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ABSTRACT

This thesis focuses on the use of a new sequential adsorption technique to deposit
thin polyelectrolyte multilayer films. This involves alternately dipping a substrate into
dilute aqueous solutions of a positively charged polyelectrolyte followed by a negatively
charged polyelectrolyte, with a rinsing step in between. By repeating this process an
arbitrary number of times, a thin film can be built up due to the electrostatic interaction
between the two oppositely charged polyelectrolytes.

This technique was used to create thin film electroluminescent devices based on
poly(p-phenylene vinylene) (PPV) using a water soluble precursor to PPV and
poly(acrylic acid) (PAA). The structure of such films has been shown to be highly
dependent on the conditions of the dipping solutions. The pH of the solutions controls
the degree of ionization of the PAA which influences the deposition process by affecting
both the conformation of the PAA in solution as well as the charge density of the PAA on
the surface. These films exhibited a light output of greater than 1000 cd/m 2 (about 10
times the brightness of a computer monitor), significantly higher than that typically
reported for films of pure PPV. A time dependent charging process together with a
reduction in the turn-on voltage with charging, and a non-rectifying device behavior,
suggest an electrochemical mode of operation. In such a case, ions present in the film
play an active role by modifying the electrical injection characteristics.

More fundamental studies on the impedance and dielectric characteristics of
sequentially adsorbed films were performed on layers of poly(allylamine hydrochloride)
(PAH) with PAA as well as PAH with sulfonated polystyrene (SPS). This provided some
insight into the level of ionic conductivity present in these films. Typically ionic
conductivites were observed that ranged from about 10-12 S/cm at room temperature up to
about 10-8 to 10-9 S/cm at 1 100C. The apparent dielectric constant also increased to
relatively large values at low frequencies implying the buildup of ions at the interface.
The PAH/SPS system required much higher temperatures than the PAHIPAA system
before any significant change in the electrical characteristics were observed suggesting
that ionic motion is much more hindered in PAH/SPS films.

Thesis Supervisor: Michael F. Rubner
Title: TDK Professor of Materials Science and Engineering



TABLE OF CONTENTS

TITLE PAGE ............................................................................................................... 1

ABSTRACT ........................................................................................................................

TABLE OF CONTENTS ............................................................................................ 3

LIST OF FIGURES AND TABLES.........................................................5

ACKNOWLEDGMENTS .................................................................................. 8

1. INTRODUCTION AND BACKGROUND ............................................................... 10

1.1 GENERAL INTRODUCTION ............................................... .......................................... 10

1.2 POLYELECTROLYTES ............................................................................................... 11

1.2.1 General information and solution behavior............................. ...... 11
1.2.2 Sequential multilayer adsorption ......................................... ....... 15

1.3 ORGANIC MATERIALS AS LIGHT EMrlTERS............................... ............ 17
1.3.1 General information and materials of interest............................ ..... 17
1.3.2 Light emitting devices - LEDs and LECs ....................................... ..... 23

1.4 IMPEDANCE SPECTROSCOPY (IS) ............................................. ....... 26
1.4.1 General information and theoretical background ............................................. 26
1.4.2 Theory of Dielectrics....................................................31

2. SEQUENTIAL ADSORPTION CHARACTERISTICS OF PPV/PAA
POLYELECTROLYTE MULTILAYERS ...................................... 34

2.1 INTRODUCTORY REMARKS ............................................................. 34
2.2 EXPERIM ENTAL.............................. ...... ................................................................ 34
2.3 FILM THICKNESS ................................................ ............... ........................ 36
2.4 SOLUTION CONCENTRATION EFFECTS .......................................... .......... 38

2.5 SOLUTION PH EFFECTS..................................................................................42

2.6 THERMAL CONVERSION ISSUES ........................................................ ..............48
2.7 SUMMARY ................... ............................................................................ ................ 52

3. LIGHT EMITTING DEVICE CHARACTERISTICS OF PPV/PAA
SEQUENTIALLY ADSORBED POLYELECTROLYTE MULTILAYERS ...... 53

3.1 INTRODUCTORY REMARKS.......................................................... .. 53

3.2 EXPERIMENTAL .................................................................................................... 55
3.3 EFFECTS OF PPV/PAA FILM PREPARATION CONDITIONS ON DEVICE PERFORMANCE ..57

3.4 MECHANISM OF DEVICE OPERATION .......................................................................... 63
3.5 MODIFICATION TO THE PPV/PAA DEVICE STRUCTURE........................................74

3.6 SUMMARY ............................................................................. 78

4



4. DIELECTRIC PROPERTIES OF PAH/PAA AND PAHISPS SEQUENTIALLY
ADSORBED POLYELECTROLYTE MULTILAYERS ................. 79...................7

4.1 INTRODUCTORY REMARKS ...........................................................79
4.2 EXPERIMENTAL................................................................................................ 82
4 .3 R ESU LT S .................................................................................................................... 83

4.3.1 Basic Device Behavior and Modeling................................. ....... 83
4.3.2 PAH /PAA Film s.................................................. ........................................... 88

4.3.2.1 Temperature Dependencies ........................................... ....... 88
4.3.2.2 pH Dependencies ............................................................................ 95
4.3.2.3 Post Sequential Adsorption Treatment ..................................... ..... 99
4.3.2.4 Effects of Moisture ..................................... 101

4.3.3 PAH /SPS Layers............................................................................................... 104
4.3.3.1 Temperature Dependencies ........................................ 104
4.3.3.2 Effects of Moisture ..................................... 108

4.4 DISCUSSION AND SUMMARY ...................................... ........................................... 109

5. SUMMARY AND CONCLUSIONS ........................................................................ 114

BIBLIOGRAPHY ...................................................................................................... 120

cx^^:"-- .



LIST OF FIGURES AND TABLES

FIGURE 1-1 - SOME TYPICAL POLYELECTROLYTES........... ........................................................................... 11

FIGURE 1-2 - SCHEMATIC OF THE ELECTROSTATIC SEQUENTIAL ADSORPTION TECHNIQUE 8 ... . .. .. .. .. . .. . 16

FIGURE 1-3 - POLYELECTROLYTE PRECURSOR TO PPV USED TO FABRICATE LIGHT EMITTING DEVICES............. 17

FIGURE 1-4 - CHEMICAL STRUCTURES OF SOME REPRESENTATIVE CONDUCTING POLYMERS............................. 18

FIGURE 1-5 - STRUCTURES OF POLARONS, BIPOLARONS, AND EXCITONS INA CONJUGATED POLYMER2 8 .......... 20

FIGURE 1-6 - BAND DIAGRAMS OF POLARONS, BIPOLARONS, AND EXCITONS INA CONJUGATED POLYMER ........21

FIGURE 1-7 - A SCHEMATIC AND BAND DIAGRAM REPRESENTATION FOR A PPV LIGHT EMITTING DEVICE UNDER

FORWARD BIAS .........................................................................................................................24

FIGURE 1-8 - IDEAL IMPEDANCE RESPONSE OF A RESISTOR AND CAPACITOR IN SERIES AND IN PARALLEL........... 29

FIGURE 1-9 - IDEAL DIELECTRIC RESPONSE FOR A SINGLE RELAXATION PROCESS...............................................30

FIGURE 2-1 - ABSORBANCE SPECTRA OF PPV/PAA FILMS AS A FUNCTION OF THE NUMBER OF BILA YERS

DEPOSITED - PPV PRECURSOR SOLUTION PH=4.5 AND CONCENTRATION=10 -4 M, PAA SOLUTION

PH=2.5 AND CONCENTRATION= 10 2 M......................................................... 36
FIGURE 2-2 - ELLIPSOMETRIC FILM THICKNESS - SAME DEPOSITION CONDITIONS AS IN PREVIOUS FIGURE.........37

FIGURE 2-3 - DEPENDENCE OF THE INCREMENTAL THICKNESS VALUES OF PPV PRECURSOR AND PAA ON PAA

CONCENTRATION ....................................................... ......................................................... 40

FIGURE 2-4 - DEPENDENCE OF THE INCREMENTAL THICKNESS VALUES OF PPV PRECURSOR AND PAA ON PPV

PRECURSOR CONCENTRATION...................................... ....................................................... 40

FIGURE 2-5 - SCHEMATIC OFA GENERIC ADSORPTION ISOTHERM............... ....... ................ 41

FIGURE 2-6 - PH MATRIX SHOWING THE DEPENDENCE OF THE INCREMENTAL THICKNESS VALUES OF PPV

PRECURSOR AND PAA ON SOLUTION PH ................................................................................ 42

FIGURE 2-7 - THE INFLUENCE OF PAA SOLUTION PH DURING FILM GROWTH ...................................... 43

FIGURE 2-8 - THE INFLUENCE OF PPV PRECURSOR SOLUTION PH DURING FILM GROWTH...............................44

FIGURE 2-9 - DEPENDENCE OF THE INCREMENTAL THICKNESS VALUES OF PPV PRECURSOR AND PAA ON

SOLUTION PH WITH BOTH SOLUTIONS MAINTAINED AT THE SAME PH VALUE..............................45

FIGURE 2-10 - INFLUENCE OF SOLUTION PH AT HIGH PAA CHARGE DENSITIES (HIGH PH)...............................46

FIGURE 2-11 - PPV PRECURSOR/PAA FILM THICKNESS AFTER SUBMERGING IT IN WATER ADJUSTED TO THE
INDICATED PH FOR 1 HOUR....................................... ......................................................... 47

FIGURE 2-12 - SCHEMATIC OF THE SEQUENTIAL ADSORPTION AND THEN THERMAL CONVERSION OF PP V
PRECURSOR AND PAA........................................................ ................................................. 49

FIGURE 2-13 - THICKNESS CHANGE UPON CONVERSION OF PPV/PAA FILMS .........................................50
FIGURE 2-14 - ABSORPTION SPECTRA OF PPV/PAA FILMS CONVERTED AT THE INDICATED CONVERSION

TEMPERATURE FOR 11 HOURS...................................... ....................................................... 51

FIGURE 3-1 - ABSORPTION AND PHOTOLUMINESCENCE SPECTRA OF A PPV/PAA FILM .................................... 54

FIGURE 3-2 - DEVICE CHARACTERISTICS FOR PPV/PAA FILMS WITH A VARIABLE NUMBER OF BILAYERS (SEE TEXT

FOR DEPOSITION DETAILS).......................................................................................................58

FIGURE 3-3 - DEVICE CHARACTERISTICS FOR PPV/PAA FILMS MADE AT PH VALUES OF 4.5/3.5 (SOLID LINE)

AND 4.5/2.5 (DASHED LINE) FOR THE PPV PRECURSOR/PAA SOLUTIONS.................................59
FIGURE 3-4 - ABSORPTION AND PHOTOLUMINESCENCE SPECTRA OF PPV/PAA FILMS CONVERTED AT THE

INDICATED TEMPERATURE FOR 11 HOURS - THE PH OF THE PPV PRECURSOR/PAA SOLUTIONS
USED TO MAKE THE FILM S WAS 4.5/3.5...................................................................................... 61

FIGURE 3-5 - DEVICE CHARACTERISTICS FOR PPV/PAA FILMS CONVERTED AT THE INDICATED TEMPERATURE -

THE PH OF THE PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE THE FILMS WAS 4.5/3.5 ........62

FIGURE 3-6 - CHARGING BEHAVIOR OFA PPV/PAA DEVICE AT IOV - THE PH OF THE PPV PRECURSOR/PAA

SOLUTIONS USED TO MAKE THE FILM WAS 4.5/3.5...................................................................64

FIGURE 3-7 - LIGHT-VOLTAGE CURVES SHOWING THE DECREASE IN TURN-ON VOLTAGE AS THE DEVICE IS

CONSECUTIVELY SCANNED - THE PH OF THE PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE
THE FILM WAS 4.5/3.5........................ ........................................................................... 66

FIGURE 3-8 - DEPENDENCE OF THE TURN-ON VOLTAGE OF PPV/PAA FILMS ON SCAN NUMBER - THE PH OF THE

PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE THE FILM WAS 4.5/3.5............................. 66

-*C ~ ---



FIGURE 3-9 - SCHEMATIC OF THE DISTRIBUTION OF IONS INA PPV/PAA FILM UNDER AN APPLIED BIAS ........... 67
FIGURE 3-10 - COMPARISON BETWEEN THE (A) CHARGE DENSITY DISTRIBUTION, (B) ELECTRIC FIELD

DISTRIBUTION, AND (C) BAND DIAGRAM OF AN LED AND AN LEC..................... 68
FIGURE 3-11 - DEVICE CHARACTERISTICS FOR PPV/PAA FILMS BEFORE AND AFTER CHARGING - THE PH OF THE

PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE THE FILMS WAS 4.5/3.5 ............................. 70
FIGURE 3-12 - FORWARD AND REVERSE BIAS CHARACTERISTICS FOR A PPV/PAA FILM BEFORE AND AFTER

CHARGING - FORWARD AND REVERSE BIAS SCANS WERE PERFORMED ON SEPARATE DEVICES - THE
PH OF THE PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE THE FILMS WAS 4.5/3.5............ 72

FIGURE 3-13 - FORWARD AND REVERSE BIAS CHARACTERISTICS FOR A PPV/PAA FILM AFTER CHARGING UNDER
A FORWARD BIAS - THE PH OF THE PPV PRECURSOR/PAA SOLUTIONS USED TO MAKE THE FILMS
WAS 4.5/3.5 ............................... . ............................................................................. . 73

FIGURE 3-14 - DEVICE CHARACTERISTICS FOR PPV PRECURSOR(PH 4.5)/PAA(PH 3.5) FILMS THAT WERE
DIPPED INTO THE INDICATED AQUEOUS SALT SOLUTIONS FOR I HOUR BEFORE THERMAL
CONVERSION ............................................................... ........................................... 75

FIGURE 3-15 - ABSORPTION AND PHOTOLUMINESCENCE SPECTRA FOR PPV PRECURSOR(PH 4.5)/PAA(PH 3.5)
FILMS THAT WERE DIPPED INTO THE INDICATED AQUEOUS SALT SOLUTIONS FOR I HOUR BEFORE
THERMAL CONVERSION....................................................................................................... 76

FIGURE 3-16 - DEVICE CHARACTERISTICS FOR PPV/PAA FILMS WITH THIN INSULATING LAYERS AT THE
ALUMINUM INTERFACE ............................................................... 77

FIGURE 4-1 - CHEMICAL STRUCTURES OF SOME TYPICAL POLYELECTROLYTES............................................... 79
FIGURE 4-2 - DIELECTRIC CHARACTERISTICS AT 1080C OF A PAH/PAA FILM MADE ATA PH OF 3.5 FOR BOTH

SOLUTIONS................................................... .................................... 84
FIGURE 4-3 - IMPEDANCE CHARACTERISTICS AT 1080 C OF A PAH/PAA FILM MADE ATA PH OF 3.5 FOR BOTH

SOLUTIONS - THE ARROW INDICATES THE DIRECTION OF INCREASING FREQUENCY..................... 84
FIGURE 4-4 - PROPOSED EQUIVALENT CIRCUIT ........................... ............. ...................... .................. 85
FIGURE 4-5 - IDEAL DIELECTRIC CHARACTERISTICS OF THE PROPOSED EQUIVALENT CIRCUIT........................... 87
FIGURE 4-6 - IDEAL IMPEDANCE CHARACTERISTICS OF THE PROPOSED EQUIVALENT CIRCUIT........................... 87
FIGURE4-7 - TEMPERATURE DEPENDENCE OF THE DIELECTRIC CHARACTERISTICS OFA PAH/PAA FILM MADE

ATA PH OF 3.5 IN BOTH SOLUTIONS ......................................................................................... 89
FIGURE 4-8 - TEMPERATURE DEPENDENCE OF THE IMPEDANCE CHARACTERISTICS OF A PAH/PAA FILM MADE

ATA PH OF 3.5 IN BOTH SOLUTIONS.. .................................................................................. 89
FIGURE 4-9 - ARRHENIUS PLOT OF THE CONDUCTIVITY OF A PAH/PAA FILM MADE AT A PH OF 3.5 IN BOTH

SOLUTIONS....... ........................................................................... ...................... 90
FIGURE 4-10 - DIELECTRIC PROPERTIES OF A THIN FILM OF POLY(ACRYLIC ACID)......................................... 91
FIGURE 4-11 - TEMPERATURE DEPENDENT CONDUCTIVITY FOR A THIN FILM OF POLY(ACRYLIC ACID) .......... 92
FIGURE 4-12 - DIELECTRIC CHARACTERISTICS FROM 2060C To 4060 C FOR A PAH/PAA FILM MADE AT A PH OF

3.5 IN BOTH SOLUTIONS.............................. ............................ ............................................ 93
FIGURE 4-13 - DIELECTRIC CHARACTERISTICS UPON REHEATING OF A PAH/PAA FILM MADE ATA PH OF 3.5 IN

BOTH SOLUTIONS........................................................................................................... 94
FIGURE 4-14 - INCREMENTAL THICKNESS VALUES OF PAH AND PAA KEEPING BOTH SOLUTION PH'S CONSTANT.

