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ABSTRACT

This thesis presents sensitivity analyses of the neutronic designs of the main components of a
fission converter-based epithermal neutron beam for neutron capture therapy. Results for the
fission converter, the neutron filters and the collimator are presented. In the analyses of the fast
neutron filter/moderator and collimator designs, great emphasis was laid on in-phantom figures
of merit using a water-filled ellipsoidal head phantom to evaluate beam performance. In
addition, various neutronic calculations required for the engineering design (e.g., reactivity
insertion due to the fission converter) were performed. This study intensively employed the
general purpose Monte Carlo radiation transport code MCNP (Monte Carlo N-Particle) for the
analyses.

In the sensitivity analysis of the fission converter design, the effect of using different fuel
configurations (multi-plate reactor type MITR-II fuel vs. single plate type fuel) was examined
with the expectation that the reduced volume fraction of coolant in the single plate fuel fission
converter might offset the disadvantage of the H2 0 coolant which overmoderates a useful
portion of the neutron spectrum without commensurate reduction of fast contamination.
However, this analysis indicated that the fresh MITR-II fuel provides comparable beam
performance to that of the single plate fuel and that an H20-cooled single plate fuel fission
converter with the minimum coolant thickness (0.16 cm) does not improve beam performance
significantly relative to a D20-cooled burned MITR-II fuel fission converter. Therefore, it is
concluded that both burned and fresh MITR-II fuels are as efficient generators of epithermal
neutron beams, especially with D20 coolant, as is the single plate fuel. The effect of varying fuel
spacing between the MITR-II fuel elements was also studied. This study showed that increasing
spacing causes power to increase without affecting the epithermal neutron flux and the specific
fast neutron dose. It was concluded that increases in the thickness of the coolant layers
surrounding the fuel elements do not reduce fast neutron contamination enough to offset
concomitant loss of beam intensity because the MITR-II fuel elements already have a large
coolant volume fraction.

The sensitivity analysis of the filter/moderator design revealed that various combinations of the
filter/moderator materials, i.e., Al-A12 0 3, Al-AlF 3, Al-(CF2)n and Al-C, will provide epithermal
neutron beams with high intensity and high quality (epithermal neutron flux > 101 0 n/cm 2 s,
specific fast neutron and photon doses < 2*10-1 lcGycm2 /n). The filter/moderator designs with
the optimized dimensions of these materials provide deep penetration of the beam (the AD's of



9.3-9.8 cm extend into the region beyond the centerline of the head phantom) and large
therapeutic gain (the AR is around 5) for a boron-delivery compound such as BPA-fructose.
Moreover, they produce advantage depth dose rates of 400-600 RBE cGy/min, which would
enable a complete irradiation in a few minutes. This analysis also indicated that the variation of
the neutron spectrum caused by the use of different filter/moderator configurations does not
affect beam quality as long as the design goals on beam quality are met because fast neutron and
photon contamination is maintained at a very low level compared to the irreducible background
due to nitrogen and hydrogen capture. As for the use of the materials which would be
accompanied with concern of decomposition and release of chemically active species (e.g.,
fluorine from aluminum fluoride or Teflon), this analysis suggested that one can take advantage
of the shielding effect of a thick aluminum block by locating such materials behind it, where the
radiation level and temperature would be reduced relative to a location near the fission converter.

The collimator analysis included the effect of using a beam delimiter made of a neutron absorber
(i.e., lithiated polyethylene) and varying the size of the beam aperture on in-phantom beam
performance. It showed that, although the use of a Li-poly delimiter increases the current-to-flux
ratio (J/,) because of removal of neutrons impinging on the target with large angles, it does not
improve beam penetration; on the contrary, the advantage depth is somewhat decreased with
concomitant great reduction of the advantage depth dose rate. Therefore, in designing the
collimator, one has to optimize the trade-off between the advantage of reduction of the neutron
dose outside the beam aperture and the disadvantage of significant reduction of beam intensity
and slight degradation of beam penetration when using a beam delimiter.
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Preface

It may be helpful to provide a few explanations about the presentation of the results from

the Monte Carlo Calculations. To express the statistical uncertainty of the computational result, one

standard deviation is always used in this thesis; in tables of the results, one standard deviation is

shown as a percent immediately below the value. Also, all error bars in figures denote statistical

uncertainties of one standard deviation.





CHAPTER ONE

Introduction

1.1 Background

Cancer is ranked as the second leading cause of death in the United States; in 1997, deaths

due to this disease were estimated at 560,000, more than 1,500 per day. 1 Although, nowadays,

early detection and modern modalities of treatment have increased the possibility of cure

significantly, there are several types of tumors, such as glioblastoma multiforme, for which no

effective therapy has been established yet.

Boron neutron capture therapy (BNCT) is a therapy which may be effective in the treatment

of cancers that cannot be cured by conventional modalities. BNCT consists of two components: a

drug containing non-radioactive 10 B and a neutron beam. A boron-containing drug is developed

which is selectively taken up by tumor tissue. When a neutron is absorbed by 10 B, it causes a

fission reaction and emits an ca particle and a 7Li ion. These heavy charged particles carry 2.310

MeV of energy (94% of reactions where the 7Li nucleus is in the excited state) or 2.792 MeV (6%

of reactions where the 7 Li nucleus is in the ground state). In the former case, an ca particle and a

7Li ion have 1.47 MeV and 0.84 MeV, respectively 2 . Then, they deposit their energies within 12-

14 microns, which is within the range of the size of most cells. As a result, the lethal damage is

highly localized to tumor cells, while sparing normal cells.

BNCT was first performed in the 1950s. Unfortunately, the early trials failed mainly for two

reasons3 : 1) lack of proper boron-containing drugs which effectively concentrate in tumor cells and
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2) use of thermal neutron beams which attenuate very rapidly in the tissue and which produces

maximum normal tissue dose at the surface.

The first problem has been addressed by using more sophisticated carrier molecules which

can achieve a significant tumor-to-normal tissue uptake ratio. The latter problem can be solved by

using an epithermal neutron beam. Epithermal neutrons, whose energies range from 1 eV -10 keV,

penetrate tissues more deeply than thermal neutrons and do not damage normal tissues at the

surface as much as thermal neutrons do. Epithermal neutrons lose energy while scattering off tissue

nuclei, primarily hydrogen, and achieve peak thermal fluxes at a depth greater than a few

centimeters. The thermal neutrons are captured by 10B and produce the resulting (n,c) reactions

which is the basis for BNCT.

Researchers in Japan have made special efforts to develop BNCT since Dr. Hiroshi Hatanaka

implemented their first BNCT treatment in 1968. By 1994, Dr. Hatanaka's group treated around

150 patients with malignant brain tumors using thermal neutron beams. 4 The encouraging results

in Japan and the recent development of improved boron-compounds such as 1-

boronophenylalanine-fructose (BPA-f) and epithermal neutron beams have led to renewed interest

in BNCT in the USA. As a result, clinical studies were revived at both the Brookhaven Medical

Research Reactor (BMRR) and the Massachusetts Institute of Technology Reactor (MITR-II) in

1994. The protocols executed at these facilities are designed to examine normal tissue toxicity and

evaluate a tolerance dose for BNCT using an epithermal neutron beam and BPA-f for glioblastoma

(BMRR and MITR) and melanoma (MITR)5, 6 . At MITR, four human subjects with melanoma of

the extremities and eight subjects with brain tumors (seven with glioblastoma and one with

melanoma) were treated between September 1994 and April 1997 in the Phase I clinical trials. A

clinical follow-up of the subjects with melanoma of the extremities irradiated at MITR shows that

none of them has suffered any significant normal tissue reaction, either acute or chronic, up to a

S. Sakamoto
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blood dose level of 12.5 RBE-Gy; moreover, all evaluable subjects experienced at least a partial

response 6. The follow-up study of 15 human subjects who received BNCT at BMRR also shows no

acute adverse effects on normal brain tissue 7.

In addition to MITR and BMRR, the High Flux Reactor at Petten in the Netherlands has

been prepared for BNCT and will be the next facility to irradiate human subjects with an

epithermal neutron beam3 . The beam performance and the materials used for neutron

filtration/moderation and photon shielding for these three facilities are summarized in Table

1.13,8,9,18,19. In-air figures of merit used to compare beam performance are epithermal neutron

flux(clepi), absorbed dose rate due to fast neutrons per epithermal neutron flux or specific fast

neutron dose (Dfn/A epi ) and absorbed dose rate due to gamma rays per epithermal neutron flux or

specific photon dose (Dy/0epi) which are indicative of intensity and fast neutron and photon

contamination of the beam, respectively.

Table 1.1 A comparison of in-air beam performance and materials used for neutron

filtration/moderation and photon shielding for MITR-II, BMRR and HFR

Facility Reactor Power Neutron Photon (Iepi Dn,/Q, D/t,p,
MW Filter/moderator shield n/cm2s cGy cm2/n cGy cm2/n

MITR-II 5 AI,S,Cd Bi 2.1*108 8.6*10-". 1.3*10W10
(M67)8

BMRR9,18 3 AI,A120 3,Cd Bi 1.8*109 4.3*10-"  1.3*10-"

HFR 3,19 45 AI,S,Ti,Cd Ar 3.3*10' 8.6* 10- " 1.03*10-10
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1.2 Previous Work on the Fission Converter

If the clinical trials can prove the efficacy of BNCT, routine treatment with BNCT will be

initiated. For this purpose, a high-intensity epithermal neutron beam is required to irradiate each

patient with enough fluence of epithermal neutrons in a reasonably short time. It is also important

to mitigate the discomfort that patients would experience during the treatment as a result of

maintaining a fixed position on a couch for a long time (in the case of the MIT M67 beam, several

hours are currently required to finish a bilateral irradiation based on the Phase I protocol). Rief et

al. 10 have proposed using a fission converter in the thermal column of a low-power reactor to

produce an epithermal neutron beam. The principle of the fission converter is to use 2 3 5U fission

plates (or fuel elements) to convert thermal neutrons from the reactor core to fast neutrons, which

are then moderated and filtered into the desired energy range for BNCT by using filter/moderator

materials. It should be emphasized that the fission-converter concept could enable many small

research reactors with thermal columns or other thermal neutron sources to generate high-quality

and high-intensity epithermal neutron beams which adequately meet medical requirements. In the

USA, it is estimated that there are more than 15 potentially suitable reactors 1 1

Stimulated by Rief's work, design studies of fission converter-based epithermal neutron beams

have been conducted at both MITR and BMRR in the USA.11,12,13 The beam performance of

both designs are compared in Table 1.2. In this table, current-to-flux ratio, which is indicative of

beam directionality (i.e., collimation) is presented in addition to other three in-air figures of merit

(%epi, Dfn/Depi and Dy/Oepi).
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Table 1.2 Comparison of in-air beam performance and materials used for neutron

filtration/moderation and photon shielding of the fission converter-based epithermal

neutron beam designed at MITR and BMRR. The number below each figure of merit

denotes one standard deviation of each quantity.

Facility Fission Coolant Neutron Photon ,epi Dfn/ epi D/,,epi J/cI
Plate Filter/moderator shield n/cm's cGy cm2/n cGy cm2/n

MITR-II' 2  MITR-11 Fuel D20 AI/AIF 3 (Mix.), Bi 1.3* 1010 1.3*10 "1 1.0*10 "11 0.67
(Burned) Ti, Cd 1% 2% 2% 2%

MITR-II112  MITR-II Fuel D,O Al/AlF 3 (Mix.), Bi 1.7* 1010 1.3* 10" 9.7* 10"12  0.66
(Fresh) Ti, Cd 1% 2% 2% 2%

BMRR 91
3  ANL Janus D,O AI,Alz0 3,Cd Bi 1.2*1010 2.8* 10"11 <1*10"1 0.78

Reactor Fuel 3% 6% N.A. N.A.

The studies that have been performed at MITR consist of neutronic and engineering designs of

the fission-converter beam, which is to be installed in the thermal column and hohlraum of the

MITR-II. The current facilities of the MITR-II, especially the thermal column and hohlraum, and

the modifications in them which would be necessary to construct a medical irradiation facility with

the fission converter beam are discussed elsewherel 2, 20, 21,22. The isometric view of MITR-II is

shown in Figure 1.1. A fission converter is to be located in a vertical duct between the graphite

reflector and thermal column, where two main coolant pipes of the MITR-II run vertically to

connect to the core tank. This is illustrated in Figure 1.2. The components of the beam such as the

filter/moderator, reflector, photon shield, and collimator are to be placed in the thermal column

region. The hohlraum will be reconfigured as a medical irradiation room, where a patient can take

any position, reclining or sitting during irradiation. The conceptual design of the entire medical

irradiation facility is depicted in Figure 1.3. Since there is significant distance between the fission

converter and hohlraum, beam intensity would be increased if the patient were positioned closer to

the fission converter, namely, in the thermal column region. However, flexibility of positioning

S. Sakamrnoto
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would be substantially limited in the thermal column due to lack of space. Therefore, it was

decided to locate the patient position inside the hohlraum.

The previous neutronic design study in Reference 12 is composed of three major sections:

the development of a methodology for the efficient neutronic calculation of the beam design using

the general purpose Monte Carlo radiation transport code MCNP (Monte Carlo N-Particle)1 4 ; the

validation of the MCNP model of MITR-II by comparing computational results with measurement;

and design calculations of various components of the beam. These works sought to achieve the

design goal in terms of beam performance; that is, high intensit-y (Qepi of about 1*1010 n/cm 2 s)

to allow completion of an irradiation in a few minutes, and very low or negligible fast neutron and

photon contamination (D/(Qepi not greater than 2*10-11 cGycm 2/n) compared to the inherent

background contamination due to radiative capture of hydrogen (the peak dose from this

component is - 2*10 - 10 cGycm 2/n), which would be the dominant component of background

contamination if normal tissue 10B dose becomes very small due to significant improvement of

tumor-to-normal tissue uptake ratio with advanced compounds.

As for the beam design, neutrons exiting from the fission converter have a slightly

moderated fission spectrum and are accompanied by a significant amount of gamma rays. This

beam has to be tailored into a clean epithermal neutron beam by filtering out contaminants which

can cause healthy tissue dose: fast neutrons, thermal neutrons and gamma rays. Thermal and fast

neutrons can be removed by utilizing the nuclear characteristics of certain materials, so-called

filter/moderators, by which fast neutrons are moderated into the desired energy range or scattered

out of the beam and thermal neutrons are captured, allowing only epithermal neutrons to pass

through the beam unimpeded. Gamma rays can be attenuated by using appropriate high-Z

materials. The lateral leakage of useful neutrons from the beam can be reduced by reflector and the

resulting epithermal neutron beam will be guided to the patient position by a collimator.
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Reference 12 reported a extensive series of parametric studies for these components of the

epithermal neutron beam. As a result of various optimizations, a beam design was proposed in

Reference 12, which is shown in Figure. 1.4. This design incorporates a fission converter with 11

MITR-II fuel elements, each of which has 15 finned fuel plates of 93% enriched uranium in the

form of U-AIx cermet clad with aluminum. The fission converter is enclosed in a trapezoidal tank

with double aluminum walls and is cooled by H20 or D2 0. It is irradiated with thermal neutrons

from the MITR-II core and generates fission neutrons. These fission neutrons are moderated and

filtered while passing through a filter/moderator composed of 68 cm thick 70% AIF 3 /30% Al (by

volume) and 2 cm thick Ti layers. Then, they are guided to the patient position, i.e. the target

position at the end of the beam by a pyramidal collimator lined with 15 cm thick lead. Thermal

neutrons and gamma rays are removed from the beam by a 0.04 cm thick Cd sheet and an 8 cm

thick Bi photon shield. Photons outside the beam aperture are shielded by the lead collimator

lining. The filter/moderator is surrounded by a 10 cm thick lead reflector.

S. Sakamoto



S. SakamotoChapter 1: Introduction

VIEW OF M.I.T RESEARCH REACTOR, MITR-fr, SHOWING MAJOR COMPONENTS

AND EXPERIMENTAL FACILITIES

WATER SHUTTER

Isometric view of MITR-II showing major components and experimental

facilities.

Figure 1.1

OR
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Figure 1.2 The thermal column duct with the aluminum gas box during reactor
renovation in 1974-75. The main coolant pipes curve over the top of the
duct where they connect to the core tank. The duct is the future location of
the fission converter (Courtesy of W. S. Kiger).
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This is the back side of Figure 1.2.



Chapter 1: Introduction

I ,,,, I t I I I I I I I I I I1I I I It I I

Hittli m lý ll tll M H I M 111' llll ii: 11: 11 1111 it I Iii II I IiIi iIiI : IiIIHItlýý It 1 11 i t I I I I I I II I I I I I I I!Tl~ l l 11 ! 11 1111 : 1 1 1 1 1 1111 J H N ý w lljj IIIlilllll lllllllll~3~1 111 ili~ll iillmlliiIIIIIIIIIIlllI II I I I II 1111 III iI II ii II ii TllllllllR33~ 911~1111111111(110Illll~~t~~f~~ i~~I~~;:TT: :+ I!I
II II IIit MI M IIIiIiI I IIIIiI III IIii i i)IIII IIIiii

II 1111 I IIi IiII IIII I!I 11I I IijI ii 1 IIIII I iiI III II I: I II II :1I 1II

II IIi I 1i1I iIIIi Iii It ItIiIII11 I111111:11 1 111·:11; 11111 Ill:lllilliiijiil .I: ii lll~ll llll~li:l1 11111 II II ii I I i I iiIt

x :iI Ii:IIIIIIIIIIIIIIiiiI iI II

/

// / cD

/ 7

CD4 CD

~~-CD

Figure 1.3

i

c

I'

I

Isometric view of MIT fission converter beam and medical irradiation
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This is the back side of Figure 1.3.
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It was shown that the current beam design surpasses its design goals and provides excellent

performance for the treatment of brain tumors by BNCT. With D20-cooled spent MITR-II fuel

(fuel loading of 312 g 23 5 U per element) at 5 MW reactor power, this beam design produces an

epithermal neutron flux of 1.3*1010 n/cm 2 s and specific fast neutron and photon doses of 1.3*10-

11 cGy cm 2 /n and 1.0*10-11 cGy cm 2/n. The epithermal neutron flux can be increased by 30%

(for D2 0 cooling) by using fresh fuel (fuel loading of 510 g 2 35 U per element) instead of burned

fuel without increasing fast neutron and photon contamination. By examining Tables 1.1 and 1.2,

one can see that this design is far superior to the current MIT medical beam (increase in beam

intensity by a factor of -60-80 and decrease in fast neutron and photon contamination by a factor

of -10). It is also superior in intensity and low background to all other existing or planned

facilities. Using reasonable assumptions of boron concentration in tumors, tumor-to-normal tissue

uptake ratio and RBE values, excellent in-phantom figures of merits were obtained: advantage

depth of 9.5 cm, advantage ratio of 4.9, and advantage depth dose rate of 435 cGy/min (the

explanation of these in-phantom figures of merit will be given in the following section). For a

bilateral irradiation, an advantage ratio of 4.7 is obtained. This beam will enable us to complete a

treatment in only 2.3 minutes, assuming a normal tissue tolerance dose of 1000 RBE cGy, with a

high therapeutic ratio and deep beam penetration. An engineering design of the facility including

thermal hydraulics and mechanics of the fission converter, shutter and medical room design has

been performed by Balendra Sutharshan, a Ph.D. candidate in the Nuclear Engineering

Department 2 0,2 1,22.

S. Sakamoto
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1.3 Objective

Although the epithermal neutron beam design proposed in Reference 12 is very promising,

several approaches are expected to further improve the performance of the beam. These should

provide a better therapeutic ratio and other figures of merit, lower cost, enhanced safety, flexibility,

engineering advantages and the environmental compatibility of the facility. A main objective of

this thesis is to perform neutronic sensitivity analyses for optimization of the fission converter

beam by studying several important aspects of the facility, including:

(1) Identification of the best configuration of multi-plate reactor type fuel elements (MITR-II

fuel) or use of a single fission plate designed specifically for the fission converter beam

(2) Selection of the best materials and configuration for the neutron filters (i.e., the fast neutron

filter/moderator and the thermal neutron filter)

(3) Improvement of the collimator design in terms of directionality and beam aperture size

In addition to these analyses, several other factors relevant to neutronic performance are to be

analyzed for detailed engineering design and safety of the fission converter beam facility, such as

reactivity insertion due to the fission converter, the effect of impurities in the materials and heat

generation in the fission converter. These analyses are also within the scope of this thesis. In

conclusion, this thesis is intended to provide detailed analyses of the various components of the

fission-converter beam which are required to complete the engineering design work.

This thesis will present the sensitivity analyses for the main components of the beam, the

fission converter, the neutron filters and the collimator in Chapter 2, 3 and 4, respectively. The

neutronic analyses required for detailed engineering design and safety will be presented in Chapter

5. Finally, the summary of this study and recommendations for future analysis will be provided in

S. Sakamoto
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Chapter 6.
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1.4 Methodology of the Analysis

A methodology for the neutronic analysis of a fission converter beam was developed in

Reference 12. It utilizes the general purpose Monte Carlo radiation transport code MCNP (Monte

Carlo N-Particle) developed at Los Alamos National Laboratoryl 4 . This code can be used for

neutron, photon, electron, or coupled neutron/photon/electron transport calculations. It was selected

because of its excellent features for this kind of study, which include its ability to treat an arbitrary

three-dimensional geometry and pointwise cross-sectional data, and high confidence in its

performance based on an extensive series of benchmark calculations. However, the Monte Carlo

technique requires a large amount of computer time, which restricts its use. Fortunately, new high-

speed computers with 200 MHz Intel Pentium Pro introduced in the course of the current study,

which are 10 times faster than the computers used in Reference 12, have mitigated this problem

significantly 24 . In addition, several approaches have been developed to improve the efficiency of

the calculations including the decoupling of the MITR-II core model, the fission converter beam

model and the head phantom model, and the use of variance reduction techniques. For the latter,

the weight window is used; this technique uses space-energy-dependent splitting and Roussian

roulette to control the number of samples (i.e., many samples with low weight in important regions

of phase space and few samples with high weight in unimportant regions) without biasing the

solution.

The computational scheme consists of three steps: 1) a criticality calculation of the MITR-

II model to create a surface neutron source at the edge of the graphite reflector (facing the thermal

column vertical duct); 2) a fixed source calculation for neutrons and induced photons from the edge

of the graphite reflector through the fission converter beam to generate a subsequent surface source
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at the patient position; and 3) transport of the final surface source through a head phantom to create

dose-depth profiles. The outline of the original computational method is depicted schematically in

Figure 1.5. In the current study, as will be explained later, the third step was improved so that one

can reduce the number of transport calculations through the fission converter beam. The modified

method is depicted in Figure 1.6. Each step of the scheme is briefly reviewed below, where some

improvements or changes made in the current study are also described. However, for detailed

explanations of the method and computational models, the reader should consult Reference 12.
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1.4.1 Criticality Calculation to Create the Thermal Column Surface Source

The MITR-II core drives the fission converter as a neutron source; they form a coupled

system. However, for doing detailed design calculations of the fission converter beam without

rerunning the model of the entire system, the reactor model should be decoupled from the fission

converter model. For this purpose, a criticality calculation for the reactor-only model is performed

to transport neutrons from the core to the edge of the graphite reflector, where the model is

truncated; when neutron histories reach the edge of the graphite reflector, they are terminated and

stored in the surface source file. The decoupling of the core and the fission converter is justified by

the fact that the feedback from the fission converter to the core is very small due to many mean

free paths of D2 0 and graphite between them. Only neutrons are stored in the surface source

because it is uneconomical to keep a large number of photons from the reactor at the expense of a

large amount of disk space required for their storage (> 100 MB) as they have a very small effect

on beam performance. Energy independent weight windows generated by Everett Redmond 1115

are used to enhance the transport from the core to the graphite edge. The calculation using these

techniques permits the accuracy of the coupled neutron-photon run for the entire model to be

retained while spending a reasonable amount of computer time.

The MCNP model of MITR-II used in the calculation was originally developed in the study

of Reference 15. This model has been fully validated in the corel 5 and thermal column regionl 2

by experiments; it has therefore been used as a basis for neutronic design of the fission converter

beams with high confidence.

It is assumed that the content of the 14 inch window, which would reduce the intensity of

thermal neutrons from the MITR-II core by a factor of -2, will be removed during the construction

of the fission converter beam facility. Therefore, this study uses the reactor model with the 14 inch

S. Sakamrnoto



Chapter 1: Introduction S. Sakamoto

window empty as Reference 12 did.

1.4.2 Fixed-Source Calculation to Generate a Surface Source at the Patient Position

In the next step, a coupled neutron-photon transport calculation is performed for the fission

converter beam model with the MITR-II core albedo, which permits the backscattering of particles

in the reflector of the MITR-II to be taken into account. Neutrons in the thermal column surface

source impinge on the fission converter and cause fissions. The resulting neutrons and photons are

transported through the beam and reach the patient position, where in-air figures of merits are

calculated and a neutron-photon surface source is created for subsequent in-phantom analyses.

While passing through the beam, neutrons in different energy ranges undergo significantly

different attenuation because of resonance scattering in the fast neutron filter/moderator. In order to

have a adequate number of neutrons at the patient position for all energy regions, energy dependent

weight windows (five energy intervals) are used for neutron transport. However, energy-

independent weight windows are used for photons. Sensitivity analyses require frequent and

significant changes in the beam design. When necessary, a new set of weight windows is generated

using the weight window generator option of MCNP to allow for changes in the physical

characteristics of the beam components.

As an output of the transport calculation through the beam, in-air figures of merit, i.e.

epithermal neutron flux(Depi), specific fast neutron dose (Dfn/cepi ), specific photon dose

(Dy/Depi) and current-to-flux ratio (J/(), are obtained using 3 energy groups, i.e., thermal energy

range of 0 to I eV, epithermal range of I eV to 10 keV, and fast range of 10 keV to 20 MeV. One

should note that Dfn is defined as the absorbed dose rate due to both epithermal and fast neutrons

(i.e., neutrons with energies within 1 eV - 20 MeV). KERMA factors for brain tissue are used to
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calculate neutron and photon dose rates, which are from Reference 16. These in-air parameters

provide a quick way to estimate and compare beam performance although in-phantom figures of

merit, which reflect realistic therapeutic conditions, are the bottom-line for analyzing beam

performance.

1.4.3 Dose-Depth Profile Calculation in a Head Phantom

Again, for the efficiency of the calculation, the head phantom model was decoupled from the

fission converter beam model; the effect of neglecting neutrons backscattered from the head

phantom to the collimator and scattered back to the phantom is considered to be very small due to

existence of a large open space in the collimator. The water-filled ellipsoidal head phantom model

represented by the following equation 2 3, which was used in the previous study, is also employed

for all the calculations of the in-phantom analyses in the current study:

(x/7) 2 + (y/10) 2 + (z/8.5) 2 < 1

where the denominators are the ellipsoid semi-axes in cm. In this phantom, a 1.27 cm diameter

cylinder along the lateral axis (i.e., x axis or central axis) of the phantom -is segmented every 0.5

cm. The neutrons and photons stored in the patient position surface source are transported

separately through the phantom, which is located 1 cm from the source plane. Then, RBE-

weighted, volume-averaged 10B, neutron and photon doses are tallied in every segment and all

dose components are summed up to construct one-dimensional central axis dose-depth profiles.

KERMA factors for 10 B dose are to be found in Reference 16.

In the previous study, two different fixed-source calculations through the beam were run

before this dose-depth profile calculation, one in neutron-only mode and the other in coupled

neutron-photon mode, to create a neutron surface source and photon surface source separately at
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the patient position. This separation was done in order to distinguish the contribution in the dose-

depth profile of incident photons from that of photons induced in the phantom. However, in the

current study, this approach was modified so that one neutron-photon surface source can be used to

sample neutrons and photons separately; that is, to transport only neutrons, photons on the patient

position surface source are killed just after they exit from the surface source in an in-phantom run

in coupled neutron-photon mode. By adopting this approach, one can eliminate one neutron-only

run throughout the beam and save a significant amount of computer time.

To have better statistics of in-phantom tallies than those of the previous study, the number of

independent histories stored in both the thermal column surface source and the patient position

surface source were increased substantially. The neutron source at the patient position is sampled

up to one hundred times, while the photon source is sampled only once because multiple sampling

is unnecessary due to weak photon scattering in the phantom. 12

Three in-phantom figures of merit, i.e., the advantage depth (AD), advantage ratio (AR) and

advantage-depth dose rate (ADDR), are calculated in this step from the dose-depth profile.

Definitions of these figures of merit are as follows. 17 Advantage depth is the depth in a given

material (e.g. brain tissue) at which the total therapeutic dose to the material is equal to the

maximum total background dose (neutron and photon doses + 10 B dose in normal tissue), where

the therapeutic dose is the sum of the total background dose from neutrons and gammas and the

10B dose in tumor. The AD indicates the depth of effective beam penetration over which

therapeutic gain is realized. The advantage ratio is the ratio of the integral of the total therapeutic

dose to the integral of the total background dose over a given depth in the material (usually AD),

which indicates the magnitude of the therapeutic gain. While these two figures of merit provide

measures of beam quality, the advantage depth dose rate - the total therapeutic dose rate at the

advantage depth - is indicative of beam intensity. These three in-phantom parameters constitute the
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basis for comparison of beam performance of different designs in terms of expected therapeutic

effect.
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CHAPTER TWO

Sensitivity Study of the Fission Converter

Design: Fuel Configuration and Fuel Spacing

2.1 Introduction

A series of sensitivity analyses has been performed for the fission converter design using

MITR-II fuel elements (see Reference 1). The parameters of the analyses included: fuel loading,

coolant type, coolant thickness on the upstream side (i.e., the reactor-core side) and downstream

side (i.e., the patient-position side), and aluminum tank thickness. In addition, the use of front

reflectors (graphite or bismuth), of aluminum spacers above and below the fuel, and of side

reflectors (aluminum or graphite) was also examined. The analyses of thermal hydraulics and

structural mechanics 2,3,6 have also influenced the design of the fission converter. As a result of

these analyses, the fission converter design shown in Figure 2.1 and Figure 2.2 was proposed. In

this design, the fission converter composed of eleven MITR-II fuel elements is contained in a

trapezoidal tank with double aluminum walls. There are flow channels, i.e., downcomers, at both

ends of the fission converter tank, where the coolant goes down to the lower plenum. In the fuel

region, the coolant flows upward and this flow path is separated from the downcomers by 0.635 cm

aluminum plates. The tank thickness is carefully designed to minimize attenuation of incident

thermal neutrons by reducing the tank-wall thickness on the upstream side while maintaining

mechanical strength. The double-wall tank design makes a loss-of-coolant accident extremely

unlikely. Its trapezoidal shape fits well into the space between the main coolant pipes in the

thermal column vertical duct, and provides enough area for coolant channels and reduces radiation
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streaming through vacant space in the vertical duct. The thermal-hydraulic study 2 ,3,6 of the fission

converter has demonstrated that in all credible accident scenarios and bounding cases, the fission

converter can be maintained in a safe situation without any fuel disruption. In fact, these analyses

have shown that the fuel will not reach its softening temperature even if all the water cooling is

rapidly lost. Therefore, in the latest fuel tank design, a single-walled tank has been proposed 5.

Although this design of the fission converter was shown to produce an epithermal neutron

beam with high intensity and high qualityl, there are two important aspects to be further

investigated for improvement in neutron generation of the fission converter: use of a fuel with

different configuration (i.e., multi-plate reactor type fuel vs. single flat plate type fuel) and

variation of fuel spacing. The analyses of these aspects are discussed in Sections 3.2 and 3.3,

respectively. In addition, the effect of using different types of coolant (H20 vs.D20) on in-

phantom figures of merit will be presented in Section 3.4.
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Figure 2.1 Plan view of the fission converter design proposed as the 'final design' in
Reference 1. The area enclosed by the dashed rectangle is enlarged in
Figure 2.2. All dimensions in cm. (Courtesy of W. S. Kiger)
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Figure 2.2 Close-up view of the fission converter design proposed as the 'final
design' in Reference 1. All dimensions in cm (Courtesy of W. S. Kiger).
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2.2 Fuel Configuration - Multi-Plate Reactor Type Fuel vs. Single

Flat Plate Type Fuel

The study of coolant type (H2 0 vs. D20) in Reference 1 showed that, a fission converter

using MITR-II multi-plate reactor type fuel elements produces significantly higher beam intensity

and lower fast neutron contamination with D20 coolant than with H2 0 coolant. It was suggested

that hydrogen in the H20 coolant overmoderates the useful portion of the neutron spectrum

(especially, above 100 eV), the slowing down source for the epithermal neutron range, without

commensurate reduction of fast neutrons because of hydrogen's higher scattering cross section in

the slowing down region and its lighter mass relative to deuterium. Thus, the fission converter with

D20 coolant generates a harder spectrum that leads to higher epithermal neutron flux without a

proportionate increase in the fast neutron dose. As a consequence, the use of D20 as the coolant

was recommended 1.

However, there still exists a strong incentive to pursue the use of H2 0 because it is much

cheaper and easier to handle than D20. It should be noted that the amount of the coolant would be

an important factor as well as the nuclear properties of the coolant in terms of neutron moderation.

Unfortunately, the large volume fraction of coolant in a MITR-II fuel element (- 50%) cannot be

reduced because of its multi-plate type structure. However, one can control the amount of coolant

in a fission converter using single plate type fuel as long as one maintains sound engineering

properties of the design (e.g. adequate cooling of the fuel). It was expected that the reduction of the

volume fraction of the coolant in the single plate fuel fission converter relative to a converter using

multi-plate type MITR-II fuel might offset the disadvantage of the overmoderation of H20 coolant.

Therefore, a single flat plate type fuel was considered as an alternative fuel option.

