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Abstract

In this thesis, the application of numerical techniques to electromagnetic problems in
microelectronic and radar imaging systems are investigated. In particular the follow-
ing problems are studied: (1) Dielectric rib waveguide discontinuities are analyzed
with the Finite Difference Time Domain (FDTD) method. The application of Beren-
ger's Perfectly Matched Layer to multi-layered dielectrics is analyzed and the specific
conditions needed to successfully match the multiple dielectric layers are determined
and justified. An FDTD method to find the fundamental mode's spatial distribution
is used to excite the discontinuity problem. It is shown that the computational do-
main can be reduced by twenty percent over Gaussian excitations. The effects of rib
waveguide bend discontinuities and the effects of the rib geometry to the bend loss are
presented. (2) An Impedance Boundary Condition (IBC) for two dimensional FDTD
simulations containing thin, good conductor sheets is developed. The IBC uses a
recursive convolution scheme based on approximating the conductor's impedance as
a sum of exponentials. The effects of FDTD parameters such as grid size and time
step on simulation accuracy are presented. The IBC is shown to accurately model
the conductor loss over a wide frequency range. The verification is performed by
comparing the quality factors of rectangular resonant structures determined by the
FDTD simulation and analytical methods. (3) Phase unwrapping techniques for the
inversion of terrain height using Synthetic Aperture Radar Interferometry (InSAR)
data are analyzed. The weighted least squares and branch cut phase unwrapping
techniques are specifically studied. An optimal branch cut method and a hybrid least
squares/branch cut method are presented and used to unwrap the phase of both sim-
ulated and real SAR interferograms. When used to invert terrain height, these new
SAR phase unwrapping methods offer over fifty percent reduction in root mean square

(rms) height error compared to the straight least squares method and over thirty-five
percent reduction in rms height error compared to the weighted least squares method
based on coherence data weighting schemes.
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Thesis Supervisor: Dr. Y. Eric Yang
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Chapter 1

Introduction

Numerical modeling of electromagnetic phenomena is a popular pursuit for many sci-

entists and engineers. One of the most popular time domain numerical techniques is

the Finite Difference Time Domain Method or FDTD. The FDTD method attempts to

model the interaction between electric and magnetic fields by describing the universe

at discrete locations at discrete times. The physics are defined by a set of difference

equations that describe the relationships between field quantities at the various loca-

tions at different times. If space and time are divided into small enough intervals the

difference equations adequately approximate the electromagnetic interactions.

The key to electromagnetic interactions is the media and the FDTD method can

model most materials quite accurately. However, computer resources always constrain

the types of problems that can be simulated within a reasonable amount of time. In

fact, FDTD's most serious limitation is that it requires large amounts of computer

memory.

The computer resources needed to simulate an electromagnetic problem are usu-

ally directly related to the smallest wavelength of the simulation. However, a very

small wavelength may imply small structures, and a small simulation volume may off-

set the high density of sample points. The resource problem is most pronounced when

a small portion of the simulation contains a dense material that greatly shortens the
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wavelength. In this case, the dense material drives the spatial interval and in turn the

memory required. Another factor that greatly influences the memory requirements is

the treatment of the simulation volume's physical boundaries. Modeling open space

implies no physical boundaries; however, a simulation volume of infinite extend is, of

course, impossible. Many techniques have been developed to simulate open space with

a closed simulation volume; however, they are problem specific. It is the engineer's

job to make the appropriate approximations to simulate a given problem within the

computer resource constraints.

Discretization of space, time and Maxwell's equations is clearly a numerical tech-

nique that can be applied to many types of electromagnetic problems. Other numeri-

cal techniques involve the analysis of the measurements of electromagnetic phenomena

such as analyzing radar data. Extracting useful information from radar measurements

in the presence of noise is a continuing topic of great interest. The use of multiple

passes of a satellite based synthetic aperture radar (SAR) to perform interferometry

is a very useful tool to image the earth's terrain height. Noise in the system and

decorrelation of the two passes add greatly to the height errors in an inverted height

image. Reducing these errors is of great interest in the remote sensing community.

In this thesis, the application of numerical techniques to electromagnetic prob-

lems in microelectronic and radar imaging systems are investigated. In particular the

following problems are studied: (1) Dielectric rib waveguide discontinuities are ana-

lyzed with the Finite Difference Time Domain (FDTD) method. Berenger's Perfectly

Matched Layer application to multi-layered dielectrics is analyzed and the specific

conditions needed to successfully match the multiple dielectric layers are determined

and justified. An FDTD method to find the fundamental mode's spatial distribution

is used to excite the discontinuity problem. The effects of this type of excitation

on computational domain reduction is presented. These numerical techniques are

used to study the effect of bend discontinuities in the rib waveguide. (2) A new Im-

pedance Boundary Condition (IBC) is analyzed and developed for two dimensional
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FDTD simulations containing thin, good conductor sheets. The need for a very large

computational domain is overcome by the replacement of the good conductor with

an impedance boundary condition that accurately models the conductor loss over a

wide frequency range. The IBC uses a recursive convolution scheme. The two di-

mensional IBC is verified by comparing the quality factors of rectangular resonant

structures determined by the FDTD simulation and those calculated with analytical

methods. (3) Phase unwrapping techniques for the inversion of terrain height using

Synthetic Aperture Radar Interferometry (InSAR) data are analyzed. The weighted

least squares and branch cut phase unwrapping techniques are specifically studied.

An optimal branch cut method and a hybrid least squares/branch cut method are

presented and used to unwrap the phase of both simulated and real SAR interfero-

grams. These new SAR phase unwrapping methods are compared to straight least

squares unwrapping and other weighted least squares schemes.

1.1 Technical Discussion

1.1.1 Analysis of Dielectric Waveguide Discontinuities

Dielectric waveguides are commonly used as interconnects in millimeter-wave and

sub-millimeter wave integrated circuit technologies [75]-[100]. As frequencies increase,

conductor losses diminish the utility of microstrip and coplanar interconnect struc-

tures. Furthermore, to maintain single mode operation the structure size must de-

crease which further increases the loss through these metal guides. Dielectric waveg-

uides avoid these losses; however, when these interconnects contain discontinuities

such as bends, these discontinuities introduce loss through the waveguide. Since the

propagating modes of this type of structure are characterized by very complex field

distributions that do not have exact analytic solutions, a numerical approach is ap-

propriate to investigate these structures. In this thesis an FDTD implementation is

used to analyze the effects of waveguide discontinuities on the fundamental mode's
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propagation through the waveguide.

The main difficulty of using the FDTD method on this type of problem is computer

resources. With multiple dielectric media, the most dense material determines the

spatial interval of the discretization. And, the open nature commonly found in many

dielectric guiding structures creates the need for special treatment on the edges of

the simulation volume.

The first analysis of dielectric waveguides focused on finding dispersion curves

and field distributions in two dimensional cross sections of the guides using frequency

domain techniques [75, 76, 77, 78]. More recent work has concentrated on using

integral equations to solve the two-dimensional problem [82, 99], while others have

used frequency methods like Beam Propagation Method or the discretization of the

scalar wave equation [81, 83]. Much of the dielectric waveguide discontinuities work

has been limited to two dimensional dielectric slab waveguides as in [94].

Three dimensional single frequency analysis has been done on structures such

as directional couplers [80], tapered rib waveguides [89], Y-junctions [92], and step

discontinuities [84].

Multi-frequency analysis of three dimensional structures using FDTD has been

done on the transitions from rectangular waveguides and microstrip to dielectric

waveguides [85, 96, 100], but little has been done with dielectric bends. One work

reports a full three dimensional look at a bend in a rectangular dielectric guide limited

to a single frequency [93].

Figure 1-1 is a graphical representation of a dielectric rib waveguide and the

essential elements of a FDTD simulation. Unless bounded with a perfect conductor,

the walls of the simulation volume must contain some absorbing boundary condition.

The problem is excited by an excitation plane and the power is measured at two

reference planes.

When using FDTD to study any waveguide, depending on the excitation used, it

can take some distance for the fundamental mode to develop as the evanescent modes
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Absorbing
Boundary
Condition

Figure 1-1: Dielectric rib waveguide configuration in a 3D FDTD simulation.
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decay away and radiating modes leave the simulation volume. In order to more

efficiently launch the fundamental mode, in this work the mode's spatial distribution

is determined up front. A two dimensional FDTD method is used to construct a mode

template [131, 133]. The three dimensional FDTD code is collapsed in the direction

of propagation by replacing the spatial difference equation with an equation based

on an assumed propagation constant and the corresponding phase difference between

adjacent spatial grid points. A two dimensional simulation of the waveguide cross

section produces the corresponding temporal frequencies of the propagating modes.

The lowest frequency is the fundamental mode and the spatial distribution is found

by performing a Fourier transform at each space point on the two dimensional grid

at the fundamental mode frequency. With this source condition, the computational

domain can be reduced from the commonly used spatial Gaussian source condition

by allowing shorter distances between excitation and the discontinuity and thus the

waveguide can be studied with fewer computer resources.

Unlike metallic waveguides, the dielectric rib waveguide is an open structure and

analyzing them with the Finite Difference Time Domain method requires absorbing

boundary conditions (ABC) that simulate open space. In this work the new Perfectly

Matched Layer [46] is used. A careful examination of its application to multi-layer

dielectrics is given and the results are used to implement the ABC for the study of

waveguide discontinuities.

1.1.2 Modeling of Thin Finite Conductivity Sheets

In FDTD simulations involving highly conductive materials, such as the metal case of

a computer system, the tangential electric fields are typically set to zero on the surface

of the material. This Perfect Electric Conductor (PEC) assumption ignores any loss

associated with the less than infinite conductivity. The errors that result from this

approximation are considered against the large cost of discretizing the lossy material.

Since the wavelength of a highly conductive material is very small, the simulation
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Simulation Volume Simulation Volume

Figure 1-2: Replacement of thin conductor with Impedance Boundary Condition

volume must be divided into a very fine grid in order to capture the loss mechanism

within the conductor. When a uniform grid is used (called the brute force method)

computer resources are wasted by having to finely divide the other less dense mate-

rials (e.g. free space). In these materials the fine grid is not necessary to capture the

physics of the problem. The computational size can be reduced with a sub-gridding

scheme where the conducting material uses a much smaller grid than the rest of the

computational domain [9, 10, 12]. With this technique care must be given to reduce

reflections caused by the change in lattice grid size. For very good conductors; how-

ever, the grid size must be so small that even sub-gridding is not a viable option.

To overcome the resource problem, the surface of the highly conductive material can

be replaced with an Impedance Boundary Condition (IBC) [126]-[130]. Figure 1-2

represents how the conductive material is replaced with a boundary condition that

incorporates the physics of the conductor layer. An IBC is only appropriate when the

simulation volume of interest is on one side of the the conductive material. However,

IBCs have the added complication that they are usually frequency dependent and are

not directly applicable to the the standard frequency independent FDTD equations.

In this case, the FDTD equations must be modified to incorporate the dispersive

nature of the surface [109] -[120]. Typical frequency domain equations relating the

Free Space

Impedance Boundary
Condition
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electric fields and magnetic fields become convolution equations in time. Since a

convolution has a large memory overhead, if the convolution integral can be approxi-

mated by a sum of exponentials, then recursive convolution can be implemented and

the memory requirements reduced.

Similar to an IBC, another approach [117] uses a synthetic conductivity and the

normal FDTD difference equations for lossy media. A synthetic conductivity is de-

rived by comparing the numerical impedance of the difference equations and the

actual impedance of a good conductor at specified frequency. In this way the derived

synthetic conductivity is inserted into the FDTD equations at the boundary; thus

being a surface boundary condition similar to an IBC. The advantage to this method

is that no new equations are needed; however, it's major disadvantage is that it is

only appropriate at a single frequency.

An Impedance Boundary Condition that incorporates frequency dependence was

developed for thin dielectric coatings over PEC surfaces [127]. The IBC formulation

starts with the analytically derived expression for the impedance in the frequency

domain. The expression is expanded in a Taylor series about the wave number. Next

the frequency domain is transformed to the time domain by replacing -iw with 0/0t.

The resulting partial differential equation is fourth order in time and first order in

space. The difference equations do model the frequency characteristics fairly well;

however, the equations are quite complicated and rely on many past values of the

surface electric field. Furthermore, the condition is limited to normal incidence; thus,

limited to 1D structures. This work is extended to include non-normal incidence

[129]; however, the modified IBC is only good for a single incidence angle.

Like the IBC of [127], Tassoudji [128] starts with a frequency domain expression

for the impedance of one dimensional structures. Here the structure is a thin sheet

of highly conducting material. The frequency domain equation is transformed to the

Laplace domain and the subsequent expression is approximated by a sum of first-

order rational functions. This approximation is critical to the IBC's practicality to
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Figure 1-3: SAR interferogram

FDTD. The first-order rational functions are exponentials in time and thus a recursive

convolution scheme is implemented. The benefit of this scheme is the wjide range of

frequencies for which it is valid.

In this thesis, the IBC for thin finite conducting sheets of [128] is examined and

extended to two dimensions. Guidelines for the number of expansion terms needed are

derived in order to give users an a priori estimate of the resources required to perform

a given simulation. The new 2D IBC is validated through the measurements of the

quality factor of rectangular resonant cavities at different frequencies and conductivity

values.

1.1.3 Phase Unwrapping

Airborne and spaceborne Synthetic Aperture Radar (SAR) platforms have been used

for many years to study the earth's surface [144]-[159]. When two radars on a single

platform or two passes of a single radar map the same area, an interferogram can be

produced from the difference in phase measured by each radar or pass. An interfero-

gram is a pictorial representation of the phase differences measured at dach pixel as

shown in Figure 1-3

Since the measured phase differences lie between -r and r, the phase is said to

be wrapped. A SAR interferogram contains fringes. These fringes are the locations

on the interferogram where a 27r discontinuity exists. The interferogram resembles a
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Figure 1-4: Digital Elevation Model (DEM) of Alaskan mountain.

topographical contour map where a line of constant elevation corresponds to a fringe.

When no noise is present, the fringes can easily be located and the data adjusted by

adding multiples of 27r to produce an unwrapped phase image. However, real data

contain noise and phase unwrapping can be a complicated process.

Successful phase unwrapping is the key to the extraction of DEM (digital elevation

model) from an interferometric SAR phase image. Figure 1-4 is the DEM associated

with the terrain that produced the ERS-1 SAR interferogram of Figure 1-3.

Although some new phase unwrapping techniques have been introduced recently

based on the principle of maximum entropy [164] and multiresolution [165] that may

lead to better phase unwrapping algorithms, there are really two basic approaches to

unwrapping phase data. The first is based on finding an unwrapped solution such

that the solution's first-order partial derivatives in the x and y directions match (or

closely match) the wrapped first-order partial derivatives or gradients of the phase

data. Typically noise is handled by unwrapping the best data first in local schemes

or weighting the data in global schemes. The second approach integrates along the

data and adds or subtracts 27r when a fringe is crossed. The noise is considered by

searching for phase inconsistencies, in the form of residues. The residues are connected

to form branch cuts and phase is unwrapped by adjusting the integration path or by

modifying the fringe information.
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There are local and global techniques to phase unwrapping algorithms based on

the gradients of the measured data. The local algorithms usually locate one or more

areas on the image that are considered good data. Finding these points may use noise

floor data and signal-to-noise ratio [168] or use coherence data [166],[178]. Unwrap-

ping usually begins with these good areas. The algorithms move from pixel to pixel

and add or subtract 27 based on some criteria. One method follows the least-gradient

path with the assumption that the smallest gradient points to the best data [180],[178]

and the adjustments are made to match the solution gradient to the wrapped mea-

sured gradient. Other methods use more neighbors to decide the value to add to the

unwrapped pixel [161],[169]. Here all the gradients of the adjacent unwrapped pixels

are examined and the phase of the unwrapped pixel is predicted based on these gra-

dients. Then an integer number of 27r is added to bring the unwrapped pixel closest

to the predicted phase. In this way it is possible to have phase differences larger than

7, so this method can accommodate real discontinuities due to terrain features. All

of these local techniques have the added complication of growing separate unwrapped

regions that must be joined to produce the final product. Since the best pixels are

unwrapped first, the likelihood of errors propagating through the image is reduced.

Global gradient algorithms are based on least squares and weighted least squares

methods [170]. In this way, the technique attempts to find a solution that minimizes

the differences between all of the solution's gradients and the wrapped data's gradi-

ents. The least squares approach is very desirable because of the speed at which all

the data can be unwrapped; but, the method does not treat noisy data very well [170].

The weighted least squares method allows the user to favor the good data by applying

a set of weights to the data based on some knowledge of the data's noise content.

These methods were applied to a single SAR interferogram [160]; however, no details

of the weighting criteria were presented. [162] used a weighting least squares on a sim-

ulated interferogram with a shear, where the shear discontinuity was masked out and

a new multi-grid iteration scheme was used to solve the weighted partial differential
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equation. [171] applied a weighted least squares technique to a speckle interferogram

using a weighting scheme based on masking out the phase inconsistencies or residues.

The branch cut method also has local and global approaches. So far, only local

approaches have been reported in SAR interferometry. The branch cut method and

SAR interferometry phase unwrapping was first reported in [173]. Applied to the

interferogram derived from two passes of Seasat, the residue connections were based

on a nearest neighbor approach. This approach works well with a low density of

residues; however, it breaks down with a high density of residues [173]. Once two

residues are connected they are removed and no longer considered for connection to

any other residues. This method is very likely to leave an uncompensated residue.

The phase is then unwrapped by integrating along a path that never crosses a branch

cut. This approach was briefly reported in [160] as part of an overview of SAR phase

unwrapping techniques. The reported disadvantage to the branch cut method is the

propagation of global errors from uncompensated residues. A modification to the

basic branch cut method in SAR interferometry involves connecting and removing

residue pairs that are only 1 or 2 pixels apart [163]. The remaining residues are

handled separately and considered part of real discontinuities that exist as a result of

terrain features.

The branch cut method has also been applied to speckle interferometry, used

to measure very small surface deformations on structures. In this application, a

nearest neighbor (local) connection algorithm was used and reported in [174]. The

first global branch cut method is used to unwrap a speckle interferogram. All residues

are considered before making any branch cuts. In this way, the algorithm is based on

minimizing the total branch cut length[175].

Finding efficient, accurate and automatic phase unwrapping algorithms is an inter-

esting topic and is becoming more important as more processing occurs on the SAR

platform. In this thesis, the least squares global approaches are investigated and

applied to SAR interferometry. Specifically, a hybrid method that uses a weighting
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mask based on branch cut residues is examined and compared to weighting schemes

based on coherence data. Also, optimum branch cut algorithms are applied to SAR

interferograms and the techniques are compared to the least squares method. Data

from both simulated and real SAR interferograms are used.

1.2 Description of Thesis

This thesis is divided into six chapters. Chapters 1 and 6 are the introduction and

conclusion and require no description.

Chapter 2 provides a detailed look at the Finite Difference Time Domain Method

as a numerical technique to solving electromagnetic problems. The discretization

of Maxwell's equations and the treatment of both lossless and lossy materials are

described. Special attention is given to Absorbing Boundary Conditions and specifi-

cally the relatively new perfectly matched layer and the it's application to multilayer

dielectric media in preparation for it's use in Chapter 3.

Chapter 3 is dedicated to the use of the numerical FDTD technique to study

dielectric rib waveguides. The perfectly matched layer of Chapter 2 is used as the

absorbing boundary. The application of a mode template to efficiently launch the

guide's fundamental mode is described. This numerical technique is compared to

analytical methods for deriving dispersion characteristics of dielectric waveguides.

A numerical study of the benefit of this technique is conducted. Afterwards, these

methods are used to analyze various bend discontinuities found in dielectric waveguide

structures.

In Chapter 4 a new Impedance Boundary Condition is extended for use in two

dimensional FDTD simulations. The IBC is described in great detail and studied in

one dimensional simulations. The influence of FDTD parameters and the number of

IBC expansion terms on the accuracy of the IBC based on the reflection of a wave from

a thin finite conducting sheet is presented. The IBC is extended to two dimensions
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and verified through the study of resonant structures. The quality factor of many

rectangular resonant structures is found using FDTD and compared to analytical

results.

Numerical techniques of phase unwrapping of synthetic aperture radar interfero-

grams are investigated in Chapter 5. The foundations of global phase unwrapping are

described, specifically least squares and optimal branch cut unwrapping. New mod-

ifications to these techniques are applied to both simulated and real interferograms.

After the application of these techniques to the real SAR data, the phase is used to

invert terrain height and the height is compared to ground truth.

There are three appendices included in this thesis. Appendix A lists the first

and second order Mur absorbing boundary condition FDTD equations. Appendix B

describes the methods used to determine the coefficients used in the PML FDTD

equations. Appendix C gives a detailed review of the transportation problem found

in linear programming that was used to build an optimum branch cut connection

algorithm in Chapter 5.



Chapter 2

Finite Difference Time Domain

Method

2.1 Introduction

The Finite Difference Time Domain Method is one of the most popular numerical

methods for solving electromagnetic problems in the time domain. K. S. Yee [1] pro-

posed a discretizing scheme for Maxwell's equations that staggers the electric and

magnetic fields in space and time in such a way that the difference equations are

second order accurate. But, more importantly, it is possible to analyze very com-

plicated structures over multiple frequencies with a single simulation. FDTD's basic

limitation is its need for large computer resources to represent the simulation volume.

The impact of this limitation has been lessened with the recent advances in computer

technology. The FDTD method has been widely used to solve electromagnetic prob-

lems [2]-[28]. The purpose of this chapter is to describe the FDTD method used in

this thesis.
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2.2 Maxwell's Equations in Cartestian Coordinates

Maxwell's curl equations form the basis of the FDTD difference equations. Starting

with

Vx E(f, t) = - iB(f, t),at (2.1)

and

V x H(, t)= )-D(, t) + J(f, t),at (2.2)

with the constitutive relations

(2.3)

and

B = pH,

the first step is to separate the equations into their individual components.

electric field component equations are

(2.4)

The

a

a
EE = aHat 0z

-Ez = 
YH,at 0X

az

-oHz- Jy,
ax

- H- - Jz,
ay

while the magnetic field equations are

= aEz -
dr

S Hzay

and

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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and

pHz = Ex- E. (2.10)at ay ax(

2.3 Difference Equations in Free Space

2.3.1 Central Difference Approximation

The FDTD difference equations are constructed from a central difference approxima-

tion of the partial derivatives in equations (2.5) through (2.10).

Given a function f(x), the continuous variable x is divided into discrete points

separated by A such that x = iA where i is any integer. The partial derivative may

be approximated by

Sf((i + i)A) - f((i - ()A)
f(x) 2 (2.11)

ax _A=iAA

This central difference approximation is second-order accurate (i.e. the error , A2).

Thus, theoretically, the error can be made as small as desired for well behaved func-

tions if the grid size, A, is made small enough.

2.3.2 Yee Grid and FDTD Nomenclature

Yee [1] introduced a spatial arrangement of the six field quantities shown in Figure

2-1, that places the electric field unknowns along the edges of a discretized grid and

the magnetic field unknowns on the faces of the grid. The electric and magnetic fields

are staggered both in time and space by t and -, -, and , respectively. This

staggered approach allows the difference equations to be local in both time and space.

By local we mean that an unknown is a function of itself and its nearest neighbors

(local in space) at the most resent time step (local in time) . Thus only one set of

unknowns at each location must be stored in memory at a given time. The set of all

discrete cells is called the computational domain.
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Figure 2-1: Yee's FDTD grid.
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The continuous coordinates (x, y, z, t) become discrete coordinates (iAx, jAy,

kAz, nAt) or simply (i, j, k, n) where i, j, and k represent the space coordinate indices

and n represents the time coordinate index and Ax, Ay, Az and At are the spatial

and temporal intervals between sampled points. These intervals are referred to as the

grid size (spatial) and time step (temporal). When uniform gridding is used, the grid

spacings are all set to a single value, A. The most common FDTD nomenclature uses

a subscript to represent the field component direction, a superscript to represent the

time index, and three arguments to represent the space indices.

For example, En+l(i, j k + 1) represents the z component of the electric field

sampled at t = (n + 1) At seconds and sampled in space at x = iAx, y = jAy , and

z = (k + 1) Az meters.

2.3.3 Difference Equations

Figure 2-2 shows the spatial arrangement of the individual field components used to

construct the difference equations. A field equation includes its past value plus a

linear combination of the four nearest fields that lie in the plane perpendicular to the

the field component. The free space difference equations are depicted in equations

2.12-2.17.

