
Automating Data Aggregation for Collaborative Filtering in Ruby on Rails

By

Daniel R. Malconian

B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology 2007

Submitted to the Department of Electrical Engineering and Computer Science in Partial

Fulfillment of the Requirements for the Degree of

Masters of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute Of Technology

December 2007

©2007 Daniel R Malconian. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium known or hereafter

MASSACHUSETTS INSTITUTE created
OF TECHNO.OGY

NOV 1 3 2008

L BRARIES .. /

Signature of A uthor:..
Tepartment of Electrical Engineering

Dec 18, 2007

C ertified by:
Edward Barrett

.-, Senior Lecturer
Thesis Supervisor

Accepted by:
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

1

ARCHIVES

Automating Data Aggregation for Collaborative Filtering in Ruby on Rails

by

Daniel R. Malconian

Submitted to the Department of Electrical Engineering and Computer Science

December 19, 2007

In Partial Fulfillment of the Requirements for the Degree of

Masters of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Collaborative filtering and information filtering are tried and proven methods of utilizing
aggregated data about a website's users to provide catered content. Passive filters are one subset
of such algorithms that utilize data about a user's interactions with a website in viewing content,
purchasing items, etc. My work develops a set of extensions for Ruby on Rails that, when
inserted into an existing application, will comprehensively log information associated with
different types of user interactions to provide a sound base for many passive filter
implementations. The extensions will log how users interact with the application server (content
accessed, forms submitted, etc) as well as how users interact with that content on their own
browser (scrolling, AJAX requests, JavaScript calls, etc). Given existing open-source
collaborative filtering algorithms, the ability to automatically aggregate user-interaction data in
any arbitrary Rails application significantly decreases the barrier to implementing passive
filtering in an already efficient agile web development framework. Further, my work utilizes the
logged data to implement a web interface to view analytic information about the components of
an application.

Thesis Supervisor: Edward Barrett

Title: Professor of Writing and Humanistic Studies

Table of Contents

1 Introduction .. 11

1.1 Purpose of the Investigation... 11

1.2 D escription of Problem .. 11

1.3 Collaborative and Inform ation Filtering Background ... 12

1.3.1 Resources for Implementing Collaborative Filtering Systems 14

1.4 Ruby on Rails Background .. 15

1.4.1 M odels... 16

1.4.2 Controllers... 16

1.4.3 View s .. 17

1.4.4 D atabase Errata 17

1.4.5 Plug-in Errata 18

1.5 M y Thesis and General Approach.. 19

1.6 Criteria for Project Success 20

1.6.1 Success of D ata A ggregation Tools 20

1.6.2 Determining Success of Data Viewing Interface 21

2 D esign and Im plem entation... 23

2.1 General Approach 23

2.2 A ctsA sLoggable Plug-in Im plem entation 24

5

2.2.1 Data Logging 25

2.2.2 Data Migrations and Object Models 34

2.2.3 Installation Mechanism and Using Acts as Loggable........................... 35

2.2.4 Relating Actions to Users ... 36

2.3 LoggableStats Plug-in Implementation ... 38

2.3.1 Application summary .. 39

2.3.2 Controller Summary.. .. 39

2.3.3 Action Summary ... 40

3 Results and Discussion 43

3.1 V alue of D ata ... 43

3.1.1 Value for Application Analytics ... 43

3.1.2 Value for Collaborative and Information Filtering 44

3.2 Implementation and Developer Considerations 47

3.3 Effect on Existing Application .. 48

3.4 Limitations and Shortcomings .. 49

3.4.1 JavaScript 49

3.4.2 Changing Names 49

3.4.3 Routing Actions 49

3.4.4 Complex Relations to User Requests............................. 50

3.4.5 Perform ance 51
6

4 Conclusion ... 53

5 Recom m endations on Future W ork ... 55

6 Appendix ... 57

6.1 Plugin Installation Overview for D evelopers 57

6.2 Plug-in Source Files 58

7 Bibliography .. 59

Table of Figures

FIGURE 1: STRUCTURE OF RAILS APPLICATION.. 16

FIGURE 2: LOGGING PROCESS 29

FIGURE 3: DATABASE SCHEMATIC ... 34

FIGURE 4: SCREENSHOT OF APPLICATION SUMMARY 39

FIGURE 5: SCREENSHOT OF CONTROLLER SUMMARY 40

FIGURE 6: SCREENSHOT OF ACTION SUMMARY 41

FIGURE 7: LOGGABLESTATS FILE STRUCTURE................................ 58

FIGURE 8: ACTSASLOGGABLE FILE STRUCTURE .. 58

1 Introduction

1.1 Purpose of the Investigation
The primary goal of my work is to decrease the time required to develop web applications that in

some form utilize data about past user interactions in providing content. Primarily, this

encompasses applications which implement collaborative filtering or information filtering

The mechanism for streamlining such development will be providing an automated and packaged

solution to collect and manage the necessary user interaction data for these various applications.

Because a compressive log of user activity is also valuable in traffic analytics, I will provide an

interface to view data across all users for an application's components. My thesis work will thus

be divided in two pieces:

1. Develop a set of data aggregation tools for Ruby on Rails web applications that

thoroughly monitor and record user interactions with an application

2. Provide a web interface to the logged data granting developers easy access to summary

statistics about their application

1.2 Description of Problem
Aggregated information about a website's users and usage provides a decisive advantage for the

creators to better tailor content suiting the end viewer. One facet of this is high-level data about

a web site's access, for example, the frequency various components are accessed or what time

periods are most heavily trafficked. However, it is also valuable to track more specific

information about each individual user's interactions with an application. A record of pages

accessed, components used, or actions performed can provide insight into what each individual

likes to do or wants to see. It empowers the application to make automated decisions that

improve the user experience by detecting patterns and catering content based on the user's

history. Collaborative filtering and information filtering are two popular methods of selecting

content relevant to individual users.

There are a plethora of enterprise website analytics programs that document and log data from

web servers to monitor traffic and usage. There are also endless sites that develop application-

specific means of logging user-interaction data. However, there currently is no good solution for

the newer agile web development frameworks and the developer looking for a generic and fast-

to-implement means of aggregating the described data. Frameworks such as Ruby on Rails and

Django are quickly gaining popularity because they are efficient and significantly cut

development lead times. They have empowered developers to the point where a single person

can create a valuable and rich database-backed website in days. Rails significantly decreased the

time from conceptualizing an application to implementing it. Similarly, my work will attempt to

decrease the time required to realize an idea involving collaborative or information filters.

