb "

= - c + (c - Pe) + (- + Pa + Pr)k 0 gu(u)du +Pe (2.21)d Ike
=(-b +Pa+ pr)ke gu(u)du, (2.22)

in which (2.20) is obtained because ke = ks, and (2.21) is obtained using Proposition 2 and

(2.18). On the other hand (2.22) is negative by Assumption 3, so that GF1 is decreasing for

all eligible nE. Hence f' and the corresponding nE (i.e. nE = - = ) are optimal in

this case. So fe > f'. Because ke = ks , it immediately follows that ne > S.

Now we show that the optimum of GF2, for f E [f', 1], also occurs at f', completing the

proof. Note that f 2 f' and ke = ks imply that nE > ns. Consider GF2.

GF2 (E) = b n _(A - v )gu(u)du + panE ugu(u)du + paf'Nd gg(u)du

+PrnE ugu (u) du + pr (kenE) gu(u)du + penE
kre0 kge



The derivative is nonnegative,

OGF2  vb ~ ke
(- + Pa) nE ug(u)du +p, ugu(u)du+Pke gu)du+pe

=(- + Pa) E ug(u)d + + pke j gu(u)du (2.23)
ftNd

vb(- + Pa) nE ug(u)du + c + prke'  gu(u)du (2.24)

=prkIe gu(u)du > 0 (2.25)

(2.23) comes from (2.18). As before, (2.24) comes from Assumption 2 and the fact that

nE S ns. Finally, (2.25) is true by Proposition 2. The last inequality shows that the

optimum value for GF2 occurs at f' hence fe = f' and because of the fact that ke = ks, we

obtain ne = nr. O

The cost sharing contract can coordinate incentives, unlike the pay back contract, because

the manufacturer's risk of both excess and insufficient yield can be handled by the contract's

balance between paying for outputs (via Pr) and for effort (via Pe).



Chapter 3

A Government/Manufacturer Supply

Chain - Case of Strictly Convex

Attack Rate

Based on the supply chain model developed in Section 2.1, this chapter initially presumes

that T(f) is strictly convex. While T(f) may not be convex for all choices of the parameters

of the infection model, it is strictly convex for sufficiently large X (a large initial exposure from

exogenous sources) and values of Ro that are representative of influenza (see Appendix B).

We first explore the game equilibrium and the optimal system solution. We then show

that a variation of the cost sharing contract can coordinate the supply chain. Finally, we

demonstrate that this proposed cost sharing contract can be modified to coordinate a broader

class of attack rates, such as when T(f) is first concave decreasing and after a point becomes

convex decreasing. Such curves are observed for some realistic values of the parameters.

Convex curves, and curves that are first concave then convex, are also realistic when T(f)

results from averaging over uncertain parameters (as described prior to Section 2.1.2).



3.1 Optimal solutions for game and system settings

The solution to the manufacturer problem in Problem (2.4) with convex T(f) remains the

same as above, as the manufacturer's objective function does not depend upon T(f). The

analysis of the government problem in Problem (2.6) and the system problem in Prob-

lem (2.7) is somewhat more complicated when T(f) is strictly convex, but the general ideas

are similar to those in the linear model.

For the system setting, the following analog of Proposition 2 holds.

Proposition 7 If T(f) is strictly convex, f is the solution of (2.1), and the optimum values

of the system problem in Problem (2.7) are denoted by fS, n, then (a) fs can be picked

to be any value between f and 1; and (b) ni is the solution of the following equation:

JT [ lT'( ) + Pa ugu(u)du + c = O.

Proof: The proof resembles the proof of Proposition 2, except for the change in role of f' to

f, and the definitions of SF1, SF1 and SF2, SF2. We first show that the optimum value of

SF1 always occurs at the border, i.e. f* = f, by examining the KKT condition for SF1 :

bT'(f) gu(u)du + PaNd gu(u)du + ( = 0

b fNd ENd

T'( EU)ug(u)du + pa nugu(u)du + c = 0

w(f-/)=O ; _>o

If f < f, then by the convexity of T(f) and the definition in (2.1), we conclude that

bT'(f) + paNd < 0. So the first equation forces ( > 0, then by the third equation we

obtain f* = f. So the optimum value for SFI occurs at the border which is f. Since

SF does not change as f varies in [f, 1], we have shown the first part of the claim. The

optimum value for n* in this case can be obtained using the second equation of the KKT

conditions and the fact that f* = f. Namely, the optimum nE solves the following equation:

'E b T'(n ) + Pa] ugu(u)du + c = 0, as claimed.Nd Nd
It is now enough to show that in the second case where f > f, the same relation holds

for the optimum production level. To show this, note that first of all, SF2 is a function of



nE only, hence to get the optimum it suffices to find the root of its derivative:

OSF2 nE b nEu
-= -- T( N •

dnE oNd Nd
+ Pa] ugu(u)du +c

By setting this equation to zero we will end up by the same type of relation for n* which

we obtained before from SF1, hence always s  [()d c 0.

The following analog of Proposition 3 for convex T(f) characterizes the set of the game

equilibria.

Proposition 8 Let fG, ng denote the game solution, let kG = and set iE =- Nd If

kG
T(f) is strictly convex, then (a) j ugu(u)du = ,; and (b) fG < f

Pr
if and only if

1 k b [ TT'i( E

+ Pa] ug(u)du + + prkG j gu(u)du > 0. (3.1)

Proof: The first part of this claim is just the optimality condition for the manufacturer. As

above, this does not depend on the shape of T(f) so this relation remains the same. The

fraction kG is therefore determined by the values of c, pr and the egg yield variability, and

are assumed to be known.

To prove the second part, if f k G

b T'(, lEU
INd~ Nd )+pa]ugu(u)du+c+prk G gu(u)du < 0,

then by replacing f = , we can rewrite GF1 just as a function of nE as follows:Nd

GFI(nE) = b fo n UEU nd G+ ) lg()dT(' )gu(u)du + bT( G ' gu(u)duNd Nd ) fk'

+(Pa + Pr)nEfokG0 / f00ugu(u)du + (Pa + Pr) (rtEkG)] gv(u)dukG

GF (nE) is a convex function of nE so the first derivative shows the behavior of this function

completely:

,f(7

7 [r b ,( nEU) +Pa]u
kG nEkG N]

+ -d[bTLI ( ) +PaNd

J(u)du + Pr k ugu(u)du

gu(u)du + PrkG G gu(u)du
kG kG

OGF 1

Onnw



= T'( + a ugu(u)du + c + p,k g(u)du

+ -cbTl(nG )+ PaNd] g(u)du (3.2)

However, note that the function GF1 is a convex function so clearly for every f _ f or

equivalently E E we have: G ] . On the other hand if we plug fiE
enE 9nE RE=hE

into (3.2) we have:

GF b EU ) + Pa ugu(u)du + C + k gu(u)du
OnE ]nEN E [Nd Nd I G

+ Nd bT'( ENd ) +aNd] gu(u)du

k I NG 1 GkG
k [ T'(' ) + Pa ugu(u)du+c+p,rk gu(u)du

0 N Nd f/Nd

in which the last equality comes from the fact that fIE = f , and recalling (2.1). Note that

the last expression is less than zero by assumption, so the optimum of GF1 occurs at its

border, f* = f. Because the inequality is strict, optimum of GF2 also is greater than f, so

fG> f.

To show the reverse direction, we first show that the function

fNd

H(nE) nE b T( nEU) +Pa ugu (u)duo Nd Nd

is a nondecreasing function on nE.

,H nE b nEUu2 b fNd fNd fNd
OnE 0 (Nd)2 Nd T ( d +NdT nE )x(-E 2)

fNdS nE b[Ni[  T- 1T (n E)] 2gU(u)du > 0

The second equation follows from the definition of f, and the last inequality is due to the

convexity of T(f) in f. Hence we have H(nE) Ž> H(iE) for all nE > fiE. By replacing



H(nE) with its definition,

nE b T'( nEU) + a gb E(u)du E + Paugu(u)du ;VnE iE

(3.3)

If we assume 1 kG T' ) +P a ugu(u)du + c+PrkG gu(u)du > 0 we will show

that fG < f, which is the reverse direction of part 2 of the claim.

Because this is the game setting, f can be replaced by n , and

GF2(nE) =b NdT(EU )g(u)du + bT(Ek ) : gu(u)du + PrnE ugu(u)du

Nd Nd d
nE

+PrO(nEk ) / g u(u)du ++ panE ugu(u)du + pa(fNd) gvu(u)du
ikG J f

InE 0 -Nd nE

= b T'( nEU) + Pa ugu(u)du + c + prkG  gu(u)du (3.4)

_E -l( NU ) + Pa ug(u)du + c + prk gu(u)du > 0

The second equality for GF2 comes from (2.5). If f _ f then nE Ž TiE, so the inequality

in the third line is justified by (3.3). Finally the last inequality comes by assumption, and

implies that for every f _ f the function GF2 is nondecreasing under the stated assumptions,

so the optimum f* for GF2 can be obtained at f* = f. Hence fG < f, completing the proof.

The inequality in Condition (3.1) shows that if b is not sufficiently higher than the other

costs, such that the marginal health benefit obtained by vaccination do not cover the vaccine

costs, then the game pushes the government to order less vaccine than is required to vaccinate

a fraction f of the population.

Theorem 3, the main result of this section, shows that, as in the linear case, the system

optimal production level exceeds that of the game equilibrium.

Theorem 3 Let nS and ne denote the production level under the system optimum and game



equilibrium, respectively. For all nonincreasing strictly convex T(f), we have n > nG.

The proof of Theorem 3 requires the following three lemmas.

Lemma 1 If nE n E, then fG <.

Proof: To proof this lemma we show that the function GF2 obtains its minimum at its border

(f). We use the function H(nE) that was defined in the proof of Proposition 8, which was

shown to be nondecreasing, and nG > ns to conclude that

T( Tnu) + Pa ugu(u)du j E T'( U) +Pa ugu(u)du.

By plugging n¶ into the derivative function of GF2 in (3.4), and using the above relation,

=GF [ T.- b + i +p.kG  gu(u)duS2  -T'(4---) + Pa ugu(u)du + c + prkG gu(u)du
JO In G Nd Nd C

j E T'( ) +pa ugu(u) du+c+pkGfgu(u)du

=PrkG gu(u)du > 0
/O~G

The equality in the third line comes from (7). The last inequality shows that the derivative

of the function GF2 at the optimum point nG is strictly positive, which is not possible unless

nG is at its lower extreme, nG = AE, where fiE introduced earlier. O

Lemma 2 Let f be the solution of bT'(f) + (Pa + pr)Nd = 0. Then fG > .

Proof: By the definitions of f and f, and strict convexity of T(f), we have f < f. Let

AE = . Because f < f, we examine the government subproblem GF1 with objective

function GF1 to analyze the pair (f, HE).

OGF1k
G  b ,EU,

[=F [ bT'(AU N Pa + Pr] ugu(u)du
OnE nE= E LJ T t• ) a

+ -G bT'( tkG ) +PaNd +prNd 0 gu(u)dusNd I Nd ] a



bkG P EU a + Pr] UgU(u)du < 01 [NdT'(Nd)+P

The second equality is true because the second term in the derivative is zero, by the definition

of f, ~E. The last inequality comes from the strict convexity of T(f), so T'(f) < T'(f); for

all f < f. The derivative of GF1 is negative at f. By the convexity of T(f), it follows that

the optimum of GF1 is attained for a point bigger than f (since f < f), and so fG > f. f

Lemma 3 Let ks -= f  Then for all k > 0,

ks b SbPa] _Ug(u)_du • +Pa ugu(u)du.

Proof. To prove the lemma, we show that I(k) = jk [ [ T'( + Pa] ugu(u)du attains
Nd

its minimum at k* = ks. The derivative of I(k) is ' = [dT'(N•) + pa] kgu(k). Note that

for k < ks , we have <a , = f, and so by the definition of f, the derivative of I(k) is

negative. So I(k) is decreasing for k < ks. If k > ks, then k > f so > 0, and I(k) is

increasing. Therefore I(k) attains its minimum at ks. 0

Theorem 3. Proof: Equipped with the three lemmas, we turn to a proof of Theorem 3 by

contradiction. Let us assume that n 2> nS. First of all by Lemma 1, we have fG < f. We

consider two cases:

Case 1: fG < f, nE > S. In this case, the optimum solution (fG, niG) would occur in

the middle of the region for GF1, so that [OGF == 0. By plugging neE into (3.2), we

have

0 = [+T'(-GY) + p]ugu(u)du +c+ nNdT NdprNd

kG [bT' )N + PaNd + PrNd gu(u)du

j' [ ,T(naEu) +Pa ]ugu(u)du c+ c=d -- N--i -- d•



+ N [bT'(fC) + PaNd + Pr Nd] j gu(u)du ;(because of nG kGG= fGNd)

jk [b·r Nd TI NdG + Pa] ugu(u)du + c ; (Lemma 2 and convexity of T(f ))

On the other hand note that the function J(nE) = [ T'( + a] ()d is anL b 2Nd

increasing function of nE. This is because = f b[(N 2 T"(,,n.] 2gu(u)du > 0, as T(f)

is a convex function. So ne > ns , means that J(nE) Ž J(n4). By the definition of J(nE),

and for k = kG,

0kG
b nGu[NT'( 4 d) + pa]ugu(u)du >

[N•T(f) + pa]ugU(u)du > ks b

kb (-- Nd) + pa]ugu(u)du + c >

0kG I T'(E) +Pa ]ugu(u)du (3.6)

d TNdU) + pa] ug(u)du, then (3.6) implies

0ks Nd) Pa ugu(u)du + c

(by Proposition 7),

which contradicts (3.5). So we should have:

okG I bTV (-Nd) + Pa] ugu(u)du < k s [pa Ug dEU
[-N-• b -- U) + pa]ugv(u)du,

but this inequality also contradicts Lemma 3. So case 1 results in a contradiction.

Case 2: fG = f, nGE > nS. In this case, the production level would be nGE = RE = L-.

As (f, hE) is the optimum pair for GF1, we should have: [L- ] E < 0 or equivalently:

[bT'(hEU) +Pa] ug(u)du + cc prkG j gu(u)du

+ P'( E ) +U gu(u)du
NdL Nd ) Jk

+ Pa] ugu(u)du + c + pk rk gu(u)du
kG

(3.5)

kIf
iffJ

=0;

kG0 k
0 > j

kG

o

•u

b T( nEU
Nd Nd-



G b ku, Pa ugu (u) du + c

On the other hand, the last expression can be written as:

•E T( ) + Pa ugu(u)du + c < 0 (3.7)

Note however that nEE = n'9 > nS. By the monotonicity of the function H(nE) from

Proposition 8,

14Nd b ffSd

E [-fT(g) + Pa ugu(u)du + c> ] T'( UgU(U)d + = 0,

which contradicts (3.7). Since both cases lead to a contradiction, the claim is proven. O

Hence, there is an opportunity for an effective contract to align incentives and to improve

vaccination coverage.

3.2 Coordinating Contracts

This section constructs a contract which can coordinate this supply chain. Unfortunately,

the cost sharing contract of Section 2.2.2, defined by the pair Pr, Pe, does not coordinate the

supply chain. Observe that in the piecewise linear case, the government orders enough, i.e.,

fG > f', even without a coordinating contract. This may not be true for the convex case,

where without the contract, fG maybe smaller than f < fs, as shown by Proposition 7 and

Proposition 8.