E" 1 (i + , j, k) = E"(i + 1,j, k) (2.12)

+ At H+(i 1 1 k) - z 2 (i + j - k)

y (i+ ,jk+ ) -H 2 (i + 2,jk-

E"n+(i,j + ½, k) = En(i,j + , k) (2.13)Y 2\) 1 2)
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Figure 2-2: Graphical representations used to construct FDTD difference equations.
Solid lines represent integer grid lines.
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n+ 1

+ t H 2(i j + , k + )

-o (i + ,+ ,k)-

E,+l(i, j,k + ) = E(i, j, +

+ 2 (i+ ,j,k+ )-

_ Ht (n 1 1Ak2

1
2 (i,j + , k + )1," 2 2)

n+l1

H 2(i, j + _, k- )

H,"+ 1 (i- ,J ,k)

H+ 2(i

Hx 2(i,

1 1)
- ,j,k+ )

21 k+ ),j ½,+

1n- HHx:
+ 'o (EE(i,i + 1, k + 1) - E"(i,j + , k))

on E(i, j + 1,k + -) - E"z(i, j, k + 1))mo Ay 2 21, 7

1 i.

) n E"(i + 1j, k2 - 1))

n +  1 1

H (i + , j,k + ) = Hy

-At E (i , j, k +2
+-- (En(i + 1, j, k +

1 1

H 2 (i + ,j + ,k) = Hz 2 (i + , + , k)

+-oA (En(i + , j + 1, k) - E"(i + , , k))

A' (E(i + 1,j + , k) - Ey(i,j + 7, k))

(2.14)

(2.15)

(2.16)

(2.17)

(ij + 1, k + - )

) - En(i - 1, j, k + l))
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As shown, the temporal discretization places the electric and magnetic fields half a

time step away from each other. With this configuration, the method first calculates

the electric field (2.12-2.14), then advances the time by half a time step and calculates

the magnetic field (2.15-2.17). This technique is called leap frogging.

2.4 Difference Equations in Lossy Dielectric Me-

dia

In this section, we describe the inclusion of lossy media and the scattered versus total

field FDTD formulation.

2.4.1 Maxwell's Equations in Lossy Dielectric Media

The framework for FDTD equations and algorithm used in this thesis were based

on those in Kunz and Luebber [14] and modified where necessary. We begin with

Maxwell's curl equations for source free lossy medium:

a - 1 - rm--H = V x E - H (2.18)
at ft

and
a- 1 -E = -V x H+ -E. (2.19)at E

When equations (2.18) and (2.19) are discretized, we have a total field formulation;

however, it is more convenient to use a scattered field formulation. The main benefit

of a scattered field formulation is that an incident field can be analytically specified

throughout the computational domain. In this way a plane wave can be specified

without needing to provide a source sufficiently far away to generate a plane wave

at the scatterer. This reduces the size of the computational domain and provides a

convenient way to insert plane waves radiating at different angles. Also, it is more



2.4. DIFFERENCE EQUATIONS IN LOSSY DIELECTRIC MEDIA 43

general than a total field formulation i.e. a scattered field code becomes a total field

code when the incident field is set to zero.

The basic assumption is that Maxwell's equations are linear in the simulation vol-

ume. Thus, outside any scatterers both the incident and total fields satisfy Maxwell's

equations for free space and inside any scatterer the total field satisfies Maxwell's

equations for the lossy medium. Of course, the linearity assumption does not hold

for all media but does apply to the media used in this thesis. So we have

Et= Ei + E, (2.20)

and

Ht= Hi+ HS, (2.21)

where the superscripts t, i, and s stand for total, incident, and scattered respectively.

The incident fields satisfy the free space equations:

V Ei = -PUoaH f  (2.22)

and

V x H = co Ei (2.23)

and the total fields satisfy equations (2.18) and (2.19). Substitution of (2.20) and

(2.21) into (2.18) and (2.19) and subtracting the incident field equations (2.22) and

(2.23) we find the scattered field equations for inside the scatters,

V x E = -P~ H - am s- (P- )Hi + amHi (2.24)

and

Sx H= - E+ aeES + [( - O) i+ ei . (2.25)

Outside the scatter, since the total fields also satisfy (2.22) and (2.23), substitution
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and subtraction of the incident fields yield

Vx E = -po I-at

and

V x Hs = E0s • .-at

(2.26)

(2.27)

Equations (2.24),(2.25),(2.26), and (2.27) are the foundation for the FDTD difference

equations. Since equations (2.26) and (2.27) are just special cases of (2.24) and (2.25)

with p = Po, E = co, oe = 0 and om = 0 only (2.24) and (2.25) are needed to generate

the FDTD equations. The equations for each field component are

a + eE = H= z Hj ++o-E09

at

t8 H' + am Hat
a

+ amnHs =

(6 -

SH
Ox z 4z Hx

HS

Ox ay
0l

ao) Eat ~

a

atE
i~ 3

ao) a Haty Ez

+ 0eE 1

+ 0eEy ,

+ UeEl

+ amHx],

ax z

, (2.28)

(2.29)

(2.30)

(2.31)

(2.32)

and

-- H + Om Hz = - Ek " - [(p - Do) a Hz+ mH ] (2.33)

For completeness, the most general equations are shown above. Because in this work

no magnetic materials are used, only equations (2.28)-(2.30) need to be discretized.

The magnetic fields can be updated with the free space difference equations (2.15)-

(2.17).
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2.4.2 Difference Equations

The electric field difference equations for lossy dielectric media are shown below.

The equations are constructed with computer coding in mind. The coefficients C1 -

C4 are calculated up front and stored in computer memory and called during the

simulation. Also, the coefficients are a function of the medium, m. One of the tasks

at the beginning of the FDTD simulation is to build the structure under test by

specifying which materials are at each cell location; such that m is a function of the

field component and location. The electric field equations are

E n+1(i + 1 j, k) = C(mT)E "(i + 1 j, k) (2.34)

- Ce(m)E x (i + , j, k)

- C3(m)der{Ein(i + 1,j, k)}
n1 1 1

SC(m) H (i + H + 1 k) -Hz (i + j k,])

S 1 1 11

Q(m) 2 2SCf(e ) •+Hj z+ (i + + k

E "n*(i,j -+ , k) = Ce(m)E "(i, j + , k) (2.35)

- C2(m)E"yn(i,j + 1, k)

- C3(m)der{E ~ (i,j + , k)}
1 1 1

+ Sn+ 1
+ C(m) Hxn+ (i, +, k + - Hz (i, + -

+1 1n+n n+ Icex (,) Hzn+ (i + j + 1, k) - Hz (i , j + , k)

and

Ezn+1(i + 1 j, k) = Ce(mT)Ezs(i + , j, k) (2.36)
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- C••(m) E (i + , j, k)

- C3(m)der {E"(i + , j, k)}
1 1

+ QX(m) HH;2n+(i + 1,j, k + ) - H (i -1 j, k +
1 1

n+ 1n+
- f(m) Hx 2 (i, j + , k + ) - Hxs 2(i,j- k + 1.

where

C' (m) = (2.37)
c + oeAt'

C(m) = At (2.38)S+ reAt'

(E - •o)At
( + aUAt '(2.39)

At
C4() Aa(E + eAt) = y, z,

and der{} represents a discretized analytic expression for the time derivative of the

analytically specified incident field.

2.5 Treatment of Dielectric Interfaces

Figure 2-3 represents the placement of the electric and magnetic fields in a Yee grid

cell. A single cell represented by the indices (i, j, k) has its lower left front corner

positioned at (iAx, jAy, kAz). Although a cell only has one each of the six field

quantities associated with it, a cell has 12 electric and 6 magnetic field quantities

adjacent to it as Figure 2-3 shows. This configuration is key to the construction of

multiple dielectric media structures within the simulation volume.

When more then one material is used in the simulation volume permittivity be-

comes a function of position. In general, the permeability is also a function of position,

but throughout this thesis only non-magnetic materials are used. Although there are
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Ex Ey

Hy Hz

Figure 2-3: Individual field locations on the Yee grid.
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many possible ways to fill the simulation volume with different media, the typical

method places dielectric media wholly within a cell such that the media interfaces are

located along the faces of the Yee grid. In this way the continuity of the tangential

electric fields is inherently enforced. The construction of a multi-dielectric structure

consists of assigning a permittivity to each of the electric field component positions

within the computational domain. The permittivities are based on the physical di-

mensions of the structure. For those electric field components that lie completely

within a dielectric medium with permittivity e1 the permittivity is set to e1. However

for those electric field components that lie on the planar interface between two media

with 61 and E2, an average of the two dielectric's permittivities is used: " .21 Finally,

for those electric field components that lie along a line that lies at the intersection

of four dielectric media with 61, 62, 63, and E4, an average of the four permittivities

is used: "+'2'3+64 . Figure 2-4 is a diagram that shows the proper assignment of the

permittivity values for a FDTD simulation with multiple dielectric type.

2.6 Perfect Conductors

When perfect conductors are present in the simulation volume the the total electric

field must be zero inside the conductor, so the tangential electric fields on the surface

must be zero to satisfy the boundary conditions. If an analytic plane wave excitation

is used then we set

ES = -Ei (2.40)

inside the conductor.

If a total field formulation is used (i.e. E i = 0), then the tangential fields are

explicitly set to zero on the surface of the conductor.
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Figure 2-4: Assignment of permittivity values for multiple dielectric media in FDTD
simulations.
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2.7 Accuracy, Numerical Dispersion, and Stability

Since the FDTD method is based on central differencing, the smaller the grid size

the more accurately the difference equations will approximate the partial derivatives.

However, decreasing the grid size will increase the memory required and the run time

of the simulation so, the question is how accurate do we want to be?

2.7.1 Accuracy and Numerical Dispersion

The measure of accuracy used to determine the grid size is derived from the numerical

dispersion relation of the FDTD grid [14]. In free space a plane wave satisfies the

following dispersion relation:

k2 + ky + k = w2  (2.41)

where
1

Co

The phase velocity in any direction is a constant,

vph = - = Co. (2.42)

The difference between the numerical dispersion and the analytical dispersion is the

measure of the accuracy. The dispersion relation of the FDTD grid with a uniform

grid spacing is given by

sin2 = sin2 + sin 2 --+ sinm k (2.43)A A 2 2 2

Instead of being constant the FDTD dispersion relation is a function of the grid

spacing, A, the angle of propagation, and the ratio, ,t called the stability factor.

As expected, when At --+ 0 and A -- 0, equation (2.43) approaches (2.41) showing
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Figure 2-5: Normalized phase velocity

(solid line), -:(dashed line), and :
versus angle of propagation for 2D FDTD; A6

(large-dashed line).

again that with a small enough grid arbitrarily good accuracy can be achieved with

FDTD. Figure 2-5 is a plot of the normalized phase velocity versus the angle that the

k vector makes with the x axis, for a 2D FDTD algorithm. Each curve represents

a different grid size in terms of the wavelength, A. The solid line represents Ž, the

dashed line represents L and the large-dashed line represents •. Linear dispersion

equates to a normalized phase velocity of 1 and any deviation from 1 represents error.

The FDTD guideline is to keep the dispersion error to less that one percent, so the

grid size should satisfy

(2.44)
- 10

2.7.2 Stability

Once the grid size has been determined to provide a reasonable amount of accuracy,

numerical stability places an upper bound on the time step. Stability can be guaran-
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teed if for all possible wave numbers the frequency, w, in (2.41) remains real valued.

Thus, the stability condition for a non-uniform cartesian grid is

1cAt < (2.45)
(AX) 2 + (Ay) 2 + (Az)2

and for a uniform grid is

At < A (2.46)

where c is the speed of light. The constraint from (2.45), is known as the Courant

stability condition and must be enforced at all times within all materials.

Many FDTD codes will allow the user to specify the grid spacing then auto-

matically sets the time step to the maximum allowed under the stability condition

of equation 2.46; however, sometimes the user may desire a smaller time step. To

accommodate a smaller time step we write

At < A (2.47)
- CFLc

where CFL is a real number the can be used to adjust the time step, keeping in mind

that there is a lower limit and that limit depends on the dimension of the simulation.

2.8 Implementation of Sources and Excitations

There are many ways to excite an FDTD simulation. Whether the excitation is an

analytic plane wave, current source, or boundary condition, a Gaussian pulse is used

for the basic temporal excitation. The continuous Gaussian pulse excitation is

g(t) = e-(t-to)2/T2 (2.48)
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The Gaussian pulse is desirable because it's spectrum is also Gaussian as shown below.

G(w) = g(t)eit"dt

-00

= TVeiwtoe -w 2T 2 4. (2.49)

Thus a Gaussian pulse may be used to excite several frequencies in a single simulation.

In FDTD, since the Gaussian pulse must be truncated (i.e. the signal cannot extend

to ±+o), care must be given to prevent unwanted high frequency components from

entering the simulation from the waveform's truncation. This is accomplished by

linking to and T. Discretizing (2.48), t -- nAt and to --+ 3At, where At is the time

step and n and 3 are integers. The unwanted frequencies can essentially be eliminated

by choosing T large enough to damp out the effects of the truncation. Typically,

T = to/4, (2.50)

so that the attenuation of the step is e- 16 or 140 dB. So, the pulse width of the signal,

determined by to = OAt, must be chosen to ensure the desired bandwidth and T is

automatically set to suppress the undesired high frequencies.

The pulse width of the excitation is approximately 2/At and therefore the spec-

tral content is 2•t When needed, a modulated Gaussian pulse is used to shift the

spectrum to a desired frequency as shown below.

g(t) = cos(wot)e-(t-t)2/T2 (2.51)

There are three ways to insert the temporal excitation into the simulation. The

first way is to use the analytic plane wave excitation, E , in equations (2.35)-(2.37).

The second way is to add electric current density components to the discretized

Ampere's Law. For a current source in the ý direction the cross sectional area is

assumed to be AxAy and a length of Az [20]. In this way if a finer grid is used
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xxW

Figure 2-6:
domain.

2D Yee grid: dashed line represents the edges of the computational

for the same physical dimensions then the current density component must be scaled

down in order to excite with the same current density. The last way to excite the

problem is with a boundary condition i.e. define an electric field component as a

function of time at some location within the simulation volume.

2.9 Treatment of Computational Boundaries

Figure 2-6 represents a two dimensional Yee grid for a TE polarized wave with fields

Ey, H. and Hz. The dashed lines in Figure 2-6 represent the truncation of the com-

putational boundary along two edges to the domain's grid lattice. Since the magnetic

field quantities above and to the right of the dashed lines do not exist, the electric

field components that lie along the boundaries cannot be updated with the standard

difference equations.

When the edges are perfect conductors, the tangential electric fields can be set

to zero and therefore the boundaries pose no difficulty. However, these boundary

I

r

I

I

I

I
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conditions apply to a narrow range of electromagnetic problems.

If left alone, the edges of the computational domain would act as an open circuit

and reflect the outgoing waves that impinge upon the boundary. With a large enough

domain, measurements can be taken before they are corrupted by the non-physical

reflections from the boundary. Unfortunately this technique, called time gating, may

require too much computer memory to be viable. Many approaches have been used

to terminate the FDTD computational domain [29]-[45].

2.9.1 One Way Wave Equation

The most common treatment of the boundaries is based on the one way wave equation

made popular by Mur [29]. The concept is simple: construct equations that allow

only outgoing waves. In free space the solutions of the electric field will satisfy the

wave equation:
2 2 2 1 2(2.52)

2 2 2  Co • 2 (2.52)

Consider a boundary at x = 0 and a computational domain that lies to the right of

the boundary, a plane wave traveling in free space is given by

W(f, t) = Re {Woe(kx+kY+kzz-wt)} (2.53)

where W represents a field component and

±(k2 - k2-k2)(2.54)

with

Re (k0 - k- k) 2 '  0 (2.55)

and
2S= (2.56)

co
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Allowing only outgoing waves, then

k = - (k2 -- - k2) .

The next step is to convert (2.57) to the time domain

dx
I 11 (1- (coVy)2 - (COVz)2)2
Co

where vy and v, are the phase velocities in the y and z directions defined by

ky

and
kzvz = W

The essence of the Mur boundary conditions lies in the approximation to

(1 - (co) 2 - (covz)2)

If ((coVy) 2 - (COVz) 2) < 1, then we can expand (2.59) as follows:

1
(1- (CoVy) 2 - (COz)2) 2

= 1- 2((Covy)2 + (COVz) 2)

+ O(((covY)2 + (COvz)2))

The first order Mur uses the first term in the expansion. This is equivalent to

assuming normal incidence at the boundary. The partial differential equation is

(ax (2.60)

(2.57)

(2.58)

(2.59)

CHAPTER 2.
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The first order Mur difference equation derived from (2.60) is

W"n+(0, j,k) = Wn(1, j, k)

coAt AX [W+ (1, j, k) - W"(0, j, Ik)].
coat + Ax

(2.61)

All six first order Mur absorbing boundary conditions can be found in Appendix A.

The second order Mur improves the approximation by using the first two terms

in the expansion so that the partial differential equation is

S10

co dx Ot
1 02 1 a2

c+0c 2 t2 2 B2
+ 2) WIX=o = 0 (2.62)

the difference equation becomes

Wn+l( (0,j, k) = -W"- 1(1, j, k)

cot- A [Wn+l (1, j, k) +
coAt + Ax

2Ar

W"(1, j, k)]

+ o[W " (0, j, k) + W"(1, j, k)]coAt + An
Az(coAt) 2

+ - A [W(oj, jk + 1) - 2W"(O,j, k)
2(Az) 2(cot + Ax)
+Wn(1,j, k + 1) - 2Wn(1, j, k) + W"(1, j, k - 1)]

+ Xo[Wn(0, j + k) - 2Wn(0,j +
2(Ay)2(coAt + AX) 2

+Wn(, j +3 k) - 2Wn(1,j + 1, k) + Wn(1,j - , k)]. (2.63)

All twelve second order Mur absorbing boundary conditions can be found in Ap-

pendix A.

Coding Considerations

Since the Mur ABC equations require values older than the most recent time step,

the Mur equations are not local in time and additional memory locations are neces-

+ W(o, j, k - 1)
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Computational boundary

Figure 2-7: 2D Yee grid with an absorbing boundary layer used to truncate the
computational domain.

sary for each tangential electric field on the boundary. In the first order case, the

boundary value plus its nearest neighbor in the normal direction must be saved at

each time step for a total of two extra memory locations per tangential field compo-

nent. In the second order case, two past time steps must be saved for a total of four

additional memory locations per tangential field component. Although higher order

equations can be constructed, the additional accuracy does not usually justify the

added complexity and memory required.

For efficient implementation, the coefficients found in the Mur equations are cal-

culated once at the beginning of the program and stored for use in the difference

equations.

2.9.2 Absorbing Boundary Layer

In addition to ABCs based on one way wave equation, an absorbing layer can be used

to absorb the waves. A layer is constructed within the computational domain but

58 CHAPTER 2.



2.10. BERENGER'S PERFECTLY MATCHED LAYER 59

outside the simulation volume. The idea is to construct a layer with a loss mechanism

that will allow the waves to propagate into the absorbing layer with little reflection

and damp out the waves so that they will not reflect back into the simulation volume.

Holland [8] showed that an absorber can be built to match an isotropic lossless

media with another media with both electric and magnetic conductivities as long as

the absorbing media has the same permittivity and permeability as the media to be

matched and
=e (2.64)

O-e

With (2.64) set, the impedance of the absorbing layer matches the impedance of the

medium inside the simulation volume; however, this type of ABC is only good at

normal incidence.

2.10 Berenger's Perfectly Matched Layer

In 1994, Jean-Pierre Berenger introduced a novel approach [46] to the absorbing

layer problem, and the technique has been the subject of much research [47]- [74].

Berenger essentially built an artificial electromagnetic absorbing layer around the

FDTD computational domain that offers very small reflections and dissipates the

electromagnetic energy as the waves travel through the layer.

Berenger's goal was to remove the angle dependence of Holland's ABC [8] while

maintaining the reflectionless property. Berenger modified Maxwell's equations by

splitting each field component into two subcomponents, one for each of the other two

directions as shown below:

Ex = Ex + E z, (2.65)

Ev = Exx + Eyz, (2.66)

Ez = Ezx + Ezy, (2.67)

Hx = Hxy + Hxz, (2.68)
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H- = Hyx + Hyz, (2.69)

Hz = Hzx + Hzy. (2.70)

He further added anisotropic electric and magnetic conductivities. Although Ber-

enger originally introduced his absorbing boundary for two dimensional problems, it

was quickly expanded to three and the 12 equations are

+ H
p-• Hxy + omHxy = - (Ezx + Ezy) ,at Y ayy

a H
a
a Hat

a
0z
8x

(Eyx + Eyz) ,

(Ezx + Ezy) ,

Ao Hyz + zmHyz =- (Exy + Ez)at z z

- Hzxat + XmHzx - (E x + Eyz) ,

HtHoy + mHz (Exy + Exz)

a a
c Exy + ueEx - a (Hzx + Hzy) ,at y ay

SExz + aExz =

at
Ea Etx + Ee =at X J

a (Hyx + Hyz),

a (Hz + Hzy),ax

a aE Eyz + Eyz = (H- + Hxy ) ,
at z (Hy+Hz)
a a
SEz + e EzxEz (Hyz + Hz)

a aSE + o -Ezy (Hxy + Hxz)at Y ay cy

and

(2.71)

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

and

(2.82)

CHAPTER 2.
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The key to understanding the PML and why it works so well is the fact that if

S = O = ze = e and am = om = ozm =m, using equations (2.65)-(2.70), the PML

equations (2.71)-(2.82) reduce to Maxwell's equations of a lossy medium (2.18) and

(2.19). In other words, Maxwell's equations are a special case of the more general

PML equations.

For a TE polarized wave traveling in two dimensional space, the twelve PML

equations reduce to six:

SEy + 0 Ey (Hzx + Hzy) (2.83)

8 8a Eyz+ ore a aE E0z Ez (Hxy + Hxz) (2.84)

a tap• Hxy + omHy = 0 (2.85)

p Hz + omHz = (Eyx + Eyz) (2.86)

a a
SHzx + 'mHzx = - (Eyx + Eyz) (2.87)at X Ox

1-t Hzy + ,mHzy = 0 (2.88)

Since the y direction collapses and ao = 0, a plane wave solution yields

Ey- kx Hz, (2.89)

Eyz - kZ H, (2.90)
wCoEOz
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Hx = kz - (Eyz + Eyz)
=pamZ

(2.91)

H - kx

ax (

am= -1-

S (1

(Ey~ + Eyz),

ivx,

+Z Ix,WI-t)

+i z  ,

+ i ,

and

1 + -  .x
= WE

Substituting (2.89) and (2.90) into (2.91) and (2.92) gives

Evx = x (Evx + Eyz) ,w2 C Ce Cm

and
k2

Eyz 2 Z m (Eyx + Eyz).

Solving for one split field, the PML dispersion relation is given by

k2 k2
ae am aean
xOx z z 2

2.10.1 PML Reflection Coefficient Analysis

Berenger and Cai et al [51] offer analytical derivations of the PML conditions for

matching. The following is another that offers insight into the PML mechanism.

Consider two PML media with non-zero values of permittivity, permeability and

conductivity; one PML medium occupies Region 0 and the other Region t. A TE

and

where

(2.92)

(2.93)

(2.94)

(2.95)

(2.96)

(2.97)

(2.98)

(2.99)

CHAPTER 2.
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E = jEyoeeikxx-ikzz

Eyo = Eyxo + Eyzo

Region 0

rE = RTEEyoeikxx+ikzz

Region t

x-lktzz

Figure 2-8: Geometry for PML reflection coefficient analysis.

polarized incident wave with lk = k:Sc - kzý, strikes the boundary from above. The

electric fields are assumed [137] to be of the form

E-, = 9 (EVo + Eyzo) ezkxx-•kzz,

Er = 1RTE (E£,o + EYzo) eikxx+ikzz

(2.100)

(2.101)

and

Et = ýTTE (EyVo + Ezo)k ezkx-iktzz, (2.102)

Using (2.91) and (2.92) to determine the magnetic fields and imposing the boundary

conditions at z = 0 the reflection coefficient is

(2.103)
1 - pT E

RTE _ Ot
1 +pTE



FINITE DIFFERENCE TIME DOMAIN METHOD

The reflection characteristics can be found in the term

tE  I tz .i

Pot kzce (2.104)

From the PML dispersion relations for each PML medium (2.104) becomes

TE a m ae e (a k 2 k 2p E  z xt z t tPot aal am (ceaxk2  - k 2
tz z tx tx ( x x XI

(2.105)

For the interface to be reflectionless at all angles, the k dependence must be removed.

This is possible if

tctt64kt = aeOaz k, (2.106)

which is true if ct = E , Pt = p and ca'ct a = axa x' the angle dependence is removed

leaving

TE  z z tz
Pot - oCm

O z O tz
(2.107)

Finally if p TE = 1, the interface will be reflectionless which is satisfied by a'rn must

equal aeaz . In terms of the media parameters, to match (i.e. reflectionless at all

angles) the PML medium in Region 0 with (e, , o' ,, or, o, or') with the PML media

in Region t, Region t's parameters must be

Et = E,

Et = E,

(2.108)

(2.109)

(2.110)

(2.111)

(2.112)

o1e = o,e

m = om

o-tz
SIC _

CHAPTER 2.
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and

O"m = .e

65

(2.113)

The last condition (2.113) is imposed on Region 0. Thus, the electric and magnetic

conductivities in Region 0 can not be arbitrary. However, a lossless medium with 6,

p, does satisfy (2.113), and the corresponding matching parameters in Region t are

Et = E,

IPt = 1p,

0 = 0,
(tz

(2.114)

(2.115)

(2.116)

(2.117)

and
m t I•.eTtz - _tz" (2.118)

For infinite half-spaces, the selection of a'x is arbitrary. In FDTD simulations, how-

ever, the selection of a't is not arbitrary and will be discussed in a future section.