DATA FROM RUBNER AND SHIRA TOR 93. . . . .................................. . .. .. .. .. .. .. . .. .. .. .. .. .. .. .. . . . . . .. . . . 96
FIGURE 4-15 - ARRHENIUS PLOT OF THE CONDUCTIVITY OF PAH/PAA FILMS SEQUENTIALLY ADSORBED AT THE

DESIGNATED PH VALUE IN BOTH OF THE SOLUTIONS................................................................ 98
FIGURE 4-16 - DIELECTRIC CHARACTERISTICS AT 110 C OF PAH/PAA FILMS SEQUENTIALLY ADSORBED AT THE

DESIGNATED PH VALUE IN BOTH OF THE SOLUTIONS...............................................................98
FIGURE 4-17 - DIELECTRIC CHARACTERISTICS AT 110OC FOR PAH/PAA FILMS DIPPED INTO AQUEO US SALT

SOLUTIONS FOR 1.5 HOURS AFTER SEQUENTIAL ADSORPTION - A PH OF 3.5 WAS USED IN BOTH
SOLUTIONS FOR THE SEQUENTIAL ADSORPTION PROCESS ITSELF ........................................... 100

FIGURE 4-18 - EFFECT OF A HUMID ENVIRONMENT ON THE ROOM TEMPERATURE DIELECTRIC CHARACTERISTICS
OF A PAH/PAA FILM MADE AT A PH OF 3.5 IN BOTH SOLUTIONS.......................................... 103

FIGURE 4-19 - EFFECT OF A HUMID ENVIRONMENT ON THE ROOM TEMPERATURE IMPEDANCE CHARACTERISTICS
OF A PAH/PAA FILM MADE ATA PH OF 3.5 IN BOTH SOLUTIONS........................................ 103

FIGURE 4-20 - DIELECTRIC RESPONSE OF A PAH/SPS FILM MADE AT A PH OF 3.5 IN BOTH SOLUTIONS WITH NO
ADDED SALT ............................................... ....................... ............... 105



FIGURE 4-21 - DIELECTRIC RESPONSE OF A PAH/SPS FILM MADE AT A PH OF 3.5 AND WITH 0.1 M NACL IN

BOTH SOLUTIONS............................... ... ......... ..................................................... 106
FIGURE 4-22 - ARRHENIUS PLOT OF THE CONDUCTIVITY OF PAH/SPS FILMS THAT WERE MADE WITH AND

WITHOUT ADDED SALT IN THE DIPPING SOLUTIONS - A PH OF 3.5 WAS USED FOR BOTH SOLUTIONS107
FIGURE 4-23 - DIELECTRIC CHARACTERISTICS AT 1400C FOR PAH/SPS FILMS THAT WERE MADE WITH AND

WITHOUT ADDED SALT IN THE DIPPING SOLUTIONS - A PH OF 3.5 WAS USED FOR BOTH SOLUTIONS107
FIGURE 4-24 - ROOM TEMPERATURE DIELECTRIC CHARACTERISTICS FOR A PAH/SPS FILM THAT WAS MADE WITH

AND WITHOUT ADDED SALT IN THE DIPPING SOLUTIONS - A PH OF 3.5 WAS USED FOR BOTH
SOLUTIONS ...................................................... .............. 109

TABLE 4-1 - SUMMARY OF CONDUCTIVITY VALUES AND LOW-FREQUENCY E VALUES FOR PAH/PAA AND

PA H /SP S FILM S ....................................................................................................................... 110

1



ACKNOWLEDGEMENTS

To start, I want to recognize all of my family. It is all of these people who have
given my life meaning. First, I would like to thank my wife, Rhonda. Without her
constant love and support, none of this would have been possible. She has given so much
of herself to make my dreams come true that I will never be able to express how sincerely
grateful I am to her. Thank you Rhonda, I love you. To my daughter Monica (and the
new addition), I would also like to express my gratitude. She was able to take my mind
off of work and has been a constant reminder of the really important things in life like a
loving family, friends, and God. To my mom and dad who have never failed in their
constant love, encouragement, and devotion, and without whose sacrifices I wouldn't be
where I am today, I want to say thanks. They made me who I am and for that I cannot say
thank you enough. My brother and sisters and their families have also been a major
influence in my life. Their love, support and encouragement have helped me along and I
want them to know how much it is appreciated. To my wife's parents, brothers and sister,
I would also like to express how grateful I am for all of their love and support. They have
made me feel so much like a part of their family and for that I am extremely fortunate.

To Dr. Michael Rubner, my thesis advisor, I would like to express my sincere
appreciation for all of the time and guidance that he has given to me. I feel that he has
taught me not only how to be a good scientist, but also how to step back and look at the
bigger picture. His has been a great group to work in these past five years. I would also
like to express my thanks to my thesis committee, Dr. Eugene Fitzgerald and Dr. Moungi
Bawendi, for their valuable time and input into my thesis, and also to Dr. Don Sadoway
for allowing me to use some of his equipment.

To all of my friends and colleagues with whom I have worked, I would like to
express how lucky I feel to have known you all. Thanks go to Erika Abbas and Erik
Handy, my partners in crime, and to Jeff Baur, Marysilvia Ferreira, Augustine Fou,
Stephanie Hansen, Doug Howie, Izumi Ichinose, Hedi Mattoussi, Osamu Onitsuka, Luis
Ortiz, Jason Pinto, Hartmut Rudmann, Sandy Schaeffer-Ung, Seimei Shiratori (Akira),
Philip Soo, Bill Stockton, Kathy Vaeth, Peter Wan, Tom Wang, Wing Woo, Aiping Wu,
Dongsik Yoo, and Ken Zemach. Thanks for all of your help and friendship.

Finally and most importantly, I would like to thank God. I have been extremely
fortunate in knowing all of the above people and in having so many opportunities in my
life. I can only hope that with God's help, I can give back just a little of what he has
given to me.

Aý



To Rhonda, with love

II~~.~_ -



Chapter 
1 Introduct 

n

1. INTRODUCTION AND BACKGROUND

1.1 General Introduction

The field of conducting polymers has grown significantly since its birth in the

1970's with the work of MacDiarmid, Shirakawa, and others on polyacetylene. Other

conducting polymers were quickly realized and this soon led to the discovery of

electroluminescence in some of these conjugated systems. The goal of making cheap flat

panel displays has spurred intense research on many of these materials, but perhaps the

most thoroughly studied has been poly(p-phenylene vinylene), or PPV, which luminesces

green. It was quickly realized that a thin film of this material, spin coated between two

electrodes (one of which is transparent), results in low light levels and a poor

electroluminescence efficiency. Ways to improve this performance have been sought

through the creation of heterostructures, changing the electrode material, and modifying

the chemical structure. Although significant improvements have been made, there is still

a lot of work to be done before an actual flat panel display comes into production.

PPV itself is completely insoluble in common organic solvents and so soluble

derivatives and precursors had to be devised in order to process the material into thin

films. The processing method of choice has usually been spin coating whereby a solution

of the material is dropped onto a rapidly rotating substrate and once the solvent

evaporates, a thin polymer film remains. However a relatively new technique of thin film

fabrication has been developed by Decher 1-11, Rubner 12-23, and others which involves

the alternate deposition of oppositely charged polyelectrolytes from dilute solution (this

will be discussed in more detail later). This sequential adsorption technique affords

control of the film structure and composition at the molecular level and so provides a

unique opportunity to fine tune the architecture of thin polymer films.

It is the subject of this thesis to study the light emitting and electrical

characteristics of thin polymer films made using this sequential adsorption technique.

Initially the deposition characteristics of a PPV precursor material are looked at, followed

by an examination of the performance of light emitting devices made from this material.

This then leads into a more fundamental study of the impedance and dielectric
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characteristics of sequentially adsorbed layers of several more well known

polyelectrolytes.

1.2 Polyelectrolytes

1.2.1 General information and solution behavior

It is the point of this section to describe polyelectrolytes in general, but also to

examine, phenomenologically, their solution characteristics. Simply put, polyelectrolytes

are polymers that contain functional groups that are either charged or are capable of

becoming charged. That is to say when a polyelectrolyte is dissolved in a solvent, most

commonly water, some of the groups can become ionized leading to charges distributed

along the polymer chain. It is the presence of these charges, and their associated counter-

ions, which give rise to the unusual and interesting properties of polyelectrolytes as

compared to uncharged polymers. Some of the functional groups most commonly

encountered in this context are carboxylates (-COO-) and sulfonates (-SO 3 ) as anions

as well as protonated amines (-NH- or other secondary or tertiary amines) and

quaternary ammonium ions (-NR-) as cations. Several well studied polyelectrolytes

with these particular functional groups are shown in Figure 1-1.

Polvanions

" in

Na+
0 C" o

Sodhun salt of Sodium salt of

Poly(acrylic acid) (PAA) Sulfonated Poly(styrene) (SPS)

Polvcations

n

NH3 Cl

Poly(allylamine hydrochloride) (PAH) Poly(diallyl-dimethylanimnium chloride) (PDAC)

Figure 1-1 - Some typical polyelectrolytes
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Polyelectrolytes in solution can be understood on the basis of a simple two-phase

model put forth by Oosawa 24, 25. When a polyelectrolyte molecule is in dilute solution,

each molecule occupies its own apparent volume and so the two phases of interest are the

apparent volume of the molecules themselves and that where only solvent is present.

Furthermore, the molecule has a finite charge density along the chain and the associated

counter-ions have an equilibrium distribution between the two phases. Those outside the

apparent volume of the molecule are said to be free while those within it are bound. Ions

move out of the region of the molecule and into the surrounding solvent causing the

molecule to acquire a net charge which tends to repel other chains and prevent

overlapping.. Equilibrium is established when the attractive force due to the potential

difference developed between the two phases balances the difference in concentration

(chemical potential). In other words, when a balance between entropy and enthalpy is

established. Using mean-field theory, this condition is approximately given by a

Boltzman distribution of the form shown in equation (1) which can be recast as equation

(2).

n1 n2 exp[_ e-1'nexp kT (1)

In = In -

Here, nl is the concentration of counter-ions inside the apparent volume of the molecule,

n2 is the concentration of those outside, e is the electronic charge, &0 is the potential

difference between the two phases, k is Boltzman's constant, T is the temperature, P is

the apparent degree of dissociation of the molecule (i.e. the number of counter-ions

outside the volume of the molecule), and (p is the volume fraction of the polymer. In

addition to being dependent on the counter-ion distribution, the potential difference

furthermore depends on the geometry of the polymer and has been calculated for

spherical and cylindrical geometries 24 . From these analyses, the Manning parameter (ýM)

is defined as tM=LB/b where b is the distance between charges along the chain and LB is
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the Bjerrum length which is defined as the distance between two unscreened charges at

which the Coulombic interaction energy equals the thermal energy (LB=e 2/[47EuokT]). In

water at 293K, LB has a value of about 7A. It is found that as the volume fraction of

polymer goes to zero ((p-40), the degree of dissociation (P) of the molecule tends to one

of two values. It goes to 1 (i.e. counter-ions completely dissociated from the molecule)

for low charge densities (ýM<1), and to a value of 1/ýM for high charge densities (ýM>1).

So it is seen that as the charge density of the molecule increases from zero, initially the

potential difference, as well as the number of free and bound counter-ions, increase (all

counter-ions are free at infinite dilution). At a certain charge density, however, b=LB and

so any further increase in the charge density results in the associated counter-ions being

bound to the molecule while the number of free ions remains constant. This situation is

called counter-ion condensation due to its resemblance of condensation of a gas to a

liquid. The pressure of a gas increases until it reaches a critical pressure at which any

increase in the number of gas molecules results in liquid being condensed. Similarly, the

number of free ions increases until the critical point above which any increase in the

number of counter-ions results in condensation of these ions onto the molecule. In effect,

this results in a maximum degree of dissociation of the molecule (i.e. apparent charge

density) which is less than the expected one when b>LB. A more exact treatment is made

using a Poisson-Boltzman treatment and is given in the references 24 , 25

The above analysis assumed that the bound and free counter-ions were uniformly

distributed within each of the two phases. In fact, however, the electrical potential of the

molecule is such that the bound counter-ions are not uniformly distributed even within

this region. In the absence of counter-ions, each charged group on the molecule creates a

potential well at its position, the chain itself creates a potential valley along its length, and

the molecule as a whole creates a potential trough in its apparent volume. The bound

counter-ions can then further be classified as mobile (delocalized) or immobile

(localized) depending upon whether they are localized next to the chain, by the potential

well or valley, or are free to move about the apparent volume still contained, however, by

the overall potential trough of the molecule. The relationship between mobile and

immobile bound charges is likened to free ions and ion pairs in simple electrolyte
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solutions. For strong electrolytes, it is dominated by the existence of a Coulombic

attraction between ions.

As stated above, when these polyelectrolytes are in aqueous solution, some of the

functional groups can become ionized (charged) and this degree of ionization is

dependent upon the pH of the solution. For simple low molecular weight electrolytes,

this relationship is given by the Henderson-Hasselbalch equation as shown in equation (3)

where Ka is the acid dissociation constant and a is the degree of ionization of the

electrolyte.

(1-a)
pH = pKa - log (a) (3)

Modifications to this equation must be made for polyelectrolytes since their behavior is

more complex. As discussed above, polyelectrolytes can be simply described by a two

phase model where everything is not homogeneous. In general, the concentration of free

H+ ions (those not within the apparent volume of the molecule) gives the experimentally

measured pH. On the other hand, the equilibrium between the localized and delocalized

(immobile and mobile) bound counter-ions determines the pKa value. The equilibrium

between these two phases has already been discussed above in equations (1) and (2) and

from this, a modified version of the Henderson-Hasselbalch equation can be given as

equation (4)24, 25

(1 - a) AGel
pH= pK -log +0.43 e

(a) kT (4)

Here AGel is the change in free energy of the molecule due to the dissociation of a

functional group and is related to the potential difference described in equations (1) and

(2) by AGei = e6&. The result of this extra energy term is to decrease the amount of

ionization due to the repulsive interaction between the other charged groups on the

molecule. Equations (3) and (4) are often combined to give an apparent pKa value which

depends upon the degree of ionization. In general then, for a given pH, polyelectrolytes

tend to have a lower degree of ionization than would be expected for a small molecule

with the same functional group.
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In the above analysis, the geometry of the polymer in solution has not really been

discussed. As with uncharged polymers, the geometry of the polymer depends upon the

quality of the solvent and the structure of the polymer, however now a further

complication results from the interaction of charged groups along the backbone. The

electrostatic repulsion between like charges along the chain tends to cause the polymer to

adopt a more extended chain conformation. This, however, decreases the entropy of the

system which favors a more contracted and coiled conformation. The balance between

these enthalpic and entropic contributions determines the equilibrium conformation in

solution and so by controlling them, the conformation can also be controlled. One way to

control these parameters is by adding salt into the solution. These excess salt ions tend to

shield the charges attached to the polymer chain from each other thereby reducing the

amount of electrostatic repulsion and causing the chain to adopt a more coiled

conformation. Another very interesting possibility is to vary the actual charge density

along the chain. A higher charge density results in a larger degree of electrostatic

repulsion between groups and consequently a more extended chain conformation. This is

easily done for weak polyelectrolytes whose charge density depends upon the pH of the

solution as described above. For polyacids such as poly(acrylic acid) (PAA), a higher pH

corresponds to a larger degree of ionization and charge density. So an increase in the pH

of the PAA solution results in a more extended chain conformation in solution.

1.2.2 Sequential multilayer adsorption

The new sequential adsorption technique that was mentioned above, which was

initially disclosed by Decher et al. and further advanced by Rubner et al., allows

molecular level control over the deposition of thin polymer films. The underlying

principle behind the technique is that of electrostatic attraction between oppositely

charged species in solution. It was initially investigated for polyelectrolytes, but since its

inception it has been applied to a wide variety of other systems including colloidal

particles, proteins, and nanoparticles, among others.

==n iiiý miiiii M -- -- -
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Further Build-Up

Poly
Solu

inse & Dry

Figure 1-2 - Schematic of the electrostatic sequential adsorption techniquel8

The process, shown schematically in Figure 1-2, consists of two dilute solutions

of oppositely charged polyelectrolytes. By dipping a substrate into one of the solutions,

say the polycation, a very thin layer of this polyelectrolyte spontaneously adsorbs onto the

surface. Some of the charges on the adsorbing material are bound to the surface, while

others are left dangling and impart a net charge to the surface. The substrate is then

rinsed with deionized water to remove any loosely bound material on the surface, but a

thin layer of the polymer remains adsorbed onto the surface giving it a net positive

charge. The substrate is then dipped into the second solution, the polyanion, in which a

thin layer of this polymer is electrostatically attracted and adsorbed onto the surface,

thereby reversing its charge. Once again the sample is thoroughly rinsed with water, but a

thin adsorbed layer of this oppositely charged polyelectrolyte remains intact. This

combination of a polycation plus a polyanion layer constitutes one bilayer. Simply by

alternate dipping between the polycation and polyanion solutions, with a rinsing step in

between, a film can be built up whose thickness is accurately controlled simply by

changing the total number of bilayers deposited.

Chanter I
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In theory any two oppositely charged polyelectrolytes can be used to build up a
thin film using this technique. Indeed, the polycation or polyanion need not be kept the

same throughout the adsorption process, but rather they can be changed to build up a

heterostructure film of arbitrary complexity with an arbitrary number of components.

Those polyelectrolytes already shown in Figure 1-1 are some of the more common ones

used in this process. Figure 1-3, however, shows a polycation which is a precursor to an

electroactive polymer, poly (p-phenylene vinylene) (PPV), and will be of major interest in

this thesis.

Po y(r,-phenyvene Ainlne) +Precrso to PEWur -- -r -om HC1h or om o h
FPPV) uce

recursor to PPV used to fabricate light emitting devices

Precursor to PPV (PPV) HC

Figure 1-3 - Polyelectrolyte precursor to PPV used to fabricate light emitting devices

1.3 Organic Materials as Light Emitters

1.3.1 General information and materials of interest

Most of the polymers that are encountered on a daily basis (commodity plastics

and rubbers being just a couple of examples) are in general non-electroactive. They are

considered insulators because they effectively do not have any intrinsic conductivity. In

relatively recent years, however, a new class of polymers has been developed that can be

made electrically conductive and there has been a significant amount of effort devoted

towards developing and understanding these materials. Some of the ones that have been

studied the most are shown in Figure 1-4. Polyacetylene, in particular, which is

structurally the simplest of these conductive polymers, has received a lot of attention and

can be made such that its conductivity approaches that of copper (-106 S/cm).