S. Sakamoto
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The performance of the fission converters using single flat plate fuel was studied with

varying coolant thickness (0.16 to 1.0 cm) on both sides of the fuel. The minimum coolant

thickness was set to 0.16 cm because it is considered to be a practical minimum from engineering

considerations. The horizontal cross section of this design is depicted in Figure 2.3. The single flat

plate fuel uses uranium of different fuel enrichments (20% or 93%) in the form of U-Alx cermet

(44% U and 56% Al by weight). The weight fractions of U and Al in the U-Alx cermet fuel are the

same as used in the fresh MITR-II fuel element in the MCNP model. This fuel plate is clad with

0.0518 cm thick aluminum, equal to that of fuel plates in the MITR-II fuel element 4 . The size of

the single plate fuel used in this design was determined by the following considerations:

Height: 56.83 cm, which is equal to the active fuel length of an MITR-II fuel element in the

MCNP model.

Width: 78.51 cm, which is equal to the width of the fission converter composed of 11 MITR-

II fuel elements; i.e., {6.992 l(fuel element)* 11+0. 16(coolant thickness)* 10} cm.

Fuel Meat Thickness: 5.3 cm for 20% EU and 1.1 cm for 93% EU to assure the absorption of

thermal neutrons (0.025 eV) by uranium in the fuel meat with a probability of more than

95%.

The resulting single plate fuel has a fuel loading of 7.5 kg of 2 3 5U for 20% EU and 7.7 kg of

23 5 U for 93% EU.

The results of the calculations using single plate fuel are given in Table 2.1, which shows the

fission converter power and in-air beam performance with varying coolant type (H2 0 vs. D2 0),

enrichment (20% and 93%) and coolant thickness. The plots of epithermal neutron flux (4 epi) vs.

coolant thickness and specific fast neutron dose (Dfn/hepi) vs. coolant thickness are shown in

Figures 2.4 and 2.5, respectively. These calculations used a fast neutron filter/moderator composed

of 68 cm 70% AlF 3/30% Al - 2 cm Ti surrounded by a 10 cm thick lead reflector, a 0.04 cm Cd
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thermal neutron filter, an 8 cm thick Bi photon shield and a pyramidal collimator with a 15 cm

thick lead lining. The performance of single plate fuel fission converters will be discussed first in

the Section 3.2.1. Then, in Section 3.2.2, a comparison between single plate type fuel and multi-

plate reactor type MITR-II fuel will be made.
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Figure 2.3 Cross-sectional view of a fission converter design using a single flat plate fuel. The fuel

meat of the single plate fuel has a thickness 5.3 cm for 20% EU and 1.1 cm for 93%

EU. The coolant thickness on both sides of the fuel is varied from 0.16 cm to 1.0 cm.
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Table 2.1 Converter power and in-air beam performance for single flat plate type fuel with varying coolant type, enrichment

and coolant thickness. In-air figures of merit were calculated at the patient position for a reactor power of 5 MW.

The statistical error (one standard deviation) of each quantity is shown immediately below the value. These

calculations used a neutron filter/moderator composed of 68 cm 70% AlF 3/30% Al + 2cm Ti followed by a 0.04 cm

Cd thermal neutron filter, an 8 cm thick Bi photon shield and a pyramidal collimator with a 15 cm thick lead lining.

The filter/moderator is surrounded by a 10 cm thick lead reflector.

Enrichment Run ID Coolant Coolant Power ,,, epi f ep/P th th Jpi/ epi  J/ Dn Dn/(Dp ithickness
% cm kW n/cm2s 1/Crm2s n/cm 2s n/cm 2kJ cGy/min cGycm 2/n

20 uallw5 HO2  0.16 95.1 8.23E+08 1.42E+10 1.63E+08 1.50E+08 0.64 0.66 0.67 14.1 1.66E-11

0.63% 2.0% 1.3% 2.4% 1.4% 2.7% 1.7% 3.2% 1.4% 1.8%

uallwl H,O 0.5 79.4 6.33E+08 1.05E+10 1.24E+08 1.33E+08 0.66 0.66 0.66 10.5 1.65E-1 1

0.70% 2.2% 1.5% 3.2% 1.6% 3.0% 1.9% 4.1% 1.6% 2.1%

uallw6 HzO 1 67.7 5.24E+08 7.93E+09 9.30E+07 1.17E+08 0.64 0.66 0.69 8.1 1.69E-11

0.67% 1.9% 1.3% 2.2% 1.4% 2.5% 1.7% 3.0% 1.2% 1.8%

ualhw9 D20 0.16 105.2 1.15E+09 1.84E+10 1.83E+08 1.75E+08 0.64 0.67 0.67 16.0 1.44E-11

0.60% 1.7% 1.1% 2.9% 1.3% 2.3% 1.5% 3.6% 1.2% 1.7%

ualhwl D,O 0.5 104.3 1.14E+09 1.78E+10 1.62E+08 1.70E+08 0.63 0.66 0.68 14.4 1.35E-11

0.61% 1.8% 1.2% 2.6% 1.3% 2.3% 1.6% 3.4% 1.3% 1.7%

ualhw6 D20 1 102.4 1.16E+09 1.69E+10 1.44E+08 1.65E+08 0.64 0.66 0.70 13.4 1.32E-11

0.63% 1.7% 1.2% 2.3% 1.3% 2.3% 1.6% 3.2% 1.3% 1.8%



Table 2.1 (Continued)

Enrichment Run ID Coolant Coolant Power Oh (epi f epi/P Jh th Jepi/ epi J 1 Df Doi Dfn/ epi
thickness

% cm kW n/cnm2s n/cmn2S n/cm2S n/cm2kJ cGy/min cGycm 2/n

93 uallw3 H,O 0.16 86.1 8.51E+08 1.47E+10 1.88E+08 1.70E+08 0.64 0.66 0.66 15.2 1.72E-l11

0.63% 2.1% 1.2% 2.7% 1.4% 2.7% 1.7% 3.4% 1.3% 1.8%
uallw4 H20 0.5 71.8 6.85E+08 1.14E+10 1.40E+08 1.59E+08 0.63 0.66 0.68 11.8 1.72E-11

0.71% 2.3% 1.4% 2.9% 1.6% 3.0% 1.9% 3.8% 1.4% 2.0%
uallw7 H20 1 61.2 5.16E+08 8.06E+09 1.08E+08 1.32E+08 0.65 0.66 0.70 8.9 1.83E-11

0.80% 2.5% 1.7% 2.8% 1.8% 3.3% 2.2% 3.8% 1.6% 2.3%
ualhl0 D,O 0.16 92.7 9.87E+08 1.72E+10 2.04E+08 1.86E+08 0.65 0.67 0.66 16.9 1.64E-11

0.61% 1.8% 1.1% 2.8% 1.3% 2.4% 1.5% 3.5% 1.2% 1.7%
ualhw4 D20 0.5 91.3 1.01E+09 1.72E+10 1.83E+08 1.88E+08 0.65 0.66 0.68 15.9 1.54E- 1l

0.62% 1.8% 1.2% 2.2% 1.3% 2.4% 1.6% 3.0% 1.2% 1.7%

ualhw5 D20 1 90.4 1.02E+09 1.67E+10 1.71E+08 1.85E+08 0.66 0.66 0.68 14.9 1.48E- 11

0.63% 1.8% 1.2% 2.4% 1.4% 2.4% 1.6% 3.2% 1.3% 1.8%
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Figure 2.4 Epithermal neutron flux as a function of coolant thickness, coolant type and fuel
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filter/moderator composed of 68 cm 70% A1F 3/30% Al - 2cm Ti followed by a 0.04 cm
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Figure 2.5 Specific fast neutron dose as a function of coolant thickness, coolant type and fuel

enrichment for single plate fission converters. These calculations used a fast neutron

filter/moderator composed of 68 cm 70% AIF 3/30% Al + 2cm Ti followed by a 0.04

cm Cd thermal neutron filter, an 8 cm thick Bi photon shield, and a pyramidal

collimator with a 15 cm thick lead lining. The filter/moderator is surrounded by a 10

cm thick lead reflector.
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2.2.1 Performance of Single Plate Fuel Fission Converters

Table 2.1 and Figure 2.4 show that, for both 20% enriched and 93% enriched fuel with H20

cooling, epithermal neutron flux increases significantly as coolant thickness decreases from 1.0 to

0.16 cm. On the other hand, it increases slightly or does not increase with decreasing coolant

thickness for D20 cooling. This difference in the effect of decreasing coolant thickness on beam

intensity between H2 0 and D2 0 is due to different neutronic properties of these coolants for

neutron moderation; i.e., far more rapid moderation is obtained by H20 than D2 0. The highest

epithermal neutron flux for 20% enriched fuel is 1.42*1010 n/cm 2 s for H20 cooling and

1.84*1010 n/cm 2 s for D20 cooling, while for 93% enriched fuel is 1.47*1010 n/cm 2 s for H2 0

cooling and 1.72*1010 n/cm 2 s for D20 cooling. In Figures 2.4 and 2.5, one can see that D2 0

cooling provides significantly higher epithermal neutron flux and somewhat lower specific fast

neutron dose than H2 0 cooling for single plate fuel as for MITR-II fuel. However, the specific fast

neutron dose is very low ( < 2*10 - 1 1 cGycm 2/n), essentially unimportant for either H20 or D2 0

cooling. The differences in epithermal neutron flux and specific fast neutron dose between these

two coolants become smaller as coolant thickness is decreased from 1.0 cm to 0.16 cm, which is

expected because the effect of moderation of the coolant becomes smaller as its thickness is

reduced. It should be noted that single plate fuel with low-enriched or high-enriched uranium gives

comparable performance for both H2 0 and D20 cooling, which is an interesting result considering

the advantages of using of low-enriched fuel because of security concerns.

Two explanations are meaningful regarding the results. The first one is that Figure 2.5 shows

a slightly lower specific fast neutron dose for 20% enriched fuel than for 93 % enriched fuel for

D2 0 cooling (by around 14%) while showing very small differences between these fuels for H2 0

cooling. This effect is related to the difference in the amount of Al in the fuel meat between 20%

S. Sakamoto
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enriched fuel and 93 % enriched fuel. Because the amount of Al contained in the fuel meat is larger

for the 20% enriched fuel, its effect on fast neutron moderation also is greater for 20% enriched

fuel than for 93% enriched fuel; this difference in the effect of Al on fast neutron moderation

appears clearly in the case of D2 0 cooling. However, in the case of H20 cooling, this difference is

not prominent because H2 0 moderates neutrons much more efficiently than Al. This conclusion is

supported by the results of the calculations, shown in Table 2.2 using D20-cooled 20% or 93%

enriched single plate fuel where Al in the fuel meat is removed. For comparison, the results for

single plate fuel including aluminum in the fuel meat are also shown in Table 2.2.

Table 2.2 Fission converter power and in-air beam performance for D20-cooled single plate fuel

fission converters using 20% or 93% enriched fuel with and without aluminum in the

fuel meat. The thickness of coolant layers on both sides of the fuel plate is 0.5 cm.

These calculations used a filter/moderator composed of 68 cm 70% AIF3/30% Al + 2

cm Ti followed by an 8 cm thick Bi photon shield and a pyramidal collimator with a 15

cm thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead reflector.

Run ID Al in the Enrichment Coolant Power t~epi epi/P D,, Dfn/,pi
fuel meat* thickness

% cm kW n/cm2s n/cm'kJ cGy/min cGycm 2/n
ualhwl y 20 0.5 104.3 1.78E+10 1.70E+08 14.4 1.35E-11

0.6% 1.2% 1.3% 1.3% 1.7%
ualh7m n 20 0.5 107.1 1.86E+10 1.74E+08 17.3 1.55E-11

0.6% 1.1% 1.3% 1.2% 1.6%
ualhw4 y 93 0.5 91.3 1.72E+10 1.88E+08 15.9 1.54E-11

0.62% 1.2% 1.3% 1.2% 1.7%
ualh8m n 93 0.5 92.9 1.72E+10 1.85E+08 16.5 1.60E-11

0.6% 1.2% 1.3% 1.2% 1.7%

* 'y' or 'n' means that Al is contained or not contained in the fuel meat.

In Table 2.2, it is noted that the removal of Al in the fuel meat increases specific fast neutron dose

by 15% for 20% enriched fuel while there is only a small change for 93% enriched fuel. As a

S. Sakamoto
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result, with Al removed, the specific fast neutron doses for both enrichments become almost equal.

This result suggests that Al in the fuel meat of 20% enriched fuel has significant impact on

moderation of fast neutrons in the case of D20 cooling for the beam design used here.

The second thing is that, for the same coolant thickness, the fission converter power of 93%

enriched fuel is slightly less than that of 20% enriched fuel although the effect of neutron

absorption due to Al and 2 3 8U in the fuel meat is expected to be less in 93% enriched fuel. In fact,

by comparing the powers of fission converters with and without Al in the fuel meat shown in Table

2.2, it is seen that the existence of Al decreases the fission converter power because of its neutron

absorption; therefore, reduction of Al in the fuel meat is expected to increase the fission converter

power. The effect which offsets neutron absorption due to Al and 2 3 8U and causes higher power

for 20% enriched fuel is the increase in the number of thermal neutrons that enter into the fission

converter for 20% enriched fuel relative to that for 93% enriched fuel. This is caused by the

difference in thickness between 20% and 93% enriched fuel plates; the former is much thicker (5.3

cm ) than the latter (1.1 cm). Since the location of the plane between the rear outer-tank wall and

the neutron filter/moderator is fixed to keep patient position unchanged, the front surface of the

outer tank of a 20% enriched plate fuel fission converter is located 4.2 cm closer to the thermal

column than the 93% enriched plate fuel fission converter; therefore, the number of thermal

neutrons that impinge on the fission converter is larger for 20% enriched fuel than for 93%

enriched fuel. This point was verified by computational results: the thermal neutron current in the

direction of the patient position tallied at the front surface of the outer tank is 13% lower for 93%

enriched fuel than for 20% enriched fuel. Also, increased neutron leakage from the fuel region for

the 93% enriched fuel plate due to its flatter geometry (i.e., larger buckling) might contribute to the

power decrease.

S. Sakamoto
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2.2.2 Comparison of MITR-II Fuel and Single Plate Fuel Fission Converters

For better comparison of beam performance produced by single flat plate type fuel and

multi-plate reactor type MITR-II fuel, the computational results for both types of fuels are

summarized in Table 2.3 and in the plot of epithermal neutron flux (4 epi) vs. specific fast neutron

dose (Dfn/Aepi) shown in Figure 2.6.

The analysis of a single plate type fission converter with about 7.5 kg of 23 5 U, which is

considerably more than 5.6 kg or 3.4 kg of 2 35 U in fresh or burned MITR-II fuel, indicated that the

single plate fuel provides an advantage over a fission converter using burned MITR-II fuel for the

same coolant because it increases epithermal neutron flux without substantial increases in the

specific fast neutron dose for most coolant thicknesses. However, it was also shown that, using the

same coolant, the single plate fuel does not improve beam performance relative to the fresh MITR-

II fuel because it provides comparable or lower epithermal neutron flux without decreasing the

specific fast neutron dose. Moreover, compared with a burned MITR-II fuel fission converter with

D2 0 cooling, a single plate fission converter with the minimum thickness of H2 0 coolant (0.16

cm) increases fast neutron contamination without a commensurate improvement of beam intensity.

This result suggests that, even with the minimum thickness, H20 coolant in a single plate fission

converter overmoderates the neutron spectrum relative to D20 coolant in the MITR-II fuel fission

converter; this point is demonstrated clearly by Figure 2.7, which depicts partial neutron current

spectra at the interface between the converter coolant and the rear inner tank wall in the direction

of the patient position for an H20-cooled single plate fuel fission converter with 0.16 cm thick

coolant layers and H20- or D20-cooled burned MITR-II fuel fission converters. It should be noted

that, compared with D2 0 coolant in the MITR-II fuel fission converter, a very thin layer of H20

in a single plate fuel fission converter significantly reduces the useful portion of the spectrum
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(from the epithermal energy range up to -100 keV). On the other hand, this single plate fission

converter provides an slight advantage of improved beam intensity over an H20-cooled burned

MITR-II fuel fission converter by increasing the portion of the spectrum above 3 keV.

In Table 2.3, it is noted that, for the same coolant, the single fuel plate fission converter

does not increase the power appreciably relative to the fission converter using the fresh MITR-II

fuel although the former has significantly more fuel loading than the latter. This is because the

latter has enhanced moderation of neutrons relative to the former because of its larger volume

fraction of coolant. However, the power of the single plate fuel fission converter decreases as the

thickness of the coolant increases. This is likely because the loss of neutrons due to increased

absorption in the coolant layer on the upstream side outweighs enhanced neutron moderation

caused by increased coolant thickness.

The performance data for the different fuel configurations presented in Table 2.3 and Figure

2.6 indicate the clear superiority of D20 coolant in terms of beam intensity. Heavy water cooling

also provides lower specific fast neutron doses; however, acceptably low fast neutron

contamination is also achieved with H2 0 coolant.
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Table 2.3 Fission converter power and in-air beam performance for different fuel types and

coolants with varying fuel loading, enrichment and coolant thickness. In-air figures of

merit were calculated at the patient position for a reactor power of 5 MW. The number

shown below the coolant type for a single plate fission converter denotes the coolant

thickness on both sides of the fuel plate. These calculations used a filter/moderator

composed of 68 cm 70% AIF 3/30% Al + 2 cm Ti followed by an 8 cm thick Bi photon

shield and a pyramidal collimator with a 15 cm thick lead lining. The filter/moderator is

surrounded by a 10 cm thick lead reflector.

Fuel Type Fuel Loading Coolant Power epi Dfn/(epi epi

kg 235U-Total kW n/cm2-s cGy.cm 2/n n/cm 2.kJ
MITR-II fuel elements 3.4 D20 78.1 1.3E+10 1.3E-11 1.7E+08

93 % Enriched Bumed Fuel 0.2% 1% 2% 1%
H,O 83.1 8.5E+09 1.8E- ll 1.0E+08

0.2% 2% 2% 2%
5.6 D,O 102.9 1.7E+ 10 1.3 E- 11 1.6E+08

Fresh Fuel 0.2% 1% 2% 1%
H,O 124.9 1.3E+10 1.7E-11 1.0E+08

0.2% 1% 2% 1%
Single Plate 7.5 DO0 105.2 1.8E+10 1.4E-11 1.8E+08

20% Enriched 0.16 cm 0.6% 1% 2% 1%
D,O 102.4 1.7E+10 1.3E-1 1 1.7E+08
1 cm 0.6% 1% 2% 1%
H,O 95.1 1.4E+10 1.7E-11 1.5E+08

0.16 cm 0.6% 1% 2% 1%
H,O 67.7 7.9E+09 1.7E-11 1.2E+08
1 cm 0.7% 1% 2% 1%

Single Plate 7.7 D,O 92.7 1.7E+10 1.6E- 11 1.9E+08
93% Enriched 0.16 cm 0.6% 1% 2% 1%

D,O 90.4 1.7E+10 1.5E-11 1.9E+08
1 cm 0.6% 1% 2% 1%
H,O 86.1 1.5E+10 1.7E-11 1.7E+08

0.16 cm 0.6% 1% 2% 1%
H20 61.2 8.1E+09 1.8E-11 1.3E+08
1 cm 0.8% 2% 2% 2%
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Figure 2.6 Epithermal neutron flux vs. specific fast neutron dose at the patient position for different

fuel configurations and coolants. Data labels denote coolant types and, for single plate

fuel, coolant thicknesses on both sides of the plate are in parentheses. Statistical

uncertainties are less than the size of the data points.
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Figure 2.7 Partial neutron current spectra in the direction of the patient position at the interface

between the coolant and the inner tank for fission converters using H20-cooled 20%

enriched single plate fuel with 0.16 cm thick coolant layers, or eleven H2 0- or D2 0-
cooled burned MITR-II fuel elements.
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2.3 Fuel Spacing in the MITR-II Fuel Fission Converter

Increasing the coolant thickness surrounding the fuel is expected to have the following

effects on the neutron spectrum and on power generation in the fission converter: 1) enhanced

moderation of high energy neutrons which would soften the neutron spectrum exiting from the

fission converter and increase power, 2) reduction of neutron leakage from the fission converter

which increases power, 3) greater neutron absorption by the coolant which would result in a power

decrease and lower beam intensity. Reference 1 examined the effect of varying D2 0 coolant

thickness in front of and behind the row of fuel elements. It showed that the epithermal neutron

flux decreases approximately in proportion to the fission converter power and the specific fast

neutron dose is unchanged as the front layer thickness increases, which is because the absorption of

the incident thermal neutrons outweighs enhanced moderation and reduced neutron leakage.

Reference I also demonstrated that, as the thickness of the back D2 0 layer is increased, power

increases but epithermal neutron flux decreases rapidly, while the specific fast neutron dose

decreases only slowly. This result suggests that with increasing the back layer thickness, enhanced

moderation and/or increased absorption reduces the neutron intensity, especially in the slowing

down region, and causes a decrease in the epithermal neutron flux at the patient position. As a

result, Reference 1 concluded that increases in coolant thickness in front of and behind the fuel

elements provide very little improvement in beam performance. However, a significant increase in

power per element was observed when the spacing between fuel elements was increased from

0.0998 cm to 0.159 cm in the course of development of the fission converter design, and further

study of the effect of fuel spacing was suggested. Therefore, a detailed analysis of fuel spacing was

performed in the current study.
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A series of calculations was performed using burned MITR-II fuel elements (312 g 23 5U per

element) with varying spacing between fuel elements and varying the number of elements for both

D2 0 and H20 cooling. Because the space available for the fuel elements in the fission converter

tank is limited, the number of fuel elements was decreased when fuel spacing became large. (One

should note that, as the size of the fuel region increases, the space for coolant channels on the sides

of the fission converter (i.e., downcomers) has to be reduced, which might not assure enough

coolant flow for heat removal.) These calculations employed a fast neutron filter/moderator

composed of 68 cm 70% AIF 3 /30% Al - 2 cm Ti surrounded a 10 cm thick lead reflector, a 0.04

cm Cd thermal neutron filter, an 8 cm thick Bi photon shield and a pyramidal collimator with a 15

cm thick lead lining. The results of these calculations are shown in Table 2.4 for both D20 and

H2 0 cooling. As seen in the table, for both coolants, power of the fission converter using the same

number of fuel elements increases as the space between elements increases. This is because

enhanced neutron moderation due to increased coolant layer thickness between fuel elements leads

to increases in power per element except for the elements at the edges of the fission converter,

where the effect of increased loss of neutrons from other fuel elements due to increased fuel

spacing outweighs the effect of enhanced moderation. This point is illustrated in Figure 2.8, the

plot of power distribution of D20-cooled fission converters with 0.16 cm or 1.6 cm spacing

between fuel elements. Moreover, from Table 2.4, one can see that power per element increases as

the number of elements decreases except for the case of the fission converter using 8 fuel elements

with 3.5 cm spacing. As a result, the fission converter power decreases more slowly than the fuel

loading as the number of fuel elements is reduced. For example, by comparing the power for 11

fuel elements with 0.16 cm spacing and that for 9 elements with 2 cm spacing, which have

comparable size of the fuel region (i.e. almost the same distance between the elements at both

edges of the fission converter), it is seen that the fission converter power for the 9 fuel elements is
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smaller by 8% for D20 cooling and by 12% for H20 cooling relative to that for the 11 fuel

elements although the fuel loading is decreased by 18 %. This result is consistent with what was

observed in Reference I and considered to be due to enhanced neutron moderation and increased

fraction of fuel elements illuminated with high thermal flux in the central region of the converter

with increasing fuel spacing and decreasing the number of fuel elements.

However, it is seen that increasing fuel spacing does not increase beam intensity although it

increases the power per element. Figure 2.9, which depicts the partial neutron current spectra at the

interface between the D20 coolant and the rear inner tank wall in the direction of the patient

position for eleven burned MITR-II fuel elements with varying fuel spacing, shows that increasing

fuel spacing softens the neutron spectrum exiting from the fission converter; that is, it slightly

decreases the slowing down region of the spectrum (above - 10 keV) and increases flux in the

thermal range. Therefore, it is considered that the effect of softening the spectrum due to enhanced

neutron moderation balances the increased neutron generation and leaves beam intensity

unchanged. Since increasing the fuel spacing does not improve the beam performance, it was

decided to keep the spacing as tight as possible (i.e., 0.16 cm).



Table 2.4 Fission converter power and in-air beam performance for a burned MITR-II fuel fission converter (312 g 235U per

element) with H20 or D20 cooling and varying spacing between fuel elements. In-air figures of merit were

calculated at the patient position for a reactor power of 5 MW. The statistical error (one standard deviation) of each

quantity is shown immediately below the value. These calculations used a neutron filter/moderator composed of 68

cm 70% AlF3/30% Al + 2cm Ti followed by a 0.04 cm Cd thermal neutron filter, an 8 cm thick Bi photon shield

and a pyramidal collimator with a 15 cm thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead

reflector.

DO2 Cooling

Run ID # of Fuel Space Flow Chan. Power Pow. per Oth Depi D epi/P JthAth hepi' epi D/ Dcn De/ pi
Element (cm) Area (cm2 ) (kW) Ele. (kW) (n/cm2 s) (n/cm2 s) (n/cm2s) (n (n/cm2kJ) I (cGy/min) (cGycm 2/n)

spal016 11 0.16 69.7 78.6 7.15 9.35E+08 1.3 1 E+10 1.13E+08 1.66E+08 0.66 0.66 0.68 10.2 1.30E- 11
0.2% 0.2% 2% 1% 3% 1% 2% 2% 4% 2% 2%

spa1048 11 0.48 59.5 78.9 7.17 9.51E+08 1.31E+10 1.15E+08 1.66E+08 0.65 0.66 0.66 10.3 1.31E-11

0.2% 0.2% 2% 1% 4% 1% 2% 2% 5% 2% 2%

spa1079 11 0.79 49.4 79.2 7.20 9.53E+08 1.31E+10 1.05E+08 1.65E+08 0.64 0.66 0.70 9.9 1.26E-11
0.2% 0.2% 2% 1% 3% 1% 2% 2% 4% 2% 2%

spal 159  11 1.59 24.2 79.3 7.21 9.57E+08 1.29E+10 1.05E+08 1.62E+08 0.65 0.66 0.69 9.9 1.28E-11

0.2% 0.2% 2% 1% 3% 1% 2% 2% 4% 2% 2%
spa0238 10 2.38 28.7 75.3 7.53 9.00E+08 1.21E+10 1.03E+08 1.61E+08 0.64 0.66 0.68 9.4 1.29E- 11

0.2% 0.2% 2% 1% 4% 1% 3% 2% 4% 2% 2%

spa920 9 2 68.3 72.2 8.02 8.80E+08 1.15E+10 9.36E+07 1.60E+08 0.64 0.66 0.69 9.0 1.30E-11

0.2% 0.2% 2% 1% 3% 1% 3% 2% 4% 2% 2%

spa820 8 2 96.9 67.5 8.44 8.32E+08 1.12E+10 1.02E+08 1.66E+08 0.65 0.66 0.66 8.6 1.29E-11

0.2% 0.2% 2% 1% 5% 1% 3% 2% 6% 2% 2%

spa835 8 3.5 63.5 67.2 8.40 8.30E+08 1.09E+10 9.88E+07 1.62E+08 0.64 0.66 0.68 8.5 1.29E-1 I
0.2% 0.2% 2% 1% 4% 1% 3% 2% 5% 2% 2%



Table 2.4 (Continued)

HO Cooling

Run ID # of Fuel Space Flow Chan. Power Pow. per I h Depi I f epf/ th epi epi Jrf f D,ep
Element (cm) Area (cm') kW Ele. (kW) (n/cm 2s) (n/cm 2S) (n/cm2 s) (n/cm 2kJ) (cGy/min)I (cGycr 2/n)

1-1201016 11 0.16 69.7 82.5 7.50 5.93E+08 8.39E+09 1.03E+08 1.02E+08 0.63 0.66 0.70 8.5 1.69E-11

0.2% 0.2% 2% 2% 3% 2% 3% 2% 4% 2% 2%

11201079 11 0.79 49.4 84.7 7.70 5.72E+08 8.35E+09 1.08E+08 9.87E+07 0.63 0.65 0.69 9.0 1.79E-11

0.2% 0.2% 3% 2% 3% 2% 3% 2% 4% 2% 2%

[1201159 11 1.59 24.2 85.4 7.76 5.5 1 E+08 7.97E+09 1.10E+08 9.34E+07 0.66 0.67 0.67 8.9 1.85E-11

0.2% 0.2% 2% 2% 4% 2% 3% 2% 5% 2% 2%

11200238 10 2.38 28.7 77.3 7.73 5.72E+08 8.35E+09 1.08E+08 1.08E+08 0.63 0.65 0.69 9.0 1.79E-11

0.2% 0.2% 3% 2% 3% 2% 3% 2% 4% 2% 2%

H20920 9 2 68.3 72.7 8.08 4.80E+08 7.01E+09 8.67E+07 9.64E+07 0.65 0.65 0.69 7.6 1.80E-11

0.2% 0.2% 3% 2% 3% 2% 3% 2% 4% 2% 2%

H120820 8 2 96.9 66.1 8.27 4.38E+08 6.54E+09 8.46E+07 9.89E+07 0.64 0.65 0.68 7.0 1.79E-11

0.2% 0.2% 3% 2% 3% 2% 4% 2% 4% 2% 3%

1120835 8 3.5 63.5 62.0 7.75 4.05E+08 5.52E+09 7.72E+07 8.90E+07 0.64 0.67 0.68 6.3 1.91E-11

0.3% 0.3% 3% 2% 4% 2% 4% 2% 5% 2% 3%
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Figure 2.8 Power generation in the D20-cooled fission converters composed of eleven burned

MITR-II fuel elements with varying fuel spacing. These calculations used a neutron

filter/moderator composed of 68 cm 70% AIF 3 /30% Al + 2cm Ti followed by a 0.04 cm

Cd thermal neutron filter, an 8 cm thick Bi photon shield and a pyramidal collimator

with a 15 cm thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead

reflector.
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Figure 2.9 Partial neutron current spectra in the direction of the patient position at the interface

between the coolant and the rear inner tank wall for fission converters using D2 0-

cooled eleven burned MITR-II fuel elements with varying fuel spacing.
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2.4 Comparison of In-Phantom Beam Performance for H20 and D,O

Cooling

Reference I showed that the type of coolant affects the neutron spectrum exiting from the

fission converter significantly, which results in variations of the epithermal neutron flux, and the

specific fast neutron and photon doses at the patient position. It was expected that the type of

coolant might affect in-phantom beam performance. Therefore, in-phantom analysis was performed

using a fission converter with H20 cooling and its result was compared with that for D2 0 cooling.

These calculations used a fission converter composed of eleven burned MITR-II fuel elements (312

g 23 5 U per element) followed by a fast neutron filter/moderator of 68 cm 70% AIF 3/30% Al - 2cm

Ti, a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon shield and a rectangular collimator with

a 15 cm thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead reflector. The

reactor power was assumed to be 5 MW. The model used here (Run ID - skm314) is identical to

that of std475 in Reference 1.

In-air and in-phantom figures of merit for H2 0 cooling are compared with those for D2 0

cooling in Table 2.5. From this table, it is noted that the ADDR is reduced approximately in

proportion to the epithermal neutron flux while AD and AR are unchanged. The trend of the in-

phantom figures of merit for different coolants is explained as follows. Figures 2.10 and 2.11

compare the normalized neutron flux spectra at the patient position for H20 and D2 0 cooling in

linear and log scales, respectively. These two different scales were used to present the spectra

because they emphasize different energy regions. The linear scale accentuates the epithermal

energy region and the log scale accentuates the thermal and fast energy regions, where there is a

large variation in the flux. The spectra are normalized to one at the maximum tally bin to compare
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those shapes. These figures show that the fission converter with H20 cooling slightly increases the

high energy portion of the epithermal energy region and the fast energy region relative to D2 0

cooling. However, the specific fast neutron dose for H2 0 cooling is still below the design goal.

Since this level of fast neutron contamination is negligible compared to the inherent background

due to hydrogen and nitrogen capture, beam quality parameters (AD and AR) are unchanged while

ADDR is reduced in proportion to beam intensity at the patient position.

Table 2.5 Comparison of in-air and in-phantom figures of merit for H20 and D20-cooled fission

converters. These calculations used a fission converter composed of eleven burned

MITR-II fuel elements (312 g 235U per element) followed by a fast neutron

filter/moderator of 68 cm 70% AIF 3 /30% Al - 2cm Ti, a 0.04 cm Cd thermal neutron

filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm thick lead

lining. The filter/moderator is surrounded by a 10 cm thick lead reflector. The reactor

power was set at 5 MW.

Run ID Coolant Oepi Jepi/Oepi Dfn/kepi Dy/iepi AD ADDR AR ADDR(Depi

Type n/cm2 s cGycm 2/n cGycm 2 /n cm RBEcGy/min RBEcGycm 2/n

std473 D,O 1.30E+10 0.67 1.33E- I 1.02E-11 9.5 435 4.9 5.59E-10

1.3% 1.7% 1.9% 2.0%

skm314 H,O 8.51E+09 0.66 1.76E-11 1.06E-11 9.5 282 4.9 5.52E-10

(std475) 0.5% 0.7% 0.8% 0.9%
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Figure 2.10 Normalized neutron flux spectra at the patient position for H20 and D2 0 cooling in

linear scale. These calculations used a fission converter composed of eleven burned

MITR-II fuel elements (312 g 235U per element) followed by a fast neutron

filter/moderator of 68 cm 70% AIF 3 /30% Al - 2 cm Ti, a 0.04 cm Cd thermal

neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm

thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead reflector.