Thus, a coordinating contract should provide an incentive for the government to vaccinate

a higher fraction of the population, and provide a manufacturer with an incentive to produce

enough. Section 3.2.1 shows that this goal can be achieved using a whole-unit discount for the

vaccine purchased by the government. In return, the government will pay the manufacturer

a portion of the production cost. The relation between the whole-unit discount and the cost

sharing portion is such that the more people the government plans to vaccinate, the greater

the discount they get and the higher its participation in the production cost.



3.2.1 Whole-unit discount/cost sharing contract

Consider a contract where the vaccine price depends on the fraction of the population the

government plans to vaccinate, that is, the government pays the manufacturer Pr(f) per dose.

The cost sharing component of the contract is such that the government pays proportional

to the production level, nE. The per unit price paid by the government, pe(f) depends on

f.
This section first constructs a specific class of pricing policies. It then shows how the

original game is modified by the pricing policy, and that the given pricing policies indeed

align incentives.

The following two assumptions constrain the set of pricing policies of interest.

Assumption 5 The price pr(f) > 0 has the following characteristics:

1. There is a whole-unit discount, i.e., p1(f) < 0.

2. The total vaccine cost (Pr(f)fNd) is nondecreasing in f,

(a) (pr(f) fNd)' = p'(f)fNd + pr(f)Nd > 0 for all 0 < f 5 f.

(b) p'~(f)f Nd + pr(f) Nd = 0.

3. The total cost to the government, excluding the cost sharing component, is convex in

f,

(a) bT"(f) + p"(f)fNd + 2p'(f)Nd > 0 for all 0 < f < f.

4. There are no further volume discounts beyond a certain threshold, Pr(f) = Pr(f) for

allf< f 1.

If the derivative p'(f) does not exist at f = f, then use the left derivative in Assumption 5.

The first two characteristics in Assumption 5 allow for many pricing policies. The third

characteristic restricts pricing policies to ones for which the total cost of vaccine procurement

and social costs are convex'. Below we introduce a set of such policies that satisfies all of

these properties.

'In reality, the total cost is likely to be convex as required. There is a heterogeneous population in reality,
and priority for vaccination may be given to "easy" cases first, such as children, the elderly and health care
workers, which give greater marginal benefits for prevention and stopping transmission.



Assumption 6 Given p(f), let pe(f) 0 satisfy - (f) ug(u)du for all f ESPr (f) o
[0, 1].

In Assumption 6, ks = L is the same as before, where f, nS are the solutions for the

system setting.

Before proceeding, we show first that the set of the conditions in Assumptions 5 and 6

results in a feasible set. We give an example that satisfies the conditions in Assumption 5,

then modify it to obtain functions that satisfy all of the conditions in both assumptions.

Consider the following pricing strategy,

p- [ - T(f) + T'(f)f + T(0)], 0 < f f
Prp(f) = fNd (3.8)

The following result shows that pricing strategies exist that satisfy these assumptions. A

range of choices of r for (3.8) is feasible for both assumptions.

Claim 1 If 0 < r < 1, then the pricing strategy introduced in (3.8) gives a nonnegative

price for any f and satisfies all the conditions in Assumption 5.

Proof: First we show that Pr(f) > 0. Note that the function -T(f) + T'(f)f + T(O) is an

increasing function of f on [0, f], as its derivative -T'(f) + T'(f) exceeds 0 for all f < f

because T(f) is strictly convex. Further, its value is zero at f = 0, so -T(f) +T'(f) f+T(O)

is a nonnegative function over [0, f]. Therefore Pr (f) 0 for f E [0, f]. For f E (f < f], it

is clear that Pr(f) = Pr(f) > 0.

We show that this Pr (f) satisfies all the conditions in assumption in the reverse or-

der. Multiplying Pr(f) by fNd and taking the second derivative implies (Pr(f)fNd)" =

-tbT"(f). So bT"(f) + (pr(f)fNd)" = (1 - n)bT"(f). But bT"(f) + (pr(f)fNd)" is the

left hand side of the third condition in Assumption 5. By the strict convexity of T(f),

bT"(f) + p"(f)fNd + 2p'(f)Nd = -T"(f) 0; V 0 < f < f
For all f f 1 we have bT"(f) + 2

For all f < f 5 1 we have bT"(f ) + p"(f ) f Nd + 2p'(f) = bT"(f) > 0.



To prove validity of the second part of assumption, by taking the derivative of (pr(f)fNd)

we have: (pr(f)fNd)' = bb[- T'(f) + T'(f)] which is nonnegative for 0 5 f 5 f (by

convexity of T(f)) and is zero for f = J. For f < f 5 1; (pr (f) fNd)' = pr (f)Nd > 0.

Finally to show the first part we take the derivative of Pr(f) for 0 < f< :

OPr = _ T'(f)f - T(f) + T(0)]

The numerator in the bracket is positive due to convexity of T(f) indicating the desired

result for 0 < f < f. Finally, for f < f < 1 we have p'(f) = 0. O

Claim 2 If 0 < K < min{1, [Tf)•T(o)],}, then the pricing strategy in (3.8) satisfies As-

sumptions 5 & 6.

Proof: Claim 1 states that (3.8) satisfies Assumption 5 for the range of , in question.

We now show that for some n, (3.8) satisfies Assumption 6. If we set p,(f) = c -

Pr(f) fos ugu(u)du, then it suffices to show that Pe(f) 2 0 for all f. Since Pr(f) is nonin-

creasing in f, we only need to show that p,(0) f0k ugU(u)du < c. For any pr(f) that satisfies

(3.8),
b

p (O0) = lim Pr(f) = lim rN [- T(f) + T'(f)f + T(0)]
f-o f--o fNd

Sb ) - im T(f) - T(O)= [T'(f)-lim. f )
Nd f-o f

= bNA[ T'(f) - T'(0)]

Observe that foS ugu(u)du < p. We therefore satisfy Assumption 6 if ad [ T'() -T'(0)] p <

c. O

All the ingredients are in place to build a coordinating contract. The key idea is to keep

the relationship between the optimal production level and order quantity linear. Assump-

tion 6 accomplishes this. To see this, observe that this contract changes the manufacturer

objective, for a given f, to:

fNd __

MF(nE) = (c - Pe(f))nE - p(f)nE E ug()du - p(f)fNd U(u)du.



By taking derivatives, we have:

OMF(nE nE___ =(c - Pe(f)) - Pr(f) ,ug(u)du

OnE 0

2 MF(nE) fNd fNd f Nd
2 Pr )U( ) 2 o.OnE E E rE

Nd

Therefore, this MF is convex in hE, and the optimal nE satisfies foE ug(u)du = (f)

fNd

Together with Assumption 6, this implies that f 0 fE ugu(u)du = fko ugu(u)du. So for any

given f, the optimal production level for the manufacturer is linear in f, with

fNd (39)
n E  ks (3.9)

E kS

Therefore this contract changes the government objective to

min GF= E[ bT(-) + PaW +r(f)Z+Pe(f)En ] (3.10)
fNd

and changes the manufacturing constraint to fNd= ks. This restatement of the game setting

for the whole-unit discount/cost sharing contract permits the statement of the main result

of this section.

Theorem 4 For any pe(f),Pr(f) that satisfy Assumptions 5 and 6, the optimal values of

Problem (3.10), denoted by (f, ni) , are equal to (f, nr) . That is, this cost sharing contract

coordinates the supply chain.

Proof: In order to analyze Problem (3.10), we again split it into two separate subproblems.

Case 1 (0 5 f 5 f): In this case the optimization problem would be

fNd fNd

min GF1  b nET( EU)gu(u)du + bT(f) gu(u)du + PanE nEug(u)du
f Nd

+pafNd gu(u)du + pe(f)nE + Pr(f)nE "E ugv(u)du
n E

= cnE(by Assumption 6)

+pr(f)(fNd) N gu(u)du ,
n
E



subject to the constraints fNd = ksnE; 0 < f • f; and nE > 0. Substituting the constraint

nE = kfN into the objective function gives

min GF1 = b T( u)gu(u)du + bT(f) gu(u)du + Pa fd ks ugu(u)du

ks k s

s.t. 0<f<f.

We show that in this case the optimum value is at f. For this purpose, it is enough to

analyze the first derivative of GF1:

Of sb jk T'( u)ugv(u)du + bT'(f) j gu(u)du +Pa 1 ks ugu(u)du

+PaNd j gu(u)du + cNdS +pr(f)Nd gu(u)du + p'(f)fNd g(u)du
ks k ks kS

Ndks  b ) +a]ug(u)du + c) (3.11)

+[ bT'(f) +paNd+pr(f)Nd+p1'(f)fNd] j gu(u)du.

We show that each of the two components in (3.11) is negative, making the derivative of GF1

negative for all 0 < f < f. To see this, first note that the function J(f) = fOS [T'(u

pa]ugu(u)du is an increasing function of f, as J'(f) = s T 0. Hence

J(f) • J(f), Vf < f. However, using fNd = nSks, we get J(f) = fS, k T'(, ±

pa]ugu(u) = -c (by Proposition 7). As a result J(f) + c < 0, so

1ks [N-T'(4- u) + pa]ugu(u)du + c < 0, V 0 < f < J.

This shows that the first term in parenthesis in (3.11) is negative. To show that the second

term of the derivative of GF1 is also negative, we consider the term bT'(f)+paNd+Pr(f)Nd+

p'(f)f Nd. The derivative of this expression is bT"(f) + p"(f)fNd + 2p'r(f)Nd, which is

positive using the third part of Assumption 5. This means that bT'(f) + PaNd + Pr(f)Nd +

p'(f)fNd < bT'(f) + PaNd + p (f)Nd + p'(f)fNd for all 0 < f < f. Note that bT'(f) +



pNd = 0 by the definition of f, and that pr(f)Nd + p'(f)f Nd = 0 by the second part of

Assumption 5. This suggests

bT'(f) + paNd + pr(f)Nd + p'(f)fNd < 0, V 0 < f • f,

which shows that the second term of the derivative of GF1 is also negative. By the strict

convexity of T(f), equality occurs only at f. Hence (3.11) implies that GFI (f) < 0 for

all 0 < f < f, meaning that the minimum of GF1 is attained at f. The corresponding

production value to J is rSE (using 3.9). So in this case, the only candidate for optimality is

the system optimal solution.

Case 2 (f 5 f K 1): In this case, using the definition of p,(f), Pr(f) = Pr(f), and

hence p,(f) = p,(f) for all f Ž f. As a result, the government objective becomes:

INd oNd

GF2 = b (nE EU)gu(u)du + bT() g )du +anE ugu(u)du

j TfNd
+ PafNd gu(u)du + pe(f)nE Pr)E nE ugu(u)d

nE

= CnE(by Assumption 5)

+ pr(f)fNad gu(u)du],
nE

subject to the constraints fNd = kSnE; f _ f 5 1; and nE > 0. Substituting the constraint

fNd = kSnE to remove f from the objective gives:

nE  n
E ugu(u)du

GF2 = b T( •EU)gU(u)du + bT() g(u)du +PanE nugu(u)du

+PaINdg gu(u)du + ME+ pr()nEksS gu(u)du
nE

with the constraint f _ f replaced by the constraint nE ns

We now show that the derivative of the objective function in this case is positive, and



hence GF2 is minimized when that constraint is tight, nE = n'. Consider:

The first term above is exactly the function H(nE) introduced in the proof of Proposition 8.

By using its nondecreasing property, we get H(nE) _ H(ns) for all nE > nS. Recall that
NNdProposition 7 suggests H(nE) = f TE [ T() + pa]ugu(u)du = -c. This implies that

nE T'( Nd) + pa]ugu(u)du + c > 0; V nE >

By using this result with (3.12), we obtain the desired result,

GF2  fnE b nEu=FE N T'(Nd ) +Pa]ugU(u)du + c+ p(f)ks g(u)du
'Nd 00Nd

> pr(f)k s gu(u)du > 0.
ks

In both case 1 and case 2, the optimum values for the game setting are f, ns . :O

3.3 Numerical Results

This section uses the idea behind Theorem 4, together with estimates of parameters from

the influenza literature, in order to develop a contract that can coordinate the supply chain

empirically, even though the actual T(f) may slightly deviate from strict convexity.

Longini et al. (2004) estimate Ro = 1.68 and Weycker et al. (2005) argue that 0 = 0.90

is a reasonable value for vaccine effects, so we chose 4 to vary between [0.85, 0.95] and Ro

between [1.5, 2]. Weycker et al. (2005) estimate the direct costs (not indirect) of each infected

individual with b = $95 on average over the different groups. In our experiments, b takes

values between 70 and 120. The vaccine price is set to pr = $12 (CDC, 2005). For vaccine

administration costs, we tested each of Pa = $20, approximately the value in Pisano (2006)

for Medicare reimbursement; p, = $40, the value that Weniger et al. (1998) estimated for

pediatric vaccines, based on the cost of a doctor visit; and Pa = $60, which accounts for



inflation and provides a sensitivity analysis. We used d = 1 dose of vaccine, the usual value,

per adult vaccinated. We are not aware of published estimates of the variance of vaccine

production yields, although it is clear that variable vaccine yields are significant enough to

cause noticeable fluctuations in the quantity of vaccine delivered (U.S. GAO, 2001). We

assumed that U has a gamma distribution with mean p = 1 (Palese, 2006) and tested

different values for the variance, o2 = 0.025, 0.05, 0.06, 0.1, 0.2. We assumed a population of

N = 3 x 10i individuals and a production cost of c = $6 (not necessarily the actual value).

We implemented the whole-unit discount/cost sharing contract in Section 3.2.1 for cases

of T(f) that are based upon the above parameters and using X = 0.01. For example,

Figure 3-1 depicts the contract prices, government costs, and manufacturer profit when

b = $95, Pa = $60, Ua2 = 0.2 and n = 0.128. While T(f) in this case is not precisely convex,

a strict application of the prices implied by (3.8) and Assumption 6 leads to a whole-unit

discount price, Pr(f) and cost sharing price pe(f) that coordinates incentives. Figure 3-1(a)

shows that the wholesale price obtained by (3.8) is not monotone in this case.

We can show that a modification of the wholesale price in which the increasing part

of the price is replaced by a constant value equal to the maximum wholesale price, as in

Figure 3-1(b), is still coordinating. The intuition for why such a change can coordinate

incentives is as follows. The convex payment, under the contract Pr(f), for the government

offsets the convexity of the cost function and pushes the government to order enough vaccines

(fs). In the case of concave-convex attack rates, one need not push the government to order

higher amounts while f is in the concave region, assuming that the first dose is cost effective,

bT4(0) + PaNd < 0, and that the social optimal f is in the convex region. With those two

assumptions, the government order as much as possible in the concave region even without

the contract incentive. Thus there is no need for a non-linear payment in the concave

region. As f is raised into the convex region, the contract regains its nominal shape and

gives an incentive for government to order more. This variation for our proposed contract can

therefore potentially coordinate incentives even for a larger class of attack rates in which T(f)

is first concave and after a point becomes convex, assuming bT'(0) +PaNd < 0. Appendix B

notes that T(f) is convex, or first concave then convex, for almost all of parameters that are

valid for influenza transmission and vaccination (or when there is parameter uncertainty),



and that in each case the associated contract is coordinating.