What distinguishes these polymers from the majority of others is the fact that they

are conjugated. To a first approximation, this can be thought of as alternating single and
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Polythiophene H
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Figure 1-4 - Chemical structures of some representative conducting polymers

double bonds, where the double bond comes about because of overlapping p orbitals on

neighboring atoms. Unlike polymers with isolated double bonds, however, in conjugated

materials every atom has an unhybridized p orbital capable of overlapping with its

neighbors and this creates an extended system of n orbitals. The electrons in this system

are not isolated between two atoms, as might be expected from the simple single-double

bond alternation representation, but rather they are delocalized over a number of repeat

units of the polymer. This delocalization does not extend completely over the length of

the chain for a number of reasons. If complete delocalization were to happen, then all of

the bonds would be of the same length (somewhere in between that for a single and

double bond) and a true "one-dimensional metal" would be formed. That is to say, the

Fermi energy (EF) would be located in the middle of the highest occupied band and

metallic like behavior would be observed. Instead, however, a lower energy

configuration results when some degree of bond length alternation occurs. In

polyacetylene, for example, the in electron density is slightly higher between alternating

carbon atoms 26, 27. The reality, then, lies somewhere in between the case when all the

bonds are identical and the case when strict alternation between single and double bonds

occurs. This "relaxation" of bond lengths is termed the Peierls instability and results in

the formation of a gap at the Fermi level which in turn makes these materials

semiconductors instead of metals. Furthermore, in order to maintain this system of

_ __1·
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overlapping n orbitals, the carbon atoms must remain coplanar with each other. If this

planarity is broken by the chain adopting a different conformation, then the p orbitals can

no longer overlap and the conjugation is broken. There is a trade off between the entropy

and enthalpy of the conformation of the polymer which results in an average number of

adjacent carbon atoms being coplanar with a subsequent break in the conjugation. This

average length is called the conjugation length and is likened to the width of the particle

in a box problem in quantum mechanics. The larger the conjugation length, the smaller

the energy difference between ground and excited states (i.e. the bandgap) of the material.

Because these materials are semiconductors, in pure form there are few free

charge carriers and hence the conductivity is low. In analogy with traditional

semiconductors like silicon, however, they can be chemically "doped" by other materials

to create mobile species, similar to "electrons" and "holes", and hence become

conducting. There are, however, a few important differences between doping in

traditional semiconductors and in these organic semiconductors. In inorganic

semiconductors, doping takes place by introducing impurities onto the crystalline lattice

which donate or accept an electron to the conduction or valence band of the host material,

respectively. The electronic states within the gap near the band edges are states of the

impurity atom. That is, when these states are ionized, the charge is localized around the

impurity atom. In addition, because individual dopant atoms donate (or accept) a single

electron to (or from) the bands, doping, and hence high conductivity, is associated with

unpaired charges of spin /2. In contrast, one of the main differences of organic

semiconductors is that upon doping, high conductivities are observed but the charge

carriers apparently have no net spin26 . In conducting polymers, "doping" means chemical

oxidation (p-type) or reduction (n-type) of a particular polymer chain. Electronic states

within the gap are still introduced, but they are of a different nature than in inorganic

materials, as will be discussed.

For the majority of these conducting polymers, such as PPV and PPP, the energy

of the electrons on the chain depends on the configuration of the double bonds.

Resonance structures can be drawn showing different possible configurations for the

same material, as shown in Figure 1-5(a) and (b) for PPP. The lower energy

_r
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configuration is the aromatic-type structure while the higher energy configuration is the

quinoid-type structure. An electron in the conduction band, or a hole in the valence band,

can obtain a lower overall energy by causing a geometric distortion (or relaxation) of the

polymer chain and becoming localized over several repeat units of the polymer in the

quinoid-type structure. The combination of the electron (or hole) and its associated chain

distortion is called a polaron. The increase in energy caused by the geometric distortion

is overcome by the electronic energy gained by localization. Taking this one step further,

two polarons migrating along a single polymer chain can interact with each other to form

a bipolaron, or they can remain separated as individual species. Which of the two cases is

more stable depends on the lattice interaction energy and the Coulomb repulsion energy

of like charges and can vary from one polymer to the next. However, because the lattice

distortion energy is similar for both cases and the ionization energy for the bipolaron is

smaller, the bipolaron is usually the more stable species26 . Having said all of this,

however, it should be understood that it is still very common to refer to the charge

carriers in conducting polymers as holes and electrons, instead of positive and negative

polarons, with the implication being understood.

(a) Aromatic-type structure of PPP

(b) Quinoid-type structure of PPP

(c) (+) Polaron on PPP

(d) (+) Bipolaron on PPP

Figure 1-5 - Structures of Polarons, Bipolarons, and Excitons in a conjugated polymer28

Chne
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The effect of introducing these charge carriers onto the polymer can also be

examined from the point of view of its band diagram, as shown in Figure 1-6. When the

charge carrier becomes localized, the resultant geometric distortion changes the relative

energies of the states that were previously part of the conduction and valence bands so

that they now lie within the gap. These discrete states, having come initially from the

bands, represent electronic states of the polymer and not of the dopant material as in

inorganic materials. As such, it should be noted that the conduction and valence bands of

Conduction Band

Valence Band

Pure material
No free carriers

Conduction Band

A-

Valence Band

(-) Polaron

+ e-

Conduction Band

A+-

Valence Band

(-) Bipolaron

Conduction Band

Valence Band

Polaron-Exciton

Conduction Band

A-

Valence Band

(+) Polaron

e-

Conduction Band

Valence Band

(+) Bipolaron

Figure 1-6 - Band diagrams of Polarons, Bipolarons, and Excitons in a conjugated
polymer
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these polymers are completely empty and full, respectively, and in general do not

contribute to the conductivity. Taking this one step further, the bipolaron states are either

completely filled or completely empty, as shown in the same figure, and therefore account

for the observation of conduction via spinless charge carriers. In addition, these charge

carriers are free to migrate along the polymer chain, however conduction between chains

is usually described by some kind of interchain hopping model (i.e. thermally assisted

tunneling between states) 27 . Increasing the amount of doping translates into a closer

spatial proximity of one polaron to another and hence increases both the probability of

tunneling and the conductivity. Furthermore, transitions between these states within the

gap and the bands can be observed as a broad peak in the UV-visible absorption

spectrum. The degree of doping, which is typically much higher than in inorganic

semiconductors (i.e. on the order of a few percent), can then be directly related to the

absorption intensity of this so called "doping peak".

These charges can also be introduced onto the polymer chain in ways other than

chemical doping29 . These include photogeneration, whereby a photon is absorbed to

create an electron-hole pair, and charge carrier injection, in which electrons and holes are

injected into the device through separate electrodes under the action of an applied

voltage. This is of importance because many of these conjugated polymers are capable of

luminescence. Electrons and holes (i.e. negative and positive polarons) moving around in

the material can become bound to each other due to their electrostatic interaction to form

an exciton (i.e. polaron-exciton), as shown in Figure 1-6. This species can then

recombine radiatively to emit a photon resulting in the observed luminescence. When the

electron-hole pair is created by the absorption of light, the resulting process is termed

photoluminescence. Alternatively, when electrons and holes are injected into the material

at opposite electrodes by applying an electrical potential, the resulting emission is termed

electroluminescence. Alternatively, cathodoluminescence could result from excitation

via an electron beam, but this has not been as widely studied as the first two.

Organic electroluminescent devices based on these conjugated polymers have

received a lot of attention recently. This is due, in large part, to the possibilities of

making cheap flat panel displays. Applications in other niche markets include a host of
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back-lighting applications, such as for watches, and in places where a large area, flexible

light emitting panel might be desired. One major problem, however, is the poor stability

of these devices, especially in air. Oxygen and moisture can permeate and react with the

polymer, causing film degradation and device failure. To that end, poly (p-phenylene

vinylene) (PPV), or PPV derivatives, has been the most widely studied

electroluminescent polymers due, at least in part, to its relatively high stability 30 , 31

The structures of the polymers shown in Figure 1-4 are mostly rigid rod type

structures and are generally insoluble in water and common organic solvents. Therefore

the development and synthesis of derivatives and precursors which are soluble in such

solvents has allowed for these polymers to be processed into useful devices using fairly

conventional techniques. Derivatives of PPV are materials that have the same basic

structure as PPV shown above but with side groups, such as alkoxy substituents, attached

to the main chain, rendering it soluble in common organic solvents. Precursors of PPV

are not conjugated, but rather have structures which are readily soluble in water or other

solvents which can then be converted into the conjugated form (usually by heating) after

processing into thin films. The PPV precursor based on a tetrahydrothiophenium (THT)

leaving group is probably the most widely used. Its structure has already been shown in

Figure 1-3 and this material will be of major interest in this thesis.

1.3.2 Light emitting devices - LEDs and LECs

A typical device architecture for a light emitting diode (LED) is a simple

sandwich structure as shown in Figure 1-7 together with a simplified band structure

diagram. It consists first of a transparent electrode material on a glass substrate. This is

most frequently Indium Tin Oxide (ITO) which acts as the anode (hole injecting

electrode). A thin film of the light emitting polymer is then put on top of this anode by

spin coating. This involves dissolving the polymer in a suitable solvent and then placing

several drops of the solution onto a rapidly rotating substrate. The solution spreads out

onto the substrate and as the solvent evaporates, the substrate is coated with a thin film of

the polymer. The solvent, in addition to being able to dissolve the polymer, must be
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Figure 1-7 - A schematic and band diagram representation for a PPV light emitting
device under forward bias

sufficiently volatile so that it quickly evaporates as the substrate is being coated. The

substrate rotation speed, volume of solution deposited, solution concentration, plus many

other factors, all play an important role in determining the quality and other

characteristics of the film. The cathode (electron injecting electrode) is then vapor

deposited on top of the polymer to complete the structure.

The mechanism of charge injection and transport are still under investigation even

for relatively simple architectures consisting of a single layer of PPV sandwiched

between the two electrodes. Several working theories of operation have been proposed,

however, which can be used to understand fundamental ideas. As shown in Figure 1-7,

the energy difference between EF of the ITO and the valence band is less than that

between EF of the aluminum and the conduction band, and it is these energy differences

that determine the barriers to hole and electron injection, respectively. Charge carriers

_ ~ ~-~p~ -·L~ --=I~-i---~ -L~ ~EL~lilr_ _ --- ·-- ·I
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could potentially be injected into the polymer via thermionic emission over the barrier,

however a separate theory by Parker32 suggests that tunneling of carriers into the device

can occur through the triangular potential barrier, the width of which (W in the figure) is

determined by the electric field in the device. For a given voltage, the electric field,

tunneling probability, and current, are directly related to the thickness of the device. The

thicker the device, the smaller the electric field and current. In addition, the hole mobility

in many of these conducting polymers, including PPV, is larger than the electron

mobility. The result of both of these observations is that a larger number of holes are

injected at the ITO anode than electrons at the aluminum cathode, and they drift across

the device faster than the electrons. This, in turn, gives a recombination region that is

close to the aluminum/PPV interface which is detrimental to device performance for a

number of reasons. Holes can reach the aluminum electrode before encountering an

electron, and this gives rise to a leakage current. Those holes that do combine with an

electron form excitons which can move around in the device. Since these excitons are

located near the metal interface where surface states usually exist, the luminescence can

be quenched thus resulting in a lower quantum efficiency 33-37 . If the device is operated

in reverse bias with the ITO acting as the electron injecting electrode and the aluminum

acting as the hole injecting one, not much happens. Now the barriers to electron and hole

injection are both quite high and so few carriers are injected into the device, little current

flows, and no light is created. The device, therefore, acts as a rectifier by passing current

and producing light in forward bias but not in reverse bias, hence the term light emitting

diode (LED).

There have been quite a few techniques employed to increase device efficiency. If

the cathode is changed from aluminum to a lower work function metal, such as calcium

or magnesium , the barrier to electron injection decreases 38. In Figure 1-7, this would

correspond to raising the Fermi level of the cathode. When the rates of injection of both

electrons and holes are equal, the device will be most efficient (neglecting differences in

mobilities). Indeed, the device efficiency does increase significantly when these lower

work function metals are used as the cathode in place of aluminum. The problem with

this solution, however, is that the very nature of these metals having a low work function
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also causes them to be highly reactive in an ambient atmosphere with moisture and

oxygen. Extreme care must be taken to avoid electrode degradation which makes

handling and processing difficult.

Another common solution is to make heterostructure devices in which the location

of the recombination zone can be independently varied. An electron transport layer can

be placed between the aluminum electrode and the emitting polymer to increase the

number of electrons being injected and hence increase its efficiency 39, 40. Alternatively,

both an electron and a hole transport layer can be used, near the cathode and anode

respectively, with the emitting layer in between.

A new type of device, called a light emitting electrochemical cell or LEC, has

recently been introduced by Heeger et al.4 1-46 . In such a device, the single layer of PPV

described above for LEDs is replaced by a blend of PPV (or another electroluminescent

polymer), a salt, and an ion transporting polymer such as PEO sandwiched between the

two electrodes. These devices typically have a much larger light output and quantum

efficiency than their LED counterparts. Several explanations have been put forth to

explain the mechanism of device operation and the debate is still ongoing4 1, 43, 47-51. In

general, the dissociated salt ions can move under the application of an applied bias, and

this results in the buildup of cations on one side of the device and anions on the other.

The presence of these ions modifies the band energies such that the barrier to both

electron and hole injection becomes very small resulting in a balance of injected carriers

and consequently an increase in the light output and quantum efficiency. The mechanism

of device operation will be discussed more fully in Chapter 3.

1.4 Impedance Spectroscopy (IS)

1.4.1 General information and theoretical background

When a DC voltage (V) is applied to a conducting material, a current (I) flows

through the material, the value of which is determined by the resistance (R). In the

simplest case, such as in metals, the resistance is a constant and is described by Ohm's

law (R=V/I). A plot of the measured current versus the applied voltage yields a straight

line. For a nonlinear material, the resistance is not constant but rather depends upon the
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voltage and so the differential resistance is defined at a particular voltage by R=dV/dI. If

a DC voltage is applied to an insulating material, instead of a conducting material, a

charge (Q) proportional to the applied voltage becomes stored on the electrodes. The

proportionality factor is the capacitance (C) and the relationship is given as Q=CV. All

real materials are never perfectly conducting or insulating, however, and consequently

have both a finite resistance and capacitance as can be probed by AC techniques.

When a sinusoidal AC field is applied to the material, the voltage and resulting

current now oscillate between maximum and minimum values and are, in general, out of

phase by an angle 0. The response is now characterized by a complex quantity, called the

impedance (Z), having two parts. The first part gives the magnitude of the impedance

(IZI = Vmax/Imax) and characterizes the opposition to current flow, while the second

part is the phase angle 0 that the current makes with respect to the applied voltage. Since

the impedance is a vector quantity, it can equivalently be represented in the complex

plane by its real and imaginary components (Z = Z' + jZ") instead of its magnitude and

phase (Z = Z1 ej 0 ). Here Z' and Z" are the real and imaginary parts, respectively, of

the impedance and j = -. The relationships between these quantities are shown in

equations (5) and (6).

Re(Z) = Z'= IZcos() and Im(Z) = Z"= IZsin() (5)

S[(Z,')2 + (Z")2 12 and = tan-1(Z"/) (6)

In addition to the impedance (Z), there are three other fundamental quantities that are

frequently of use in the AC behavior of materials. These are the admittance

(Y=Y'+jY"), the dielectric permittivity (E=E'- je"), and the modulus

(M = M'+ jM"). These four immittances, as they are called, are related by equations (7)

and they are all completely equivalent. That is to say that if one quantity is known or

measured, then the others are determined. Each one, however, emphasizes a different

aspect of the data. In general, the interpretation of the data depends upon whether the

material is considered to be predominantly a 'conducting' or an 'insulating' material.

Chanter I
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When one is looking at a 'conducting' system, it is typically Z and/or Y that are shown

while for 'insulating' systems, it is generally e and/or M which are of primary interest. It

must be reemphasized, though, that while all are completely equivalent and contain the

same data, looking at it in one representation sometimes brings out certain characteristics

that are difficult, if not impossible, to observe in another.

1 1 1
Z- E- E-

Y M jWCOoZ (7)

Here o is the angular frequency, which is related to the frequency of the AC oscillation

(v) by o = 2cvw, and Co is the capacitance of the empty cell. For a parallel plate

geometry with plate area A and distance between the plates d, Co = eoA/d where Eo is

the permittivity of free space. There are a number of other derived quantities that are

frequently considered and reference is made to the literature for a thorough discussion52-

57

Once the AC characteristics have been determined and are qualitatively

understood, a model is generally fit to the data in the form of an electrical circuit

(resistors, capacitors, etc.). This is done in an attempt to separate out and describe each

of the different physical responses occurring in the materials. Actual materials

characteristics (relaxation times, conductivities, etc.) can then be calculated. It is

therefore helpful to understand the basic frequency response of resistors and capacitors.

An ideal resistor has an impedance which is real, independent of frequency, and given by

Zres = R. An ideal capacitor, on the other hand, has an impedance which varies with

frequency as Zcap = - j/oC. That is, it increases without bound as the frequency

decreases and becomes infinite at zero frequency. There is also an inductive impedance

but these are not nearly as common and so will not be discussed.

It is customary to plot the impedance data in the complex plane (-Z" versus Z' )

to create what is known as a Cole-Cole, or a complex plane, plot where the frequency is

an implicit variable. In this domain, the impedance of a resistor is represented as a single

point on the real axis at a position equal to its value of resistance, while the impedance of

a capacitor is a vertical line coincident with the imaginary axis. Individual impedances

Chanter I
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can be added together in a manner which depends upon if they are connected in series or

in parallel. For those connected in series, the individual impedances are simply added to

get the total (Zw = Z1 +Z 2 +...), while for those in parallel, the inverse of the individual

impedances are added (1/ZT =1/Z1 +1/Z 2 +---). It should be remembered, however,

that these are complex quantities and should be treated accordingly. A resistor and

capacitor in parallel and in series are shown, together with their respective complex plane

plots, in Figure 1-8. The series combination is a superposition of the individual responses

for a resistor and a capacitor. It is a vertical line located at a position along the real axis

that is equal to the value of the resistor. The parallel combination gives a semicircle

centered on the real axis and whose diameter is equal to the value of the resistor. The

frequency at the peak of the semicircle, )max, corresponds to the point at which the

impedance of the resistor and capacitor are equal and hence comax" = 1 where ', which is

equal to RC, is called the time constant. More complicated circuits are generally

necessary to accurately model the system under investigation, as will be discussed, but

frequently they can be understood as combinations of the above two important cases.

zt  ZI

Figure 1-8 - Ideal impedance response of a resistor and capacitor in series and in
parallel

Irhich~~~ deed pni

;eriesN th niiul

hile for those I prl

C,

O..= I/CRt

Z'

Figure8 - Ideal impedance response ofa resistor an
parallel

29

:ries or

Lded to

ividual

wever,

or and

rplane

ponses

al axis

Licircle

The

ch the

hich is

nerally

:d, but

irzFigure I-1

Co

CD

Z'

pose ofa resistor and capacitor in series and in
parallel



Chapter 
1 Introduct 

n

The presence of semicircular arcs in impedance data is quite common, as just

shown for the parallel RC circuit, however they are usually not perfect. One common

perturbation is the displacement of the arc so that its center lies below the real axis. This

is generally associated with a distribution of relaxation times (r), rather than one that is

single-valued. Other deviations from ideality can include incomplete, overlapping,

skewed, or misshapen arcs. The analysis of impedance arcs has been thoroughly treated

by Macdonald5 2 and specific cases will be given in this thesis when required.