2.10.2 PML Propagation Characteristics

Again consider the transmission from a lossless dielectric in Region 0 into its matched

PML in Region t. From the dispersion relation in Region t,

(2.119)

and the incident k vector x-component, kix, the dispersion relation in Region t, sim-

plifies to
k 2k2 + tz = k2z 2 (2.120)

C4,4 e

k 2 k2tx tz k2,
e m et mOxOx artzOz
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Therefore, the z component of the k vectors are related by ktz = a-zkiz or

ktz = kiz + i •tzkiz. (2.121)
WE

When the wave enters the PML, it propagates in the same direction as the incident

wave and is attenuated in the direction normal to the interface. In terms of the

incident angle, (2.121) becomes

ktz = kiz + iOez t cos 0. (2.122)

The imaginary part of the ktz is a function of the incident angle, providing the most

damping in the normal direction and no damping in the tangential direction. If

the incident wave is evanescent ( kiz purely imaginary), then the PML provides no

additional damping.

2.10.3 PML and FDTD Simulations

So far, only infinite half-spaces have been considered. An infinite half-space is not ap-

propriate for FDTD simulations since the computational domain must be truncated

at some point. Berenger proposed truncating the PML with a Perfect Electric Con-

ductor (PEC) i.e. setting all tangential fields to zero at the outer boundary. Thus

a wave will travel through the PML, reflect off of the PEC, travel through the PML

again, and re-enter the simulation volume. However, the wave will be attenuated

by the loss mechanism (2.121) in the PML. The user will select a PML thickness, a

PML conductivity, and a conductivity profile to achieve the desired low reflection co-

efficient. Even though analytic analysis shows that a constant conductivity profile is

sufficient for a zero reflection at the boundary, numerical reflections will occur at any

interface that contains conductivity discontinuities[60]. To reduce these numerical re-

flections, Berenger proposed grading the conductivity from a low value of zero at the

boundary to some maximum value at the PEC wall. The most common conductivity
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profile is given by

O'(p) = o"pmax( ) (2.123)

where p is the normal coordinate variable, d is the thickness of the PML, and n is

the conductivity grading factor so that n = 0 is a constant profile, n = 1 is a linear

profile, n = 2 is a parabolic profile, etc. If the PML starts at p = 0 and ends at p = d

then the expression for the reflection coefficient is given by

d

-2 f ao(p), cosOdp
R(0) = e o , (2.124)

and after the integration

R (0)=de n+ cos9 (2.125)

So for practical FDTD applications the reflection coefficient is still a function of the

incident angle; however, the low grazing angle waves will be absorbed by the PML

that terminates the simulation volume at the edges perpendicular to the normal PML

layer. Also, it appears that the reflection coefficient can be made arbitrarily small with

a large enough conductivity, but as mentioned, numerical reflections occur with large

changes in conductivity between FDTD cells and prevents arbitrarily small reflection

coefficients.

Berenger proposed that one way to select the conductivity is to set the reflection

coefficient at normal incidence to some desired value. Setting 0 = 0 and solving for

eax, the conductivity is determined by

e (n + 1) ln R (0)
pmax d (2.126)pmax 2dy

2.10.4 PML and Multilayer Dielectrics

When applying Berenger's PML to multilayer dielectrics, as in the case of microstrip

and dielectric waveguides, special care must be taken when determining the conduc-
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Figure 2-9: Configuration for multi-dielectric layer PML.

tivities for each layer. For a single layer (i.e. no layer) the conductivity is calculated

based on the desired reflection coefficient at normal incidence.

Now consider two lossless dielectrics with permittivities, eq and E2, and permeabil-

ity, Pto, in Region 0 with their interface at x = 0. Layer 1 is located at x < 0 and layer

2 is located at x > 0. The layers are terminated with a PML in Region t with two

conductivities, at, and at2. See Figure 2-9. Given the same PML thickness, profile,

and desired reflection coefficient, if computed independently, the conductivities are

(n + 1) In R (0)
ltz max - 2d(2.127)

and

e _ (n + 1) In R (0)a2tz max - (2.128)
2dr/2
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In this way, the conductivity ratio between the two PML terminating layers is

2tz max 26

O1tz max 61

However, if the ratio of the reflection coefficients is examined; given by

Rot1 (0)
R e()

Rot2()

a
e  

cos 01 e cos 02
-2d Ima m~2T

2.129)

(2.130)

Substitution of (2.129) into (2.130) leads to

Rotd (0) n 2d (cos 01 -COS 02)

Rot2 (6)
(2.131)

The reflection coefficients will be equal only when 01 = 02 which is true only at grazing

incidence or when there is no boundary at x = 0. Both cases are uninteresting. On the

other hand, if phase matching in Region 0 is applied x = 0 i.e. ki cos 01 = k2 cos 02,

substitution leads to

Rot 1 (0)

ROt2 (0)

2d- max E' )cos01V'T
(2.132)

In order for the reflection coefficients along z = 0 to be continuous, i.e.

Rot (0)= 1
ROt2 (0)

(2.133)

the conductivities between adjacent dielectric layers must satisfy

0 a -62 mae
R2max = 1 max.

61
(2.134)

Further insight into this condition can be seen from examining the reflection coeffi-

cients in the direction tangential to the dielectric-PML interface, at the layer 1/layer 2

interface at x = 0. The reflection coefficient at the dielectric interface, R1TE(z > 0),
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Figure 2-10: Configuration for multi-dielectric reflection coefficient analysis.

should equal the reflection coefficient at the matching PML layer interface, RTE(z <

0), for the PML to truly simulate open space. From the original analysis of the PML,

the reflection coefficient between any two PML media is

R = E (2.135)
1 +pT1E

where

TE
12 =

n ,. ,e m,• (,e ,.•,2
lx e2xlz lz 2Oz2k2 - k2)

-k. )
oem (a ,4e xe e kk - k2)

2x 1 •2z2z (Celz lzkl-kz
(2.136)

After the setting the material parameters and PML matching conditions between

Regions 0 and t , (2.136) becomes

TEk2 - k2p T2E (z > 0) = z21 _ z• (2.137)

r

CHAPTER 2.
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and
,e ( m m 2 k 2

pTE (Z < 0) = tz 2z 2tz• k2- kzt (2.138)
12 tzetmz (aetz zk 2 - k 2t

Phase matching at the x = 0 interface says k1z = k2z = kz and kitz = k2tz = ktz. The

PML matching conditions along with the PML dispersion relation imply kit = kl,

k2t = k2, O~ltz = Cm az, Cm ktz = ltzkz and k2tz = 2tzkZ. Substitution of

these relationships into (2.138) reveal

k2 -_ cetzeezk2TE (Z < 0) 2tz 2tz(2.139)
p12 (z < - (2.139)l -z

Equations (2.138) and (2.138) are equivalent if an additional PML condition is met:

tz = a (2.140)

This additional condition is equivalent to (2.64). Ensuring that the reflection coef-

ficients be continuous at the intersection of the four different media leads directly

to
e 2 .a e (2.141)
2 max 1 max

Enforcing this ratio is equivalent to saying the loss tangents within each PML layer

must be equal. Bahr et al in [50] arrived at the same conclusion by demanding that

there be equal decay in the normal direction in each of the layers with phase matching

in mind.

Failure to impose this condition can lead to instabilities at the PML/PML inter-

face due to the generation of other waves necessary to match the boundary conditions.

In the next chapter, the generation of mode templates for dielectric waveguides is dis-

cussed. When generating these templates many time steps are required to capture

the necessary frequency resolution. When a large permittivity contrast between ex-

ists between two layers in a multi-layer dielectric structure, the independent PML
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PML

A

Figure 2-11: Test setup for PML
point A.

instability demonstration. Field measured at

matching condition (2.129) produces instabilities.

For example, the fundamental mode spatial distribution is calculated from a 2D

FDTD simulation of a dielectric rib built with Gallium Arsenide with 2 = 11.860

on top of a substrate E3 = 10.OEo surrounded with free space cladding, 61 = Co. See

Figure 2-11. The grid size is A = .002 m and the time step is set to the 3D Courant

limit. The simulation volume is 57 x 41.

Figure 2-12 represents Ez versus time step at Point A in Figure 2-11 within the

FDTD simulation volume with two different PML matching conditions. Both sim-

ulations use an eight layer PML with n = 2 and R(0) = 10- 5 to terminate the

computational domain. The conductivities of each layer were calculated using the

dependent matching conditions of equation 2.134 and independent matching condi-

tions of equation 2.129. Table 2.1 provides the conductivity values. The two graphs

clearly show the effects of using the independent matching condition. The indepen-

dent construction of the PML conductivities produces solutions that grow and take

over the simulation after 3000 time steps.
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Figure 2-12: Field Ez measurements at PML/PML interface (Point A in Figure 2-11)
with dependent(top) and independent(lower) PML matching conditions.
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Layer Permittivity 0ea x _-lm- 1

Dependent Independent
Cladding 1.0eo 11.45 11.45

Film 11.8co 135.11 39.33
Substrate 10.00 114.50 36.21

Table 2.1: Maximum conductivities to match PML to rib structure.

The simulations were constructed to excite the fundamental mode of the rib waveg-

uide by fixing the propagation constant at 600 m - 1 and exciting the problem with a

wide (0 = 256) Gaussian pulse modulated at the corresponding mode temporal fre-

quency of fo = 8.1 GHz. Figure 2-13 represents the temporal frequency content inside

the rib waveguide due to the modulated Gaussian pulse with with a fixed propagation

constant with the dependent(top) and independent(lower) PML matching conditions.

The lower spectrum shows the effects of the independent PML matching conditions.

The singularities at the PML/PML interfaces act as sources and place energy in

frequencies other than the fundamental mode. These sources make it difficult to de-

termine the fundamental mode spatial arrangement as shown in Figure 2-14. The

lower plot has unwanted spikes in the mode's spatial distribution at the PML/PML

interfaces as seen on the left and right sides of the computational domain.

2.10.5 PML Coefficients in FDTD

The PML difference equations use an explicit exponential form as proposed by Ber-

enger. For example, the Exy equation used in the PML region of the computational

domain is given by

En 1 (i + 1,j,k) = Cye(i + , j, k)En,(i + 1,j, k) (2.142)

2 1  2 2 1 12
- Ce (i+lj,k) H 2(i+½,j+l, k)-lH- (i+-,j- , k)
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Figure 2-13: Fourier transform of field inside rib using dependent (top) and indepen-
dent (bottom) PML conductivity matching condition.
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Figure 2-14: Fundamental mode spatial field distribution using dependent (top) and
independent (bottom) PML conductivity matching condition.
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where the two constants, Cye and C2ye are given by

1 1

Cre(i + 3, j, k) = e- ( +( 2 d k ) 2t / e( +-( 3,k )  (2.143)

and

C(i + ,j,k) = - (i k)) (2.144)2 eo (i + 1, j, k)Zy

The remainder of the PML FDTD difference equations along with a very detailed

description of the PML coefficients is found in Appendix B

2.11 Considerations and Overview of FDTD Algo-

rithm

The FDTD method is a very versatile method for solving electromagnetic problems.

The discretization of Maxwell's equations has a built in error that is proportional

to the square of the grid size (A 2). In addition, the difference equations introduce

non-physical numerical dispersion. The dispersion error can be kept to less than

one percent if the grid size is less than one tenth of a wavelength. When there is

more than one material in the simulation volume, it is the most dense material that

determines the grid size. This means that the less dense material is essentially over

sampled. If two grid sizes are used, then numerical reflections may result [14]. Also,

the FDTD method must model curved surfaces with a staircase. When the other

errors are kept small, the grid size is typically sufficiently fine that the staircase is a

good approximation to a curved surface. Finally, there will always be some reflections

from the boundaries of the computational domain no matter which ABC is used and

must be considered when constructing the problem.

The basic steps to the FDTD algorithm are listed below.

1. Build geometry.
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2. Initialize variables and calculate coefficients.

3. Calculate electric fields.

4. Impose source condition.

5. Advance time by half step.

6. Calculate magnetic fields.

7. Advance time by half step.

8. Save desired values.

9. Repeat time marching until steady state is achieved.

10. Perform post-processing on saved data.

2.12 Summary

In this chapter the Finite Difference Time Domain method for solving Maxwell's equa-

tions has been presented. The method is simply a finite difference approximation to

the partial derivatives found in Maxwell's curl equations. Electromagnetic wave in-

teractions with fairly complicated structures can be modeled and multiple frequencies

can be tested by controlling the pulse width of the excitation.

Difference equations suitable for coding were presented for free space, lossy dielec-

tric media, Mur absorbing boundaries, and the Perfectly Matched Layer.

The artificial PML conductivities used to absorb the outgoing waves in a multi-

ple dielectric layer simulation must not be assigned independently from Berenger's

proposed method of normal incidence; instead, once one of the layer's conductivities

is calculated the others must be constructed so that the loss tangents in each layer

are equal. With this done, there will be no reflection coefficient singularities in both

the normal and tangential directions and the PML will simulate open space to the

maximum extent possible under the discretization scheme.



Chapter 3

FDTD Analysis of Dielectric Rib

Waveguide Discontinuities

3.1 Introduction

Dielectric waveguides are commonly used as interconnects in millimeter-wave and

sub-millimeter wave integrated circuit technologies [75]-[100]. These interconnects

contain discontinuities such as bends that can introduce high loss through the waveg-

uide. Since the propagating modes of this type of structure are characterized by very

complex field distributions, with no exact analytic solutions, a numerical approach is

appropriate to investigate these structures. In this chapter, a full three dimensional

FDTD implementation is used to analyze the effects of waveguide discontinuities on

the fundamental mode's propagation through the waveguide.

When using FDTD to study any waveguide, depending on the excitation used, it

may take time for the desired mode (e.g. the fundamental) to develop as the evanes-

cent modes decay away and radiating modes leave the simulation volume. In order to

launch the fundamental mode more efficiently, in this work the mode's spatial distri-

bution is determined up front. A two dimensional FDTD method is used to construct

a mode template [131, 133]. The three dimensional FDTD code is collapsed in the
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direction of propagation by replacing the spatial difference equation with an equa-

tion based an assumed propagation constant and the corresponding phase difference

between adjacent spatial grid points. A two dimensional simulation of the waveguide

cross section produces the corresponding temporal frequencies of the propagating

modes. The lowest frequency is the fundamental mode and the spatial distribution is

found by performing a Fourier transform at each space point on the two dimensional

grid at the fundamental mode frequency. With this source condition, the compu-

tational domain can be reduced from the commonly used spatial Gaussian source

condition by allowing shorter distances between excitation and the discontinuity.

The FDTD method has been used to study metallic waveguides and metallic pla-

nar structures [101]-[108]. Unlike metallic waveguides the dielectric rib waveguide

is an open structure and analyzing them with the Finite Difference Time Domain

method requires absorbing boundary conditions that simulate open space. The per-

fectly matched layer (PML) described and analyzed in Chapter 2 is used to terminate

the simulation volume unless otherwise stated.

With mode template excitations and PML absorbing boundary conditions, the

dielectric rib waveguide is studied. Different waveguide bends are examined along

with the effects of the rib geometry.

3.2 Implementation of Dielectric Rib Waveguide

in FDTD

Various dielectric rib waveguides are constructed and analyzed in this chapter. The

input parameters are the rib width (rw), rib height (rh), film height (fh) and the

center reference point (xc, zc) as shown in Figure 3-1. The simulation model of a

waveguide is constructed by carefully assigning a permittivity at each electric field

location as described in Section 2.5. The initial propagation is in the +y direction.

The Berenger perfectly matched layer described in Section 2.10 is used to termi-
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Figure 3-1: Schematic of dielectric rib waveguide cross section. Parameters are rw :
rib width, rh : rib height, fh : film height, and (xc, zc) : center reference point.

nate the FDTD computational domain for all three dimensional simulations unless

otherwise stated. The PML consists of 8 discretized layers using a quadratic con-

ductivity profile (i.e. n = 2) with the maximum conductivity derived by setting

R(O) = 10- 5 with free space permittivity, co. The conductivities for the other dielec-

tric layers are calculated with equation (2.134).

To analyze waveguide discontinuities, the S parameters are calculated from the

FDTD simulation measurements of the time-domain waveforms. Multiple frequen-

cies are analyzed within a single FDTD simulation. The methods are described in

Section 3.7.1.

3.3 Approximate Analytic Solution

The study of dielectric waveguide modes and their propagation characteristics have

been studied since the late sixties, except for the dielectric slab and circular dielec-

tric waveguides, exact analytical solutions do not exist and numerical techniques are
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necessary when complex structures are used.

E5
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Figure 3-2: Rectangular dielectric waveguide used with Marcatili method.

In 1969, Marcatili introduced an approximate analytical solution for the guided

modes of a rectangular dielectric waveguide that is still used today. Figure 3-2

represents the cross-section of a rectangular dielectric waveguide with permittivity,

Ej, surrounded by four different dielectric media, E2,3,4,5 with dispersion relations:

k2 = w2 pc1, 1 = 1 - 5. As summarized in [142], Marcatili derived an approximate so-

lution by applying the boundary conditions to the edges of the guide only. He assumed

sinusoidal variations along the x and z directions inside the guide and exponential

decay outside of the guide.

For the Eq, modes the governing equations are

kxa = sr - tan-1 (k 3) - tan-l(kx, 5), (3.1)

and

kzb = qr - tan 1  E2 tan ( 4 z 4 ) , (3.2)E1 E1
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where 1
2 2

(2,4 = r - k , (3.4)( )2 (3.4)X2,4

and

Xi = 7 (k - k) 2 1= 2 - 5. (3.5)

Phase matching at z = 0 and z = b implies kx = kl = k2 kx4 and similarly at

x = 0 and x = a implies kz = kzl = kza = kz5. Propagation is in the y direction with

a propagation constant given by

3 = kg = (k2 - k 2 - k 2)2  (3.6)

For the dielectric waveguide surrounded by the same dielectric such as free space,

62 = 3 = 64 = 65 = 6O, the equations simplify to

kxa = sir - 2 tan-l(kmx), (3.7)

and

kzb = qr - 2 tan - 1  okz , (3.8)

with

63,5 = ( = - k , (3.9)

(2,4 = (= - k , 2 (3.10)

and

X2,3,4,5 = x = (k - k . (3.11)
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At a given frequency, w, X can be found with equations (3.7) and (3.11). Substitution

of X into (3.9) and (3.10) give ( and (. Graphical techniques or Newton's method

can be used to find the discrete set of k. and kz using (3.7) and (3.8) that correspond

to a given mode number and w. However, the Marcatili Method is only good when

most of the mode's energy is confined to the core dielectric region and is not reliable

near cutoff [76].

Dispersion curves for dielectric waveguides are often displayed in terms of normal-

ized variables. The normalized propagation constant is defined by

A= (A (3.12)61

and the normalized waveguide height is

2b (E 2U o° -= 1) (3.13)

where A = and Ao = 2"

In order to validate the upcoming FDTD mode construction procedure, a square

dielectric waveguide is examined. The waveguide has a permittivity of 2.8e0 sur-

rounded by a cladding of free space. The structure measures 1 cm on a side. Using

equations (3.7)-(3.11), the dispersion curves were constructed for the E1 ,I, E 1,I, and

EZ,2, modes. Figure 3-3 represents the normalized curves using (3.12) and (3.13). The

results of the fundamental mode will be used to compare with the FDTD method.

3.4 Excitation

The excitation consists of a source plane of distributed , directed current sources at

the interface between the simulation volume and the PML that forms the front of the

computational domain. This excitation technique has advantages over the an electric

field boundary condition; a major one being that the PML can absorb waves reflected
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Figure 3-3: Normalized dispersion curves of first three modes,
(triangle) and E',2 (star), as derived by the Marcatili method.
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from the waveguide discontinuities [50]. When Mur boundary conditions are used one

of the faces has a dual role: first as an excitation plane and then as an absorbing

boundary. After the excitation is completely launched, the source is essentially turned

off and the absorbing boundary condition is turned on [106]. Using this method, a

larger computational domain is necessary so that the ABC can be turned on after

the excitation but before any reflections from the discontinuity reach the source edge.

The magnitude of the individual current sources are derived up front with a template

calculation described in Section 3.5. The temporal excitation is that of a modulated

Gaussian as described in Section 2.8.

3.4. EXCITATION
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Normalized Height
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3.5 Improvement to the FDTD Method with a

Better Excitation

Although the recent strides in computer technology have placed more memory and

computing power in the hands of engineers, reducing computational domain require-

ments is always desirable. The reduction in the domain leads to faster simulations

and the ability to simulate larger problems. In this section the the construction of a

mode template is described and tested to show how the computational domain can

be reduced.

3.5.1 Template Construction

When performing discontinuity analysis, it is desirable to launch a known mode. How-

ever, complicated structures like the rib waveguide have modes that have complicated

spatial distributions. These modes can not be expressed analytically; therefore, a suf-

ficient length of section of computational domain after the source plane and before

the discontinuity is needed to allow the fundamental mode to set up.

A numerical approach has been used with closed and partially closed structures to

find what is called a mode template [131, 133]. The template is the spatial arrangement

of the field in the plane perpendicular to the direction of propagation. In this section,

the numerical technique of templates is extended to open structures.

To construct a mode template, the three dimensional FDTD algorithm is con-

verted to a two dimensional algorithm where the propagating direction is replaced

by equations that incorporate the assumed known phase difference between planes

perpendicular to the propagating direction.

The first step is to assume a propagation constant, ky. Then the y dependence in

the difference equations is modified by

F(i, j, k) - F(i, j - 1, k) -÷ F(i, j, k)(1 - e- ikYAy) (3.14)
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and

F(i,j + 1, k) - F(i, j, k) -- F(i, j, k)(eikyAy - 1). (3.15)

With the new algorithm and a propagation constant, a two dimensional simulation is

run and the time domain waveform is saved. The Fourier transform is taken of the

steady state portion of signal. The first half of the signal is discarded. The peaks in

the Fourier transform correspond the mode frequencies associated with the selected

propagation constant.

The rationale behind this template construction can be seen in the following anal-

ysis. We assume that the steady state of a component of the electric field can be

expressed as the sum of propagating modes:

Ea(x, y, z, t) = 0 .n(x, z)eikyy -ezwnt, a = x, y, Z. (3.16)
n

The Fourier transform of the electric field is

/0
Ea(x, y, z,w) = E(zx,y,z,t)ezwtdt, a = x,y,z. (3.17)

Substitution of (3.16) into (3.17) yields

E.(xy, z, W) = J n(XZ)ezkYye-iW•tezWtdt
n-oo /OO

= O n(, z)eikyY J e_-zwnteiwtdt
n

= (x, z)e•ZkYY2w6(w - Wn)
n

a = x, y, z. (3.18)

The delta functions in (3.18) implies that peaks in the spectrum will correspond to

the mode frequencies.

Once the mode frequency is determined, the Fourier transform of each (x, z) lo-

cation is performed to form the template. Then the template is modulated near wn
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Figure 3-4: Spectrum of field in dielectric waveguide using two dimensional FDTD
code with ky = 600 m - 1

to excite the simulation.

To validate this procedure the same structure of Section 3.3 is used. The FDTD

grid spacing is set to 0.01 cm and the time step set to the Courant limit for three

dimensional space (2.45). The computational domain measured 37 x 41, bounded

with a first order Mur absorbing boundary condition. The spatial excitation was a

two dimensional Gaussian centered inside the waveguide. The temporal excitation

was a narrow Gaussian pulse with 0 = 16 as described in Section 2.8. The excitation

entered the simulation volume through current sources at the desired polarization in

this case Ez. 8192 time steps were performed and the last 4096 were used for the

Fourier transform.

The spectrum of the response to the excitation is shown in Figure 3-4. The first

peak represents the temporal frequency of the fundamental mode that corresponds

to the pre-determined propagation constant . The Fourier transform is taken at the

mode frequency to produce the mode template in Figure 3-5.
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Figure 3-5: Mode template for E"z, of square dielectric waveguide using two dimen-
sional FDTD code.

The fundamental mode frequencies at different propagation constants were nu-

merically derived with the FDTD 2D code and plotted against the analytic curve in

Figure 3-6. The results show good agreement at the frequency range of interest. The

deviation at the higher frequencies is due to the numerical dispersion error introduced

by the discretization of Maxwell's equations and can be removed with a smaller grid

size.

3.5.2 Verification of Computational Domain Reduction

Even though the numerical templates lead to accurate fundamental mode dispersion

curves, there is no guarantee that the computational domain can be reduced. In order

to show this reduction several FDTD simulations were conducted on a waveguide with

permittivity c = 2.8co, on top of a substrate with permittivity e = 2.2Eo, surrounded

above with a cladding of free space. The substrate is mounted on a ground plane.
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Analytic(d) versus Numerical(t)
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Figure 3-6: Validation of mode dispersion curve. Diamonds represent the Marcatili
calculation and the triangles represent the numerically derived results.