In this example, the manufacturer's effort is increased from 195M eggs to 233M eggs

(~ 19.5% increase), and its profit increases from $8.82 x 108 to $9.56 x 10i (by $74M, or

8.4%). The government's order changes from 0.73 to 0.48, and its vaccine and social costs

increase from $1.001 x 1010 to $1.060 x 1010 (- 5.9% increase) and $3.103 x 109 to $2.510 x 109

(- 19.1% decrease), respectively. The total governmental outlay decreases from $1.312 x 1010

to $1.311 x 1010 (by $10M, or - 0.1%).

Table 3.1 provides a sensitivity analysis with respect to the model's parameters. The

particular choice of r, in the fourth column of Table 3.1 insures that both government and

manufacturer are better off under the contract. The following three columns show the in-

crease in the manufacturer cost and decrease in the government social (cost of the infected

population) and vaccine costs (procurement, administration, and cost sharing costs), respec-

tively, when the contract is implemented. Notice that the government vaccine cost denotes

all the vaccine procurement, administration and cost sharing costs (i.e. terms related to

Pr, Pa, Pe) and the government social costs represents only the social costs of the disease

(i.e. the term related to b). Although the government is better off after the contract in each

row of the table, this benefit is primarily through a reduction in social costs due to increased

vaccination expenditures. In our tests, we observed:

* There are always choices for , so that with the contract, (a) the manufacturer's profit

increases, (b) the government's social cost decreases, (c) the government's vaccination

cost increases.

* Higher variability in yield leads to greater manufacturer profit and higher government

vaccine costs, but also to lower government social costs (more yield volatility pushes the

government to order more vaccine, and the manufacturer to produce more, resulting

in greater coverage on average).

* For a given set of parameters, a larger /- increases the manufacturer's profit and gov-

ernmental vaccine costs, but the governmental social costs do not fluctuate as much.

The parameter K can be set by the government in order to provide incentives to manufacturers



Modified contract prices

order quantity (f) order quantity (f)

(a) Contract prices before modification (left
vertical axis has Pr (f), right vertical axis gives
pe(f)).

(c) Governmental vaccine procurement, vac-
cine administration, and health costs, GF(f).

(b) Cost per dose, pr (f) (scale on left vertical
axis), and per unit production effort, Pe(f)
(scale on right vertical axis).

Manufacturer Profit
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(d) Manufacturer profit, -MF(nE).

3
x 108

Figure 3-1: Cost sharing/whole-unit discount contract.
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Table 3.1: Sensitivity analysis for contract outcomes, with Ro =
b2 manufacturer gov. vaccine gov. social before contract after contract

b Pa 02 K
profit increase cost increase cost decrease f nE f nE

95 20 0.2 0.092 7.90% 7.67% 23.69% 0.88 234 M 0.56 2.75 M
95 60 0.2 0.128 8.4% 5.9% 19.1% 0.73 195 M 0.48 233 M
120 20 0.2 0.073 6.97% 7.13% 23.02% 0.95 253 M 0.58 296 M
70 40 0.2 0.159 9.39% 7.68% 22.41% 0.69 183 M 0.49 221 M
95 20 0.1 0.109 27.84% 9.99% 36.61% 0.72 205 M 0.50 235 M
120 60 0.06 0.082 3.90% 3.21% 11.62% 0.51 148 M 0.42 163 M
95 40 0.06 0.099 4.77% 4.11% 14.23% 0.51 147 M 0.44 163 M

to produce, while keeping social costs at a desired level.

Sections 3.3.1 and 3.3.2 provide additional sensitivity analysis that evaluates the effect of

inaccurately estimating T(f) on the decision parameters and the economic result of taking

an under-informed decision. In particular, for the numerical experiments reported there, the

benefit of a coordinating contract, relative to the game setting, tends to be more significant

than the potential penalty of some level of error in estimating T(f). The benefit is still

gained, but the benefit is less significant, when the linear approximation is used and X is

not close to 0, or when X is estimated much too high. If the value of X is uncertain, it is

therefore better to estimate X on the low side than on the high side, and to use the concave-

then-convex contract that is illustrated here, as opposed to using the linear approximation.

The coordinating contract did very well in an example where there was uncertainty in R0.

We performed two sets of sensitivity analysis experiments. The results are directly com-

parable with those from the this section.

The first set addresses a sensitivity analysis with respect to the parameters of the model.

The second set addresses a sensitivity analysis with respect to uncertainty about the param-

eters and/or the functional form of the epidemic model. We discuss each in turn.

3.3.1 Sensitivity Analysis for Model Parameters

Table 3.1 provides a sensitivity analysis with respect to the model's parameters, as those

parameters are changed from their values in Section 3.3. The particular choice of ra in the

fourth column of Table 3.1 insures that both government and manufacturer are better off

1.68 and ¢ = 0.9.



under the contract. The following three columns show the increase in the manufacturer cost

and decrease in the government social (cost of the infected population) and vaccine costs

(procurement, administration, and cost sharing costs), respectively, when the contract is

implemented. Notice that the government vaccine cost denotes all the vaccine procurement,

administration and cost sharing costs (i.e. terms related to Pr, Pa, p,) and the government

social costs represents only the social costs of the disease (i.e. the term related to b). Al-

though the government is better off after the contract in each row of the table, this benefit

is primarily through a reduction in social costs due to increased vaccination expenditures.

In our tests, we observed:

* There are always choices for n so that with the contract, (a) the manufacturer's profit

increases, (b) the government's social cost decreases, (c) the government's vaccination

cost increases.

* Higher variability in yield leads to greater manufacturer profit and higher government

vaccine costs, but also to lower government social costs (more yield volatility pushes the

government to order more vaccine, and the manufacturer to produce more, resulting

in greater coverage on average).

* For a given set of parameters, a larger i increases the manufacturer's profit and gov-

ernmental vaccine costs, but the governmental social costs do not fluctuate as much.

The parameter n can be set by the government in order to provide incentives to manufacturers

to produce, while keeping social costs at a desired level.

3.3.2 Sensitivity Analysis for Model Uncertainty

We performed a set of numerical experiments in order to test the sensitivity of the coor-

dinating contract to changes in the attack rate function that are due to uncertainty about

epidemic parameters, or to uncertainty about the functional form of the attack rate. They

allow for an assessment of the penalty for assuming a piecewise linear attack rate (which

has a simpler coordinating contract) when the actual attack rate is nonlinear (and the co-



ordinating contract is more complex). They also assess potential penalties for incorrectly

estimating epidemic parameters.

In summary, the benefit of a coordinating contract, relative to the game setting, tends

to be more significant than the potential penalty of some level of error in estimating T(f).

The experimental settings are:

* Base linear case: the manufacturer and government both believe that the attack rate

is a piecewise linear function, and the believed attack rate is the same as the actual

attack rate.

* The first experiment illustrates the differences between the decision variables and the

cost functions when the attack rate is assumed to be a piecewise linear function by the

manufacturer and the government, but the true attack rate is not precisely piecewise

linear (X - 0).

* The second experiment illustrates the differences between the decision variables and

the cost functions when the attack rate is assumed to be a piecewise linear function

by the manufacturer and the government, but the true attack rate is associated with

a higher initial exposure to infection (X = 0.01).

* Base nonlinear case: the manufacturer and government both believe that the attack

rate is a concave-then-convex function, with X = 0.01, and the believed attack rate is

the same as the actual attack rate.

* The third experiment illustrates the differences between the decision variables and the

cost functions when the attack rate is assumed to be a concave-then-convex function

with X = 0.01 by the manufacturer and the government, but the actual attack rate has

X = 0.02.

* The fourth experiment illustrates the differences between the decision variables and the

cost functions when the attack rate is assumed to be a concave-then-convex function

with X = 0.01 by the manufacturer and the government, but the actual attack rate has

X -- 0.



* The fifth experiment illustrates the differences between the decision variables and the

cost functions when the attack rate is assumed to be a concave-then-convex function

with X = 0.01 and Ro = 1.68 by the manufacturer and the government, but the actual

Ro actual attack rate is random with continuous uniform distribution on [1.58, 1.78] (to

evaluate the effectiveness when a point estimate is used in the presence of unpredictable

disease transmission parameters).

In order to provide results that are comparable with Section 3.3 we chose Ro = 1.68, / =

0.9, b = 9 5 , Pa = 6 0 , Pr = 12, c = 6, d = 1, N = 3 x 108, U - gamma[5, 1/5], unless otherwise

specified. Each experiment leads to a row in Tables 3.2-3.3.

Table 3.2 indicates that decisions may differ from their optimal values, if the epidemic

model is incorrectly specified, and by how much. The first column corresponds to fG if

the government knew the true value of X. Similarly the second column is fG under the

"believed" value of X, i.e. in reality this value will be ordered. Finally the third column

is the gap between the first and second column. The next nine columns are the analogous

values for nGE, fS, and rs respectively.

Table 3.3 compares the governmental costs and manufacturer profits for those same

experiments, when the true model is not known precisely. The first column is the actual

government cost under the game setting if he knew the parameter correctly. Likewise the

second column is the government cost if he orders based on his belief. Hence the difference

between these two columns gives us the governmental loss in total cost. The next four

columns are analogous numbers for the system wide cost and manufacturer's profit.

One key observation from these experiments is that the economic benefit that is associated

with the coordinating contract exceeds the penalty that is associated with a somewhat incor-

rect estimate of the epidemic model. Consider the values for experiment 1 in Table 3.3. The

total cost to the system when the government and the manufacturer optimize individually

equals the government total costs minus the manufacturer profits (which can be considered

a transfer from the government to the manufacturer), or $11.51B - $992.5M = $10.52B. The

benefit of the contract for the total system costs is therefore $10.52B - $10.44B, or $80 M.

The penalty for not having the correct model for T(f) is $10.46B - $10.44B % $20 M. In



Table 3.2: Gap in the decision variables when parameter estimates are incorrect
Experi- actual believed gap in actual believed gap in actual believed gap in actual believed gap in
ment # fG fG fG G fS ;S fS nS S S

Base lin. 0.757 0.757 0% 200.4 M 200.4 M 0% 0.449 0.449 0% 235.2 M 235.2 M 0%
1 0.831 0.757 8.9% 219.9 M 200.4 M 8.9% 0.456 0.449 1.5% 257.5 M 235.2 M 8.6%
2 0.739 0.757 2.4% 195.6 M 200.4 M 2.4% 0.484 0.449 7.2% 233.6 M 235.2 M 0.68%

Base nonlin. 0.739 0.739 0% 195.6 M 195.6 M 0% 0.484 0.484 0% 233.6 M 233.6 M 0%
3 0.706 0.739 4.7% 186.8 M 195.6 M 4.7% 0.498 0.484 2.8% 234.6 M 233.6 M 0.42%
4 0.831 0.739 11% 219.9 M 195.6 M 11% 0.456 0.484 6% 257.5 M 233.6 M 9.2%
5 0.796 0.739 7.1% 210.7 M 195.6 M 7.1% 0.485 0.484 0.2% 245.3 M 233.6 M 4.7%

Table 3.3: Gap in the cost functions when parameter estimates are incorrect
gov cost gov cost sys cost sys cost man profit man profit

Experi- w/ true w/ believed w/ true w/ believed w/ true w/ believed
ment # parameters parameters parameters parameters parameters parameters
Base lin. 10.92 B 10.92 B 9.948 B 9.948 B 904.6 M 904.6 M

1 11.51 B 11.55 B 10.44 B 10.46 B 992.5 M 904.6 M
2 13.12 B 13.12 B 12.15 B 12.21 B 882.9 M 904.6 M

Base nonlin. 13.12 B 13.12 B 12.15 B 12.15 B 882.9 M 882.9 M
3 13.84 B 13.85 B 12.91 B 12.93 B 842.9 M 882.9 M
4 11.51 B 11.57 B 10.44 B 10.47 B 992.5 M 882.9 M
5 13.27 B 13.30 B 12.25 B 12.26 B 950.9 M 882.9 M

this and each of the other cases, the benefit of coordinating the contract is more significant

than having a precise estimate of the epidemic curve. The effect is particularly noticable in

experiment 5, where the principal uncertainty is in the value of Ro, and the benefit of the

contract is about $70 M, and the penalty for not knowing the exactly correct Ro is less than

$1 million.

While the benefit of the coordinating contract in experiments 2 and 4 still outweighs

the penalty for not having a precise estimate of T(f), the margin is less significant in those

experiments. The worst case is in experiment 2, where the benefit of the contract is only

$87 million, and the penalty for not estimating T(f) accurately is $60 M. Both of those

experiments are examples where X is either overestimated significantly, or a piecewise linear

approximation is used with an incorrect estimate of X. The suggestion is therefore to not

overestimate X, and to avoid the linear approximation in applications where it is not truly

a good approximation.

Another important observation from these experiments is that the percentage error for

the decision variables is smaller in the system setting, than for the game setting (except for

experiment 2, which is a scenario that is to be avoided in practice on economic grounds as

described above). For example, in experiment 5, the percent difference between the true



and believed optimal fraction of the population to vaccinate is 7.1%. With the coordinating

contract, the difference between the true and believed optimal fraction to vaccinate is 0.2%. A

similar comparison holds for the number of eggs to use for manufacturing. The coordinating

contract, therefore, tended to narrow the gap between the true optimal and believed optimal

values in these experiments, as measured by percentage error. The only exception to that

observation is when the value of X is believed to be rather larger than its true value. This

reinforces the importance of not overestimating X. The sensitivity for the unknown Ro in

this case is encouraging for the use of the proposed contract.





Chapter 4

Supply Chain with Multiple Countries

In this chapter we consider the global influenza vaccine supply chain and model the interac-

tion between different countries. The model with multiple governments can not be simply

replaced by several copies of the single government case from the previous two chapters

due to the disease transmission effect across the different countries. Figure 4-1 shows the

countries which have shown a number of human cases of Avian Flu. The size of each pin

is proportional to the size of the epidemic in that country. It is clear that as time passes,

the epidemic transmits to the neighborhoods of the originating countries. In other words,

epidemic outcomes in each country is affected by the actions taken by other governments as

well. The epidemic model in this chapter is different than the previous model since various

countries can potentially have different characteristics for the disease and its transmission.

As a result we use an epidemic model with heterogenous population in this chapter, as op-

posed to a homogeneous population from previous chapters. Notice that in this setting we do

not model the manufacturer explicitly in the supply chain so that we can focus on logistical

issues across different governments.

4.1 Joint Epidemic and Supply Chain model

We assume that there are M + 1 countries in our model. One country will be denoted

as the index country in which the epidemic initiates (country 0). Following the notation



(a) Jan-Jun 2005 (b) Jul-Dec 2005

(c) Jul-Dec 2006 (d) Jan-Jul 2007

Figure 4-1: Spread of human cases of Avian Flu to different countries

from previous chapters, each government i E {0, 1, ... , M} initially selects a fraction fi of

a population of Ni individuals to vaccinate. Given the demand by the governments, the

manufacturer then decides how much to produce. However, due to production uncertainty,

the manufacturer might be able to fulfill the whole or part of initial orders by governments

as discussed in previous chapters. In this chapter, however, we model the production uncer-

tainty differently. Suppose that the final vaccine dose that government i receives is afiNid in

which 0 < a < 1 is a random variable that models the yield uncertainty. We use a different

notion for production uncertainty since there is no manufacturer in this setting, however

we can relate the two notations (U and a). Suppose that there is only one government in

the model, then we have a = min{ ' 1}. Notice that such an allocation of vaccines to

governments means that in the case of insufficient production of vaccine, the manufacturer

allocates the total supply of vaccine proportional to the initial orders of governments. Such

an allocation might not necessarily be an optimal assignment of the scarce vaccine to dif-



ferent governments. However, in this chapter we do not examine manufacturer incentives to

work with one country over another. Moreover the manufacturer is not a part of our opti-

mization model, so public benefits of various vaccine allocations to countries is not modeled

as a primary concern for the manufacturer.