Complex plane plots can be created for any of the four fundamental immittances

described above (Z, Y, e, M) by plotting the imaginary versus the real component of the

quantity of interest. The occurrence of semicircles is frequent in all of them, however

they have different meanings. It should be emphasized that the presence of a semicircle

in one domain (i.e. Z) does not correlate to another (i.e. E). This is demonstrated by the

fact that when a semicircle is present in the Z complex plane, corresponding to a parallel

combination of R and C (as shown above), the same data represented in the E complex

plane yields a vertical spike. Thus understanding the data can be facilitated by examining

it in more than one domain.

As mentioned above, in complex plane plots the frequency is an implicit variable.

In order to gain a more explicit understanding of the frequency response, it is common to

plot the real and imaginary components against the frequency (in any domain). When the

complex plane plot displays a semicircle, the real component shows a step in its

frequency response while the imaginary component shows a peak, and both of these are

centered at •max from the complex plane. This is shown for e in Figure 1-9.

_ - -. --. . . . . . . . .
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Figure 1-9 - Ideal dielectric response for a single relaxation process
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1.4.2 Theory of Dielectrics

The analysis of intrinsically insulating materials has traditionally been carried out

in the dielectric domain. Charges within these dielectric materials can respond to an

alternating electric field by becoming polarized if the field is alternating slow enough. If

the field is oscillating too fast, however, the charges are not capable of keeping up with

the field. This results in various resonances, or relaxations, that occur at different

frequencies corresponding to electronic, atomic, dipole, or space charge polarization

processes. The first two are active in a frequency range (> 1011 Hz) that is higher than

what is accessible in normal impedance spectroscopy (10-3 to 108 Hz). Permanent dipoles

in the material, however, can respond in this lower frequency range. Space charge

polarization, which results from free ions present in the material that can move under the

influence of an electric field and accumulate at interfaces, can also occur at these lower

frequencies.

The basic theory of dipolar relaxation was examined by Debye and is based upon

the concept that when an electric field is applied to a material, the equilibrium orientation

of the dipoles is approached exponentially. An outline of the derivation is given by

Blythe53 but only the results are given here. For a process with a single-valued relaxation

time, the Debye dispersion equation gives the relation between E and frequency as shown

in equation (8).

.o -EiE = Ei + (8)
(1+ joyr)

This can be separated out into real (e') and imaginary (e") components as shown in

equations (9) and (10), the graphical form of which has already been shown in Figure 1-9.

E I= Ei + 2 2 (9)

E" = (_o - Ei) 2 2  (10)
1+0o 2

The real part (e') corresponds to the charge storage capabilities of the material while the

imaginary part (e") is associated with energy losses in the material. Above the resonance

frequency, the dipoles cannot respond because the field is oscillating too rapidly and so
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they do not contribute anything to E. At the frequency which corresponds to the

resonance between the oscillating field and the dipoles (that frequency at which the

dipoles can just keep up with the field), e" (the loss) exhibits a maximum and e' is at its

maximum rate of change. At lower frequencies, the dipoles can easily follow the field

and so E' levels off at its maximum value. The response is slow enough, however, so that

no energy loss occurs and e" again decreases to zero.

As stated above, the presence of depressed semicircular arcs, where the center of

the circle lies below the real axis in complex plane plots, is quite common. In frequency

plots, this translates into broader dispersion curves and lower loss maxima as compared

to that described by the Debye dispersion relation in equations (8), (9), and (10). This is

generally interpreted as being due to the presence of Debye-like elements with a

distribution of relaxation times rather than a single one. This was initially suggested by

Cole and Cole58 by modifying the Debye dispersion relation with an a parameter as

shown in equation (11) (let /3 = 1). This a parameter gives a relative measure of the

breadth of the relaxation and can be related to the depression of the complex plane

semicircular arc below the real axis. Davidson and Cole 59 introduced the 3 parameter

(letting a = 1) to account for a skewed complex plane arc corresponding to a skewed

distribution of relaxation times. Havriliak and Negami60, 61 combined the two

parameters to give what is know as the Havriliak-Negami equation as shown in equation

(11).

E=Ei + (11)

The temperature dependence of the dielectric properties is, in general, due to a

temperature dependence of the relaxation times, t. Many dielectric transitions in

polymers have been successfully explained by a thermally activated model. Dipole

orientation, for instance, can be modeled as consisting of a number of minimum energy

orientations separated by an energy barrier. Then, the rate of thermal activation over the

barrier, and hence the relaxation time, can be described by a simple Arrhenius law of the

form shown in equation (12) where Ua is the activation energy barrier53.
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Ua
InTr = -+ cons tan t

kT (12)

Frequently, however, a simple Arrhenius behavior is not observed and a plot of In(z)

versus 1/T shows curved rather than linear behavior. In such situations, more empirical

equations, such as in the Williams-Landel-Ferry (WLF) model, are used to describe the

response.
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2. SEQUENTIAL ADSORPTION CHARACTERISTICS OF PPV/PAA
POLYELECTROLYTE MULTILAYERS

2.1 Introductory remarks

The majority of research done on light emitting devices (LEDs) based on

electroactive polymers has been performed on films that are spin coated onto an electrode

with the subsequent evaporation of the opposite electrode. An alternative way of

depositing this polymer film, however, is by the electrostatic sequential adsorption of

polyelectrolytes, as described in detail in Chapter 1. This process allows for the

continuous buildup of a film whose thickness can be accurately controlled by the number

of bilayers that are deposited. By dipping a substrate first into a polycation solution and

then into a polyanion solution, with a rinsing step in between, a so-called bilayer,

essentially the repeat unit of the structure, is formed. It is by repeating this process an

arbitrary number of times that a thin film is built up. Therefore a characterization of the

bilayer structure is, in effect, a characterization of the film. It is the characterization of

this bilayer building block, for the system based on PPV and PAA, and how the system

responds to changes in processing parameters, that is of major interest in this chapter.

2.2 Experimental

The PPV precursor that was used in this study was purchased from Lark

Enterprises in Webster, Massachusetts and it was polymerized using standard conditions.

According to the vendor, it has quite a high molecular weight of around a million. It was

received as approximately a 1% aqueous solution and it was stored in this form in a

refrigerator and in the absence of any light in order to minimize any degradation or

premature elimination that can occur. The UV-Visible absorption spectra was taken for

each batch of PPV precursor solution received. Two peaks in the UV region of the

spectra, one at about 200nm and another of lower intensity at about 230 nm, were

observed and attributed to the aromatic ring. The solution to be used for sequential

adsorption was made by diluting this stock solution with pure water until an absorbance

value of 2, for the peak at 230 nm, was obtained. For the studies in which the PPV

precursor concentration is varied, this extent of dilution will then change. The solution is
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then filtered through a 20-50 micron glass frit filter. The pH is measured using an Orion

model 230A pH meter and it is adjusted by the slow addition of either dilute NaOH or

HC1. The poly(acrylic acid) (PAA) was purchased from Polysciences and it had a

molecular weight of about 90,000. It was received in the form of a 25% aqueous solution

and it was diluted with pure water to obtain the desired concentration for sequential

adsorption. The solution was then filtered through 2.5 micron filter paper and its pH was

adjusted as described above. All of the solutions used in the sequential adsorption

process, as well as the rinse baths and anything else requiring the use of water, used water

that was filtered through a Milli-Q@ filtration system. This removed, among other

contaminants, any residual ions and the water had a resistivity of at least 18 Mohm*cm at

the output.

All of the substrates used here were cleaned prior to sequential adsorption. Glass

microscope slides were cleaned by immersing them into a 5:1:1 mixture of

H20:H2S0 4 :H20 2 for one hour followed by a water rinse and then immersion into a 7:3

mixture of H20:NH40OH also for one hour. The slides were then thoroughly rinsed with

water and dried. This treatment makes the slides very hydrophilic as evidenced by the

fact that a drop of water placed on the slide completely wets the surface. Cut pieces of

silicon wafers that were used for the ellipsometric measurements were cleaned by

immersing them in a Chromerge@ solution (Chromic-Sulfuric Acid mixture) for at least 1

hour. They were then thoroughly rinsed with water before use.

The sequential adsorption process was performed automatically in a Carl Zeiss

HMS Series microscope slide stainer, or 'dipper'. These 'dippers' are made up of a

sequence of troughs together with a moveable arm which holds the substrates and which

can be programmed to move from one trough to another and held in each one for a certain

amount of time. The substrates are typically held in the polycation solution for 15

minutes followed by three separate water rinse baths for 2 minutes, 1 minute, and 1

minute. This same procedure is then repeated for the polyanion solution which completes

the bilayer. The whole process is then repeated to build up an arbitrary number of

bilayers. The water rinse baths are replaced periodically with fresh ones to minimize any

cross contamination. After the process is complete, the samples are removed and blown

li;^ -~
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dry with filtered compressed air. The PPV precursor is then converted into its conjugated

form by heating the samples in a vacuum oven for 11 hours at the prescribed temperature.

Thickness measurements were performed on a Gaertner ellipsometer at 633 nm and/or a

Tencor surface profiler with a 5 mg stylus force. Absorption spectra were taken on a

Cary 5E Spectrophotometer.

2.3 Film thickness

The absorbance of the PPV chromophore can be used to monitor the growth of

sequentially adsorbed layers based on PPV precursor and PAA. The PAA is not

conjugated and so does not contribute to the absorption spectra in this regime. Figure 2-1

shows the absorption spectra of PPV/PAA films as the number of bilayers that are

deposited increases. The PPV precursor was converted into its conjugated form by

heating the completed films in vacuum at 2300C for 11 hours. It can be seen that as more

bilayers are deposited, the film continues to grow as indicated by an increase in the peak

absorbance. If this peak absorbance is plotted as a function of the number of bilayers, as

shown in the inset, it can be seen that the growth is, in general, a linear process. That is

6 1.5

O

4 0.5

n

300 350 400 450 500 550 600

Wavelength (nm)

Figure 2-1 - Absorbance spectra of PPV/PAA films as a function of the number of
bilayers deposited - PPV precursor solution pH=4.5 and concentration=10 -4 M, PAA

solution pH=2.5 and concentration=10-2 M
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to say that roughly the same amount of material is deposited for every bilayer created. It

can be seen, however, that a line fit to the data passes through a point below the origin

which tends to indicate that the first few layers deposited have a smaller average

thickness than the rest. These first few layers are in close proximity to the surface and

this can affect the deposition. In general, a number of these layers are required to be

deposited to eliminate any substrate effects. This sequential adsorption process is

inherently different than the conventional spin coating process. There are a number of

issues that are simply not present in pure spin coated PPV films, which are used to make

light emitting devices, that must be addressed in sequentially adsorbed films. One of the

most important is the presence of the polyanion that was used to build up the film as well

as the resulting structure of the film created by this alternate dipping between polycation

and polyanion. As a means of getting at this structure, we used ellipsometry to measure

the increment in film thickness that occurred upon depositing each layer. Figure 2-2

shows the total film thickness, as measured by ellipsometry, as a function of the number

of bilayers of a PPV precursor/PAA film. Here, the total film thickness is measured after

every layer and the figure indicates the incremental thickness that occurs due to either the
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PAA or the PPV precursor. The average of these incremental thicknesses for both the

PAA and the PPV precursor is then taken. In the figure, the data corresponding to a half

integer number of bilayers is when the PPV precursor is the topmost layer, while PAA is

topmost for an integer number of bilayers. It can be seen that for this case, the thickness

increment due to the PAA is larger than that due to the PPV precursor. The incremental

thickness of the PAA is approximately 58A, while that of the PPV precursor is about

37A, and these give a total bilayer thickness of about 95A. So in this case, the PPV

precursor composes only about 40% of the total film thickness. As will be discussed in

the following sections, the concentration of the polymers in solution and the pH of the

individual solutions both significantly affect these values. It must be emphasized,

however, that these measurements do not imply that the structure of the film is such that

one discrete lamellae is layered on top of another, as might initially be thought. Rather, it

simply gives the film thickness increment that occurs upon adsorption. It does not give

information on the level of interpenetration between the polymer chains. Indeed, the

bilayer is likely made up of chains which form interpenetrating, diffuse interfaces

whereby gradual changes occur from one layer to the next, and this level of

interpenetration can vary from one system to the next.

2.4 Solution concentration effects

Typical concentrations of polymers used in this sequential adsorption process are

in the range of 10-3 M to 10-2 M based on the repeat unit molecular weight. For a typical

hydrocarbon polymer such as poly(acrylic acid), this translates into approximately 0.1 to

1 kg/m 3 which is generally within the dilute region of polymer concentration. This

regime is sufficiently dilute so that individual polymer chains do not overlap, but rather

are isolated from each other in solution. Since the polyelectrolytes are adsorbed from

these dilute aqueous solutions, it might be expected that the concentration of polymer in

the solution may affect the deposition process and, as will be seen , this is indeed the case

under certain circumstances.

Films of PAA and PPV precursor were sequentially adsorbed onto cleaned silicon

wafers using conditions under which the polyelectrolyte concentrations were

independently varied. Using the same technique based on ellipsometry that was

i;l
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described above, the incremental thicknesses of both the PAA and the PPV precursor

were measured simultaneously. Figure 2-3 shows the effect that changing the PAA

concentration has on the relative thickness values (the PPV precursor concentration is

held constant at 10-4 M). Within experimental error, little or no change was observed for

either the total bilayer thickness or for the individual thickness contributions when the

PAA was reduced in concentration by an order of magnitude from 10-2 M to 10-3 M.

On the other hand, the concentrations used for the PPV precursor were necessarily

much more dilute. This material is quite temperamental for a number of reasons. In

addition to the fact that the viscosity of even dilute solutions is quite high, it also tends to

form a gel upon storage making it even more viscous. Furthermore, partial elimination of

the precursor material can occur in solution. This results in a slight yellowing of the

solution and can further increase the viscosity. For these reasons, the PPV precursor

solution had to be used at or below a concentration of around 10-4 M. Above this limit,

the viscosity became too high for the solution to be used effectively in sequential

adsorption. Figure 2-4 shows the effect that changing the PPV precursor concentration,

below this limit, has on the relative thickness values (the PAA concentration is held

constant at 10-2 M). As the PPV precursor concentration decreases, both the total bilayer

thickness as well as the individual contributions decrease. The adsorption of a monolayer

of polymer onto a solid substrate from a dilute solution has been the source of study for

quite a while6 2. Typically these systems show an adsorption isotherm (a plot of the

amount adsorbed versus solution concentration) consisting of an initial sharp increase in

the amount adsorbed followed by a plateau region as the concentration is increased. This

is shown schematically in Figure 2-5. This monolayer adsorption is very similar to the

sequential adsorption process used here and they differ only in the nature of the substrate.

The surface is now composed of a previously adsorbed layer of polymer, instead of a

solid substrate, and so the same qualitative aspects should be observed. As shown in

Figure 2-3, the PAA concentration in the range
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Figure 2-5 - Schematic of a generic adsorption isotherm

of 10-3 to 10-2 M, has no effect on the adsorption. We are therefore on the plateau region

of the adsorption isotherm in which surface saturation has been attained. Since the

surface is saturated, any change in the PAA concentration does not result in a net increase

in the thickness. On the other hand, large changes in thickness were observed when the

PPV precursor concentration was changed as shown in Figure 2-4. This implies that the

PPV precursor adsorption is taking place in the steeply inclined region of the isotherm

whereby complete surface saturation is not attained. Any change in the PPV precursor

concentration results in a change in the degree of saturation and hence a change in

thickness. It should be noted, however, that it is not only the PPV precursor incremental

thickness that is changing as the PPV precursor concentration is changed. Interestingly,

both of the incremental thickness values seem to follow the PPV precursor concentration.

Since the PAA concentration is being held constant in these cases, it implies that the

thickness of the adsorbing PAA layer is dependent upon the thickness of the previously

adsorbed PPV precursor layer. A thicker underlying layer promotes a thicker layer of

PAA to be adsorbed by virtue of the fact that there are more positive charges to which the

PAA can attach. So it is seen that changing the thickness of one layer by changing its
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concentration (the PPV precursor) drives a change in the thickness of the other layer (the

PAA).

2.5 Solution pH effects

In addition to the concentration, the pH of the polyelectrolyte solutions that are

used for sequential adsorption can play a major role in determining the resultant film

structure. As discussed in Chapter 1, adjusting the pH of a weak polyelectrolyte solution

allows one to control the charge density along the chain which in turn affects the

conformation of the polymer in solution. By using the ellipsometric technique that was

described above to measure thickness increments, we have looked at some of the effects

that result from changing this charge density.

The effects of varying the pH of the polyelectrolyte solutions independently is

shown in Figure 2-6. Three general trends can be discerned. First, as the pH of the PAA
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increases, its relative thickness contribution per bilayer decreases. The PAA is a weak

polyelectrolyte for which an increase in the pH causes an increase in its degree of

ionization (higher charge density). The result, shown schematically in Figure 2-7, is to

create more electrostatic repulsion between charges causing the chain to adopt a more

extended conformation. In turn, this tends to give thinner layers upon adsorption due to

the chain's ability to lay flat on the surface. On the other hand, as the pH of the PPV

precursor increases, its relative thickness contribution per bilayer increases. The PPV

precursor acts like a salt in the sense that the ionic groups, which render it water soluble,

are completely dissociated. Consequently the degree of ionization, and hence the

conformation in solution, are essentially independent of the pH, unlike PAA. However,

the degree of ionization of the previously adsorbed PAA layer is still free to change with

pH, as shown in Figure 2-8. A larger pH in the PPV precursor solution causes the charge

density of the surface, which is composed of PAA chains, to increase and promotes more

adsorption of the PPV precursor. The third point concerns an effect previously observed

in the above section on the concentration dependence of the thickness. Here again, the

+ . 4.4. . + + + + + + + + + . 4.4.4.4.4.4.4.