The basic FDTD simulation volume is 57 x 62 x 41 surrounded by an 8 layer PML.

The grid spacing is uniform with A = .001 m and the time step is set at the 3D

Courant limit. A modulated Gaussian pulse with f = 20 GHz and 3 = 128 is used

with either a numerical template or a 2D Gaussian pulse centered in the waveguide

with widths equal to the width and height of the waveguide. The center point is set

to (18,15) with waveguide dimensions rh = 10A, rw = 10A, and fh = 0. The center

of the perpendicular section of the waveguide is at j = 45 with an input reference

plane at j = 22 and an output reference plane at i = 41. The computational domain

is varied in y dimension while keeping the distances between the reference planes and

the discontinuity constant. Two larger domains of 57 x 82 x 41 and 57 x 92 x 41 were

tested; Figure 3-7 represents a top view of the configuration.

Figure 3-8 and Figure 3-9 represent S11 and S21 calculated at each of the three

computational domain sizes with the Gaussian excitation. A detailed description of

the S parameters, S11 and S21, can be found in Section 3.7.1. Figure 3-10 and Figure 3-
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11 represent S 11 and S21 calculated at the two smallest computational domain sizes

using a numerical mode template to excite the problem. The extra section of twenty

grid spaces was definitely not needed when using the mode template by the fact that

the results are nearly identical. On the other hand, the Gaussian results are very

different between the small and middle sized domains. Since the middle and large

domains are nearly identical, the mode did settle to an acceptable level with the

addition of the twenty grid spaces in the y dimension. Thus, using a mode template

in this simulation reduced the computational domain by over 20%. In what would

normally take two hours, the computational domain reduction means a CPU savings

of over 20 minutes. If only one simulation is necessary, since finding the template

takes approximately five minutes, the savings is not really that significant; however,

when many simulations are necessary the savings can be substantial. (All simulations

were run on a DEC3000 Server Model 800 with a 200 MHz 21064 Alpha CPU.)

3.6 Absorbing Boundary Condition Demonstration

Before the PML's introduction and its subsequent application to multi-layered di-

electrics, a first order Mur ABC was usually used to terminate the FDTD computa-

tional domain when multiple dielectric media are adjacent to the domain edges. The

second order Mur cannot be used because of discontinuities at dielectric/dielectric

interfaces. Figure 3-12 shows the time domain response at the 503rd time step of a

simulation to analyze the effects of the 45' bend in a dielectric rib waveguide with

rw = 10mm, rh = 6 mm, and fh = 4 mm. The cladding is free space and the per-

mittivities of the substrate and film are 2.2co and 2.8Eo respectively. In open space

the excitation should have exited the simulation volume before the 300th time step.

Figure 3-12 clearly shows the benefit of using the PML over the first order Mur ABC.
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I PML

Figure 3-7: Configuration for numerical template analysis.
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Figure 3-8: S11 as measured at the Input Reference Plane for
excitation at Source Planes A (diamonds), B (triangles), and
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Figure 3-9: S2 1 as measured at the Output Reference Plane for an analytical Gaussian
excitation at Source Planes A (diamonds), B (triangles), and C (stars).
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Figure 3-10: S11 as measured at the Input Reference Plane for an numeric template
excitation at Source Planes A (diamonds), and B (triangles).
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Figure 3-11: S21 as measured at the Output Reference Plane for an numeric template
excitation at Source Planes A (diamonds), and B (triangles).

· _ _ _ r _ ~ · ~ _ _ · · _ · _ _

FlpPP~ccact~m

-Y



3.7. MEASUREMENTS

Figure 3-12: Time domain snap shots of FDTD simulation with 1st order Mur (left)
and PML (right).

3.7 Measurements

Since the FDTD is a time domain simulation tool, the easiest measurements involve

the placement of software probes that store the desired field quantities at each time

step. When frequency measurements are needed, a sufficient number of time steps

are necessary to achieve the desired frequency resolution. The frequency domain

information is obtained with a Fast Fourier Transform (FFT) of the time domain

data.

3.7.1 Power measurements

To analyze waveguide discontinuities, the S parameters are found. From the FDTD

measurements of the time-domain waveforms, the S parameters may be calculated.

The first step is to insert two reference planes in the simulation volume: one before

the discontinuity and the other after the discontinuity. In those planes, the field

components are saved at each time step. Next, the Fourier transform of each field
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component at each location is taken to find the complex time harmonic field quan-

tities. Then the power is calculated at by integrating the normal component of the

Poynting vector over the surface of the reference plane and taking one half of the real

part [137] such that

Power = 2Re{ x H*dS , (3.19)

where S = Ex H* or

Sx = EH* - E H,, (3.20)

s, = Ez H* - Ex HI, (3.21)

and

Sz = ExH, - EHx. (3.22)

For example, in the dielectric rib waveguide simulation, the propagation is in the y

direction so the power transmitted through the input reference plane is given by

1 r
Powerinput plane = AxAzRe E E EzH - ExHf . (3.23)

3.7.2 S Parameters

The scattering parameters can be derived from the power calculations. However,

first the incident and reflected waves must be separated. This is done by running two

simulations: one with a straight section of waveguide with no discontinuity (producing

a pure incident wave) and the other with the discontinuity (producing an incident

plus a reflected wave). The waves can be separated by subtracting the incident wave

calculated in the first simulation from the incident plus reflected waves calculated in

the second simulation. The S parameters can be determined from

S11 = 10 log (3.24)
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Figure 3-13: Configuration of bends tested, from left to right, 90' bend, 900 bend
with bevel, and 450 bend.

and

S21 = 10 log (3.25)

where Pi, Pr, and Pt represent the incident, reflected and transmitted power.

3.8 Discontinuity Analysis

In this section the effects of various types of bends in a dielectric rib waveguide are

investigated. The different bends are shown in Figure 3-13. The FDTD simulation

uses a uniform grid size set to 1 mm, with the time step set to the 3D Courant limit.

The simulation's duration is 1024 time steps and the subsequent FFTs use the data

with 1 x padding.

The waveguide is constructed with a film layer and rib of permittivity C = 2.8o0,

on top of a substrate with permittivity E = 2 .2eo, surrounded above with a cladding of

free space. The substrate is mounted on a ground plane. The basic FDTD simulation

volume is 57 x 62 x 41 surrounded by an 8 layer PML. modulated Gaussian pulse

with f = 18.8 GHz and f = 128 is used with a numerical template (Figure 3-14).

The center point is set to (18,20) with waveguide dimensions rh = 6A, rw = 10A,

and fh = 4A. The center of the perpendicular section of waveguide is at j = 45 with

an input reference plane at j = 22 and an output reference plane at i = 41. The

loss through these three types of bends can be seen by examining S21 in Figure 3-15.
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Figure 3-14: Mode template for Ezz of dielectric rib waveguide using two dimensional
FDTD code.
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Figure 3-15: S21 rib waveguide through three different types of turns: 90' bend
(diamond), 900 bend with bevel (triangle), 450 bend (star).

None of the turns do a very good job guiding the energy around the turn. The 450

bend offers the best performance with 10 dB of loss. One of the advantages of using

the FDTD method in this type of analysis is that snap shots can be taken and the

progress of the wave can be visually tracked. Figures 3-16 and 3-17 show how the

wave travels through the guide. We can see that the 90' bend loses most of its energy

in radiated out the back of the turn while the 45' bend does guide energy around the

turn although a lot is still radiated out through the back.

3.9 Analysis of Rib Geometry on Turn Loss

The effects of the film height to rib height ratio (fh and rf in Figure 3-1) are inves-

tigated in this section. Figures 3-18 through 3-22 show the mode templates for the

five guides tested. Each guide is excited with modulated Gaussian pulse. The guides

were 10 mm wide and a 450 bend was used as the discontinuity tested. The results

I · I

111101 11"

E
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Figure 3-16: Time domain snap shots of propagation through a 90' bend at 173, 233,
293, and 323 time steps. (Clockwise starting at upper left.)
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Figure 3-17: Time domain snap shots of propagation through a 450 bend at 173, 233,
293, and 323 time steps. (Clockwise starting at upper left.)
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Figure 3-18: Mode template for Elf, of dielectric rib waveguide with film height:
6 mm, rib height: 4 mm and rib width: 10 mm.

Figure 3-19: Mode template for Efz1 of dielectric rib waveguide with film height:
5 mm, rib height: 5 mm and rib width: 10 mm.

show that the smaller film height to rib height ratio the better the bend will guide

the energy. Over 10 dB of improvement can be seen when the ratio is decreased from

1.5 to 0. In other words, a rectangular waveguide on top of a substrate has better

performance than a rib guide. And, as the film thickness is reduced compared to

the film height the better the performance. Better performance is attributed to the

open nature of the film layer. As the rib height decreases relative to the film height,

the guide approaches a dielectric slab waveguide that would offer no guidance in the

transverse direction.

102
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Figure 3-20: Mode template for E", of dielectric rib waveguide with film height:
4 mm, rib height: 6 mm and rib width: 10 mm.

Figure 3-21: Mode template for Ez,
3 mm, rib height: 7 mm and rib width:

of dielectric rib waveguide with film height:

Figure 3-22: Mode template for E"z, of dielectric rib waveguide with film height:
0 mm, rib height: 10 mm and rib width: 10 mm.
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Figure 3-23: S21 through 450 bend of dielectric rib waveguide. Starting from top
curve to bottom curve the film height to rib height ratios are 0.0, 0.43, 0.67, 1.0, and
1.5.

3.10 Discussion

The Finite Difference Time Domain numerical technique is an excellent tool to study

the dielectric rib waveguide. The openness of the structure can be simulated with

the Berenger Perfectly Matched Layer if each dielectric layer is matched considering

all the layers within the simulation volume. The computation domain can be reduce

if the fundamental mode's spatial distribution is calculated first and used to excite

the mode. The better excitation means that shorter distances between the excitation

plane and the discontinuity are needed for the mode to settle. A twenty percent

reduction was shown in Section 3.5.2. This reduction implies bigger problems can be

simulated within the same time as those simulations using other excitation techniques,

or the same simulations can be run in shorter times.

Although the dielectric rib waveguide provides very low loss for high frequency

signals compared to microstrip or coplanar structures, the rib waveguide bend does

introduce a significant amount of loss. As the abruptness on the turn is lessened, the
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rib guides more energy around turn; however, gradual turns require more space on

an integrated circuit. With the improvements to the FDTD method presented in this

chapter, rib bend structures can be studied to improve their loss characteristics.
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Chapter 4

Impedance Boundary Condition

for Thin Finite Conducting Sheets

in FDTD

4.1 Introduction

In FDTD simulations involving highly conductive materials, such as the metal case of

a computer system, the tangential electric fields are typically set to zero on the surface

of the material. This Perfect Electric Conductor (PEC) assumption ignores any loss

associated with the less than infinite conductivity. The errors that result from this

approximation are considered against the large cost of discretizing the lossy material.

Since the wavelength of a highly conductive material is very small, in order to capture

the loss mechanism within the conductor the simulation volume must be divided into

a very fine grid. When the brute force method is used, computer resources are wasted

by having to finely divide the the other less dense materials (e.g. free space). In these

materials the fine grid is not necessary to capture the physics of the problem. The

computational size can be reduced with a sub-gridding scheme where the conducting

material uses much smaller grid than the rest of the computational domain [9, 10, 12].
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For very good conductors; however, the grid size is so small that even sub-gridding

is not a viable option. To overcome the resource problem, the surface of the highly

conductive material can be replaced with an Impedance Boundary Condition (IBC)

[126]-[130]. An IBC is only appropriate when the simulation volume of interest is on

one side of the conductive material. However, IBCs have the added complication that

they are usually frequency dependent and are not directly applicable to the the stan-

dard frequency independent FDTD equations. In this case the FDTD equations must

be modified to incorporate the dispersive nature of the surface [109]-[120]. Typical

frequency domain equations relating the electric fields and magnetic fields become

convolution equations is time. Convolutions have a large computational and memory

overhead, but if the convolution integral can be approximated by a sum of exponen-

tials then recursive convolution can be implemented and the memory requirements

reduced.

A synthetic conductivity has been used with normal FDTD difference equations

for lossy media to model good conductors [117]. The synthetic conductivity is derived

by comparing the numerical impedance of the difference equations and the actual im-

pedance of a good conductor at specified frequency. In this way the derived synthetic

conductivity is inserted into the FDTD equations at the boundary only; thus being a

surface boundary condition similar to an IBC. The advantage to this method is that

no new equations are needed; however, it's major disadvantage is that it is good at a

single frequency.

An Impedance Boundary Condition that incorporates the frequency dependence

was developed for thin dielectric coatings over PEC surfaces [127]. The IBC starts

with the analytically derived expression for the impedance in the frequency domain.

The expression is expanded in a Taylor series about the wave number, k, and trans-

formed to the time domain. The resulting partial differential equation is fourth order

in time and first order in space. The difference equations do model the frequency

characteristics fairly well; however, the equations are quite complicated and rely on
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many past values of the surface electric field. Furthermore, the condition is good at

normal incidence only thus limited to 1D structures. This work is extended to in-

clude non-normal incidence [129]; however, the modified IBC is only good for a single

incidence angle.

Like the IBC of [127], Tassoudji [128] starts with a frequency domain expression

for the impedance. This time for a thin sheet of a very good conductor. The frequency

domain equation is transformed to the Laplace domain and the subsequent expression

is approximated by a sum of first-order rational functions. This approximation is crit-

ical to the IBC's usefulness in FDTD simulations. The first-order rational functions

are exponentials in time and thus a recursive convolution scheme is implemented.

This FDTD IBC scheme has been applied to one-dimensional (1D) FDTD simula-

tion of a plane wave reflecting from 35 pm thick copper plate with conductivity of

a = 5.8 x 107 i-1m - 1. Compared with the analytic solution, the results have shown

excellent agreement up to 30 GHz. The benefit of this scheme is that it is good over

a wide range of frequencies.

The same approach was applied to lossy dielectric portions of a FDTD computa-

tional domain with an IBC where the frequency domain impedance expression was

approximated by a rational function using Mathematica and then expanded using

partial fraction expansion. In this way, like [128] a recursive convolution can be used.

In this chapter the IBC for thin finite conducting sheets of [128] is examined and

extended to two dimensions. In order for this IBC to be a practical FDTD tool, this

extension is very important. Also, guidelines for the number of expansion terms are

needed in order to give users an a priori estimate of the resources required to perform

a given simulation.

This chapter describes the 1D Impedance Boundary Condition for thin finite con-

ducting sheets and recursive convolution. Then the accuracy of the 1D IBC is exam-

ined and quantified. Finally, the IBC is extended to two dimensions and validated

through the measurements of the quality factor of rectangular resonant cavities at

109
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Zin

l7C i7t

1

Figure 4-1: 1D transmission line model used for IBC formulation.

different frequencies and conductivity values.

4.2 Derivation of Impedance Boundary Condition

To construct an impedance boundary condition we start with the impedance equation

that relates the tangential components of the electric and magnetic field at an interface

between two different media,

Etan(W) = Z(w) I x H!tan ()] , (4.1)

where Etan and Htan are the tangential components of the electric and magnetic fields

and ft is the normal unit vector pointing out at the interface [128]. For a conducting

media with properties e, o, and a representing the permittivity, permeability, and

conductivity respectively, if the media is a good conductor such that 1 << - then

the permittivity of the conductor can be approximated by

cc (4.2)

In one dimensional simulations, since propagation is normal to the surface, the
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surface impedance of a thin good conductor can be modeled as a transmission line

with thickness 1 and an intrinsic impedance rc = Io. From transmission line theory,

if a transmission line is terminated with impedance rt then the impedance seen at

distance 1 from the termination is

zn t - rlc tanh(ikcl)
Zin = Tc t)

Sc - 9t tanh(ikel)
(4.3)

When the termination impedance is free space i.e. rt = qr >> 1c , then input impe-

dance can be approximated by

(4.4)

In order to utilize this impedance condition, it is necessary to transform equation into

the Laplace domain. The Laplace transform of (4.4) is

Z,n (s) = [0 coth
uos .)

(4.5)

Using power series expansions for cosh and sinh [141],

cosh z = H I
k=1

4z2

(2k -1) 27r2

sinhz = z _I+ 1

k=1

(4.7)

the input impedance (4.5) can be represented by quotient of two infinite products:

Z1 + s=1
m= 1ornl

[1 p0,1 S

and

(4.6)

111

Zin O rTI coth(ikel).

(4.8)
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To use this relationship within the FDTD framework the impedance condition (4.3)

must be transformed into the time domain,

t

Etan(t) = Z(t - T) [t X Htan(T) dT. (4.9)
0

A simple expression for Etan(t) must be found that can be converted to update equa-

tions that do not explicitly use the convolution integral of (4.9). This can be accom-

plished by approximating (4.8) with P terms in the denominator and P - 1 terms

in the numerator. The quotient can be expressed as a sum of quotients using partial

fraction expansion and then transformed into the time domain. The result is a sum

of exponentials,
P

z(t) E Cem• . ,  (4.10)
m=1

where Am is the mth pole and Cm in the mth residue of (4.8), given by

2 2

Am = 2  (4.11)

and

Cm = 1 + 0s) S Z(s)Am (4.12)

4.3 Recursive Convolution

Recursive convolution is possible when one of the operands is an exponential function.

Since we have expressed the impedance of (4.9) at a sum of exponentials recursive

convolution can be used. As in [130], we begin with the following convolution integral,

y(t) = t ae-b(t-7)(T)dT, (4.13)
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and discretize it so that

y(nAt) =
n--1 (k+1)At
n-1 (kl)aeb(nAt-T)x(T)dT.kE JkAtk=O

(4.14)

Assuming that x(t) is constant over the interval (i.e. piecewise constant), the inte-

gration over 7 yields

(4.15)
n-1

y(nAt) = E x(kAt)e-b(n-)At(ebt - 1).
k=O

Remove the nth term from the summation,

y(rnAt) (4.16)a n-2(kt)e-b(n-k)At(ebat - 1)
k=O

-+- -z(kAt)e - bAt(ebAt

and rewrite the sum over n - 2 so that

n-2

x X(kAt)e -b( n - k)At(ebAt - 1)
k=O

n-2

= x(kt)
e - b(n - k - 1)At e - bAt(ebAt

k=0

(4.17)

n-2

Se-bAt E x(kAt)e-b(n-k-
1)At(ebat- 1)

k=O

Se-bty((n - 1)At).

The result is the basis for a recursive convolution equation:

y(nAt) = e-bAty((n - 1)At) (4.18)

+ ax((n - 1)At)(1 - e-bAt).

In the derivation above we assume x(t) could be approximated as x(nAt) over the

interval [nAt, (n + 1)At]. If we assume a piecewise linear approximation instead of

I w\ .... ]v \v
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piecewise constant, x(t) is approximated as

x(t) ~_ x(nAt) + -A(x((nAt + 1) At) - x(nAt))

ae - b(nAt -T) x(nAt) +
n-1 (k+1)Att

y(nAt) kAtk=0

7 - kAt
At (((nAt + 1)At) - x(nAt))] dT

(4.20)

and the recursion formula becomes

y(rAt) = e-bty((n - 1)At)

+ {x(nAt) [1 + (ebAt- 1)] (4.21)

+ x((n- 1)At) [ e-bAt(1 + )]}

4.4 Implementation of Impedance Boundary Con-

dition in FDTD

Now that we have the form of the recursive convolution integrals we can construct

FDTD IBC update equations.

4.4.1 Impedance Equations - Piecewise Constant Assump-

tion

The derivation of the previous section can be used to construct the FDTD update

equations if we let

On

y(nAt) 7 Gn,

-n)

- 1)At) -t iX Htan 7

(4.22)

(4.23)

so that

(4.19)
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and

ae - bn t  CmeAmnt. (4.24)

Substitution into (4.19) gives

Gm = Gn-leAmAt (4.25)

+ (^ an x Am (eAmAt - 1) (4.26)
A m

The tangential electric field update equation at the conductor surface is

P

E~ = G 1  (4.27)
m=1

The impedance equation relates the electric and magnetic fields at the same position

and at the same time. However, in this work, we use the tangential electric field on

the surface accompanied by the tangential magnetic field half a grid space away and

we take a time average of the electric field so that the update equation becomes

P n-1

Etan = -E£-, 1 + 2 E G 2. (4.28)
m=1

The tangential electric field on the surface at the current time step, n, is a function of

last tangential electric field and the last sum, Gm. Compared to the full convolution,

memory requirements are low since this method requires only 2P variables for the

poles and residues and P variables for each grid point on the surface containing a

tangential electric field.
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4.4.2 Impedance Equations - Piecewise Linear Assumption

When more accuracy is desired the piecewise linear assumption can be used so that

the tangential electric fields update equation is still (4.28) but now

G- = G-n eAmAt (4.29)

+ (j, X Htan ) Cm 12 t(eAmAtl) _l]
Am LAmAt

-+ ( ix <[ An Cm + eAm At)0" Am AmAt AmAt

Improved accuracy is obtained at the expense of a more complicated equation and

an additional memory location for each tangential electric field component on the

surface.

4.5 Extension of IBC to Two Dimensions

The use of the transmission line to model the impedance of a thin finite conducting

sheet is completely justified in ID simulations since propagation is fixed in the normal

direction. On the other hand, since the the angle of incidence is not restricted to

normal incidence in 2D simulations, we must verify that the model is still valid.

Consider phase matching at the surface of the conductor, located at z = 0, where

k, is the wave number on the free space side with incidence angle 0, and kI is the wave

number in the conductor with a transmission angle of 0. The incident components

of the k vector are k,, = ko sin Oi and k,, = ko cos 0, and the conductor wave number

is k, = ko1 + i-.

Since phase matching says kz = ke, we know kV = kV - k'. Solving for kz,

k z = k cos Oi2 + i- ) , (4.30)
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and using the good conductor approximation, we find

kcz -- ko 0I (1 + i).F WE (4.31)

The angle in the conductor is given by

ka 2 sin9 2-o
tan - - skin i WRe {kc,z 1 F (4.32)

Since - is very large, the propagation direction will, for all practical purposes,

be normal to the surface regardless of the incidence angle. Therefore, we expect the

transmission line model to apply even in the two dimensional case.

Figure 4-2 is a schematic of a 2D rectangular resonator with finite conducting

walls. The relationships between the tangential electric and magnetic walls and the

surface normal are shown and are used to construct IBC equations for each of the

four walls. If the computational domain is Nx x Nz, the piecewise constant equations

are

E"(O,k) = -E"- (O,k)

+ 2 E Gm- et (• •  _11 H k) (e 1
m=l 1 Am

(4.33)

for the left wall;

Ey(Nx, k) S-E" (Nx, k)
P Z 1 2 CmAmAt

+ G-leAm A t + H (Nx - , k) (eAmAt
m=l 1

(4.34)

for the right wall;

Ey(i,0) = -Eyn- 1(0, k) (4.35)
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Figure 4-2: 2D configuration used for IBC equations of a rectangular resonator.

+ 2 [G j1
m=1

eAmAt H n - (i, 2
)c (e AmA )]
Am

for the lower wall; and

- -E1-N(i, Nz)
P

+ 2E [G n - 1 eAmAt

m=1

- H 2 (i, Nz - , k) C (eAmt
m

for the upper wall.

The piece linear equations can easily be constructed by modifying equations (4.34)

through (4.37) keeping equation (4.30) in mind.

4.6 Effects of FDTD Simulation Parameters on IBC

Accuracy

In this section a numerical study of the effects of the FDTD simulation parameters

such as grid spacing, time step, and the number of expansions terms is presented.

118 CHAPTER 4.
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A B C

Figure 4-3: 1D configuration for IBC error analysis.

4.6.1 1D FDTD Simulation Configuration

Figure 4-3 is a representation of the 1D FDTD simulation set up used to analyze the

effects of FDTD parameters on the IBC accuracy. An unmodulated Gaussian pulse is

used to excite the problem at one end of the computational domain, point A, with the

boundary condition E,(k = 0) = g(n). The IBC is placed at point B and a first order

Mur boundary condition is placed at the other end of the computational domain, point

C. The propagation direction is z and a TEM wave, (Ex, H,) is launched toward the

IBC. The computational domain is 3000A long with B in the middle at z = 1500A

or more simply k = 1500. As described in Chapter 2, the time step is set to

A
CFLc

where c is the speed of light and CFL a real number greater than or equal to the

Courant limit. The normal 1D FDTD algorithm requires CFL > 1 for stability. Two

simulations are run for any given test set up. The first simulation does not include

the IBC at k = 1500. Instead the field is allowed to freely propagate to the right

and the field is measured at k = 1499 and saved at all time steps to be used as

the incident field when calculating the reflection coefficient of the IBC. The second

simulation also measures the electric field at k = 1499; however this time, the IBC is

in place at k = 1500. Here the stored field includes both the incident and reflected

waves. By using this total field and the stored incident field the reflection coefficient is

calculated up to 10 GHz. Even though the reflection coefficient would be a sufficient
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Figure 4-4: Transmissivity FDTD (dashed) vs. Analytic (solid) for a 35 pm thick
sheet of copper with o = 5.8 x 107 i - 1m-1 ; P = 20, A = .005 m, CFL = 2.0, and
0 = 50.

measure of the IBC, the transmissivity is calculated from the reflection coefficient via

t(f) = 10log[1 - R(f)12]. (4.37)

The transmissivity has the nice property that it increases with increasing frequency

in this application.