1.3 Collaborative and Information Filtering Background
Collaborative filtering is a generic term describing different processes that attempt to predict

what a user wants based on what he has wanted in the past and what other users have wanted in

the past. Many successful websites implement collaborative filtering engines and several, such

as Pandora, derive almost nearly entire value from a powerful recommender system. The

product recommendation system on Amazon.com is another example of another a popular

collaborative filter. Since the web's inception, there has been there has been a great deal of

research about how to leverage aggregated information about users. Collaborative filtering has

been one successful solution. While algorithms vary greatly, most are some variant of the

following:

* Collect data about what users like or dislike

* Infer how similar a user to other users based on what they like or dislike

* Predict what a user will like based on the preferences of other similar users

This computation can take many forms including Bayesian inference, mixture models,

dimensionality reduction, and hybrid algorithms. However, conceptually all leverage

information about many users to predict information about one.

Gathering information about what a user likes can obviously be done with explicit polling and

rating. However, it is not always possible or practical to ask a user about their preferences. In

these cases, it is still possible to infer such information by looking at what a user has done in the

past.

Collaborative filtering systems thus divided into two categories based on the type of input data:

active filtering and passive filtering. Active filtering systems infer information from explicit,

self-reported data about a user's past preferences. In practice, this is usually some type of

numerical rating. Passive filtering systems, however, rely on data that implicitly defines a user's

preference as a replacement for explicit, self-reported data. Purchasing an item, viewing a page,

or designating something as a 'favorite' are all actions that convey information about a user's

relation with something and can thus be used as a base for passive filtering. More subtle

information can also be valuable in inferring preferences, such as time a spent viewing a page or

number of searches for some item.

In both passive and active collaborative filtering, the output of the process is either suggestions

or predictions. Algorithms which produce suggestions are generating a set of items from data

about all users and all items. They are attempting to infer what things a user would like that they

may or may not know about. Amazon.com product recommendations fall into this category.

Based on what items a user looks at and what they have purchased in the past, Amazon

recommends new items to that user. Algorithms that output predictions are calculating the

probability that a user would like a pre-defined item based on the data about all users and all

items.

Similar to collaborative filtering, information filtering utilizes passively collected data to tailor

content to a user. Instead of predicting specific items a user would like based on correlations

with other users, information filtering just looks at a user and the attributes of items he interacted

with or rated. For example, by looking at a record of tagged news articles, a website could infer

that a user frequently reads articles about New Hampshire and steer such articles toward them.

1.3.1 Resources for Implementing Collaborative Filtering Systems
A developer interested in implementing a collaborative filtering system has a wealth of resources

available. There are countless papers suggesting algorithms to implement or ways to improve

accuracy of results and efficiency of computation. There are even a decent set of open-source

libraries that implement collaborative filtering in C, PHP, Ruby, python, Matlab, and Java by

relating generic objects to users.

A developer can theoretically implement an active filtering system reasonably quickly because of

simplicity of the input data: users' numerical ratings of some items. He can simply design a

system for collecting and storing user ratings and interface that data with some open-source

library. However, implementing a passive filtering system requires more time because of the

complexity of aggregating data on user actions and interfacing it with a collaborative filter. If

one has an existing web application, adding functionality to store user actions requires modifying

server-side code pertinent to any action the developer is interested in logging.

1.4 Ruby on Rails Background
In order to understand the implementation and functionality of this project, it is necessary to have

a rudimentary understanding of how a Ruby on Rails application works.

Rails is a development framework for creating database-backed web applications in Ruby, an

object-oriented scripting language. It has gained widespread popularity over the recent years for

its fast development times and efficient structure for creating Web 2.0 (AJAX-and JavaScript-

heavy) applications. Both the Ruby language and the Rails framework have emphasized a

simple syntax and code structure for developers.

The structure of a Ruby on Rails application is actually simple, but important to understand.

Rails applications strictly follow the Model-View-Controller abstraction. In developing a rails

application, one actually creates classes referred to as Models, Views and Controllers. The basic

structure can be seen in the figure below. A browser accesses a URL mapped to a controller

responsible for returning content. The controller interacts. with the database, processes data, and

passes it to a view via models. The view creates the actual HTML that is returned to the client's

browser.

T Browser sends request
Co)rntroVer inlatrO1cts wth ffidel

(TControler invokes view
4) View renders next browser screen

7
Database

Figure 1: Structure of Rails Application

1.4.1 Models
Ruby on Rails models are classes that inherit from a base class which implements functionality

to completely abstract out the database from an application. Every table in a database has a

corresponding model in the Rails application. Instead of using SQL to interact with a database, a

developer most often user the model's build-in methods, for example, User.find(J) or

User.find_by_name('bob'). All of a table's columns are data members of the corresponding

model. Changing their values (some_user.name = X) and using a save method automatically

updates the database freeing the developer from tedium and clutter of database code. Rails

further implements a large set of support functions in Models to make validation, callbacks, and

object relations simple. For example, adding validates_numericality_of :age, :on= > 'save'"

adds validation of age whenever an object is saved, but not created. Typically the developer will

implement any utility functions to retrieve data or process it in the Model. This includes

anything from complex SQL queries to a function that parses some field.

1.4.2 Controllers
Controllers handle logic necessary to render a page. While they do not necessarily coincide with

Models (ie if there is a 'Book' model, there is a 'Books' controller), they often do. A controller

~ ~1~,1~4

7t wf~

S --

is comprised of actions which represent different blocks of code to be executed on different URL

hits. For example, a simple 'Books' controller may have actions for save, view, edit, and delete.

After executing the necessary logic in an action, the controller sends data back to the user's

browser. In some cases, an action would render a string of text or binary data (AJAX ,

downloads, etc), however, most often an action will render an HTML page by calling a function

render(view_name), which processes a view and sends returned HTML to the client's browser.

1.4.3 Views
Views are typically RHTML files which function similarly to JSP files in java web applications.

An RHTML file is simply an HTML file with interleaved ruby code to insert dynamic data and

utilize conditional and looping control structures. The view has access to all variables declared

in the controller rendering the view. For example, the controller may declare a variable @book

= Book.find(param[:id]) where Book is a Model. The view could then define an HTML and

insert dynamic data using @book.whatever.

1.4.4 Database Errata
One of the benefits of rails is that the database is independent of the application. A user can use

any database they choose (MySQL, Oracle, etc) and it does not affect how they code the

application (only one configuration file). Further, Rails has implemented a system to specify

specific data tables in Ruby called database migrations. A developer can use migrations to easily

create, delete, or populate tables within a database. For example, creating a users table could be

done with the following:

create_table "users", :force => true do It I
t.column :login , :string
t.column :crypted_password , :string, :limit => 40
t.column :salt , :string, :limit => 40
t.column :createdat , :datetime

t.column :updated_at , :datetime
t.column :remembertoken , :string
t.column :remember_token_expires_at, :datetime
t.column :patient_id , :integer
t.column :doctor_ id , :integer
t.column :admin , :boolean

end

This is especially useful in designing Rails plug-ins. The plug-in developer can specify any

necessary tables with high-level Ruby code, and Rails ensures they are correctly created in the

plug-in user's database. A plug-in's developer can thus implement models, views, controllers,

and migrations to wholly package functionality that another developer can insert into his existing

application, even though the plug-in's developer knows nothing about the user's database or

application.