The reactor power was set at 5 MW.
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Figure 2.11 Normalized neutron flux spectra at the patient position for H2 0 and D2 0 cooling in

log scale. These calculations used a fission converter composed of eleven burned

MITR-II fuel elements (312 g 235U per element) followed by a fast neutron

filter/moderator of 68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal

neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm

thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead reflector.

The reactor power was set at 5 MW.
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2.5 Conclusion

A sensitivity study of the fission converter design was performed using different fuel

configurations (multi-plate reactor type MITR-II fuel vs. single flat plate type fuel) and varying

fuel spacing for MITR-II fuel fission converters. The analysis of fuel configuration showed that

H2 0- or D20-cooled single plate fuel fission converters, which have considerably more 23 5 U fuel

loading than the MITR-II fuel, do not improve beam performance relative to the fresh MITR-II fuel

for the same coolant because it provides comparable or lower epithermal neutron flux without

decreasing the specific fast neutron dose. However, it provides an advantage over a burned MITR-

II fuel fission converter for most coolant thicknesses. Moreover, in spite of its much lower volume

fraction of coolant, an H20-cooled single plate fission converter with the minimum coolant

thickness (0.16 cm) does not improve beam performance substantially relative to a D20-cooled

burned MITR-II fuel fission converter. Therefore, it is concluded that both burned and fresh MITR-

II fuels are as efficient generators ofepithermal neutron beams, especially with D2 0 coolant, as the

single plate fuel. The studies of the single plate fission converters with low enriched and high

enriched uranium indicated comparable performance for both D2 0 and H2 0 cooling.

The study of the fuel spacing effect showed that increasing spacing between the fuel

elements causes power to increase without affecting the epithermal neutron flux and the specific

fast neutron dose at the patient position. Considering the effect of varying D2 0 coolant thickness

on the upstream and downstream sides of the fuel elements analyzed in Reference 1, it is concluded

that, because the MITR-II fuel already has a large coolant volume fraction, increases in the

thickness of the coolant layers surrounding the fuel elements does not reduce fast neutron

contamination enough to offset loss of beam intensity. Therefore, it is not recommended to
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increase fuel spacing because it would require additional engineering considerations to avoid

bypass flow between the fuel elements without any benefit in terms of beam performance.

The effect of using H2 0 coolant on in-phantom figures of merit was also examined in

the current study. The result showed that it does not affect AD and AR but does reduce ADDR in

proportion to the epithermal neutron flux.

The next chapter will present the results of the sensitivity analyses of the fast neutron

filter/moderator and the thermal neutron filter designs, where the effect of varying materials and

configurations on in-air and/or in-phantom beam performance will be discussed.
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CHAPTER THREE

Sensitivity Study of the Neutron Filter Design -
Effect of Variation of the Neutron Spectrum

3.1 Introduction

Among various components of the epithermal neutron beam, the neutron filters (i.e., the fast

neutron filter/moderator and the thermal neutron filter) are the ones which require much effort to

optimize their designs. There are a number of factors to be considered in selecting the materials

and optimizing the configuration of the neutron filters. In terms of neutronics, the fast neutron

filter/moderator must have a high resonance scattering cross sections in the fast energy range and a

low cross section in the epithermal range to provide windows allowing epithermal neutrons to pass

through the filter. Light elements are preferable because of the forward-oriented angular

distribution of scattered neutrons in the laboratory frame of reference and greater energy loss per

collision relative to heavy elements. The thermal neutron filter should absorb thermal neutrons

efficiently while transmitting epithermal neutrons with little attenuation. For both types of filters,

production of gamma rays has to be minimized. Desirable engineering characteristics for the

filter/moderator materials are that they do not undergo phase changes, decompose, or emit toxic

substances in the high radiation field and potentially elevated temperature environment. Materials

which accumulate long-term radioactivity should be avoided because they may cause difficulty in

beam modifications and decommissioning. The effect of impurities or hydration of the

commercially available materials on the beam performance should be taken into account.
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Furthermore, the cost of materials and component fabrication is also an important factor in actual

planning of the beam construction. The physical form (i.e., single, combination or mixture),

dimension and arrangement (i.e., order) of the materials are also to be optimized, depending on the

neutronic and engineering characteristics of the selected materials.

For the fast neutron filter/moderator, various materials and their combinations/mixtures have

been extensively examined (for example, see References 1, 2 ,3 and 4). In Reference 5, several

materials including Al, D20, Ti, A12 0 3 , AIF 3, S, A12S 3 were selected for detailed analysis based

on the experience of the epithermal beam development at MIT, the knowledge of the previous

studies and the survey of neutronic and engineering properties of various candidate materials.

Beam performance of filter/moderator designs using single materials and combinations/mixtures of

these materials were examined using in-air figures of merit, i.e., epithermal neutron flux (Gepi),

specific fast neutron and photon doses (Dfn/ Depi and Dy/ (epi) at the patient position. As a result

of these analyses, Reference 5 proposed the design of the fast neutron filter/moderator shown in

Figure 1.4, which consists of a homogeneous mixture of 70% AIF 3 /30% Al (by volume, where

96% theoretical density is assumed) with a thickness of 68 cm and 2 cm thick Ti. As mentioned in

Chapter 1, this design provides an epithermal neutron beam with high intensity and high quality in

terms of both in-air and in-phantom beam performance.

It is expected that the neutron spectrum is significantly affected by the filter/moderator design.

Different filter/moderator materials, compositions and arrangements vary in-phantom figures of

merit, as suggested by the previous studies.2 ,9 The effect of different neutron energies on in-

phantom beam performance has been examined using ideal beams;3, 6 these studies provide insight

to estimate the effect of variation of neutron spectrum on in-phantom beam performance. Based on

these considerations, it is desirable to optimize the design of the fast neutron filter/moderator by

examining the variation of the neutron spectrum for different designs and its effect on in-phantom
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beam performance.

The current study performed a series of sensitivity analyses of the fast neutron filter/moderator

making use of this approach. These analyses first examined the filter/moderator designs using the

combinations of Al and A12 0 3 or Al and AlF 3 . These were selected due to their excellent

neutronic behavior and/or stability in the high radiation field and high temperature environment. In

addition to these materials, new candidate materials, i.e. polytetrafluoroethene - Teflon, (CF2)n 7,

carbon and lead fluoride, PbF 2
8, were included in the scope of the analyses. Ti was also used in

some calculations. Following parametric studies of different combinations of the materials based

on in-air figures of merit, some promising designs of the fast neutron filter/moderator were

selected and further analyzed in terms of in-phantom beam performance while paying attention to

the variation of the neutron spectrum. Moreover, the thermal neutron filter design was also studied

to examine alternative designs which could result in reduction or elimination of photon

contamination due to radiative capture by Cd.

The parametric studies of the fast neutron filter/moderator designs based on in-air beam

performance will be discussed in Section 3.2. Section 3.3 will present the results of the in-phantom

analyses for selected filter/moderator designs. In Section 3.4, the alternative designs for the thermal

neutron filter using Li and Cd will be discussed. All the calculations used a fission converter

composed of eleven burned MITR-II fuel elements (312 g 2 3 5U per element) with D20 cooling in

a double-walled aluminum tank (illustrated in Figure 2.1 and 2.2), a 10 cm thick lead reflector

surrounding the fast neutron filter/moderator and a pyramidal collimator with a 15 cm thick lead

lining. An 8 cm thick Bi photon shield was used unless it is specifically noted that a different one

was used. The theoretical density of the filter/moderator materials used here was assumed to be

100% unless stated otherwise. The reactor power was set at 5 MW. The schematic view of the

beam showing the components to be varied in this chapter is presented in Figure 3.1. The patient

S. Sakamoto



Chapter 3: Sensitivity Study of the Neutron Filter Design S. Sakamoto

position was fixed at the entrance of the hohlraum (i.e., the edge of the permanent reactor shielding

block), 303 cm from the center of the reactor core, to assure adequate flexibility of patient

positioning.
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Figure 3.1 Schematic view of the fission converter beam design used in the sensitivity analysis of

the neutron filter design, where the components to be varied are shown.
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3.2 Analysis of the Fast Neutron Filter/Moderator

In this section, the effect of arrangement (i.e. order) of filter/moderator materials on beam

performance will be discussed first. Then, the results of sensitivity analyses for different

combinations of the selected filter/moderator materials (aluminum, aluminum oxide, aluminum

fluoride, Teflon, carbon, and lead fluoride) based on in-air beam performance will be presented.

3.2.1 Effect of the Arrangement or Ordering of Filter/Moderator Materials

There are two physical forms for multiple filter/moderator materials to be arranged in a fast

neutron filter/moderator; i.e., mixtures vs. separate blocks. For the latter form, the order of the

materials is a parameter to be optimized in the filter/moderator design. Auterinen et.al. analyzed

fast neutron filter/moderators composed of single and mixtures of the materials. 2,9 Idaho National

Engineering Laboratory (INEL) proposed a fast neutron filter/moderator model which is equivalent

to a homogeneous mixture of aluminum, lithiated aluminum and Teflon.7 On the other hand,

Brookhaven National Laboratory (BNL) studied the fast neutron filter/moderator designs using

single or combinations of D20, Al, and A12 0 3 for an epithermal neutron beam with 23 5U fission

plates; they found that a 48 cm thick Al block followed by a 24 cm A120 3 block was an optimum

combinationl 1. Although these papers proposed various types of materials and their arrangements

for the filter/moderator design, they have not discussed the effect of the arrangement (i.e. order) of

the materials on beam performance, which would affect the process of optimization of the design in

terms of neutronics and engineering. Therefore, this effect was analyzed by examining the change

of in-air beam performance and neutron spectrum for different arrangements using the

combinations of Al-A12 0 3 and Al-AIF 3.

S. Sakamoto
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As presented below, the results of this analysis indicated that, using the same amount of

aluminum and fluorine or oxygen, the relative location or ordering of these components

significantly affects the neutron spectrum exiting from the fast neutron filter/moderator. Figure 3.2

depicts the partial neutron current spectra in the direction of the patient position at the interface

between the Cd thermal neutron filter and a fast neutron filter/moderator composed of 71 cm thick

Al and 27 cm thick AlF 3 (2115 kg Al and 858 kg AIF 3 ) with varying arrangement, i.e., varying the

form (homogeneous mixture vs. separate blocks) and the order of Al and AIF 3 . The in-air figures

of merit for these filter/moderator designs are given in Table 3.1. It is noted that the neutron

spectrum becomes harder as fluorine nuclei are moved upstream (i.e. toward the fission converter),

which results in higher epithermal neutron flux and specific fast neutron dose at the patient

position; when the AIF 3 block is located on the upstream side and followed by the Al block, the

spectra show peaks around energies which correspond to the dips of the resonance peaks of Al (e.g.

25 keV). The same trend is seen in Figure 3.3, which depicts the partial neutron current spectra

produced by the filter/moderator designs using 83 cm thick Al and 19 cm thick A1203 (2473 kg Al

and 831 kg A1203) with varying arrangement (the in-air figures of merit for these designs are

presented in Table 3.2). These results suggest that neutrons passing through the dips of resonance

peaks of aluminum are moderated more efficiently when more fluorine or oxygen nuclei are

located behind or downstream of the aluminum. In other words, in terms of fast neutron

moderation, fluorine or oxygen nuclei can be used more efficiently by locating them on the

downstream side (i.e. on the side of the patient). Also, they indicate that fluorine and oxygen have

a significant effect on neutron moderation; therefore, to some extent, we can adjust the shape of the

neutron spectrum by varying the amount of these complementary elements. From engineering

considerations, the arrangement locating fluorine-containing materials (e.g. AIF 3 ) downstream of

the aluminum provides an advantage. Because the fluorine-containing material is shielded and
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insulated from the fission converter by a large amount of aluminum, the radiation level and

temperature would be significantly lower in the fluorine-containing material where decomposition

of the material and resulting release of very active fluorine have to be avoided. In addition,

compared to a homogeneous mixture or a structure equivalent to it (e.g., assembly of many thin

layers), the design using separate blocks might save fabrication cost by eliminating the need for

mixing different types of materials (e.g., metal and ceramic in the case of Al and A12 0 3) or save

the labor required to assemble a number of thin layers of different materials. Based on these

considerations, the arrangement which has an aluminum block followed by materials containing

complementary elements (fluorine, oxygen or carbon) was selected for the following analyses of

the fast neutron filter/moderator.

Table 3.1 In-air beam performance for the fast neutron filter/moderator composed of 71 cm thick

Al and 27 cm thick AIF 3 (2115 kg Al and 858 kg AIF 3) with varying arrangement. For

the mixture of these materials, 100% theoretical density is assumed. The material listed

on the left hand side is adjacent to the fission converter. These calculations used a fission

converter composed of eleven burned MITR-II fuel elements (312 g 235U per element)

with D2 0 cooling. The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal

neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm thick

lead lining, and is surrounded by a 10 cm thick lead reflector. The reactor power was set

at 5 MW.

Run ID Filter/Moderator Power ,01, Jd T),h J(i/0 i J1~,r Dr. Dfn/Oi

Arrangement kW n/cm2s n/cm2s n/cm2s cGy/min cGycmni/n

skm308 71cm Al - 27cm AIF 3  70.3 9.76E+08 1.30E+10 2.36E+08 0.61 0.63 0.64 9.3 1.19E-11
0.1% 2.5% 1.4% 4.2% 3.0% 1.9% 5.4% 1.8% 2.3%

skm448 98cm Al(72%)/AlF 3(28%) 74.0 8.30E+08 1.40E+10 3.32E+08 0.63 0.64 0.66 11.0 1.31E-11
0.2% 2.2% 1.4% 3.5% 3.0% 1.8% 4.5% 1.6% 2.1%

skm449 27cm AIF 3 - 71cm Al 80.9 7.93E+08 1.60E+10 9.74E+08 0.63 0.64 0.65 22.2 2.30E-11 I
0.2% 2.4% 1.3% 2.5% 3.3% 1.7% 3.4% 1.8% 2.2%
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Table 3.2 In-air beam performance for the fast neutron filter/moderator composed of 83 cm thick

Al and 19 cm thick A1203 (2473 kg Al and 831 kg A12 0 3 ) with varying arrangement.

For the mixture of these materials, 100% theoretical density is assumed. The material

listed on the left hand side is adjacent to the fission converter. These calculations used a

fission converter composed of eleven burned MITR-II fuel elements (312g 2 3 5U per

element) with D20 cooling. The fast neutron filter/moderator is followed by a 0.04 cm

Cd thermal neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15

cm thick lead lining, and is surrounded by a 10 cm thick lead reflector. The reactor

power was set at 5 MW.

Run ID Filter/Moderator Power Oth, pi  f Jthth Jcpi/)cpi ldf Dr, Dr,,,icpi

Arrangement kW n/cm's n/cm's n/cm's cGy/min cGycm'/n

A1027 83cm Al - 19cm A120 3  70.6 8.99E+08 1.17E+10 2.90E+08 0.62 0.64 0.66 9.7 1.39E-11

0.2% 2.1% 1.4% 3.6% 2.7% 1.9% 4.6% 1.9% 2.4%
A1028 102cm AI(81%)/AI203(19%) 73.2 7.54E+08 1.32E+10 5.26E+08 0.62 0.63 0.65 14.2 1.80E-11

0.2% 2.4% 1.4% 2.9% 3.1% 1.8% 3.7% 1.8% 2.3%
A1026 19cm AI20 3 -83cm Al 79.9 6.37E+08 1.41E+10 1.59E+09 0.64 0.64 0.65 30.7 3.63E-11

0.2% 2.5% 1.3% 2.0% 3.3% 1.8% 2.7% 1.5% 2.0%
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Figure 3.2 Partial neutron current spectra in the direction of the patient position at the interface

between the fast neutron filter/moderator and the Cd thermal neutron filter. The fast

neutron filter/moderator is composed of 71 cm thick Al and 27 cm thick AIF 3 (2115

kg Al and 858 kg AIF 3 ) with varying arrangements or ordering.
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Figure 3.3 Partial neutron current spectra in the direction of the patient position at the interface

between the fast neutron filter/moderator and the Cd thermal neutron filter. The fast

neutron filter/moderator is composed of 83 cm thick Al and 19 cm thick AlF 3 (2473

kg Al and 831 kg AIF 3) with varying arrangements or ordering.
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There is one more thing to be mentioned about the analysis of different arrangements. Tables

3.1 and 3.2 show that the fission converter power increases as AIF 3 or A120 3 is moved upstream

toward the fuel. This is due to increased reflection of neutrons back to the fission converter by the

filter/moderator with AIF 3 or A120 3 adjacent to the fission converter. As shown in Table 3.3, the

macroscopic total cross sections of AIF 3 and A12 0 3 averaged over different energy ranges

(thermal, epithermal and fast ranges) with the spectrum of the fission converter beam 5 are greater

than that of Al. Therefore, neutron reflection from the filter/moderator is increased as AIF 3 or

A12 0 3 is moved toward the fission converter. This point is clearly illustrated in Figure 3.4, which

depicts the partial neutron current spectra in the upstream (i.e. backward) direction at the interface

between the converter coolant (D2 0) and the rear inner tank wall for the fast neutron

filter/moderator designs using 83 cm Al + 19 cm A12 0 3 with varying arrangement.

Table 3.3 Macroscopic total cross sections of AlF 3 and A12 0 3 averaged with the spectrum of the

fission converter beam. Microscopic total cross sections from Reference 5 were used.

Thermal cross sections are for 0.025 eV and epithermal and fast cross sections are

averaged over the ranges of I eV to 10 keV and 10 keV to 5 MeV, respectively.

100

Thermal (0.025eV) Epithermal Fast
1/cm l/cm 1/cm

Al 0.099 0.093 0.18

A1F 3  0.28 0.26 0.26

A120 3 0.37 0.34 0.32
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Figure 3.4 Partial neutron current spectra at the interface between the converter coolant (D20)
and the rear inner tank wall in the upstream (i.e. backward) direction for the fast neutron

filter/moderators composed of 83 cm Al + 19 cm A120 3 with varying arrangements.
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3.2.2 Sensitivity Analysis of the Fast Neutron Filter/Moderator Using Combinations

of Aluminum and Fluorine or Oxygen Containing Materials or Carbon

Section 3.2.1 identified the arrangement of the filter/moderator materials composed of an

aluminum block followed by the materials containing complementary elements (F, O or C) as the

one to be primarily investigated. This section will discuss the results of parametric studies of the

fast neutron filter/moderator design using this arrangement in terms of in-air beam performance.

The parameters examined in this analysis are the type and the dimension of the filter/moderator

materials. One should note that, in the case of the MIT fission converter beam, the total thickness

of the fast neutron filter/moderator can be varied significantly as well as the thickness of each

material block because of the large space available between the fission converter and the patient

position (180 cm).

Four basic combinations of the selected filter/moderator materials were considered in this

analysis; that is, Al - A12 0 3, Al - AlF 3 and Al - (CF2)n and Al - C. In addition, designs which

replace a part of fluorine containing materials (AIF 3 or (CF2)n) with PbF2 were also examined. In

these designs, the 8 cm thick Bi photon shield was also replaced with PbF 2 because it can be used

as the photon shield. The following is the consideration regarding the features of the selected

materials.

(1) Combination of Al and A120 3

The combination of Al and A120 3 has been investigated as a fast neutron filter/moderator

for many years. 4 , 12 In Reference 4, A12 0 3 was identified as a good fast neutron filter/moderator

because of its well-known engineering properties, reasonable price with high purity, physical and

chemical stability in the high temperature and high level radiation environment as well as good

neutronic performance. The environmental compatibility of A120 3 primarily motivated the study
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of this combination.

(2) Combination of Al and AIF 3

Auterinen et.al2,9 examined almost all elements with reasonably low thermal neutron

absorption (16 elements) and many of their mutual compounds. Among the tested materials, they

identified the fluorine-containing materials, i.e., AIF 3, PbF 2, CaF2, CaSiF6, MgF 2 , as the best

candidates. Moreover, they found that the optimized mixture of Al and AIF 3 is superior to other

tested materials. As a result of their extensive study, they developed a metal/ceramic composite

which consists of a mixture of Al and AIF 3 called FLUENTAL as a commercial product for a fast

neutron filter/moderator material; it is patented in Finland and an international patent for it is

pending. 10 The superiority of the fast neutron filter/moderator composed of a combination of Al

and AIF 3 to that composed of a combination of Al and A1203 has also been indicated by Liu. 8

Although Auterinen et. al. claimed that FLUENTAL has adequate mechanical strength and

high resistance to irradiation for long-term use under very demanding conditions,10 it is desirable

to place AIF 3 as far from the neutron source as possible and have other chemically stable materials

between them to reduce the radiation level in AIF 3 for avoiding its decomposition and emission of

fluorine. The arrangement of an Al block followed by an AIF 3 block meets this goal and

potentially reduces fabrication cost as discussed in Section 3.2.1. As for the commercial product of

AIF 3 such as is used in the aluminum industry, one should be aware of the problem of its

hydration. To avoid degradation of beam performance, H2 0 contained in AIF 3 has to be removed

by a method such as heating before fabrication.

(3) Combination of Al and (CF 2)n

The use of Teflon, (CF 2)n , was proposed by INEL for the design of the Washington State
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University (WSU) epithermal neutron beam extraction facility for BNCT.7 This study considered a

filter/moderator design composed of thin plates of aluminum, lithiated aluminum and Teflon

(0.635 cm each), which is neutronically equivalent to the homogeneous mixture of these

materials. 7 Teflon has a significant advantage as a filter/moderator material because it is available

for a relatively low price with high purity. If it provides adequate beam performance, it would be a

promising candidate.

However, Teflon has a big disadvantage too; that is, Teflon is vulnerable to radiation

damage, which results in decomposition and release of fluorine. To avoid the release of fluorine,

INEL proposed to sandwich a Teflon plate with two aluminum plates so that gaseous fluorine

emitted from Teflon will be bond immediately to the adjacent aluminum plates. Although this idea

is expected to work, an arrangement with a Teflon block located behind a thick aluminum block

would provide an additional safety measure to mitigate the problem.

(4) Combination of Al and carbon

Carbon was selected as a result of the study of the combination of Al - (CF,)n, where it was

shown that carbon in (CF 2)n contributes to reduction of fast neutron contamination. This

combination is very attractive for two reasons: first, carbon is a very stable material and its

physical and chemical properties are well-known; second, high-purity reactor grade graphite is

available at the MIT Nuclear Reactor Laboratory so that this combination would allow significant

reduction of the cost for the filter/moderator.

The results of the calculations for fast neutron filter/moderator designs using the first three

combinations of materials are summarized in Table 3.4 for Al-A12 0 3, Table 3.5 for Al-AIF 3 , and

Table 3.6 for Al-(CF,)n. For these combinations, the plots of epithermal neutron flux (Gepi) vs.
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specific fast neutron dose (Dfn/ktepi) are also shown in Figure 3.5 (Al - A12 0 3 ), Figure 3.6 (Al -

AIF 3) and Figure 3.7 (Al - (CF 2)n) . In the tables and figures, the in-air beam performance for the

'final' beam design (std473) proposed in Reference 5, which uses the fast neutron filter/moderator

composed of 68cm 70% AIF 3 /30% Al (96% theoretical density) and 2 cm Ti, is also included for

comparison.

These results show that A12 0 3 , AIF 3, (CF 2)A are very powerful filter/moderator materials.

For example, comparing the result for 72 cm Al (Run ID - AIO12) with that for 48 cm Al - 24 cm

A120 3 (Run ID - A102), the replacement of 24 cm Al with the same thickness of A12 0 3 reduces

the specific fast neutron dose by a factor of -7 while decreasing the epithermal neutron flux only

by a factor of 2. The comparison between the results for 72 cm Al (A1012) and 41cm Al - 27 cm

AIF 3 (Run ID - AIFTi8) also shows a great reduction of fast neutron contamination by a factor of

- 6 while decreasing the epithermal neutron flux by only - 20% when 31 cm Al was replaced with

27 cm AIF 3. In addition, by replacing 32.6 cm of 72cm Al with 39.6 cm (CF,) n to make a

filter/moderator composed of 39.4 cm Al - 39.6 cm (CF 2)n (Run ID - skm430), the specific fast

neutron dose is decreased by a factor of - 10 while beam intensity is decreased by a factor of 4.

Using these materials, one can make many designs of the fast neutron filter/moderator which meet

design goals of beam intensity and fast neutron contamination as shown in the tables. Although the

specific photon doses were not calculated for all the designs, the results for some of the designs

suggests that most of these designs produce photon contamination less than 2*10-11 cGycm 2 /n

(Table 3.9 which will be presented below shows the specific photon doses for several designs).

However, the results also show a clear trade-off between beam intensity and fast neutron

contamination for all the combinations; that is, as the specific fast neutron dose is reduced, the

epithermal neutron flux is also decreased. The comparison of the results for 48 cm Al - 24 cm
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Al20 3 (A102) and 48 cm Al - 29 cm A12 0 3 (Run ID - AIO5) shows that the addition of a 5 cm

A12 0 3 block to 48 cm Al - 24 cm A12 0 3 reduces both the epithermal neutron flux and the fast

neutron dose by -30%. Compared to 41cm Al - 27 cm AIF 3 (AIFTi8), 41 cm Al - 32 cm AIF 3

(Run ID - skm457), which has a 5 cm thicker AIF 3 block, reduces the epithermal neutron flux by

20% while decreasing the specific fast neutron dose by 30%. Therefore, it is considered that an

A12 0 3 or AIF 3 block which is thicker than - 25 cm would decrease fast neutron contamination

with commensurate reduction of beam intensity.

By examining the results carefully, it is also noted that the filter/moderator designs using

different dimensions of the filter/moderator materials (i.e., different thicknesses of Al and the other

material) produce almost the same levels of the epithermal neutron flux and the specific fast

neutron dose with different neutron spectrum shapes at the patient position. For example,

comparing the result of 41 cm Al - 32 cm AIF 3 (skm457) and that of 71 cm Al - 22 cm AIF 3 ( Run

ID - skm454) shown in Table 3.5, which produce almost the same epithermal neutron flux and

specific fast neutron dose, the thermal neutron flux is higher and the fast neutron flux is lower for

the former design (note that Design skm457 has more AIF 3 and less Al than Design skm454). On

the other hand, in terms of the fast neutron dose rate at the patient position, Design skm457 has a

smaller epithermal energy component and a larger fast energy component than Design skm454.

The same trend is observed in comparing the in-air beam performances of the designs using 58 cm

Al - 24 cm A12 0 3 (Run ID - skm463) and 83 cm Al - 17 cm A12 0 3 (Run ID - skm451), where the

former design has more A12 0 3 and less Al than the latter. Although these results seem

contradictory, they can be explained by examining the neutron spectrum. Figure 3.8 and Figure 3.9

depict the neutron flux spectra at the patient position for the filter/moderator designs using 41 cm

Al - 32 cm AIF 3 (skm457) and 71 cm Al - 22 cm AIF 3 (skm454) in linear and log scales,

respectively. From Figure 3.8, it is seen that Design skm457 (41 cm Al - 32 cm AIF 3) increases the
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spectrum within the thermal region and the low energy portion of the epithermal region while

decreasing its high energy portion relative to Design skm454 (71 cm Al - 22 cm AIF3), which is

caused by a larger amount of the complementary element (i.e., fluorine) in Design skm457.

Moreover, Figure 3.9 shows that Design skm457 decreases the lower energy portion of the fast

region (especially, the range from 10 keV to 25 keV, which accounts for 60-80 % of the fast

neutron flux) and increases the higher energy portion (where the flux is very low) relative to

Design skm454, which is likely because Design skm457 contains less Al. As a result, Design

skm457 produces a higher thermal flux and lower fast flux. On the other hand, the neutron

KERMA factor for the brain becomes minimum around 20 eV before increasing very rapidly at

higher energies. For the epithermal region, Design skm457 (41 cm Al - 32 cm AIF 3) increases the

spectrum in the low energy portion where the KERMA factor is small and decreases that in the

high energy portion relative to Design skm454 (71 cm Al - 22 cm AIF 3). For the fast region,

Design skm457 decreases the spectrum in the low energy portion and increases that in the high

energy portion where the neutron KERMA becomes very large. As a result, Design skm457

provides a lower epithermal energy component and higher fast energy component of the fast

neutron dose rate (one should remember that the fast neutron dose is the dose due to neutrons

within both epithermal and fast energy regions). Again, the same trend is observed in comparing

the neutron spectra of Design skm463 (58 cm Al - 24 cm A12 0 3) and Design skm451 (83 cm Al -

17 cm A1203) which are shown in Figures 3.10 (linear scale) and 3.11 (log scale). These results

indicate that, for the filter/moderator designs examined in this analysis, aluminum plays a major

role to moderate or filter out the fast neutrons with energies above - 30 keV where aluminum has

large resonance peaks. On the other hand, the complementary elements (fluorine and oxygen)

moderate neutrons with energies below - 30 keV more efficiently than aluminum. Since the

previous ideal beam studys3 ,6 show that neutrons within the high energy portion of the epithermal
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range would maximize effective beam penetration in phantom, it would be beneficial to increase

the amount of Al and decrease the amount of the complementary element to reduce fast neutron

contamination and simultaneously minimize moderation in the epithermal region. However, as

discussed before, a certain amount of the complementary elements is also necessary to attenuate

fast neutrons efficiently. The optimization of the fast neutron filter/moderator has to be performed

taking these factors into account.

Table 3.5 includes the result for the filter/moderator design composed of 71 cm Al - 36 cm

AIF 3 (Run ID - skm431), which contains the same mass of Al and AlF 3 as in the design using 71

cm Al - 27 cm AIF 3 (Run ID - skm308), but the density of AIF 3 is reduced to 75% of theoretical

density. This design was considered to examine the effect of reducing the density of AIF 3 on beam

performance because commercially available aluminum fluoride would be provided in the form of

powder and would need to be fabricated by compressing it. The comparison of the results of these

filter/moderator designs show that the reduction of the AIF 3 density does not affect beam

performance at all.

108

S. Sakamoto



Chapter 3: Sensitivity Study of the Neutron Filter Design

Table 3.4 In-air beam performance for the fast neutron filter/moderator composed of an Al block followed
by an A1203 block while varying their thicknesses. These calculations used a fission converter
composed of eleven burned MITR-II fuel elements (312 g 235U per element) with D2 0 cooling.
The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, an 8 cm Bi

photon shield and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded by a
10 cm thick lead reflector. The materials listed on the left hand side of column 2 are closest to the
fission converter. The reactor power was set at 5 MW. Depi and Dfast denote epithermal and fast
components of the fast neutron dose rate (Dfn).