The frequency content of the incident pulse is controlled through the selection

of 3 from Chapter 2 once the time step is determined by A and CFL. Figure 4-4

is a plot of the transmissivity measured from a 35 pm thick sheet of copper with

a = 5.8 x 107 o- 1m- 1. The IBC is within 1 dB up to 3 GHz with only 20 expansion

terms. In the next section the FDTD parameters are varied and the effects studied.
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4.6.2 Transmissivity Error Measurements

The error analysis is based on a direct comparison between the FDTD transmissivity

results versus the analytical transmissivity calculation using

e = [ta() - tDTD(f)] 2  (4.38)

where tFDTD(fi) is the transmissivity calculated from the FDTD simulation and ta(fi)

is the equivalent analytical calculation at frequency, f,.

The first FDTD parameter examined is the time step. In [128], the time step was

fixed relative to the grid spacing with CFL = 2.0. However, the FDTD stability cri-

teria places the lower limit at CFL = 1.0. A larger time step can reduce the run time

and improve the frequency resolution in any post simulation processing. Typically,

FDTD codes allow the users to set the grid spacing while the code automatically sets

the time step at the Courant limit, so it's important to know if the IBC requires

a time step smaller than the Courant stability limit in order to bound the error.

Figure 4-5 shows the results from a numerical experiment with two very different

simulation configurations. The conductivities are different, 5.8 x 104 Q-lm - 1 versus

5.8 x 107 Q-lm- 1; the number of expansion terms are different, P = 3 versus P = 125;

and finally the grid spacing is different, A = .005 m versus A = .00125 m. Both sim-

ulations used a sheet thickness of 35 p m and the 13 is adjusted at each simulation to

ensure the same frequency content in the excitation. Also, all simulations were run

for 8192 times steps and the Fourier transforms were taken with padding at 16 times

the original length. The error is calculated with (4.38). The results show that in

order to keep the error low the IBC definitely has a stricter time step constraint than

the FDTD Courant stability limit. In fact, both 1D experimental configurations had

the same CFL limit. The results show that CFL > 1.82 is necessary to bound the

error. This does not mean the algorithm is unstable when CFL is set to the Courant

limit it just means the accuracy is very poor. Furthermore, it is important to note
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Figure 4-5: Error vs. CFL for a 35 um thick conductor for two different FDTD
configurations: (1) a = 5.8 x 104 Q- 1 •- 1, P = 3, A = .005m (diamond) and (2)
a = 5.8 x 107 Q- 1m- 1, P = 125, A = .00125 m (triangle).

that the CFL is even larger than the 3D FDTD Courant limit of V' for a uniform

grid.

Next the effects of grid size and number of expansion terms are studied. Figures 4-

6 through 4-11 are plots of the transmissivity error of equation (4.38) versus the

number of expansion terms at three different grid spacings, A = .005 m, A/2, and

A/4. All simulations used a conductor thickness of 35 pm and the O's were 50, 100,

and 200 respectively. Figure 4-9 are the results with copper, a = 5.8 x 107, while

Figure 4-6, Figure 4-7, and Figure 4-8 are the results for a conductivities three orders

of magnitude less than copper and Figure 4-10 and Figure 4-11 are the results for a

conductivities 2 orders of magnitude greater than copper.

The results show the general trend that smaller grid size will reduce the error.

This, of course, makes sense. The FDTD algorithm is more accurate with a smaller

grid size. Also, the impedance in the FDTD IBC is approximated by electric and



4.6. FDTD SIMULATION PARAMETERS AND IBC ACCURACY

magnetic fields that are half a grid space apart, so the closer the grid space the more

accurately the IBC scheme will approximate the actual impedance. However, the

numerical results also show that the number of expansion terms plays a big role in

the accuracy of the IBC algorithm and more terms does not necessarily mean more

accuracy. For example, in Figure 4-6 we see that the error levels out at about 20

expansion terms. Interestingly, the optimum setting for P is about 5. Although the

differences in error are less than .2 dB and .1 dB for A = .005 m and A = .00125 m

respectively, these errors would accumulate in simulations where multiple reflections

from the surface occur.

The optimum number of expansion terms is a function of conductivity and grid

spacing. As Figure 4-9 indicates, the best values for P are approximately 50, 80, and

120 for a conductivity of u = 5.8 x 107 and a grid spacing of A = .005 m, A = .0025 m,

and A = .00125 m respectively. Whereas for low and high conductivities the effect of

grid spacing is much reduced.

The results clearly show that as the conductivity increases the number of terms

need to accurately approximate the impedance increases. In fact for the largest

conductivity shown, a = 5.8 x 109, the IBC requires more than 250 terms to keep the

error below 1 dB.

4.6.3 Optimum Settings

The fact that there is an optimum number of terms for the piecewise constant IBC

seems to go against intuition. If additional terms more accurately model the impe-

dance then why doesn't the error decrease as the number of expansion terms increase?

We begin with a look at the error results for the piecewise linear IBC for copper

with a = 5.8 x 107 Q2-m-1 at three different grid spacings, as shown in Figure 4-12

versus the piecewise constant error in Figure 4-13. The two plots are combined in

Figure 4-14. The results show that there is no optimum number of expansion terms

(at least up to 300 terms) when using the piecewise linear IBC. Next, we look at the
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Figure 4-7: Error vs. expansion terms for a 35 pm thick conductor with o = 5.8 x
105 Q- 1 m- 1; A = .005 m (diamond), A = .0025 m (triangle), A = .00125m (star).
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Expansion Terms

Figure 4-8: Error vs. expansion terms
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Figure 4-9: Error vs. expansion terms for a 35 p m thick conductor with a = 5.8 x
107 Q-1m- 1; A = .005 m (diamond), A = .0025 m (triangle), A = .00125 m (star).
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Figure 4-10: Error vs. expansion terms for a 35 upm thick conductor with o = 5.8 x
108 -lm- 1; A = .005 m (diamond), A = .0025 m (triangle), A = .00125 m (star).
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Figure 4-11: Error vs. expansion terms for a 35 pm thick conductor with o = 5.8 x
109 Q- 1m-1; A = .005 m (diamond), A = .0025 m (triangle), A = .00125 m (star).
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magnitude of main term in the piecewise constant IBC formulation, eAmAt - 1, and

plot it versus expansion number at the three time steps of Figure 4-12 as shown in

Figure 4-15. Figure 4-15 shows that we should expect a leveling off of the error since

the IBC term levels off rather quickly. Since the exponential term is proportional to

the square of the expansion term number, it follows that the influence of the term

will quickly decrease. Furthermore, the other factors in the exponential term should

show similar results. As the conductivity decreases the number of strong influential

terms decreases (Figures 4-6 through 4-11). As the conductor thickness increases the

number of influential terms also increases (Figure 4-16).

There are essentially two approximations that contribute to the transmissivity er-

ror. The first is from the approximation of the impedance by a sum of exponentials,

and the other is from the approximation to the convolution integral. The two con-

volution approximations used are piecewise constant and piecewise linear. When few

expansion terms are used, the impedance error is the dominant error. As the number

of terms increases, the impedance error decreases. If fact, it should approach zero as

m -+ 00. Therefore, as m becomes sufficiently large, the convolution integral approx-

imation error will dominate the overall error and increasing m will not improve the

error. This is clearly evident in Figure 4-14 as seen by the leveling of the error curves

at some small but finite error as m increases. The optimum settings evident in the

piecewise constant must result from the combination of the two types of errors, and

the piecewise linear error is evidently sufficiently small such that it does not produce

an optimum setting.

Depending on the problem being considered, a non-optimum number of expansion

terms may not lead to significant error since the errors are still small. However, if the

problem includes many reflections from the IBC as in resonant cavities, the optimum

number of terms should be considered when using the piecewise constant formulation.
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Figure 4-12: Piecewise linear error vs. expansion terms for a 35 pm thick conductor
with a = 5.8 x 107 -lm - 1"; A = .005 m (solid), A = .0025 m (dash), A = .00125 m
(dash-dot).
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Figure 4-13: Piecewise constant error vs. expansion terms for a 35 pm thick conductor
with a = 5.8 x 107 Q-lm- 1; A = .005 m (solid), A = .0025 m (dash), A = .00125 m
(dash-dot).
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Expansion Terms

Figure 4-14: Comparison of error behavior of piecewise
linear IBC for a 35 pm thick conductor with o = 5.8

(solid), A = .0025m (dash), A = .00125 m (dash-dot).
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Figure 4-15: Magnitude of piecewise constant IBC term, leAma t - 1 , vs. expansion

terms for a 35 pm thick conductor with o = 5.8 x 107 Q-1m- 1; At -=om (solid),
At = .0025m (dash), At = .00125 m (dash-dot).
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4.7 Verification of IBC in Two Dimensions

Measurement of the quality factor of resonant structures is used to verify the multi -

dimensional IBC. This method is desirable for two reasons. First, it is the very

small but finite loss that a good conductor exhibits that causes errors in FDTD

simulations where good conductors are represented by perfect conductors. Second,

the measurement is based on many reflections from the cavity's surfaces and should

give a good indication of the accuracy and thus the benefit of this type of IBC.

4.7.1 Calculation of Quality Factor

An analytical approximation for the quality factor of a resonant cavity is used for the

comparison against the FDTD IBC. Using the nomenclature and derivation found in

[138], the essential ideas follow.

The quality factor of Q is a measure of the loss of a resonant cavity. Let wT (t)" 0.4

The quality factor of Q is a measure of the loss of a resonant cavity. Let WUTn(t)
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represent the total electromagnetic energy of a mode n within a resonant cavity. The

energy can be approximated by

WT, (t) = WT" (0)e Qn (4.39)

where wn is the resonant frequency in radians of the nth mode. So using the definition

in [138], the quality factor is the average number of radians it takes for the total

electromagnetic energy to decay to 1 of its original value. The higher the Q the lower

the loss. The quality factor can be determine from the average power dissipated within

the structure and the average electromagnetic energy stored within the structure given

by
wn x energy stored in nth mode _ nWT (4.40)

S= average power dissipated in nth mode (Pn)

The power lost in the resonant structures used in this chapter are a result of the

current flowing through the walls of the cavity. So to calculate the Q of the resonant

structure under test we must calculate the following two integrals:

WTn o En 12dv (4.41)

and
1

Pn = - En - Jdv. (4.42)
2 v

As in [138], since we're dealing with very large conductivities perturbation methods

can be used. The current can be approximated by the current generated in a perfect

conductor. So the power calculation of (4.42) becomes

P, N ° _ dv, (4.43)
2 iv 0

where jo represents the current in a resonator with PEC walls. Again using the

good conductor approximation, most of the current flows within one skin depth of the
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Figure 4-17: Test structure for IBC validation.

conductor, where the skin depth, 6 is defined by

2
Wn6 iO, (4.44)

and the current can be approximated by assuming that the current is equivalent to

the surface current of a perfect conductor uniformly distributed over a single skin

depth, so equation 4.43 becomes

Pn 2u- A 2da, (4.45)

where A is the inside surface of the resonator and iJn is the surface current due to the

nth mode in a PEC resonator. Figure 4-17 is a schematic of the test structure used

to validate the two dimensional IBC. The test structure is a rectangular resonating

cavity made with a good conductor with conductivity, o, with dimensions (in meters)

a in the x direction and c in the z direction. The thickness of the thin conducting

sheet is 1 m and the skin depth is 6 m. (The figure is not drawn to scale 1 < a, c.)

I
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The cavity is excited with TE modes by using a line source located at (i., k,) on a

discretized FDTD grid and the response is measured with a software probe at (ip, kp)

that records Ey(ip, kp) at each time step.

For the power and energy calculations we assume infinite extent in the y direction

and therefore the energy and power units are all described per meter.

With Figure 4-17 in mind the power dissipated per meter is given by

1
P- =22

2a6
fa o |0

+ 2 1 5j2ab o

x Ho(z = 0)12dx

x fo(x = 0)12dz.

Given a TE excitation (Ey), the mode can be described by

Ey(x, z) = Eo sin kxxz sin kz z,

where kx = "m and kz - Ea c The magnetic fields can be found from Maxwell's

equations and (4.47). They are

Hx(x, z) = i kzEo sin kxa cos kz z
WI'o

and

Hz(x, z) = -i x Eo cos kxx sin kzz.
pWIo

Using (4.48) and (4.49) in (4.46) the power becomes

Pm,p 2 Eo 2

2aw0, 2 [aP + ck]

2au6w ,p[ ~a2C2 a p C3].

(4.46)

(4.47)

(4.48)

(4.49)

(4.50)
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The total electromagnetic energy is calculated from (4.41) and (4.47), resulting in

ac
wt",p = a-0E0 2. (4.51)

8

Substitution of (4.50) and (4.51) into (4.40) yields

eoorbw 3 233

Qm,p =42 2 + p2C3  (4.52)

substituting w,2 Eopo = kk k) = 2 we arrive atmpP - ,p "- =x - k we arrive G2

(a2m 2 + c2p2)ac
Qm,p = 2[m2a3  p2C3] (4.53)

The quality factor of a good conductor resonator is a function of the mode number,

skin depth, and the physical dimensions of the resonator.

4.7.2 Measurement of Quality Factor in FDTD Simulations

There are two ways to measure the quality factor in a FDTD simulation. The first is

the take the Fourier transform of the electric field measured by the software probe. By

measuring the half-power bandwidth about the resonator's resonant frequencies, the

quality factor can be derived [138], [140]. However, this method will require millions

of time steps for very high Q structures. A more practical method relies on exciting

a single mode and measuring the decay in the mode's field strength measured by the

software probe. In the lossy resonator, the resonant frequencies are better described in

the s domain, sm,p = -iwm,p - am,p. Since the energy is proportional to the magnitude

of the electric field squared, equation (4.39) can be rewritten as

WT,p(t) =Tp (t = 0)e-20m,pt, (4.54)
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MSiemans 1/6 QFDTD Q error
.058 .92 801.5 922.0 -13.1
.58 2.92 2950.4 2915.5 +1.2
5.8 9.22 9220.3 9219.7 0.0

58.0 29.16 30365.7 29155.2 +3.8
580 92.20 100939.0 92196.8 +9.4

Table 4.1: Comparison of QFDTD and analytic Q at 3.03 GHz

and the quality factor becomes

Qm,p m,p (4.55)
p 20am,p

If a single mode is excited in the FDTD simulation, am,p can be calculate from two

peaks in the stored electric field, given by

amp = - [Ey /Eyl (4.56)
m'P -(n2 - nl)At

4.7.3 2D Simulations and Results

The impedance boundary condition is extended to two-dimensions. Using the test

structure in Figure 4-17 the dimensions of the structure are changed to vary the fre-

quency. The current source is placed at the center of the structure and the probe is off

center. A modulated gaussian pulse, modulated at the TE 1,1 resonant frequency with

p = 4096, is used as the temporal excitation. The software probe stores the electric

field at each time step. Equation (4.56) is used to measure a 1,1 and equation (4.55)

is used to measure QFDTD. The simulated results are compared to the analytically

derived values of Q. Tables 4.1- 4.4 show the results. Each table represents a different

frequency and each table spans four orders of magnitude of conductivity. The tabular

results are shown graphically in Figure 4-18.
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MSiemans 1/6 QFDTD Q % error
.058 1.30 693.5 652.0 +6.4
.58 4.12 2019.6 2061.6 -2.0
5.8 13.04 6521.0 6519.3 0.0

58.0 41.23 20855.4 20615.8 +1.2
580 130.39 63140.3 65193.0 -3.1

Table 4.2: Comparison of QFDTD and analytic Q at 6.06 GHz

MSiemans 1/6 QFDTD Q % error
.058 1.64 518.8 455.4 +13.9
.58 5.18 1399.0 1440.2 -2.9
5.8 16.40 4574.4 4554.2 +0.4

58.0 51.85 14502.5 14401.7 +0.7
580 163.95 45889.3 45542.1 +0.8

Table 4.3: Comparison of QFDTD and analytic Q at 9.6 GHz

MSiemans 1/6 QFDTD Q % error
.058 1.84 501.0 461.0 +8.7
.58 5.83 1401.8 1457.8 -3.8
5.8 18.44 4642.0 4609.8 +0.7

58.0 58.31 14430.6 14577.6 -1.0
580 184.39 44324.1 46098.4 -3.8

Table 4.4: Comparison of QFDTD and analytic Q at 12.1 GHz
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Figure 4-18: 2D resonator quality factor percent error versus conductivity exponent,
x in 5.8 x 10 Q-1m-1; 3.03GHz (solid), 6.06GHz (dash), 9.60GHz (dash-dot),
12.10 GHz (dash-dot-dot).

4.8 Discussion

The conductivity range studied in this chapter spanned four orders of magnitude from

104 to 10 Q-lIm- 1. (Some work at 109 was done in Section 4.6.2.) Even the lowest

conductivity used would be considered a good conductor at the frequencies tested

as defined by 1 << -. The conductivities, in Q-1m - 1, of the most popular signal

conductors, silver, copper, gold and aluminum are 6.14 x 107, 5.80 x 107, 4.10 x 107,

and 3.54 x 107 and the conductivity of steel is 3.54 x 107 which all easily fall within

the range of conductivities tested.

When a piecewise constant approximation is used for the magnetic field, the

amount of computer resources (as measured by number of expansion terms) is di-

rectly proportional to the conductivity. Lower conductivities result in larger pole

magnitudes and lesser sensitivity to increase number of terms. The piecewise con-

stant approximation produces an error that cannot be overcome by more expansion

'

~.-~u"----------
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terms. In fact, the errors from the impedance approximation and the magnetic field

approximation combine to produce an optimum number of expansion terms.

With a piecewise linear approximation, the error due to the magnetic field is

greatly reduced and an optimum number of terms is not evident. The more terms

used the more accurate the IBC; however, the error levels off at 200 terms in the test

of the copper sheet in Section 4.6.3.

When extended to two dimensions, except for the lowest conductivity of a =

5.8 x 104 Q-lm- 1 the impedance boundary condition works incredibly well over the

wide range of skin depths studied, 3 - 185. The IBC is an excellent model for thin

sheets of good conductors with finite conductivity. The IBC offers the advantage of

working over a wide range of frequencies with very little computational overhead. For

typical conductors, like copper, 125 terms per tangential electric field component are

needed with errors in Q less than 5%.



Chapter 5

Phase Unwrapping of Synthetic

Aperture Radar (SAR)

Interferometry

5.1 Introduction

Airborne and spaceborne Synthetic Aperture Radar (SAR) platforms have been used

for many years to study the earth's surface [144]-[159]. When two radars on a sin-

gle platform or two passes of a single radar map the same area, an interferogram

can be produced from the difference in phase measured by each radar or pass. An

interferogram is a pictorial representation of the phase differences measured at each

pixel.

Since the measured phase differences lie between -7- and ir, the phase is said to

be wrapped. A SAR interferogram contains fringes. These fringes are the locations

on the interferogram where a 2w7 discontinuity exists. The interferogram resembles a

topographical contour map where a line of constant elevation corresponds to a fringe.

When no noise is present, the fringes can easily be located and the data adjusted

by adding multiples of 27 to produce an unwrapped phase image. However, real-
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world data are always contaminated with noise, hence there is a need to develop

sophisticated phase unwrapping algorithms.

Successful phase unwrapping is the key to the extraction of DEM (digital elevation

model) from an interferometric SAR phase image. There are local and global methods

to unwrap phase data. Local methods unwrap a pixel based only on its nearest

neighboring pixels; whereas global methods consider the whole set of pixels to be

unwrapped. Phase unwrapping has been a topic of much research [160] -[175].

Local or global aside, there are really two basic approaches to unwrapping phase

data. The first is based on finding an unwrapped solution such that the solution's

first-order partial derivatives in the x and y directions match (or closely match) the

wrapped first-order partial derivatives or gradients of the phase data. Typically noise

is handled by unwrapping the best data first in local schemes, or in global schemes,

like the least squares method, the data is weighted to favor the best data. The second

approach moves along the data and adds or subtracts 2-r when a fringe is crossed. The

fringes are found with a fringe detection scheme [155]. With this method, one way

to handle the noise is to form branch cuts. This way the image is searched for phase

inconsistencies, in the form of residues. The residues are connected to form branch

cuts and phase is unwrapped by adjusting the integration path or by modifying the

fringe information.

There are local and global techniques to phase unwrapping algorithms based on the

gradients of measured data. The local algorithms usually locate one or more areas on

the image that are considered good data. To find these points one may use noise floor

data and signal-to-noise ratio [168] or use coherence data [178], [166]. Unwrapping

usually begins with these good areas. The algorithms move from pixel to pixel and

add or subtract 27r based on some criteria. One method follows the least-gradient

path with the assumption that the smallest gradient points to the best data [178],

[180] and the adjustments are made to match the solution gradient to the wrapped

measured gradient. Other methods use more neighbors to decide the value to add to
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the unwrapped pixel [161], [169]. Here all the gradients of the adjacent unwrapped

pixels are examined and the phase of the unwrapped pixel is predicted based on these

gradients. Then an integer number of 27 is added to bring the unwrapped pixel closest

to the predicted phase. In this way it is possible to have phase differences larger than

7r, so this method can accommodate real discontinuities due to terrain features. All of

these local approaches have the added complication of growing separate unwrapped

regions that must be joined to produce the final product. Since the best pixels are

unwrapped first, the likelihood of errors propagating through the image is reduced.

Global gradient algorithms are based on least squares and weighted least squares

methods [170]. In this way, the technique attempts to find a solution that minimizes

the differences between all of the solution's gradients and the wrapped data's gradi-

ents. The least squares approach is very desirable because of the speed at which all

the data can be unwrapped, but, the method cannot treat noisy data very well [170].

The weighted least squares allows the user to favor the good data by applying a set

of weights to the data based on some knowledge of the data's noise content. These

methods have been applied to a single SAR interferogram in [160]; however, no details

of the weighting criteria was presented. Others have used a weighted least squares

method to unwrap a simulated interferogram with a shear [162], where the shear dis-

continuity was masked out and a multi-grid iteration scheme was used to solve the

weighted partial differential equation. A weighted least squares technique has been

used unwrap speckle interferograms using a weighting scheme based on masking out

the phase inconsistencies or residues [171].

The branch cut method also has local and global approaches. So far only local

approaches have been reported in SAR interferometry. The branch cut method and

SAR interferometry phase unwrapping was first reported in [173]. Applied to the

interferogram derived from two passes of Seasat, the residue connection was based on

a nearest neighbor approach. This technique works well with a low density of residues;

however, it breaks down with a high density of residues [173]. Once two residues are
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connected they are removed and no longer considered for connection to any other

residues. This method is very likely to leave an uncompensated residue. The phase

is then unwrapped by integrating along a path that never crosses a branch cut. This

approach was briefly reported in [160] as part of an overview of SAR phase unwrapping

techniques. It was report that the main disadvantage to the branch cut method is

the propagation of global errors from uncompensated residues. A modification to the

basic branch cut method in SAR interferometry involves connecting and removing

residue pairs that are only 1 or 2 pixels apart [163]. The remaining residues are

handled separately and considered part of real discontinuities that exist as a result of

terrain features.

The branch cut method has also been applied to speckle interferometry, used

to measure very small surface deformations on structures. In this application, a

nearest neighbor (local) connection algorithm was used and reported in [174]. The

first global branch cut method is used to unwrap a speckle interferogram. All residues

are considered before making any branch cuts. In this way, the algorithm is based on

minimizing the total branch-cut length [175].

Finding efficient, accurate and automatic phase unwrapping algorithms is an in-

teresting topic and is becoming more important as more processing occurs on the SAR

platform. Although some new phase unwrapping techniques have been briefly intro-

duced recently based on the principle of maximum entropy [164] and multiresolution

[165], they have not been used as yet on SAR data. In this chapter, the weighted least

squares approach is investigated and applied to SAR interferometry. Specifically, the

a hybrid method that uses branch cut residues to weight the data is presented and

compared to weighting schemes based on coherence data. Also, optimum global and

local branch cut algorithms are presented and applied to SAR interferograms. Data

from both simulated and real SAR interferograms are used.

142



5.2. LEAST SQUARES PHASE UNWRAPPING TECHNIQUE

5.2 Least Squares Phase Unwrapping Technique

The least squares approach attempts to minimize the difference between the wrapped

derivatives of the measured data and the derivatives of the solution. It turns out that

through a little manipulation the least squares problem can be constructed to form

a discretized Poisson equation where the source term is calculated from the wrapped

data. The equation can be solved with the discrete cosine transform (DCT) offering

a fast and fully automatic algorithm.