1.4.5 Plug-in Errata
In addition to adding new models, controllers, views, and migrations, a plug-in can be used to

modify or add functionality to an existing model or controller. A correctly structured plug-in

will have a point-of-access function that, when declared in any class, will add functionality to it.

For example, consider a "Book" model and a declared the point-of-access-function,

enable_writing_hi. The plug-in would specify enable_writing_hi to insert an additional method

to the base class "Book" called write_hi that's returns the text 'hi.' Now, anywhere in the Rails

application, the write_hi method could be called from any Book object. While this is a simplistic

example, the ability for a function to insert any arbitrary functionality into any model or

controller is extremely valuable.

1.5 My Thesis and General Approach
The goal of my work is to enable developers to implement passive filtering algorithms in

minimal time. I envision the end users to be small agile development teams or individuals

attempting to quickly build an application, not developers of large established sites. Ruby on

Rails has become increasingly popular because it allows developers to rapidly deploy complex

web applications and it is thus frequently used by start-ups and in scenarios requiring fast

development lead times. It is the go-to framework for quick agile development. I will thus be

using this framework for implementing my solution.

The goal is to provide a package of functionality for logging data that can be implemented in any

existing Ruby on Rails application. It should log sufficient data about user interactions so a

developer can implement whatever passive collaborative or information filters suit his purpose.

As described above, passive filtering algorithms can utilize a vast array of different user actions

as base of information. Nearly all of these conceptual actions, however, map in practice to data

stemming from page views, remote/AJAX interactions, and client-size JavaScript interactions.

My work will attempt to provide sufficient functionality to log data about these events and

relevant parameters that will later help developers provide catered content to users in their Ruby

on Rails applications.

Beyond just aggregating this data, I will implement a web interface to view high-level statistics

about the application. The data collected for passive filtering specifically relates single users to

certain actions. However, the same log is also of interest at a higher level in analyzing how

various components of the application relate to the entire userbase. The interface will provide

statistics about the magnitude and nature of user interaction with each of its components.

Much of the convenience of Rails comes from plug-ins which package rich functionality that can

be implemented into any application on-demand. I will use the plug-in format to create a re-

usable and efficient solution that works properly irrespective of what else that application does.

Though it is more difficult to develop and debug a plug-in as opposed to re-usable source code,

the convenience and simplicity of a plug-in for the developer make it the obvious choice.

1.6 Criteria for Project Success

1.6.1 Success of Data Aggregation Tools
The success of the data aggregation tools depend ultimately on how valuable the aggregated data

is to developers and the development cost of incorporating the tools into a web application.

The value of the data depends on its accuracy and depth. The logged data should be sufficient

for a vast array of conceivable passive filter implementations, not just the standard types based

on actions such as viewing items or searching for something. However, even these typical

scenarios should benefit from depth of the data collected. A record of exactly how a user

interacted with a page (time spent viewing it, whether they scrolled, etc) conveys more

information about how a user likes that page than just a record that a user viewed the page.

Equally important as depth is the data's structure and ease of access. It should be contained

within the developer's application and easy to extract.

The cost of implementing the tools into a web application depends on several pieces. One

critical component is convenience for the developer. If my design is successful, developers

should understand how the tools work and be equipped to implement my solution with minimal

time and with minimal documentation. It is also important that the actual installation procedure

20

be quick and painless. Little or no configuration should be required after installing. This also

encompasses the amount of additional coding required. Ideally, the application's existing code

should not have to be changed, and minimal code should be required to declare what to log.

Finally, it is important to consider performance costs. The aggregation tools should not be a

significant drag on the application's overall performance.

.1.6.2 Determining Success of Data Viewing Interface
The metrics for evaluating the data viewing interface are very straightforward. It should convey

useful summary information and be easy to use. Similar to the data aggregation, implementing

the functionality should minimally effect the existing application.

2 Design and Implementation

2.1 General Approach
Before beginning implementation, I had to specify what data would actually be aggregated. The

overall goal was to track a user's interaction with a website, including any activity that could

perceivably be of interest in implementing collaborative filters. In other words, any action that

could give an implicit indication of how a user likes or dislikes something is relevant.

Recording what pages a user views and the duration of the views is a good starting point. In

Rails, viewing a page actually means executing a certain action within a controller determined by

the URL request. The log of the requests should be as specific as possible since the parameters

of the request determine what content is rendered. It is also helpful to include additional

information about the page view, such as whether or not the user scrolled down the page, the

next and previous pages accessed, or even the pixel sizes of the web browser viewing the page.

Similarly valuable in inferring information about how a user likes something is how they click

and interact with the page. Specifically, actions which change or modify the content on a page

should be recorded (for example, when the user clicks 'expand' to enlarge some information).

With the exception of Flash or other plug-ins, content on an HTML page is modified using

JavaScript. JavaScript can be purely client-side or can utilize AJAX to contact the server to

retrieve new content. Both cases warrant being recorded and should be treated separately.

It was important that the logged data be easily accessible so was best stored and integrated with

the existing Rails application. Storing logged data of user interactions in the same database as an

application's user accounts makes interfacing with a collaborative filter much easier.

My general design is split amongst into two main components: the ActsAsLoggable plug-in and

the LoggableStats plug-in (to be used in conjunction). The ActsAsLoggable plug-in is

responsible for the functionality to actually log data. As described later, this means managing

the database tables used in aggregating the data and dynamically inserting functionality on top of

the application's existing controllers to actually log the relevant data. The LoggableStats plug-in

is responsible for the web interface to view data. LoggableStats is an engine plug-in. An engine

plug-in can be thought of as a separate rails application with its own views, models, and

controllers that can be bundled within any other application. The existing application can utilize

any of its various components, but its code remains isolated. The implementation of these two

components is described in detail.

2.2 ActsAsLoggable Plug-in Implementation
The ActsAsLoggable plug-in's functionality can be split in three parts:

* Data logging functionality

* Database migrations and object models

* Installation mechanism

The data logging piece is responsible for providing functionality to an application's controllers

and views to log a user's interactions with the page. The database migrations and models are

Ruby classes that add support for the logging functionality by creating the necessary data tables

defining the corresponding models. Utility functions pertinent to the data are implemented in the

models. The installation mechanism simply provides the bridge between the logging source code

and the existing application so a user can easily integrate the functionality.

2.2.1 Data Logging
The plug-in's data logging provides the following high-level functionality:

* Log hits to a page

* Log hits for remote (AJAX) functions

* Log JavaScript functions initiated by user-input events

* Log data about a user's browser

The functionality to do this is split amongst several components. The first is a helper file which

overrides various Rails functions used to create HTML links between pages, to remote functions,

or to purely client-side JavaScript. The overridden functions are implemented to provide the

same functionality as before with interjected code to send events to the web server from the

client's browser. Second, there is a Rails controller that accepts this data from the client

browser, processes it, and stores it in the database. Finally, there are filters which wrap existing

controllers with functionality to log data and instantiate objects that are later utilized by helper

functions when the view is rendered.