When acting separately, like the single government case, each government i seeks to

minimize its cost of procuring and administering vaccines (vi per dose), plus the total social

cost due to infection, biT 1(fo, fl, - -- , fM), where Ti(.) is the total expected number of infected

individuals by the end of the influenza season (a generalization of T(f) from Section 2.1) and

bi is the average direct and indirect cost of an influenza infection. Like before, we simplify

the model in each country to a homogeneous model in order to focus on contract issues

for vaccine sharing across different countries, rather than including details about optimal

allocation of a given volume in a specific country. Notice, however, that the overall epidemic

model in this chapter is a heterogenous model.

The epidemic model drives the analysis for supply chain behavior through the functions

Ti(f 0, • • , fM), which model the expected number of infected individuals in country i by the

end of the influenza season, as a function of vaccinated population fractions. Longini et al.

(1978) gives a characterization of these functions in a heterogenous population as a system

of deterministic differential equations. Let 0 be the vaccine effect on susceptibility, i.e.,

probability of becoming infected decreases by 1 - 0, given the exposure. Denote the vaccine

effect on infectiousness by q, i.e., probability of transmitting the disease decreases by 1 - €,

given an exposure. Moreover let fi be the fraction of population i that gets vaccinated, and

generalized basic reproduction number, R2j, be the number of secondary infections in country

i from one randomly selected infectious individual in country j for every i, j E {0, , ... , M}.

Finally let Si(0) be the fraction of susceptible population and Ii(0) be the fraction of infected

and infectious population at the start of the epidemic. The attack rate, Pi, for country i,

or fraction of the infected population throughout the epidemic season in country i, is then

(Longini et al., 1978)

pA = Si(O) ( O + e{ E o e l •) (4.1)



Such a characterization, though general, is mathematically intractable from the supply

chain analysis point of view. As a result we use a two-folded epidemic model in order to

mimic the dynamics of the spread of the disease both within and across different countries

while simplifying the mathematics. Section 4.4.1 shows that such an approximation has a

small error, typically in the order of 3% on average, for computing the final attack rates of

influenza in each population. At the start of the epidemic, we use the next generation matrix

method (e.g., Hill and Longini, 2003). This approach enables us to model the interaction

across the different countries. After a few generations of evolving the disease and once the

epidemic is going in each country, the disease outcomes are somewhat insensitive to the

exposure from the other regions. Hence the purpose of the second stage of our epidemic

model is to use the feedback from the first stage, and model the dynamic of the spread

of the disease within each individual country. For each country i, we use a deterministic

compartmental model of Ni homogeneous and randomly mixing individuals that start out

Susceptible to infection, but may also be infected and Infectious, or Removed upon recovery

from infection, a standard SIR compartmental model that is a reasonable model for the

natural history of infection of influenza. Table 4.1 summarizes the notation used throughout

this chapter.

The next two sections explain these models and some of their properties with further

details.

4.1.1 Epidemic Model - Start of the Epidemic

The next generation matrix method approximates the spread of the disease at the start of

an epidemic. Based on the notation above, we can model the beginning of the epidemic

process as the following system of equations in which yoi(g) and yli(g) are the expected

number of secondary infections in population i, unvaccinated and vaccinated, respectively,

at generation g (Hill and Longini, 2003):

yoi(g + 1) = E o [Rij(1 - fj)yoj(g) + Rj 0fj ylj(g)]
yii(g + 1) = Ezmo [Reij(1 - fj)yoj(g) + RijOfjyUlS(g)]



Table 4.1: Summary of Notation for Multiple Governments Supply Chain.
Infection Transmission

M + 1 Total number of countries

Ni Total number of people in country i, i = 0, 1, ... , M

Rij The number of secondary infections in country i from one randomly
selected infectious individual in country j

fi fraction of the population in country i to vaccinate announced by its
government to the manufacturer

0 Vaccine effect on susceptibility

k Vaccine effect on infectiousness

Xi The initial fraction of susceptibles in country i that are infected due to
exogenous exposure to infection (from the index country)

Ii(0) The fraction of infected and infectious population in country i at the
start of the second phase of the epidemic

Si(0) The fraction of susceptible population in country i at the start of the
second phase of the epidemic

fi The critical vaccination fraction in country i (fraction of population to
vaccinate to halt outbreak), assuming that country i were considered
alone

Pi The true attack rate, or the fraction of infected population throughout
the epidemic season, in country i

i The true attack rate approximation based on the two-tier epidemic
model presented in this chapter

Ti (.) Total expected number of infected during the infection season in country
i based on the two-tier epidemic model, i.e. Ti(.) = Nipi (a function of
the fraction vaccinated in potentially all countries)

Supply Chain

a Random variable for the yield per egg.

vi Vaccination program costs for government i, including vaccine purchas-
ing and administration costs. i.e., using notation used in Chapter 2 and
Chapter 3, v = Pr + Pa for each country

bi Average total social cost per infected individual in country i

f i  Maximum fraction of the population in country i that can be vaccinated
based on the budget constraint.



So if we define the 2(M + 1)-vector of vaccinated and unvaccinated infected population as

Y(g) = [Yoo(g), yio(g), ., YOM(g), Y1M(g)] T

then the above system of equations can be written as:

y(g + 1) = Ry(g)

or equivalently

y(g + 1) = Rgy(O) (4.2)

where R2(M+1)x2(M+1), is the next generation matrix for vaccine allocation (fo, • , fu):

Roo(1 - fo)

RooO(1 - fo)

RMo(1 - fo)

RMoO(1 - fo)

Roo0 fo

RooO/fo

RMoofo

RMoeofo

SRoM(1- fM)

... ROM (1 - fM)

• " RMM(1- fM)

SRMMO(1 - fM)

Notice that each component of Rg is a nonlinear function of potentially all of the fi's. This

nonlinearity complicates the analysis significantly. Given the following two assumptions it

can be shown that the complex network of interactions between countries (see Figure 4-2-a)

can be approximated by a much simpler network in which only relations from the index

country (country 0) to others (countries 1, -- , M) are important (see Figure 4-2-b).

Assumption 7 The epidemic starts only at one of the countries, denoted by country 0.

Assumption 8 For every i $ j, and k $ j, we have RijRjk 0 0.

The second assumption simply indicates that the value for Rij can not be big. Notice that a

stronger version of this assumption is usually made in the literature (Brandeau et al., 2003;

Sun et al., 2007) in which Rij 0 0. Our assumption relaxes the previous ones by allowing

Rij > 0, however restricts its second order effect. Intuitively, this assumption states that

RoM/fM

ROMO¢fM

RMMOfM

RMMoofM

(4.3)



the probability of one person in China infecting a person in France and the same person

in France infecting an individual in the US is very small. This assumption is therefore is

less restrictive than in Brandeau et al. (2003); Sun et al. (2007). To illustrate this point, we

show later in Section 4.4 that [0.01, 0.05] is a reasonable range for Rji's when i $ j. As a

result, while Ri = 0.02 might not be approximated by zero, R_? = 0.0004 is more easily

approximated by zero. The following two lemmas explain the significant role of the index

country in the spread of the disease under Assumption 7 and Assumption 8.

Lemma 4 Given assumption 7, for any generation g, the number of infected individuals,

y2 i+l(g) + Y2i+2(g), in population i (i = 1, ... , M) can be written as

y2i+1 (g) + Y2i+2(g) = Ri0 g(fi, f) + A x gg(fo, , fM) (4.4)

where Jg(.-) is a function of only fi and fo parameters, 9g is some general function of

potentially all vaccination fractions, and A = max {Rj Rj k}. Moreover,

lim Igg(f0" ...M) < (7-mIi) 1 - (2Roji(Rii + Roo)) g  (4.5)A-•Oi 1 - 2Roi(Rii + Roo)

where 7rg is the expected number of infected individuals in population i after g generations in

the absence of any vaccination.

Proof: Notice that using Assumption 7, y(O) = [1, 0, 0, 0, ... , 0, 0 ]T. Hence by (4.2), it is

enough to show that all entries in the first column of the matrix Rg depend on fo and the

corresponding fi or formally matrix R9 gets the following form:

R2M+lx2M+1S =

Roo Jg(fo)+A A o(') Roo Jg(fo)+ Ax g() ROM Jo(fo,fM)+ Ax gg(-) ROM Jg(fo,fM)+ ax go(.)
Roo ,Jg(fo) + A x (.) Roo Jg(fo)+A g(.) ... ROM Jo(fo, fM) + Ax g(.) ROM Jg(fo, fM) + Ax g(.)

Rio Jo(fo,fl)+ Ax 9,(.) Rio Jo(fo, fl)+ A. gg(.) ... R1M Jgl(fl,fM)+ Ax g,() RM Jg(fl,fM)+ Ax • gg()
Rlo Jg(fo, fl) +A x gg() Rlo Jg(fofl) +A X g(') .."' RM Jg(fl, fM) +A x g() RM J9(f, fM) + A x gg() (4.6)

RMoJg(fo,fM)+A x gg() RMOJg(fo, fM)+Ax 9g(-) ... RMM Jg(fM) + A X g(.) RMM JgO(fM) + a X g(.)
RMOJg(fo,fM)+A xg(-) RMoJg(fo,fM)+Axgg(.) ... RMM Jg(fM)+ x gg(.) RM Jg(fM)+a x gg(.)



In the above expression we use notation Jg(.) to show a general function of some param-

eters. So the first component of this matrix represents a product of Roo times some function

of fo. Likewise the bottom element in the first row shows ROM times a function of fo and

fM. Notice that the notation above can be misleading. For instance, in the first row the two

Jg(fo)'s in columns 1 and 2 are mathematically different. The reason we used this notation

is that at the time being the nature of these functions does not make any difference and only

their parameter dependencies are important. So to prove the statement of the lemma, we

only need to prove that the above equation hold for R9. The proof is by induction:

Induction base: For g = 1 we have the matrix in (4.3) which is clearly in the desired form.

Induction step: Let's suppose that Rg is the form of (4.6), then R9+1 = R9 R. Hence the

(2k + 1, 21 + 1)th (k, I = 0,... , M) element of this matrix becomes:

(2k + 1, 21 + 1)
th 

(element)

Rol(1 - fl)

Ro01 0(1 - fi)

=[Rko Jg(fo,fk), RkO Jg(fOfk), Rk1  g(fl,fk), Rk1  g(1,fkf), " , RkM g(fk, fM), RkM :9(fk, fM)]

RM, (I - fl)
RMIO(1- fl)

Rol(1 - fl)

Rol0(1 - fl)

+ [Rko A x 9,(.), Rko A x g,(-), Rl A x 9,(.), Rkl A x g,(), ,RkM A x 9g(-), RkM A X g,(-)]

RM (1 - fl)
RM O(1- fl)

M M

= [Rj g(f, fk)Rjl(
1 

- fl)+ Rkj g(fjfk)RjlO(1 - fl)] + A [RkJ 9g,() Rj,(1- fl) + Rk, g!9() RjlO(1- fl)]

j=o j=o

= [R k g(fk)Rkl(l - fl) + Rkk Jg(fk)Rkl0(
1 
- fl) + Rkl Jg(fl, fk)R11(

1 
- fl) Rkl Jg(flfk)R 1O(1 - fl)] (4.7)

+ RkjRjl (f, fk)(
1
- fl) + Jg(fj, fk)(1- fl) + g(.)(1 - f) +Agg ( -)(1- fl)] (4.8)

+ A(1 - fl) [RkkG(.)Rkl + ORkkgy(-)RAk. + Rklg(.)Rll + ORkl!g()RllI  (4.9)

=Rlk [Rkk Jg(fk)(
1 

- fl) + Rkk Jg(fk)0(1 - fl) + Jg(fl, fk)Rll(1 - fl) + Jg(fl, fk)RllO(1 - fO)] + A x +1(.)

=Rkl Jg+1(fk,f •) + Ang+1()

Likewise the (2k + 1, 21+ 2 )th (k, -= 0, ... , M) element of matrix Rg+1 becomes:

(2k + 1,21 + 1 )th (element)

Rol Ofi
Rol O0fl

=Rko Jg(fofk), RkO Jg(fo,fk), Rkl Jg(fl,fk), Rk 1 Jg(fl,fk), "', RkM Jg(fk,fM), RkM 9Jg(fk fM)]

RMl0fl

RMlO0fl



Rorzf/

Ro1 O4ft

+ [RkO A X gg(*. Rk0 A X g((), , Rk A X gg('), Rkl A X (), "'" , RkM A X Q9 (-), RkcM AX G )]

RMLtdf
SRMlOfl

M M
= Rkj [ fjf3 k) jlfR + Rkj + 9 fj fk)fjl 0f+ +AF [Rkj g 0(.) Rjfi + Rkj 9 (.) Rjle0f0]
j=O j=O

=[Rkk J g(fk)RklOf + Rkk 7g (fk)RklOffi + Rkl Jg(fl,fck) + R kl i Jg(fl, fk)RIll0fi ] (4.10)

+ F RkjR3 j [Jy(fj,fk).fl + Jg(fj,.fk)OEfl + Ag(.) fit + Agg(.) Ofz] (4.11)

+ A4fj [Rkkg(.)Rkk + ORi kgg(')Rkl + Rklgg(.)RI + 0Rklg(.)RI] (4.12)

=Rkl [Rkk .g(fk)~fi + Rkk + Jg(fk)Ofi + Jg(ft, fk)Rzll0fl + Jg(fl fk)Rl 104lf] + A X Qg+l(-)

=Rkl Jg+1 (fk .fl) + Agg+ (')

Similarly we can show that similar relations hold for the (2k + 2, 21+ 1)th element and (2k +

2, 21 + 2 )th element as desired. Using Assumption 7, Y2i+(9) + Y2i+ 2(g) = Ri+l,l + +2,1,

so the first part of the lemma is proven. By bounding g,(.) terms, we use induction to show

the second statement of this lemma for the (2k + 1, 21 + 1)th component of matrix R9+1 .