Consider an M. x N matrix of wrapped phase values. The (i,j)th element of

the wrapped phase matrix will be represented by Of. The goal is to find the actual

(unwrapped) phase, ¢,j, based on the measured wrapped phase.

First, a wrapping operator, W {}, must be defined such that

W {x} = x + k2w, (5.1)

where k is any integer that satisfies

-7 < x + k27r < 7r. (5.2)

The wrapped phase values may be described in terms of the unwrapped phase values

by

j = W {f ,O + n,,, } (5.3)

where ni,j is the noise associated with pixel (i, j). The least squares method uses the

first order wrapped differences of the data given by

X W Wýw -OTA O<i<•M-2 O< j N-1
A t 0 otherwise (5.4)
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andand Y' W  -W z'wj0  0<i < M-1; O<i<N-2

0 otherwise (5.5)

The solution /i,j is the set of all ij,3 such that the sum of all the squares of the

differences between the solution phase differences, 0,+1,3 - 0,,, and qi,j+l - 0i,3, and

the measured phase differences, A- and Afy , is a minimum. In other words, 4i,, is

the least squares solution to

M-2 N-1 M-1 N-2

(0z+l,j , - - a + 5 (ij+l - ¢, - /ozw)2 "  (5.6)
i=O 3=0 i=O 3=0

Equation (5.6) can be formulated as a discretized Poisson equation with the wrapped

data as the basis of the source term. In continuous space the Poisson equation is

02  02

Z2 (y) + 2 (x, y) = p(x, y) (5.7)

where O(x, y) is the continuous phase function and p(x, y) is a continuous source term.

The discretize form, given the sampled phase values, is

(z+1,j - 2 42,3 + z--l1,j) + (0i,3+1 - 2 ji,j + ~z,3-1) = Pz,j (5.8)

where

Pi,j = (Ai 3 - A•- 1 j) + (Aj - Aj-l)" (5.9)

For those source values that lie on the edge of the domain the phase differences are

set to zero as (5.4) and (5.5) indicate. Essentially a Neumann boundary condition is

imposed. Now that a discrete Poisson equation has been constructed the solution can

be found with the use of the Discrete Cosine Transform (DCT). Using cosine series

expansions for the unknowns leads to a very simple solution technique. The DCT
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and Inverse DCT pair, xzij

M-1 N-1

[E E 4xij
i=0 3=0

Cm,n - j
Cm,n, are defined as

cos [2Mm(2i + 1)]

0 < m<M - 1;

otherwise

cos [_n(2j + 1)

0 < n< N - 1;

and

M-1 N-1
E E 4wl(m)w 2(n)Cm,n COs [rm(2i + 1)]

m=O n=O

0i< i<M-1

0 otherwise

cos [ Nn(2j + 1)]
0 < j<N- 1;

(5.11)

where
S= 1/2,

1 = 1,

w2 = 1/2,

W 2 = 1,

Substituting the cosine expansions into

m = 0,

1<m<M-1,

n = 0,

(5.8) leads to

(5.12)

(5.13)2 cos r + cos 7

where 4jj and &,, are the discrete cosine transforms of /i,j and pi,j.

The solution may be found by performing a 2D DCT on the source term, modifying

the transformed source term by using the right hand side of (5.13), and performing

an inverse DCT on the modified source term to arrive at the solution Oij. Very fast

DCT algorithms have been developed based on the Fast Fourier Transform [143] and

can be used to unwrap phase very quickly.

The disadvantage to the least squares method is that it does not consider the

integrity of the data. If only a small localized portion of the interferogram is corrupted

by noise, the entire unwrapped image is effected [170]. In other words, a local error

(5.10)

1
-MN

jXi~j
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will propagate throughout the image.

5.3 Weighted Least Squares Phase Unwrapping Tech-

nique

The least squares solution to phase unwrapping assumes that the noise associated

with each pixel is Gaussian and independent [143]. The assumptions will not always

apply to the noise in a SAR interferogram. Applying a weighting scheme attempts

to incorporate the knowledge of the interferogram's pixel integrity when unwrapping

the phase.

5.3.1 Weighted Least Squares

If we suspect that a measured phase value is are corrupted with noise or otherwise

unreliable, as assumed in real data, we can weight that phase value, 0' by w,,, where

0.0 < wi,3 < 1.0. (5.14)

The best values are assigned weights of one or close to one whereas the worst data

are assigned weights near zero. Although the weighted least squares problem cannot

directly be solved with the Discrete Cosine Transform, Ghiglia et al. [170] showed

how an iterative approach can be constructed to take advantage of the DCT. Instead

of a source term based solely on the measured data, a new source term built with a

weighted sum of the measured data's first derivatives and the current iteration's first

derivative is used.

The first order differences of the data are weighted by ff'Y such that

f, = min(w2 1 ,j w 22) (5.15)
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and

f, = min(w ~, w+1 w) (5.16)

The portion of the source term based on the data, pw,. is given by

=,3 -- f- +- fA-1) (5.17)

and the contribution from the current iteration's solution, ,(k , is given by

Pi3+i (1 f•, i-1,
s ( Ik fj) - k-1 ( _ -

+ ( Zj+ -f- ,j) - (1 -i - -1) (5.18)

so that the kth solution is found by solving the discretized Poisson's equation with a

new source term,
Pk d (k-1) (5.19)

Solving the weighted least squares method in this way is known as the Picard Iteration

Method and is described in Section 5.3.3. The iterations are performed until a user

specified number of iterations are complete. The method is still very fast since it uses

the DCT and the total time depends on the number of iterations performed. Note

that if all wiy = 1 then the weighted least squares method becomes the least squares

method of Section 5.2.

5.3.2 Determining Weights

When using the weighted least squares method for unwrapping interferograms, some

scheme must be used to assign the weights to each pixel. In this section, weighting

schemes based on coherence data are described.
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Coherence Weighting

The coherence of the image is directly related to the integrity of the data. Given the

complex returns from both sensors due to the same place on the earth, S (i, j) and

S2(i,j), the coherence, p, of pixel (i,j) is defined by

SS i(i,j )(j)S (5.20)

P S (i, j) S(i, j)S2 (i, j)S2 (i, j)

The maximum value for the coherence is 1 and the minimum value is 0. Low coherence

can be the result of many factors such as thermal noise and processing phase errors.

In repeat-pass spaceborne systems, decorrelation can come from different atmospheric

conditions during each pass, changes in the terrain between the passes, and from the

different viewing positions of the passes[155]. Also the length of the baseline is a

critical factor. If the baseline is too large there is a complete loss of coherence and

the corresponding phase data is useless for terrain height inversion.

The coherence data is a logical choice for a weight. When coherence weighting is

used, w,,j = ci,j where w,,j is the weight assigned to pixel (i, j) and ci, is the coherence

of pixel (i, j) of equation (5.20).

Modified Coherence Weighting

A variant of the straight coherence weighting scheme is to set a coherence threshold,

Cthr, in order to give the maximum weight to good data. Table 5.1 shows the algorithm

used to produced modified coherence weights. Setting Cthr = 0 is equivalent to no

weighting (i.e. a straight least squares method) and setting cthr = 1 is equivalent to

straight coherence weighting.

5.3.3 Picard Iteration method

As stated, the Picard iteration method is used to solve the weighted least squares

problem. Following the description found in [170], starting with the over determined
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Set threshold Cthr

If C•,j > Cthr then
WZj - 1

else

Wi,3 = Ci,j
endif

Table 5.1: Algorithm for weight assignments based on coherence data.

problem given by the matrix equation

(5.21)

the least squares solution is found by solving

=T= =T-
A A = A b, (5.22)

where 2 is the solution vector containing MN phase values and b is a vector containing
=T=

N(M - 1) + M(N - 1) wrapped phase differences. Let P = A A (the discrete
=T-

Laplacian), p = A b (the source term), and 4 be the phase vector; then the least

squares solution of the phase unwrapping problem is given by

PO = P. (5.23)

However, if we apply a set of weights to the wrapped phase differences b then (5.21)

becomes

(5.24)

and the solution is found by solving

--TT W-- =A W Wb.--T
A W~ W/A = A W~ Wb. (5.25)
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= TýT• -- T
Defining Q = A W WA, E = A W W b, and q as the phase vector again, the

system of equations to solve is

QO = . (5.26)

The discrete cosine transform cannot be used to solve (5.26) as written. The Picard

method rewrites Q as the sum of the discrete Laplacian, P, and a difference matrix,

D such that

Q = P + D. (5.27)

Substitution of (5.27) into (5.26) and a little algebra, leads to

(5.28)

Equation (5.28) can be solve iteratively using the DCT and

P7k+1 = - Dk, (5.29)

since (5.29) is the discrete Poisson equation,

Pwk+1 = Pk,

where

(5.30)

(5.31)Pk = e -D Dk

d s(k)
Pi,j II PI,

from equation (5.19).

A disadvantage of the Picard iteration method is that convergence is not guaran-

teed. The user selects the number of iterations and the algorithm terminates when

that iteration number is reached.
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5.4 Branch Cut Method

The branch cut method is very different from the least squares approach. Instead

of forming a set of equations to solve, the solution is derived from integrating the

fringes. This approach is intuitively appealing, but offers its own set of difficulties.

Unwrapping phase using the branch cut method begins by constructing a fringe

map from the wrapped data. A fringe map records the locations of the 27r discontinu-

ities call fringes. The wrapped data is unwrapped by moving through the image and

integrating the fringes. Whenever a fringe occurs, 27r is either added or subtracted

to the data depending on the value of the fringe. In the presence of noise, erroneous

fringes occur and cause errors to propagate through the image. If phase inconsisten-

cies can be found then steps can be taken to reduce the effects of the noise. Since we

know that there should be an equal number of positive and negative fringes if we travel

around a closed contour, we can search for phase inconsistencies by integrating the

along a closed contour. If the integration is non-zero then the contour must enclose

residues. The presence of residues means the unwrapped solution is path dependent.

To isolate the residues, we integrate along the smallest contour possible i.e. between

four adjacent data points. In order to remove the ambiguity of the integration path

the residues of opposite sign are connected to form branch cuts. The phase fringe

map is then modified by incorporating branch cuts and the phase is unwrapped in the

normal fashion. There is no global error with proper treatment of the single residues.

The disadvantage, however, is that manual operation is usually required to complete

the branch point connections.

We begin with another operator d , {} defined as

di,j= {dx,d, , }, (5.32)

where

€ {~.} = 3 - ij (5.33)
i 7
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and

dy { 2,7 (5.34)

The square brackets, [], represent rounding to the nearest integer. The dij {} operator

will find any 27r discontinuities as one moves across the wrapped data in the vertical

(along rows, d',) and horizontal (along columns, d4,,) directions.

If no noise is present and one phase pixel value is known, then the phase at all

other pixels can be determine by integrating the number of discontinuities along any

path between the known pixel and the pixel of interest. To illustrate, let ¢io,3o be the

known phase value located at (io, jo), then

i, = ioo + k27 (5.35)

where

k = E ds (5.36)

and s is any path from (io, jo) to (i, j). If s is a closed path then k should equal zero i.e.

we should end where we begin. Otherwise, there must be noise sources located inside

the closed contour s. With these noise sources or residues, the simple integration

technique of (5.35, 5.36) will propagate errors throughout the image. Furthermore,

the results will depend on the path taken. Clearly the noise must be considered such

that a unique solution can be found.

Recall that the branch cut method starts by locating the 27 phase discontinuities

(or fringes) with the d{} operator. A fringe map is constructed that marks the loca-

tion of the fringes. Next, the residues are found by integrating the phase differences

of four adjacent phase data points using

res,, = dly + dyl,+l - d+1,3+1 - dy (5.37)

If resi,j = -1 we have a positive residue and if resi,3 = 1 we have a negative residue.
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These definitions are consistent with the Cauchy Theorem from complex mathematics.

After all the residues are located, branch cuts are drawn from the positive residues to

the negative residues. The branch cut represents a 27 discontinuity. The direction of

the discontinuity depends on the direction of the branch cut. For example if a branch

cut is pointing down then the branch cut represents a +27r jump when integrating

across the branch cut from left to right. Finally the fringe map is updated to reflect

the branch cut information and the solution that follows is now path independent.

Although the concept is straightforward, the difficulty of the branch cut method

becomes apparent when connecting branch points. Since the residues must be con-

nected in pairs (i.e. positive to negative) and there is no guarantee that the interfer-

ogram will contain an even number of positive and negative residues, it is very likely

that single poles will remain after a branch cut algorithm has been run. Incorrect

treatment of these single poles will result in errors.

The question is, given a set of positive and negative residues, what is the best

way to connect them? Since noise will create pairs of residues (one positive and

one negative) the connection method must favor connections of residues close to each

other. If all the residues reside completely within the edges of the SAR interferogram,

the connections can be made in a fairly straight forward manner and any errors that

result tend to be local in nature. However, in a SAR interferogram the data is

truncated and some of the residues's corresponding matches are not included in the

SAR interferometry data set. How a connection scheme deals with this problem will

determine the algorithm's accuracy.

So far SAR interferometry phase unwrapping has been limited to the local nearest

neighbor connection approach [173],[160]. This method can lead to uncompensated

residues and has great difficulty when the residue density is high. To alleviate some

of these problems a global approach can be used that considers all residues before the

connections are made; in other words optimize the branch cut connections. In this

case, optimize means to find the set of branch cuts that has the shortest total branch
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cut length.

5.4.1 Minimum Branch Cut Algorithm

Given a set of positive and negative residue locations from an interferogram, the

minimum branch cut algorithm optimizes the set of connections by finding the set

that minimizes the total branch cut length. With a set of N residue pairs, the

algorithm minimizes the quantity defined by

N

to = E £. (5.38)
k=1

The term, ljc , is the length of the kth branch cut given by

S= V(i - i) 2  - )2, (5.39)

where (i', iJ) and (in, j') are the pixel locations of the kth positive and negative

residues of branch cut k.

The optimization algorithm is essentially the same as the transportation problem

found in Graph Theory or linear programming. In the transportation problem, there

are m locations demanding a commodity and there are n different transportation

means to satisfy all of the demands. The problem is to minimize the total cost given

that the unit cost of using the ith transportation vehicle to ship the commodity to

the jth location is cs,,. Appendix C gives an overview of the transport problem and

how it can be used to find the optimum set of branch cuts.

Before the transport method can be used, the set of residues must be prepared.

Given an interferogram, the first step is to find all the residues which we'll call true

residues. Next, image (image meaning opposite in sign) residues are placed at the

boundary for every true residue within a specified distance from the edge of the

interferogram. This distance should be larger than the expected mean branch cut
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length [175]. In this work about twice the mean length is used. Once all of the

image residues are placed, the positive and negative residues are counted. If the

count is unequal additional residues are added to the boundary which we will call

false residues. There must be equal numbers of positive and negative residues in

order to perform the optimization. It is important to note that the problem must

be constructed so that false residues are never allowed to pair up with true residues;

they can only be paired with image residues.

An initial cost matrix is built with the columns representing the negative residues

and the rows representing the positive residues. The matrix element (i, j) is filled

with distance between the ith positive residue and the jth negative residue using

(5.39). (Actually the square of length is used because the transport algorithm used

demands integer cost values.)

Now, the matrix is modified to take into account both the boundary image residues

and the false residues. First, all matrix locations that represent connections between

any image residue with any other opposite image residue or false residue are set to

zero. In this way the algorithm can reduce certain types of errors by being able to

connect any boundary residue to any other boundary residue of opposite sign. Second,

to ensure no false boundary residues are connected to any true residue, sufficiently

high cost must be inserted into the cost matrix at the appropriate locations. This

can easily be done by placing the false residues at fictitious locations far away from

any actual interferogram pixel.

For each column, the minimum length within the column is subtracted from every

entry in the column. This step places a zero in the row of the column that represents

the closest positive residues to the jth negative residue. Then for each row the

minimum length within the row is subtracted from every entry in the row. This step

places a zero in the column of the row that represents the closest negative residues

to the ith positive residue. Now we have what Buckland [175] called the reduced cost

matrix.
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Figure 5-1: Pole connection ambiguity.

Figure 5-2: Effect of missing one residue in nearest neighbor search.

At this point, the reduced cost matrix is passed to a subroutine based on a mini-

mum cost transport problem found in [181]. The routine will return the optimum set

of branch cuts (See Appendix C).

5.4.2 Branch Cut Limitations

In general the residue connections are made to keep the branch cut lengths as small

as possible. However, several difficulties occur even though an optimizing algorithm

is used.

First, there is ambiguity in the residue connections. Consider a set of four residues

shown in Figure 5-1 where the circles and squares represent positive and negative

residues respectively. There are two equally appropriate connections based on the

shortest possible paths. Where one is correct and the other is wrong and the wrong

choice produces a local error. This localized phase error may look like small square

discontinuities in a relatively smooth image. There is nothing that can be done to

prevent this type of error.

Second, algorithms based on connecting the nearest neighbors invariably will miss
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0 - q

I!-

Figure 5-3: Effect of erroneous residue placed on boundary.

a residue and force a connection between two residues relatively far apart as shown

in Figure 5-2. This type of error (assuming the right figure is the correct connection)

produces discontinuities in the unwrapped phase proportional to the erroneous branch

cut length. The minimum cost algorithm essentially eliminates this type of branch

cut error.

Third, there are errors that occur owing to the treatment of the edges. With a

minimum cost algorithm image residues are placed on the edges for those residues close

to the edge to compensate for the fact that the residue's correct pair may have been

removed by the truncation of the SAR image. An error may occur if two erroneous

image residues are added as shown on the left side of Figure 5-3. Connections between

image residues must be allowed as shown on the right side of Figure 5-3. Errors like

these can cause large errors depending on the locations of the two erroneous residues.

When there are areas of high residue density that extend between two edges of the

interferogram, even the optimum connection may produce errors of this type.

The last error that may occur also stems from the placement of image residues at

the boundary. Clearly we will not place an image residue on the boundary for every

residue in the SAR interferogram, but some distance (threshold) from the edge must

be set. If the distance is too small, errors appear as shown in the top figure in Figure

5-4. But if the distance from the edge is increased slightly more image residues are

placed at the boundary and the total branch cut length is reduced.
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0-- --100 -00-

Figure 5-4: Effect of too few image residues on the image boundary.

We can never be certain that the set of branch cut connections is the correct set.

However, since noise produces pairs of residues (positive and negative), the shortest

branch cut lengths are more likely candidates for the correct connections. Also, the

erroneous connections usually only produce small local errors in the unwrapped phase.

One serious limitation of the global optimum branch cut method is the CPU

time necessary to find the optimal connection set. Since the solution time is directly

proportional to the number of residues and proportional to the square of the number

of connections, it can take any where from seconds to hours to find the solution.

5.5 Local optimum branch cut method

To overcome the potential for long solution times a local optimum technique is intro-

duced. After image residues are added, a nearest neighbor connection scheme is used.

Starting at the center of the image, the residue pairs that are only one pixel apart are

connected and removed, then those pairs two pixels apart, then three etc. As residues

are left, they are connect to the closest residue leftover. No residues are left uncon-

nected. Then a branch cut length threshold is set. Starting with the longest branch

cut that is greater that the desired threshold, a subset of the interferogram residues

that includes the long branch cut is reconnected using the optimum algorithm. If a

branch cut cannot be shortened in the first pass, a larger subset of residues is used. If
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Set all wi j = 1
If resi,j 7 0 then

wi,j = 0

i,j+1 0
wi+1,j = 0

W1+1,+1 = 0

endif

Table 5.2: Algorithm for weight assignment based on residue identification.

the cut is still not shortened, the algorithm moves to the next long branch cut. The

algorithm terminates when attempts have been made to fix all branch cuts longer

than the threshold length.

5.6 Hybrid method - weighted least squares with

residue weights

The residue weighting scheme is a new method based on residues found in the branch

cut unwrapping method to target bad phase values. The idea is that if a residue

exits then one or more of the four pixels surrounding the residue are bad, so let's not

use them. Table 5.2 shows the algorithm used to produced weights based on residue

identification.

5.7 Comparison of Algorithms on Simulated Data

In order to begin a comparison of the phase unwrapping algorithms, a simulated

interferogram is generated. By adding noise to the simulated interferogram, applying

a phase unwrapping process, and comparing against the noise-free unwrapped data,

we can begin to analyze the different algorithms. Two measurements were taken: the

mean phase error and the phase error standard deviation. The mean phase error is
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defined as

M [N(i, j, Ag) -_o(i, j)]
1(aj) =MN ' (5.40)

1=1 j=l

and the phase error standard deviation is

M [¢(i, j, AZ) - 0 (i, j) - (A)]2
( = MN , (5.41)

N=1 j=1

where AV is the root mean square (rms) phase noise in degrees, 0(i, j, AV) is an

unwrapped phase value of a noisy interferogram and o0(i, j) is the unwrapped phase

data with no noise present (AV = 0) used as a reference. M and N are the number

of pixel rows and columns respectively.

5.7.1 Generation of Simulated SAR Interferogram

In this work, a simulated SAR interferogram is generated using the SAR configuration

is given in Table 5.3. The interferogram is constructed by first generating a simulated

mountain terrain. Then using the SAR configuration, the phase of the signal at each

sensor is calculated for each pixel using

i,, = 2kor,j, a = 1, 2; (5.42)

where k0o is the free space wave number and r,,3 is the distance from the sensor to the

simulated terrain height for pixel (i, j). The interferogram phase value at pixel (i, j)

is found by wrapping the phase difference 02, - 0,j

Figure 5-5 is a gray scale plot of the simulated SAR interferogram with no noise

and Figure 5-6 is a gray scale plot of the simulated SAR interferogram with AV = 550

rms noise. These two figures represent the range of rms noise used: AV = 0' -+ 55'.
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B 103.0 m baseline
a 300 baseline angle
A .0567 m radar wavelength
0 300 looking angle

Ho 400 km sensor height

Table 5.3: SAR parameters for simulated SAR interferogram.

-1

.4t

Figure 5-5: Simulated SAR interferogram without noise.
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Figure 5-6: Simulated SAR interferogram with AV) = 550 rms noise.

5.7.2 Addition of noise

The noise is added by

¢(i,j) = 0o(i, j) + 0N(i, j)

where

CN(i,j) = Npv(1.0 - 2.0r,);

(5.43)

(5.44)

where Np is an input noise parameter to control the amount of noise and r, is a

random variable that is uniformly distributed between 0 and 1. Therefore,

ON(i, j)

0.2

=0,

1 f+NpIr1 N2d¢,
2Nr I-N ir

S(Npir)
2

(5.45)

(5.46)

(5.47)

CHAPTER 5.162
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AV Np A0 Np A) Np A0 Np
0 0 5 0.0481 10 0.0962 15 0.14
20 0.192 25 0.241 30 0.289 35 0.337
40 0.385 45 0.433 50 0.481 55 0.529
60 0.577 65 0.625 70 0.674 75 0.722

Table 5.4: Np settings for rms phase noise.

N= Npr (5.48)

A = Np(180) (5.49)

Table 5.4 lists the values of Np necessary produce various values of rms phase noise,

5.7.3 Application and Analysis of Techniques on Simulated

Data

In this section the least squares, weighted least squares and branch cut phase unwrap-

ping techniques are applied to the simulated SAR interferogram of the last section.

Figures 5-7, 5-8, and 5-9 are plots of the mean and standard deviation of the phase er-

ror for the three unwrapping techniques describe earlier in this chapter. The weights

used for Figure 5-8 were base on the residue mask of Table 5.2. Table 5.7.3 lists the

number of residues found in the simulated SAR interferograms for each rms noise

level used. Since the additive noise does not produce many phase inconsistencies

(i.e. residues), until the rms phase noise reaches AV = 450, we would not expect the

weighted least squares or the branch cut method to improve the error until AV = 45'.

The results show that both methods greatly reduce the phase errors.

Figure 5-10 shows the standard deviation for A0' = 350, 45', 550 versus the it-

eration number of the weighted least squares technique using the Picard iteration
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Noise Level Positive Negative Total
Residues Residues Residues

00 0 0 0
150 0 0 0
250 0 0 0
350 17 17 34
450 481 484 966
550 2486 2497 4983

Table 5.5: Number of residues in simulated SAR interferograms.

method. The mean error is essentially zero for all iterations (and methods) due to

the nature of noise added and not shown. However, the phase error standard devia-

tion is greatly reduced as the iteration number increases. Fifty iterations is sufficient

to reach the minimum error.

Errors in phase lead directly to errors in inverted height. These relationships,

found in [146], are
pA sin 0

h(As)= p(As) (5.50)
47 cos(O - a)

and
p) sin 0

(a) = PA sin 0 , (O (5.51)
47 cos(O - a)

Using the parameter data set in Table 5.3, A = .0567 m, 0 = 300, a = 30', (B

103 m, and p = 462 km equation (5.51) becomes ah(A1) = 10.1 4 ((A4) m, so to

keep ach < 10 m then the least squares method can only tolerate approximately 37'

of rms phase noise while both the weighted least squares and branch cut method can

tolerate as much as 550.