The implementation of data logging will be described piece-wise by the type of data logged.

2.2.1.1 Page Views
As previously described, Ruby on Rails maps a URL to a particular action in a controller that is

responsible for rendering an HTML file. In logging page hits, the plug-in is really logging

instances where a particular action in some controller is executed. The plug-in maintains a table

of Pages that represent the set of all actions that have been accessed as a page (as opposed to

remotely through AJAX).

The plug-in also maintains a table of Page Views that correspond to a particular instance of a

user accessing a page. The following information is logged on a page view:

* Numerical ID of the entry of the row in Pages of the page being accessed

* Time the Page was accessed

* The length of time the user viewed the Page

* The ID of the row in Pages of the next Page accessed

* Width and height in pixels of the browser used

* Width and height in pixels of the monitor used

* Time the user first scrolls down the page

* A polymorphic association to the User as defined by the existing Rails application

Although stored in unison, the various data pieces are actually gathered at several different

points in the process of a user viewing a page. A set of initial access information is sent to the

database by a function executed as a filter before processing an action of a controller that is

being logged. This information includes who the user is, what page is being accessed, what time

the page is accessed, and any other URL parameters of the request. Every controller that

includes code to run the point-of-access function actsasloggable in its class definition will

automatically call the filter defined by the plug-in to gather the necessary data and write it to the

database.

This initial information is stored before HTML is even sent to the client. However, there is also

dynamic information that cannot be determined until after the client's browser has loaded the

page. This data includes the screen and window size, scrolling time, length viewed, and even

next page accessed. The collection and storage of this dynamic data is slightly more

complicated. All of this data is sent to the plug-in via remote AJAX calls at various points

within a page view.

The plug-in defines a set of Rails helper functions that write the necessary JavaScript to gather

certain information and initiate the relevant AJAX call. These include the following:

* remote_report_page_view()

* remotereportAJAX()

* remote_report_JavaScript()

These functions retrieve information stored in JavaScript variables and through common

JavaScript functions and send it back to the Rails application via AJAX. A final Rails helper,

loggable_headerO, produces the necessary JavaScript to initiate several timers and variables that

are later accessed by the JavaScript produced from the above four functions.

While the four helper functions above produce the necessary JavaScript to report data, this

JavaScript has to be executed only at controlled points based on time or activity. This happens

two ways. First, the JavaScript code is called by events defined in the JavaScript produced by

loggable_header(). For example, the AJAX call to report the duration of time a user viewed a

page is executed on a window.onunload event. Second, the JavaScript functions are called by

events interwoven in the links of page. In Ruby on Rails, the conventional method of linking a

page is calling a helper function, link_to, in the .rhtml file that corresponds to the view for a

given action. An example of such a call would be the following:

<%= link_to "some page", :action=>"actionl",:controller="cl ",:id=>"5"%>

The link_to function would generate the correct URL from the hash of parameters following

"some page" and return a string in the form of :

some page.

ActsAsLoggable overrides several similar Rails functions to insert additional functionality for

sending data back to the application. The link_to function overridden by ActsAsLoggable would

return a string of the following form:

some page.

This new JavaScript would include the JavaScript rendered by the remote_reportpage_view() to

initiate an AJAX call to the Rails Application reporting the time the user clicked the link, the

next page they are accessing, etc. When a user clicks the link, they will be redirected to a new

page and also initiate the remote call to report the page view data.

The page rendered to the client is thus equipped to send information back to the Rails

application. ActsAsLoggable must also provide the relevant server-side code to parse and record

the information passed back. This is done in a separate Rails controller class. To better

illustrate this, the process of recording this information is shown in a figure below:

Figure 2: Logging Process

2.2.1.2 Remote functions (AJAX)
A remote function occurs when a client's browser accesses a Rails application via an http request

from JavaScript on some rendered page. The request's URL still maps to a controller and action

as before, however instead of defining a new page, the returned data is processed by JavaScript

in the client browser to update the current page's content. ActsAsLoggable maintains a table of

remote functions that represent the set of all actions which have been accessed as a remote

function (as opposed to a page view).

ActsAsLoggable also maintains a table of Remote Calls that correspond to a particular instance

of a user's browser calling that function. The following information is logged on a remote call:

* Numerical ID of the entry of the row in Page Views of the current page view

* Numerical ID of the remote function in Remote Functions

* Time from the loading when the remote function was called

* Date and time of call

The mechanism for logging remote calls is similar to the method described above: Rails helpers

produce JavaScript to initiate AJAX calls to send data back to the Rails application. The means

of calling these helpers, however, is slightly different. As described before, linking to a page in

Rails is conventionally done just one way: calling link_to. Remote functions, however, can be

called several ways.

First, and most frequently, a developer utilizes link_to_remote. Link_toremote's parameters

include a hash of arguments to construct the URL for the remote call. This URL hash includes a

controller, an action, and any additional parameters. Link_to_remote also accepts the ID of a div

or other HTML block to update with the HTML returned from the remote call. The final output

of link_to_remote returns HTML to create a hyperlink, that, when clicked, executes a remote

function and updates some HTML element.

Another method of executing remote calls is the helper function remote function. This method

returns a string of JavaScript to initiate an AJAX call for a remote function. This JavaScript can

be inserted into any existing JavaScript function or even as an event on an HTML element. For

example, a developer could write the following:

<div onclick="<%= remotefunction ...%>>

Like with page views, the key to initializing the data-reporting AJAX calls back to the

application is overriding the helper functions used by developers for creating links or remote

calls. Luckily, the Rails implementation of linktoremote utilizes the helper function

remote Junction. This means overriding remote Junction to log data actually affects both typical

means of executing AJAX in Rails.

The ActsAsLoggable implementation of remote function, like the ActsAsLoggable

implementation of link_to, provides the same functionality as the Rails default implementation,

but inserts a new AJAX call to report an event. This means hitting the action

ActsAsLoggableController::report_remote_call. Thus whenever the client's browser executes

the JavaScript to initiate the developer's desired remote function, the additional remote function

for logging data will also be executed.

It is important to note that AJAX calls could also have been logged using the same filter

responsible for logging page views. In fact, the filter already infers whether or not the request is

AJAX and only logs non-AJAX requests. However, had ActsAsLoggable used this method to

log remote calls, it could not reliably associate a remote call to a given page view. The only

information available to that filter is the time of the request, so it would have to assume a remote

call came from the last recorded page view. This will be erroneous whenever a user has multiple

tabs/windows open or navigates via a 'back' button and then executes a remote function.

Instead, the ActsAsLoggable filter that is run before rending a normal page creates a new

PageView row in the database and passes the row's ID to the view rendering the page. With

access to this ID, the remotefunction helper includes the page view ID in the AJAX calls back

to the server so the remote call is correctly associated with the page view.

2.2.1.3 JavaScript Calls
The process for logging JavaScript data is simplistic. Like remote calls, JavaScript calls, are

always associated with a page view.