PAA solution
Higher pH
High linear charge density
Extended solution conformation
Thin layers

+I . + + +++++++++++++++ + +

Figure 2-7 - The influence of PAA solution pH during film growth
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PPV precursor solution
Lower pH
Low surface charge density from PAA
Thinner PPV precursor layers

PPV precursor solution
Higher pH
Higher surface charge density from PAA
Thicker PPV nrecirinr laverm

Figure 2-8 - The influence of PPV precursor solution pH during film growth

thickness of an adsorbing layer is dependent on the underlying layer thickness. That is to

say, a thickness change in the PPV precursor layer due to a changing pH drives a

simultaneous thickness change in the PAA layer. Similarly, a thickness change in the

PAA layer due to a changing pH drives a simultaneous thickness change in the PPV

precursor layer. Apparently, a thicker underlying layer promotes a thicker adsorbing layer

by creating more potential sites of attachment, as well as by creating a rougher surface.

A slightly larger pH window is shown in Figure 2-9 but with both solutions

maintained at the same pH value, as in the diagonal of the matrix shown in Figure 2-6.

Based on previous arguments, as the pH of both solutions are increased, the PAA

thickness contribution should decrease due to its forming a more extended conformation

in solution, while the PPV precursor contribution should increase (or reach a plateau) due

to an increase in the surface charge density. This is indeed what is observed in Figure 2-9

up to a pH of about 4.5. Beyond this, the thickness contribution from both components
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Figure 2-9 - Dependence of the incremental thickness values of PPVprecursor and PAA
on solution pH with both solutions maintained at the same pH value

decreases, and at a pH of 6.5 the bilayer thickness is miniscule. In order to reconcile this

observation, another explanation must be invoked. As a reminder, this system is made up

of a polycation (PPV precursor) which is highly charged independent of pH, and a weak

acid (PAA) whose charge density changes with pH. At low pH, the PAA chain is weakly

charged and it forms a layer with many loops and tails due to its coiled conformation in

solution. Relatively little PPV precursor is adsorbed to the PAA at this low pH due to its

low charge density. As the pH of both solutions increase, the charge density of the PAA

increases and causes more PPV precursor to be adsorbed. Free energy considerations

dictate that at still relatively low charge densities, the polycation will try to maximize its

conformational entropy by going down in a relatively loopy, and hence thick,

conformation. As the pH, and hence the charge density, continue to increase, the

enthalpic contribution will eventually take over. A more energetically favorable situation

is created when the two polymers form one-to-one contact ion pairs in extended chain

conformations resulting in a very thin bilayer and the observed transition in the thickness

as shown schematically in Figure 2-10. Essentially, at high pH values, the system is

f
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PPV precursor solution
Fairly high pH
Fairly high surface charge density from PAA
Thilc PPV nrecrnr-or hIverr

PPV precursor solution
Still higher pH
Very high surface charge density from PAA
Thin PPV precursor layers

Figure 2-10 - Influence of solution pH at high PAA charge densities (high pH)

behaving as two highly charged macromolecules, comparable to films made with both a

strong acid (polyanion) and a strong base (polycation). This requirement is met for films

made of sulfonated polystyrene (SPS) and poly(allylamine hydrochloride) (PAH), both of

which are fully charged independent of pH in the region of interest, and whose structures

are shown in Figure 1-1. It is known that for this system, very thin bilayers with extended

chain conformations do indeed form6 3-65. It is in this manner in which the above films of

PAA and PPV precursor are behaving.

In the normal pH range of deposition where this thickness transition does not

occur, the pH of the solutions determines the degree of ionization of the PAA. Only

those groups on the PAA chain that are charged contribute to the deposition process. So

if a relatively low pH of both solutions is chosen, then few of the carboxylic acid groups

on the PAA will be ionized during the deposition to form ion pairs with the PPV

precursor. This results in a high concentration of free carboxylic acid groups left in the

film that are not bound to the PPV precursor. These can then be activated after the

deposition process is complete by submerging the entire film into water adjusted to a high

_~___r___ _·______~r______
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pH. This procedure will become important in the next chapter when discussing devices

made from these films. Now, the effect of this post water treatment on the film thickness

will be discussed. Figure 2-11 shows the total thickness of sequentially adsorbed films

made with a PPV precursor pH of 4.5 and a PAA pH of 3.5 and afterwards treated to a pH

adjusted water bath, at a pH as indicated in the figure, for 1 hour. The pH of the water

bath was either adjusted down with HCI or up with NaOH. There is a large pH range

from about 3 to about 9 over which the film thickness doesn't change appreciably. In this

range, the degree of ionization of the PAA can change drastically but the film remains

intact and of good quality. At both very high pH's and very low pH's the film thickness

drops precipitously but it seems to drop faster at low pH's. At these low pH values, the

HCl causes the PAA to lose most of its charge density by forming free acid groups with

the Cl ion providing the necessary counter-ion to the PAH. So at a low pH, the

macromolecules are no longer electrostatically bound to each other and could potentially

re-dissolve back into the solution. On the other hand, at a high pH the PAA becomes

fully ionized and so this breaking up of the film is not likely,
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yet a decrease in the film thickness is still observed. In this range, the presence of the

hydroxyl groups (OH-) from NaOH compete with the surface sites anchoring the film to

the surface and eventually dominate resulting in a delamination of the film from the

surface. Indeed this could also be the source of the decrease in film thickness even at low

pH's where it seems that both mechanisms are possible.

2.6 Thermal Conversion Issues

Once the PPV precursor and PAA have been sequentially adsorbed onto a

substrate, the film must be heated in order to convert the PPV from its precursor form

into its conjugated form. This was done under vacuum in order to minimize any

oxidative degradation that can occur if done under ambient conditions. When a spin

coated film of pure PPV precursor is heated in vacuum, the chemical conversion proceeds

with the elimination of tetrahydrothiophene and hydrogen chloride gas, as previously

shown in Figure 1-3. The situation is a bit different, however, for sequentially adsorbed

films. When the PPV precursor and the PAA are assembled, the charged groups on each

of the polymers become ion pairs and most of the small counter-ions remain in solution,

as shown in the first step of Figure 2-12. The PPV precursor now effectively has a

carboxylate counter-ion instead of a chloride, which is of importance when the film is

heated to bring about thermal conversion. The influence of different counter-ions on the

conversion characteristics of cast films of PPV precursor has been investigated by

previous workers6 6. They have shown that precursor films with halide counter-ions (F-,

Cl-, and Br-) are fully converted by 2000 C, but those with an acetate counter-ion (i.e.

CH 3COO-) require temperatures up to 3500C for complete elimination. The case of the

sequentially adsorbed layers considered here is similar to that for the acetate ion in that

both have a carboxylate group as the counter-ion. However, a fundamental difference

here is that upon conversion, the acid group is forced to remain in the film by virtue of the

fact that it is covalently bonded to the PAA chain, as shown in the second step of Figure

2-12. Tetrahydrothiophene is still eliminated, but now the charged carboxylate ion reacts

to form a carboxylic acid group (neglecting the possible

_ij
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Figure 2-12 - Schematic of the sequential adsorption and then thermal conversion of PPV
precursor and PAA

formation of dimers) that is still tethered to the polymer backbone. A small amount of

HC1, however, may still be formed due to any repeat units of the PPV precursor that are

not ion paired with the PAA.

Upon conversion, tetrahydrothiophene and any residual water are driven out of the

film and this can cause a net decrease in the film thickness. Figure 2-13 shows the total

film thickness before and after conversion for 20 bilayers of PPV precursor and PAA

under conditions where the PAA pH is held constant at 3.5 and the PPV precursor pH is

varied from 2.5 to 4.5. In the pH matrix of Figure 2-6, this corresponds to the center row.

The pre-conversion thickness values are different from each other just because they each

have different bilayer thickness values but the same number of bilayers were put down in

each case. Upon conversion, however, we can calculate a
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Figure 2-13 - Thickness change upon conversion of PPV/PAA films

percent shrinkage of the film and relate this back to the individual bilayer thickness. It

can be seen, then, that as the PPV precursor pH increases, the film shrinks more. This

could be attributed to a number of things including the fact that a higher PPV precursor

pH causes a slightly higher percentage of PPV precursor in the film. The film is

composed of approximately 35% PPV precursor for the (PPV pH/PAA pH)=(2.5/3.5)

combination and it increases to about 48% for the (4.5/3.5) combination. Since it is this

component which is losing a major constituent of its structure upon conversion (i.e.

tetrahydrothiophene), it stands to reason that the more of this material present in the

initial structure, the more shrinkage there will be. There are most likely other

contributions to the variation in shrinkage such as slight density variations and differing

degrees of swelling, however the variation in shrinkage is not very large, hovering around

35-40%, and it is difficult to draw any definitive conclusions.

The effect that the conversion temperature has on the absorption spectra of these

sequentially adsorbed films is shown in Figure 2-14 for a 20 bilayer film of PPV and

PAA converted under vacuum for 11 hours at a range of temperatures - note that the film

-v
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Figure 2-14 -Absorption spectra of PPV/PAA films converted at the indicated conversion
temperature for 11 hours

covered both sides of the substrate and hence all absorption values are about doubled. In

the unconverted film (not shown) there is no absorption peak in the visible region because

there is no extended conjugation. As the conversion temperature is increased, the

absorption peak shifts to lower energies (longer wavelengths) as well as increasing in

intensity. The intensity increases because at low temperatures, not all of the precursor

material gets converted. Higher temperatures result in a higher degree of conversion until

the material becomes fully converted, at which point the intensity becomes approximately

constant. It can be seen that relatively high temperatures are required to get complete

conversion of the precursor. The peak also shifts to lower energies upon increasing the

conversion temperature due to an increase in the conjugation length. As the length over

which the it electrons are delocalized increases, the bandgap of the material decreases.

Enthalpy considerations favor a longer conjugation length because of the resulting lower

energy configuration as compared to the nonconjugated structure, however entropic

effects limit it by tending to break the conjugation at an average critical length. So as the

conversion temperature is increased and more precursor material gets converted, the

__.
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conjugation length increases to a certain critical length resulting in a shifting of the

absorption peak to longer wavelengths.

2.7 Summary

It has been clearly demonstrated that the conditions of the dipping solutions, such

as pH and concentration, used to build up these films significantly influence the resultant

film structure. Over a PAA concentration range of 10-2 M to 10-3 M, it has been shown

that the bilayer thickness is relatively insensitive to the PAA concentration. However,

because a much more dilute PPV precursor concentration was required for viscosity

reasons, the bilayer thickness was shown to be highly sensitive to its concentration.

Furthermore, the PAA, being a weak polyelectrolyte, exhibits a pH dependent charge

density and this is responsible for the variation in bilayer thickness that is observed as the

pH of the solutions is varied. A higher PAA solution pH causes the PAA to adopt a more

extended chain conformation in solution and results in a thinner PAA incremental

thickness. However, a higher pH in the PPV precursor solution results in an increase in

the surface charge density, due to the previously adsorbed PAA layer, and this causes a

thicker PPV precursor incremental thickness. As the charge density of the PAA

continues to increase with pH, however, a point is reached whereby a transition in the

bilayer thickness to very small values is observed. Above this charge density, the system

behaves as two fully charged macromolecules which tend to adopt relatively extended

chain conformations in solution and form one-to-one contact ion pairs on the surface

creating very thin bilayers.
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3. LIGHT EMITTING DEVICE CHARACTERISTICS OF PPV/PAA
SEQUENTIALLY ADSORBED POLYELECTROLYTE

MULTILAYERS

3.1 Introductory remarks

The sequential adsorption of poly(p-phenylene vinylene) (PPV) precursor and

poly (acrylic acid) (PAA) discussed in detail in the previous chapter, can now be used to

create light emitting devices (LEDs). As these devices now have an extra component in

them (namely PAA) as compared with pure spin coated PPV devices, the mechanism of

device operation could be, and is, different. It is the purpose of this chapter to explore the

fabrication and characterization of these devices and to understand the effects that the

sequential adsorption process imparts on the performance of organic light emitting

devices.

By carrying out the adsorption process on Indium-Tin Oxide (ITO), a thin

transparent electrode, heating to bring about thermal conversion of the PPV precursor,

and subsequently thermally evaporating aluminum on top as the opposite electrode, a

sandwich-type device architecture is obtained as has already been shown in Chapter 1,

Figure 1-7. If a DC voltage is applied between these two electrodes (forward bias =

ITO+/Al-), electrons and holes, which are injected at opposite electrodes, can recombine

with each other to emit a photon and produce light through the transparent ITO.

In order to understand how these materials emit light, it is necessary to understand

the optical properties of the thin polymer films from which they are made. The

absorption and photoluminescence (PL) spectra for a PPV sequentially adsorbed film

(with PAA) is shown in Figure 3-1. The absorption band is centered at about 420 nm and

when the film is excited by light of this wavelength, some of the absorbed energy is re-

emitted as radiation of a lower energy, as shown in the photoluminescence spectra of the

same figure. This so-called Stokes shift between the absorption and photoluminescence

spectra is widely observed in organic materials and is due to the Frank-Condon principle.

ii
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Figure 3-1 -Absorption and Photoluminescence spectra of a PPV/PAA film

Simply put, the response time of electrons is much faster than that of their respective

nuclei (because of mass differences). When a molecule absorbs a photon, the electrons

quickly respond causing an electronic transition, as reflected in the absorbance spectra,

but the nuclei respond much slower. Consequently it is only after the electrons have

redistributed that the nuclei have time to relax into a lower energy vibrational state.

Emission from this lower vibrational level of the electronically excited state is of lower

energy than the initial transition resulting in the observed Stokes shift. In

electroluminescence, charge carriers are electrically injected into the material instead of

being created by an optical transition. However, the photoluminescence and

electroluminescence spectra in general, and for PPV in particular, are frequently very

similar indicating that the same excited state species is responsible for both. Because

there is little overlap between the absorption and electroluminescence spectra, we can

create LEDs with little self absorption.
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3.2 Experimental

Light emitting devices were fabricated by sequentially adsorbing layers of PPV

precursor and PAA onto ITO coated glass. The conductive ITO was deposited (sputtered)

by Donnelly Applied Films onto a glass substrate to give a thin film with a sheet

resistance that was less than 15 2/square. It was then patterned, using standard

photolithographic techniques, and cut by DCI, Inc. to give 2"x1" glass substrates with

several ITO stripes that were 3 mm wide and several thousand angstroms thick. The ITO

coated glass substrates were then cleaned before use according to the following

procedure. They were sonicated for 15 minutes in a 3:1 solution of H20:LysolTM and

then in pure H20. They were then dried and again sonicated for 15 minutes in each of the

following solvents: 1,1,1 -Trichloroethane, Acetone, and Methanol. Finally the substrates

were rinsed with pure water before use. The polyelectrolyte solutions were made and the

sequentially adsorbed layers were prepared in accordance with the procedures described

in the experimental section of the previous chapter. The top aluminum electrode was

thermally evaporated at a base pressure of at least 2x10 -6 torr, through a shadow mask to

create aluminum stripes which were 2 mm wide and several thousand angstroms thick.

They were oriented perpendicular to the ITO stripes and so the completed structure

consists of a "grid" pattern of intersecting ITO and aluminum stripes with each active

pixel being 3mm x 2mm.

The current-voltage characteristics of these devices are measured with a Keithly

model 230 programmable voltage source in series with a Hewlett Packard model 34401A

multimeter. "Forward bias" corresponds to a positive ITO electrode (the anode) and a

negative aluminum electrode (the cathode). A silicon photodiode connected to a Newport

model 1830-C optical power meter collects the light output from the face of the device.

All of this is completely automated and controlled by a computer using a program written

in Labview which communicates to the equipment through GPIB connections. In

addition, because devices typically deteriorate if they are tested in air, all testing was done

in a glove box that is purged with dry nitrogen and effectively maintained to be free of

both moisture and oxygen.
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The external quantum efficiency, defined as the ratio of the total number of

photons emitted to the total number of charge carriers injected, was calculated as follows.

The total number of carriers/second that are injected into the device can be calculated by

dividing the measured current by e, the electronic charge. The optical power meter

detects the light coming from the device in units of watts (or fractions thereof). If the

simplifying assumption is made that all of the photons have a wavelength of 530 nm,

approximately the center of the luminescence spectra, the total number of photons/second

can be obtained by dividing the measured power by hv where h is Planck's constant and v

is the frequency of the radiation. This, however, only gives the total number of photons

that impinged on the photodiode. A correction factor must be made that takes into

account the fact that photons are emitted in all directions from the front face of the device

and that they are not all collected by the photodiode. Greenham et al.67 have shown that

the emission of light from the surface of these thin film devices is approximately

Lambertian. That is to say that the intensity of light is largest in the direction that is

perpendicular to the surface and decreases approximately as the cosO where 0 is the angle

with respect to the surface normal. Furthermore, they have shown that the total flux of

light leaving the front face of the device, Fext, is given by

r/2

Fext = J2rL o cos0sin d0 = 7rLo
0

where Lo is the flux of light per unit solid angle leaving the device in the forward

direction (i.e. at 0= 0). However, the photodiode is only lcm in diameter and it is placed

approximately 1.2cm from the surface of the device. The only light that it collects is that

which exits the surface at an angle that is less than about 230 with respect to the normal.