5.8 Height Inversion

Figure 5-11 shows the nominal configuration of an interferometric SAR set up used

to invert terrain height. The phase difference between the two sensors, S1 and S2,
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Least Squares
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W 2
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04

a)a04
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Figure 5-7: Least squares unwrapping phase error versus phase noise, mean (dia-
mond), standard deviation (triangle).

Weighted Least Squares
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Figure 5-8: Weighted least squares unwrapping phase error versus phase noise, mean
(diamond), standard deviation (triangle).
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Branch Cut
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Figure 5-9: Branch cut unwrapping phase error versus phase noise, mean (diamond),
standard deviation (triangle).
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Figure 5-10: Weighted least squares unwrapping phase error standard deviation versus
iteration number: AV = 350, (diamond); AV = 450, (triangle); A0 = 550, (star).
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Figure 5-11: SAR set up for terrain height inversion.

can be determined from the geometry of the SAR configuration. If the separation

between the two sensors, called the baseline (B), is much smaller than the slant range

(p) to the target at P i.e. (B << p) , then the phase difference, A0 , is determined

by (5.52). If the phase difference is known, then 0 can be found from (5.52) and the

terrain height, h, determined from (5.53).

4r
A4 = r sin(9 - a).

A¢ X-- .

h = H - pcos0.

(5.52)

(5.53)

The phase difference can be calculated from the complex radar images from the two

sensors, given by

(i, j) = arctan Si(i, j)S2(i, j).
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Data Size: 2304 x 2048
Horizontal Resolution: 19.5 meters

Vertical Resolution: 19.5 meters
Baseline: 233.5 m

Range: 820000 m
Wavelength: 0.0566 m

Off-nadir angle (0) : 24'
a: -6.5'

Table 5.6: ERS SAR parameters.

5.9 Application and Analysis of Techniques on Real.

Data

Although the results of the simulated data show that the branch cut method and the

weighted least squares offer greatly improved results over the least squares method,

the simulated interferograms only loosely approximate a real SAR image. In this

section, the phase unwrapping techniques are applied to an actual SAR interferogram.

The height is inverted and compared to the ground truth.

5.9.1 ERS -1 Data

An interferogram along with coherence data from the European Remote Sensing

(ERS -1) satellite was obtained. The ERS data contains 2048 points in the range

direction and 2304 points in the azimuthal direction. The interferogram is an image

of Phillip Smith Mountains in Alaska. The SAR configuration is contained in Table

5.6. The ground truth was obtained from the U. S. Geological Survey data of Alaska,

specifically the data from Phillip Smith Mountains -W. A description of the ground

truth data can be found in Table 5.9.1.
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Data Size: 1201x 601
N-S Resolution z: 3 arc-seconds

E-W Resolution ): 6 arc-seconds
Lower Left Corner (SE): 680 N 149 0 W

Lower Right Corner (NE): 69'N 1490 W
Upper Left Corner (SW): 68'N 150 0 W

Upper Right Corner (NW): 690 N 150 0 W
Minimum height: 370 m
Maximum height: 2315 m

Horizontal accuracy: 130 m
Vertical accuracy: 30 m

Table 5.7: DEM parameters.

5.9.2 Registration Process

In order to verify the phase unwrapping algorithms, the inverted height from an ERS-1

interferogram is compared to the ground truth DEM data from the U. S. Geological

Survey. Since the SAR and DEM images are offset in the range and azimuthal

directions, offset by a rotation angle, and differ in resolution, the SAR and DEM

images must be registered before any comparisons can be made. The registration

process includes all steps necessary to synchronize the two images so that a point by

point compare can be done.

Throughout the registration process, the root mean square height error will be

minimized to find the registration parameters. The root mean square height error is

defined as
S[hDEM(ij)- hSAR(i j) - herror]2

SZerror M(5.55)
t=1 3=1

where
S= -M N [hDEM(i, ) - hSAR(i, j) (556)

herror = MN56)
2=1 j=l

and hDEM(i, j) is the DEM height interpolated from the DEM data at the (x, y) loca-

tion of the SAR pixel (i, j) and hSAR(i, j) is the inverted height from the unwrapped
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DEM resolution along azimuth = AXDEM
DEM resolution along range = AYDEM

SAR resolution along azimuth = AxSAR

SAR resolution along range = AYSAR

(id, jd) = DEM reference pixel location
(is, s) = SAR reference pixel location

of fsetx = jdADEM - sAXSAR
of fsety = idAYDEM -isYSAR

offset angle = 0os

Table 5.8: Registration definitions

interferogram pixel located at (i, j) after registration.

Table 5.8 is a list of the parameters used in the registration process. Furthermore,

the following direction standards are used. The azimuthal direction is the ' direction

and the range direction is the y direction. In addition, the interferogram data is in

matrix form where i indicates the row and j indicates the column and i = 1, j = 1

is located in the lower left corner of any displayed data. This means moving from

column j to j + 1 is the , direction and moving from row i to i + 1 is the y direction.

The entire DEM data set measures 601 x 1201 (i.e. rows x columns). The ,

direction contains 1201 data points separated by 3 arc-seconds and the y direction

contains 601 data points separated by 6 arc-seconds. The i direction goes from

South to North and the y direction goes from East to West. Each row of 1201 points

represents a line of constant longitude and each column of 601 points represents a line

of constant latitude. As such, AXDEM is constant throughout the image but 'AYDEM

is a function of the column number. The resolution decreases as the column number

increases; however, the change is less than .005% from column to column and less

than 5% over the entire image.

To begin the registration process, the height must be inverted from the SAR data

and then forshortened. Forshortening adjusts the position of each pixel along the

range direction to compensate for the fact that range pixels are not necessarily in

170



5.9. APPLICATION AND ANALYSIS OF TECHNIQUES ON REAL DATA 171

order as far as the ground dimension is concerned.

The next step is to pick out the same feature in the DEM and SAR images and

label those pixels (id, jd) and (i, js) respectively. In this work, the DEM reference

pixel does not move while the SAR reference pixel is both changed and moved in

order to minimize h"'r. Subsets of both data are used for this registration. The

subset DEM actual image size must be greater than the subset SAR image size so

that the SAR image may be shifted, rotated and compared without moving off of the

DEM image. An initial guess at the angle offset, 00o, is also chosen.

With 0o,, (id, jd), and (is, js) as a starting point, the SAR reference pixel is shifted

around (is, ji) until a minimum hrr is found. Next, small changes to 0o0 are made

until a minimum hrs is found again. Since the SAR data has a finer resolution

than the DEM data, for each hr,, calculation, DEM height values are found by

performing a two dimensional interpolation of the DEM data at the locations of the

shifted and rotated SAR pixel locations [143]. A finer spatial registration is done by

shifting the position of (is, j,) by offsets smaller that the DEM pixel resolutions until
a minimum h'r" is found.

error

To adjust for orbit errors that manifest themselves in uniform resolution errors

[155], the SAR resolutions in both the range and azimuthal directions are slightly

modified until a minimum h~,r is found. The resolutions are modified with

1
AXSAR AXSAR (5.57)

1 + km

and
1

AYSAR = AYSAR 1  (5.58)

by shifting kx and ky small amounts about zero. It is important to note each time the

range resolution is modified the height must be recalculated since the height inversion

algorithm depends on the range resolution.

The last step is to find a height offset that can be subtracted from the SAR
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1. Invert height and forshorten data.
2. Provide initial SAR range and azimuthal resolutions.
3. Provide initial DEM/SAR pixel match.
4. Provide initial offset angle.
5. Find optimum pixel match by minimizing RMS height error.
6. Find optimum angle by minimizing RMS height error.
7. Find optimum sub-pixel match by minimizing RMS height error.
8. Find optimum resolution scales.
9. Adjust SAR data to match DEM mean height.

Table 5.9: Registration steps.

Figure 5-12: Forshortening diagram.

inverted height so that the mean heights of both data subsets are equal. A summary

of registration steps is listed in Table 5.9.

5.9.3 Forshortening

As mentioned, forshortening adjusts the position of each pixel along the range

direction to compensate for the fact that range pixels are not necessarily in order as

far as the ground dimension is concerned. Figure 5-12 is a diagram that contains

the necessary elements to explain the forshortening process. The horizontal axis

represents the range direction and the vertical axis represents terrain height. The

diagonal lines represent four range bins, labeled 1, 2, 3, and 4, at a constant azimuthal

step. Any scatterer inside a range bin will return electromagnetic energy used to

calculate the height for that specific azimuthal step and range distance.
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Consider the three scatters, A-C, A and B are at the reference height of zero and

C is at a height, h above the reference height. If the terrain is flat and includes

scatters A and B, their returns will be in range bins 2 and 3 and thus converted into

the proper spatial arrangement i.e. A is to the left of B. However, if the terrain is a

hill and slanted upward including scatters A and C, the returns will be in range bins

2 and 1. In other words, scatterer C will be placed to the left of A because it was in

a lower numbered range bin. The result is a mismatch between the inverted image

map and the true map.

The spatial errors can be fixed by calculating the projection of the inverted height,

g, along the ground using

g=htan(- 0). (5.59)

The position of the pixel is then shifted by g. If g is positive, the pixel height is shifted

to the right and if g is negative, the pixel height is shifted to the left. In this way,

all pixels are shifted in the image. Equal pixel spacing is returned by interpolation

at the ground range resolution of the SAR configuration.

5.9.4 SAR/DEM Registration

Now that the registration process has been described, this section will provide the

details of the subset of data used to compare the the phase unwrapping techniques.

The registration was performed using a 300 x 200 set of DEM data points taken from

the northern portion of DEM image. Figure 5-13 shows the relative position and

Figure 5-14 is a gray scale representation of of the DEM subset with white and black

representing the highest and lowest elevations respectively. The SAR subset used for

registration included 150 x 150 pixels as shown in Figure 5-15. The terrain features

can easily be seen in both images. This is the first set of ERS data to be unwrapped;

we will refer to it as ERS-1 Data Set 1.
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(601)

r
(1201)

Figure 5-13: DEM subset: shaded square indicates subset used for registration.

(200)

(300)

Figure 5-14: Gray scale image of Alaskan DEM terrain used for registration.
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(512)

(512)

Figure 5-15: ERS-1 SAR interferogram: black rectangle represents the subset used
for registration (ERS-1 Data Set 1).
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Figure 5-16: Weighting mask based on coherence map, (ERS-1 Data Set 1).

5.9.5 Determination of data weights

The three types of weights described in Sections 5.3.2 and 5.6 were used to unwrap

the real phase data with the weighted least squares method. Figures 5-16 through

5-20 represent the weights applied to the interferogram of Figure 5-15. In these gray

scale pictures or masks white represents the largest weight of 1, black represents the

smallest weight of 0, and the grays represent continuous weights between 1 and 0.

Figure 5-16 is the mask based on straight coherence data and Figures 5-17, 5-18,

and 5-19 are the modified coherence masks with coherence thresholds, Cthr, of 0.8,

0.5, and 0.2. Setting Cthr = 0 is equivalent to no weighting (i.e. a straight least

square method) and setting Cthr = 1 is equivalent to straight coherence weighting

(Figure 5-16).
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Figure 5-17: Weighting mask based on coherence map with Cth, = 0.8, (ERS-1
Data Set 1).

Figure 5-18: Weighting mask based on coherence map with Cthr = 0.5, (ERS-1
Data Set 1).
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Figure 5-19:
Data Set 1).

Weighting mask based on coherence map with Cthr = 0.2. (ERS-1

Figure 5-20: Weighting mask based on residues (ERS-1 Data Set 1).
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5.9.6 Results

Data Set 1

This section includes a compilation of the height errors associated with four specific

phase unwrapping processes. The first is based on the straight least squares method,

Figure 5-21; the second and third are based on the weighted least squares method

using the coherence weighting and residue weighting schemes, Figures 5-23 and 5-27

respectively; and the last is based on the global optimal branch cut method, Figure 5-

24. The gray scale plots represent the errors based on location with white being the

largest positive error of 125 m and black being the largest negative error of -125 m.

Associated with each gray scale plot is a histogram of the pixel height errors, Fig-

ures 5-25, 5-26, 5-27, and 5-28. The spikes at zero are an artifact of the last step of the

registration process (Table 5.9) that matches the mean heights of the SAR and DEM

terrain images. On ERS-1 Data Set 1, the least squares methods impose a global

error in the inverted terrain height as indicated by the peak in the error to the left of

the 0 m error mark on the horizontal axis. The unweighted least squares unwrapping

process produced at peak at 40 m, while the coherence and residue weighting schemes

produced peaks at 25 m and 8 m respectively. The optimal branch cut method pro-

duces local errors indicated by the symmetric error histogram about the 0 m error

mark.

Using a weighting least squares method reduces the global error of the unweighted

least squares method. The new residue weighting scheme offered much better improve-

ment over the weighting based on coherence data. Figure 5-29 represents the

hrms error for the inverted height based on the weighted least squares method using

the modified coherence weighting scheme on ERS-1 Data Set 1. Over a twenty per-

cent reduction in the hrms error was realized over the no-weight least squares method

(Cthr = 0 when using this method. Figure 5-30 compares the branch cut method and

the weighted least squares method versus iterations of the Picard iteration method.
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Least Square Plot

Figure 5-21: Least square error plot (ERS-1 Data Set 1).

Weighted Least Square (Coherence) Plot

Figure 5-22: Weighted
Data Set 1).

least square error plot using coherence mask (ERS-1
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Weighted Least Square (Residue) Error Plot

Figure 5-23: Weighted least square error plot with residue mask (ERS-1 Data Set 1).

Branch Cut Error Plot

Figure 5-24: Branch cut error plot (ERS-1 Data Set 1).
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Figure 5-25: Histogram of least square height errors
deviation: 38.60 m.
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Figure 5-26: Histogram of weighted least square height errors using coherence mask
(ERS-1 Data Set 1). Standard deviation: 29.47m.
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50 100 150

Figure 5-27: Histogram of weighted least square height
(ERS-1 Data Set 1). Standard deviation: 18.26m.
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Figure 5-28: Histogram of branch cut height errors (ERS-1 Data Set 1). Standard
deviation: 15.15 m.
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0 0.2 0.4 0.6

Coherence Threshold

Figure 5-29: Comparison of hrms error versus Cthr setting of height
weighted least squares with coherence weighting on ERS-1 Data Set 1.

inverted with

On Data Set 1 data, the branch cut method performed exceptionally well with an

error of 15.15 m. The straight least squares method has an error of 38.60 m. The

weighted least squares method with residue weighting has an error of 18.26 m. And

finally, the weighted least squares with coherence weighting method has an error of

29.47 m. It appears that the branch cut method and the hybrid weighted least squares

method offered the best performance.

Data Set 2

In this section another set of ERS-1 data is use to study the various unwrapping

techniques. We'll call this data ERS-1 Data Set 2. The interferogram and its corre-

sponding coherence data are shown in Figures 5-31 and 5-32. This data set contains

256 x 256 pixels and the entire image is unwrapped. The corresponding DEM ter-

rain feature can be seen as the mountain peaks at the lower center of the map in

Figure 5-14. The residue mask is represented in Figure 5-33. Instead of showing

the grayscale error plots, just the height error histograms are shown here. The first

histogram represents the height error when the straight least squares method is used,

m l l l l l l l l l l l l l l l . . . . I . . . . I
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Figure 5-30: Comparison of height error versus iteration on ERS-1 Data Set 1.

Figure 5-31: ERS-1 Data Set 2.
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Figure 5-32: Coherence data for ERS-1 Data Set 2.

Figure 5-33: Weighting mask based on residues for ERS-1 Data Set 2.
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Method hrms (m) Time (s)
LS 74.85 8.43

W-LS (coherence) 39.18 43.64
W-LS (residues) 20.91 38.87

Global optimum BC 22.30 588.98
Local optimum BC 22.40 20.55

Table 5.10: Comparison of rms height error and CPU times for the phase unwrapping
methods. LS: least squares, W-LS: weighted least squares and BC: branch cut.

Figure 5-35; the second and third histograms are based on the weighted least squares

method using the coherence weighting and residue weighting schemes, Figures 5-36

and 5-37 respectively. The fourth histogram is based on the global optimal branch cut

method, Figure 5-38 and the last histogram, Figure 5-39, represents the height errors

due to a local optimum branch cut method. Table 5.10 lists the standard deviation,

(hmsr), for each method used. In addition to the error, the CPU times are provided.

These times are meant to show relative times. None of the code was optimized to

provide the fastest execution times.

The results of unwrapping ERS-1 Data Set 2 show that the least squares method

is not always appropriate for unwrapping SAR interferograms the rms height error

is almost twice the next largest error. The weighted least squares method using

the coherence data weighting scheme offers great improvement over straight least

squares, but as before, the residue scheme offers an still an additional improvement.

The residue weighted least squares and the global and local branch cut methods offer

the best rms errors of 20.91 m, 22.30 m, and 22.40 m respectively. However, their

respective CPU times are 38.87 s, 588.98 s and 20.55 s. The local branch cut method

is the fastest followed by the weighted least squares, but the global branch cut method

is very slow. The data set contains 2663 residue pairs and finding the optimum takes

almost 10 minutes. Figure 5-34 are grayscale pictures of the unwrapped phase of

Data Set 2 using the branch cut method with residue connections made with nearest
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neighbor, local optimum, and global optimum branch cut algorithms. One can clearly

see the effects of long branch cuts in the top image (nearest neighbor). Those phase

errors are removed with a local optimum scheme in the center image which is nearly

identical to the lower image (global). The center image was unwrapped in less than

4 percent the time necessary to unwrap the lower image with the global algorithm.

As before with ERS-1 Data Set 1, using a weighting least squares method reduces

the global error of the unweighted least squares method. The new residue weighting

scheme offered considerable improvement over the weighting based on coherence data.

Data Set 3

In this section another set of ERS-1 data is used to study the various unwrapping

techniques. We'll call this data ERS-1 Data Set 3. The interferogram and its corre-

sponding coherence data are shown in Figures 5-40 and 5-41. This data set contains

256 x 256 pixels and the entire image is unwrapped. The corresponding DEM terrain

feature can be seen as the horse shoe shaped mountain peak at the center of the

map in Figure 5-14. The residue mask is represented in Figure 5-42. The data

was selected to show the difficulty even the best methods have with high fringe den-

sity compounded with low coherence. Data Set 3 was unwrapped with the hybrid

weighted least squares method using the residue mask in Figure 5-42. The results are

shown in Figures 5-43 and 5-44. The unwrapping lost most of the height associated

the many fringes that wrap around the lower portion of the mountain peak. The

result is that the peak height is underestimated by over 120 m and the flat portion

at the base of the mountain is overestimated. The histogram shows a global error at

15 m. The global optimum branch cut method offers similar rms height error, 39.07 m

versus 39.33 m for the hybrid method. Several large portions of the map are over

estimated represented by the light patches on lower portion of Figure 5-45. Even

with the addition of many image residues on the boundary were not able to overcome
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Figure 5-34: Comparison of nearest neighbor (top), local optimum (center) and global
optimum (bottom) branch cut phase unwrapping for ERS-1 Data Set 2.
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Figure 5-35: Height error histogram for straight
ERS-1 Data Set 2. Standard deviation: 74.85 m.
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Figure 5-36: Height error histogram for weighted least squares method with coherence
weighting applied to ERS-1 Data Set 2. Standard deviation: 39.18 m.
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Figure 5-37: Height error histogram for weighted least squares metho
weighting applied to ERS-1 Data Set 2. Standard deviation: 20.91 m.
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Figure 5-38: Height error histogram for global optimum branch cut method applied
to ERS-1 Data Set 2. Standard deviation: 22.30 m.
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Figure 5-39: Height error histogram for local optimum branch cut method applied to
ERS-1 Data Set 2. Standard deviation: 22.40 m.

Figure 5-40: ERS-1 Data Set 3.
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Figure 5-41: Coherence data for ERS-1 Data Set 3.

Figure 5-42: Weighting mask based on residues for ERS-1 Data Set 3.
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Figure 5-43: Height error for hybrid weighted least squares method applied to ERS-1

Data Set 3. Standard deviation: 39.33 m.

the errors. An image residue was placed at the boundary for each true residue within

5 pixels from the interferogram's edge.

5.10 Summary

In this chapter, different phase unwrapping schemes were described and applied to

both simulated and real SAR interferograms. The techniques used were weighted and

unweighted least squares and optimal branch cut global and local methods. When

no noise is present phase unwrapping is straight forward and uninteresting; however,

when noise is present the phase unwrapping process in non-trivial and there is much

interest in proper treatment of the noise.

Although the least squares method is very fast because of the Discrete Cosine

Transform formulation, it does not treat noisy data very well as shown when at-

tempting to unwrap the simulated interferogram. Once the rms phase noise reached

350, the least squares method was unable to unwrap the phase data effectively. Up
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Figure 5-44: Height error histogram for hybrid weighted least
to ERS-1 Data Set 3. Standard deviation: 39.33 m.

squares method applied

Figure 5-45: Height error for global optimum branch cut method applied to ERS-1
Data Set 3. Standard deviation: 39.07 m.
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Figure 5-46: Height error histogram for global optimum branch cut method applied
to ERS-1 Data Set 3. Standard deviation: 39.07m.

to 35' rms phase noise, all phase unwrapping algorithms performed equally well be-

cause the noise was not great enough to produce phase inconsistencies in the form

of residues. At 35' rms noise there were only 34 residues in the image of 65536 pix-

els. However at 55' rms noise there were 4983 residues in the image of 65536 pixels

and both the residue (hybrid) weighted least squares and the optimum branch cut

methods kept the rms phase error to less than one radian.

Both the hybrid weighted least squares and the optimum branch cut methods of-

fered essentially the same error performance when applied to both simulated SAR in-

terferograms with additive noise and real ERS-1 interferograms. These methods con-

sistently showed improvement over the straight least squares and coherence weighted

least squares methods. Specifically, the methods offer over fifty percent reduction in

root mean square (rms) height error compared to the straight least squares method

and over thirty-five percent reduction in rms height error compared to the weighted

least squares method based on coherence data weighting schemes.

The global optimum branch cut method is appropriate when there are not that

many residues; however, the local optimum provide near identical results in far less

time. The branch cut methods is more likely to produce local errors as shown by the

symmetrical error histograms and the hybrid weighted least squares method produces
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a fairly symmetrical histogram especially when compared to the straight least squares

and coherence weighted least squares methods. In other words, using a weighting

scheme greatly reduces the global error introduced by the least squares method.

The hybrid method could be improved by using a different algorithm to solve the

weighted least squares problem that guarantees convergence. Although the Picard

iteration always converged in this application, simply selecting an iteration number

is not the best way to solve the problem. A conjugate-gradient solver as proposed in

[170] would guarantee convergence and prevent running unnecessary iterations.

The branch cut method could be improved by characterizing residues by their

source. For example, residue pairs due to speckle noise are close to each other and han-

dled quite effectively with the optimum methods. However, residues created by under

sampled fringes caused by very steep terrain features can produce residue pairs rela-

tively far apart and are not treated properly in the presence of many other residues.

If these residues can be isolated they can be handled separately as proposed in [163].

One way these residues could be found is by using the local optimum branch cut

method. When the local optimum algorithm cannot reduce the branch cut length of

a long cut, it probably means there is a non-noise produced residue in the vicinity of

the long cut. These areas can be flagged and treated with other techniques.
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Chapter 6

Conclusion

In this thesis, applications of numerical techniques to electromagnetic problems in

microelectronic and radar imaging systems were investigated. Dielectric rib waveg-

uide discontinuities were analyzed with the Finite Difference Time Domain (FDTD)

method. Within the FDTD framework, two techniques were applied to the study of

dielectric rib waveguides. First, Berenger's Perfectly Matched Layer was used to trun-

cate the multi-layered dielectric structure. Second, the rib waveguide's fundamental

mode was determined with a two dimensional FDTD simulation for subsequent use

in a three dimensional simulation. These numerical techniques were used to study

the effect of bend discontinuities in the rib waveguide.

An Impedance Boundary Condition (IBC) was developed for two dimensional

FDTD simulations that can replace thin sheets of highly conducting material. The

IBC accurately models the conductor loss over a wide frequency range. In this way, the

FDTD method is improved by allowing a method to model conductor loss without the

need for very large computational domains. The two dimensional IBC was validated

through the comparison of resonant cavity quality factors determined with the FDTD

simulation data and those calculated with analytical methods.

Phase unwrapping techniques for the inversion of terrain height using Synthetic

Aperture Radar Interferometry (InSAR) data were analyzed. A hybrid phase unwrap-

199



CHAPTER 6. CONCLUSION

ping technique that combines the weighted least squares method with the residues of

the branch cut method was presented. Optimal branch cut methods were also pre-

sented: a global one that includes all residues before placing any branch cuts and a

local one that uses a subset of residues to fix long branch cuts introduced when using

a nearest neighbor connection scheme. These new SAR phase unwrapping methods

were used to unwrap simulated and real SAR interferograms and then were compared

to straight least squares and other weighted least squares methods.