The data stored for JavaScript calls includes:

* Numerical ID of the entry of the row in Page Views of the current page view

* Name of the function as described by developer

* Time from the loading when the JavaScript function was called

* Date and time of call

Unlike logging page views and remote calls, JavaScript functions are identified by a name

specified by the developer. To this point, convention has been overwriting existing linking

functions and logging based on the parameters passed to them (action, controller, URL

parameters, etc). However, unlike link_to and remote function, the helper function responsible

for creating HTML links to JavaScript functions, linkto_ function, cannot adequately classify the

event from the parameters passed to it. Link_to_function has just two parameters: the HTML

representing the item to be clicked and the JavaScript that will be executed. Neither of these can

provide insight as to what the JavaScript actually does. The clickable HTML cannot offer

context since it will most often be text, such as "show more," or an image, such as,

click_button.jpg. Classifying the JavaScript call by the actual JavaScript code is also infeasible

since this would require conceptually inferring what a block of code does, a problem far out of

the scope of this project.

Because link tofunction has no means of deducing a good description for the function accessed,

developers must pass a log_name parameter in the hash of arguments normally given to

linktoJunction. This implementation has a negative side effect: a JavaScript call will only be

logged if the log_name parameter is present. This implies that the developer has to modify

existing source code in the views in order to log JavaScript. Logging page views and remote

calls, however, only requires the developer to specify acts_as_loggable in the controller.

Fortunately, the converse of this is not true. A developer does not have undo the changes made

to his source code if he wants to stop logging. All link_tofunction calls that include the extra

parameter will still work fine with the non-overridden Rail's default link_to function. Should

ActsAsLoggable be removed, there is no need to modify the application source code.

2.2.1.4 Database Schema
All logged data stems from a particular page hit. Remote functions and JavaScript interactions

are both separate tables in the database whose entries are associated with page hits. Data about a

user's browser is stored in a page hit entry. The database schema is shown below:

javascript calls

javascript_function_id

pageview_id

time_from_page_load

accessed_at

parameters pages

call id controller

call_type action

name

Value

page views

page_id

accessed_at

Duration

next_pagejid

window_width

windowheight

screen_width

screen_height

scrolledat

user_id

user_type

remote calls

remotefunction id

page_view_id

accessed_at

time from_page_load

Figure 3: Database Schematic

These tables have all been previously described except parameters. This table is responsible for

storing whatever parameters were passed in the URL to an action. It has a polymorphic

association to call that could represent either a page view or remote call. Each entry in the table

stores a parameter name and value for whatever object.

2.2.2 Data Migrations and Object Models
The plug-in's data migrations are straightforward and have the sole responsibility of constructing

the tables necessary for the plug-in to operate. They are standard Rails data migrations and are

compatible with any database for which Rails implements an adapter. The migrations are run a

single time upon installing the plug-in.

The models are responsible for representing the table rows as Rail's objects and provide

additional utility functions. The models implement functions that simplify database queries for

instances where developers want to search the various tables or aggregate statistics. The

functions enable the developer to access the same information on various levels of specificity

without having to construct complex queries. For example, one function

PageView. views_by_destination(params) handles reporting the number of hits for the entire

application, amongst all actions of a controller, amongst one action of a controller, or even

filtered by parameters. Example calls respectively would have params be nil,

{ :controller=>"books"}, { :controller=>"books", :action=>"show"}, and {:controller=>"books",

:action=>"show", :id=>"5"}. It is also possible to filter by dates and user IDs or access statistics,

such as number of remote calls, in the same manner.

2.2.3 Installation Mechanism and Using Acts as Loggable
A developer implementing ActsAsLoggable would do the following:

1. Run 'script/generate ActsAsLoggable' in the application's base directory

This simply copies the relevant source code to the application and executes the

migrations to set up the database

2. Declare actsasloggable in the relevant controllers

By doing so, the developer is actually calling a function which inserts new functions into

the controller class. Since ruby is a scripting language, when interpreting the controller

class definition, the acts_loggable_line will actually add methods to the class that enable

the data storing functionality described previously.

The acts_as_loggable statement additionally tells the controller that whenever rendering

an action, it should load the plug-in's helper files that overwrite the various linking

functions to include AJAX calls to log the data.

3. Insert function loggable_header in relevant views accessed as pages

Most likely this will only occur once. The application. rhtml layout typically wraps all

views with the appropriate headers and footers so the view is only responsible for HTML

between the "body" tags. Thus inserting this in application.rhtml is usually sufficient for

the entire application.

2.2.4 Relating Actions to Users

Different Rails applications will use different classes to represent users. The structure of the user

data tables will also be different. Anticipating this, the plug-in assumes only two things about

how an application stores user data: there is a Rails model for whatever class represents a user

and each user has a unique numerical ID. It is unrealistic to make any assumptions about what

class represents a user or how the application knows who the current user is (usually some type

session data).

ActsAsLoggable thus infers the current user with a robust method. Upon declaring the plug-in

(acts as_loggable in the controller), the developer must specify the model representing users and

a fragment of code to get a current user's id. The Page View table and model have a

polymorphic association to the user such that a logged event can be associated with any

legitimate Rails class. The plug-in would be declared as follows:

acts as loggable :user_class=>User do

[block]

end

Block would be any executable ruby code that, when executed in the context of a controller

processing a request, returns the current user id on the last line. This block of code is executed

whenever an action is stored. In many instances, the block's code would be very simple such as

session[:userid] or an existing function defined by a developed, such as current_user().

However, the only constraint on the code is that it must return an integer so the process of

gathering a current user ID can be as complex or simple as required by the developer.

This generic means of relating records to users actually allows the logged data to relate to

anything the developer wants, not just a person with a login id and password. For example, a

news website may not have any registered users but still want to provide tailored articles to

viewers based on what other viewers from their geographic location have been reading. In this

instance a 'user' is not a specific person, but a set of people classified by location inferred from

their IP address. This could give geographic location or even match a request to an institution,

like a college. To log data in this scenario, instead of users table, a developer could implement a

"viewer_locations" that just stores a city and state.

If the developer were to implement a function "get_loc_id(ip_address)" to match an IP address

to the ID of a viewer_location, ActsAsLoggable could now be called in the following manner to

log actions by view_locations:

actsasloggable :user_class=>ViewerLocations do

getlocid(request.env['REMOTE_HOST'])

end

This is powerful because it enables logging (and thus collaborative filtering) without individual

user accounts. An application can provide steered content to groups of users with

ActsAsLoggable in the exact same fashion as with individual user accounts.

2.3 LoggableStats Plug-in Implementation
The data presentation interface shows summary data about the application's various components.

The aggregated data about individual users' interactions with parts of the application can also be

valuable when compounded across all users. The LoggableStats provides this information in a

web interface that's glanceable and easy to access.

Views are implemented to show summary statistics for the following elements.