This forms a cone of light and any light emitted outside the cone is not detected by the

photodiode. Therefore in terms of the above equation, the amount of light that is

detected, F 1, is

1 2 1230
F, = 2nrLocos sin d6 = nLo[1l-cos 2 0]o = 0.159tLo

0

which means that only about 16% of the total amount of light emitted from the front face

of the device is detected. Consequently the external quantum efficiency is given by
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(0.159)(P / hv)
r ext (%) =

(I / e)

The absorption spectra of these films were measured in a Cary 5E Spectrophotometer

which scanned the wavelength of the incident radiation using a monochromator. The

photoluminescence characteristics were measured on a Spex Fluorolog in which the

source of the radiation was from a Xenon lamp. This broadband radiation was first

passed through a monochromator that was set at the wavelength corresponding to the

peak absorbance of the film. The photoluminescent radiation was then directed towards a

CCD camera which detected the entire spectra simultaneously.

3.3 Effects of PPV/PAA film preparation conditions on device performance

As previously discussed, the thickness of a film can easily be controlled in the

sequential adsorption process simply by adjusting the number of bilayers that are

deposited. It was shown in Chapter 2, Figure 2-1 that the film grows linearly with an

increasing number of bilayers. The effect that this increase in film thickness has on

device characteristics for PPV/PAA films is shown in Figure 3-2. The conditions of

deposition were such that the PPV precursor solution had a pH of 4.5 and a concentration

of 10-4 M, while the PAA solution was at a pH of 2.5 and a concentration of 10-2 M.

First, it can be seen that the turn-on voltage, that at which light begins to be emitted from

the device, increases with an increasing number of bilayers (Note that the light output

from the 5 bilayer device in this figure is present but is too small to be visible on this

scale). In many models of device operation, a critical electric field in the device is

required for the device to turn on. Thicker devices require a higher voltage to achieve a

given electric field in the device and so the turn-on voltage increases with film thickness.

In addition the maximum light output and the external quantum efficiency (photons

emitted/electrons injected) also increase with an increasing number of bilayers. The

increase in quantum efficiency can be seen by looking at the ratio of the maximum light

output to the maximum current density for each device. Thicker devices have a lower

current density and a higher light output, both of which give an increase in the quantum

efficiency. The explanation comes by considering the position of the recombination zone

of electrons and holes in these devices. In general, PPV devices are much better at

Chapter 3, Device Characteristics 57
57
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Figure 3-2 - Device characteristics for PPV/PAA films with a variable number of bilayers
(see text for deposition details)

transporting holes than electrons and so in forward bias, the recombination zone is close

to the aluminum electrode where there are surface states which can serve to quench the

luminescence via nonradiative recombination pathways. As the device becomes thicker,

several factors contribute to the increase in device performance. First, the number of

holes that are transported across the device and reach the opposite electrode before

recombining with an electron is a form of leakage current. By going to thicker films, the

recombination zone is moved further away from the aluminum interface thereby

decreasing the amount of leakage current passing through the device as well as reducing

the amount of quenching that happens at that interface. Second, any current due to local

defects such as pinholes in the device will also be reduced by going to thicker films.

There is also an anomalous current spike in the 10 bilayer sample of Figure 3-2. Similar
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observations have been made by other workers 68, 69 but its nature is not well understood.

It is not always present, and may possibly be related to the quality of the electrode

interfaces.

Changing the film structure by controlling solution pH, as discussed in detail in

Chapter 2, can significantly affect the performance of light emitting devices made from

these films. From the pH matrix of Figure 2-6, it is seen that films made with a PPV

precursor pH of 4.5 and a PAA pH of either 2.5 or 3.5 differ significantly in total bilayer

thickness but only slightly in relative composition. The (4.5/2.5) system has an average

composition of about 39% PPV precursor and is almost twice as thick as the (4.5/3.5)

case which is itself composed of about 48% PPV precursor. Figure 3-3 shows the device

characteristics in terms of light output vs. voltage and external quantum efficiency vs.
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Figure 3-3 - Device characteristics for PPV/PAA films made at pH values of 4.5/3.5
(solid line) and 4.5/2.5 (dashed line)for the PPVprecursor/PAA solutions
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voltage for devices made with these two different film structures but with similar total

film thicknesses. These films were converted at 2300 C for 11 hours under vacuum prior

to evaporation of the aluminum cathode. The devices made under the (4.5/3.5) pH

conditions showed improved device performance both in light output and in external

quantum efficiency. At its maximum at 18V, the light output for this system was about 4

times larger than that for devices made under (4.5/2.5) pH conditions. The efficiency on

the other hand, increased by about 1.5 orders of magnitude at its maximum at 11V, but

slowly decreased at higher voltages. The total bilayer thickness and its composition are

the main differences between these two film structures. The bilayer thickness undergoes

a much larger change than the composition and is probably the primary reason for the

improved device performance. The thicker bilayer structure likely has a less

interpenetrated structure with thicker regions of PAA separating the PPV, leading to

poorer device performance.

The conditions under which the film is heated to promote thermal conversion can

also play a major role in determining the device performance. It is known that the

conversion conditions used for pure spin coated PPV precursor is very important in

determining device performance and has consequently been the source of a lot of

research. Similarly, the conditions used to convert these sequentially adsorbed layers

based on PPV are expected to be very significant, albeit slightly different, due to the

presence of the counter polymer used to build up the film. Figure 3-4 shows the

absorption and photoluminescence (PL) spectra of a 20 bilayer film of PPV and PAA

converted under vacuum for 11 hours at a range of temperatures (note that the film

covered both sides of the substrate and hence all absorption and PL values are about

doubled). As discussed in the previous chapter, in the unconverted film (not shown) there

is no absorption peak in the visible region because there is no extended conjugation. As

the conversion temperature is increased, the absorption peak shifts to lower energies (i.e.

longer wavelengths) as well as increases in intensity. The intensity increases because not

all of the precursor material gets converted at low temperatures. Higher temperatures

result in a higher degree of conversion until the material becomes
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Figure 3-4 - Absorption and Photoluminescence spectra of PPV/PAA films converted at
the indicated temperature for 11 hours - the pH of the PPVprecursor/PAA solutions used

to make the films was 4.5/3.5

fully converted, at which point the intensity becomes approximately constant. The peak

also shifts to lower energies upon increasing the conversion temperature due to an

increase in the conjugation length. As the length over which the Rt electrons are

delocalized increases, the bandgap of the material decreases. Enthalpy considerations

favor a longer conjugation length because of the resulting lower energy configuration as

compared to the non-conjugated structure. Entropic effects, however, limit it by tending

to break the conjugation at an average critical length. So as the conversion temperature is

increased and more precursor material gets converted, the conjugation length increases to

a certain critical length resulting in a shifting of the absorption peak to longer

wavelengths. The same shifting due to this conjugation length effect happens in the

photoluminescence spectra as shown in Figure 3-4. However, the PL intensity goes

through a maximum and starts to decrease after 2300C which indicates a decrease in the

PL quantum efficiency. At elevated temperatures, degradative effects come into play.

Other workers70 have shown that the PPV can react with oxygen to produce carbonyl
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groups along the backbone which then act to quench the luminescence and hence

decrease the quantum efficiency. Higher temperatures cause more oxidation and

therefore more quenching. At still higher temperatures the polymer itself may start to

degrade.

Surprisingly then, the device characteristics given in Figure 3-5 show a dramatic

improvement with temperature even up to 3000 C. In this figure, the maximum light

output and external quantum efficiency continuously increase as the conversion

temperature is raised from 2600C to 3000C. It can be seen that for a conversion

temperature of 300TC, the maximum light output from the device is greater than 1000

cd/m 2 with an estimated external quantum efficiency of 0.04% (as a reference point, the

brightness of an average computer screen is about 50-100 cdlm 2). For a pure spin coated
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Figure 3-5 - Device characteristics for PPV/PAA films converted at the indicated
temperature - the pH of the PPVprecursor/PAA solutions used to make the films was
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PPV film with an aluminum cathode and an ITO anode7 1-73 , a maximum brightness of

only about 10 cd/m 2 is typically reported, significantly less than that obtained here. This

result, together with the observation that the photoluminescent quantum efficiency

decreases with increasing conversion temperature, implies that another mechanism must

be active and responsible for the improved performance in these devices, as discussed in

the next section.

3.4 Mechanism of Device Operation

Some insight into the mechanism of device operation can be obtained by

examining the temporal response of a device under a constant DC applied bias. Figure 3-

6 shows the behavior over time of the current density, light output, and external quantum

efficiency of a PPV/PAA device under an applied bias of 10V. The voltage on this

device was initially scanned from zero up to 10OV two times and after this, it was held

constant at 10V to get the results shown in the figure. The current density, light output,

and efficiency all increase with time until they reach a maximum, but after this they begin

to slowly decrease (not shown). The light output starts out at about 10 cd/m 2 and

increases by more than 1.5 orders of magnitude. The current density, however, only

increases by a factor of about 3, while the external quantum efficiency increases by a

factor of about 20. This behavior, which will be referred to as charging the device, is not

observed in films of pure PPV. Recently, as discussed in Chapter 1, an electrochemical

mode of operation of thin film light emitting devices has been reported and various

models have been put forth74 -85 . These light emitting electrochemical cells (LECs) are

typically made by spin coating a film from a common solution containing the luminescent

polymer or its precursor (e.g. PPV), additional salt (e.g. Li'CF3SO3-), and an ion

conducting polymer (e.g. PEO). A transient response like that observed in Figure 3-6 is

attributed to ion motion under the application of an electric field 79, 80, 82. In this vein, it

should be emphasized that the sequentially adsorbed films presented here are not

comprised of pure PPV. Rather, the counter polymer that was used to build up the film,

namely the PAA, contains carboxylic acid groups that get incorporated into the structure

and can play an important role in device operation.
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When a spin coated film of pure PPV precursor is heated in vacuum, the chemical

conversion proceeds with the elimination of tetrahydrothiophene and hydrogen chloride

gas, as previously shown in Chapter 1, Figure 1-3. As discussed in the previous chapter,

the situation is a bit different for sequentially adsorbed films. When the PPV precursor

and the PAA are assembled, the charged groups on each of the polymers form ion pairs
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Chapter 3, Device Characteristics

and most of the small counter-ions remain in solution as previously shown in Chapter 2,

Figure 2-11. The PPV precursor now effectively has a carboxylate counter-ion instead of

a chloride, which is of importance when the film is heated to bring about thermal

conversion. Schlenoff86 has shown that precursor films with an acetate counter-ion (i.e. -

CH 3COO-) require temperatures up to 3500 C for complete elimination, a temperature

much higher than that required for the usual C1- counter-ion. The sequentially adsorbed

layers, having a carboxylate group as the counter-ion, thus require a higher conversion

temperature to achieve complete elimination and good device performance as shown in

Figure 3-5. This is emphasized by the fact that when a lower conversion temperature was

used, the aluminum electrode formed "bubbles" on its surface during device operation. In

this case, because the film was not completely converted, further conversion occurred

upon resistive heating of the device during operation and the volatile elimination products

caused the resultant damage to the aluminum electrode.

A fundamental difference here, however, is that upon conversion, the acid group

is forced to remain in the film by virtue of the fact that it is covalently bonded to the PAA

chain. This also has been previously shown in Figure 2-11. Tetrahydrothiophene is still

eliminated, but now the charged carboxylate ion reacts to form a carboxylic acid group

(neglecting the possible formation of dimers) that is still tethered to the polymer

backbone. In essence, then, the converted film is composed of an undoped

semiconducting polymer, namely PPV, surrounded by carboxylic acid groups attached to

the PAA chains. The degree of ionization of these groups will be dependent on the

chemical makeup of the matrix as well as the applied bias. In general, however, the weak

carboxylic acid can dissociate into carboxylate anions and protons which can then move

under an applied field to give the time dependent characteristics shown in Figure 3-6.

If the applied voltage is scanned from zero up to some maximum forward bias

voltage, and then back to zero again, a positive hysteresis is typically observed in both the

measured current (I-V curve) and light output (L-V curve). This corresponds to the time

dependent charging behavior just discussed and shown in Figure 3-6. If consecutive
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Figure 3-7 - Light-Voltage curves showing the decrease in turn-on voltage as the device
is consecutively scanned - the pH of the PPVprecursor/PAA solutions used to make the

film was 4.5/3.5
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Chapter 3, Device Characteristics

voltage scans are now performed, the resultant L-V curves are shown in Figure 3-7. As

more scans are performed on the device, it becomes more highly charged and a decrease

in the turn-on voltage is observed. The actual value of the turn-on voltage as the device is

scanned consecutively is shown in Figure 3-8. It starts at about 8.5V for the initial scan,

but then it decreases until it reaches about 2.5V to 3V where it remains even upon further

scanning.

A proposed mechanism of device operation depends upon the presence of mobile

ions in the film. Figure 3-9 shows an ideal case of how the ions can redistribute in a

sequentially adsorbed film of PPV and PAA. Physically, only the cations are mobile

because the carboxylic acid groups are attached to the PAA chain. However, under an

applied bias, as the protons move toward the cathode (aluminum, negatively charged)

they leave behind carboxylate anions which can still move towards the anode (ITO,

positively charged) by the redistribution of the cations. The situation is analogous to

electron and hole movement in inorganic semiconductors in which physically only the

electrons are mobile. Effectively, however, the holes (absence of electrons) are

considered to be mobile positive carriers. Similarly, both cations and anions will be

-COOH -COOH M'
-COO -COOH

-COO- -COOH -COOH M+

-COOH
-COOF -COOH -COO- -COOH M+

'M+ M
-COOH -COO -COOH M--COOH -COOH
-COOH -COOH -COOH -COOH -COOH M+

-COOH-COO -COOH -COOH M÷

-COO- -COOH -COOH

-CO-CCOOH - -COOH -COOH M+

-COO- -C00M+ -COOH M+

-COO- -COOH -COOH -COOH
-COO M ÷

M+ = H+ or Na+

Figure 3-9 - Schematic of the distribution of ions in a PPV/PAA film under an applied
bias
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driven towards their respective electrodes by the applied voltage. This, in turn, creates a

space charge or double layer at each interface which can significantly affect the injection

characteristics of electrons and holes.

In Figure 3-10, the charge density distribution, energy band diagram, and electric

field distribution are shown for a typical LED and LEC under forward bias. In part (a) of

LED LEC

A

Net electronic charge
due to applied voltage

Net ionic charge

)

accumulated at interfaces

X

F Al

Figure 3-10 - Comparison between the (a) charge density distribution, (b) electric field
distribution, and (c) band diagram of an LED and an LEC

(a)

(b)

(c)
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the figure, for the case of the LED, there are no ions present in the film and the bandgap

is sufficiently large so that the concentration of thermally generated carriers is negligibly

small. Therefore the charge on the electrodes due to the applied voltage is not

compensated by any charges in the film. For the case of an LEC, as was just discussed,

ions are present and can move to the electrodes to counterbalance the charge on the

electrodes. Therefore for an LED, there is a constant electric field in the device which is

equal to the applied voltage divided by the thickness of the device as shown in Figure 3-

10(b). For an LEC, however, since the ions are counterbalancing the charge on the

electrodes, all of the electric field is concentrated at the interfaces and no field is present

in the bulk of the film. The effect that all this has on the energy levels is shown in Figure

3-10(c). In a normal LED, electrons tunnel through the triangular barrier, of width W, to

get injected into the film. A higher electric field, which is effectively equal to the slope

of the energy bands, results in a decrease in the barrier width and consequently more

electrons being injected. In an LEC, the effect of the ions is to produce a very large

electric field at the interface and consequently a significant narrowing of the barrier to

injection. Therefore, the slow charging response that was observed in the temporal

response of the device shown in Figure 3-6 corresponds to the ions moving to their

respective electrodes. The decrease in the turn-on voltage as the extent of this charging

increases, as was shown in Figure 3-7 and Figure 3-8, is due to a decreasing barrier to

carrier injection as the ions build up at the interface.

The effect of this charging process on the overall device characteristics is shown

in Figure 3-11. Before this charging process begins to occur, the total light output and

external quantum efficiency are low, and the turn-on voltage relatively high, in analogy to

a device made with pure PPV. In this case, the barrier to electron injection is related to

the energy difference between the work function of the aluminum electrode and the

conduction band of the PPV. Similarly, the barrier to hole injection is related to the

difference between the ITO electrode and the valence band of PPV. It is well known, and

can easily be seen by comparing the work functions of aluminum and ITO with the

conduction and valence bands of PPV, that the barrier to hole injection is smaller than the

barrier to electron injection. Consequently many more holes are injected into the device
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than electrons. Some of the holes can then pass through the device without recombining

with an electron (leakage current) and the recombination primarily occurs at the

aluminum-polymer interface. As the device becomes charged and the barrier to injection

as well as the turn-on voltage decrease, the current density increases by factor
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Figure 3-11 - Device characteristics for PPV/PAA films before and after charging - the
pH of the PPVprecursor/PAA solutions used to make the films was 4.5/3.5
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of about 8 in this case. Simultaneously, however, the light output increases by 2 to 3

orders of magnitude and the external quantum efficiency increases by almost 2 orders of

magnitude. As the ions move to the interfaces and the barriers to injection decrease, the

number of electrons injected starts to approach the number of holes injected. In other

words, a better balance of carriers is achieved which results in more carriers recombining

to give a higher light output. Furthermore, less leakage current now flows through the

device resulting in a higher external quantum efficiency. When the barriers to injection

become negligibly small, then the rate of injection of electrons and holes should be equal

and the I-V characteristics are no longer dominated by the interfaces, but rather by the

bulk. It is interesting to note, however, that this improvement in device performance with

charging is relatively irreversible. The device characteristics taken 12 hours after removal

of the voltage were similar to those just described after the device was charged.

However, a small amount of charging was again observed after the 12 hours suggesting

the possible relaxation of the ions after the voltage was removed.

If these results are compared to recent reports for spin coated LECs, it is seen that

the external quantum efficiency (after charging) is about an order of magnitude less than

that reported by deMello et al.82 However, the difference between the efficiency before

and after charging for these PPV/PAA layers is about two orders of magnitude and this is

close to the difference between the LED and LEC reported by deMello et al. The

difference likely lies in the concentration of mobile ions that are present in the films. The

values reported for the spin coated LECs were for an ionic concentration of about 1020

cm -3, however in these PPV/PAA sequentially adsorbed layers, a much lower

concentration is likely present.