Run ID Filter/moderator OIth epi f hth/th Jepi' epiI .fYf Depi Dfast Dfn Dfn/e(pi_ n/cm2s n/cm2s n/cm 2 s cGy/min cGy/min cGy/min cGycm /n

A102 48cm Al - 24cm Al203# 1.25E+09 1.42E+10 5.34E+08 0.64 0.66 0.67 6.51 13.36 19.9 2.33E-11
1.7% 1.2% 2.2% 2.2% 1.6% 2.8% 1.4% 1.5% 1.1% 1.6%

AlO5 48cm Al - 29cm A1203  1.10E+09 1.02E+10 2.56E+08 0.64 0.66 0.66 3.70 6.67 10.4 1.69E-11
1.7% 1.3% 3.2% 2.2% 1.8% 4.0% 1.7% 1.8% 1.3% 1.9%

A107 53cm Al - 24cm Al20 3  1.17E+09 1.34E+10 4.10E+08 0.65 0.65 0.69 5.73 9.53 15.3 1.90E- 11
1.6% 1.2% 2.3% 2.1% 1.6% 3.1% 1.4% 1.6% 1.1% 1.7%

AIOI0 58cm Al - 19cm AI1O3  1.15E+09 1.65E+10 7.58E+08 0.65 0.65 0.68 9.09 15.80 24.9 2.51E-11
1.6% 1.1% 1.8% 2.1% 1.5% 2.4% 1.3% 1.4% 1.0% 1.5%

skm463 58cm Al - 24cm Al203  1.10E+09 1.25E+10 3.33E+08 0.64 0.65 0.68 5.33 7.22 12.6 1.68E-11
(AlO8) 0.9% 0.7% 1.5% 1.2% 0.9% 1.9% 0.8% 1.0% 0.7% 1.0%
A109 63cm Al - 19cm Al20 3  1.10E+09 1.53E+10 6.32E+08 0.63 0.66 0.67 8.49 11.86 20.3 2.22E-11

1.7% 1.1% 2.2% 2.2% 1.5% 2.8% 1.3% 1.5% 1.1% 1.6%
AIOTi4 63cm Al - 19cm A1203 6.85E+08 1.36E+10 2.10E+08 0.65 0.65 0.68 6.28 7.30 13.6 1.67E-11

- 2cm Ti 2.0% 1.2% 2.2% 2.6% 1.6% 3.1% 1.4% 1.7% 1.1% 1.7%
A1012 72cm Al 6.94E+08 2.57E+10 1.11E+10 0.61 0.65 0.67 32.71 202.74 235.4 1.52E-10

3.6% 1.4% 1.7% 4.3% 1.8% 2.2% 2.1% 1.6% 1.4% 2.0%
A1014 73cm AI - 19cm A1,03 1.05E+09 1.35E+10 4.07E+08 0.62 0.64 0.67 6.93 6.66 13.6 1.68E-11

2.0% 1.4% 2.8% 2.6% 1.8% 3.7% 1.5% 3.0% 1.6% 2.1%
AO118 73cm Al - 19cm Al203  7.75E+08 1.24E+10 1.96E+08 0.63 0.65 0.65 6.18 4.67 10.8 1.45E-1 1

- lcm Ti 2.2% 1.4% 4.5% 2.9% 1.8% 5.5% 1.6% 4.3% 2.1% 2.5%
A1016 73cm Al - 19cm AIzOl 6.23E+08 1.18E+10 1.29E+08 0.63 0.65 0.63 5.20 4.07 9.3 1.31E-11

- 2cm Ti 2.4% 1.4% 5.4% 3.2% 1.8% 6.5% 1.5% 7.9% 3.6% 3.8%
A1017 78cm Al - 19cm A20O3  9.34E+08 1.25E+10 3.60E+08 0.63 0.64 0.66 6.27 5.29 11.6 1.54E-1 I

2.0% 1.4% 3.5% 2.6% 1.8% 4.3% 1.5% 3.5% 1.8% 2.3%
AlOl5 83cm Al - 14cm Al2 03 8.78E+08 1.56E+10 7.53E+08 0.63 0.63 0.64 10.13 10.16 20.3 2.17E-11

2.0% 1.3% 2.4% 2.7% 1.7% 3.1% 1.4% 2.5% 1.4% 1.9%
A1021 83cm Al - 16cm A1203  8.95E+08 1.41E+10 4.99E+08 0.63 0.64 0.67 8.11 6.78 14.9 1.75E-11

2.0% 1.4% 2.6% 2.7% 1.8% 3.5% 1.5% 2.7% 1.5% 2.0%
A1024 83cm Al - 16cm A1203  5.70E+08 1.20E+10 1.24E+08 0.62 0.64 0.68 6.04 3.23 9.3 1.28E-1 1

- 2cm Ti 2.6% 1.4% 4.1% 3.5% 1.8% 5.6% 1.5% 4.9% 2.0% 2.4%

skm451 83cm Al - 17cm A20z3 9.28E+08 1.32E+10 4.28E+08 0.62 0.65 0.65 7.30 6.02 13.3 1.69E-11
(A1022) 2.1% 1.3% 3.2% 2.7% 1.8% 4.0% 1.6% 3.4% 1.8% 2.2%
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Table 3.4 (Continued)

Run ID Filter/moderator O'th Oepi Of IJth/Dth Jepiktepi ý IOf Depi Dfast Dfn Dfn/ctepin/cm 2 s n/cm 2 s n/cm 2 s cGy/min cGy/min cGy/min cGycm-/n

A1027 83cm Al - 19cm AI20 3  8.99E+08 1.17E+10 2.90E+08 0.62 0.64 0.66 5.71 4.03 9.7 1.39E-11
2.1% 1.4% 3.6% 2.7% 1.9% 4.6% 1.6% 4.0% 1.9% 2.4%

AlO19 93cm Al - 9cm AI0 3  7.28E+08 1.73E+10 1.40E+09 0.62 0.63 0.66 14.54 17.07 31.6 3.05E-11
2.2% 1.2% 1.8% 3.0% 1.6% 2.4% 1.3% 1.9% 1.2% 1.7%

AI020 93cm Al - 14cm AI20 3  7.87E+08 1.37E+10 5.38E+08 0.62 0.63 0.64 8.54 6.66 15.2 1.85E-11
2.2% 1.3% 2.7% 2.9% 1.8% 3.5% 1.5% 3.2% 1.6% 2.1%

std473 68cm AIF 3(70%)/AI(30%) 9.13E+08 1.30E+10 1.16E+08 0.66 0.67 0.68 4.02 6.35 10.4 1.33E-l
-2cm Ti 1.8% 1.3% 3.0% 2.4% 1.7% 4.0% 1.6% 2.2% 1.5% 1.9%

# The same thicknesses of Al and A120 3 blocks as proposed in the BNL epithermal neutron beam

design using 23 5U fission plates. l1
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Table 3.5 In-air beam performance for the fast neutron filter/moderator composed of an Al block

followed by an AlF 3 block while varying their thicknesses. These calculations used a

fission converter composed of eleven burned MITR-II fuel elements (312 g 2 3 5U per
element) with D20 cooling. The fast neutron filter/moderator is followed by a 0.04 cm

Cd thermal neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with 15

cm thick lead lining, and is surrounded by a 10 cm thick lead reflector. Column 2 lists

the filter/moderator materials starting at the fission converter. The reactor power was set

at 5 MW. Depi and Dfast denote epithermal and fast components of the fast neutron dose

rate (Dfn).

Run ID Filter/moderator Oth epi f J th'th Jcp Jcpi J/Ol Depi Df/t Dfn Dfn/p
n/cm 2s n/cm 2s n/cm2s cGy/min cGy/min cGy/min cGycm2/n

AIFTIO 19.6cm Al - 45.7cm AIF 3 8.96E+08 1.06E+10 8.83E+07 0.64 0.66 0.69 2.99 5.08 8.1 1.27E-1
- 2cm Ti 2.0% 1.4% 3.0% 2.6% 1.8% 4.1% 1.7% 2.4% 1.7% 2.1%

skm427 22.4cm Al - 49.6cm AIF 3  1.25E+09 9.64E+09 1.09E+08 0.64 0.66 0.69 2.65 3.30 6.0 1.03E-1 1

1.6% 1.4% 4.5% 2.1% 1.8% 5.8% 2.0% 2.7% 1.7% 2.2%

AIFTi8 41cm Al - 27cm AIF 3  1.31E+09 1.95E+10 7.61E+08 0.65 0.66 0.68 11.47 16.93 28.4 2.43E-11

1.7% 1.2% 2.2% 2.2% 1.6% 2.8% 1.3% 1.5% 1.0% 1.6%

skm457 41cm AI - 32cm AIF 3  1.29E+09 1.59E+10 3.78E+08 0.64 0.66 0.69 7.36 8.50 15.9 1.66E-11

(AlF2) 0.6% 0.4% 0.9% 0.7% 0.5% 1.2% 0.5% 0.6% 0.4% 0.6%

AIF6 61cm AI - 22cm AIF 3  1.08E+09 1.79E+10 6.76E+08 0.63 0.65 0.68 11.23 10.76 22.0 2.05E-11
1.9% 1.2% 2.2% 2.4% 1.6% 2.9% 1.3% 1.7% 1.1% 1.6%

AIFI 61cm Al - 27cm AIF 3  1.09E+09 1.49E+10 3.42E+08 0.64 0.64 0.66 7.49 5.67 13.2 1.48E-1 I

2.1% 1.4% 3.7% 2.8% 1.9% 4.7% 1.6% 4.4% 2.1% 2.5%

AIF3 61cm Al - 32cm AlF 3  1.03E+09 1.18E+10 1.48E+08 0.62 0.64 0.68 4.65 2.42 7.1 1.00E-1 1
2.0% 1.4% 4.7% 2.6% 1.9% 6.1% 1.6% 4.6% 1.9% 2.4%

skm460 71cm Al - 17cm AIF 3  9.42E+08 1.91E+10 1.00E+09 0.63 0.64 0.67 14.56 13.71 28.3 2.46E-1 1
0.7% 0.4% 0.7% 1.0% 0.5% 0.9% 0.4% 0.8% 0.5% 0.6%

skm454 71cm AI -22cm AlF 3  9.79E+08 1.60E+10 4.70E+08 0.62 0.64 0.67 9.55 6.29 15.8 1.65E-11
0.7% 0.4% 1.0% 0.9% 0.6% 1.3% 0.5% 1.1% 0.5% 0.7%

skm308 71cm Al -27cm AIF 3  9.70E+08 1.28E+10 2.20E+08 0.62 0.64 0.66 6.06 2.89 9.0 1.16E-1 1
(AIF4m) 0.7% 0.5% 1.4% 0.9% 0.6% 1.8% 0.5% 1.6% 0.6% 0.8%

AIF5 76cm Al -22cm AIF 3  9.20E+08 1.49E+10 4.04E+08 0.64 0.64 0.67 8.64 5.05 13.7 1.53E-11
2.0% 1.3% 3.1% 2.6% 1.7% 4.0% 1.4% 3.0% 1.4% 1.9%

skm439 66 cm FLUENTAL# 1.45E+09 1.31E+10 1.88E+08 0.65 0.66 0.69 4.04 5.19 9.2 1.17E-11
w/o LiF 0.6% 0.5% 1.3% 0.8% 0.6% 1.7% 0.6% 0.8% 0.5% 0.7%

skm426 68 cm FLUENTAL w/o LiF 1.39E+09 1.19E+10 1.62E+08 0.65 0.67 0.68 3.52 4.35 7.9 1.10E- 11

1.6% 1.3% 4.9% 2.2% 1.8% 6.0% 1.8% 2.8% 1.7% 2.2%

skm403 68 cm FLUENTAL w/o LiF 8.77E+08 1.04E+10 5.54E+07 0.64 0.66 0.68 2.61 3.03 5.6 9.07E-12
-2cm Ti 1.9% 1.4% 3.7% 2.5% 1.9% 5.0% 1.8% 3.0% 1.8% 2.3%

skm431 71cm Al - 36cm AIF3 9.13E+08 1.30E+10 2.29E+08 0.61 0.63 0.65 6.37 2.89 9.3 1.19E-I 1

(AIF3 - 75% density) 2.2% 1.4% 4.1% 2.8% 1.8% 5.2% 1.6% 3.7% 1.6% 2.1%

std473 68cm AlF 3(70%)/Al(30%) 9.13E+08 1.30E+10 1.16E+08 0.66 0.67 0.68 4.02 6.35 10.4 1.33E-1 I
- 2cm Ti 1.8% 1.3% 3.0% 2.4% 1.7% 4.0% 1.6% 2.2% 1.5% 1.9%

# The metal/ceramic composite made from Al and AIF3 mixture developed by
in Finland. 10 The atomic densities of the main elements in FLUENTAL are:

VTT Chemical
Al 3.49*1022

Technology
cm- 3 and F

4.52*1022 cm- 3 . Li (natural) can be added in the form of LiF as an optional absorber (Density:

7.0* 1020cm - 3)
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Table 3.6 In-air beam performance for the fast neutron filter/moderator composed of an Al block followed

by an Teflon [(CF2)n] block while varying their thicknesses. These calculations used a fission

converter composed of eleven burned MITR-II fuel elements (312g 2 3 5U per element) with D2 0

cooling. The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, an 8

cm Bi photon shield and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded

by a 10 cm thick lead reflector. The reactor power was set at 5 MW. Depi and Dfast denote

epithermal and fast components of the fast neutron dose rate (Dfn).

Run ID Filter/moderator Oth (epi Of Jth/(th Jepi/yepi Jf/f cDepi Dfast D f Dfnepi
n/cm2s n/cm2s n/cm2s cGy/min cGy/min cGy/tnin cGycm/n

skm433 69.85 cm AI-(CF2)n- 7.60E+08 1.23E+10 5.39E+08 0.65 0.66 0.69 5.81 18.3 24.1 3.25E-11 I
Al+2%Li-(CF2)n-AI# 1.9% 1.6% 2.3% 2.5% 2.1% 3.0% 1.7% 1.7% 1.3% 2.0%

skm430 39.4cm Al - 1.02E+09 5.98E+09 9.04E+07 0.64 0.65 0.69 1.40 3.8 5.2 1.45E-11 I

39.6cm (CF2)n 1.8% 2.1% 5.5% 2.3% 2.8% 6.8% 2.9% 3.1% 2.4% 3.2%

skm437 70cm Al - 22cm (CF2)n 1.10E+09 1.17E+10 2.10E+08 0.64 0.64 0.69 4.70 4.4 9.1 1.29E-11

1.9% 1.4% 3.6% 2.5% 1.9% 4.8% 1.6% 4.2% 2.2% 2.6%

skm435 75cm Al - 22cm (CF2)n 1.08E+09 1.12E+10 2.00E+08 0.62 0.63 0.64 4.36 3.8 8.2 1.21E-lI
1.9% 1.5% 4.8% 2.6% 2.0% 5.8% 1.7% 5.0% 2.5% 2.9%

skm434 80cm Al - 17cm (CF2)n 1.07E+09 1.38E+10 4.04E+08 0.64 0.64 0.67 7.14 6.33 13.5 1.63E-11
1.9% 1.3% 2.8% 2.5% 1.8% 3.8% 1.5% 3.0% 1.6% 2.1%

skm432 80.3cm Al - 1.02E+09 1.06E+10 1.62E+08 0.63 0.63 0.66 4.22 2.80 7.0 1.10E- I

21.6cm (CF2) n  2.2% 1.8% 5.0% 2.9% 2.3% 6.6% 2.0% 5.6% 2.5% 3.1%

std473 68cm AIF3(70%)/ 9.13E+08 1.30E+10 1.16E+08 0.66 0.67 0.68 4.02 6.35 10.4 1.33E-11

A1(30%)- 2cm Ti 1.8% 1.3% 3.0% 2.4% 1.7% 4.0% 1.6% 2.2% 1.5% 1.9%

# The fast neutron filter/moderator design proposed by INEL for the WSU epithermal neutron
beam extraction facility for BNCT 7 . This design consists of 0.635 cm thick plates repeating in the
order of All 100-(CF 2 )n-[Al+2%Li(natural)]-(CF2)n-All 100. The total thickness of the fast
neutron filter/moderator is 69.85 cm (All100 - 27.94 cm, (CF2)n - 27.94 cm, AI+2%Li(nat.) -
13.97 cm) .
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Figure 3.5 Epithermal neutron flux vs. specific fast neutron dose for various fast neutron
filter/moderator designs composed of an Al block followed by an A120 3 block.

The label of each data point denotes the configuration of the filter/moderator
design.
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Figure 3.6 Epithermal neutron flux vs. specific fast neutron dose for various fast neutron
filter/moderator designs composed of an Al block followed by an AlF 3 block.
The label of each data point denotes the configuration of the filter/moderator
design.
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Figure 3.7 Epithermal neutron flux vs. specific fast neutron dose for various fast neutron

filter/moderator designs composed of an Al block followed by an Teflon [(CF2)]n
block. The label of each data point denotes the configuration of the filter/moderator.
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Figure 3.8 Comparison of the neutron flux spectra at the patient position generated by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 22 cm AIF 3 (skm454) and 41 cm Al - 32 cm

AIF 3 (skm457) shown in a linear scale. The reactor power was set at 5 MW.
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Figure 3.9 Comparison of the neutron flux spectra at the patient position generated by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 22 cm AIF 3 (skm454) and 41 cm Al - 32 cm

AIF 3 (skm457) shown in a log scale. The reactor power was set at 5 MW.
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Comparison of the neutron flux spectra at the patient position generated by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 83 cm Al - 17 cm A120 3 (skm451) and 58 cm Al - 24

cm A12 0 3 (skm463) shown in a linear scale. The reactor power was set at 5 MW.
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Figure 3.11 Comparison of the neutron flux spectra at the patient position generated by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 83 cm Al - 17 cm A120 3 (skm451) and 58 cm Al - 24

cm A120 3 (skm463) shown in a log scale. The reactor power was set at 5 MW.
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Since Teflon appears to be a promising candidate for the filter/moderator material, it is

interesting to consider what is the effect of carbon in Teflon on beam performance. For this

purpose, a few calculations were done for the designs using hypothetical Teflon from which carbon

was removed. The results are presented with those for the designs with Teflon including carbon in

Table 3.7. These calculations used a fast neutron filter/moderator composed of All 100-(CF2) n-

[Al+2%Li(natural)]-(CF2)n-Al 1100 (INEL Design) proposed in Reference 7, where carbon in

Teflon [(CF2)n] was kept or removed. The INEL design, which was proposed for the WSU

epithermal neutron beam extraction facility for BNCT 7, repeats 0.635 cm thick plates in the order

of All 100-(CF2)n-[Al+2%Li(natural)]-(CF2)n-All 100. The total thickness of the fast neutron

filter/moderator is 69.85 cm (All 100 - 27.94 cm, (CF2)n - 27.94 cm, A1+2% Li(nat.) - 13.97 cm).

In addition, a 6 cm or 10 cm thick Pb block was used as a photon shield, which was also used in

Reference 7. The results show that the removal of carbon from Teflon increases the specific fast

neutron dose by -70% and the epithermal neutron flux by 70-80%. Therefore, it is found that

carbon in Teflon decreases fast neutron contamination although it reduces beam intensity

significantly as well.

Carbon is commonly used as a neutron moderator. It has very low absorption cross section

and its total cross sections averaged over the epithermal and fast energy range with the spectrum of

the fission converter beam are 4.71 b and 2.26 b, which are comparable to those of oxygen

(epithermal - 3.74 b and fast - 2.52 b) 5 . Carbon does not behave as a band-pass filter. However,

oxygen, which was shown to provide good filtration/moderation of fast neutrons, does not have any

resonance peaks up to - 440 keV where it has the highest peak of - 17 b; 14 the magnitude of its

resonance peak is not as large as those of fluorine. Then, it seems reasonable to expect that carbon

would be used as a filter/moderator material as well as oxygen.
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Motivated by these considerations, calculations were done using the combination of Al - C.

The results are shown in Table 3.8. Design skm467 was made so that it contains the same numbers

of Al and C atoms as those of Al and O atoms in Design skm451 (83 cm Al - 17 cm A12 0 3). Table

3.8 shows that Design skm467 provides a beam performance which is similar to that of Design

skm451 (28% lower epithermal neutron flux and 21% lower specific fast neutron dose). Moreover,

it is seen that the filter design using 96 cm Al.- 12 cm C (skm471) produces a beam which meets

the design goals adequately.
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Table 3.7 In-air beam performance for the filter/moderator designs composed of All l00-(CF2)n-
[AI+2%Li(natural)]-(CF2)n-All 100 (INEL Design) where carbon in Teflon [(CF2)n] was kept or

removed. These calculations used a fission converter composed of eleven burned MITR-II fuel

elements (312 g 235U per element) with D20 cooling. The fast neutron filter/moderator is

followed by a 0.04 cm Cd thermal neutron filter, a Pb photon shield with different thicknesses

and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded by a 10 cm thick

lead reflector. The reactor power was set at 5 MW.

Run ID Carbon Photon Oth epi f Jth/'th Jepi'epi IJfOf Dfn Dfn/c e- Dy Dy/cie i
in Teflon Shield n/cm 2 s n/cm 2s n/cm 2 s cGy/min cGycm2/n cGy/min cGycm /n

skm402 Yes 6cm Pb 8.27E+08 1.31E+10 6.03E+08 0.66 0.66 0.69 25.1 3.19E- 11 2.7 3.45E-12
1.9% 1.5% 2.3% 2.5% 2.0% 3.0% 1.3% 2.0% 2.2% 2.6%

skm406 No 6cm Pb 4.01E+08 2.22E+10 2.29E+09 0.65 0.66 0.68 73.4 5.52E-11 3.2 2.39E-12
2.5% 1.2% 1.5% 3.3% 1.7% 2.0% 1.0% 1.6% 2.4% 2.7%

skm400 Yes 10cm Pb 6.97E+08 1.06E+10 4.34E+08 0.65 0.66 0.69 19.2 3.03E-11 1.3 2.00E-12
2.0% 1.7% 2.5% 2.6% 2.2% 3.3% 1.5% 2.2% 1.9% 2.5%

skm405 No 10cm Pb 3.82E+08 1.90E+10 1.72E+09 0.63 0.65 0.68 58.3 5.11E-11 1.5 1.28E-12
2.6% 1.3% 1.6% 3.5% 1.8% 2.1% 1.0% 1.7% 1.9% 2.3%

Table 3.8 In-air beam performance for the filter/moderator composed of an Al block followed by an

graphite block with varying their thicknesses. These calculations used a fission converter

composed of eleven burned MITR-II fuel elements (312 g 235U per element) with D20 cooling.

The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, an 8 cm Bi

photon shield and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded by a

10 cm thick lead reflector. The reactor power was set at 5 MW.

Run ID Filter/moderator Oth (epi Of Jth/kth Jepi/$epi Jif/f Depi Dfast Dfn Dfn/$epi
n/cm 2 s n/cm 2 s n/cm2 s cGy/min cGy/min cGy/min cGycm 2/n

skm467 96cm Al - 15cm C 1.02E+09 9.45E+09 2.07E+08 0.61 0.63 0.63 3.83 3.71 7.5 1.33E-11
1.3% 1.0% 2.6% 1.7% 1.3% 3.3% 1.2% 2.8% 1.5% 1.8%

skmn471 96cm Al - 12cm C 1.06E+09 1.20E+10 3.83E+08 0.62 0.63 0.65 6.04 6.40 12.4 1.73E-1 i
1.2% 0.9% 1.9% 1.6% 1.2% 2.5% 1.0% 2.1% 1.2% 1.5%
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For a quick comparisons between different combinations, several designs are selected for

each combination and their results are presented in Table 3.9 and Figure 3.12. Table 3.9 shows the

specific photon doses of the designs where the data are available. These results show that the

filter/moderator designs using combinations/mixtures of Al and AIF 3 provide the best beam

performance, i.e., a higher epithermal neutron flux and/or lower specific fast neutron dose.

However, it will be shown in Section 3.3 that the difference in the specific fast neutron dose at such

low levels does not affect in-phantom figures of merit significantly.

Comparing the results for the designs using 68 cm FLUENTAL (without LiF) with and

without 2 cm Ti (Run ID - skm403 and skm426, respectively), one would see the effect of using a

Ti filter on beam performance. Table 3.9 shows that the addition of the 2cm Ti reduces the specific

fast neutron dose by 18% while decreasing the epithermal neutron flux by 13%. However, as will

be discussed in Section 3.3, resonance peaks of Ti remove epithermal neutrons within the energy

range of 3-10 keV, where the advantage depth would be maximized, 6 as well as undesired fast

neutrons. Therefore, it is considered that the advantage of reducing fast neutron contamination with

Ti would be offset by the reduction of the useful epithermal portion of the spectrum.

As for photon contamination, the 2 cm thick Ti layer does not increase the specific photon

dose although Reference 5 identified Ti as a major photon generation source, which produces

prompt gamma rays which accounts for - 26% of the photon contamination. This is likely because

the 2 cm Ti filter is shielding photons as well as generating those. For photons with energies of 3-4

MeV, which are approximately the average energies of prompt gamma rays from Al (another major

photon source), the mass attenuation coefficient of Pb and Fe are around 0.04 cm 2 /g and 0.03

cm 2/g, respectively. 2 0 Since these values are considered to provide good approximations for those

of Bi and Ti due to similarity of the atomic numbers between Pb and Bi and between Fe and Ti, the

linear attenuation coefficients of Bi (Density = 9.8 g/cm 3 ) and Ti (Density = 4.5 g/cm 3 ) are
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estimated as follows.

p(Bi) = 0.04 [cm 2/g] * 9.8 [g/cm 3] - 0.4 [1/cm]

pt(Ti)= 0.03 [cm 2/g] * 4.5 [g/cm 3] - 0.14 [1/cm]

Therefore, roughly speaking, a 2 cm thick Ti layer is equivalent to a - 0.7 cm thick Bi layer

in terms of photon attenuation. The parametric study of the Bi photon shield performed in

Reference 5 shows that, in the beam design using a filter/moderator composed of 68 cm 70%

AlF3/30% Al - 2 cm Ti (the designs of the fission converter, reflector and collimator are different

from those used here), a decrease in the thickness of Bi from 8 cm to 6 cm causes an increase in the

photon dose rate at the patient position by -100% (from 6.9 cGy/min to 14.2 cGy/min). Then,

when 0.7 cm of Bi is removed, the photon dose rate is considered to increase by - 30 - 40 %. On

the other hand, the photon dose analysis of Reference 5 which uses a filter/moderator composed of

68cm 70% AIF 3/30% Al - 2 cm Ti and an 8 cm Bi photon shield (again, the designs of the fission

converter, reflector and collimator are different from those used here) indicates that the photon

dose rate is increased by - 40% ( from 5 cGy/min to 6.8 cGy/min) when the photon generation of

the 2 cm Ti layer is turned on. As a result, it is considered that, when the 2 cm thick Ti layer is

added, the increase in photon generation would be offset by the effect of increased photon

attenuation. This consideration explains the small difference in the photon dose rate between

Designs skm426 and skm403.
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Table 3.9 Summary of in-air beam performance for the fast neutron filter/moderator designs using the combinations of AI-A12 0 3 , Al-AIF 3 ,
AI-(CF2)n and Al-C. These calculations used a fission converter composed of eleven burned MITR-II fuel elements (312 g 235U per
element) with D2 0 cooling. The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon
shield and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded by a 10 cm thick lead reflector. The MITR
reactor power was assumed to be 5 MW. Depi and Dfast denote epithermal and fast components of the fast neutron dose rate (Dfn).

Run ID Filter/moderator Oth Fep i  f Jth/lth Jepi/'epi IJf/Of Depi Dfast Dfn Dfn/ftepi Dy DY/Depi

n/cm2s n/cm 2s n/cm2s cGy/min cGy/min cGy/min cGycm 2/n cGy/min cGycm 2/n

A102 48cm Al - 24cm A12 03# 1.25E+09 1.42E+10 5.34E+08 0.64 0.66 0.67 6.51 13.36 19.9 2.33E-11 N.A. N.A.

1.7% 1.2% 2.2% 2.2% 1.6% 2.8% 1.4% 1.5% 1.1% 1.6%

A1021 83cm Al - 16cm A120 3  8.95E+08 1.41E+10 4.99E+08 0.63 0.64 0.67 8.11 6.78 14.9 1.75E-11 N.A. N.A.

2.0% 1.4% 2.6% 2.7% 1.8% 3.5% 1.5% 2.7% 1.5% 2.0%

skm451 83cm Al - 17cm A12 03 9.28E+08 1.32E+10 4.28E+08 0.62 0.65 0.65 7.30 6.02 13.3 1.69E-11 5.0 6.39E-12

(A1022) 2.1% 1.3% 3.2% 2.7% 1.8% 4.0% 1.6% 3.4% 1.8% 2.2% 2.4% 2.8%

A1027 83cm Al - 19cm A1203 8.99E+08 1.17E+10 2.90E+08 0.62 0.64 0.66 5.71 4.0'3 9.7 1.39E-11 5.1 7.27E-12

2.1% 1.4% 3.6% 2.7% 1.9% 4.6% 1.6% 4.0% 1.9% 2.4% 1.8% 2.3%

skm457 41cm Al - 32cm AIF3 1.29E+09 1.59E+10 3.78E+08 0.64 0.66 0.69 7.36 8.50 15.9 1.66E-1 1 7.9 8.32E-12

(AIF2) 0.6% 0.4% 0.9% 0.7% 0.5% 1.2% 0.5% 0.6% 0.4% 0.6% 1.1% 1.2%

skm460 71cm Al - 17cm AIF 3  9.42E+08 1.91E+10 1.00E+09 0.63 0.64 0.67 14.56 13.71 28.3 2.46E-1 1 5.9 5.10E-12

0.7% 0.4% 0.7% 1.0% 0.5% 0.9% 0.4% 0.8% 0.5% 0.6% 0.7% 0.8%

skm454 71cm Al - 22cm AIF3 9.79E+08 1.60E+10 4.70E+08 0.62 0.64 0.67 9.55 6.29 15.8 1.65E-11 5.6 5.85E-12

0.7% 0.4% 1.0% 0.9% 0.6% 1.3% 0.5% 1.1% 0.5% 0.7% 0.7% 0.8%

skm308 71cm Al - 27cm AIF 3  9.70E+08 1.28E+10 2.20E+08 0.62 0.64 0.66 6.06 2.89 9.0 1.16E-11 5.5 7.12E-12

(AIF4m) 0.7% 0.5% 1.4% 0.9% 0.6% 1.8% 0.5% 1.6% 0.6% 0.8% 1.0% 1.1%

skin439 66 cm FLUENTAL w/o LiF 1.45E+09 1.31E+10 1.88E+08 0.65 0.66 0.69 4.04 5.19 9.2 1.17E-11 8.5 1.08E-II

0.6% 0.5% 1.3% 0.8% 0.6% 1.7% 0.6% 0.8% 0.5% 0.7% 0.6% 0.8%

skm426 68 cm FLUENTAL w/o LiF 1.39E+09 1.19E+10 1.62E+08 0.65 0.67 0.68 3.52 4.35 7.9 1.10OE-I 11 8.1 1.13E-11

1.6% 1.3% 4.9% 2.2% 1.8% 6.0% 1.8% 2.8% 1.7% 2.2% 1.6% 2.1%

skm403 68 cm FLUENTAL w/o LiF 8.77E+08 1.04E+10 5.54E+07 0.64 0.66 0.68 2.61 3.03 5.6 9.07E-12 7.2 1.15E-11

-2cm Ti 1.9% 1.4% 3.7% 2.5% 1.9% 5.0% 1.8% 3.0% 1.8% 2.3% 1.6% 2.1%



Table 3.9 (Continued)

Run ID Filter/moderator [ th (epi 4f Jth/'th Jepi/'epi Jpf/f Depi Dfast Dfn Dfn/' epi Dy DY/Depi

n/cm 2s n/cm 2 s n/cm 2 s cGy/min cGy/min cGylmin cGycm 2/n cGy/min ccGycm 2/n

std473 68cm AIF 3 (70%)/AI(30%) 9.13E+08 1.30E+10 1.16E+08 0.66 0.67 0.68 4.02 6.35 10.4 1.33E-11 8.0 1.02E-11

-2cm Ti 1.8% 1.3% 3.0% 2.4% 1.7% 4.0% 1.6% 2.2% 1.5% 1.9% 1.5% 2.0%

skmn433 69.85 cm 7.60E+08 1.23E+10 5.39E+08 0.65 0.66 0.69 5.81 18.3 24.1 3.25E-11 2.2 2.99E-12

Al-(CF 2 )n-AI+2%Li-(CF2)n-Al## 1.9% 1.6% 2.3% 2.5% 2.1% 3.0% 1.7% 1.7% 1.3% 2.0% 1.9% 2.4%

skm430 39.4cm Al - 39.6cm (CF2)n 1.02E+09 5.98E+09 9.04E+07 0.64 0.65 0.69 1.40 3.8 5.2 1.45E-11 10.5 2.94E-11

1.8% 2.1% 5.5% 2.3% 2.8% 6.8% 2.9% 3.1% 2.4% 3.2% 1.1% 2.4%

skrn435 75cm Al - 22cm (CF2)n 1.08E+09 1.12E+10 2.00E+08 0.62 0.63 0.64 4.36 3.8 8.2 1.21E-11 7.0 1.04E- 1

1.9% 1.5% 4.8% 2.6% 2.0% 5.8% 1.7% 5.0% 2.5% 2.9% 1.9% 2.4%

skm434 80cm Al - 17cm (CF2)n 1.07E+09 1.38E+10 4.04E+08 0.64 0.64 0.67 7.14 6.33 13.5 1.63E-11 6.4 7.80E-12

1.9% 1.3% 2.8% 2.5% 1.8% 3.8% 1.5% 3.0% 1.6% 2.1% 2.1% 2.4%

skm471 96cm Al - 12cm C 1.06E+09 1.20E+10 3.83E+08 0.62 0.63 0.65 6.04 6.40 12.4 1.73E-1 1 6.3 8.67E-12

1.2% 0.9% 1.9% 1.6% 1.2% 2.5% 1.0% 2.1% 1.2% 1.5% 0.9% 1.3%

# BNL filter/moderator design

## INEL filter/moderator design
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Epithermal Neutron Flux (n/cm 2 s)

Figure 3.12 Epithermal neutron flux vs. specific fast neutron dose for various fast neutron

filter/moderator designs using the combinations of AI-A120 3, Al-A1F 3, AI-(CF 2)
and Al-C. The label of each data point denotes the configuration of the

the filter/moderator design.
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So far, the fast neutron filter/moderator using the combinations of AI-Al 2 0 3, AI-AIF 3, Al-

(CF2)n and Al-C were examined extensively. The next material to be investigated is lead fluoride,

PbF 2 . The use of PbF 2 , suggested by Hungyuan B. Liu 8, is interesting because it works by filtering

fast neutrons utilizing fluorine as well as by shielding gamma rays with lead. By replacing oxygen

or carbon in A12 0 3 or (CF2)n (these are considered as less desirable band-pass filters than

fluorine) with fluorine in PbF2 , the beam performance could potentially be improved. In addition,

resonance peaks of Pb in the epithermal energy range are not as high as those of Bi, which could

provide another advantage for the use of PbF2 in place of Bi. For this analysis, the beam designs

using the filter/moderator composed of 80 cm Al - 17 cm (CF2)n and 83 cm Al - 17 cm A12 0 3

were changed so that the 8 cm Bi photon shield and a portion of A120 3 or CF 2 in these designs

were replaced with a 1 lcm thick PbF 2 block. The results of the calculations are presented in Table

3.10 with the results for the original filter/moderator designs, i.e., the designs with 80 cm Al - 17

cm (CF2)n and 83 cm Al - 17 cm A120 3 followed by an 8 cm Bi photon shield. The results show

that these replacements provide slight improvements in beam intensity without increasing fast

neutron contamination. The use of PbF 2 also decreases photon contamination by 13%. Although

the use of PbF 2 appears to be attractive, its physical, chemical and engineering properties should

be examined carefully before making a decision to use it for a practical design.
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Table 3.10 Comparison of in-air beam performance of the beam designs with and without a PbF 2

photon shield. These calculations used a fission converter composed of eleven burned

MITR-II fuel elements (312 g 235U per element) with D20 cooling. The fast neutron

filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, a PbF 2 or Bi photon

shield and a rectangular collimator with 15 cm thick lead lining, and is surrounded by a

10 cm thick lead reflector. The reactor power was set at 5 MW.