* Application summary

* Controller summary

* Action summary

* Remote call from page summary

The data for any page can be filtered down to a specified range of. All of the pages are built in

standard rails practice under a single controller. All of the database logic is contained in the

same Models used with ActsAsLoggable. The pages utilize the YAHOO user interface library in

creating the tree navigation and sortable tables. Simple sessions are used to store the date

information.

2.3.1 Application summary
The application summary shows statistics about each controller in the application as well as a

total across all controllers. The data is presented in a single table with columns are as follows:

* Name - name of the controller

* Actions - the number of actions defined by the developer

* As page - the number of actions that have been accessed as a page view

* As remote call - the number of actions that have been accessed as an AJAX request

* Hits - sum of hits to all actions of the controller as a page view

* Remote Hits - sum of all remote requests to all actions of the controller

contlr name # actions #as page # as remote call # hits #remote hits

SampleFiveController 5 5 0 0 0

SampleFourContiroler 5 3 2 3 6

SampleOneController 5 2 3 B 5

SampleSixController 5 2 5 3 6

Total: 20 14 10 14 17

Figure 4: Screenshot of Application Summary

2.3.2 Controller Summary
The controller summary displays data for each action of a controller. Two column headers

divide the information for each action between 'page view' and 'remote call.' The columns are

as follows:

* Action name

-- Application
+. SampleFive

+ SampleFoer
+" SampleOne
+~ SampleSix

* Views - number times accessed as a page view

* Avg time - average amount of time spend on the page

* Avg AJAX calls - average number of remote functions called (excluding logging)

* Hits - average number of times accessed as remote call

* Avg time - the average duration of time elapsed between loading page and remote call

- Application
+ ActsAsLoggable

+ LoggahbleStats

+ Offerings

+ Serc
as page view as remote call- Studens name #views avgtimeview avgaaxcalsview # hits avg tmvewindex

do_nothing 0 0 0 2 7761Ilogin
test 6 0 2-. evaluations

- Test

. do_nothing

test

Figure 5: Screenshot of Controller Summary

2.3.3 Action Summary
The action summary data is broken into two pieces, the first to display summary information

about the action as a page view and the second to display summary data about the action as a

remote call. This is necessary because in many cases an action can be used in both contexts. In

the box displaying page view information, there are two nested table displaying information for

AJAX calls and JavaScript calls.

Application
+ ActsAsLoggable
+ LoggableStats
+ Offerings
+: Search

- Students

index

.login
S evaluations
- Test

donothing
,-.es.

Figure 6: Screenshot of Action Summary

r A s P age V iew

total hits: 6
time per hit: 0
total time on action 0 hours, 0 minutes, 0 seconds

AJAX calls

STest: donothing 2 7761

Javascript Calls
none

As rem ote call -----..................
test has not been accessed as a remote function

3 Results and Discussion
The designed system does in fact achieve the desired functionality. As described previously, the

goals of the plug-in were to:

* Aggregate data sufficient for implementing a vast array of collaborative filters,

information filters, or any other systems that in some way utilizes past user actions

* Require minimal effort and documentation for developers to implement

* Not significantly affect the existing application

Utilizing Rails plug-ins enabled positive results by all metrics. The functionality is successfully

interjected into an existing application to log data. The end package has a very streamlined and

painless implementation procedure. Nearly all configuration to set-up the developer's

application and database could be done automatically by the plug-ins.

3.1 Value of Data
ActsAsLoggable gives developers access to a lot of information about user activity. Once

incorporated into a Rails application, it maintains a database of page views, AJAX calls, and

JavaScript interactions that can be used in many ways to infer information about users of the

application or the application itself.

3.1.1 Value for Application Analytics
With ActsAsLoggable, the developer has access to typical analytic information. Like any other

log of web activity, one can see where traffic goes and how it varies in time. However, the

unique value provided by the comprehensive logging is information about the nature of user

interactions with the various components of the application. Not only can a developer tell how

frequently a page is accessed, he can tell how long the page is typically accessed for, the

frequency of remote calls from that page, whether users scroll, how frequently JavaScript is

executed, or what pages are accessed prior and after.

An added benefit is that this information can be easily retrieved at any level. It is just as easy to

find the described information averaged across every page in the application as it is to find the

described information for a specific action or item. In others words the same function can tell a

developer statistics for the action that is used to display a book for sale or just when that action is

executed to display a certain book.

Having this information stored in-line with the rest of the application's database further enhances

its value. For example, a developer could group users by attributes from their personal

information and see how usage statistics vary amongst its users with little hassle. Or, a

developer can easily mine the data to find patterns between usage of pages showing items and

the attributes of those items.

The LoggableStats plug-in is also beneficial because it provides a visual interface to view the

statistics broken down by components requiring no computation from the developer. This will

by no means come close to the feature set of Google Analytics, however, a simple command line

installation of the plug-in adds a reasonably good summary information interface to any Rails

application in seconds.

3. .2 Value for Collaborative and Information Filtering
The information provided enables a vast array of passive filtering possibilities. ActsLoggable

records nearly everything a user does. By utilizing this data one could develop many ways of

implicitly defining a user's like of some component or item. A few simple examples include:

* Number of times a user has viewed an item

* Length of time spent viewing some item versus average time viewing any item

* If and at what point a user scrolls viewing an item

* Frequency with which a user scrolls or clicks a JavaScript link when viewing an item

* Number and list of remote calls

To illustrate how this data applies to collaborative filtering in practice, consider a simple

example of website where users create blogs. Initially, this site wants to provide tailored links to

blog entries that may be of interest to a reader upon login. As convention in rails, the site would

have a controller blogs_entries and an action to render a blog entry, show, which takes a URL

parameter 'id' to denote the numerical identity of the article in the database.

A first attempt, one could implement some filtering algorithm looking at the amount of time a

user spends reading an article normalized over his average time reading articles. Conceptually,

the collaborative filter would match users who have spent significant time viewing similar

articles and recommend unviewed articles to users that were read in depth by the similar users.

In this case, passing relevant data to a passive filter is simple: the filter's objects are article IDs

and the filters users are user IDs. The entire universe of instances where a user looked at any

blog entry can be accessed by ActsAsLoggable's PageView.find_by_destination(url,

time_period, user id), where URL would be a hash with controller=blog_entries and

action=show. Finding instances where a user read a specific entry just requires including an ID

in the URL hash. To find all instances where any user read any entry would entail excluding the

userid parameter. The developer can access statistics, such as the average time spent viewing

the page, with a function that operates identically with arbitrarily deep filtering. Thus it is

simplistic for the developer to grab whatever data is necessary for the collaborative filter or

constructs a data input matrix of scores by user and article. Because ActsAsLoggable is

comprehensive in logging interactions, the developer can tweak his scoring method to include

other information (such as remote functions or scrolling) without any additional work. This

gives added benefit of letting a developer experiment using different data types without having to

incrementally modify his application to gather the data.