Replacing RkjRjl by A within (4.8), equations (4.7)-(4.9) lead to,

g+1() [Jg(fj, fk)(I - fl)+ Jg(fj, fA)0(1 - fl)
j k, l

+ Ag(.) (1 - f) + g()+ (1 - ft)]

+ (1 - f) [Rkk, (')Rki + k ORkkg(g)Rk + Rkig(')Rl + ORkl~g(.)Rll]

< E [:7r(1 - fl) + rqO(1 - fA) + Ag(.) (1- f) + Ag(() (1 - f)]
j:k, 1

+ (1 - f i) [Rkkg(.)Rki + ORkkg(.)RkI + Rkigg(.)Rj + oRkig(')Rnu]

lim Gg+l ( ) <Z [r(1 - f) + I7r0(1 - f)]
j k,l

+ (1 - fi)Rki • [ri kkG(.) + Rkkg(.) + Gg(.)RI + gO(.)RII]

in which the second inequality is obtained based on the fact that for any generation g, the

attack rate in each population is maximum when no vaccine is administered. Likewise by



replacing RkjRjl with A in (4.11) and using (4.10)-(4.12) we get

lim gg+ < [rf + r f]A---o
jhk, l

+ 4fiRkL i [Rkkg()+ ORkkgg() + gg(.)R1 ± gg1)R

In order to find the A coefficient in y2i+l (g) + Y2i+2 (g), we just need to add these two terms

when k = i and I = 0. Using inequalities 0, 4 < 1 we get

lim 9g+1i() < 2 ( r) + 2Rio lim Riigg (.) +g ()Roo
j$o,i

As a result ifg(-) < 2(•-7rj) 1 - (2Roi(R + Roo))g

As a result if (-) < 2 1 ( ( + Roo))for the induction step, then clearly
1 - 2Roi(Rii + R00)

l(') < (C-•-)• 11 - (2Roi(Ri + Roo)) + 1

+1) ) -(2 i(Ri + R 00 ) which finishes the proof. EO
1 - 2Roi(Rii + Roo)

Now notice that based on (4.5), the coefficient of A in (4.4) is a constant number when

A -+ 0. Hence using (4.4) and Assumption 8, this lemma states that for each country

i = 1, ... , M, the expected infected population at country i would be a function of its own

vaccination level and the vaccination level in the index country. Moreover the expected

infected population at the index country is a function of its own vaccination level only. The

following lemma illustrate some properties of this function.

Lemma 5 Given assumption 7, for any generation g and population i, the function Jg(fi, fo)

of Lemma 4, is a convex and decreasing function with respect to fi, fo.

Proof: We can no longer work with the previous general forms for functions J(.) in 4.6. The

only important elements in the matrix R9 are the first column elements. So:

R oo Jo00(fo) Roo J(fo) Ro0  J(fo, fl) Ro1 J(fo, fl) "'" ROM J(fo, fM) ROM J(fo, fM)

Roo 70J 1 (fo) Roo J(fo) Rol0 (fo, fl) Rol0 (fo, fl) ... RoM ,(fo, fM) ROM J(fo, fM)

Rio J2 o(fo, fl) Rio 7(fo, fl) Rl1 J(fl) R 1 1 7(f1 ) '.. RiM J(fl, fM) RiM J(f1, fM)

R 1 o Jio(fo, fl) Rio 1 (fo, fl) Ril J(fl) Ril J(f1) .. RiM 7(fi, fIM) RI J(fl, fM)

RMo J2M, 0o(fo, fM) RMO J(fo, fM) RM1 J(fl, fM) RM1 5(fl, fM) .."' RMM J(fM) RMM J(fM)

RMO 21M+1l,0o(fo, fM) RMO J(fo, fM) RM1 J(fl, fM) RM1 J(fl, fM) -"' RMM J(fM) RMM J(fM)



Here subscripts show the elements for which the function belongs and superscript g is used to

show the generation number. Notice that functions in other columns are left in their general

form since they will not be used in the analysis. This matrix can be further simplified in

the following manner. A second look at matrix in (4.3) reveals that all the even rows are 0

times their preceding row. Thus the g-generation matrix can be written as follows.

R
g 

=

Roo Jo09o(fo) Roo J(fo) Ro1 J(fo, fl) Rot J(fo, fl) ... ROM J(fo, lM) ROM J(fo, fM)

Rooe 0J0 (fo) Roo J(fo) Ro0 1 (fo, fl) Ro01 J(fo, fl) ... RoM J(fo, fM) ROM J(fo, fM)

R 1 o Ji"go(fo, fl) Rio J(fo, fi) R 1 1 J(fl) Rl1 J(fl) ... RiM J(fl, fM) RiM J(fl, fM)

RIo0 ,Ji0 (fo, fl) Rio J(fo, fi) RI1 J(fl) Ri1 J(fl) '.. RiM J(fl, fM) RiM 3(fl, fM)

RMO JmI,o(fo, fM) RMO J(fo, fM) RM1 J(fl, fM) RM1 J(fl, fM) ... RMM J(fM) RMM J(fM)

RMoe 7J,0o(fo, fM) RMO J(fo, fM) RM1(ffM) RMu J(fU, fM) "- RMM J(fM) RMM J(fM)

We know that R9+ 1 = R R9, hence similar to the previous section we can obtain the elements

of the first column of Rg+ 1 as follows. Like equation 4.7 we can obtain the (2k+1, 0)th element

of R9+l to be

Jo~'(fo) = Roo o'(f o)(1 - fo) + Roofoo Jo9D(fo)

Io •(fo, fk) = Roo "0g(fo)(1 - fo) + Roofo0o JV(f 0 )

+ Rkk(1 - fk) qk(fo, fk) + Rkk 9fk o(fo, fk)

Here we prove the claim by induction for country 0. Other cases can be shown with similar

arguments. To show the decreasing property of fog+l (fo), we take the derivative of this

function with respect fo:

Ro 1 fa o +l(fo) = [(-1 + 0f) Joo(fo)] + (1 - fo + Oqfo) Jfoo(fo)Roo Ofo 'lo ·f
The first term in the right hand side is negative due to the fact that 0q < 1. The second

term is also negative due based on the assumption that Jogo(fo) is decreasing. Thus fo9+ (fo)

is also decreasing. Now to show the convexity, the second derivative gives us:

1 ]2 a g +0f2[
oo (fo) = 2 (-1 + 0) o o) + (1 - + fo)Roo fffo I



The first term is positive since 0 < 1 and function 'To$(fo) is decreasing and second term is

positive since JToo(fo) is convex.

This completes the induction step for the proof and the induction base is clearly held

true. O

Hence based on Lemmas 4 and 5 and Assumption 8, the expected number of infected

population in each country i, y2i+l (g) + Y2i+2(g), is a decreasing convex function of each of

its parameters.

The next generation matrix provides a good approximation to the total number of infected

individuals only at the start of the epidemic. As a result the convexity properties in Lemma 5

are not valid for the overall number of infected individuals throughout the epidemic season.

Notice that we use the total number of infected individuals obtained above (output of the

first model presented in this section) as the initial infected population for the next section

(input for the second model).

4.1.2 Epidemic Model - Middle of the Season

The previous section gives a suitable model of the infection dynamics at the start of the

epidemic, however it might provide a rather poor approximation after the few initial steps

of the disease transmission.

As a result, we formulate the rest of the epidemic by the same SIR model which used in

Chapter 2, using the output of the previous model to model the initial infected population

for each country. Such a model will allow us to look at independent countries, except for

the way that the initial infected population in each country is influenced by the interaction

between countries modeled in the first stage.

Like the homogenous model, we group the population in country i into three distinct

subgroups at any given time t: the fraction of Susceptible, Infectious and Removed indi-

viduals (Si(t),li(t), and Ri(t), respectively). These fractions in the population vary as a

function of time t according to a deterministic differential equation. Like Chapter 2 we

denote V) = 1 - 00 to be the combined vaccine effect on susceptibility and infectiousness.

We assume that a fraction fi of population i is vaccinated so Ri(t) = fj• for t < 0. At



the start of the influenza season, at time t = 0, a fraction Xi of the remaining susceptible

population becomes infected due to exposure from exogenous sources, that is interacting

with the index country and hence Xi = Xi(fo). As a result Si(O) = (1 - fio)(1 - Xi) and

li(0) = (1 - fio)Xi. The total number that become infected during the influenza season is

Ti(fi, fo) = Nipi, where the attack rate Pi (Longini et al. 1978) satisfies

I (0)pi = Si(0) (1 + (0) - eR )
Si(0)

or alternatively

i 1 - - (1 - Xi)(I - Ofi)e -R .  (4.13)

Notice that we use Pi to distinguish the attack rate of this approximation from the true

attack rate, from (4.1). Rather than deriving results via such an implicit solution from

the epidemic model, we derive results for a nonincreasing Ti(-) > 0 with specific general

characteristics. This removes the details of an implicit solution for an epidemic model from

the supply chain analysis.

We showed in the previous section that for every i, Xi = xi(fo) is a decreasing convex

function of its parameter (Lemma 5). Similar to the homogeneous population, it can be

shown that the critical vaccination fraction can be obtained as

Rii - 1

The following proposition is the main result of this section:

Proposition 9 Let Pi be the attack rate of country i that satisfies (4.13), then for i =

0,1,... , M

1. pi is decreasing in fi

2. pi is decreasing in fo

3. pi is a submodular function of (fi, fo) for fi < fi', and a supermodular function for

fi > f•f, where f'i is the critical vaccination level for country i if country i is considered

alone.



4. pi is first concave then convex in fi

Proof: For the first part, in equation 4.13 we take pi to the righthand side and take the

derivative with respect to fi. Using chain rule we have:

+ Ri (1 - X)(1 - f )e-Rj Oi f
Ofi

(1 - ))e - RjPj = 0

- (1 - XIV)e- RjPj

1 - RRi(1 - x)(1 - Vfi)e -RIi 3

The numerator is clearly positive since (1 - X)e - R i Pj < 1 for all pi > 0 and 0 < X < 1.

So it is enough to show that the denominator is positive. To show this consider the term in

the denominator and replace 1 - bfij from equation 4.13:

1 - Rii(1 - X)(1 - V/fi)e -Ri ji = 1 - Rji(1 - x) (1(1e P e-R
1 (-X-•e - R i i •5i ) - ii

1 - (1 - x)e - Rii• 1 - (1 - X)e - iiPi
- Rji i(1 - X)e - RiPi)

- (1 - X)(1 + Riiji)e - R~Pi)

> 0

1 - (1 - x)e- Rii" (1

the reason for the last inequality is that the function (1 + x)ex obtains its maximum value

at zero. Hence this part is shown /.

To show the second part of the claim, we follow the same approach as above except that

now we should take the derivative with respect to fo:

Ri(1 (- X)(1 - fie)e - R- R + (1
Ofo Ofo

- ,fi)e- R"iP = 0

Ox (1 _ o fo)e-Rj

Ofo 1 - R2i(1 - x)(1 - /f )e-Rjj

88

&Pi

Of

Ofi
(4.14)

Ofo

.. D

/ _



We have shown before that the denominator is positive. On the other hand numerator

is negative based on Lemma 5. It indicates that the initial number of infected population in

country i is a decreasing function of fo. Thus the second part of the claim is also shown ,/.

To show the third statement, we take the derivative of &j with respect to both variables

which leads to the following expression.

- x)(1 - 4f)e-R"ip O + R2i(1 - X)(1 - /fi)e- R "jP a 2fi
Ofo Of Ofoaft

Of e- i"i - Rii (1aRo Ofo
- Rij(1 - x)Oe - Rj"j O~i

afo
- 0 fi)e Ri 4 = 0

Of2

By rearranging the terms and using the fact that 1 - Ra(1 - x)(1 - 4Of)e -Rii 0 , it turns

out that the sign of 02 is the same as the sign of

-Ri (1 - X) <0Ofo
On the other hand, both * < 0 and -2 O. Thus the left terms is negative and

SIGN = SIGN [ + Rji(1 f- O,•f ]

In order to find the sign of the right hand side, we use the expression from the first part to

replace o9.afi"

+ Ri (1 - Of) =fi
Of -

- (1 - x)e -
- Ri(1 - -ff) 1 Rii(1 - x)(1 - f )e - MA

= [1
1 - R2 (1 - x)(1 - ,f)e-Ri [i

>0

So for 1 - Rii(1 - Ofi) > 0, the sign of the right hand side term, and hence the sign of ,2
j-OfoOfi'

is positive. This is equivalent to f, > fi where fi is the critical vaccination fraction /.

To show the final part, we use a different approach in computing the second derivative.

- -f Rzi( 1&foaf

Rj(1 - Ofi)
ofj

- R-i(1 - Ofid)

Ofo"I IV)



In 4.13 rearrange the terms so that the fi is a function of Pi. i.e.,

fi 1 p1, Ii

Since Pi is a decreasing function of fi, then 2  and 2 ' have the same signs. So from this

point on, we investigate the sign of 9.

02/f 1 [Rjj(1 - X)e-Rii i [Rp - 2 + (RiiPi + 2)(1 - X)e-Riiji]
ap 0 [1 - (1 - X)e-RjPj] 3

The sign of the statement above is the same as the sign of the following term

- Riijp + 2 - (Riiip + 2)(1 - x)e-RiiP (4.15)

We show that the typical sign of the above equation is first negative then positive which

corresponds to first concave then convex function. To show this we simply show that the

above term is an increasing function of fi or equivalently a decreasing function of pi, since pi

and fi have inverse relations (based on part 1). So by taking the derivative the above term

with respect to Pi we get

-Rii + Rij(1 - x)(1 + Rjjpj)e - Rj? <; 0

again the reason for this inequality is due to decreasing property of function (1 + x)e - x. So

we have been able to show that (4.15) is increasing in fi (decreasing in pi3 ). This means

that the typical behavior is that it is negative then becomes positive, and thus attack rate

is concave then convex. Notice that each of these sections can be empty, namely attack rate

can be a concave or convex function for some parameters of the epidemic. For instance this

function is always concave under the condition that Rii(1 - 4') > 2, in other words the basic

reproduction number is large and at the same time the vaccine is not potent enough. O

We will derive all of the results of the supply chain model based on these general char-

acteristics of functions Pi. Next sections define the supply chain model with further detail.



(a) The general Network (b) The network under Assumptions 7 and 8

Figure 4-2: Network of interaction between countries

4.1.3 The Game Problem

The epidemic and supply chain models above define a one-shot game between different

governments. Each country i acts selfishly and selects a fraction fi that indexes its demand,

knowing that all other countries, in particular the index country, behave optimally. The cost

function for each individual country consists of two major components: social costs of the

disease, and vaccination program costs. As a result the cost function for each country i can

be written as follows:

GFo = E [bo To(a fo) + vo afoNod]

GF, = E [bTi((af, afo) + vi afiNid] ;V1 < i < M

In this formulation, functions Ti(.) denote the total number of infected people in each

population, i.e., Ti(.) = PiNi where Pi is obtained from 4.13.

Such an (M + 1)-player game has a Nash Equilibrium Nash (1951) which is the solution

of the following system of equations:



min {E [bo To(afo) + vo afoNod] }
fo>0

min {E [bl T(afi, afo) + vl cfiNd]}
fl_>o I fo

min {E [ bM T(afM, afo) + M afMNMd] }
fM>_OI fo

Our first task is in this section is to characterize the set of equilibria for this game. In

order to proceed with the analysis of this section we need another assumption.

Assumption 9 The expected health benefits of vaccination, exceeds the vaccination program

costs for each country, i.e.

bi - vid > 0; Vi = 0, 1,-.. ,M

This is not a very limiting assumption based on the data in the epidemiology literature

(CDC, 2005; Weycker et al., 2005; Chick et al., 2007).

Even though functions Ti(.) are not well-behaved, it turns out that the first order opti-

mality conditions can characterize the equilibrium points of this game.