Run ID Filter/moderator Photon 'th I epi Df I th/th iep Je/f Dfn DfncIep Dy Dy/ei
Shield n/cm 2 s n/cm 2 sep n/cm 2s IcGy/min i cGycm2n cGy/min cGycm n

skm434 80cm Al - 17cm (CF2)n 8cm Bi 1.07E+09 1.38E+10 4.04E+08 0.64 0.64 0.67 13.5 1.63E-11 6.44 7.80E-12
1.9% 1.3% 2.8% 2.5% 1.8% 3.8% 1.6% 2.1% 2.1% 2.4%

skm446 80cm Al- Ilcm(CF2)n 11 cm 1.63E+09 1.45E+10 4.30E+08 0.64 0.65 0.67 14.1 1.63E-11 5.90 6.78E-12

PbF2  1.5% 1.3% 2.6% 2.1% 1.7% 3.4% 1.4% 1.9% 2.1% 2.4%

skm451 83cm Al - 17cm A12 03 8cm Bi 9.28E+08 1.32E+10 4.28E+08 0.62 0.65 0.65 13.3 1.69E-11 5.04 6.39E-12

2.1% 1.3% 3.2% 2.7% 1.8% 4.0% 1.8% 2.2% 2.4% 2.8%

skm447 83cm Al- llcm Al203 11 cm 1.55E+09 1.45E+10 4.48E+08 0.63 0.64 0.66 13.8 1.59E-1 1 4.85 5.56E-12

PbF2 1.8% 1.3% 3.0% 2.3% 1.7% 3.7% 1.5% 2.0% 2.2% 2.5%
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3.3 In-Phantom Beam Performance

So far, fast neutron filter/moderators using different combinations of materials were examined

in terms of in-air beam performance. This section will present dose-depth profiles and in-phantom

figures of merit (i.e., the advantage depth, advantage ratio and advantage-depth dose rate) using

several promising filter/moderator designs, including the explanation of the effect of variation of

the neutron spectrum caused by different filter/moderator materials. The descriptions of the

computational method and figures of merit used for the in-phantom analysis have been provided in

Chapter 1.

In this analysis, boron uptake was assumed to be 40 ppm 10 B in tumor with a tumor-to-normal

uptake ratio of 3.5:1; the values of boron concentration and uptake ratio used here have been

observed for intravenous infusion of BPA-fructose, 16 which is the only drug currently approved by

the US FDA as a boron-delivery drug for BNCT. 19 The RBE's which are used are 3.2 for neutrons,

1.0 for photons, 3.8 for boron in tumor, 1.35 for boron in normal tissue. These are the same as

those used in the clinical trial of BNCT at MIT/BIDMC 1 7 with the exception that for photons, an

RBE value of 0.5 is used because of the long irradiation times required for the current beam at

MITR-II. The calculations used a fission converter composed of eleven D20-cooled MITR-II

burned fuel elements. The fast neutron filter/moderator is followed by a 0.04 cm Cd thermal

neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm thick lead lining.

This filter/moderator is surrounded by a 10 cm thick lead reflector. The reactor power was assumed

to be 5 MW.

In examining the in-phantom figures of merit, a reader should recognize that the AD and AR

are generally the most important figures of merit; maximization of ADDR is secondary to that of
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AD and AR because the designs of the fission converter beam which have been developed in

Reference 5 and the current study provide ADDR's which are more than adequate for any

therapeutic irradiation.

Fast neutron filter/moderator designs selected for this analysis and resulting in-phantom

figures of merit are presented in Table 3.11 along with their in-air figures of merit. In this table, the

ratio of ADDR to the number of epithermal neutrons crossing the unit area at the patient position

(Jepi) for each design is presented to compare the result with that of Reference 6, where the in-

phantom figures of merit were calculated using the neutron beam which had a constant number of

neutrons crossing the source plane per unit area. Also, for comparison, in-phantom beam

performance of the beam design proposed in Reference 5 (std473) is shown. As an example of the

dose-depth profile, the one for a unilateral irradiation with the fast neutron filter/moderator design

composed of 71 cm Al - 27 cm AIF 3 (skm308) is shown with its dose components in Figure 3.13.

As discussed below, variation of the in-phantom figures of merit concerning beam quality (AD and

AR) for different filter/moderator designs shown in Table 3.11 is very small. Therefore, the shapes

of the dose depth profiles produced by the other designs are expected to be very similar to that of

Design skm308. The dose-depth profiles for a bilateral irradiation using this beam design is

compared with those using the currently available MIT M67 beaml 3 in Figure 3.14. In addition,

the profiles of epithermal and thermal neutron fluxes as a function of depth in the head phantom

produced by Design skm308 are presented in Figure 3.15. Although in-phantom figures of merit

for the combination of Al - C is not evaluated, a consideration of its in-phantom beam performance

based on the neutron spectrum will be presented below.

Table 3.11 shows various filter/moderator designs which provide comparable or better

performance than the beam design proposed in Reference 5. All of the designs provide deep

penetration of the beam (the AD of 9.3-9.8 cm extends significantly beyond the centerline of the
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head phantom) and large therapeutic gain (the AR is around 5). Moreover, they produce advantage

depth dose rates of 400-600 RBE cGy/min. The advantage parameters for the current MIT medical

beam (M67 beam) based on the same assumptions of 10B uptake and RBE values calculated by

Reference 5 are: AD = 7.0 cm, ADDR = 8.8 RBE cGy/min and AR = 2.6. Compared to this beam,

the designs of the fission converter beam in Table 3.11 double the advantage ratio and increase the

advantage depth by 2 to 3 cm. Moreover, they provide an advantage depth dose rate - 50 to 70

times higher than that of the current beam.

Figure 3.13 shows that the effect of fast neutron and photon contamination of the beam is

indeed negligible relative to the irreducible background of hydrogen and nitrogen capture in the

phantom (i.e., dose components of induced photons and induced protons from the 14N(n,p)

reaction). The largest single background component is due to normal tissue concentrations of 10B

from the boron delivery agent. This dose component will decrease and beam performance would be

further improved as better compounds are developed. For example, using an advanced tumor-

targeting compound with a tumor-to-normal tissue concentration ratio of 10:1, the AD and AR

increase to 10.6 cm and 7.0 respectively (advantage depth dose rate decreases to 273 RBE

cGy/min) for the same filter/moderator design (71 cm Al - 27 cm AIF 3 ). Figure 3.14 shows that a

bilateral irradiation using this beam design provides an AR of 4.8 which is significantly larger than

that of the current MIT M67 beam (AR = 3.1). It is indicated by Figure 3.15 that the peak thermal

neutron flux in the phantom is 2.9*1010 n/cm 2 s, which occurs at around 2.5 cm depth. The ratio of

peak to surface thermal flux is around 5. The M67 beam at MITR provides a peak thermal neutron

flux of 2.2*108 n/cm 2s at around 2 cm with a peak to surface flux ratio of - 3, which was

measured in an ellipsoidal water phantom by Reference 18. Since the 10B dose is directly

proportional to the thermal neutron flux, it is recognized that the thermal flux profile of the fission

converter beam provides significant reduction of radiation damage near the surface, increasing the
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therapeutic dose at depth and improving beam penetration relative to the M67 beam.

The effect of the variation of neutron spectrum caused by different filter/moderator designs on

the in-phantom figures of merit and the dose depth profile will be analyzed. First, the neutron

spectra at the patient position generated by the filter/moderator designs using 83 cm Al - 17 cm

A1203 (skm451), 71 cm Al - 27 cm AIF 3 (skm308) and 80 cm Al - 17 cm (CF2)n (skm434), which

provide almost the same beam intensities (1.3*1010 to 1.4*1010 n/cm 2s), are compared in Figure

3.16 using a linear scale and in Figure 3.17 using a log scale. Interestingly, the shapes of these

spectra are very similar in the epithermal energy range; they differ appreciably only in the fast

energy region (skm451 and skm434 have higher fast neutron flux than skm308). Because of the

similarity of the neutron spectra in the epithermal range and the very low level (< 2.0*10-11 cGy

cm 2 /n) of fast neutron contamination, the AD's and AR's (indicators of beam quality) are almost

the same and only the ADDR's vary approximately in proportion to beam intensity for these beam

designs (note that Jepi/'epi is almost constant for the filter/moderator designs shown in Table

3.11; then, the ADDR/Jepi is constant when the ADDR varies in proportion to Iepi). The neutron

spectrum for the design using 96 cm Al - 12 cm C (skm471) at the patient position is also presented

in Figure 3.15 and 3.16. One should note that this design also produces a very similar epithermal

spectrum to those of the other designs. Because this design maintains fast neutron contamination at

as low a level as others while producing comparable epithermal neutron flux, it is expected that this

design would produce comparable in-phantom beam performance in terms of both beam intensity

and quality relative to the others.

Next, the results for the designs using 71 cm Al - 27 cm AIF 3 (skm308), 68 cm 70%

AIF 3/30% Al (96% theoretical density) with 2 cm Ti (std473) and 66 cm FLUENTAL w/o LiF

(skm439), which produce almost the same epithermal neutron flux at the patient position, are

compared to examine the effect of increasing the amount of fluorine in the filter/moderator from
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that of 71cm Al - 27 cm AIF 3 (skm308). The neutron spectra at the patient position for these

filter/moderator designs are shown in Figures 3.18 (linear scale) and 3.19 (log scale). Figure 3.18

shows that the low energy portion of the epithermal region is increased and the high energy portion

is decreased as the amount of fluorine in the filter/moderator is increased. In other words, the larger

amount of fluorine softens the spectrum in the epithermal region. For Design std473, the resonance

peaks of Ti above 3 keV also contribute to reduction of the high energy portion of the epithermal

region. On the other hand, in Figure 3.19, it is noted that Designs std473 and skm439 increase the

flux in the fast energy range above -30 keV relative to Design skm308, which is due to less Al in

Designs std473 and skm439. Although Designs std473 and skm439 provide lower specific fast

neutron doses than skm308, they also decrease the useful portion of the spectrum from 100 eV to

10 keV.

As for in-phantom figures of merit, Design skm308 (71cm Al - 27 cm AIF 3) has slightly

higher advantage depth than Design std473 (68 cm 70% AIF 3/30% Al - 2cm Ti) and Design

skm439 (66 cm FLUENTAL w/o LiF). It is also noted that, again, ADDR varies approximately in

proportion to beam intensity (i.e., ADDR/Jepi is approximately constant). Moreover, the

advantage ratio does not vary for these designs. Likely explanations for these observations are

given by the results of the ideal beam study in Reference 6, which examined the effect of the

neutron energy, emission angle and beam size relative to the target size on in-phantom figures of

merit. As for energy dependency, this study showed the following results: AD is maximized

roughly at 2 - 10 keV. ADDR as a function of neutron energy shows a wavelike shape for neutrons

with small emission angles (30 degrees or less), which is maximized roughly at 0.5 or 1.0 eV and

minimized at 1 - 2 keV, before increasing at higher energies. This wavelike shape disappears and

becomes almost flat as the emission angle increases. AR is maximized at the thermal energy region

decreasing very slowly in the epithermal region and abruptly above - 10 keV. Since the portion of
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the spectrum increased for Design skm308 ranges approximately from 100 eV to 30 keV, it is

likely that its AD is higher than those for Designs std473 and skm439. Since the fast neutron flux is

very low compared to the epithermal flux for these three designs, their AR's are likely to be the

same. In addition, the variation of ADDR in the epithermal energy range shown in Reference 6

appears to be very small. Therefore, because of this behavior of ADDR in the epithermal range and

very low fast neutron contamination of these beam designs, it is expected that the difference in the

neutron spectrum shown in Figures 3.18 and 3.19 does not affect ADDR/Jepi. The dose-depth

profiles of these three designs are presented in Figure 3.20.

Finally, the filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 71 cm Al - 22

cm AIF 3 (skm454) and 71 cm Al - 17 cm AlF 3 (skm460) are examined. By comparing the beam

performance of these designs, one can see the effect of decreasing the thickness of the AlF 3 layer.

The neutron spectra for these filter/moderator designs are depicted in Figures 3.21 (linear scale)

and 3.22 (log scale). In addition, dose-depth profiles produced by these designs are shown in

Figure 3.23, where the dose component due to fast neutrons is presented to show the effect of the

change in fast neutron contamination. In Figures 3.21 and 3.22, it is noted that the high energy

portion of the epithermal region increases significantly as well as the fast neutron flux with

decreasing thickness of the AlF 3 layer. As a result, Design skm460 (71 cm Al - 17 cm AIF 3 )

produces a specific fast neutron dose of 2.46*10- 11 cGycm 2/n, which is above the design goal.

However, although the specific fast neutron dose is increased above the nominal design goal, the

advantage depth and advantage ratio are maintained at the same level while the advantage depth

dose rate increases in proportion to the epithermal neutron flux. Hence, it is concluded that, within

the range of low fast neutron contamination considered here, the beam quality is not degraded.

Based on this result, the design goal for fast neutron contamination (Dfn/4epi < 2*10-11

cGycm 2/n) is considered lower than necessary. Figure 3.23 illustrates that the effect of fast neutron
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contamination is very small except for the location very close to the surface for these designs. In

addition, the analyses of dose-depth profiles in the case of zero 10B in normal tissue for these

designs show that the contribution from the fast neutron component to the peak normal tissue dose

is negligible. These observations support the above conclusion.

The neutron spectra generated by the designs using 41 cm Al - 32 cm AIF 3 (skm457) and 71

cm Al - 22 cm AIF 3 (skm454) were compared in Section 3.2. The results of in-phantom analysis

for these designs show that the difference in the neutron spectrum between these designs does not

affect beam quality (AD and AR) but varies ADDR slightly.
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Table 3.11 In-phantom beam performance for different fast neutron filter/moderator designs. Boron uptake was assumed at 40 ppm
10 B in tumor with a tumor-to-normal tissue uptake ratio of 3.5:1. The RBE's are 3.2 for neutrons, 1.0 for photons, 3.8 for

boron in tumor, 1.35 for boron in normal tissue. These calculations used a D2 0 cooled fission converter composed of

eleven burned MITR-II fuel elements (fuel loading is 312 g- 2 3 5U per element ) at a MITR reactor power of 5 MW. The

fast neutron filter/moderator is surrounded by a 10 cm thick lead reflector. It is

filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm thick

cm*20 cm.

followed by a 0.04 cm Cd thermal neutron

lead lining and a beam aperture size of 20

Run ID Fast Neutron Filter/Moderator Q'epi Dfn/(Depi Dy/Q~epi Jepi/(Depi AD ADDR AR ADDR/Jepi

Filter/Moderator Material n/cm 2 s cGycm 2/n cGycm 2/n cm RBEcGy/min RBEcGycm 2 /n

skm451 83cm Al - 17cm A120 3  Al 2866kg, O 350kg 1.32E+10 1.69E-11 6.39E-12 0.65 9.7 417 5.0 8.20E-10

(A1022) 1.3% 2.2% 2.8% 1.8%

skm460 71cm Al - 17cm AIF 3  Al 2289kg, F 367kg 1.91E+10 2.46E-11 5.10E-12 0.64 9.8 605 5.0 8.18E-10

0.4% 0.6% 0.8% 0.5%

skm454 71cm Al - 22cm AIF 3  Al 2340kg, F 474kg 1.60E+10 1.65E-11 5.85E-12 0.64 9.7 501 5.0 8.17E-10

0.4% 0.7% 0.8% 0.6%

skm308 71cm Al - 27cm AIF 3  Al 2391kg, F 582kg 1.28E+10 1.16E-11 7.12E-12 0.64 9.7 402 5.0 8.21E-10

(AIF4m) 0.5% 0.8% 1.1% 0.6%

skm457 41cm Al - 32cm AIF 3  Al 1548kg, F 690kg 1.59E+10 1.66E-11 8.32E-12 0.66 9.6 525 4.9 8.38E-10

(AIF2) 0.4% 0.6% 1.2% 0.5%

std473 68cm AIF 3(70%)/AI(30%) Al 1050kg, F 985kg 1.30E+10 1.33E-11 1.02E- 1 0.67 9.5 435 4.9 8.39E-10

- 2cm Ti Ti 99kg 1.3% 1.9% 2.0% 1.7%

skm439 66cm FLUENTAL w/o LiF Al 1138kg, F 1038kg 1.31E+10 1.17E-11 1.08E-11 0.66 9.3 455 4.9 8.74E-10

0.5% 0.7% 0.8% 0.6%

skm434 80cm Al - 17cm (CF2)n Al 2383kg, C 97kg 1.38E+10 1.63E-11 7.80E-12 0.64 9.6 443 4.9 8.37E-10

F 306kg 1.3% 2.1% 2.4% 1.8%
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Figure 3.13 Dose-depth profiles for unilateral irradiation produced by the fission converter beam

with D20-cooled burned MITR-II fuel and the fast neutron filter/moderator design

composed of 71 cm Al - 27 cm AIF 3 (skm308). The filter/moderator is followed by a

0.04 cm Cd thermal neutron filter, an 8 cm Bi photon shield and a pyramidal

collimator with 15 cm thick lead lining, and is surrounded by a 10 cm thick lead

reflector. The beam aperture size is 20 cm* 20 cm. The MITR reactor power was set at

5 MW. Boron uptake was assumed at 40 ppm 10 B in tumor with a tumor-to-normal

uptake ratio of 3.5:1.
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Figure 3.14 Comparison of dose-depth profiles for bilateral irradiations calculated for the fission
converter beam with D20-cooled burned MITR-II fuel and measured for the MIT

M67 beam at a reactor power of 5 MW. The doses are normalized so that the

maximum normal tissue dose is equal to 1000 cGy. The fast neutron filter/moderator

of the fission converter beam is composed of 71 cm Al - 27 cm AIF 3 (skm308). The

filter/moderator is followed by a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon

shield and a pyramidal collimator with a 15 cm thick lead lining, and is surrounded by
a 10 cm thick lead reflector. The beam aperture size is 20 cm* 20 cm. Boron uptake
was assumed at 40 ppm 10 B in tumor with a tumor-to-normal uptake ratio of 3.5:1.

The RBE's are 3.2 for neutrons, 1.0 for photons, 3.8 for boron in tumor, 1.35 for boron
in normal tissue.
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Figure 3.15 Profiles of epithermal and thermal neutron fluxes as a function of depth in the head

phantom produced by the fission converter beam with D20-cooled burned MITR-II

fuel and the fast neutron filter/moderator composed of 71 cm Al - 27 cm AIF 3

(skm308). The filter/moderator is followed by a 0.04 cm Cd thermal neutron filter,

an 8 cm Bi photon shield and a pyramidal collimator with 15 cm thick lead lining,

and is surrounded by a 10 cm thick lead reflector. The beam aperture size is 20 cm*

20 cm. The MITR reactor power was set at 5 MW.
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Figure 3.16 Comparison of the neutron flux spectra at the patient position generated by the

fission converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 83 cm Al - 17 cm A1203 (skm451), 71 cm Al - 27 cm

AIF 3 (skm308), 80 cm Al - 17 cm (CF2)n (skm434) and 96 cm Al - 12 cm C

(skm471) shown in a linear scale. The reactor power was set at 5 MW.
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Figure 3.17 Comparison of the neutron flux spectra at the patient position generated by the

fission converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 83 cm Al - 17 cm A12 0 3 (skm451), 71 cm Al - 27 cm

AIF 3 (skm308), 80 cm Al - 17 cm (CF2)n (skm434) and 96 cm Al - 12 cm C

(skm471) in a log scale. The reactor power was set at 5 MW.

S. Sakamoto



Chapter 3: Sensitivity Study of the Neutron Filter Design

2.5e+9

2.0e+9

E

cz 1.5e+9

-a

o

z
5.0e+8

0.0e+0

10-3 10-2 10-' 100 10' 102 103  104  105 106 107  108

Neutron Energy [eV]

Figure 3.18 Comparison of the neutron flux spectra at the patient position generated by the

fission converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 68 cm

AIF 3 (70%)/AI(30%) - 2 cm Ti (std473), and 66 cm FLUENTAL w/o LiF (skm439)

in a linear scale. The reactor power was set at 5 MW.
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Figure 3.19 Comparison of the neutron flux spectra at the patient position generated by the

fission converter beams with D20-cooled burned MITR-II fuel and the fast neutron
filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 68 cm

AIF 3(70%)/AI(30%) - 2 cm Ti (std473), and 66 cm FLUENTAL w/o LiF (skm439)
in a log scale. The reactor power was set at 5 MW.
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Figure 3.20 Comparison of dose-depth profiles for unilateral irradiation produced by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 68 cm 70%

AIF 3/30% Al - 2 cm Ti (std473) and 66 cm FLUENTAL w/o LiF (skm460). Boron

uptake was assumed at 40 ppm 10 B in tumor with a tumor-to-normal uptake ratio of

3.5:1. The RBE's are 3.2 for neutrons, 1.0 for photons, 3.8 for boron in tumor, 1.35

for boron in normal tissue. The reactor power was set at 5 MW.
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Figure 3.21 Comparison of the neutron flux spectra at the patient position generated by the

fission converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 71 cm Al - 22 cm

AIF 3 (skm454), and 71 cm Al - 17 cm AIF 3 (skm460) in a linear scale. The reactor

power was set at 5 MW.
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Figure 3.22 Comparison of the neutron flux spectra at the patient position generated by the fission

converter beams with D20-cooled burned MITR-II fuel and the fast neutron

filter/moderator designs using 71 cm Al - 27 cm AIF 3 (skm308), 71 cm Al - 22 cm

AIF 3 (skm454), and 71 cm Al - 17 cm AIF 3 (skm460) in a log scale. The reactor

power was set at 5 MW.
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Comparison of dose-depth profiles for unilateral irradiations using the fission converter

beams with D20-cooled burned MITR-II fuel and the fast neutron filter/moderator

designs composed of 71 cm Al - 27 cm AIF 3 (skm308), 71 cm Al - 22 cm AIF 3

(skm454) and 71 cm Al - 17 cm AIF 3 (skm460). Boron uptake was assumed at 40 ppm
10B in tumor with a tumor-to-normal uptake ratio of 3.5:1. The RBE's are 3.2 for

neutrons, 1.0 for photons, 3.8 for boron in tumor, 1.35 for boron in normal tissue. The

reactor power was set at 5 MW.
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3.4 Analysis of the Thermal Neutron Filter

Among conventional thermal neutron absorbers, Cd, 6Li, and 10 B, Cd was selected in

Reference 5 because of its better transmission of epithermal neutrons due to the abrupt drop of its

absorption cross section at 0.4 eV compared to other materials which have 1/v absorption cross

sections. The thermal neutron filter used a 0.04 cm thick layer of Cd placed just downstream of the

fast neutron filter/moderator, which absorbs 99% of incident 0.025 eV thermal neutrons while

absorbing only 1% of 1 keV epithermal neutrons. A major drawback of using Cd is its emission of

high energy gamma rays upon neutron capture. To mitigate this problem, the Cd thermal neutron

filter was placed in front of a thick photon shield. Considering that photon contamination for the

beam designs shown in Table 3.9 is essentially negligible compared to inherent hydrogen capture

gamma in the tissue (i.e., Dy/c(epi, << 2*10-10cGycm 2 /n), the use of 0.04 cm Cd is justified for

this beam. However, there are several ways to reduce photon contamination from the thermal

neutron filter, e.g., the use of 6Li or 10 B.

Some calculations were done to examine the effect of using 6 Li with filter/moderator designs

which consist of FLUENTAL with or without 1% natural LiF (by weight). The LiF used here was

uniformly distributed in FLUENTAL. If it was not used, a 0.04 cm Cd sheet was used as a thermal

neutron filter. The results are summarized in Table 3.12. Comparison of the results of the designs

using different materials for the thermal neutron filter shows that specific photon dose is reduced

by a factor of 3-4 and epithermal neutron flux is decreased by -20 % when lw/o LiF(nat.) is used in

place of a 0.04 cm Cd sheet. A significant reduction of the photon contamination is achieved due to

suppression of radiative capture in Al caused by thermal neutron removal by the uniformly

distributed 6 Li as well as removal of the Cd sheet. It should be recognized that, when using Iw/o

LiF, very low photon contamination (3*10-12 to 4*10-12 cGycm 2/n) would enable one to reduce
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the thickness of the photon shield (8 cm Bi) significantly and regain beam intensity. However, the

study of photon shield in Reference 5 showed that the reduction of the thickness of Bi photon

shield by 50% (i.e., from 8 cm to 4 cm) would increase the epithermal neutron flux by 20% while

increasing the specific photon dose by a factor of -3. Therefore, the net benefit of replacing the

0.04 cm Cd sheet with lw/o LiF uniformly distributed in FLUENTAL is expected to be

insignificant.

Another way of reducing the effect of Cd photon production is to move a part or the whole of

the Cd filter upstream to take advantage of the shielding effect of filter/moderator materials. To see

this shielding effect of the filter/moderator for Cd capture gamma rays, a calculation was done

using two separate 0.02 cm thick Cd sheets instead of one 0.04 cm Cd sheet, one of which was

located in the middle of the fast neutron filter/moderator composed of 71 cm Al - 27 cm AIF 3 and

the other was placed at the original location (i.e., downstream of the filter/moderator and in front of

the photon shield). The results for the single and split-sheet designs are compared in Table 3.13.

The results show that, although the relocation of the Cd filter reduces photon contamination by

16%, it also causes an undesired increase in the thermal neutron flux by 19%.

From the results presented so far, it is concluded that relocating a Cd sheet or replacing it

with 6Li does not appear to be advantageous. One should also note that the trade-off between the

advantage of reduced photon contamination and the disadvantage of increased thermal neutron

contamination and/or reduced epithermal beam intensity has to be taken into account in designing

the thermal neutron filter.
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Table 3.12 In-air beam performance for beam designs using different thermal neutron filters, 6 Li
or Cd. These calculations used LiF which was uniformly distributed in FLUENTAL or

a 0.04 cm Cd sheet which was located downstream of the fast neutron filter/moderator

and in front of the photon shield. The materials used for the fast neutron

filter/moderator are FLUENTAL and Titanium. The fission converter consists of

eleven burned MITR-II fuel elements (312 g 23 5U per element) with D2 0 cooling.

The neutron filters are followed by an 8 cm Bi photon shield and a pyramidal

collimator wi
reflector. The

th 15 cm thick lead lining, and is surrounded
reactor power was assumed to be 5 MW.

by a 10 cm thick lead

Run ID Fast Neutron Filter/Moderator oh eepi th Jci/~i IJOr D,, Dnr/mpi DY Dyc/Opi
& Thermal Neutron Filter n/cm2s n/cmI s n/cm cmIs cGy/min cGycm/n cGy/min cGycm2/n

skm439 66cm FLUENTAL w/o LiF 1.45E+09 1.31E+10 1.88E+08 0.65 0.66 0.69 9.2 1.17E-11 8.5 1.08E-11

- 0.04cm Cd 0.6% 0.5% 1.3% 0.8% 0.6% 1.7% 0.5% 0.7% 0.6% 0.8%

skm450 66cm FLUENTAL w/ 10/oLiF 1.07E+09 1.02E+10 1.53E+08 0.66 0.66 0.66 7.5 1.23E- 11 1.8 2.98E-12

2.0% 1.5% 4.8% 2.6% 1.9% 5.9% 1.8% 2.3% 3.0% 3.3%

skm403 68cm FLUENTAL w/o LiF 8.77E+08 1.04E+10 5.54E+07 0.64 0.66 0.68 5.6 9.07E-12 7.2 1.15E-11 I

-2cm Ti -0.04cm Cd 1.9% 1.4% 3.7% 2.5% 1.9% 5.0% 1.8% 2.3% 1.6% 2.1%

skm404 68cm FLUENTAL w/ 1%LiF 5.85E+08 8.03E+09 4.31E+07 0.65 0.66 0.70 4.5 9.45E-12 2.0 4.09E-12

-2cmTi 2.4% 1.6% 4.0% 3.1% 2.1% 5.6% 1.9% 2.5% 3.0% 3.3%

Table 3.13 In-air beam performance for beam designs using different configurations of the Cd

thermal neutron filter. Design skm436 used two 0.02 cm thick Cd sheets; one was

located in the middle of the fast neutron filter/moderator composed of 71 cm Al - 27

cm AIF 3 and the other was placed at the original location (i.e., downstream of the

filter/moderator and in front of the photon shield). Designs skm308 had one 0.04 cm

thick Cd sheet behind the filter/moderator. The fission converter consists of eleven

burned MITR-II fuel elements (312 g 235U per element) with D2 0 cooling. The

neutron filters are followed by an 8 cm Bi photon shield and a pyramidal collimator

with a 15 cm thick lead lining, and is surrounded by a 10 cm thick lead reflector. The

reactor power was assumed to be 5 MW.

Run ID Fast Neutron Filter/moderator oth Ocpi of Jt I th cpiJ,/cpi J/Or Drn, Dr/./,i Dy Dy/1Q'ci

& Thermal Neutron Filter n/cm2s n/cm2s n/cm's cGy/min cGycm'/n cGy/min cGycm 2/n

skm308 71cm Al - 27cmAIF3 with 9.76E+08 1.30E+10 2.36E+08 0.61 0.63 0.64 9.3 1.19E-11 5.4 6.95E-12

one 0.04 cm Cd sheet 2.5% 1.4% 4.2% 3.0% 1.9% 5.4% 1.8% 2.3% 3.1% 3.4%

skm436 71cmAl-27cmAIF3 with 1.16E+09 1.34E+10 2.20E+08 0.63 0.63 0.67 9.3 1.16E-11 4.7 5.83E-12

two 0.02 cm Cd sheets 1.9% 1.4% 3.9% 2.5% 1.8% 5.1% 1.9% 2.4% 2.5% 2.8%
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3.5 Conclusion

Sensitivity analyses of the fast neutron filter/moderator and thermal neutron filter were

performed using MCNP. The fast neutron filter/moderator designs using the combinations of Al-

A12 0 3, Al-AIF3 , AI-(CF2)n and Al-C were analyzed in terms of both in-air and in-phantom beam

performance. The study of different arrangements (i.e., ordering of materials) of the

filter/moderator materials showed how the different arrangements of Al and complementary

elements (fluorine, oxygen or carbon) affect the neutron spectrum. This study also provided

physical insight into the roles that the Al and complementary elements play in neutron moderation

in the filter/moderator. The effect of varying materials and their dimensions on neutron spectrum

and in-phantom figures of merit were examined in detail. This study showed that epithermal

neutron beams with high quality and high intensity can be designed using many combinations of

these four materials. These designs provide deep penetration of the beam (the AD's of 9.3-9.8 cm

extend significantly beyond the centerline of the head phantom) and a large therapeutic gain (the

AR is around 5). Moreover, they produce the ADDR's of 400-600 RBE cGy/min. Compared to the

current MIT medical beam, they double the advantage ratio and increase the advantage depth by 2

to 3 cm. Furthermore, they provide advantage depth dose rates - 50 to 70 times higher than that of

the current beam, potentially reducing irradiation times from several hours to just a few minutes.

The results also indicated that the variation of the neutron spectrum caused by the use of different

filter/moderator configurations, which meet the design criteria (D/C(epi < 2*10-11 cGy cm2 /n)

does not affect beam quality because the fast neutron contamination is maintained at a very low

level compared to the irreducible background due to hydrogen and nitrogen capture. The final

design of the filter/moderator should be selected from the range of designs which were shown to

provide excellent beam performance in this study taking engineering properties and costs of the
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materials into consideration. Although the use of fluorine-containing materials would be

accompanied with concern for decomposition and release of chemically active fluorine, one can

take advantage of the shielding effect of a thick aluminum block by locating the fluorine-

containing materials behind it, where the radiation level and temperature would be reduced relative

to a location near the fission converter.

The analysis of the thermal neutron filter examined alternative ways to reduce or eliminate

photon contamination caused by radiative capture in the Cd sheet. The studies of

splitting/relocating the Cd sheet or replacing it with 6 Li showed that the advantage of reduction of

photon contamination would be offset by undesired consequences, increasing the thermal neutron

flux or decreasing the epithermal neutron flux. The low level of photon contamination which is

well below the design goal (2*10-11 cGycm 2/n) justifies the use of a Cd thermal neutron filter.

Moreover, the current thickness of the Bi photon shield (8 cm) can be reduced to increase beam

intensity. Therefore, in constructing the beam, it is recommended to make a Bi photon shield

composed of several slabs in order to adjust its thickness.

Chapter 4 will present the result of the sensitivity study of the collimator design, which

particularly examined the effect of beam directionality and beam size on in-phantom beam

performance.
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CHAPTER FOUR

Sensitivity Study of the Collimator Design -
Effect of Beam Directionality and Beam Size

4.1 Introduction

A collimator is used in the medical neutron beam for several reasons, which include:

1. To minimize the dose to the tissue outside the target by delimiting the beam with a properly

sized beam aperture

2. To reflect neutrons which enter the collimator region and guide them to the target position

3. To adjust the angular distribution (directionality) of the neutron beam

The importance of the third reason is suggested by Reference 1; that is, a beam with more

forward-oriented directionality (higher J/c) is expected to improve effective beam penetration. A

series of parametric studies to optimize the lining and shape of the collimator was performed (see

Reference 2). The analysis of the collimator lining in Reference 2 was primarily aimed at

identifying liner materials which maximizes beam intensity without degrading beam quality; that

is, it tried to optimize the collimator design in terms of the second reason. Nickel, bismuth, lead

and graphite were considered as candidates for the collimator liner materials and in-air beam

performance was examined for varying thicknesses. The analysis of the collimator shape was

concerned with improving the beam directionality (measured by the current-to-flux ratio, J/D)

without reducing the beam intensity significantly (i.e., optimization in terms of the third reason).

The in-air beam performance for four types of the collimator shapes, i.e., cone, pyramidal, funnel
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and focusing designs were examined. As a result of these studies, Reference 2 proposed a

pyramidal collimator with a 15 cm thick lead lining.