A developer can also utilize submitted form data in the same manner as page views. For

example, the blog site may want to steer content based on what readers search for. An important

thing to note is that GET and POST requests are treated identically in Rails and thus in the

logging system. Both handled the same way in mapping to an action and controller. In this

situation, some arbitrary action within the blog application accepts a set of URL parameters from

a form's data and process the search, say based on location and favorite music genre. The values

of the form data will be stored as key/value pairs in parameters and accessible same as before

through page views. Again, utilizing the built in filters by destination, the application can find

instances where a user performed a certain search or all searches performed by a user.

A developer is also free to utilize remote requests and form submissions in the same manner as

page views and regular form submissions. Often a site will use AJAX to allow a user to add an

item to his shopping cart or comment on some content. These actions can both be valuable

inputs to a collaborative filter. Remote functions information is stored and accessed very

similarly to page views and ActsAsLoggable utility functions operate the same so the developer

is not constrained.

3.2 Implementation and I)eveloper Considerations
A strongpoint of the implementation is the convenience for developers. First, the installation

procedure is quick and painless. One typical shortcoming of rails plug-ins is the complexity or

lack of documentation about installing the plug-in to get it running. As easy as the installation or

usage of many actually are, they lose their convenience if a developer has to spend time trying to

understand and configure the plug-in to make it operational. As seen in the Appendix, there is a

very simple one-page summary that informs developers how to install ActsAsLoggable and how

to declare controllers to be logged. End-to-end, adding the ActsAsLoggable plug-in and

AppStats plug-in takes under a minute excluding download times.

Equally important as installation is the plug-in's output. The logged information is stored in an

intuitive and simple structure right in line with the existing application's database. The

developer thus has immediate access to the logged data, as opposed to many logging solutions,

whose output requires additional processing or parsing. All of the logged information is stored

alongside user account information and everything else in the application.

The included classes to define the data tables' corresponding Rails models means the developer's

application is ready to start logging right after installation. For example, adding the code

has_many :page_views, enables a developer to call a function page_views on his user class the

queries the database and returns a vector of all page views for a user.

User.page_view[O]. remote_calls or User.page_views[O].javascript_calls would return a vector

of remote calls or JavaScript calls respectively. Thus with a simple installation and one-line

declaration, the developer is immediately able to utilize the logged information in his

application.

3.3 Effect on Existing Ap plication
In addition to timeliness, the implemented solution is minimally obtrusive to the existing

application. First and foremost, all of the source for the plug-ins is contained within a single

directory under the "vendor" folder of the Rails application skeleton. Although the web interface

to the statistics data are accessible alongside any of the other controllers in whatever server is

running the application, they were implemented as an engine plug-in, so all of the code for the

models, layouts, views, controllers, and js/css files are entirely separated from the user's core

application directory structure but are still part of the application.

Second, and importantly, the choice to implement the logging functionality by overwriting the

base Rails linking functions means that a developer does not even need to modify existing code

to implement the plug-in. Without overwriting these functions, logging would require creating

special functions like logged_link to be used in place of link_to. This entails that the views

which log data would throw errors whenever their controller stops being logged or

ActsAsLoggable is uninstalled. However, overriding the functions means the application's

views are identical whether or not they are being logged. A developer can simply declare

"actsasloggable" in the controller, and all of its associated views will now log. Further, the

user can now toggle between logging and not logging his information in the controller without

ever having to modify other source. When logging link_to will log, when not, link_to will

perform as defined in Rails.

3.4 Limitations and Shortcomings

3.4.1 JavaScript
The implementation of JavaScript logging is limited in that it only records the event if a user has

defined the :logname parameter to :link_tofiunction. This has two negative effects. First, a

user has to modify any link_to function statements to get them to log. Second, ActsAsLoggable

will only log JavaScript functions called as a result of a user's clicking a link. Realistically, a

developer using this plug-in is primarily interested in functions that are called as a result of user

activity (clicking a link or image, for example a 'show' or 'hide' button). Since the convention

in Rails to implement such functionality is the link_tofJunction helper, ActsAsLoggable is

suitable for many cases.

However, there are different situations in which a developer would want to log JavaScript. The

recent popularity of Script.aculo.us, YUI, and other JavaScript UI frameworks have enabled

more widespread use of drag/dropping and other complex interactions. These types of activities

are not logged with ActsAsLoggable but can be equally valuable in implementing a passive

filter.

3.4.2 Changing Names
If a developer decides to change the names of actions, controllers, or JavaScript functions he

must either manually update the existing data or recognize in his code that action a used to be

called action b when querying the database.

3.4.3 Routing Actions
Frequently in Rails applications a developer will route from one action to another. In other

words a URL will call action X in controller Y and after some logic, action X will redirect to

action W and controller Z. In this scenario, the ActsAsLoggable plug-in will record both of

these actions. Further, the remote calls and JavaScript calls will all be recorded in association

with the last action that was executed. While intuitively one can imagine wanting to

comprehensively log all the actions on one URL request, there is no option to do otherwise.

3.4.4 Complex Relations to User Requests
All of the logging for a request operates under the assumption that the information describing

what a user is requesting is contained with-in the URL. In most cases, this is completely true. In

some complex situations where a page rendered is dependent on session data or another other

external factor, that information will not be logged and thus accessible later. To illustrate this,

consider a web application with users and cooking recipes. Typically a user viewing recipe X of

id 5 would hit a URL in the form recipes/show/5. Now imagine the site has a 'recipe of the day'

link on the homepage. There are two ways of doing this. In the first way, the action rending the

homepage would retrieve the ID of today's recipe and display a link to recipes/show/5 in its

view. The second way is for the view for the home page to like to recipes/show_todays. When

clicked, the show_todays action would find today's recipe. In good practice, that action would

then redirect to recipes/show/5, however, it also possible to retrieve the recipe and simply render

the view for 'show' without exciting the action. In the first situation ActsAsLoggable would

record the event of a user viewing recipe 5. In the second situation with redirecting,

ActsAsLoggable would record the event of a user viewing today's recipe and a user viewing

recipe 5. In the second situation without redirecting, ActsAsLoggable would never record that a

user viewed recipe 5. A developer implementing such an application would still be able to

manually log that data by utilizing the Models provided with ActsAsLoggable. However, by

default, that information would not be logged.

3.4.5 Performance
The plug-in do have an impact on the performance of a Rails application in several places. First,

there are added transactions with the database on any regular page view as the plug-in's filter

sends information about the page view before the page is rendered. This should no add any

noticeable time delay for the user, but will increase the load on the database server.

Second, there are additional AJAX calls to the rails application for reporting data from the user's

browser. New AJAX calls occur whenever a remote function (or link_to_remote) is clicked,

when a regular link_to is clicked, whenever a linktoJunction is clicked, and when exiting the

page. The size of the data sent is extremely small (several integers and short strings) and there is

no data returned by the rails application. However, this will increase the load on the web server

which is responsible for processing these requests.