In a normal LED based on PPV, rectification behavior is observed whereby little

or no current and light are detected in reverse bias [ITO(-), aluminum(+)]. In such a case,

electrons would have to be injected from the ITO into the conduction band of the PPV,

and holes from the aluminum into the valence band. Such a situation is very energetically

unfavorable as is seen by comparing the energy differences between the Fermi levels of

ITO and aluminum to the conduction and valence bands of the PPV, respectively (see

Figure 3-10(c)). In devices made from sequentially adsorbed layers of PPV and PAA,

V·ICIYIV· V YVrlVI
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however, light and current are observed in both forward and reverse biases as shown in

Figure 3-12. It should be noted that in this figure, separate devices were used for the

forward and reverse bias tests to eliminate any effects due to charging.

Before charging, light and current are still detected in reverse bias, implying that

some level of charging is present even at short times, however a maximum reverse bias

light output of only 1 cd/m 2 is observed. As the device becomes charged, a decrease in

the turn-on voltage as well as an increase in both the light output and the current density,

as described above, are seen in both forward and reverse bias. Since the presence of ions

decreases the barrier to injection by concentrating the electric field at the interfaces, the

injection characteristics become independent of the electrode work function and both

forward and reverse bias current and light are observed. In effect, the band bending that
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Figure 3-12 - Forward and reverse bias characteristics for a PPV/PAA film before and
after charging - Forward and reverse bias scans were performed on separate devices -

the pH of the PPVprecursor/PAA solutions used to make the films was 4.5/3.5
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occurs at each interface sufficiently reduces the barrier so that the injection characteristics

become independent of the relative energy levels. However, it should be noted that the

device characteristics are not completely symmetrical in forward and reverse biases. In

general, the turn-on voltages for reverse bias behavior are generally higher than the

corresponding forward bias case. Furthermore, the light output in reverse bias is usually

lower than that in forward bias. In Figure 3-12, the maximum light output in forward bias

after charging was about 350 cd/m 2 and that for the reverse bias case was 60 cd/m 2, both

at 13V. This may be related to the ionic conductivity in these films. No additional salt

ions or ion transporting polymer was added to these films, as is typical for LECs based on

spin coated systems. As such, the concentration of ionic species as well as their mobility

will be of prime importance in the operation of these devices. This was
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one of the prime motivating factors underlying the study of ionic conductivity issues in

sequentially adsorbed films presented in the next chapter.

An interesting effect occurs if a device is charged in forward bias and then tested

in reverse bias, as shown in Figure 3-13. As expected, light and current are observed in

the forward bias. However, in reverse bias, no light is detected but current is still

observed. This type of testing has not been extensively explored and its behavior is not

completely understood. It is possibly related to the kinetics of reversing the formation of

the space charge layers, but this speculation has not been substantiated.

3.5 Modification to the PPV/PAA device structure

Ionic conductivity appears to play a crucial role in the operation of these devices.

It is believed that during the sequential adsorption process, most of the small counter-ions

associated with the charged groups on each polymer are displaced in favor of forming ion

pairs between the groups attached to the polymer as shown in the first step of Figure 2-11.

However since the PAA is a weak acid, the degree of ionization of the carboxylic acid

groups depends upon pH. Therefore before conversion, the film not only has charged

carboxylate anions paired with the PPV precursor, but also unpaired free carboxylic acid

groups. Indeed, this is the very effect that controls the pH dependent bilayer thickness

presented in Chapter 2. If the film is made at a pH where a significant number of free

acid groups are incorporated into the film, then immersing it into water at a high pH after

the adsorption process is complete will cause these free acid groups to ionize. If there is

any salt present, an ion exchange reaction can occur to incorporate these cations into the

film. Furthermore, since the entire film is swelled by water, it is very likely that in

addition to the ion exchange reaction occurring, excess salt in the form of both cations

and anions are incorporated into the film. This procedure was done for a number of salts

and the I-V and L-V results are shown in Figure 3-14 for several such systems. In general

the device characteristics for films with added salt were quite inferior to those films

without. Lower light output, higher operating voltages, and poorer device stability were

observed for films with added salt.
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Figure 3-14 - Device characteristics for PPVprecursor(pH 4.5)/PAA(pH 3.5) films that
were dipped into the indicated aqueous salt solutions for I hour before thermal

conversion

Part of the explanation may come from examining the absorption and

photoluminescence spectra for these and other films with added salt as shown in Figure 3-

15. The decrease in intensity and blue shifting of the absorption spectra when salt is

added suggests that added salt tends to hinder the conversion of the PPV precursor,

resulting in a less converted material (intensity decrease) and a smaller conjugation length

(blue shift). However, these changes are insufficient to fully account for the quenching

observed in the photoluminescence when salt is added to these films. In chemically

doped conjugated polymers, the dopant ions tend to quench the photoluminescence by

providing sites for non-radiative recombination and it is believed
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Figure 3-15 -Absorption and Photoluminescence spectra for PPVprecursor(pH
4.5)/PAA(pH 3.5) films that were dipped into the indicated aqueous salt solutions for I

hour before thermal conversion

that the added salt ions are acting similarly here. It is interesting to note, however, that in

typical LECs made by spin coating, this quenching effect is not generally observed 82.

The source of the discrepancy is not well understood.

One of the advantages of the sequential adsorption technique is that it affords

molecular level control over the film architecture. Layers that are tens of angstroms thick

can be manipulated and deposited onto the surface. It has recently been found by Rubner

et al.87, 88 and others89 that a thin electronically insulating layer in between the active

light emitting layer and the cathode (aluminum in this case) tends to increase the device

efficiency. Figure 3-16 shows the device performance when thin insulating layers of

PAH and PAA (structures shown in Chapter 1) are sequentially adsorbed onto a

PPV/PAA light emitting platform. The figure shows light output versus current density
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Figure 3-16 - Device characteristics for PPV/PAAfilms with thin insulating layers at the
aluminum interface

with voltage as the implicit variable. The slope of the graph is directly proportional to the

efficiency of the device. Even one monolayer of insulating material is sufficient to

increase the efficiency by about 14 times. Then as the insulating layer becomes thicker,

the total current density and light output decrease, but still the efficiency (i.e. slope)

remains constant. Several factors could be responsible for this behavior which stems

from the location of the recombination zone. As previously noted, the recombination

zone in devices made from PPV is near the aluminum electrode due to the fact that many

more holes are injected at the ITO contact than electrons at the aluminum, and that the

hole mobility is slightly greater than the electron mobility. In general, the aluminum

interface causes quenching of the excitons and so by moving the recombination zone

away from the aluminum interface, the device efficiency increases. Others89 have

explained this phenomenon by considering that the barrier to electron tunneling decreases

by having a large voltage drop across the insulating layer (i.e. large electric field).

However, more work is needed to make any definite conclusions here.
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3.6 Summary

In summary, it has been shown that light emitting devices based on PPV/PAA

sequentially adsorbed layers behave quite differently than normal spin coated PPV

devices. They show characteristic features which suggest an electrochemical mode of

operation. A time dependent charging behavior was seen which resulted in an increase in

the current density, but an even larger increase in both the light output and the external

quantum efficiency. A light output of greater than 1000 cd/m 2 (about 10 times the

brightness of a computer monitor) was observed which is significantly higher than that

typically reported for films of pure PPV with an aluminum cathode and an ITO anode.

The turn-on voltage was also shown to decrease from about 8V to about 3V in forward

bias upon charging. In reverse bias, a similar increase in the light and current, and a

decrease in the turn-on voltage, was also observed. These results suggest that the

mechanism of device operation is similar to a light emitting electrochemical cell (LEC).

Ions present in the film can move under the influence of an applied field and build up at

the interface, thus modifying the injection characteristics, and are responsible for the

improved device performance.
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4. DIELECTRIC PROPERTIES OF PAH/PAA AND PAH/SPS
SEQUENTIALLY ADSORBED POLYELECTROLYTE

MULTILAYERS

4.1 Introductory remarks

Sequentially adsorbed layers based on poly(allylamine hydrochloride) (PAH) with

both poly(acrylic acid) (PAA) and sulfonated polystyrene (SPS), have been studied

extensively in terms of their adsorption characteristics 90-100 . The chemical structures of

these materials have been repeated for convenience in Figure 4-1. These materials are not

electrically active like the conjugated materials described in previous chapters and the

electrical characteristics of sequentially adsorbed layers made from them have not been

studied in depth. They are, however, of interest for a number of reasons.

Ho'C%0

HOly(acrylic acid)

Poly(acrylic acid)
(PAA) Poly(styrene 4-sodium sulfonate)

(SPS)

NH3+ C-

Poly(allyl amine hydrochloride)
(PAH)

Figure 4-1 - Chemical structures of some typical polyelectrolytes

These materials are simple polyelectrolytes and the adsorption characteristics of

the PAH/PAA system are qualitatively similar to those for the PPV precursor/PAA

system described in previous chapters. The polyanion, PAA, is the same in both systems.

It is a weak polyelectrolyte whose charge density can be controlled by changing the pH.

The polycation, PAH, is similar to the PPV precursor in the sense that over the pH range
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of interest, the polymer is fully charged and is essentially independent of pH. It has been

shown that the ionic conductivity in films made for light emitting devices can be of great

importance in determining their characteristics. For this reason, films composed of PAH

and PAA can potentially act as a model system in which to understand the mechanism of

ionic transport in these sequentially adsorbed layers. Furthermore, the electrical

properties of these films are also of interest in their own right. As will be shown in this

chapter, understanding the influence of preparation conditions on the electrical

characteristics can be used to obtain a more fundamental understanding of the sequential

adsorption process itself, which is still in its infancy.

These films may also be of interest in battery and fuel cell technology. For thin

film batteries, solid polymer electrolytes have been extensively investigated. Solid

electrolytes have certain desirable characteristics over liquid ones. Leakage of the

electrolyte from the battery housing becomes a mute point and the fact that it is a solid

means that it is structurally easier to make a smaller cell using conventional processing

techniques. A longer shelf life and wider operating temperature range are also among the

advantages of solid electrolytes 10 1. Usually, however, solid electrolytes have a

significantly lower ionic conductivity than liquid ones and this has been the impetus for a

lot of research into increasing the conductivity of solid electrolytes. In addition, polymer

electrolytes are generally preferred to other materials like glass or ceramics in the sense

that they are flexible and more pliable and can better withstand any volume changes101l

Again however, the conductivity issue plays a dominating role.

An important design criteria is the transference or transport number. In these

materials, both cations and anions, as well as electrons, can contribute to the conductivity.

The total conductivity is then just the sum of all these contributions,

cTTTAL=1+(T2++C3+'-. The transference number of a particular species is then just the

fraction of the total that it contributes to the conductivity, tn=(Ynf/TOTAL. Frequently the

electronic conductivity is negligible and so only the cationic and anionic contributions are

important 102. For thin film, solid polymer electrolyte rechargeable batteries, a high

cationic transport number is desired. The anion should remain immobile while the cation

easily shuffles between the cathode and anode. Some of the most promising candidates
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for these solid polymer electrolytes are polar polymers such as polyethers (i.e.

poly(ethylene oxide) (PEO)), mixed with a lithium salt such as Li+CF 3SO3-. The salt

dissolves in the PEO which is then capable of transporting these ions. One of the

problems, however, is that the CF3SO3- anion is not completely immobile and in fact can

contribute significantly (in some cases greater than 50%!) to the overall ionic current 10 3.

One possible solution is to make use of polyelectrolytes whereby the anions are attached

to the polymer chain, rendering them immobile, and the associated cations would have a

transference number of 1. Unfortunately, these polyelectrolytes are usually glassy and

brittle in the absence of solvent and very low ionic conductivities are observed for the

pure materials which is presumable due to extensive ion pairing. The idea of a cationic

transference number of 1, however, is very tempting and attempts have been made to

improve their conductivity. The blending in of plasticizers such as poly(ethylene glycol)

(PEG) has been shown to significantly enhance the conductivity 104, 105. Taking this a

step further, plasticizing groups can be copolymerized with the polyelectrolyte to enhance

the conductivity106.

Candidates other than PEO-like materials have been looked at for use as the

matrix polymer. Polyelectrolyte complexes are formed when a polycation and a

polyanion are mixed together in solution. They have been studied for years in the field of

ion exchange membranes. Due to the attractive electrostatic interaction between

polycation and polyanion, they complex together and precipitate out of solution. The

complex that is formed is a polar matrix which is capable of dissociating ion pairs into

free cations and anions and could therefore act as an electrolyte when mixed with a

salt 107 . It is interesting to note that this scenario is very similar to the sequential

adsorption of oppositely charged polyelectrolytes which is essentially the controlled

formation of a polyelectrolyte complex. Other types of complexes have also been studied

where, for instance, hydrogen bonding provides the requisite attractive force between

polymers1 08, 109

It is the goal of this chapter, then, to examine the electrical (impedance and

dielectric) characteristics of sequentially adsorbed layers of the aforementioned materials.

This will lead to a better understanding of the nature of the sequential adsorption process.

'*1
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The information gained from this chapter can then additionally be used to further

understand the mechanism of device operation described in previous chapters and to

potentially help in creating more efficient light emitting devices. Furthermore, this initial

research may also lead to some interesting developments in the field of solid polymer

electrolytes.

4.2 Experimental

The poly(acrylic acid) (PAA) was purchased from Polysciences and it had a

molecular weight of about 90,000. It was received in the form of a 25% aqueous solution

and it was diluted with pure water to obtain the desired concentration for sequential

adsorption. The poly(sodium 4-styrenesulfonate) (SPS) as well as the poly(allylamine

hydrochloride) (PAH) were obtained from Aldrich in solid form and both had a weight

average molecular weight of approximately 70,000. Solutions were made by dissolving

the polymer in water to obtain the desired concentration. All of the above solutions were

filtered through 2.5 micron filter paper and their pH was adjusted as described previously.

The polymers were then sequentially adsorbed onto an ITO electrode with the subsequent

thermal evaporation of an aluminum electrode in accordance with the procedures

described in the experimental section of the previous chapters.

Impedance and dielectric measurements were carried out on a Solartron model

1260 Impedance/Gain-Phase Analyzer which has a frequency range of 0lHz to 32MHz.

The instrument was controlled by a computer through the use of a program called Zplot

created by Scribner Associates, Inc. In most cases, the AC amplitude was 10mV but no

DC bias was applied. The data was obtained as real and imaginary impedance values and

were transformed into the dielectric domain according to the equations given in chapter 1.

Film thickness values were measured with Tencor surface profiler using a 5mg stylus

force. Data analysis, including the simulation runs described in the chapter, were done

using the ZView program made by Scribner Associates, Inc.

The devices were tested in one of two specially made sample chambers. Most of the

measurements were performed in a chamber which had the capabilities of being

evacuated or purged with a flowing gas. The temperature was constantly monitored by a

type-K thermocouple placed in close proximity to the sample itself. The thermocouple

V·~~YIV· ·· Y VY
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was connected to a Eurotherm programmable temperature controller which heated the

chamber resistively. In most cases, pure Argon was purged through the chamber during

testing, however for the cases in which the samples were exposed to a humid

environment, the Argon was first bubbled through water before flowing through the

sample chamber. For the case when the samples were heated above a temperature of

about 1100 C, testing was performed in a separate sample chamber. In this case, the

sample was placed in a quartz tube which was then heated in a tube furnace. Again, the

temperature was monitored by a type-K thermocouple and the chamber was purged with

Argon during device heating and testing.

4.3 Results

4.3.1 Basic Device Behavior and Modeling

The same device architecture that was used to create light emitting devices was

again used here. Sequentially adsorbed layers were built up on an ITO electrode and an

aluminum electrode was then thermally evaporated on top. The impedance (dielectric)

characteristics were then measured as a function of frequency, as described in Chapter 1.

Figure 4-2 and Figure 4-3 show the typical type of response that is exhibited by films of

PAH and PAA. For the purposes of illustration, these figures show the response at about

1080C, under flowing Argon, for films that were sequentially adsorbed at a pH of 3.5 in

both solutions. Figure 4-2 plots the data in the dielectric domain and shows the real

(dielectric 'constant', E') and imaginary (dielectric loss, e") components of the relative

permittivity. These devices typically exhibit two loss peaks, one at high frequency and

one at low. The large value of E' at low frequencies is indicative of ions moving under

the influence of the applied field and building up at the interface. The same data can be

examined in the form of a complex plane plot, or a Cole-Cole plot, in the impedance

domain (-Z" vs. Z') and is shown in Figure 4-3. It shows a semicircular arc at high

frequencies which overlaps with a low-frequency 'spike' that is close to a vertical line

(note that the arrow indicates the direction of increasing frequency).

~·
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Figure 4-2 - Dielectric characteristics at 1080C of a PAH/PAA film made at a pH of 3.5
for both solutions
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R,
Ci Rs

CB

R, = Bulk Resistance

C, = Bulk Capacitance
Ci = Interfacial (Double Layer) Capacitance
Rs = Series Resistance

Figure 4-4 - Proposed equivalent circuit

This type of response is typical of an ion conducting polymer film sandwiched

between two ion blocking electrodes. The electrodes are considered blocking because

they are inert and do not take part in any electrochemistry. Furthermore, no ions can

cross the interface and enter into the electrode. The electrodes 'block' the ions from any

further movement. Also, it is assumed that the electronic conductivity is negligible in

these films. The response can then be modeled by an equivalent circuit of the type shown

in Figure 4-4. Under an applied bias, ions can be transported through the film and this

process is represented by a bulk resistance (RB). Simultaneously the material can

polarize, as it would in the absence of any long range ion motion, and this gives rise to a

bulk capacitance (CB). Since these two processes can physically occur at the same time,

RB and CB are combined in parallel in the equivalent circuit. As the ions move toward

the electrodes, they start to pile up at the interface since the electrodes are blocking and

do not allow any ions to pass. The charge on the metal electrode is counter-balanced by

the charge on the ions in the film. This is a so-called double layer of charge whose

behavior is similar to a parallel plate capacitor with a plate spacing on the order of the

thickness of the interfacial layer. This is then modeled as an interfacial (or double layer)

capacitance (Ci) in the equivalent circuit. Since the interfacial layer thickness is generally

a very small value, Ci is usually quite high compared to CB. The response of the bulk of

the film (RB-CB in parallel) is physically in series with this interfacial capacitance and this

is reflected in the series combination in the equivalent circuit. The final component in the

equivalent circuit is a series resistance. This represents any residual resistances of the

Chater4 Deletri Prperie
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leads and/or contacts, most notably the ITO resistance, that could not be eliminated from

the measurement.