There are several neutronic parameters which are considered to affect in-phantom beam

performance significantly:

(1) Beam intensity (i.e., epithermal neutron flux)

(2) Neutron energy distribution or neutron spectrum (including fast neutron

contamination)

(3) Gamma contamination

(4) Neutron angular distribution (beam directionality)

(5) Beam size relative to the target size (or neutron spatial distribution)

The beam intensity is affected by the whole beam design including the neutron source. The

neutron spectrum (including fast neutron contamination) and gamma contamination parameters are

primarily determined by the type of the neutron source and neutron filters (the fast neutron

filter/moderator and the thermal neutron filter). Chapter 1 and 3 discussed the effect of these

parameters (especially the neutron spectrum) on the in-phantom figures of merit using the standard

head phantom for different coolant types and different filter/moderator designs. As for the last two

parameters, neutron angular distribution and beam size, Reference 3 performed an extensive

sensitivity study using ideal beams, i.e., monoenergetic, photon-free neutron beams with varying

maximum neutron emission angles (the maximum angle into which neutrons are allowed to be

emitted from the source). This study revealed complicated dependencies of in-phantom figures of

merit on beam size and beam directionality. Since these two parameters are mainly determined by

the collimator, Reference 3 is expected to provide a lot of useful information for practical

collimator design.
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This chapter will discuss the effect of beam directionality and beam size on in-phantom

beam performance using a realistic collimator design. The current-to-flux ratio was used as a

measure of beam collimation as was in Reference 2. To examine beam-size dependency, the

neutron flux profile across the surface at the beam edge (normal to the beam axis) was tallied. This

study concentrated on the analysis for the standard water-filled head phantom, which was described

in Section 1.4.3. The reader should recognize that the effects of beam size and beam directionality

are dependent on the size and shape of the target so that care has to be taken in applying the results

presented here to the study of other targets such as extremities.

Section 4.2 will review the definition of the current-to-flux ratio (J/A) used in MCNP

calculations. In Section 4.3, the in-air analysis of collimator designs with varying beam

directionality (J/c) and beam size will be discussed. Then, Section 4.4 will evaluate in-phantom

beam performance of the collimator designs by calculating one and two dimensional dose

distributions.
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4.2 Definition of the Current-to-Flux Ratio (J/D) in MCNP

Consider a tally surface (area A) described in Figure 4.1, where the i-th particle is passing

with the weight wi and polar angle Oi (between the tally surface normal and the trajectory of the

particle). According to the definitions used in MCNP, 4 the surface current per unit area (Tally

Type 1 modified by the tally segment card, J) and the surface flux (Tally Type 2, (D) are tallied as

follows:

J = I { vv/ A}
i

S= Z {w/(I IIA)} , (Ai = cos O6 )
i

where the Ijpil is set to 0.05 if 1pil < 0.1. Then, the current-to-flux ratio (J/1) is given by

J /D = [ Z { w{ / A }]/[I {w/(|IAIA)}]
i i

= [l { w/(wNiAI)}]-' (w = Z w,)
i i

As the beam becomes more isotropic, Jpil becomes smaller on average; then J/D becomes

smaller. On the other hand, for a monodirectional (parallel) beam impinging on the surface

vertically, jpi 's for all the particles are equal to one; then J/c is also equal to one. Therefore, this

parameter represents how forward-oriented the beam is. When it is used, care has to be taken

because its definition varies for different computational methods (the reader should recognize that

the definition of J in MCNP is neither net current nor positive current nor negative current but the

number of particles crossing a surface).
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As an example of the use of this parameter, a neutron beam whose cosine of emission angle

is uniformly distributed from cos Omax to 1 ( = cos 0 o), which was used in Reference 3, is

considered. It is assumed that the right-hand side of the surface is vacuum and N particles are

impinging on the surface with the same weight wo (w = N*wO). In this case, J in MCNP should be

equal to the net current at the tally surface because there are no particles going backward; then,

[IuiK=Pi. J/(D is calculated by

N N

J / = [ {w(wi)}]' = [(1/N)1 (1/i)]"' = [E(1/p.)]['
i=1 i=I

where E(1/p) is the expectation value of 1/pi.Since p is uniformly distributed from cos Omax to 1

as shown in Figure 4.2, the probability density function for p is given by

J(/) = 1/(1-cos 0,,j) (cos 6m, " < 1)

or

= 0 (0 _<P < cos Ox )

Hence, E(1/p) is given by

1

E(1/p) = J( fu)(1/p) dp
0

1

= J f(p)(1/p) dp = -ln(cos O,)/(1-cos Om,,) (cos o,,x  0.1)
omax

or
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= J j()(1/1p) dp + Jj(p)(1/0.05) dp
cos 0

mari

S{lnlO0+20(0.1-cos m,,)}/(L-cOs m,,) (0 < cos Om, < 0.1)
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... -7 wi

Figure 4.1 Schematic view of a tally surface (area A) through which the i-th particle is passing

with the weight wi and polar angle Oi (between the tally surface normal and the

trajectory of the particle).
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Figure 4.2 The probability density function for p , which is uniformly distributed from I

( = cos 0 ) to cos Omax .
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J/c equals the inverse of E(1/p). The values of J/t for several Omax's calculated using the

analytical solution above are presented in Table 4.1. It was confirmed that these values agree

completely with the results from the MCNP simulation using the geometry and the angular

distribution illustrated in Figures 4.1 and 4.2.

Although these results would provide insight of how neutrons with a large polar angle affect

J/c defined in MCNP, one should recognize that the probability density function of i for a realistic

medical beam is significantly different from the one considered here.

Table 4.1 J/t with varying Omax calculated by the analytical solution. It was confirmed that these

results agree completely with those from the MCNP simulation using the geometry and

the angular distribution illustrated in Figures 4.1 and 4.2.

# The fission converter beam with a pyramidal collimator lined with 15 cm thick lead, which is

assumed for the reference in this analysis, produces a current-to-flux ratio of -0.65.
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4.3 In-Air Analysis of the Collimator Design

This section will describe the first step of the study, i.e., evaluating beam intensity,

directionality and size (neutron spatial distribution) for different collimator configurations. The

study of the collimator shape in Reference 2 showed a trade-off between the current-to-flux ratio

and beam intensity using funnel-shaped collimator designs. It showed that the 'straight' collimator

(i.e., a 102.1 cm long tube with a cross-section of 20cm*20cm lined with 15 cm thick lead through

the heavy concrete shielding), provides the highest current-to-flux ratio for epithermal neutrons

(Jepi/fepi = 0.78) among the tested designs with significant reduction of the epithermal neutron

flux from that for the pyramidal collimator (i.e., from 1.3*1010 n/cm 2 s to 1.4* 109 n/cm 2 s) . Since

these collimator designs did not provide substantial improvement in the current-to-flux ratio

without large reductions of beam intensity and since the benefit of improved beam directionality

was unclear, the pyramidal collimator was selected for the 'final' beam design. The trade-off

between the current-to-flux ratio and beam intensity was also mentioned in Reference 5.

Considering these results of Reference 2, the current study presented here carried out a parametric

analysis to identify collimator designs which achieve high J/cF without significant reduction of

beam intensity. In addition, in-air beam performance of collimator designs with different beam

aperture sizes was evaluated.

As for the collimator configuration to improve J/0, this study first reviewed the design study

of the epithermal neutron beam using 2 3 5U fission plates performed by BNL, 6 where MCNP was

also utilized for beam analysis. The proposed beam design was shown to provide a high J/c (0.78)

although the beam path at the irradiation port is short, only 20 cm. This beam path is surrounded by

photon shields (Bi - 5 cm, Pb -10 cm) and a neutron absorber (lithiated polyethylene). The reported
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J/O for the BNL design was confirmed in Reference 2, which constructed a portion of the BNL

beam design (around the beam path) and examined beam directionality from it. Reference 2

showed that angular redistribution (increasing J/N) occurs as neutrons approach the patient position

due to loss of large angle neutrons.

From these results, it was surmised that the lithiated polyethylene (Li-poly) at the irradiation

port of the BNL beam design works as a beam delimiter and remove neutrons with large angles

relative to the beam axis. Therefore, the current study examined collimator configurations using a

Li-poly delimiter. The Li-poly used here contains 7% 6Li by mass. Two collimator configurations

were considered, whose cross-sectional views are shown in Figure 4.3 (funnel type) and Figure 4.4

(truncated pyramid type). The funnel-shaped collimator consists of a four-sided sloped portion

lined with 15 cm thick lead and a 20 cm long straight portion with the square cross section

surrounded by a Li-poly delimiter which covers the whole beam cross-section except for the beam

aperture. The other collimator design is a truncated pyramid-shaped collimator with 15 cm thick

lead lining, where the last t cm (t =0, 10, 20 and 30) long part of the lining in front of the patient

position was replaced with Li-poly. It should be noted that, compared to that of the pyramidal

design, the beam aperture of the funnel design subtends a smaller solid angle for neutrons at the

surface of the Bi photon shield or the lead collimator lining to travel through toward the patient

position without entering the Li-poly region. As for beam aperture, two different sizes, 20 cm*20

cm or 10 cm*10 cm, were considered. The pyramidal collimator with no Li-poly delimiter (i.e., t=

0 cm) with a beam aperture of 20 cm*20 cm corresponds to the one used in the 'final' beam design

proposed in Reference 2 (std473), which was assumed for the reference design in this analysis.

The calculations used a fission converter composed of eleven burned MITR-II fuel elements

(312 g 235U per element) with D2 0 cooling, which is followed by the fast neutron filter/moderator

composed of 68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal neutron filter and an 8 cm
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Bi photon shield. The filter/moderator is surrounded by a 10 cm thick lead reflector. The reactor

power was assumed to be 5 MW. In-air figures of merit (except for the specific photon dose)

produced with these collimator designs are summarized in Table 4.2. A plot of epithermal neutron

flux vs. Jepi/cepi for these designs is depicted in Figure 4.5. These results suggest that a higher

J/cl is obtained when neutrons with large angles to the beam axis which would be reflected by the

collimator liner near the beam aperture otherwise are removed by the Li-poly delimiter. Also, a

high J/c is accompanied by a great loss of beam intensity as indicated in the previous studies.

Comparison of the results for Designs std473 and skm3 11 which have the same beam aperture size

of 20 cm*20 cm indicates that the epithermal neutron flux is reduced by a factor of -3 to increase

Jepi/cepi from 0.67 to 0.87. Comparison between skm464 and skm468 with the same beam

aperture size of 10 cm*10 cm shows that an increase in Jepi/(epi from 0.68 to 0.91 is obtained

with a concomitant reduction in the epithermal neutron flux by a factor of -6. A great reduction of

large angle neutrons which results in the improved J/c and loss of beam intensity due to the use of

a Li-poly delimiter is shown by Figure 4.6, which depicts the normalized neutron current angular

distributions at the patient position for different collimator configurations with the beam size of 20

cm*20 cm (std473, skm304, skm311) . The angular distributions are described as a function of p.,

which is the cosine of the angle between the particle trajectory and the beam axis, and are

normalized to one at the maximum tally bin. Regarding this figure, it should be emphasized that

these beams are already very forward-oriented. Neutrons passing within 320 account for 50-80%

of the total neutrons entering the beam aperture.

One should note that the use of a Li-poly delimiter also significantly affects the neutron

spatial distribution around the beam aperture. Figure 4.7 shows vertical profiles of neutron flux

centered on the beam axis at the patient position for Designs std473, skm304, skm311. It is noted

that the intensities drop off rapidly at the side of the beam aperture, i.e., the 'effective' beam size
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decreases when a Li-poly delimiter is used because it absorbs neutrons impinging on it. The photon

dose profile is also changed by the use of a Li-poly delimiter for several reasons which include the

different photon-shielding properties of Pb and Li-poly. Although the variation of the photon

profile does not affect the in-phantom beam performance, it is a concern for radiation protection.

Analysis of the photon dose profile at the patient position will be discussed in Chapter 5.

It is also noted from the results for all collimator designs that the fast neutron contamination

increases as the J/t increases because the epithermal neutron flux decreases more rapidly than the

fast neutron dose rate. However, the specific fast neutron dose is still below the design goal for all

designs shown in Table 4.2. Therefore, the effect of fast neutron contamination is considered to be

negligible relative to the irreducible background due to hydrogen and nitrogen capture.

Comparison of the results for Designs std473 and skm468 indicates that the reduction of

beam aperture size from 20 cm*20 cm to 10 cm*10 cm for the pyramid collimator with only a lead

lining (no Li-poly delimiter) does not affect the in-air beam performance including J/c. Since a

large portion of neutron flux (-80%) at the patient position is due to neutrons scattered by the

collimator lining 2, the change in the beam aperture size considered here would not affect the beam

intensity, directionality or neutron spectrum. On the other hand, the results for Designs skm311 and

skm464 shows that J/$ increases with a significant reduction of beam intensity when the beam

aperture size is decreased for the funnel-shaped collimator with a Li-poly delimiter. This is because

the solid angle which the beam aperture subtends for neutrons to travel through without entering

the Li-poly becomes smaller as the beam aperture size is decreased.
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Figure 4.3 Cross-sectional view of the funnel-shaped collimator design. This type of collimator

consists of a four-sided sloped portion lined with 15 cm thick lead and a 20 cm long

straight portion with the square cross section surrounded by a Li-poly delimiter which

covers the whole beam cross-section except for the beam aperture.
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(
Figure 4.4 Cross-sectional view of the truncated pyramid-shaped collimator design. This design

has a 15 cm thick lead lining, where the last t cm (t =0, 10, 20 and 30) long part of

the lining in front of the patient position was replaced with Li-poly.
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Table 4.2 In-air beam performance for different collimator designs. The funnel-shaped collimator

consists of a four-sided sloped portion lined with a 15 cm thick lead lining and a 20 cm

long straight portion with the square cross section surrounded by a Li-poly delimiter

which covers the whole beam cross-section except for the beam aperture. The pyramidal

collimator is lined with 15 cm thick lead, where the last t cm (t = 0, 10, 20 and 30) long

part of the lining in front of the patient position was replaced with Li-poly. These

calculations used a fission converter composed of eleven burned MITR-II fuel elements

(312 g 23 5U per element) with D2 0 cooling, which is followed by a fast neutron

filter/moderator composed of 68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal

neutron filter and an 8 cm Bi photon shield. The filter/moderator is surrounded by a 10

cm thick lead reflector.

Run ID Collimator Length of the Beam Aperture Oth Oepi OIf Jth/(th Jepi/Oepi Jf/Of Dfn Dfn/Oepi
Shape Li-poly Portion Size n/cm 2s n/cm2 s n/cm2 s cGy/min cGycm2/n

cm
std473 Pyramid 0 20cm*20cm 9.13E+08 1.30E+10 1.16E+08 0.66 0.67 0.68 10.4 1.33E-11

1.8% 1.3% 3.0% 2.4% 1.7% 4.0% 1.5% 1.9%

skm468 Pyramid 0 10cm*10cm 9.06E+08 1.28E+10 1.08E+08 0.64 0.68 0.69 9.9 1.29E-11

2.8% 1.6% 4.3% 3.4% 2.0% 5.6% 1.9% 2.5%

skm311 Funnel 20 20cm*20cm 3.30E+08 4.45E+09 4.32E+07 0.82 0.87 0.88 4.0 1.49E-11

(skm200) 1.1% 0.6% 1.0% 1.4% 0.9% 1.5% 0.5% 0.8%

skm464 Funnel 20 10cm* 10cm 1.55E+08 2.19E+09 2.18E+07 0.86 0.91 0.91 2.14 1.62E-11

2.5% 1.5% 2.4% 3.4% 2.1% 3.5% 1.0% 1.8%

skm304 Pyramid 10 20cm*20cm 7.03E+08 9.33E+09 8.20E+07 0.72 0.77 0.78 7.5 1.34E-1

(skm204) 0.9% 0.5% 0.8% 1.2% 0.7% 1.1% 0.4% 0.7%

skm202 Pyramid 20 20cm*20cm 5.99E+08 7.92E+09 7.17E+07 0.74 0.80 0.81 6.5 1.37E-11

2.6% 1.6% 2.2% 3.5% 2.2% 3.2% 1.2% 2.0%

skm205 Pyramid 30 20cm*20cm 5.48E+08 6.99E+09 6.51E+07 0.75 0.81 0.83 6.0 1.42E-11

2.6% 1.6% 2.4% 3.5% 2.3% 3.5% 1.2% 2.0%
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Figure 4.5 Epithermal neutron flux vs. current-to-flux ratio for different collimator designs shown
in Table 4.2. The label of each data point denotes Run-ID of each collimator design.
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Figure 4.6 Normalized neutron current angular distribution at the patient position for different
collimator designs described as a function of ji (the cosine of the angle between the
particle trajectory and the beam axis). The angular distribution is normalized to one at
the maximum tally bin. The funnel-shaped collimator (skm311) has a four-sided
sloped portion lined with 15 cm thick lead and a 20 cm long straight portion with the
square cross section surrounded by a Li-poly delimiter. The pyramidal collimators of
std473 and skm304 are lined with 15 cm thick lead, where the last t cm (t = 0 and 10)
long parts of the lining in front of the patient position are replaced with Li-poly. All of
these designs have a 20 cm* 20 cm beam aperture.
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Figure 4.7 Vertical profiles of neutron flux of all energies centered on the beam axis at the patient position for
Designs std473, skm304 and skm3 11. Design skm311 has a funnel-shaped collimator composed
of a four-sided sloped portion with 15 cm thick lead lining and a 20 cm long straight portion
with the square cross section surrounded by a Li-poly delimiter. Design std473 and skm304 have
pyramidal collimators lined with 15 cm thick lead, where the last t cm (t = 0 and 10) long parts of
the lining in front of the patient position are replaced with Li-poly. All of these designs have a
20 cm*20 cm beam aperture.
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4.4 In-Phantom Analysis

The next step in the analysis of the different collimator designs is to examine beam

performance in the standard head phantom. Originally, the effect of variation of beam

directionality on the in-phantom figures of merit was the main interest of this study. However, as is

shown later, it turned out that the beam size (neutron spatial distribution) plays an very important

role in determining the in-phantom parameters. Therefore, in this section, emphases are placed on

both beam size and beam directionality in presenting the results.

Four collimator designs, skm304, skm311, skm464 and skm468 were selected for in-

phantom analysis and compared with Design std473. The in-phantom figures of merit (including

ADDR/Jepi ) produced by these collimator designs are presented as well as in-air figures of merit

(including the specific photon dose) in Table 4.3. In this table, one should note that the specific

photon dose increases as J/c1 increases because the epithermal neutron flux decreases more rapidly

than the photon dose rate as was seen for the specific fast neutron dose. Although Designs skm311

and skm464 produce specific photon doses which are greater than the design goal, their values are

still well below the peak dose due to the irreducible gamma component from hydrogen capture (-

2*10-10 cGycm 2/n). Therefore, the effect of the incident gamma rays should be very small.

First, the results for Designs std473, skm304 and skm311, which have the beam aperture size

(20 cm*20 cm) as large as the maximum dimension of the head phantom, are compared. (A beam

with the size of the aperture as large as or larger than the maximum dimension of the phantom is

called a 'large beam' in the following discussion.) To understand variation of beam performance

for these designs, one should recognize that these designs have different 'effective' beam sizes as

well as different directionalities (J/D) as discussed in Section 4.3 (the angular distributions and

vertical profiles of neutron flux at the patient position for these three designs are presented in
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Figures 4.6 and 4.7).

Table 4.3 shows that, for these three beam designs, AD decreases as J/O increases (i.e. as the

beam is more collimated) while ADDR decreases approximately in proportion to the epithermal

neutron current (Jepi) and AR is constant. The trend of decreasing AD with increasing J/c1

contradicts the perception that better collimation would provide better beam penetration 1. The

reason for this trend will be well explained below in terms of beam size dependency of the in-

phantom figures of merit.

It is instructive to compare these results with those of Reference 3 to obtain insight into the

effects of angular and beam-size dependencies on in-phantom beam performance. However, one

should recognize that Reference 3 examined the effects of these parameters separately by varying

one parameter with the other fixed while, in the actual beam design, these parameters are varied

simultaneously. Therefore, a comparison between the current results and those of Reference 3 is

not straight-forward .

As for the AD, Reference 3 indicated that AD is reduced as the maximum emission angle

(Omax) increases for a large beam while AD increases as the beam size increases for a "fairly well-

collimated" beam with Omax at 300 or lower. The trend for AD shown in Table 4.3 suggests that

the effect of beam-size outweighs that of the angular dependency for the collimator designs

considered here, which would reduce AD as the 'effective' beam size is decreased. This conclusion

is supported by Figure 4.8, which compares the 2D dose distributions produced by Design std473

and skm311 in an actual human head model. These dose distributions were created by W.S Kiger

using the treatment planning software MacNCTPLAN developed by our research group at

BIDMC 7,9 and the CT-image data of the head of one of the human subjects treated in the GBM

protocol at MIT/BIDMC. Each curve denotes the iso-dose contour which represent the locations
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where the same ratio of tumor dose to the maximum normal tissue dose is achieved (the ratio is

expressed in percent). Therefore, therapeutic gains are obtained in the region bounded by the 100%

curve. In this figure, it is seen that the iso-dose contours expand as the effective beam size

increases, especially on the anterior and posterior sides of the head (a reader should remember that

Design std473 has a larger effective beam size than Design skm311 as shown in Figure 4.7). This is

likely because the epithermal neutrons coming from the sides of the beam aperture with large

angles also provide therapeutic dose; therefore, the advantage depth, which is the depth at which

the tumor dose is equal to the maximum normal tissue dose, becomes greater. The expansion of the

iso-dose contours is consistent with the result of the study of improved neutron collimators at

BNL, 8 where the expansion of the curves of the iso-thermal neutron fluence rate distribution was

observed when the irradiation aperture of the collimator made of Li-poly was enlarged from 8 cm

to 12 cm.

Concerning ADDR, Fig. 13 of Reference 3 indicates that, when beam size is as large as or

larger than the target, ADDR's produced by beams with the constant number of neutrons crossing

the source plane per unit area are almost constant with varying Omax or beam size. Since the

effective beam sizes of Designs std473, skm304 and skm311 (20 cm*20 cm or more) are larger

than the target size, the constant ADDR/Jepi observed for these three designs can be explained by

the effects of both angular distribution and beam-size.

For the beam-size dependency of AR, although Reference 3 mentions that AR decreases as

beam size increases for "relatively parallel beams" with Omax equal to or less than 450, it is seen in

Fig. 16 of Reference 3 that increases in AR with decreasing beam size (diameter) from 33.0 cm to

12.0 cm for Omax < 300 appear to be small. Also, as for its angular dependency, Reference 3

explains "the large dependency of AR on Omax [is] reduced as the size of the beam approaches the
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size of the phantom itself' (p142). Because the effective beam sizes of these designs are larger

than the target size, their AR's may be constant although their angular distribution and effective

beam sizes vary significantly.

Next, Designs std473 and skm468 are compared. The neutron angular and spatial

distributions are shown in Figures 4.9 and 4. 10, respectively. As shown in Figure 4.9, these designs

produce almost the same neutron angular distribution shape, which is expected from their similar

J/A's. However, they have significantly different spatial distributions, i.e., different effective beam

sizes due to reduction of the beam aperture from 20 cm*20 cm to 10 cm*10 cm. The comparison of

these designs is interesting because we can examine the effect of changing the beam size without

having significant variation of beam directionality.

The results in Table 4.3 indicate that AD and ADDR/Jepi decrease with decreasing beam

size while AR is almost unchanged. The decrease in AD can be explained by its beam-size

dependency for a well-collimated beam described above (i.e., AD increases with increasing beam

size). The trend of ADDR is explained by the results shown in Fig. 13 of Reference 3, which

indicates that ADDR decreases as the beam size is reduced from that comparable to the phantom,

especially when Oma x is large (i.e., Omax > 450). As for the beam-size dependency of AR, since

the effective beam size of Design skm468 appears to be still larger than the beam size with a 12 cm

diameter in Reference 3, AR may be unchanged for the same reason as explained above.

Finally, the results for Designs skm468 and skm464, which have a small beam aperture size

relative to the phantom (10 cm*10 cm) are compared. The reader should remember that Design

skm464 provides significantly higher J/f( than Design skm468 due to the use of the Li-poly

delimiter. Figures 4.11 and 4.12, which depict neutron angular and spatial distributions at the

patient position for these designs, show a great reduction of large angle neutrons and significantly
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reduced effective beam size due to the use of a Li-poly delimiter in Design skm464. Table 4.3

shows that AD decreases as the effective beam size decreases, which is expected based on the

beam-size dependency of AD as mentioned above, while ADDR/Jepi and AR are kept

approximately constant. As for ADDR, Fig. 11 and Fig 12 of Reference 3 shows that ADDR

increases as Omax decreases while ADDR decreases as the beam size decreases. Since the use of a

Li-poly delimiter causes reduction of the number of large angle neutrons (thereby, increasing J/fD)

and effective beam size simultaneously, the effect of beam-size on ADDR/Jepi may be balanced

with by the influence of angular dependency so that ADDR/Jepi remains unchanged. As for the

beam size dependency of AR, Reference 3 indicates that AR increases as the beam size decreases

for a relatively parallel beam. On the other hand, the angular dependence of AR has a complex

behavior, i.e., reduction in AR with increasing Omax for a small beam and the opposite trend for a

large beam. Therefore, it is difficult to explain how these dependencies affect the behavior of AR

based on the information provided by Reference 3 when significant variations of both effective

beam size (large beam to small beam) and angular distribution occur simultaneously as in this case.

For better understanding the differences in in-phantom beam performance between the

collimator designs which vary beam directionality and/or effective beam size significantly, the

profiles of thermal and epithermal neutron fluxes produced by Designs std473, skm311 and

skm464 are compared in Figure 4.13 and Figure 4.14. In Figure 4.14, the thermal neutron flux

profiles normalized to one at the peak are presented to compare their shapes. Figure 4.13 shows

that the peak thermal neutron flux in the head phantom decreases as beam intensity decreases.

Figure 4.14 indicates that, although the depth where the peaks occur are unchanged (- 2.5 cm) for

these beam designs, the thermal neutron profile drops off more rapidly beyond the peak depth as

the effective beam size is reduced, which explains the decrease in the advantage depth with
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decreasing the effective beam size. The dose-depth profiles for these designs are presented in

Figure 4.15.
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Table 4.3 Comparison of in-phantom figures of merit produced by different collimator designs.

The funnel-shaped collimator (skm311 and skm464) consists of a four-sided sloped

portion with 15 cm thick lead lining and a 20 cm long straight portion with the square

cross section surrounded by a Li-poly delimiter which covers the whole beam cross-

section except for the beam aperture. The pyramidal collimator is lined with 15 cm

thick lead, where the last t cm (t = 0 for std473, skm468 and t = 10 for skm304) long

part of the lining in front of the patient position was replaced with Li-poly. These

calculations used a fission converter composed of eleven burned MITR-II fuel elements

(312 g 235U per element) with D2 0 cooling, which is followed by a fast neutron

filter/moderator composed of 68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal

neutron filter and an 8 cm Bi photon shield. The filter/moderator is surrounded by a 10

cm thick lead reflector.

Run ID Collimator Beam Aperture J epi Jepi/Oepi Dfn/$epi DY/(epi AD ADDR AR ADDR/Jepi

Shape Size n/cm 2 s cGycm 2/n cGycm 2/n cm RBE cGy/min RBE cGycm 2/n

std473 Pyramid 20cm*20cm 1.30E+10 0.67 1.33E-11 1.02E-11 9.5 435 4.9 8.39E-10

1.3% 1.7% 1.9% 2.0%

skm468 Pyramid 10cm*10cm 1.28E+10 0.68 1.29E-11 1.06E-ll 9.0 362 5.0 6.91E-10

1.6% 2.0% 2.5% 2.4%

skm304 Pyramid 20cm*20cm 9.33E+09 0.77 1.34E-11 1.46E-11 9.3 356 4.9 8.26E-10

(skm204) 0.5% 0.7% 0.7% 1.0%

skm311 Funnel 20cm*20cm 4.45E+09 0.87 1.49E-11 2.28E-11 9.1 206 4.9 8.82E-10

(skm200) 0.6% 0.9% 0.8% 1.0%

skm464 Funnel 10cm*0Ocm 2.19E+09 0.91 1.62E-11 3.26E-11 8.5 79 4.9 6.63E-10

1.5% 2.1% 1.8% 2.2%
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This page is the back side of Table 4.3.
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Figure 4.8 Two dime.nional dose distributions produced by Designs std473 (solid curve) and
skim311 (dashed curve) using the data of actual human head. Each curve denotes the
iso-dose contour which represents the locations where the same ratio of tumor dose to
the maximum normal tissue dose is achieved. The number besides the color bar
denotes the ratio in percent for each color. Design std473 uses a pyramidal collimator
with a 15 cm thick lead lining and no Li-poly. Design skm311 has a funnel-shaped
collimator with a four-sided sloped portion lined with 15 cm thick lead and a 20 cm
long straight portion with the square cross section surrounded by a Li-poly delimitor.
Both collimator designs have a 20 cm*20 cm beam aperture.
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Normalized neutron current angular distribution at the patient position for the
pyramidal collimator designs with different beam aperture sizes. The angular
distribution is described as a function of pt (the cosine of the angle between the
particle trajectory and the beam axis). The angular distribution is normalized to one
at the maximum tally bin. Both designs use pyramidal collimators lined with 15 cm
thick lead and no Li-poly delimiter and have different beam aperture sizes (20 cm*20
cm for std473 and 10 cm*10 cm for skm468).
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Vertical profiles of neutron flux of all energies centered on the beam axis at the patient
position for Designs skm468 and std473. Both designs use pyramidal collimators lined
with 15 cm thick lead and no Li-poly delimiter and have different beam aperture sizes
(20 cm* 20 cm for std473 and 10 cm* 10 cm for skm468).
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Normalized neutron current angular distribution at the patient position for the different
collimator configurations. The angular distribution, which is described as a function of

gL (the cosine of the angle between the particle trajectory and the beam axis), is

normalized to one at the maximum tally bin. Design skm468 uses a pyramidal

collimator lined with 15 cm thick lead and no Li-poly delimiter. Design skm464 has a
funnel-shaped collimator composed of a four-sided sloped portion lined with 15 cm
thick lead and a 20 cm long straight portion with the square cross section surrounded
by a Li-poly delimiter. Both designs have the beam aperture with a size of 10 cm*l0
cm.
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Figure 4.12 Vertical profiles of neutron flux of all energies centered on the beam axis at the patient
position for Designs skm468 and skm464. Design 468 uses a pyramidal collimator lined
with 15 cm thick lead and no Li-poly. Design 464 has a funnel-shaped collimator
composed of a four-sided sloped portion lined with 15 cm thick lead and a 20 cm long
straight portion with the square cross section surrounded by a Li-poly delimiter. Both
designs have the beam aperture with a size of 10 cm* 10 cm.
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Figure 4.13 Profiles of the epithermal and thermal neutron fluxes as a function of depth in the head

phantom produced by Designs std473, skm311 and skm464. Design std473 has a

pyramidal collimator lined with 15 cm thick lead and no Li-poly delimiter and a 20

cm*20 cm beam aperture. Designs skm311 and skm464 use funnel-shaped collimators
with a four-sided sloped portion with 15 cm thick lead lining and a 20 cm long straight
portion with the square cross section surrounded by a Li-poly delimiter and different
beam aperture sizes (20 cm*20 cm for skm311 and 10 cm*10 cm for skm464). The

reactor power was set at 5 MW.

189

S. Sakamoto

,, .,,



Chapter 4: Sensitivity Study of the Collimator Design

1.2

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0

Depth in Ellipsoidal Head Phantom

Figure 4.14 Thermal neutron profiles as a function of depth in the head phantom produced by
Designs std473, skm311 and skm464. The profiles are normalized to one at the peaks.
Design std473 has a pyramidal collimator lined with 15 cm thick lead and no Li-poly
delimiter and a 20 cm*20 cm beam aperture. Designs skm311 and skm464 use funnel-
shaped collimators with a four-sided sloped portion with 15 cm thick lead lining and a
20 cm long straight portion with the square cross section surrounded by a Li-poly
delimiter and different beam aperture sizes (20 cm*20 cm for skm311 and 10 cm* 10
cm for skm464).
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Comparison of dose-depth profiles for unilateral irradiation produced by Designs

std473, skm311 and skm464. Design std473 has a pyramidal collimator lined with

15 cm thick lead and no Li-poly delimiter and a 20 cm*20 cm beam aperture.
Designs skm3 11 and skm464 use funnel-shaped collimators with a four-sided sloped
portion with a 15 cm thick lead lining followed by a 20 cm long straight portion with
the square cross section surrounded by a Li-poly delimiter and with different beam
aperture sizes (20 cm*20 cm for skm311 and 10 cm* 10 cm for skm464). The reactor
power was set at 5 MW. Boron uptake was assumed at 40 ppm 10 B in tumor with a
tumor-to-normal uptake ratio of 3.5:1. The RBE's are 3.2 for neutrons, 1.0 for
photons, 3.8 for boron in normal tissue. The reactor power was set at 5 MW.
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4.5 Conclusion

The effect of variations of beam size and beam directionality on in-phantom figures of merit

was examined by using different collimator designs (funnel and pyramid types) using a Li-poly

delimiter and varying the beam aperture size. First, the effect of different collimator configurations

and beam aperture sizes on neutron angular and spatial distributions at the patient position were

examined. Then, in-phantom analyses were performed for the different collimator designs. The

results of these analyses were compared with the angular-distribution and beam-size dependencies

of the in-phantom parameters reported by the ideal beam studies of Reference 3. It was shown that

many of the trends of in-phantom figures of merit may be explained by the results of Reference 3.

One interesting conclusion derived from this study is that, although using a Li-poly delimiter

provides a high current-to-flux ratio due to removal of neutrons impinging on the head phantom

with large angles, it does not improve beam penetration; on the contrary, the advantage depth is

decreased with concomitant great reduction of the advantage depth dose rate. It was indicated that

significant reduction of beam aperture size (from 20 cm*20 cm to 10 cm*10 cm) decreases both

ADDR and AD in the head phantom even though the angular distribution is unchanged.