4 Conclusion
The ActsAsLoggable and LoggableStats plug-ins provide valuable functionality for Ruby on

Rails developers. Not only do they provide a means of logging user interactions with an

application, they also provide an interface to view summary statistics about the application. It

assists developers in aggregating and viewing data to provide more relevant content for users.

The implementation empowers developers to rapidly develop and deploy systems utilizing

passive collaborative or information filtering. Developers already have a wealth of resources

available to implement the computational component of collaborative filtering. Automating the

data aggregation helps a developer implement a passive filtering system for any application he

desires simply by simply incorporating two pre-packaged components.

The implication is that collaborative filtering should be more appealing with ActsAsLoggable.

The value of collaborative filtering has been proven throughout the web. Removing a barrier to

implementation should make developers more likely to utilize such systems. Ruby on Rails has

fractionalized the time it takes to realize concepts as fully-functional web applications. By

streamlining the implantation procedure of passive filters, developers can now rapidly realize

concepts incorporating collaborative filtering. Similarly, developers can now conveniently

experiment with passive collaborative filters in existing applications.

ActsAsLoggable is ideal from a developer's perspective because it is an easy-to-to-understand

black box. The implementation is done at a level that is primarily transparent for the developer

such that he can utilize his same existing source code and gain logging functionality without

modification. The command-line installation procedure is painless and quickly accomplished.

While the data aggregated is a solid foundation, it does not cover every desirable application. It

will provide data for passive filters based on user actions pertaining to URL requests both normal

and AJAX. There is additional functionality for typical click-and-execute-JavaScript

interactions, but not yet advanced user-interface features such as drag and drop.

The end product is definitely better suited for the agile developer interested in rapidly deploying.

As an application scales, it may be more desirable performance-wise to implement logging at the

web-server level to avoid all of the AJAX calls and ruby processes that result from logging data.

There is an unavoidable trade-off between generalizability and convenience with performance

and specificity of data. However, ActsAsLoggable should function for the developer desiring a

quick and robust solution.

5 Recommendations on Future Work
One worthwhile endeavor would be packaging ActsAsLoggable with various open-source

collaborative filters into one all-encompassing 'passive-filtering' plug-in. While often a

collaborative filtering algorithm is application-specific, it may still be of value to create a generic

plug-in that provides functionality on both ends to even further decrease the barrier to implement

passive filtering. The difficulty of doing this, however, is how to relate the logged to data to the

passive filter inputs. To be of value, the user must be able to specify many types of relations. If

one could design a scheme where a developer could specify an Item's class, ID, and action to

filter by (ie time spent looking), this combined plug-in could be very valuable.

The other area of work worthwhile is extending functionality to the advanced user-interface

applications. Websites will continue to progress toward the fluidity desktop applications. This

trend will likely be accomplished by heavier usage of JavaScript. Extending ActsAsLoggable to

be more verbose in aggregating JavaScript information would definitely be of value. The ability

to work seamlessly with script.aculo.us-type libraries would expand the applications suited by

ActsAsLoggable.

6 Appendix

6,. Pugi n istallation Overvie kwfor l evelopers

ActsAsLoggable

Run script/install [svn_url]://acts_as_loggable

Run script/generate acts_as_loggable

Declare ActsAsLoggable in controller you which to have monitored as the following:

acts_as_loggable :user_class=>ClassName do

code to find current user id

end

where ClassName is the user model class in your application (not a string) and code to find

current user id is a block of code that when executed will return the current user's id.

4. Enjoy!!!

Any instance where a user clicks a link generated by link_to or linktoremote will be logged as

will any instance where remotefunction is executred. To log JavaScript interactions utilize

logged_link_to_function(link name,log_name, *args, &blk);

which operated identically to link_tofunction but adds a name to record as log_name.

LoggableStats

1. If not already installed, run script/install http://svn.rails-engines.org/plugins/engines

2. Run script/install [svn_url]://app_stats

3. Pages accessible by [server_url]/LoggableStats/frames

6.2 Plug-in Source Files

Figure 7: LoggableStats File Structure

B- app
v controllers

loggablestats.controller.rb
..helpers

* acts as joggable_helper.rb
8~k models

javascriptcall.rb
SJ javascript function.rb

Sloggableaction.rb
loggable controller.rb
pageviewrb
page.rb

" parameter.rb
remote_all.rb
remotejfunction.rb

.~ views
* Lc layouts

application.rhtml
basic.rhtml

.. statpage.rhtml
L loggable stats

i action_summary.rhtmi

. j ajax_summary.rhtml

-applicationsummary.rhtml
_controllersummary.rhtml
_datestuff.rhtml

S header.rhtml
_overallsummary.rhtml

L remotesummary.rhtrml

gi _test.rhtmi
.. frames.rhtml

- navigation.rhtml

a assets

i images
W -i javascripts

si Ic NiftyCube
a* " sC- stylesheets

Sbase.css
L -p yui

ii 404.html
>i 500.html
dl dispatch.cgi

" dispatch.fcgi

dispatch.rb
fi avicon.ico

k, index.html
* ' robots.txt

~ lib

app stats.rb

-
l

tasks
S appstats_tasks.rake

*+ L test

. int.rb
i install.rb

R . Rakefile
README

. routes.rb

i/ uninstall.rb

i p engines

Figure 8: ActsAsLoggable File Structure

Ia I actsas_loggable
M- ; generators

S i ~ acts as loggablemigration
E L4 templates

j migration.rb 33 10/4107 7:36 PM dan
£ actsas_loggable_migration_generator.rb 31 10/1107

Si acts as loggable.rb 33 10/4/07 7:36 PM dan

-t tasks
S 4 actsas Ioggabletasks.rake 31 10/1/07 3:54 PM danny

ia cQ test
l actsas joggable test.rb 31 10/1107 3:54 PM danny

Sirnitrb 31 10/1/107 3:54 PM danny
l install rb 31 10/1/07 3:54 PM danny
S Rakefile 31 10/1/107 3:54 PM danny
1 README 31 1011/07 3:54 PM danny
1 uninstall.rb 31 10/1107 3:54 PM danny

7 Bibliography

Lukas Brozovsky. ColFi - Recommender System for a Dating Service (2006)

Prem Melville, RaymondJ. Mooney, and Ramadass Nagarajan. Content-Boosted Collaborative Filtering

for Improved Recommendations (2002)

Jon Kleinberg, Mark Sandler. Using Mixture Models for Collaborative Filtering (2004).

Ajith Abraham, Vitorino Ramos. Web Usage Mining Using Artificial Ant Colony Clustering and Genetic

Programming (2003).

Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. Item-based Collaborative Filtering

Recommendation Algorithms (2001).

Badrul M. Sarwar, George Karypis, Joseph A. Konstan, John T. Riedl. Application of Dimensionality

Reduction in Recommender System (2000),

David M. Nichols (Computing Department, Lancaster University). Implicit Rating and Filtering (1997),

Yung-Hsin Chen and Edward I. George. A Bayesian Model for Collaborative Filtering (2000),