Lemma 6 Given Assumption 9, the unique Nash Equilibrium (fG, fG,. . , f,~) of the game

resulting between countries is the solution of the following system of equations:

boE [4 To(oefo) fG
1 + voE[o]Nod = 0Ofo

(4.16)
biE [ Ti(afi, af) + viE[a]Nid = ; (V1 < i < M)

Proof: We prove the result for government 0. The claim for other countries can be fol-

lowed similarly. The derivative of the objective function for country 0 is b0E [ To(a fo)] +

voE[a]Nod. We will first show that the left side derivative is negative. For this purpose we



replace the derivative from (4.14)

boE To(a ,fo) + voE[a]Nod = bNE [ io(afo) + voE[a]Nod
SOfo fo=0o fi fo=o

S( 1- (1- x)e-R•ip o

NoE a b- (1 X)e -  + vod)

<NoE[E (- boo +vod)]

< 0.

The equality in the second line is just based on replacing the derivative of attach rate function

from (4.14). The inequality in the third line is true since Rii > 1. Finally the last inequality

is based on Assumption 9. Hence while in the concave region, the sign of the derivative of

GFo would be still negative. So the optimal vaccination fraction should lie in the convex

region. The argument then follows since optimal fo lies in the convex region. O

Surprisingly, it turns out that there is a direct relationship between the Nash Equilibrium

of the resulting game between countries which is obtained based on economic parameters

in the model (e.g., vaccination costs and benefit), and the critical vaccination level which

is obtained based on purely epidemic parameters (e.g., characteristics of strains, vaccine

strength, etc.). The following lemma shows that under Assumption 9, governments always

order quantities such that the disease is contained.

Lemma 7 Let (f0G, f1, ... , fmG) be the solution of the game between countries. Moreover,
let (f[, fi,... , f'M) be the critical vaccination levels. Then

fi 2 fi' for all i= 0,1, . .. , M

Proof:To prove the statement in this lemma we show that under Assumption 9, for any

vaccination level fi < fl, the terms on the left hand side of (4.16) are negative, implying

that the solution of the equilibrium state has to be at least the critical vaccination level.

For this purpose we fix i and replace the left hand side of (4.16) for this country with the



derivative from (4.14),

bE[a T( fi, a f0) + viE[a]Nid = biNiE i(a fie, a f )] + viE[a]Nid[Of T (Of 2

N ( 1- (1 - X)e-R tSNiE a - bi + vid
I1 - R i(1 - X)(1 -( f)e -I +

< NE [a( - bi +vid)]

<0

The equality in the second line is just based on replacing the derivative of attach rate function

from (4.14). The inequality in the third line is based on our assumption that fi < f' which is

equivalent to Ro(1 - 'fi2) > 1, hence we get a larger term by replacing the term Ro(1 - O fi)

with 1 in the denominator. Finally the last inequality is based on Assumption 9. EO

4.1.4 The System Problem

The System Problem, alternatively, assesses whether all governments can reduce their overall

cost (financial and health-related costs) of the system as a whole by perfect coordination

between them. In this case the cost incurred by the system is simply the sum over all

government costs. i.e.,

M

SF= E [boTo(afo) + vOafoNod + (biT 2(af2 , afo) + viafiNid)]
i=1

As a result, the system optimum is the solution for the following system of equations.

Lemma 8 Given Assumption 9, the global optimum (foS, fs,... , fms) should satisfy

( 1 MTi= [Sf fo (4.17)

bE 0 Ti(afi, afoS) ] + iE[a]Nd = for all <i< i < MI fi fi



Proof: The proof is simple by just writing the KKT conditions for the System Problem

below:

minSF = E boTo(afo) + voofoNod + (biTi(ofi, fo) + vitfiNid)

s.t. fi 0; Vi = 0, 1,..., M

The KKT conditions give rise to

a M
boE To(a.fo) + biE T(afi, ao) + voE[a]Nod- E[a]o = 0Si=1

biE [aTi(afi, afo)] + viE[a]Nid - E[a] = 0 ;V1< i < M

where yi's are the KKT multipliers for the conditions fi > 0. Then using Assumption 9,

and similar argument to in the proof of Lemma 6, i.e., negativity of the left hand sides for

fi = 0, we can prove the statement of this lemma. Ol

4.2 Results

In this section using the characterization of the Nash equilibrium of the game between

governments and global system optimum and their relationship with epidemic parameters,

Lemma 7, we show the suboptimality of the Game Problem. In other words, misaligned

incentives of different governments lead to the diversion of vaccine stockpiles from the regions

where they are needed the most (index countries), to countries where they are not as needed

(all other countries in our model). The following proposition formalizes this argument.

Theorem 5 Let (foG, f1G, ... , fM) to be the solution of the Game Problem obtained in

(4.16) and let (fos , fs, ... , f S) be the solution of the System Problem obtained in (4.17).

Then

1. fG fo

2. fG > fs, fori= 1,... ,M.



Proof: We prove this theorem using Lemma 9. Since the set £ (see Lemma 9) is empty, the

statement of this theorem is clear based on the following lemma. O

Lemma 9 Let ( fG , ...- -- , f) be the solution of the Game Problem obtained in (4.16)

and (fos , f, -... , f S) be the solution of the System Problem obtained in (4.17). Moreover

let £ C {1, ... , M} be the set of countries such that their optimal order quantity under the

Game Problem is below their critical vaccination level, i.e. fF < fi' for all i E L. Likewise

let U C {1, ... , M} be the set of countries such that their optimal order quantity under the

Game Problem is greater than their critical vaccination level, i.e. f.G > f' for all i E U.

Then we have:

1. fG fS

2. fG < fS, Vi E £

3. fiG >ffs, Vi EC

Proof: We show each part separately,

1. Notice that for all i = 1, ... , M we have -To(afi, afo) < 0 by the properties of the

attack rate functions (Proposition 9, part 2). Thus by comparing f0s , foG from Lemma 6

and Lemma 8 we can observe that:

E [ (a fo) > E To(a fo) fos> f'0JG (4.18)
[afo [a Ifo

Notice that the above inequality is correct since both fos and fog are in the convex

region of To(.).

2. Since i E £, we know that fG < f'. If fis > fl, the the statement is clearly correct,

so we need to consider the case where fs < f,. Now since both order quantities are

below the critical vaccination level (hence the attack rate function in this region is

submodular based on Proposition 9, part 3) and using fos > foG we have,

OT (afi, cafos ) < 0Ti(af', af~G)
Ofi Ofi



We prove the statement by contradiction. Suppose, on the contrary, that fs < fA

then from the above equation we have

OT (a fi, afos) < OTi(a~fi, c0fo )  (4.19)
Ofi Oi f

< Tj (a fi, a f0 )
Ofi (4.20)

where the second inequality is obtained based on the convexity of function Ti(-) at the

region, and our assumption of ff < ff. Now notice that, according to (4.16) and

(4.17), the left term in (4.19) and the last term in (4.20) are both equal to -vjE[a]Nid

which is a contradiction hence fis > ff.

3. The proof of this part is very similar to the proof in the previous section. Recall that

i C U indicates that fG 2 fl. If fis < f,, the statement is clear, otherwise both

ordering quantities lie in the supermodular section of the attack rate function (based

on Proposition 9). Since fos > fo0, we have

OTj (cafi, a fos ) >OT(afi, afoG )

Ofi Of,

If, on the contrary, we have fs > fi then from this last equation we have

OTj(a fi, a fos) > OT (c fi, a f°G) (4.21)
Ofj fs Of ý fis

>OT(c( f, (a f) (4.22)
> Of (4.22)

The second inequality is obtained based on the convexity of function Ti(.) at the region.

Now notice that, according to (4.16) and (4.17), the left term in (4.21) and the last

term in (4.22) are both equal to -viE[c]Nid which is a contradiction hence fs < ff.

This result suggests that the system wants more vaccine stockpiles for the index country.

This is fairly intuitive; since when acting selfishly, the index country does not take into

account its system-wide effect on the spread of the disease which was the result of the

analysis in section 4.1.1, and therefore orders less than the socially optimum level. On the



other hand the System Problem requires less vaccine stockpile for all other countries. The

intuition behind this result is that enough vaccine is allocated to the origin so other countries

would not need as much as their game setting level. In other words the System Problem's

optimal solution leans toward a strategy that contains the epidemic at its source.

Now that there is such a suboptimal vaccine allocation under the Game Problem, the

next question would be how to design mechanisms that can align governments' incentives

and push their order quantities to system optimum level. We achieve this goal by providing

financial incentives for the index country to order more vaccines. In particular, the index

country gets partly reimbursed for each dose of vaccine it administers because the other

countries share the vaccination program costs of the index country. The following cost

sharing contract achieves this goal.

Theorem 6 Suppose that for every vaccine dose that country 0 receives, each government i

(i= 1, ... , M) pays:

-ri byNjNE T ( (aff, fo) 1
j=l 0fofoS

where rli 2 0 and E• rli = 1, then the resulting contract is coordinating. i.e.,

* It pushes all governments to purchase what is optimum for the system

* It is flexible. By changing rli 's, governments can allocate the system cost reduction in

any possible way between themselves.

Proof: Notice that under the contract, the new objective functions for each government

would be:

GFo =E boTo(ifo) + M fbjNdE T( f, fo) ] fo + vocfoNod
i=1 j=1 ~ fos

M M
+ EbN d E Tji(o•ff, fo) offo e i +onfo vofoNod

=1

=E boTo(•fo) +J bjNjd E T(Off, fo) Ifofo voafoNod
j=1 I

=E



GFi =E biTi(a fi, fo) - q I: bNjdE Ti(aff fo) ) afo + vifiNid ; (Vi > 0)
j=1 of0 fS

Taking the derivatives of the objective function for different countries leads to

OFo= E bo +o o) a bNjd E T&(a fT , fo) f+ voaNod

I f j=1 affS (4.23)

fi = E bi fi f) + vaNid (Vl < i < M)

First order optimality conditions require to find the root for each of these derivatives. We

know that by Assumption 9 the derivative of the index country is negative at fo = 0, hence

the optimum value of fo happens in the convex region and so by comparing the first line of

(4.23) to the first line of (4.17) we get that the optimum fo - fos . Comparing the second

line of (4.23) to the second line of (4.17) and using fo = f0s , we get that fi = fs for all i.

4.3 Budget Constraints

So far in the supply chain model, we have ignored the role of the vaccination program budget

constraints within the countries. In reality some countries might not be able to afford the

vaccine volume which is optimum for their population. To take this issue into account we

assume that each country i, sets asides a budget of Bi for its vaccination program costs.

There are two ways to formalize this argument:

1. Each country i is willing to pay up to the budget Bi in the vaccination program costs.

i.e. vifiNid i Bi

2. Each country i, on average, is willing to pay up to the budget Bi in the vaccination

program costs. i.e. vifiNidE[a] < Bi

Since the analysis for both of these cases is similar, we focus on the first case. Notice that

for simplicity the budget constraint vifiNid < Bi can be replaced by fi < fi for each country



i in which fi = is a constant value showing the maximum fraction of the population i

that can be vaccinated under the budget Bi.

As a result the cost function for each country i with the budget constraint can be written

as follows:

country 0: min E[bo To(cafo) + vo a foNod]
o0<fofo (4.24)

country i: min E[bi T(afi,afo) + v fiNid] for all 1 < i < M
o__fi<S I fo

The Game Problem then is simply the solution of the above system of optimization

problems. The System Problem can also be written in the same fashion. Before doing so,

we make the following assumption in order to simplify the System Problem.

Assumption 10 There is enough budget in the system to purchase the system optimum

level vaccine needed for all of the countries. i.e., if (fos, - , fSM) is the solution of (4.17)

then,
M M

Bi > E vifisNid
i=0 i=O

Based on this assumption the budget constraints are not binding for the System Problem and

as a result the system problem is the same as in (4.17), the case without budget constraints.

With the additional budget constraints and using Theorem 6 we have the following result:

Corollary 3 Let (foG, fG, - - - , fm) be the solution of the budget constrained Game Problem

obtained in (4.24) and let (fos , fj , ... , fs ) be the solution of the System Problem obtained

in (4.17). Let f~ be the maximum vaccination fraction based on the budget constraint for

country i, then

1. f fOG

2. fG _ fs, Vi = 1, .,M; fi fs,

3. fi > f, Vi= 1,... ,M; i > fis,

This result generalizes Theorem 5, and suggests that the central planer allocates more

vaccines, compared to the Game Problem, to the index country as well countries whose
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budget constraints do not let them to vaccinate up to the critical vaccination levels in their

populations. On the other hand, the system problem requires less vaccines for other countries

that can vaccinate more than their critical vaccination levels. The cost sharing contract

also is modified accordingly to take this budget constraint effect into account. Similar to

Theorem 6, the contract should financially help the countries for which fs < f*.

Theorem 7 Let B = i I fi < fs} be the set of countries that receive less than their

system optimum level vaccines. Suppose that government i 0 B pays rq(vk fSN kd - Bk)

to government k E B independent of the vaccines purchased by government k. Moreover,

suppose that for every vaccine dose purchased by the index country, each government i B

pays to the index country

m I bjNjE Tj (aff, a fo)
j=1 fOS

where for all k E B and i ý B we have > 0, E> 0 7 = 1, andEk lk (vk fSNkd - Bk) •

Bi - vifsNid, then the resulting contract is coordinating. i.e.,

* It pushes all governments to purchase what is optimum for the system

* It is flexible. By changing rbl 's, governments can allocate the system cost reduction in

any possible way between themselves.

Proof: Using Assumption 10 we notice that there exist 7j)'s that satisfy the set of conditions

mentioned in the statement of this theorem. Payments rl,(vkfkSNkd - Bk) to the budget-

constrained countries and also the choice of 77 ensure that no budget constraints would be

binding and the rest of the proof is similar to Theorem 6. O

4.4 Numerical Results

This section uses the idea behind Theorem 6, together with estimates of parameters from

the influenza literature, in order to develop a contract that can coordinate the incentives of

the purchasers in the supply chain.
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In this example, in order to simplify the analysis we look at different populations at an

aggregate level and focus only on three different regions as "countries" (i = 0, 1, 2). The

index country in our example is the Southeast Asia region, country 1 is the Western European

union, and country 2 is the United States. Longini et al. (2004) argue that Ro E [1.6, 2.4] is a

reasonable range for basic reproduction number within the US. As a result we choose the basic

reproduction numbers to be Roo = 2.4, R1 1 = 1.9, R22 = 2.1. To quantify cross-transmission

effects and obtain Rij's when i Z j, we use population information for each region together

with the air travel rates across the different countries (U.S. Department of Transportation,

2006). If we assume that infected and infectious people from country i are equally likely as

susceptible people from country i, to be in country j, then we can get an estimate on Rij

given the number of international contacts per day per person. Such an analysis gives an

estimate of Rij E [0.01, 0.05] for every i $ j. For the specific example in this section we use

Rij = 0.03 for all i 7 j.

Weycker et al. (2005) estimated 0 = 0.50 and < = 0.20 for vaccine effects of susceptibility

and infection respectively. They also estimate the direct costs of each infected individual

with b = $95 on average over the different subpopulations in the US. If indirect costs of

the disease are included, this number can jump up to b = $460. In our experiments, b2

takes values from this range for the US. Cost for other countries are adjusted since direct

and indirect costs will be different. Chick et al. (2007) argue that [$30, $70] is a reasonable

range for the total vaccination program costs in the US. We used d = 1 dose of vaccine, the

usual value, per adult vaccinated. We are not aware of published estimates of the variance

of vaccine production yields, although it is clear that variable vaccine yields are significant

enough to cause noticeable fluctuations in the quantity of vaccine delivered (U.S. GAO,

2001). We assumed that a = min{w, 1} where w has a uniform distribution in [0.5, 1.5]. We

assumed populations of No = 6 x 10s , N, = 3.6 x 101, and N2 = 3 x 108 individuals which

correspond to the recent projected population sizes of the Southeast Asia region, Western

Europe and the United States, respectively. We further assumed that, at time 0, the only

infected individuals are in the index country, with lo(0) = 0.01.