There are two purposes for the use of a beam delimiter made of neutron absorber: to

minimize the neutron dose outside the beam aperture to protect the patient from unnecessary

radiation exposure and to adjust beam directionality. For the treatment of tumors such as

glioblastoma multiforme in the brain, the dose is desired to be spatially uniform in the entire brain;

therefore, a beam size comparable to the head should be used in the treatment. Based on the results

of this analysis, for such a large beam, the adjustment of beam directionality (i.e. improvement of

the current-to-flux ratio) by using a beam delimiter would result in significant reduction of beam

intensity without improving (rather, slightly degrading) effective beam penetration. Therefore, the
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use of a beam delimiter for the second purpose is considered to provide no benefit. In finalizing the

collimator design, one has to optimize the trade-off between the advantage of reduction of the

neutron dose outside the beam aperture and the disadvantage of significant reduction of beam

intensity and slight degradation of beam penetration by using a beam delimiter made of a neutron

absorber such as lithiated polyethylene. It would be worth paying attention to the discussion of

Reference 8, which suggests that the expansion of beam aperture beyond 15.2 cm might cause a

great concern of the whole-body irradiation risk. The use of a whole-body shield, i.e., a board or a

sheet containing a neutron absorber which covers a while body except for a target would be an

effective way of reducing undesired exposure to neutrons. The change of gamma dose profile

around the beam aperture caused by the use of the beam delimiter should also be considered. As

will be shown in Chapter 5, the use of a Li-poly delimiter which replaces a portion of lead

collimator lining in front of the patient position increases the gamma dose outside the beam

aperture even though it reduces neutron dose there.

Chapter 5 will present the results of various neutronic calculations necessary for engineering

design and safety considerations of the fission converter beam.
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CHAPTER FIVE

Neutronic Calculations Related to the
Engineering Considerations on the Fission
Converter Beam

5.1 Introduction

In the previous chapters, sensitivity studies of the main components of the fission converter

beam, i.e., the fission converter, the neutron filters and the collimator, have been described. For the

engineering design, there are several aspects of the system which require information from

neutronic analysis, e.g., thermal hydraulics and radiation protection. This chapter will present the

analyses of some of these aspects.

5.2 Results of the Analysis

The aspects or factors analyzed in the current study are as follows:

- Effect of changing the cross-sectional area of the fast neutron filter/moderator

- Effect of core gamma rays

- Reactivity insertion in MITR due to the fission converter

- Tritium production rate in a D20-cooled fission converter

- Heat deposition in the fission converter
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- Transverse and Vertical Power Profiles in individual fuel-plates

- Effect of impurities in the fast neutron filter/moderator and collimator liner materials

- Shielding of photons outside the beam aperture

The following sections will describe the result of the analysis of each item listed above.

5.2.1 Effect of Changing the Cross-Sectional Area of the Fast Neutron

Filter/Moderator

Reference 1 pointed out the need to optimize the width and height of the fast neutron

filter/moderator because increases in the specific fast neutron dose were observed when the

collimator design is changed so that the volume of the filter/moderator composed of 68 cm 70%

AIF 3/30% Al - 2 cm Ti is reduced by narrowing the beam cross section while the thicknesses of

these materials are fixed. Hence, to investigate the effect of changing the cross-sectional area of the

filter/moderator, an MCNP calculation was performed. The model used here consists of a D2 0-

cooled fission converter with eleven burned MITR-II fuel elements (312 g 235U per element)

followed by a fast neutron filter/moderator using 68 cm 70% AIF 3/30% Al - 2cm Ti, a 0.04 cm Cd

thermal neutron filter, an 8 cm Bi photon shield and a pyramidal collimator with a 15 cm thick lead

lining. The filter/moderator is surrounded by a 10 cm thick lead reflector. The cross-sectional area

of the filter/moderator was increased from 105 cm*105 cm to 125 cm*125 cm (the total cross-

sectional area of the beam including the reflector thickness was increased from 125 cm* 125 cm to

145 cm*145 cm). The resulting in-air beam performance is compared with the original design

(using the filter/moderator with the cross-sectional area of 105 cm*105 cm) in Table 5.1. This

comparison shows that the increase in the volume of the filter/moderator material by 42% due to

increasing its cross-sectional area augments the epithermal neutron flux by 15% while reducing the
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specific fast neutron dose by 11%, which is likely due to reduced transverse leakage. Although the

width of 125 cm for the original beam design is close to the maximum horizontal dimension

available in the thermal column, there would be room for the beam cross-section to be extended in

the vertical direction 1. Therefore, it is worthwhile to perform an optimization study of the beam

cross-sectional area.

Table 5.1 Comparison of in-air beam performance of the beam designs using fast neutron

filter/moderators with different cross-sectional areas. These calculations used a fission

converter composed of eleven burned MITR-II fuel elements (312 g 235U per element)

with D20 cooling, which is followed by a fast neutron filter/moderator composed of

68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal neutron filter, an 8 cm Bi

photon shield and a pyramidal collimator with a 15 cm thick lead lining. The

filter/moderator is surrounded by a 10 cm thick lead reflector. The reactor power was

set at 5 MW. The statistical error (one standard deviation) of each result is listed

below the value.

5.2.2 Effect of the Core Gamma Rays

The computational method developed in Reference 1 decouples the MITR-II reactor model

from the fission converter beam model. Since the former model is used in a neutron-only run (i.e.,

only neutron histories are stored in the surface source at the edge of the graphite reflector) for
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Run ID Cross-sectional Area of the c(epi  Dfn/epi epi/ epi

Filter/Moderator n/cm's cGycm 2/n
std473 105cm*105cm 1.30E+10 1.33E-11 0.67

1.3% 1.9% 1.7%
skml03 125cm*125cm 1.50E+10 1.19E-11 0.64

1.2% 1.9% 1.6%
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computational efficiency, the calculations have not taken into account gamma rays generated in the

reactor model. Therefore, the photon dose at the patient position due to gammas from the MITR-II

reactor region (core gamma rays) was evaluated in the current study.

First, a rough estimate was obtained by a manual calculation. As the photon dose at the

radial surface of the MITR-II core tank (26 cm from the core centerline) is estimated to be about

108 rad/hr according to the previous measurement, 2 the photon dose rate due to core gamma rays

at the patient position (303 cm from the core centerline) is roughly estimated by the following

equation:

Dpatient = Dcore tank*(26/303) 2 *exp( - Z -i* xi)
i

where, ýti and x i are the linear attenuation coefficient for 2 MeV photons (this energy was selected

because prompt fission gammas below this energy account for -70% of the total energy release due

to prompt fission gammas) 3 and the thickness of material i which exists between the core and the

patient position, and Dcore tank is assumed to be 108 rad/hr. One should note that this calculation

neglects the photon buildup factor because a rough estimate of it is included in the Monte Carlo

simulation which follows. The materials considered here and the data assumed for these materials

are summarized in Table 5.2. Graphite was not included in this analysis because the 14-inch

window provides a pathway for photons.
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Table 5.2 Linear attenuation coefficients for 2 MeV photons and thicknesses of the materials

which intervene between the core and the patient position. The mass attenuation

coefficient data were obtained from Reference 3.

Material [I (1/cm) x (cm)
D20 0.049 (data for H2 0 was used) 37 (Reactor Reflector 34 + FC# coolant 3 )
Al 0.12 77 (FC 7 + Filter/Moderator 70)
U 0.90 0.92 (in FC)
Bi 0.44 (data for Pb was used) 8
# 'FC' stands for 'Fission Converter'

Following the hand calculation, an MCNP calculation was done to obtain the photon dose

rate at the patient position due to prompt gamma rays generated in the reactor core region. First, a

criticality run in the coupled neutron-photon mode was performed to store photon histories in the

surface source at the edge of the graphite reflector. This photon surface source was subsequently

transported through the fission converter beam in a photon only run. Energy independent weight

windows were used in these calculations. The fission converter beam model used here consists of a

fission converter composed of eleven burned MITR-II fuel elements (312 g 2 3 5U per element)

with D2 0 cooling, which is followed by a fast neutron filter/moderator composed of 68 cm 70%

AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon shield and a

pyramidal collimator with 15 cm thick lead lining and a beam aperture of 20 cm*20 cm. The

filter/moderator is surrounded by a 10 cm thick lead reflector. The reactor power was set at 5 MW.

The results of the hand and MCNP calculations are presented in Table 5.3. For comparison,

the result of the MCNP calculation without accounting for core gamma rays (i.e., only taking

photons from the fission converter beam model into account) is also presented in this table. It is

seen that the effect of core prompt gamma rays is very small compared to that of gamma rays
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generated in the fission converter beam model. One should note that the photon dose rate

calculated by MCNP is only due to prompt gamma rays. The effect of delayed core gamma rays is

considered negligible compared to that of the prompt core gamma rays based on the calculation of

the effect of delayed core gamma rays for the 41H1 experiment configuration performed by W. S.

Kiger. 5 Therefore, it is concluded that the effect of photons from the reactor core region is very

small compared to that of photons from the components of the fission converter beam due to the

large distance between the reactor core and the patient position and the shielding of various

materials between these locations. By comparing the results of the MCNP and hand calculations,

one can obtain a rough estimate of the buildup factor for the fission converter beam, which is

around 13.

Table 5.3 Photon dose rate at the patient position due to photons generated in the MITR-II reactor

region (core gamma rays). The MCNP calculations used a fission converter composed of

eleven burned MITR-II fuel elements (312 g 235U per element) with D20 cooling, which

is followed by a fast neutron filter/moderator composed of 68 cm 70% AIF 3 /30% Al - 2

cm Ti, a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon shield and a pyramidal

collimator with a 15 cm thick lead lining. The filter/moderator is surrounded by a 10 cm

thick lead reflector. The statistical error (one standard deviation) of each MCNP

calculation is listed below the value. The reactor power was assumed to be 5 MW. The

fission converter power obtained in the calculation is 78 kW.

Computational Method Photon Dose Rate
cGy/min

MCNP calculation with core prompt gamma ray only 0.38
9%

Hand Calculation of core gamma rays (prompt + 0.029
delayed)
MCNP calculation without core prompt gamma ray 8.0

2%
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5.2.3 Reactivity Insertion Due to the Fission Converter

Since the fission converter contains a significant amount of 23 5U, it is expected to increase

the multiplication of neutrons in the system (reactor + converter) although the interaction between

the reactor core and the fission converter was shown to be very small. 1 The insertion of positive

reactivity has to be restricted to below the reactivity insertion limit (0.2% Ak/k) for movable

experiments in MITR-II. 6 Some efforts had been made using MCNP or CITATION to estimate the

reactivity insertion due to the fission converter. 1 However, they were not able to provide a

definitive answer to this question because of large statistical uncertainty or inaccuracy of the

computational model. To resolve this question, the coupled core-fission converter model was

modified to include a Cd shutter and criticality runs were performed with varying shutter positions

(open or closed) to examine the change in the multiplication factor (keff) of the system due to the

operation of the fission converter.

The computational model used here contains the MITR-II core with 24 fuel elements and 3

solid aluminum dummy elements and the fission converter with eleven D20-cooled burned MITR-

II fuel elements (312 g 235U per element) or eleven H20-cooled fresh elements (510 g 23 5 U per

element). According to Reference 1, these fission converter designs produce the lowest and the

highest keff's, respectively, among the possible combinations of fuel loading and coolant. The Cd

shutter, composed of a 0.0508cm thick Cd layer sandwiched with 0.3175 cm thick aluminum on

both sides, 1 is located in front of the fission converter. The bottom of this shutter is raised 81.9 cm

above or lowered 81.9cm below the beam centerline when it is open or closed. All of the other

beam components (a fast neutron filter/moderator composed of 68 cm 70% AIF 3/30% Al -2 cm Ti,

a 0.04 cm Cd thermal neutron filter, a 10 cm lead reflector, an 8 cm Bi photon shield and a

pyramidal collimator with a 15 cm lead lining) are included in the model. To improve the statistics,
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criticality calculations had -1000-2000 fission cycles , which required -5000 minutes on a 200

MHz Intel Pentium Pro computer.

The resulting keff's and fission converter powers are summarized in Table 5.4. The fission

converter power for each case is compared with that from the fixed-source run using the same

fission converter model (shown in the parentheses immediately below the result), which was

performed in Reference 1 or the current study; the results show reasonable agreement (power

differences of at most 3%). From these results, reactivity insertion due to the operation of the

fission converter is calculated as follows (the error after the value denotes one standard deviation).

For the D20-cooled fission converter with burned fuel

0.00035+0.00060 Ak/k

For the H20-cooled fission converter with fresh fuel

0.00125+0.00071 Ak/k

Although the statistical errors are still significant because the reactivity change is so small,

these results suggest that, in the case of the H2 0-cooled fission converter with fresh fuel, the

reactivity insertion might exceed the limit. Therefore, the procedure to open the Cd shutter should

be carefully planned during preoperational testing so as not to cause positive reactivity exceeding

the limit. Although the power difference between a criticality calculation and fixed-source

calculation is very small, the results for the cases with the Cd shutter closed should be examined

carefully because one third of the fuel containing cells of the fuel elements in the fission converter

had no fission source points in those cases due to very poor penetration of thermal neutrons into the

Cd shutter. This poor sampling of the fission source in some regions could bias the results.

Obtaining more accurate results for these cases would require a different approach such as use of

perturbation theory as suggested in Reference 1, which is now available in MCNP4B.
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Table 5.4 The multiplication factors and fission converter powers calculated using the coupled

core-fission converter model. The fission converter power for each case is compared

with that from the fixed-source run using the same fission converter model. The Cd

shutter was incorporated in the model. The error denotes one standard deviation of each

value. The reactor power was assumed to be 5 MW.

Run ID Fuel Coolant Shutter Nominal # of keff FC Power (kW)
Type Type Position source size cycles w/ Ia w/ Ic

react 1 Burned D20 Closed 4000 1110 1.00455±0.00048 0.521+0.006
(0.523_0.004)

react3 Burned D,O Open 4000 2060 1.00490±0.00036 79.6±0.05
(81.5±0.24)"

reac 11 Fresh H,O Closed 4000 1010 1.00417±0.00051 1.818±0.011
(1.759±0.012)"

react5 Fresh H,O Open 4000 1015 1.00543±0.00050 124.8±0.10
(125.5+0.25)"

# Fixed source calculation in Reference 1

## Fixed source calculation in the current study
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5.2.4 Tritium Production Rate in the D,O-Cooled Fission Converter

If D2 0 is used as a coolant in the fission converter, tritium (3H) production is an issue from

a radiological standpoint. For this reason, an MCNP calculation as well as a hand calculation were

performed to estimate the 3 H production rate in the fission converter. These calculations used a

fission converter with D20-cooled eleven burned MITR-II fuel elements (312 g U-235 per

element). Two beam models were used; one contains the Cd shutter (closed) and the other does not

(i.e. opened shutter). All the components of the beam (a filter/moderator composed of 68 cm 70%

AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal neutron filter, a 10 cm Pb reflector, an 8 cm Bi

photon shield and a pyramidal collimator with a 15 cm lead lining) were included in the models.

The reactor power was set at 5 MW. The results are presented in Table 5.5.

Table 5.5 MCNP calculations of tritium production rate in a fission converter when the Cd shutter

is open or closed. These calculations used a fission converter with D20-cooled eleven

burned MITR-II fuel elements (312 g U-235 per element). The statistical error (one

standard deviation) is listed immediately below each value. The reactor power was

assumed to be 5 MW.

Assuming that, within one year (365 days), the fission converter will be operated for 608 hr

(20 patients per day and 5 minutes per patient) and shut down for the rest of the time (8162 hr) with

the reactor operating at 5 MW, the amount of 3 H produced in a year is given by
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Run ID Cd Shutter 3H Production Rate
atom/s

triO Open (No shutter) 2.19x10 12

0.3%

tri03 Closed (-81.9cm) 5.83x1010
1.4%
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(2.19x 101 2 [atom/s]x608[hr] +5.83x 1010[atom/s]x8162[hr])x 60[min/hr]x60[s/min]

= 6.51x1018 [atom/yr]

Since the decay constant of 3 H is given by

ln2/(12.3[yr] x365x24x60x60) = 1.787x 10-9[1/s],

the activity of 3 H accumulated within one year is,

6.51x10 18 [atom/yr] xl.787x10- 9[1/s] = 1.16x1010 [Bq/yr] = 0.314 [Ci/yr]

where the decay of 3H is neglected.

Assuming that the total volume of the D2 0 coolant in the fission converter is -1900 1

(-500 US gal.), the tritium production rate per unit mass of the coolant is given by,

0.314[Ci/yr]/( 1900[1]x .10445[kg//])=1.5x 10-4[Ci/kg.yr]

It should be mentioned that the calculations described above do not account for 3 H

production above the top boundary of the model of the fission converter (98.8 cm above the beam

axis). However, its effect is expected to be small because the thermal neutron flux above the top

boundary is expected to be significantly lower than in the locations surrounding the fuel elements,

where the major portion of tritium is produced.

For hand calculations, the following data/assumptions were used:

- Thermal cross section for (n,y) reaction of deuterium, a : 0.5x 10-3 [b] 7

- The atomic density of deuterium in heavy water, N: 0.066272 [atom/barn-cm]

- Average thermal neutron flux in the fission converter, 4th:

5.1x1011 [n/cm 2 .s] when the Cd shutter is open (tallied at the interface between

coolant and rear inner tank in an MCNP calculation)

5.1x109 [n/cm 2 .s] when the Cd shutter is closed

- Decay constant of 3 H, X: 1.787x10- 9 [1/s]
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Then, neglecting decay, the amount of 3H generated in D20 coolant in the fission converter within

one year is given by:

N( 3 H) = Noythx(time) x(volume)

= 0.066272[atom/barn-cm]x0.5x10-3 [b]x(5.1x10 11 [n/cm2.s] x608 [hr] +5.1x10 9

[n/cm2-s] x8152[hr]) x60x60x 100x10 3 [cm 3 ]

= 4.19x10 18 [atom/yr]

The accumulation of activity of 3H in one year is

4.19x1018 [atom/yr] x1.787x10- 9 [l/s] = 7.47x10 9 [Bq/yr] = 0.202 [Ci/yr]

This result is 36% lower than that from the MCNP calculation. However, these results agree

reasonably well considering significant simplifications employed for the hand calculation.

5.2.5 Heat Deposition in the Fission Converter

The energy release caused by fission reactions in the fission converter was already calculated

in Reference 1. However, for thermal-hydraulic analysis of the fission converter, the energy

deposition in various parts of the fission converter is required. Therefore, MCNP calculations were

performed to calculate detailed energy deposition distributions using the track length cell energy

deposition tally (F6). The coupled core-fission converter model with an H20-cooled fission

converter composed of eleven fresh fuel elements (510 g 235U per element), which was used in the

reactivity insertion study, was also employed in this study. The energy deposition caused by

neutrons and photons from the MITR-II core was taken into account in the calculation. The reactor

power was assumed to be 5 MW. The results are shown in Table 5.6 for the fuel region, and in

Table 5.7 for coolant and structural material (aluminum - mostly in the fission converter tanks) of
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the fission converter. These results are summarized as follows:

Energy deposition in a HO0-cooled fresh-fuel fission converter

(The number in the parenthesis denotes one standard deviation)

Fuel: 108.9 kW (0.2%)

Fuel + Coolant: 111.1 kW (0.2%)

Fuel + Coolant + Structural Material (Al): 112.8 kW (0.1%)

Total Effective Energy Release by Fission: 126.5 kW (0.2%)

Regarding this calculation, it should be mentioned that delayed fission energy release,

which is around 6% of the total effective energy release, is not taken into account in this

calculation. Also, the energy due to delayed gamma rays from the structural materials (primarily

Al) and the energy deposited above the top boundary of the computational model of the fission

converter (98.8 cm above the beam centerline) are not taken into account. The effect of the last two

energies are expected to be very small for the following reasons:

- According to the study of the delayed gamma rays from 2 8A1 in Reference 1, the dose

rate at the patient position due to these gamma rays are negligible relative to that due to

prompt gamma rays of Al, which is the major photon producer in the fast neutron

filter/moderator. Therefore, it is expected that the effect on energy deposition of delayed

gammas from Al is also negligible compared to that of its prompt gammas.

- Because the top boundary of the model is far from the beam centerline (98.8 cm), the

radiation level above the top boundary is expected to be significantly lower than that in

the fuel region, where most of energy deposition in the coolant occurs (- 70%).
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Table 5.6 Energy deposition in the fuel elements of the fission converter. The calculation used a

coupled core-fission converter model where the fission converter consists of eleven

fresh MITR-II fuel elements (510 g U-235 per element) cooled with H2 0. The

statistical error (one standard deviation) is listed immediately below each value. The

reactor power was assumed to be 5 MW.

Fuel Fuel Effective Energy
Element Fuel Meat Cladding Total Release by Fission

kW kW kW kW
1 7.15 0.05 7.20 8.39

0.6% 0.2% 0.6% 0.6%
2 7.89 0.07 7.96 9.24

0.6% 0.2% 0.6% 0.6%
3 9.67 0.08 9.75 11.32

0.5% 0.2% 0.5% 0.5%
4 11.15 0.09 11.24 13.05

0.5% 0.2% 0.5% 0.5%
5 12.06 0.10 12.16 14.12

0.5% 0.2% 0.5% 0.5%
6 12.43 0.10 12.53 14.56

0.5% 0.2% 0.5% 0.5%
7 12.25 0.10 12.35 14.34

0.5% 0.2% 0.5% 0.5%
8 11.10 0.09 11.19 12.99

0.5% 0.2% 0.5% 0.5%
9 9.52 0.08 9.60 11.14

0.5% 0.2% 0.5% 0.5%
10 7.70 0.07 7.76 9.01

0.6% 0.2% 0.6% 0.6%
11 7.11 0.05 7.16 8.34

0.6% 0.2% 0.6% 0.6%

Total 108.02 0.89 108.90 126.50
0.2% 0.1% 0.2% 0.2%
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Table 5.7 Energy deposition in the coolant (H20) and the structural material (aluminum) of the

H20-cooled fission converter with eleven fresh fuel elements. The components which

contain most of the aluminum considered here are the converter tank walls.

Coolant Structural Material
Between the Above the Below the Side of the Coolant (Aluminum)
Fuel Plates Fuel Elements Fuel elements Fuel Elements Total

Energy Dep. 1.496 0.277 0.239 0.167 2.178 1.762
kW 0.1% 0.4% 0.5% 0.8% 0.1% 0.2%

5.2.6 Transverse and Vertical Power Profiles in Individual Fuel Plates

In addition to energy deposition, a detailed profile of power generation (i.e., effective energy

release by fission reactions) in individual fuel plates of the fission converter is required for thermal

hydraulic analysis (e.g., to calculate a hot channel factor). Therefore, the following calculations

were performed:

5.2.6.1 Calculation of transverse power profiles in a fission converter with eleven fresh fuel

elements and either H,O or D,O cooling

The power profiles calculated on a fuel-plate basis for both H20 and D2 0 coolants are

shown in Figure 5.1. Since one element contains 15 fuel plates, the total number of plates is 165.

The power generation for each plate is described in the appendix. One can see the detailed structure

in these profiles. The peaks occur at the sides of the fuel elements where the coolant thickness

between the fuel plates is larger, especially around the Al cross-tie. The power increases very

rapidly at the lateral ends of the fuel region where the fuel plates face the side reflector. The results

are summarized as follows:
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H20-cooled fresh fuel fission converter

Fission converter power: 125.7 kW

Max. power per plate: 1.12 kW

Fuel plate with max. power: Plate 1 of Element 7

Nuclear hot channel factor#: 1.12*165/125.7 = 1.47

D20-cooled fresh fuel fission converter

Fission converter power: 104.9 kW

Max. power per plate: 0.975 kW

Fuel plate with max. power: Plate 1 of Element 7

Nuclear hot channel factor: 1.53

#Nuclear hot channel factor =

(max. power per plate) * (the number of fuel plates)/ (total fission converter power)

5.2.6.2 Calculation of the vertical power profile for the fuel plate with max. power

generation

Section 5.2.6.1 showed that Plate 1 of Element 7, which is located next to the central Al

cross-tie, is the hottest fuel plate for both H20 and D2 0 cooling. Hence, the axial power

distribution for this plate with H2 0 cooling was calculated. The vertical profile of average linear

power density is shown in Figure 5.2. The numerical result is presented in the appendix. From this

calculation, the peak to average ratio is 23.79 [W/cm]* 56.8325[cm]/I 122[W]=1.21.
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Figure 5.1 Transverse power profile in a fission converter with eleven fresh MITR-II fuel elements and H2 0 or D2 0 cooling.
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Figure 5.2 Vertical power profile for Plate 1 of Element 7, which is the hottest fuel plate, in an

H20-cooled fission converter using fresh MITR-II fuel. The ordinate shows the height

of the centers of the segments.

213

S. Sakamoto

. . I I I I I I ý I . ý . I .

· JIIIIIIILllilllll· · (··L

+



Chapter 5: Neutronic Calculations Related to the Engineering Considerations on the Fission Converter Beam

5.2.7 Effect of Impurities in the Fast Neutron Filter/Moderator and Collimator

Materials

In Reference I and the current study, impurities in most of the materials used in the beam

design were not taken into account. However, it is possible that the impurities might affect beam

performance in various ways such as to increase photon production due to radiative capture.

Although the detailed compositions of the materials which would be used in the actual beam

construction are not currently available, it is meaningful to estimate the effect of impurities based

on the chemical requirement of each material because it would provide some information about

how significant the effect of the impurities is. Therefore, sensitivity analyses of the impurities were

performed using MCNP based on the chemical requirements from ASTM standards. 8 One should

remember the limitation of MCNP calculations in terms of photon production; that is, MCNP does

not take account of the delayed (activation) gamma rays. Therefore, the computational results of

photon contamination presented here account for only capture (prompt) gamma rays.

First of all, the materials to be analyzed were identified. The filter/moderator, where Al is

the main component, would be important for the impurity study because of its large volume

relative to the other components and its function of determining the neutron spectrum. The photon

shield (Bi) and collimator lining (Pb) would have to be examined carefully, especially in terms of

photon contamination, because they are not shielded from the patient position. However, Bi was

removed from the scope of this analysis because the experience with Bi in the MIT M67 beam has

shown no problem due to impurities and provides confidence with using it as long as material of

the same quality is available. Impurities in the Cd thermal neutron filter are expected to have a

small impact because Cd is already a major source of photon contamination, its thickness is very

small (only 0.04 cm), and its impurities shown in the chemical requirement do not appear to affect

214

S. Sakamoto



Chapter 5: Neutronic Calculations Related to the Engineering Considerations on the Fission Converter Beam

the neutron spectrum significantly. 8 As a result of these considerations, Al and Pb were selected

for the analysis. The chemical requirements for Al and Pb from ASTM standards are presented in

Table 5.8. All 100 and A16061 and common lead (L50049) were chosen for the candidates. The

calculations used a fission converter composed of eleven burned MITR-II fuel elements (312 g

2 3 5U per element) with D2 0 cooling, which is followed by a fast neutron filter/moderator (71 cm

Al - 27 cm AIF 3 for the analysis of Al and 68 cm 70% AIF 3/30% Al - 2 cm Ti for the analysis of

Pb), a thermal neutron filter (0.04 cm Cd), a photon shield (8 cm Bi) and a pyramidal collimator

with a 15 cm thick lead lining. The filter/moderator is surrounded by a 10 cm thick lead reflector.

The reactor power was set at 5 MW. The nuclear data mentioned in the following discussions are

from References 7, 11, 12, 13 and 14.

Table 5.8 Chemical requirements for All 100, A16061 and common lead in weight percent from

ASTM standards. 8 The limit described by a single value denotes weight percent

maximum unless stated otherwise.

Material Chemical Compositions
w/o

All 100 Si+Fe 0.95, Cu 0.05-0.2, Mn 0.05, Zn 0.10, Other Elements 0.05(each) 0.15(total), Al 99.00min

A16061 Si 0.40-0.8, Fe 0.7, Cu 0.15-0.40, Mn 0.15, Mg 0.8-1.2, Cr 0.04-0.35, Zn 0.25, Ti 0.15
Other Elements 0.05(each) 0. 15(total), Al remainder

Common Lead Ag 0.005, Cu 0.0015, As+Sb+Sn 0.002, Zn 0.001, Fe 0.002, Bi 0.050, Pb 99.94 min.
(L50049)

As for aluminum, the compositions (in weight percent) of All 100 and A16061 used in the

MCNP model based on their chemical requirements are shown in Table 5.9. The weight fraction of

each impurity was set to its limit to consider bounding cases; as a result, the fraction of aluminum

in Al 1100 becomes less than the requirement. In the case of Si and Fe in Al 1100, the fraction of

either one (Si in Type I and Fe in Type II) was set to the limit. As for 'other elements', cobalt,
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chromium and nickel were added with 0.05% for each. It should be mentioned that zinc (0.10%

max. for Al 1100 and 0.25% max. for A16061) is not included in these compositions because of lack

of data in the neutron cross section library of MCNP4A.

Table 5.9 The compositions of All 100 and A16061 used in the MCNP model (in weight percent).

Material Composition
w/o

All 100 (Type I) Si 0.95, Cu 0.2, Mn 0.05, Cr 0.05, Co 0.05, Ni 0.05, Al 98.65
All 100 (Type II) Fe 0.95, Cu 0.2, Mn 0.05, Cr 0.05, Co 0.05, Ni 0.05, Al 98.65

A16061 Si 0.8, Fe 0.7, Cu 0.4, Mn 0.15, Mg 1.2, Cr 0.35, Ti 0.15, Co 0.05, Ni 0.05, Al 98.65

Table 5.10 In-air beam performance for filter/moderator designs composed of 71 cm Al - 27 cm

AIF 3 where pure aluminum, All 00 or A16061 is used as the Al block. These

calculations used a fission converter composed of eleven burned MITR-II fuel elements

(312 g U-235 per element) cooled with D2 0. The filter/moderator is followed by a

thermal neutron filter (0.04 cm Cd), a photon shield (8 cm Bi) and a pyramidal

collimator with a 15 cm thick lead lining. The statistical error (one standard deviation)

is listed immediately below each value. The reactor power was set at 5 MW.

Run ID Material for Oth epi Of Jth/th Jepi/epi JI~Vr Dy D/(,Pi  Dn Df,/pi
Al block n/cm's n/cm's n/cm2s cGy/min cGycm'/n cGy/min cGycm2/n

skm308 Al 9.70E+08 1.28E+10 2.20E+08 0.62 0.64 0.66 5.5 7.12E-12 9.0 1.16E-II
(no impurity) 1% 0% 1% 0.9% 0.6% 1.8% 1% 1.1% 0.6% 0.8%

skmn419 Al 100 9.13E+08 1.27E+10 2.09E+08 0.63 0.63 0.68 5.4 7.09E-12 8.7 1.14E-I l
Typel 2% 1% 3% 2.1% 1.5% 4.1% 2% 2.4% 1.4% 1.8%

skm420 All 100 9.44E+08 1.24E+10 2.17E+08 0.62 0.64 0.66 5.2 6.93E-12 8.8 1.18E-1 1
TypeII 2% 1% 3% 2.2% 1.5% 4.1% 2% 2.5% 1.5% 1.9%

skm421 A16061 8.93E+08 1.17E+10 2.09E+08 0.62 0.64 0.66 5.0 7.04E-12 8.4 1.19E-ll
1.9% 1.2% 3.2% 2.4% 1.5% 4.2% 1.8% 2.1% 1.6% 1.9%
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The aluminum in the 71 cm Al block of the filter/moderator was replaced with either All 100

or A16061 shown in Table 5.9 (AIF 3 was assumed to be pure). The results of the calculations are

summarized in Table 5.10. It is noted that beam intensity is slightly reduced (by 9%) when A16061

is used. However, beam quality (fast neutron and photon contamination) is not changed

significantly by the impurities in aluminum.

As for photon contamination due to prompt gammas from Zn in aluminum, its influence

should be small relative to that of Al because the weight fraction of Zn is very small ( < 0.25%)

and its radiative capture cross section for thermal neutrons (- 1 b) is not very large compared to

that of Al ( - 0.2 b). The effect of Zn on the neutron spectrum is also expected to be small because

of its small weight fraction although it has several resonance peaks in the epithermal range as high

as - 500 barns.

Concerning delayed gammas which are not taken into account in MCNP calculations,

Reference 1 examined the effect of activation products from Al (2 8AI), F (2 0F), Ti (51Ti) , Ni

(6 5Ni) and Bi (2 10Bi and 2 10Bim) using the beam design which consists of a fast neutron

filter/moderator with 63 cm AlF 3 - 3*2 cm Al - 2*2 cm Ti surrounded by a 5 cm thick nickel

reflector and an 8 cm thick Bi photon shield. It indicated that the photon dose due to these

activation products are negligible compared to the prompt photon dose. Therefore, the effects of

delayed gammas from Ni and Ti included in All 100 and A16061 as impurities should also be

negligible. As for delayed gamma rays from activated Zn (primarily 65Zn and 6 9Zn, Gact = - 0.8

b for 6 5Zn and - 0.1 b for 6 9Zn, T1/ 2 = 244 d for 65Zn and 14 h for 69 Zn, Ey = 1.12 MeV for

6 5Zn and 0.439 MeV for 6 9Zn), their effects are considered to be negligible because their

activation cross sections and photon energies are not so different from those of 2 7A! (Gact = - 0.2

b, Ey = 1.78 MeV). Since the filter/moderator is followed by a thick Bi photon shield, the effect of

both prompt and delayed gamma rays from the impurities in the filter/moderator is expected to be

217

S. Sakamoto



Chapter 5: Neutronic Calculations Related to the Engineering Considerations on the Fission Converter Beam

insignificant. However, the effect of other activation products such as 5 6Mn with Gact = - 13 b,

TI/2 = 2.6 h, Ey = 0.847 MeV (99%), 1.81 MeV (27%), 2.11 MeV (14%) has to be analyzed to

confirm that it is small.