6.1 Analysis of Dielectric Waveguide Discontinu-

ities

A study of the Perfectly Matched Layer showed that the PML conductivities used to

absorb the outgoing waves in a multiple dielectric layer simulation must not be as-

signed independently with the method of normal incidence used by Berenger. Instead,

once one of the layer's conductivities is calculated the others must be constructed so

that the loss tangents in each layer are equal. With this done, there will be no re-

flection coefficient singularities in both the normal and tangential directions and the

PML will simulate open space to the maximum extent possible under the discretiza-

tion scheme. If the interdependency of the dielectric layers is ignored even though

each layer is perfectly matched, the material differences at the interfaces act as sources

for unwanted solutions that contaminate the simulation volume. With the matching

conditions determined for multi-layered dielectrics, dielectric rib waveguide structures

were terminated with the Berenger Perfectly Matched Layer and each dielectric layer

was matched considering all the layers within the simulation volume.

It was shown that the computational domain can be reduced when simulating

dielectric rib waveguide with the FDTD numerical technique when the waveguide

fundamental mode's spatial distribution is calculated first and used to excite the

guide. The better excitation means that shorter distances between the excitation
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plane and the discontinuity are needed for the mode to settle. A reduction of twenty

percent was shown. This reduction implies bigger problems can be simulated within

the same time as those simulations using other excitation techniques, or the same

simulations can be run in shorter times.

Although the dielectric rib waveguide provides very low loss for high frequency

signals compared to microstrip or coplanar structures, the rib waveguide bend does

introduce a significant amount of loss. As the abruptness of the turn is lessened, the

rib guides more energy around turn; however, gradual turns require more space on

an integrated circuit. With the improvements to the FDTD method presented, rib

bend structures can be studied to improve their loss characteristics.

6.2 Modeling of Thin Finite Conductivity Sheets

A new Impedance Boundary Condition for good conductors, satisfying 1 << -2, was

extended for use in two dimensional FDTD simulations. The IBC was described in

great detail and studied in one dimensional simulations. The influence of FDTD

parameters and the number of IBC expansion terms on the accuracy of the IBC was

presented. The results showed that the time step constraint is more stringent than

the Courant stability limit. The time step must satisfy At < A.

The conductivity range studied spanned four orders of magnitude from 104 to

10 Q2-1m - 1. Two variations of the IBC were investigated: one that approximates

the convolution with a piecewise constant magnetic field and another that uses a

piecewise linear magnetic field. When a piecewise constant approximation is used

for the magnetic field, the amount of computer resources (as measured by number of

expansion terms) is directly proportional to the conductivity. Lower conductivities

result in larger pole magnitudes and lesser sensitivity to an increased number of terms.

The piecewise constant approximation produces an error that cannot be overcome

by more expansion terms. The errors from the impedance approximation and the
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magnetic field approximation combine to form an optimum number of expansion

terms. Using more than the optimum number of terms will result in less accuracy.

On the other hand, with a piecewise linear approximation, the error to the magnetic

field is greatly reduced and an optimum number of terms is not evident. The more

terms used the more accurate the IBC; however, the error quickly levels off.

When extended to two dimensions, the impedance boundary condition works very

well over the wide range of skin depths studied, 3 -+ 185. The lowest conductivity,

a = 5.8 x 104 Q-1-1m , offered the biggest error of almost 13%, but the error was very

small at conductivities near those of the most popular conductors of silver, copper,

gold and aluminum. The IBC is an excellent model for thin sheets of good conductors

with finite conductivity. The IBC offers the advantage of working over a wide range

of frequencies with very little computational overhead. For typical conductors, like

copper, 125 terms per tangential electric field component are needed with errors in

Q less than 5%.

6.3 Phase Unwrapping of SAR Interferograms

Numerical techniques to unwrap the phase of synthetic aperture radar interferograms

were investigated. The foundations of phase unwrapping were described, specifically

least squares and optimal branch cut unwrapping. New modifications to these tech-

niques were applied to both simulated and real interferograms. After the application

of these techniques to the real SAR data, the phase was used to invert terrain height

and the height was compared to ground truth.

Although the least squares method is very fast because of the Discrete Cosine

Transform formulation, it does not treat noisy data very well. In simulated SAR

interferograms, once the rms phase noise reached 350, the least squares method was

unable to unwrap the phase data effectively. Both the hybrid weighted least squares

and the optimum branch cut methods offered essentially the same error performance
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when applied to both simulated SAR interferograms with additive noise and real

ERS-1 interferograms. These methods consistently showed improvement over the

straight least squares and coherence weighted least squares methods. Specifically,

the methods offer over fifty percent reduction in root mean square (rms) height error

compared to the straight least squares method and over thirty-five percent reduction

in rms height error compared to the weighted least squares method based on coherence

data weighting schemes.

The global optimum branch cut method is appropriate when there are not that

many residues; however, the local optimum method provides near identical results

in far less time. The branch cut methods are more likely to produce local errors as

shown by the symmetrical error histograms and the hybrid weighted least squares

method produces a fairly symmetrical histogram especially when compared to the

straight least squares and coherence weighted least squares methods. In other words,

using a weighting scheme greatly reduces the global error introduced by the least

squares method. In fact, the hybrid method closely approaches the desirable local

error distribution of the branch cut method.

6.4 Outlook

Although much was accomplished in this work, improvements can always be made

and more could be done. The most logical extension of the dielectric waveguides

work would be to thoroughly investigate ways to reduce the loss through the turn

discontinuity. Different geometries and materials could be tested to reduce the loss

while keeping the size small. In the Impedance Boundary Condition work, the IBC

could be extended to three dimensions. Finally, the InSAR weighted least squares

phase unwrapping technique, in this work, could be improved by replacing the Picard

iteration algorithm with another solver that will improve the convergence properties.

The optimal branch cut methods could be improved by characterizing the residues by
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there most likely source. In this way, residue pairs that may be relatively far apart

can be handled separately leaving the optimum algorithm to connect the pairs that

should be close together.

Despite the increases in computational power that result from improving computer

technology, electromagnetic problems require large amounts of computer resources.

Finding better numerical techniques or improving existing numerical techniques will

continue to be worthy goals.



Appendix A

Mur FDTD Equations

Given a computational domain with boundaries x = 0, NT, y = 0, N, and z = 0, Nz,

the tangential electric fields at all six boundary faces must be updated with the ABC

equations. For completeness, all the field equations are listed below.

A.1 1st Order Mur FDTD Equations

E +(i + -1 0, k) = Ex(i +
2'

coAt - Ay
+ coAt + Ay [E ( +

1
, 1, k)

2
1 ,
2'

1 1
En+1(i + N,, k) = E(i + N - 1, k)
x;'( 2 ) E, 1

coAt - Ay 1( +
coAt + Ay 2'

1
k) - E"(i + -, 0 k)122 (A.1)
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coat - Az 1 1
+ [E+'1(i + j, 1)- En(i +- j 0)]coAt + Az 2' 2

(A.3)
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A.2 2nd Order Mur FDTD Equations

The second order Mur equations are substantially more complicated than the first

order Mur, they are
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A.2. 2ND ORDER MUR FDTD EQUATIONS
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+ cAt + Ax [E (Nx,j,k + -) + E(NX - 1,j,k + )]

Az(coAt) 2  3 1
+ x[E(Nx, j, k++ ) - 2Ez(Nx, j, k + i) + Ez(Nx, j, k

2(Az) 2 (coAt + AX) 2 2
3 1 1

+E(N-,jk+ )-2E2(N- 1,j,k + 2) + E2(N 1,j,k - )
+E (N - Ij -)..
AX(coAt) 2  1 1

+ [E-(Nx 1, + ) - 2Ez(N, j, k + )+ E (Nx j
2(Ay)2(coA t + Ax) 2 2

1
- 1, k +-)2

1 1 1
+Ej(Nx - 1, j, k + -) - 2Ez(N - 1, j, k + -) + Ez(N - 1, j - 1, k + -)]2 2 2

1 1
En+l(i, 0, k+ ) = -E z -(i, 1, k+ )

2 2
coat - Ay 1 1
+ [EAf+l(i,1, k+ -)+ E(i,1,k+ )]
coAt + Ay 2 2

2Zy 1 1
+ 2A [E2(i, 0, k + ) + E 1(i, 1, k + )]

coAt + Ay 2 2

Ay(coAt)2 3
+ Ay(coAt [E(i, 0, k + -) - 2E(i, 0, k

2(Az)2 (coAt + Ay) 2

(A.23)

1+ )2
3 1 1

+E(i,1, k+ )-2Ez(i, 1 k + ) Ezn(i, 1, k- )]
2 2 2

+ y(A)2oAt+ Ay) -2

+Ez(i + 1, 1, k +I -) - 2En(i, 1, k + -) + En(i - 1, 1, k + )]
2 2 Z2'

1
2

1, 0, k+ )2

and

1 1
En+)(i , 1 -Enl(i, 1)E, *(i, N, k + 1) = - E-l(i, N - 1, kI + -)Z 2 2

coat - Ay 1
+ t [En+I(i, N-1, k + ) + En(i,
coAt + Ay 2

2Ay 1
+ co Ay[E2 (i, Ny k + - ) + E(i, N, - 1, k +coAt + Ay 2

N,- 1,k +

1
2)2

(A.22)

1
- )2

1
2)
2

(A.24)
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Ay(coAt) 2
+ [E

2(Az) 2 (coAt + Ay)
3

+E(i, N -l, k + 2
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3 1 1
N,, k + -) - 2E(i, N,, k + -) + E(i, Ny, k - -)2 2 2

- 2En(i, N,
Ay(coAt) 2

+ t [En(i + 1, N,, k
2(Ax) 2(coAt + Ay)

1
+Ez(i + 1, Ny - 1, k + ) - 2En(i,2

1 1
- 1,k+ -)+Ez(i,N- 1,k- )1

+ 2) _ 2Ez(i, Ny, k + 2) + E2(i - 1, N), k1 1

N - l,k+-) +E(i- , Ny- 1,k + )].2 2

1
+ -I)2



Appendix B

FDTD PML Difference Equations

The the difference equations for the twelve PML fields are listed below.

1
E"l(i + 2,j,k)

1I
E" (i + 2,j,k)

1 1
= Ce( + ~, j, k)E( + 2, j,k)

+ COe(i + ,j,k) [H (i+ -+,j

1 1
SC~(i +jk)E(i + -,j,k)

XZ 2

-C~e(i + , j,k) [H (i+

1 2q
-

+- 2,k)- Hz+ 1 (i

(B.1)

+ 2 ,j - 2,k)

(B.2)

1 ,

2 2 2)]
- Hy (i + j, k -2

Ey" (i,jI +
1
Sk)

2'

1
= 2Ce(i, + ,

- C•e(i,j + ,
2'

2
n+1

k) H z (i + ,j + k)2'

(B.3)

2 21 k)']J

1 1

C e(i,j + , k)•Enz•(i, + 2, k)

+ C2ze(ij+ k) [H2(ij+ ,k+

(B.4)

- Hc+(i,j + 1+2 ,- 1\12' 2J
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E,"+l(i, j, k +

Eznl(i, j, Ik +

= Ce(i, j, k+

+ Ce(i,j, k +

1
-)Enzx(i,2

1
j,k+-)

2
1 )1f + 2

k

1 1
Cle(i, j, k+ 2 )E(i, j, k+ 2)

. 1 [ ( n+ 1!
- C (i,j, k + ) H (ij + Ik2 2

1
+ 1)2

+ 1)
+

- 2(i, -

- H,"+ (i, j -

where the two constants, Ce and C0 e a = x, y, z, are given by

Cle(i, j, k) = e - 0"(i ,3 ,k)At/E(i,j,k)

and

ce(i, (1 - Ce(i, j, k))C20 (i, j, k) =

(, (i, j, k) Aa

Similarly, the the difference equation forthe magnetic fields used in the PML region

of the computational domain are

l~ 1 1
H~ (i, j + , k + )

2' 2

11 -1 jk + -)H xy (i,j2 2- crn(i,j +
1

1,k+ ) -2

H nz (i,j +
1 1
-1 k + -)2 2

1 1 1 1
2k +)H, 2(i, + k+ )
2 2 2

1 [i
+ COm (i,j+ ,k+2) EE(i,j+-,k+1)-+ 2 2' 2 )[EY

1
= Cm(i + ,

1 2
f 1 1

H+ (i + 1, j, k +2 2
1 ni1

j, k + -)H? (i +2
1 1 [

+ C§m(i+-•,j,k+-) E(i+
2 2L

1
j, k + )

2
1

1,j,k+ )-2

(B.10)

1 ]
E "(i,j + ,k)

(B.11)

1•
E(i,j,k +-]2

(B.5)

j,k+ )

(B.6)

1 11
2' 2]

(B.7)

(B.8)

+ 1, k +2 (B.9)

1( lE"(i, j, k + -2 1
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1+ 1 11 1
= Cm(i ,j,k + )H2 (i+ -,j, k+ )

2 2 2 2
1

- Czm(i+ , jk2 '
1+ 2 1

E(i +2,jk + ) - E'(i +

1 1 1n-
= C m(i + , + - k) Hzx (i

1 2 2'
1

Cm(i + 2 2 2! k) [E (i +

1 1S-I y + I, k)
2 2

1
1,j+ , k)-

2'

(B.13)

1
E"(i,j + 2'

n+1 1
H 2 (i + ,j

2

1
+ -, k)

2'
1 1 1 1 1

= CYm(i + -,+ k)Hzny- " (i + -, j + -, k)
2 2 2 2
1 1 (i+ I

+ C2ym (i + -,j + , k) E(i ,j + 1,k)
2 2 2

where the two constants, C"m and C2m are given by

Clim (i, j, k) - e- a (i j k)A t /~o

and
(1 - ccm(i, j, k))

am (i, j, k) A

The PML coefficients are a function of position, direction and the field type. They

are functions of position because both the permittivity and the PML conductivity

are functions of position. They are functions of direction since the spatial deriva-

tive approximations are functions of grid size which in general are different for each

direction. Finally, they are functions of field type since electric and magnetic field

equations depend on electric and magnetic conductivites respectively.

As previously stated the PML conductivities are derived by the continuous equa-

tion,

0e,m _e,ma c max a = x,y,z.
()d)

n

1 1 1
H + (i + - j, k + -)2 2
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n+i 1
Hzx 2 (i + -,• j2

1
+ k)2•

(B.12)

1
2'

(B.14)

En(i + , jk)x 2 11 )

(B.15)

(B.16)

(B.17)
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where ck mnax is the maximum conductivity and d is the PML thickness such that

d = niayersAa (nl,,aers is the number of discretized PML layers). The discretized

electric conductivity (in the y direction for example) is calculated by

Y(jY) a- g y e yma( dy. (B.18)

Since the magnetic conductivities are shifted by half a grid space compared to the

electric fields, the magnetic conductivites are also shifted so that

a ( j +-- Ay) (ly max dy. (B.19)

AY (-1)ay =ymax JY

As equations (B.18) and (B.19) show, the discretized conductivities are calculated as

the average conductivity over one grid dimension centered at the field location.

With a uniform grid, the coefficient direction dependency is removed. In a single

media environment, the coefficents are just a function of the PML layer and the field

type. For example, C'e, CC2,C C m , and C2m become

Ce(1)= e- 0Mea g(1)a tl o ,  (B.20)

C() - (1 - C0(l))
C2 eax ,  (B.21)

CM(1) = e -mmaxg(l )At/o ° ,  (B.22)

and

C(1 - CI())
mmag) , (B.23)

where 1 is the index of the PML layer and g(l) is a grid factor defined as

g(1) = g(IA) = -a d, ad = x, y, orz. (B.24)
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Since one of the PML matching conditions is

Um o e

I-o Fo

(B.25)

the first coefficient is field independent, i.e. C' = Cml = C1.

Furthermore, if there is another media with (e1, po) then

Cel(l) = e- a m
ax g(l )A t/ l,

(1 - Cel (1))
Ci2 (1) e 1

a1 max g(1)A A
Since the PML matching conditions between two dielectrics is

we n e

E1 g60

we see that the first coefficient is media independent, i.e. Ce, = C'I.

(B.26)

(B.27)

(B.28)

Now let there be N different dielectrics defined by their permittivities, e, 7y =

0,1, 2,..., N using freespace as a baseline (a = 0) then the final equations for the

formulation of FDTD PML coefficients are

(B.29)

(B.30)

and

C e (1 - Co (l))
Tey2h ee =fc ti2 •0 max -0o 9 (l

The magnetic coefficients are defined by

(1 - Co1(0))Om (1) =
0- max Ey to

(B.31)

C•,1 (l) = Col (l)
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which simplifies to
C() (1 - Col(1))

m -(1) = e o (1)A' (B.32)
0 max 60

becoming media independent. Note that when ae = 0 then the PML explicit expo-

nential equations become standard Maxwell's difference equations, where

Col 1  1, (B.33)

Ce2 = At (B.34)

and

C At (B.35)ý2 p 0LA'



Appendix C

Transportation Problem

The transportation problem is used to construct a solution to the optimal set of

branch cuts that minimizes the total branch cut length.

C.1 Introduction

The transport problem is a specific example of a wide class of linear programming

problems [181]. Essentially the problem is to minimize the cost of transporting goods

to m locations with n supply vehicles. Mathematically the transportation problem

minimizes the total cost defined by

m n

z = EE cjXij, (C.1)
i=1 2=1

within the constraint that a supplier (supply node), i, can supply no more than ai

units,

I xi,yj ai, i = 1,2,... ,m, (C.2)
j=1

and each receiver (demand node) j must receive at least bj units,

m

Xjy > bj, j = 11,2,...,n (C.3)
i=1
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j=1

j=--2

Figure C-1: Transportation network.

and no units are shipped from demand nodes to supply nodes,

(C.4)

and the cost of shipping one unit from the ith supply node to the jth demand node

is ci,3. The values ai, bj, and ci,,, are nonnegative integers.

This problem can be constructed as a directed network with a set of nodes, V,

and a set of edges, E. A directed edge is a connection between two nodes that has

a defined flow direction. The network is bipartite and complete. Bipartite means

that the nodes can be divided into two distinct groups; in this case the supply nodes

(i = 1, 2,... , m) and the demand nodes (j = 1, 2, ... , n). Completeness implies

all the nodes are somehow connected to each other. In the transport problem each

supply node has an edge to each of the n demand nodes and each edge has a unit

cost, ci,j, associated with using it. So the whole problem boils down to finding the

shipping amounts, x,,j, that minimize the total cost z. Figure C-1 is a graph of the

transportation problem.
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The problem can be solved only if there are enough units in supply to meet the

demand,
m n

i=1 j=1

where the b3 is the demand at node j. All the deliveries to demand node j should add

up to the total demand,

Z xi,3 = bj.
i=1

If there are exactly enough units in supply to meet the total demand,

m n

E a, = Eb3,
z=1 j=1

then every solution will satisfy the inequalities (C.2) and (C.3). So, to solve the

problem an additional demand node, n + 1, may be added with a demand equal to

the excess supply,
m n

bn+l = a, - Ebj
i=1 j=1

that costs nothing to deliver i.e. ct,n+l = 0.

The solution approach is to transform the problem into finding the maximum flow

through a network.

C.2 Maximum Flow Through a Network

Given a network, N = (V, E), there is a source node, s, and a sink node, t. Each

edge has a capacity, ki j. The flow through any edge, xi,j, must satisfy 0 < Xz,j < ki,j.

Furthermore, all the nodes other than s and t must obey a conservation of flow given

by

Sxi, - zj,j = 0,
i 1

where i are the edges flowing into node j and 1 are the edges flowing out of node j.

If we define f(t) as the flow into the sink node t, then we want to find the set of zi,j
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such that f(t) is a maximum.

To find the maximum flow in a network, we look for any path from s to t that

can augment the flow. As we search possible edges for inclusion into an augmenting

path, if the (i, j)th edge is in the direction of the flow, then x,,j must be less than kij,

for this edge to be included; if the edge is in the direction opposing the flow then x,,j

must be nonzero to be included.

To find a path from s to t that augments the flow, a systematic process of labeling

and scanning the nodes, starting at s and ending at t, is performed. At any give time

in the search, a node can be in one of three states: 1.) unlabeled and unscanned; 2.)

labeled and unscanned; or 3.) labeled and scanned.

Each edge has a capacity, k,,j, and a flow xi,,. The capacities are fixed and the flows

are varied to achieve the maximum flow. All flows are initially set to zero (xi,j = 0).

Thus, in the beginning, any path with positive flow from s to t will be an augmenting

path. The labeling of a node, j, assigns two numbers to it: 1.) a source node, i, (not

necessarily s and 2.) the maximum augmentation flow possible, f3, from that source

node.

All nodes start as unlabeled and unscanned. We start by labeling s with (-, oc).

There is no source node feeding s since it is the first node in the path and it has

an infinite capacity to augment the flow. Node s is now considered labeled and

unscanned.

Next, for any node j that is labeled with (i, fj(or - fj)) and unscanned, the node

is scanned by labeling all of its adjacent nodes, 1, that are currently unlabeled. If

an edge is directed from node j to node I and the edge has excess capacity (i.e.

xij < k ,,,) then we label node I with (j, fl) where fi is the maximum amount of the

flow that node j can augment to node 1 through edge (j, 1). The amount that the

flow can be augmented is the minimum between fj (the amount at node j available

to augment) and k,,, - xij (the excess capacity available to augment).

If the edge is directed from node 1 to node j and the edge has nonzero flow (i.e.
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x,,j > 0) then we label node 1 with (j, -fl) where fi is the maximum amount of the

flow that node j can augment to node 1 through edge (j, 1) which is the minimum

between fj (the amount at node j it can take from 1) and xij (the most the flow can

be reduced through the edge).

The labeling and scanning continues until the t node is labeled with (1, ft) or no

path can be found to t to augment the flow. If no path is found, the flow is maximized

and the problem is solved. If an augmenting path is found, then the edge flows (xz,j)

through the path are reassigned to increase the flow from s to t by ft. Next all the

labels are removed and the process starts over.

There is a theorem in Graph Theory called Ford-Fulkerson that states when the

labeling algorithm terminates the flow is optimal. Furthermore, if the algorithm

always uses the shortest augmenting path (i.e. fewest edges) the time to solve the

problem is on the order of nm 2 where n is the number of nodes and m is the number

of edges.

C.3 Transportation and the Maximum Flow Prob-

lem

The transportation problem can be transformed into a maximum flow problem so

that the algorithm above can be used.

First, we insert a source node s to the left of the m supply nodes si, i =

1, 2, ... , m. A directed edge with capacity ai is drawn from s to si. Next, we insert a

sink node t to the right of the n demand nodes tj, j = 1, 2,..., n. A directed edge

with capacity bi is drawn from ti to t. Figure C-2 is a representation of the network

used to solve the transportation problem. Unlike the original graph not all edges

between the source and demand nodes are allowed.

By duality in Graph Theory, we may assign dual variables ui and vj to the con-

straints of the transportation problem, and where the old problem minimizes a quan-
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Figure C-2: Transportation as a maximum flow network.

tity, the new problem maximizes a new quantity based on the old constraints. In this

case, the quantity
m n

-Eu"ai ±+ EZzt
i=1 j=1

is maximized within the constraints

-u + v3 < cz,j

and

u2,vJ > 0.

Now the edges from si to tj are allowed if the dual variables satisfy -ui + vj = cij.

Each of these edges has infinite capacity. Given a set of u, and vj, a network is

constructed and the maximum flow is found. However, the original transportation

problem demand constraints must be checked to see if they are satisfied i.e.

m

> bj?
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The original supply constraints are inherently satisfied by setting the capacity between

the source node s and the supply node si to ai.

If the demand constraint is met the problem is done; otherwise, a new set of ui

and vj is found that does not change the current edge flows. In other words new edges

must be established. To create new edges we define a flow increment, 6,

6 = min[c,,j + ui - v, : i E I, jE J]

where I is the set of labeled supply nodes and J is the set of unlabeled demand nodes.

In this step we're looking for the lowest cost path that is not currently being used.

Then the new dual variables are ui = ui if node si is labeled and ui = u, + 6 if s, is

unlabeled, and vj = vj in node t3 is labeled and vj = vj + 6 if t3 is unlabeled.

Then the maximum flow algorithm is run and the demand constraints are exam-

ined again. The process repeats until the demand constraints are met.

C.4 Application to Branch Cut Connections

The connection of positive and negative residues to form branch cuts is a very special

case of the transportation problem. We can consider the positive residues as the

supply nodes, i, and the negative residues as the demand nodes, j. Since there are

an equal number of positive and negative residues, m = n. Furthermore, since a

single positive residue can connect to exactly one negative residue, we have a, = 1

and b, = 1. Finally, the cost, cij,, of transporting one unit from supply node i to

demand node j, is the distance (by pixel location) between the corresponding residue

pair defined as lij.

Solving the transportation problem with

225
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b3 = 1, j = 1,2,...,n,

and

Ci,j = l1, 3

is equivalent to finding the set of branch cut connections that minimizes the sum of

all branch cut lengths.
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