We implemented the cost sharing scheme in Section 4.2 for cases of T&(-) that are based

upon the above parameters. Consider the case when b0 = $30, bl = $120, and b2 = $200.
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Notice that we chose bo to be significantly lower than the social costs for other countries to

illustrate the lower economic sensitivity of the index country to infection. The vaccination

program costs are also chosen to be vo = $20, vl = $40, and v2 = $60 per dose of vaccines

administered. Finally we chose a zero budget for vaccination program in the index country.

In Section 4.4.2 we examine the effect of increasing index country's budget on the system. For

countries 1 and 2, the vaccination program budget is assumed to be non-binding. Optimal

order quantities for the Game Problem are fo = 0, fG = 0.69, and f2 = 0.78. Optimal

order quantities for the System Problem are fjs = 0.70, fjS = 0.66, and fs = 0.74. The order

quantity for the index country has grown significantly due to both the budget constraint and

its global effect. This change for other countries is not as significant. Under the contract, the

system-wide cost would be reduced by almost $6.47 B. Notice that not only is the contract

cost-effective, social effects of this change in the vaccination levels are also significant. After

implementing this contract, the total number of infected people globally will be reduced by

456 million individuals, i.e., about 454 million in the index country, more than 1.1 million

at country 1, and more than 884 thousand individuals at country 2.

In the next sections we perform a set of experiments to assess the validity of the two-

tier epidemic model, the value of the coordinating contract as the values of the parameters

change, and when the precise form of the epidemic model is unknown. In summary:

* Coordinating contracts are effective in deriving down system-wide costs as well as the

total number of infected individuals.

* Higher interaction rates between countries, and/or higher social costs of the disease

lead to greater cost savings throughout the global supply chain

* The benefit of a coordinating contract, relative to the game setting, tends to be more

significant when the true value of an epidemic model parameter in unknown.

4.4.1 Sensitivity Analysis for Epidemic Model

This section provides some numerical experiments to examine the validity of the proposed

two-tier epidemic model in this paper with respect to the true epidemic model for heteroge-
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Table 4.2: Comparing pi's with pi's
fo fi f2 Po 0o Gap 0 pl pi Gap 1 P2 P2 Gap 2

0.47 0.11 0.30 0.33 0.30 0.03 0.65 0.62 0.03 0.49 0.44 0.05
0.07 0.10 0.10 0.81 0.81 0.00 0.69 0.64 0.05 0.74 0.70 0.04
0.30 0.13 0.10 0.54 0.53 0.01 0.64 0.60 0.04 0.73 0.70 0.03
0.34 0.19 0.41 0.49 0.49 0.00 0.56 0.52 0.04 0.36 0.28 0.08
0.15 0.10 0.10 0.72 0.72 0.00 0.69 0.65 0.04 0.74 0.70 0.04

neous populations (Longini et al., 1978). We noticed, in general, that the attack rate Pi from

the approximation in (4.13) differs from the attack rate in the full model in (4.1), by about

3% on average. Table 4.2 summarizes the results for random selections of vaccination levels,

when 0 = 0.5, ~ = 0.2, Roo = 2.4, R11 = 1.9, R22 = 2.1, and lo(0) = 0.01. The first column

represents (random) vaccination levels in each country. The next three columns show the

attack rates in the true and two-tier epidemic models and the gap between them at the index

country, respectively. The next six columns represent the similar values for other countries.

We have tested the sensitivity of the attack rates in the proposed model with respect to

change in other parameters, such as 0, q, the matrix R, and the initial infected population

at the index country, lo(0). In all of those experiments we observe similar error margins

between the two epidemic models. As a result we can conclude that the approximation in

(4.13) is a reasonable approximation for (4.1).

4.4.2 Sensitivity Analysis for Model Parameters

Table 4.3 provides a sensitivity analysis with respect to the model's parameters, as those

parameters are changed from their values in Section 4.4. In this example we chose b =

$(30, 120, 200), v = $(20,40,60), Roo = 2.4, R 11 = 1.9, R22 = 2.1, 0 = 0.8, and 0 = 0.5.

The first column shows different values for cross-transmission rates between countries. The

following two columns show the decrease in the overall system cost and the decrease in

the overall number of infected individuals, respectively, when the contract is implemented.

Finally the last six columns show the order quantities under the Game and System Problems.

Notice that as the interaction rate between countries increases, the benefit of the contract

becomes more visible.
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Table 4.3: Sensitivity analysis for contract outcomes.
Global Decrease in

R_ Cost__Decrease Infected Individuals fi f2S
0.05 $ 7.07 B 460 M 0 0.70 0.79 0.71 0.66 0.74
0.04 $ 6.78 B 458 M 0 0.70 0.78 0.71 0.66 0.74
0.03 $ 6.47 B 456 M 0 0.69 0.78 0.70 0.66 0.74
0.02 $ 6.12 B 455 M 0 0.68 0.76 0.70 0.66 0.74
0.01 $ 5.72 B 453 M 0 0.67 0.75 0.70 0.66 0.74

Table 4.4: Sensitivity analysis for budget constraints.
Jo Cost Decrease Global Decrease in

Infected Individuals o  2G f2G OS f1S 2S

0 $ 6.47 B 456 M 0 0.69 0.78 0.7 0.65 0.74
0.1 $ 5.63 B 397 M 0.1 0.68 0.76 0.7 0.65 0.74
0.2 $ 4.74 B 334 M 0.2 0.68 0.76 0.7 0.65 0.74
0.3 $ 3.80 B 270 M 0.3 0.67 0.75 0.7 0.65 0.74
0.4 $ 2.79 B 202 M 0.4 0.67 0.75 0.7 0.65 0.74
0.5 $ 1.70 B 130 M 0.5 0.65 0.75 0.7 0.65 0.74
0.6 $ 0.57 B 58 M 0.6 0.65 0.74 0.7 0.65 0.74
0.7 $ 6.31 M 5 M 0.69 0.65 0.74 0.7 0.65 0.74
0.8 $ 6.31 M 5 M 0.69 0.65 0.74 0.7 0.65 0.74

Table 4.4 summarizes the results for sensitivity analysis on the budget constraint value for

the index country. By increasing its budget for vaccination, fo, the contract effects become

less significant. As fo goes above 0.69, the budget constraint becomes non-binding. Notice

that even though the cost savings from the contract are not very attractive when budget

constraint is relaxed, the social effects of the contract (i.e., total infected population) are

still fairly significant.

4.4.3 Sensitivity Analysis for Model Uncertainty

We performed a set of numerical experiments in order to test the sensitivity of the coordi-

nating contract to the changes in the attack rate function that are due to uncertainty about

epidemic parameters, or to uncertainty about the functional form of the attack rate. They

assess potential penalties for incorrectly estimating epidemic parameters.

In summary, the benefit of a coordinating contract, relative to uncoordinated selfish
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activity, tends to be far more significant than the potential penalty of some level of error in

estimating Ti(.), when some of the epidemic model parameters are unknown. The contract

is also more efficient in deriving down the total number of infected population when the

epidemic model parameters are unknown.

The experimental settings are:

* Base model: All the governments have incorrect information about an epidemic model

parameter. They also choose not to proceed with the proposed contract.

* Model #1: All the governments have incorrect information about an epidemic model

parameter. However, they choose accept the proposed contract (with incorrect infor-

mation).

* Model #2: All the governments have the correct information about all epidemic model

parameters, but they choose not to proceed with the proposed contract and act selfishly.

As a result the benefit of implementing the contract, with incorrect information, would

be benefit of model #1 compared to the base model. Similarly the benefit of having the

perfect forecast would be obtained by comparing model #2 and the base model.

In order to provide results that are comparable with Section 4.4, we chose Roo =

2.4, R 11 = 1.9, R22 = 2.1, b = $(30, 120, 200), v = $(20, 40, 60), d = 1, N = 3 x 108(2, 1.2, 1),

and a = min{w, 1} where w - Uniform[0.5, 1.5], unless otherwise specified. In each ex-

periment we assume one of the parameters 0, 0, or lo(0) is estimated incorrectly. Notice

that for each parameter we consider the following three possibilities: governments' belief

over-estimates the true value, under-estimates the true value or the true value is a random

variable which is estimated by its mean. In the first six experiments true values of the epi-

demic model parameters are as follows: 0 = 0.5, 0 = 0.2, and lo(0) = 0.01. For the last

two experiments, we assumed these parameters are random variable with the following dis-

tributions: the seventh row example is the case with true 0 - Uniform[0.4, 0.6], the eighth

row is the case where true q - Uniform[0.15, 0.25], and finally the last row is when true

Io(0) - Uniform[0.005, 0.015].

Table 4.5 indicates that decisions may differ from their optimal values, if the epidemic
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Table 4.5: Contract effects when parameter estimates are incorrect
believed believed believed base base base model model model model model model contract benefit contract benefit

(incorrect) (incorrect) (incorrect) model model model #1 #1 #1 #2 #2 #2 versus forecast versus forecast
SIo(0) fJ f ,G f f f f fo fC- f , f f benefit (cost-wise) benefit (attack rate)

0.4 0.2 0.01 0 0.67 0.77 0.69 0.64 0.73 0 0.69 0.78 $ 6.44 B 448 M
0.6 0.2 0.01 0 0.70 0.79 0.72 0.66 0.76 0. 6.69 0.78 $ 6.45 B 463 M
0.5 0.15 0.01 0 0.67 0.76 0.69 0.65 0.73 0 0.69 0.78 $ 6.45 B 448 M
0.5 0.3 0.01 0 0.72 0.81 0.74 0.68 0.78 0 0.69 0.78 $ 6.37 B 473 M
0.5 0.5 0.005 0 0.77 0.87 0.80 0.74 0.84 0 0.69 0.78 $ 5.64 B 500 M
0.5 0.5 0.015 0 0.80 0.90 0.83 0.74 0.84 0 0.69 0.78 $ 5.50 B 504 M
0.5 0.20 0.01 0 0.69 0.78 0.70 0.66 0.75 0 0.69 0.77 $ 647 B 456 M
0.5 0.20 0.01 0 0.69 0.78 0.70 0.66 0.75 0 0.69 0.78 $ 647 B 456 M
0.5 0.20 0.01 0 0.69 0.78 0.70 0.66 0.74 0 0.69 0.78 $ 646 B 456 M

model is incorrectly specified, and by how much. The first three columns show the poten-

tially incorrect estimates of the epidemic model parameters by the governments. Next three

columns represent order quantities under the base model. Similarly the next six columns

are orders under the model #1 and model #2. The one to the last column represent the

cost benefit generated by the contract minus cost benefit generated by the true forecast,

hence the positive quantity shows strength of the proposed contract and a negative quantity

represents that forecast is more effective. Finally the last column show a similar quantity

for the decrease in attack rates.

One key observation from these experiments is that the economic benefit that is associated

with the coordinating contract by far exceeds the penalty that is associated with a somewhat

incorrect estimate of the epidemic model. Similar behavior is noticeable for the final attack

rate reductions: the benefit from using such a contract, even if parameter estimates are

somewhat imperfect, outperforms the corresponding benefit of having a perfect forecast.
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Chapter 5

Summary, Discussion, and Model

Limitations

5.1 Discussion and Model Limitations

This thesis derived the equilibrium state of an interaction between different players in the

influenza vaccine supply chain. In Chapter 2 and Chapter 3 we considered a model with

one government and one manufacturer, with the realistic feature that a manufacturer bears

the risk of uncertain production yields. The model shows that a rational manufacturer will

always underproduce influenza vaccines in that setting, relative to the levels that provide an

optimal system-wide cost-benefit tradeoff.

When the levels of exogenous introduction of influenza into a population are extremely

small, and good estimates for the infection transmission parameters are available, the piece-

wise linear approximation for T(f) in Section 2.2 is appropriate. A relatively simple cost

sharing contract can coordinate the incentives of the actors to obtain a system optimal

solution.

When the levels of exogenous introduction of influenza into a population are not extremely

small, or when the function T(f) is estimated by averaging over prior distributions for

unknown parameter values, the analysis of Chapter 3 is more appropriate. The simple

cost sharing contract must be modified to account for the nonlinear population-level health
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benefits that are provided by influenza vaccination programs. It is therefore not surprising

that the whole-unit discount/cost sharing contracts that can align incentives depend on the

expected number of infections averted by a given magnitude of the vaccination program

effort.

Additional insights can be found by relating this analysis to the standard Newsvendor

model. For example, the standard Newsvendor model allows for secondary markets for

products that are unsold during the initial selling season, and allows for the modeling of

goodwill effects for sales. Those features might be modeled in the current framework using

an approach like that for the pay back contract in Section 2.2.2. Further, the shapes of the

reward functions show that there is some insensitivity to manufacturer and governmental

costs, should there be some reasonable error in the number of eggs ordered, or in the shape

of T(f). For the Newsvendor, an error in specifying the demand variability can also cause

some level of errors when the cost structure causes one to order a quantity that is far from

the mean.

In Chapter 4 we changed our focus to a model with multiple countries, with the realistic

feature that important countries, from the spread of the disease point of view, do not receive

enough vaccines. The model showed that rational governments order vaccine quantities

which are suboptimal, relative to the levels that provide a system-wide optimal allocation,

unless contractual incentives are provided. When there are no budget constraints, and

good estimates for the infection transmission parameters are available, the concave-convex

approximation for Ti(.) in Section 4.1.2 is appropriate. A relatively simple cost sharing

contract can coordinate the incentives of the actors to obtain a system optimal solution

(Section 4.2). When considering the budget constraints, the analysis of Section 4.3 is more

appropriate. The simple cost sharing contract must be modified to account for countries

that can not receive enough vaccines due to budget restrictions. The contract is therefore

modified to pay fixed dollar amounts to those countries with not enough vaccine-related

budget.

There are several limitations of these models. 'Some of the limitations can be handled

with existing methods. Other limitations could lead to interesting future work, but do

not limit the value of insights above regarding contract design for governmental/industry
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collaboration for influenza outbreak preparedness.

One, an epidemic model with homogeneous and homogeneously mixing populations ig-

nores the potential to target specific critical subpopulations, such as children or the elderly.

In the short run, the contractual designs here that determine production volumes could be

accompanied in a second stage analysis with other work (e.g., Hill and Longini, 2003) that

can optimally allocate vaccines to different subpopulations. The generality of the analysis

for piecewise linear (Chapter 2), convex (Chapter 3), or concave-convex T(.) (Chapter 4)

allows some flexibility in adapting the incentive alignment results above to more complex

epidemic models that prioritize certain subgroups.

Two, the coupling of drift variants and residual immunity from previous vaccination or

past infection can complicate the multi-year dynamics of influenza vaccination (Plotkin et al.,

2002; Smith et al., 2004; Duschoff et al., 2004). In a given year, information about previous

strains can in principle be used to update prior information about the parameters of the next

outbreak. The current formulation does not examine any multiyear benefits from vaccination

that may accrue from projecting vaccine strains for multiple years. This thesis presents a

positive first step for approaching the first-order effects of the current year's outbreak.