Next, the impurity analysis for lead will be discussed. The composition of common lead used

in the MCNP model is shown in Table 5.11. Again, the weight fraction of each impurity was set to

the limit. In the case of As and Sn, the fraction of either one (Sn in Type I and As in Type II) was

set to the limit. Antimony (0.002%max.) and zinc (0.001% max.) were not included due to lack of

data in the neutron cross section library.

Table 5.11 The compositions of common lead used in the MCNP model (in weight percent).

Material Composition
w/o

Common lead (Type I) Ag 0.005, Cu 0.0015, Sn 0.002, Fe 0.002, Bi 0.050, Pb 99.9395
Common lead (Type II) Ag 0.005, Cu 0.0015, As 0.002, Fe 0.002, Bi 0.050, Pb 99.9395
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Table 5.12 In-air beam performance for collimator designs using pure lead or common lead for the

lining. These calculations used a fission converter composed of eleven burned MITR-II

fuel elements (312 g U-235 per element) cooled with D2 0 followed by a

filter/moderator (68 cm 70% AIF 3/30% Al - 2 cm Ti), a thermal neutron filter (0.04 cm

Cd), a photon shield (8 cm Bi) and a pyramidal collimator with a 15 cm thick lead

lining. The statistical error (one standard deviation) is listed immediately below each

value. The reactor power was assumed to be 5 MW.

Run ID Material for Oth Depi Of Jth/Oth JJPii Jf/ f Dy Dy/Oepi Dfn Dfn/ epi

Al block n/cm 2s n/cm 2s n/cm's cGy/min cGycm'/n cGy/min cGycm2/n

std473 Lead 9.1E+08 1.3E+10 1.2E+08 0.66 0.67 0.68 8.0 1.OE-11 10.4 1.3E-11
(no impurity) 2% 1% 3% 2% 2% 4% 2% 2% 1% 2%

skm417 Common Lead 9.35E+08 1.30E+10 1.14E+08 0.64 0.66 0.68 8.7 1.12E-11 10.1 1.29E-11
Type I 1% 1% 2% 1.8% 1.2% 3.2% 2% 1.9% 1.1% 1.4%

skm418 Common Lead 9.41E+08 1.29E+10 1.14E+08 0.64 0.66 0.69 9.0 1.16E- 11 10.2 1.32E-1 1
Type II 1.0% 0.7% 1.7% 1.3% 0.9% 2.2% 1.3% 1.4% 0.8% 1.1%

The results of the calculations are shown in Table 5.12. The results indicate that the specific

photon dose is slightly increased (by 12-16%) when the impurities are added to lead while the

epithermal neutron flux and the specific fast neutron dose are unchanged. The increases in the

specific photon dose are likely due to radiative capture by Ag, which generates prompt gammas of

- 2.4 MeV (on average) with a radiative capture cross section for thermal neutrons of - 64 barns.

As for the effect of Zn and Sb on photon contamination, they have radiative capture cross sections

for thermal neutrons which are rather small compared to that of Ag (Zn -1 b, 12 1Sb -6 b, 123 Sb

-4 b). Therefore, their contribution would not be significant as long as the effects of their

activation products are negligible. However, if accumulated, activated Sb (mainly the following

two isotopes, 122 Sb with T1/ 2 of 2.7 d, and 124 Sb with T1/ 2 of 60.2 d) might cause significant

photon contamination. Regarding the neutron spectrum, the effects of Zn and Sb are considered to
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be insignificant because they are contained in the collimator lining and their weight fractions are

very small (< 0.002%) although Sb has very high resonance peaks (as high as -3000 b) in the

epithermal range.

It should be emphasized that detailed analyses of photon contamination due to impurities,

especially the effect of their activation products such as 56Mn in aluminum, 122 Sb, 12 4 Sb and

76 As (cact = - 4b, T1/ 2 = 26.3 h) in lead, are required before finalizing the beam design. The

accumulation of activated elements depends on the impurities, neutron flux and operation schedule

(i.e. irradiation time). These analyses should be based on the composition data provided by neutron

activation analysis using samples of the materials which would actually be used in the beam.

5.2.8 Shielding of Photons Outside the Beam Aperture

Reference 1 showed that horizontal and vertical photon dose profiles at the patient position

rise steeply outside of the 15 cm thick lead collimator lining because of the high photon production

in the high density concrete shielding. For the purpose of radiation protection, photons from the

concrete region have to be shielded adequately. Therefore, photon generation in the concrete region

was analyzed and a new photon shield was considered in the current study. The beam design used

here consists of a fission converter composed of eleven burned MITR-II fuel elements (312 g 235U

per element) with D2 0 cooling, which is followed by a fast neutron filter/moderator composed of

68 cm 70% AIF 3/30% Al - 2 cm Ti, a 0.04 cm Cd thermal neutron filter, an 8 cm Bi photon shield

and a pyramidal collimator with a 15cm thick lead lining (in a few calculations, collimator designs

with Li-poly delimiters were also considered). The filter/moderator is surrounded by a 10 cm thick

lead reflector.

First, photon generation in the heavy concrete will be discussed. The vertical photon dose
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profiles centered on the beam axis at the patient position produced by the beam design using heavy

concrete is analyzed in Figure 5.3. The profiles in the cases where heavy concrete cells were

voided or photon generation of only particular elements (Ti, Fe, 10B) in heavy concrete was turned

on using the PIKMT card are also presented. The comparison of the profiles for the calculations

with and without heavy concrete confirms that the peaks of the photon dose profiles outside the

collimator lining are caused by photon generation in the heavy concrete region. The profiles for the

calculations where photon generation from Ti (thermal absorption cross section is -6 b, average

photon energy is 3.6 MeV), Fe (thermal absorption cross section is -3 b, average photon energy is

3.4 MeV) and 10B (thermal absorption cross section is -3840 b, average photon energy is 0.48

MeV) 7 is turned on show that photons from these elements account for almost all the photon dose

outside of the collimator lining. It is interesting to consider the reason why the profiles have a peak

about 30 cm off the beam axis, where the interface between the lead collimator lining and heavy

concrete intersects with the surface at the beam edge which is normal to the beam axis . The likely

explanation is as follows. Neutrons penetrate through the lead collimator lining although gamma

rays are attenuated significantly there. Since the heavy concrete is doped with 10 B, thermal

neutrons would not travel deeply into it; in other words, neutrons would be absorbed near the

interface between the collimator lining and heavy concrete. Around + 30 cm from the beam axis,

the interface is very close to the beam edge and capture gammas will pass through a very thin layer

of heavy concrete to escape to the patient position. However, as the distance from the beam axis

increases, the thickness of heavy concrete between the interface and the surface at the beam edge

increases, which results in greater photon attenuation. As a result, the photon dose profile is peaked

around the intersection of the surface at the beam edge with the interface between the collimator

lining and heavy concrete.
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Next, the effect of using regular concrete will be examined. The regular concrete used in this

calculation is LOS ALAMOS (MCNP) MIX described in Reference 9, whose composition is

compared with that of heavy concrete in Table 5.13. Figure 5.4 shows vertical photon dose profiles

for beam designs using regular concrete. For comparison, the profile for the beam using heavy

concrete is also shown in this figure. One of the designs using regular concrete has a 6 cm lead

photon shield behind the regular concrete as shown in Figure 5.5.

Table 5.13 Compositions of heavy concrete and regular concrete in weight percent. The data of

heavy concrete is that used in the study of Reference 1. Regular concrete used here is

LOS ALAMOS (MCNP) Mix from Reference 9.

Concrete Composition
w/o

Regular H 0.453, O 51.26, Si 36.036, Al 3.555, Na 1.527, Ca 5.791, Fe 1.378

Heavy H 0.381, O 32.6, Si 2.12, Ca 4.54, Mg 1.84, Fe 38.0, Ti, 19.9, 1OB 0.116, 1 B 0.512

The results presented in Figure 5.4 show that regular concrete produces significantly higher

photon dose outside the beam aperture relative to heavy concrete. The lower photon dose rate for

heavy concrete is explained by two factors: heavy concrete contains 10 B (0.116% by weight),

which would absorb thermal neutrons and suppress the emission of other higher energy capture

gammas, and: heavy concrete contains significant amounts of relatively high Z materials such as Fe

and Ti, which would provide photon shielding. The result for the beam with a 6 cm thick lead

shield suggests that even very high photon dose (higher than that at the patient position in the direct

beam) produced by regular concrete can be reduced to a very low level by using a lead shield with

the thickness of - 10 cm.

Finally, the photon dose profile for the beam design using a Li-poly delimiter will be
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considered. The vertical photon dose profiles at the patient position for Designs std473 (pyramidal

collimator with no Li-poly), skm304 (pyramidal collimator with 10 cm long Li-poly lining) and

skm311 (funnel-shaped collimator with a 20 cm thick Li-poly delimiter), which have the same size

of the beam aperture (20 cm*20 cm), are compared in Figure 5.6 (see Figures 4.3 and 4.4 for their

geometries). It is noted that Design skm304 broadens the high photon dose rate region around the

beam aperture compared to std473. This is because the last 10 cm of collimator lining was replaced

with Li-poly in skm304 so that the effective beam aperture size for photons was enlarged. The

photon dose profile of Design skm311 drops more slowly beyond + 10 cm (physical beam aperture

size) than that of Design std473 because photons with large angles can pass through the Li-poly

delimiter and reach off-axis locations; that is, photons are diverging after exiting the lead

collimator region. Interestingly, the peaks around + 30 cm are not observed for Designs skm304

and skm311. The possible explanations are as follows. For Design skm304, most of neutrons are

absorbed by the 10 cm long Li-poly lining; then, capture gamma rays have to pass through at least

10 cm of heavy concrete to escape, which attenuates them significantly. On the other hand, in

Design skm311, a 20 cm thick Li-poly delimiter, which covers the whole beam cross section except

for the beam aperture, is considered to have a photon shielding effect. For 3 MeV photons, H20

has a mass attenuation coefficient of -0.040 cm 2/g. 3 Since polyethylene and water have similar

properties in terms of density (polyethylene 0.95 g/cm 3 , H20 1 g/cm 3 ) and effective atomic

number, (polyethylene, 5.5, H2 0 7.4)10, the mass attenuation coefficient of polyethylene is

expected to be close to that of H2 0. Then, using the data of H20 for polyethylene, the linear

attenuation coefficient for polyethylene is -0.038 [1/cm]. Therefore, neglecting the buildup, a 20

cm thick layer of polyethylene attenuate 3 MeV photons to -50%. For lower energy photons,

attenuation due to polyethylene is more significant.
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Figure 5.3 Vertical photon dose rate profiles centered on the beam axis at the patient position for
the beam designs using heavy concrete. The profile labeled 'Heavy Concrete Voided' is
for the beam design with heavy concrete cells voided. The profiles due to photons from
particular elements (Fe, Ti, and i'B) are also presented.
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Figure 5.4 Comparison of vertical photon dose rate profiles for the beam designs using
heavy and regular concrete.
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Figure 5.5 The cross-sectional view of the beam design using regular concrete followed by a 6 cm

thick lead photon shield.
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Figure 5.6 Vertical profiles of photon dose rate centered on the beam axis at the patient position for
Designs std473, skm304 and skm3 11.
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5.3 Conclusion

Various neutronic calculations related to engineering considerations of the fission

converter beam in terms of several aspects such as thermal hydraulics and radiation protection

were performed. The conclusions derived from these calculations are summarized as follows:

- Increasing the cross-sectional area of the fast neutron filter/moderator raises beam

intensity.

- The effect of the gamma rays from the MITR-II reactor core is negligible.

- The reactivity insertion due to a H20-cooled fission converter might exceed the

reactivity insertion limit (0.2% Ak/k).

- The effects of impurities listed in the chemical requirements of ASTM standards on

beam intensity, neutron spectrum and photon contamination due to prompt gamma rays

are expected to be very small. However, further impurity analyses based on the

composition data provided by neutron activation analysis, especially regarding the

effect of accumulation of activated elements, are required.

- Gamma rays produced in the concrete (heavy or regular) can be shielded adequately by

a lead layer with the thickness of- 10 cm.

In addition, detailed information about tritium production rate, heat deposition and

detailed power profiles in the fission converter was obtained. The results of these analyses will be

integrated into the overall design of the fission converter beam facility. The photon shielding

outside the beam aperture (i.e., shielding of the gamma rays produced in the concrete region) will

be considered in the discussion of the proposal for the designs of the collimator and concrete region

in Chapter 6.
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CHAPTER SIX

Summary and Recommendations for Future

Analysis

6.1 Summary

Sensitivity analyses were performed for the neutronic designs of the main components of the

fission converter beam: the fission converter, the neutron filters and the collimator. In the analyses

of the fast neutron filter/moderator and the collimator, great emphasis was placed on in-phantom

figures of merit using the water-filled ellipsoidal head phantom described in Section 1.4.3 to

evaluate beam performance of different designs. In addition, various neutronic calculations

required for the engineering design were performed. This chapter will summarize the implications

of these analyses and recommendations for future analysis.

In the sensitivity analysis of the fission converter design, the effect of using different fuel

configurations (multi-plate reactor type MITR-II fuel vs. single plate type fuel) was examined with

the expectation that reduced volume fraction of coolant in the single plate fuel fission converter

might offset the disadvantage of the H20 coolant which overmoderates the useful portion of the

neutron spectrum without a commensurate reduction of fast contamination. However, this analysis

showed that, although the single plate type fuel can have considerably higher fuel loading than the

MITR-II fuel, the fresh MITR-II fuel provides comparable beam performance to the single plate

fuel for either H2 0 or D2 0 cooling. Moreover, in spite of its much lower volume fraction of

coolant, an H20-cooled single plate fuel fission converter with the minimum coolant thickness
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(0.16 cm) does not improve beam performance significantly relative to a D20-cooled burned

MITR-II fuel fission converter. Therefore, it is concluded that both burned and fresh MITR-II fuel

are as efficient generators of epithermal neutron beams, especially with D2 0 coolant, as the single

plate fuel. The study of the fuel spacing effect showed that increasing the spacing between the fuel

elements increases power without improving the epithermal neutron flux or the specific fast

neutron dose. Reference 1 showed that increases in the D20 layer thickness on the upstream side

reduce the epithermal neutron flux in proportion to the fission converter power and that increases

in the thickness of the downstream D20 layer cause a significant loss of epithermal neutron flux

while decreasing the specific fast neutron dose slowly. From these results, it is concluded that,

because the MITR-II fuel already has a large coolant volume fraction, increases in the thickness of

the coolant layers surrounding the fuel elements does not reduce fast neutron contamination

enough to offset the loss of beam intensity.

The sensitivity analysis of the filter/moderator design indicated that the epithermal neutron

beams with high intensity and high quality can be designed using many combinations of

filter/moderator materials, i.e., AI-A120 3 , AI-AIF 3 , AI-(CF2)n and Al-C. These designs provide

deep penetration of the beam (the AD's of 9.3-9.8 cm extend significantly beyond the centerline of

the head phantom) and large therapeutic gain (the AR's are around 5) for a boron-delivery drug

such as BPA-fructose. Moreover, they produce ADDR's of 400-600 RBE cGy/min, which enable a

complete irradiation in a few minutes. Compared to the current MIT medical beam, they double the

advantage ratio and increase the advantage depth by 2 to 3 cm. Moreover, they provide an

advantage depth dose rate - 50 to 70 times higher than that of the current beam. It was also shown

that the variation of the neutron spectrum caused by the use of different filter/moderator

configurations which meet the design goals (D/tDepi <2*10- 1 1 cGycm2 /n) does not affect beam

quality because the fast neutron and photon contamination is maintained at a very low level
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compared to the irreducible background dose due to nitrogen and hydrogen capture. The final

design of the filter/moderator can be selected from the range of designs which were shown to

provide adequate beam performance in the current study, while taking engineering properties and

costs of the materials into consideration. As for the materials which are accompanied with concern

for decomposition and release of chemically active species (e.g., fluorine in AIF 3 or Teflon), the

analysis showed that one can take advantage of the shielding effect of a thick aluminum filter block

by locating such materials behind it, where the radiation levels and temperature would be reduced

relative to a location near the fission converter.

The sensitivity analysis of the collimator design and the analysis of photon generation in the

concrete shielding provided insight into how the collimator and the concrete regions should be

designed. The collimator study examined the effect of using a beam delimiter made of a neutron

absorbing material (i.e., lithiated polyethylene) and of changing the size of the beam aperture on

in-phantom beam performance. It showed that, although the use of a Li-poly delimiter increases the

current-to-flux ratio because of removal of neutrons impinging on the target at large angles relative

to the beam axis, it does not improve beam penetration; on the contrary, the advantage depth is

decreased due to the decrease in effective beam size. Moreover, the advantage depth dose rate is

greatly reduced when a Li-poly delimiter is used. Therefore, in designing the collimator, one has to

optimize the trade-off between the advantage of reduction of the neutron dose outside the beam

aperture and the disadvantage of significant reduction of beam intensity and slight degradation of

beam penetration when using a beam delimiter for irradiations of a head target. The analysis of

photon generation in the concrete shielding showed the need to locate a photon shield on the

downstream (i.e. patient) side of the concrete. It also suggested that a lead photon shield with a

thickness of -10 cm would provide adequate shielding for either heavy or regular concrete. From

the results of these analyses, the design of the collimator and concrete regions shown in Figure 6.1
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is recommended.

Lead shielding should completely cover the outside of the beam aperture to attenuate gamma

rays coming from the Bi photon shield and those generated in the concrete. In addition, a layer of

neutron absorber should be placed on the downstream side of the concrete. Although the neutron

flux profile at the patient position for Design skm304 shows that neutron flux is reduced very

significantly outside the beam aperture by replacing the last 10 cm lead collimator lining with Li-

poly, it would be preferable to have a neutron shield which covers the overall area outside the

delimiter in case neutrons penetrating through the lead collimator lining and the concrete cause

appreciable dose (this might be the case when regular concrete without neutron absorber is used).

For the material of the neutron shield, 10B -containing material could be used if it is located on the

concrete side and is followed by the photon shield. The thicknesses of the photon and neutron

shields depend on the compositions (i.e., shielding properties) of concrete.

Furthermore, it is recommended to install a removable variable-size beam delimiter which

consists of a lead layer followed by a neutron-absorbing material layer at the patient end. For the

neutron absorber, a lithium-containing material such as lithiated polyethylene is recommended

because of low photon generation due to neutron absorption in it. Several types of beam delimiters

with different thicknesses of lead and Li-containing material layers and different beam aperture

sizes can be used to adjust beam intensity, effective beam size, and beam directionality, which

would be optimized for different targets (e.g., head, extremities, etc.)

As for the type of concrete, heavy concrete with neutron absorber (e.g. 10 B, 6 Li) is

recommended in terms of both photon and neutron shielding. However, regular concrete would

also be acceptable when photon and neutron shields with adequate thicknesses are used.
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Figure 6.1 Cross-sectional view of a beam design with a removable variable-size beam

delimiter at the end of the collimator and neutron and photon shields on the

downstream side of the concrete.
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6.2 Recommendations for Future Analysis

Although an extensive series of studies has been performed in Reference 1 and the current

study for the neutronic design of the fission converter beam, there still remain several factors to be

analyzed in order to finalize the beam design. The following items were identified based on the

results of the current study. The reader should refer to Chapter 6 of Reference I for additional

recommendations concerning future studies.

The selection of the best filter/moderator materials and fine-tuning of their dimensions

have to be done taking engineering properties and costs of the materials into consideration.

Especially, for a fluorine-containing material such as Teflon, one should consider a configuration

which sandwiches it with sheets of Al for assuring structural strength and capturing fluorine

released due to decomposition as suggested by Reference 2.

The configuration of the beam delimiter has to be optimized. The optimization of beam

size (including neutron and photon dose profiles at the patient position) and beam directionality

based on detailed in-phantom analysis for different targets should be realized in designing

removable, variable-size beam delimiters. For irradiations of brain tumors, a beam delimiter should

be designed to optimize the trade-off between the advantage of reducing the neutron dose outside

the beam aperture and the disadvantage of significant loss of beam intensity and slight degradation

of beam penetration.

The photon and neutron shields outside the beam aperture have to be optimized based on

the composition data of concrete which will actually be used in the beam construction. Since the

concrete has to support the heavy collimator unless a special frame is used to support it,

mechanical strength would be an important factor for concrete selection.

The effect of bremsstrahlung on beam performance has to be analyzed. The MCNP
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calculations done in Reference I and the current study have not taken account of bremsstrahlung

for computational efficiency. Although it is expected not to be difficult to shield the

bremsstrahlung, its effect should be analyzed to prepare appropriate shielding if required.

In addition to the items mentioned above, the following studies should be performed:

- Impurity study based on composition data obtained from neutron activation analyses of materials

which will actually be used in the beam

- Optimization of the cross-sectional area of the fast neutron filter/moderator

- Consideration of a whole body shield to reduce undesired exposure outside the target region
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APPENDIX

Numerical Results of the MCNP Calculations for
Transverse and Vertical Power Profiles

This appendix describes the numerical results of the MCNP calculations for transverse and

vertical power profiles in the fission converter. The power produced by individual fuel plates in the

MITR-II fuel elements with H2 0 or D20 cooling are given in Table A. 1 (H2 0 cooling) and Table

A.2 (D20 cooling). The axial power distribution of Plate 1 of Element 7, which was identified as

the hottest fuel plate, in the H20-cooled fission converter is provided in Table A.3.
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Table A. 1 Power generation for each fuel plate in a H20-cooled fresh fuel fission converter. The reactor power was assumed to be 5MW.

Fission Converter Power (kW) = 125.7 (Std. Dev. = 0.081%)

Element 1 Element 2 Element 3 Element 4
Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%)

1 0.828 1.09 1 0.586 1.19 1 0.713 1.10 1 0.867 1.02
2 0.651 1.14 2 0.567 1.18 2 0.701 1.08 2 0.848 1.02
3 0.594 1.20 3 0.573 1.18 3 0.710 1.10 3 0.838 1.01
4 0.538 1.23 4 0.573 1.17 4 0.713 1.08 4 0.829 1.00
5 0.507 1.23 5 0.573 1.17 5 0.720 1.09 5 0.846 1.01
6 0.488 1.24 6 0.581 1.17 6 0.713 1.07 6 0.841 1.02
7 0.485 1.27 7 0.581 1.16 7 0.723 1.06 7 0.848 1.01
8 0.491 1.28 8 0.599 1.16 8 0.732 1.06 8 0.855 1.00
9 0.486 1.24 9 0.603 1.16 9 0.754 1.06 9 0.863 1.00

10 0.498 1.25 10 0.615 1.13 10 0.754 1.03 10 0.875 0.99
11 0.513 1.25 11 0.620 1.13 11 0.763 1.05 11 0.877 0.99

12 0.525 1.24 12 0.632 1.12 12 0.785 1.05 12 0.878 0.99

13 0.535 1.21 13 0.656 1.12 13 0.779 1.04 13 0.903 0.98
14 0.542 1.19 14 0.673 1.11 14 0.816 1.05 14 0.925 0.95
15 0.572 1.19 15 0.716 1.13 15 0.861 1.03 15 0.961 0.96

Total 8.252 0.314 Total 9.150 0.297 Total 11.237 0.275 Total 13.055 0.257
Average 0.550 0.314 Average 0.610 0.297 Average 0.749 0.275 Average 0.870 0.257

Peaking 1.505 Peaking 1.174 Peaking 1.149 Peaking 1.104
Factor* Factor Factor Factor

* The ratio of peak to average power per plate for each fuel element



Table A. 1 (Continued)

Element 5 Element 6 Element 7 Element 8

Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) j Std Dev (%)

1 0.949 0.97 1 0.991 0.95 1 1.120 0.90 1 0.944 0.97

2 0.909 0.96 2 0.969 0.94 2 1.023 0.92 2 0.899 0.95

3 0.907 0.96 3 0.953 0.94 3 0.975 0.93 3 0.890 0.97

4 0.925 0.96 4 0.945 0.93 4 0.947 0.93 4 0.879 0.98

5 0.914 0.95 5 0.943 0.94 5 0.939 0.95 5 0.869 0.98

6 0.929 0.96 6 0.934 0.95 6 0.929 0.95 6 0.865 0.99

7 0.908 0.95 7 0.937 0.94 7 0.922 0.94 7 0.846 0.98

8 0.932 0.96 8 0.944 0.95 8 0.923 0.95 8 0.847 0.99

9 0.929 0.96 9 0.936 0.95 9 0.915 0.94 9 0.846 1.00

10 0.933 0.94 10 0.948 0.94 10 0.928 0.96 10 0.818 0.99

11 0.944 0.93 11 0.943 0.93 11 0.929 0.95 11 0.829 1.00

12 0.943 0.94 12 0.950 0.93 12 0.920 0.96 12 0.825 1.01

13 0.951 0.94 13 0.970 0.92 13 0.927 0.95 13 0.829 1.00

14 0.965 0.95 14 1.022 0.92 14 0.929 0.94 14 0.831 1.00

15 1.002 0.96 15 1.103 0.92 15 0.987 0.96 15 0.840 0.99

Total 14.038 0.247 Total 14.488 0.242 Total 14.313 0.243 Total 12.855 0.255

Average 0.936 0.247 Average 0.966 0.242 Average 0.954 0.243 Average 0.857 0.255

Peaking 1.071 Peaking 1.142 Peaking 1.174 Peaking 1.101

Factor Factor Factor Factor



Table A. 1 (Continued)

Element 9 Element 10 Element 11
Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%)

1 0.833 1.02 1 0.684 1.09 1 0.568 1.20
2 0.792 1.02 2 0.652 1.11 2 0.535 1.19
3 0.768 1.02 3 0.637 1.11 3 0.525 1.22
4 0.754 1.02 4 0.620 1.09 4 0.514 1.24
5 0.749 1.03 5 0.623 1.11 5 0.511 1.21
6 0.736 1.04 6 0.614 1.13 6 0.497 1.22
7 0.727 1.06 7 0.589 1.12 7 0.491 1.23
8 0.706 1.05 8 0.585 1.14 8 0.486 1.25
9 0.713 1.05 9 0.583 1.16 9 0.490 1.25
10 0.700 1.05 10 0.566 1.14 10 0.488 1.25
11 0.698 1.06 11 0.578 1.18 11 0.507 1.24
12 0.703 1.06 12 0.564 1.18 12 0.532 1.22
13 0.688 1.06 13 0.571 1.16 13 0.580 1.20
14 0.685 1.08 14 0.578 1.17 14 0.679 1.15
15 0.712 1.09 15 0.589 1.18 15 0.869 1.09

Total 10.965 0.271 Total 9.033 0.294 Total 8.272 0.314
Average 0.731 0.271 Average 0.602 0.294 Average 0.551 0.314
Peaking 1.140 Peaking 1.136 Peaking 1.576
Factor Factor Factor



Table A.2 Power generation for each fuel plate in a D20-cooled fresh fuel fission converter. The reactor power was assumed to be 5MW.

Fission Converter Power (kW) = 104.88 (Std. Dev.= 0.1
Element 1 Element 2 Element 3 Element 4

Plate# Power (kW) StdDev (%) Plate# Power(kW) StdDev (%) Plate# Power(kW) StdDev (%) Plate # Power (kW) StdDev(%)
1 0.704 0.736 1 0.468 0.878 1 0.561 0.891 1 0.715 0.851
2 0.582 0.763 2 0.451 0.871 2 0.555 0.900 2 0.699 0.845
3 0.518 0.785 3 0.457 0.891 3 0.554 0.895 3 0.709 0.879
4 0.479 0.818 4 0.462 0.903 4 0.560 0.884 4 0.709 0.822
5 0.458 0.850 5 0.468 0.899 5 0.574 0.892 5 0.709 0.841
6 0.439 0.858 6 0.468 0.893 6 0.579 0.892 6 0.705 0.805
7 0.433 0.879 7 0.470 0.903 7 0.595 0.903 7 0.709 0.823
8 0.425 0.865 8 0.471 0.882 8 0.599 0.876 8 0.718 0.832
9 0.427 0.875 9 0.484 0.908 9 0.609 0.894 9 0.731 0.824
10 0.432 0.893 10 0.494 0.928 10 0.616 0.911 10 0.740 0.815
11 0.426 0.895 11 0.494 0.910 11 0.630 0.903 11 0.746 0.805
12 0.427 0.876 12 0.516 0.909 12 0.642 0.902 12 0.752 0.805
13 0.434 0.885 13 0.517 0.910 13 0.672 0.893 13 0.752 0.796
14 0.440 0.867 14 0.538 0.981 14 0.673 0.857 14 0.756 0.768
15 0.459 0.882 15 0.560 0.901 15 0.707 0.876 15 0.781 0.776

Total 7.084 0.218 Total 7.317 0.235 Total 9.127 0.231 Total 10.929 0.211
Average 0.472 0.218 Average 0.488 0.235 Average 0.608 0.231 Average 0.729 0.211
Peaking 1.491 Peaking 1.148 Peaking 1.162 Peaking 1.072
Factor* Factor Factor Factor
* The ratio of peak to average power per plate for each fuel elemet
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Table A.2 (Continued)

Element 5 Element 6 Element 7 Element 8

Plate# Power (kW) Std Dev (%) Plate# Power (kW) Std Dev(%) Plate# Power (kW) Std Dev (%) Plate# Power (kW) Std Dev (%)

1 0.808 0.794 1 0.868 0.759 1 0.975 0.695 1 0.804 0.721

2 0.798 0.785 2 0.827 0.733 2 0.900 0.704 2 0.778 0.722

3 0.794 0.817 3 0.815 0.731 3 0.874 0.716 3 0.752 0.729

4 0.787 0.777 4 0.818 0.741 4 0.846 0.722 4 0.748 0.732

5 0.788 0.795 5 0.817 0.751 5 0.826 0.723 5 0.734 0.741

6 0.797 0.786 6 0.816 0.744 6 0.817 0.732 6 0.722 0.741

7 0.797 0.776 7 0.807 0.741 7 0.799 0.715 7 0.721 0.739

8 0.791 0.779 8 0.808 0.732 8 0.788 0.716 8 0.710 0.734

9 0.789 0.770 9 0.820 0.742 9 0.784 0.732 9 0.709 0.731

10 0.794 0.768 10 0.811 0.732 10 0.779 0.723 10 0.699 0.741

11 0.807 0.760 11 0.828 0.742 11 0.781 0.730 11 0.693 0.740

12 0.805 0.760 12 0.830 0.723 12 0.781 0.721 12 0.688 0.742

13 0.816 0.770 13 0.844 0.722 13 0.782 0.721 13 0.679 0.740

14 0.832 0.749 14 0.854 0.742 14 0.787 0.722 14 0.687 0.741

15 0.851 0.758 15 0.897 0.729 15 0.799 0.722 15 0.693 0.740

Total 12.054 0.200 Total 12.460 0.191 Total 12.318 0.186 Total 10.817 0.190

Average 0.804 0.200 Average 0.831 0.191 Average 0.821 0.186 Average 0.721 0.190

Peaking 1.058 Peaking 1.080 Peaking 1.187 Peaking 1.115

Factor Factor Factor Factor



Table A.2 (Continued)

Element 9 Element 10 Element 11

Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%) Plate # Power (kW) Std Dev (%)

1 0.698 0.730 1 0.539 0.785 1 0.449 0.829

2 0.663 0.739 2 0.518 0.794 2 0.433 0.839

3 0.641 0.747 3 0.506 0.803 3 0.422 0.862

4 0.628 0.758 4 0.499 0.801 4 0.417 0.850

5 0.612 0.749 5 0.485 0.811 5 0.415 0.869

6 0.604 0.758 6 0.478 0.821 6 0.410 0.856

7 0.592 0.758 7 0.472 0.812 7 0.408 0.861

8 0.586 0.769 8 0.470 0.821 8 0.409 0.861

9 0.574 0.767 9 0.460 0.829 9 0.417 0.868

10 0.560 0.767 10 0.457 0.840 10 0.420 0.838

11 0.557 0.769 11 0.449 0.848 11 0.436 0.849

12 0.553 0.793 12 0.443 0.851 12 0.458 0.823

13 0.542 0.776 13 0.442 0.842 13 0.489 0.804

14 0.542 0.784 14 0.445 0.841 14 0.535 0.774

15 0.548 0.793 15 0.448 0.855 15 0.645 0.755

Total 8.900 0.197 Total 7.110 0.212 Total 6.762 0.216

Average 0.593 0.197 Average 0.474 0.212 Average 0.451 0.216

Peaking 1.177 Peaking 1.136 Peaking 1.431

Factor Factor Factor



Appendix: Numerical Results of the MCNP Calculations for Transverse and Vertical Power Profiles

Table A.3 Axial power distribution of Plate 1 of Element 7 (fresh fuel) with H2 0 Cooling

- The active fuel length in the model is 56.8325 cm.
- Power for the plate = 1122 W (Std. Dev. = 0.85% )

# The height of the center
## Linear power density

of each segment

/__ -
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Height# Avg. LPD" Std. Dev.
cm W/cm %

27.23 18.35 3.95%
24.86 13.16 4.24%
21.31 16.38 3.20%
16.58 19.89 2.91%
11.84 21.15 2.93%
7.10 21.31 2.78%
2.37 22.68 2.71%
-2.37 23.04 2.72%
-7.10 23.79 2.84%

-11.84 20.40 2.90%
-16.58 18.62 3.04%
-21.31 17.18 3.20%
-24.86 15.75 4.48%
-27.23 17.65 4.11%