Four, the model assumes that health consequences can be quantified by direct and indirect

monetary costs, but a multi-attribute approach might be desired to more fully examine issues

like the number of deaths or hospitalizations. These features can be modeled indirectly with

our proposed model by assessing the number infected and applying the relevant morbidity

and mortality rates.

Five, the analysis assumes that the government is risk neutral, but a government may

wish to specify a higher level of vaccines in order to prepare for a worst case scenario. This

issue is addressed, to some extend, by Lemma 7, in that it is shown that in the case of

multiple countries, each government would vaccinated at least the critical vaccination level

if there are no budget constraints. A more direct way to account for this issue would be

to perform the optimization with the added constraint that the governments announced

fraction to vaccinate exceed a threshold. Another would be to inflate the value b, which

models the cost per infection, to reflect a penalty for having too many infections.

Six, the model assumes that the government can precisely specify the number of indi-
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viduals to vaccinate. This is a potential drawback of the other epidemic models mentioned

in this thesis, too. The inclusion of an individual's choice to become vaccinated would also

require additional complexity (e.g., Bauch and Earn 2004 consider epidemic outcomes with

individual vaccination choice, but not manufacturer and government decisions).

Seven, the analysis assumes that all parameters are known to all parties. The epidemic

model parameters, yield distributions and even social costs of the disease are not likely to

be public information. Nevertheless the equilibrium might still be modeled as an outcome of

interactions between rational actors of the model. Section 4.4.3 shows even with an incorrect

estimate of the model parameters, effects of implementing the contract is far more significant.
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Appendix A

Epidemic Model

At a high level, the epidemic model drives the analysis for supply chain behavior through the

function T(f), which models the expected number of infected individuals in the population,

as a function of the fraction of the population that is vaccinated. The details of the underlying

epidemic model are decoupled from the analysis.

This section recalls one specific epidemic model in detail, the closed-population SIR

model, and an analysis of that model which is not an advance to the literature per se, but

that fixes ideas for the paper. It also provides some structural results for the SIR model

with an initial vaccination (a nonzero R(O)) that are not readily accessible in standard texts.

That model gives rise to the formula for the attack rate p in (2.3).

A standard formulation for the SIR epidemic model in a closed population of N individ-

uals is:

dSdS = -AfSI/N 
(A.1)

dt
dt = +A± SI/N - 1/6 (A.2)
dt

dR
dt = +I/, (A.3)dt

where A > 0 is the number of contacts per unit time, / E [0, 1] is the probability of infection

per contact, 6 > 0 is the duration of infection, and I/N is the probability that a contact

is infectious. Timely vaccination followed by the onset of (instantaneous) infections from
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exogenous sources results in initial conditions R(0) = Nfo, S(0) = N(1 - f )(1 - X),

I(0) = N(1- f- )x.

If S(O), 1(0), R(O) are given initial conditions, then Murray (1993) defines an outbreak

by dI(0)/dt > 0, which happens if and only if AfPS(O)/N > 1 (in the notation here).

Once the derivative is negative, it stays negative. Murray (1993) calls Aý6S(O)/N the basic

reproductive number. With the stated initial conditions, an outbreak occurs if and only if

A - > f "  (A.4)

In the main paper, an outbreak refers to the transmission of influenza during a single season,

following its introduction at time t = 0, whether dI(0)/dt > 0 or not. This allows for

a seasonal influenza outbreak to be stunted by a successful vaccination program. A large

outbreak refers to an outbreak with dI(0)/dt > 0.

What we have defined as the basic reproduction number, Ro = AP6, corresponds to

the common epidemiological interpretation of Ro as the expected number of individuals

that are infected by a single infectious individual in an otherwise susceptible population

(Anderson and May, 1991). This definition of Ro is also consistent with the definition of

Murray (1993) in the limit as S(O)/N -+ 1 (a single infected in a large population).

Our definition of the critical vaccination fraction,

f Ro- 1

Ro0 '

corresponds to setting f to the left hand side of (A.4), and letting X -+ 0. Operationally, this

f 0 corresponds to the (limiting) fraction of the population that must be vaccinated in order

to halt an outbreak for any nonzero level for the fraction of individuals that are infected

from exogenous sources.

We now analyze that formulation from two perspectives. Diekmann and Heesterbeek

(2000) suggest every individual experiences the same state-dependent hazard of infection.

Therefore every susceptible that is not infected from exogenous sources has the same proba-

bility of getting infected, q. The attack rate p can therefore be expressed as p = S(O)q+ I(0).
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Note that every individual imposes a hazard of infection A/3/N on all susceptible individuals

for an average duration of 6. By integrating the hazard function through time, the total

force of infection that is faced by an individual that is initially susceptible is therefore

xA
S6 -pN = Rop.

N

Therefore, the probability that a susceptible at time 0 continues to be uninfected at the end

of the epidemic is exp(-Rop), which equals 1 - q by definition, and which in turn equals

1 - (p - I(O))/S(O). Therefore p = S(0)(1 - exp(-Rop)) + 1(0), justifying (2.3) from the

main body.

An alternative derivation of (2.3) follows. From (A.1) and (A.3),

dS A SI S R
N ___ - -- IS

dR 1/6 N N

~S = S(0) exp( RoR(0)) exp(-_RoR). (A.5)
N I N

The constant S(0) exp( OR(O)) comes from solving for initial conditions. Using (A.3), the

conservation of the total population size (N = S + I + R is constant, from adding equations

(A.1) through (A.3)), and (A.5), we get an equation for dR/dt that only involves R and

constants:

dR I 1dR - (N - R - S )dt 6 6
1 R0-• (N - R - S(0) exp(- (R - R(0)))) (A.6)

At the end of the epidemic, the number that are ultimately infected is R(oo) and the deriva-

tive in (A.6) converges to 0. Set (A.6) to 0 and multiply by 6 to get:

R(oo) =N - S(0) exp(- (R(oo) - R(0))). (A.7)
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Rescaling to N = 1, to obtain fractions of the population, the above formula is:

R(oo) =1 - S(O) exp(-Ro(R(oo) - R(O))). (A.8)

We now subtract out the fraction of those that were vaccinated, R(O) = 1 - S(O) - 1(0), to

obtain the attack rate p = R(oo) - R(O), the fraction infected during the outbreak.

p =R(oo) - R(O) = S(0) + I(0) - S(0) exp(-Rop) (A.9)

That justifies (2.3) from the main paper.
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Appendix B

Justification Why Linear and Convex

T(f) are of Interest

Figures 2-1 and B-1 show the shape of T(f) with respect to different values of the initial

fraction of susceptibles that become infected due to exogenous exposure, X, and the expected

number of secondary transmissions caused by one infected in an otherwise susceptible pop-

ulation, Ro. The four graphs correspond to Ro = 1.67, 2.0, 2.5, 3.0, which are the range for

Ro for the different flu pandemics (Gani et al., 2005). In each graph, T(f) is drawn for

X = 0, 0.005, 0.01, 0.05, 0.1. The graphs look like a piecewise linear function as X moves to-

wards smaller values (lowest curve). If X is sufficiently large, then T(f) looks strictly convex.

The function T(f) may also appear convex when averaging over unknown parameter values.

Finally, the contract in Section 3.3 may still coordinate incentives if T(f) is convex for all

sufficiently large f, even if it is concave for small f. This section formalizes those statements.

Piecewise linear. If the initial fraction of the population that is infected is due to a very

small exogenous exposure (small X, so I(0) is close to 0), then we can replace I(0)/S(0) by

zero in (2.3) and conclude:

= S(0) = 1 - Of (B.1)
1 - e-Rop

Note that the function P looks like a linear function if Ro is not very large, which is

the case for influenza. So the relationship between f and p is almost linear.
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By replacing P with its Taylor series expansion around zero we have

P Po 11 -(1 + RoPo)e - Roo1p
1 lim [ po + lim Rp(p- 0).

1 -e-o po- - e-Ropo po- (1 - e-Ropo)2

In order to find the limits we use the Taylor approximation 1 - Rop for e-RoP around zero.

Substitute this approximation into the Taylor series expansion above to obtain

P m Po . 1 - (1 + RoPo)(1 - RoPo)]1 him [ ] + hm (p - 0)
1- e-Ro po-o 1- 1- RoPo po- (1- 1- RoPo)2

1
+ p.

Ro

Hence by plugging this last equation instead of P into (B.1) we have the following

linear relationship between attack rate and vaccination fraction:

1
P= (1- ) - fRo

Note that the above line has a zero intercept at f = , which is exactly the critical

vaccination fraction in the case of homogeneous population (Hill and Longini, 2003). So

clearly p remains zero for the case where f is greater than the critical vaccination fraction

as the attack rate is a nonnegative parameter, and T(f) is approximated by

T(f) = N(1 - 1/Ro) - N If, O < f < fo

O, f0 <_ f < 1

While this equation has an epidemiologically attractive interpretation, it estimates the actual

T(0) poorly due to the Taylor series approximations. However, the f- and p-axis intercepts

of the roughly linear plot when 1(0) r 0 can be more accurately modeled by replacing

N(1 - 1/Ro) with M = Npo, where po solves (B.1) when f = 0; and by replacing the usual

individual-level vaccine effect parameter, V4, with a parameter v that represents the number

of infections averted in the population by one additional vaccination. (The parameters 4

and v are not necessarily the same, due to nonlinear infection dynamics.)
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fraction vaccinated fraction vaccinated

(a) Ro = 2.5 (b) Ro = 3.0

Figure B-1: The fraction of the population infected during the outbreak (or attack rate, p)
as a function of the fraction vaccinated (f), for different values of the fraction of susceptibles
that are initially infected (X) and the basic reproduction number (Ro).

Hence we define the adjusted piecewise linear approximation for total number infected

to be

T(f)= Npo - Nvf, O f fo

tO, fo < f < 1,

where v = po "' is chosen such that T(f) hits the f axis at the critical vaccination fraction.

Figure 2-1 and Figure B-i show the linear approximation versus the actual values of X. We

have tested this approximation on a variety of parameters which are reasonable for the case

of influenza. The cost gaps for the government and system between the actual T(f) and the

piecewise linear approximation for the game and the system problems is almost zero and

the gap between the optimal decision variables is typically less than 2 - 3% for the system

and a bit higher for the game problem. Table 3.2 illustrates these outcomes together with

additional sensitivity results.

Convex case. We now derive some of the properties of T(f) = Np to argue that it is

convex when X, and therefore I(0) = (1 - Of)x, is sufficiently large. Recall (2.3) and that
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S(0) = (1 - Of)(1 - x) to obtain

p = (1 - Vlf) - (1 - Vbf)(1 - x)e - R op (B.2)

Our goal is to show that p is a convex function of f. Notice that in (B.2) p is an implicit

function of f and to find its second derivative we will use the following fact from from calculus

that if y = f(x) then

2f -1(y) 1 02f(x)
1y 2  (f(X))3 X2

By rearranging terms in (B.2), we can solve for f in terms of p:

f= - .
1 -(1 X)e-Ro

Hence by taking the derivative:

1 1 - (1 + Rop)(1 - x)e - R oPI'(P) = [ ](1 - (1 - X)e-Rop)2

First of all we show that f'(p) < 0. It is enough to show that the numerator in f'(p) is

positive. But we know that:

1 - (1 + Rop)(1 - X)e - R op >1 - (1 + Rop)e-ROP

>0

The last inequality is based on the fact that the function (1 + x)ex obtains its maximum at

zero in the interval [0, 1]. Hence by basic calculus since fp is negative so is . So far we

have shown that p is a decreasing function of f, when X > 0.

The second piece of the puzzle is to find the relationship for f"(p) or the sign of it. By
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taking the second derivative of f we have:

1 /)Ro(1 - x)e-RoP [Rop - 2 + (Rop + 2)(1 - X)e- R op]

[1 - (1 - X)e-RoP]
3

Note that if the second derivative of f(p) were nonnegative, then by the nonpositivity of

f'(p) and using the above lemma, we would have 2 > 0, which is the desired result in this

part.

We will show that f"(p) is not always positive, but that f"(p) > 0 for values of X far

enough from zero and small enough values of p. To show this, we note that the denominator

is positive, and we evaluate the sign of the f"(p)'s numerator. Since Ro(1-X)e - R op is always

positive, we find the sign of (Rop - 2) + (Rop + 2)(1 - )e - R op.

Note that if Rop 2 2, then f(p) would be concave (since the numerator would be positive),

and by the lemma, T(f) would be concave, independent of the value of X. The numerator

may also be positive if p is big enough (so that f is small enough). On the other hand,

many estimates of Ro for influenza are less than 2, and for those estimates that are larger

than 2, Rop < 2 for even small to moderate values of f. We observe two things, numerically.

(i) If Ro < 2 and X big enough, then the attack rate is convex for all f. (ii) Otherwise the

attack rate is convex for big enough values of f (which lead to small enough p). The reason

is that for sufficiently small p, terms in the numerator that contain p become negligible, so

the numerator is negative, making f convex. The related statement for the attack rate is

that for big enough values of f (small enough p), the attack rate is a convex function of f.

The numerical tests in Section 3.3 and Sections 3.3.1 and 3.3.2 show empirically that our

proposed contract can still coordinate even when the attack rate is not completely convex.

Specifically, the contract is still coordinating in these examples when the function T(f) is

first a concave but after some point convex function of f, it is optimal to vaccinate at least

one person (bT'(0) + paNd < 0), and the system optimal f is in the region where T(f) is

convex.In fact, the examples in Section 3.3 of the main paper and the sensitivity analysis in

Sections 3.3.1 and 3.3.2 below are based on this property, since T(f) is not precisely convex

for those sets of values of the parameters.
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Uncertain outbreak parameters. Throughout the main paper, it is assumed that ex-

act values of the reproduction number (Ro), the vaccine efficiency (40) and the fraction of

susceptible individuals that are initially infected (X) are known. This might not be the

case for a real influenza season. Although in general Ro, 4, X are random variables, our

analysis only depends on these parameters through the function T(f). In this section we

show that the shape of function T(f) can still be convex, even with uncertainty about the

values of epidemic parameters. In order to incorporate this randomness, the definition of

U0 0.2 0.4 0.6 0.8 1

Figure B-2: Graph of T(f) by averaging over random Ro, 0, X.

T(f) should be the expected number of infected population, where expectation is taken

over the uncertain Ro, 4, X. This way the definition of f requires that the marginal (ex-

pected) benefit balance with the (expected) marginal cost. For this purpose we take a

mixture of TRo,,,x(f) (the number infected, given the specified Ro, 4, X), in order to obtain

T(f) = ERo,,,x[TRo,,,x(f)]. So it is not surprising that if each individual TRo,,p,x(f) is convex

then T(f) is convex as well, since integration preserves convexity. To illustrate this, Fig-

ure B-2 shows the graph T(f) when Ro - uniform[1.5,2], 4 - beta(a = 15, 0 = 5) (i.e.

A = 0.75, a 2 = 0.0945), and X - beta(a = 0.96, 0 = 47.04) (i.e. y = 0.02, a 2 = 0.022).

For this purpose we sampled 99 observation of each random variable, corresponding to CDF

values at 0.005, 0.015, 0.025, - -, 0.995 then by taking the inverse integral obtained the cor-
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responding values, and numerically averaged to find the resulting T(f).
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