The ideal electrical response of this equivalent circuit is shown in Figure 4-5 and

Figure 4-6 for two different values of RB. It can be seen that the overall response of the

equivalent circuit shows similar characteristics to the measured data. Looking first at the

dielectric response in Figure 4-5, two separate loss peaks can be distinguished. At low

frequencies, e' reaches a high value that is related to the ions building up at the interface,

and its value is determined by the interfacial capacitance. As the frequency is increased,

the first of the two transitions is observed, and the frequency about which it is centered

decreases with an increase in the value of RB. At still higher frequencies, e' approaches a

plateau and its value is effectively determined by CB (assuming that Ci is much greater

than CB, which is usually the case). The transition at high frequencies is just due to the

electrode and/or contact resistances, Rs, which are in series with the effective capacitance

of the film. This artificially causes e' to go to zero in the region above this high-

frequency transition. Indeed, it is observed that if the resistance of the ITO is

systematically decreased, by decreasing the length of the ITO electrode, this peak shifts

out to higher frequencies (not shown). In the limit when the series resistance goes to

zero, this peak would not be present. However, since each cell that was tested differs

slightly in their series resistance (due to variability in ITO resistance, aluminum

resistance, etc.) this electrode effect could not be subtracted out with any true degree of

accuracy. Consequently, since this loss peak is merely due to the test cell setup, it gives

no vital information about the polymer film or the interface and so for the remaining

discussion it will be ignored.

Turning now to the ideal impedance response of the equivalent circuit, in Figure

4-6, an increase in the value of RB results in an increase in the diameter of the semicircle.

In fact, the diameter of the semicircle is equal to the value of RB and so by experimentally

measuring this diameter, and knowing the thickness and area of the sample, the resistivity

(and conductivity) of the film can be determined. The vertical spike is just due to Ci and

so it is seen that this complex plane plot is just a superposition of the response of a

Chanter 4 Dieletric Pronertie
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Figure 4-5 - Ideal dielectric characteristics of the proposed equivalent circuit
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parallel RC combination (RB and CB) together with the interfacial capacitance. In this

graph, the series resistance, Rs, is manifested in a shifting of the entire curve along the

real axis by a value equal to Rs.

4.3.2 PAH/PAA Films

4.3.2.1 Temperature Dependencies

Now that the basic response characteristics of the film are known, their

temperature dependence can be studied. The dielectric and impedance characteristics

were measured over the temperature range from 300 C to about 1 10C for a PAH/PAA

film that was sequentially adsorbed from solutions that were both set at a pH of 3.5. The

sample was first heated to 110 0C, while Argon was being purged through the sample

chamber, in order to ensure that any residual water was removed from the film. The

measurements were then taken as the film was cooled back down to room temperature.

The dielectric characteristics in Figure 4-7 show that when the temperature of the film is

lowered from 110 0C, the loss peak shifts to lower frequencies. The dielectric 'constant'

approaches a large value of about 100 at low frequencies which is attributed to ions

moving to the interfaces and building up a space charge polarization. At higher

frequencies, in the plateau region, this long range ion motion can no longer keep up with

the alternating field and so e' decreases to a value of about 5. The complex plane plot of

the impedance in Figure 4-8 shows that as the temperature is decreased, the diameter of

the semicircle systematically increases. Furthermore, at the highest frequencies, all of the

curves converge and approach a value of 60 0 on the real impedance axis. It is important

to note that up to 110 0C, this behavior is completely reversible in the sense that the film

shows the same characteristics upon being reheated.

An increase in the film conductivity (decrease in RB) is responsible for the

decrease in the diameter of the semicircle in the complex plane plot of the impedance, as

well as the shifting to higher frequencies of the dielectric loss peak. The higher

temperature increases the mobility of the ions thus causing an increase in the

conductivity. The calculated values of this conductivity as a function of temperature are
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Figure 4-7 - Temperature dependence of the dielectric characteristics of a PAH/PAA film
made at a pH of 3.5 in both solutions
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shown in the form of an Arrhenius plot in Figure 4-9. The conductivity in these films is

quite low and ranges from about 1xl0- 12 S/cm at room temperature up to about 4x10 -9

S/cm at 1080C. The data form a fairly straight line, which implies that the conduction is

an activated process, with an activation energy of about 1 eV. This is typical of polymers

below their glass transition temperature (Tg), however, ionically conducting polymers

based on PEO and other PEO-like polymers typically operate above their Tg. These

materials produce Arrhenius plots which have a negative curvature rather than forming

straight lines. In such a case, significant segmental mobility of the polymer is present and

conduction is believed not to be an activated process, but rather one in which the ions are

swept along by the mobile polymer segments, the so called dynamic bond percolation

model.

The species responsible for conduction could potentially be the small counter-ions

that are initially associated with each polyelectrolyte (H+ or Na+ from PAA and C1- from

PAH). However, it is generally believed that during the sequential adsorption process,

most of the small counter-ions get swept out of the film in favor of the two
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Figure 4-9 - Arrhenius plot of the conductivity of a PAH/PAA film made at a pH of 3.5 in
both solutions
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polyelectrolytes forming ion pairs9 8, 100, an idea which will be discussed in more depth

shortly. The polyelectrolytes themselves are immobile and cannot contribute to the

conductivity. However the PAA, being a weak polyelectrolyte, can change its degree of

ionization with pH. A larger pH causes more of the carboxylic acid groups to become

ionized, while a lower pH causes less. The PAH, on the other hand, is fully charged in

the pH regime that is typically of interest. In the multilayer film, it has previously been

shown by Yoo et. al. 92 that under the pH conditions used to deposit these films (a pH of

3.5 in both solutions), about 50% of the functional groups of the PAA still exist as the

free carboxylic acid. This is due to the fact that only the charged groups participate in the

sequential adsorption process. The free acid groups remaining in the film can donate a

proton (H') which can then move and give rise to the observed conductivity. PAA could

indeed be acting as a proton conductor 110 , 111 as evidenced in Figure 4-10 and Figure 4-

11 which show the dielectric characteristics and temperature dependent
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Figure 4-10 - Dielectric Properties of a thin film of poly(acrylic acid)
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Figure 4-11 - Temperature dependent conductivity for a thin film of poly(acrylic acid)

conductivity, respectively, of a thin film of pure PAA (acid form, not the salt). For these

measurements, a 25% aqueous solution of PAA was diluted to a 4% solution with 2-

methoxyethanol which was then used to spin coat a thin film. As shown in Figure 4-10,

the dielectric constant for a pure spin coated film of PAA achieves values significantly

higher than that observed for the PAH/PAA sequentially adsorbed film (Figure 4-7) for a

similar temperature. Furthermore, Figure 4-11 shows that the ionic conductivity of a pure

PAA film is higher than that for the PAH/PAA film (Figure 4-9) and that it exhibits a

large temperature dependence. These results suggest that in the PAHIPAA sequentially

adsorbed film, there are either fewer carriers, or they have a lower mobility, than in the

pure PAA film. This issue will be further addressed in the next section.

The PAHIPAA sequentially adsorbed films were also heated to temperatures

greater than 110 0C to examine the effects of elevated temperatures on their properties.

Films of PAH and PAA, made at a pH of 3.5 in both solutions, were heated under flowing

Argon and their dielectric properties were measured. In this case, the samples were tested

as the temperature was increased so as to reveal any irreversibility brought about by the



CIhanter 4 Dielcltric Pronerties

elevated temperatures. Up to about 175 0 C, the behavior is the same as that shown

previously in Figure 4-7 and Figure 4-8. An increase in temperature causes the loss peak,

which is associated with the movement of the ions to the interface, to shift to higher

frequencies. At higher temperatures, several other things begin to occur as shown in

Figure 4-12 for the temperature range of 2060 C to about 406TC. Both e' and C" begin to

increase at frequencies lower than the loss peak, but in addition, the loss peak itself shifts

to lower frequencies. The irreversibility of this behavior is indicated in Figure 4-13

which provides a comparison of the characteristics of this film before and after it was

heated up to 4060C and cooled back down. Before this conditioning, e' is around 5 at

room temperature, but there is a large increase in both e' and E" due to ionic motion at

1250 C (note that the scale is blown up here for clarity). After the film was heated to
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Figure 4-12 - Dielectriccharacteristics from 2060C to 4060C for a PAH/PAA film made
at a pH of 3.5 in both solutions
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406TC and cooled back down, there is no such increase in e' or C" upon reheating to

1250C. Furthermore, this high temperature conditioning has decreased the bulk dielectric

'constant' from about 5 to about 3. This irreversible change in the film characteristics

can be explained by considering the reaction between carboxylic acids and amines to

produce an amide bond at elevated temperatures. The carboxylate groups on the PAA

that are associated with ammonium groups on the PAH can react to produce a chemically

cross-linked film. However, the free acid groups that are present in the film should, for

the most part, remain intact. Figure 4-12 shows that during the initial heating to elevated

temperatures, the dielectric loss peak that was attributed to ion motion shifts to lower

frequencies. Apparently, the amidation reaction that occurs at elevated temperatures

effectively cross-links the film and decreases the mobility of the ions in the film such that
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Figure 4-13 - Dielectric characteristics upon reheating of a PAH/PAA film made at a pH
of 3.5 in both solutions
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higher temperatures are required to move them. Furthermore, this would explain the

decrease in the bulk dielectric 'constant' from 5 to 3 that occurs upon heating the film to

4000 C, as shown in Figure 4-13. The less polar amide groups, as compared to the

carboxylate and ammonium ions, cause the film to have a lower bulk dielectric constant.

The cause for the increase in the intensity of E' and e" at low frequencies is not

completely understood but it but it seems to be due to an increase in the number of

carriers that can move to the interfaces.

The possibility that this irreversible change was due to the loss of chemically

bound water was examined by allowing the sample to equilibrate under ambient

laboratory conditions (i.e. relatively high humidity) and then re-testing the device. This

would have permitted the film to re-absorb any water that was lost at high temperature.

However, the same behavior as that shown in Figure 4-13 was observed indicating that

loss of any chemically bound water was not responsible for the observed behavior. In

addition, this type of cross-linking effect in films of PAH and PAA has recently been

reported by other workers and the formation of amide bonds at elevated temperatures has

indeed been confirmed by infrared spectroscopyl12

4.3.2.2 pH Dependencies

In addition to the temperature causing large changes in the observed dielectric

characteristics, the conditions under which the films are prepared can also have dramatic

influences on their behavior. When films of PAA and PAH are deposited, the pH that

both solutions are set at can significantly influence the resultant film structure. A

thorough investigation of this effect has been performed by Rubner et al.9 1-93. The key

idea is that one of the components is a weak polyelectrolyte whose charge density varies

with the pH. The effects of changing the pH of these solutions on the deposition process

are qualitatively similar to the case for PAA and PPV precursor discussed in Chapter 2.

When the pH is increased from an initially small value, keeping the pH of both solutions

the same, more of the carboxylic acid groups on the PAA become ionized while the PAH

remains fully charged. This results in the PAA adopting a more extended chain

conformation in solution which translates into thinner layers of PAA adsorbing onto the
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surface. The increase in the charge density of the PAA as the pH increases is further

manifested in a change in the PAH thickness. In this case, the PAA is already on the

surface and so now an increase in its degree of ionization results in a higher surface

charge density which promotes more adsorption of the PAH. So the overall effect of

increasing the solution pH in both solutions is the decrease the PAA incremental

thickness and increase the PAH incremental thickness. This generally results in a net

increase in the total bilayer thickness. From previous work of Rubner and Shiratori9 3, the

thickness increment that a layer of PAH and PAA contribute to the total film thickness is

given in Figure 4-14 for the case when both solutions are set at the same pH. It shows

that in region I, as the pH increases from 2.5 to 4.5, the PAA incremental thickness does

indeed decrease, and the incremental thickness of the PAH increases. In region II,

however, an increase in both the PAA and PAH incremental thickness is observed which

is believed to be related to the surface roughness of the film. The PAH incremental

thickness becomes sufficiently rough so as to drive a thickness increase in the associated
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Figure 4-14 - Incremental thickness values of PAH and PAA keeping both solution pH's
constant. Data from Rubner and Shiratori93.
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PAA layer, despite the fact that the PAA would prefer to form a relatively thin layer. A

further increase in pH results in the thickness decreasing to very small values in region

III. When the PAA reaches a certain critical charge density, it becomes more

energetically favorable for the PAH and PAA molecules to form one-to-one contact ion

pairs in extended chain conformations and this results in the formation of very thin

bilayers. A transition is observed such that between a pH of 6.0 and 7.5, the thickness of

a bilayer is very small. At these pH values, the PAH/PAA system is behaving as two

highly charged polyelectrolytes in analogy to the PAH/SPS system that will be described

below. In region IV, the PAA is fully charged but now the charge density of the PAH

varies with pH. As the pH increases, the PAH becomes deprotonated and hence it

becomes less ionized. In effect, then, the observed thickness transition is repeating itself

with the roles of the polyelectrolytes being reversed.

The electrical characteristics of PAHIPAA films in region I, II, and lI1 of Figure 4-

14 were measured in an attempt to more fully understand the nature of the sequential

adsorption process. PAA and PAH were both sequentially adsorbed at a concentration of

10-2M, based on the repeat unit molecular weight. The pH of both solutions was equal

and set to three different values. A pH of 3.5 corresponds to a relatively low degree of

ionization of the PAA and an estimated bilayer thickness of approximately 56A.o

Increasing the pH to 5.0 results in a larger degree of ionization of the PAA and an

increase in the bilayer thickness to about 124A. This pH regime is just before the onset

of the thickness transition. Pushing the pH to 6.5 increases the degree of ionization of the

PAA past its critical value and so the bilayer thickness takes on very small values in this

regime. The total film thickness for each of these films was 1155,A, 1176A, and 692A for

the pH 3.5, 5.0, and 6.5 cases, respectively.

All three of these films show the same qualitative temperature dependence as that

shown previously for the pH 3.5 case (Figure 4-7 and Figure 4-8) and the calculated

values of the conductivity as a function of temperature are shown in the form of an

Arrhenius plot in Figure 4-15 for all three cases. The pH 5.0 and 6.5 cases show very

similar conductivities over the entire range of temperatures measured, ranging from
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Figure 4-15 - Arrhenius plot of the conductivity of PAH/PAA films sequentially adsorbed
at the designated pH value in both of the solutions
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Figure 4-16 - Dielectric characteristics at 10C of PAH/PAA films sequentially
adsorbed at the designated pH value in both of the solutions
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about 2x10 -12 S/cm at room temperature to about 2x10 -9 S/cm at about 1 10C, despite the

fact that they have quite different bilayer thickness values. The conductivity values for

the pH 3.5 case are of similar magnitude but seem to be slightly larger than the others.

All three films have an activation energy close to 1 eV. A clearer insight can be obtained

from the data by looking at it in the dielectric domain, as shown in Figure 4-16 for each

of these films at a temperature of about 110 0C. In this figure, the effective dielectric

'constant' at low frequencies is significantly greater in the pH 3.5 case than for either of

the other two cases. The films made at the two higher pH values have similar low-

frequency dielectric 'constants' with perhaps the pH 5.0 case tending to slightly higher

values.

These results reflect the fact that as the solution pH is increased, the PAA exhibits

a higher degree of ionization. This results in more of the carboxylate groups taking part

in the adsorption process which leads to both a more highly ionically cross-linked film as

well as to the presence of fewer free acid groups in the final film. The increase in the

density of ionic bonds can decrease the mobility of the small ions. However, the decrease

in the free acid concentration can effectively decrease the carrier concentration if proton

conductivity plays a major role. So it is seen that a higher solution pH can lead to fewer

charge carriers being present, as well as to a decrease in their mobility, and these effects

then translate into a lowering of both the effective dielectric 'constant' and the ionic

conductivity. It should be noted, however, that even at a pH of 6.5, the film still exhibits

appreciable conductivity and the low-frequency dielectric 'constant' is still significantly

higher than its 'bulk' value. This implies that even when the molecules pair up to form

very thin bilayers, all of the small counter-ions are not eliminated in favor of forming

polymer-polymer ion pairs. In a later section, these results will be compared to those for

layers of PAH and SPS, two fully charged macromolecules, and similar conclusions will

be drawn.

4.3.2.3 Post Sequential Adsorption Treatment

It is interesting to consider the fact that there are free acid groups present in the

PAH/PAA film after it has been sequentially adsorbed. These groups are not associated

with the PAH and so there exists the potential to make use of them after the film has been
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created. If a film containing free acid groups is submerged into an aqueous salt solution

at a high pH, these groups become ionized and an exchange reaction can occur with the

salt ions in solution. If a salt such as NaCl is present, for example, then the sodium

carboxylate (-COO-Na+ ) can be formed. The dielectric characteristics for such a case at

110 0C is shown in Figure 4-17 for PAH/PAA films that were sequentially adsorbed with

a pH of 3.5 in both solutions. After the films were made, they were submerged for 1.5

hours into 10-5M NaOH aqueous solutions, of differing NaCl

a, S/cm
A Control, pure water 4x10 9 S/cm
B 10sM NaOH 4x10 .9 S/cm
C 105 M NaOH and 5 x 103M NaCI 3x10 .9 S/cm
D 1 105M NaOH and 5 x 1 0 2M NaCI 7x1010 S/cm
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Figure 4-17 - Dielectric characteristics at O1100C for PAH/PAA films dipped into aqueous
salt solutions for 1.5 hours after sequential adsorption - A pH of 3.5 was used in both

solutions for the sequential adsorption process itself
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concentrations which had a pH of about 8 to 9. The figure indicates that the conductivity,

as calculated from the complex plane plot of the impedance, decreases as the

concentration of salt increases. This is also reflected in the dielectric characteristics

whereby the overall trend is to shift the loss peak to lower frequencies with an increase in

the salt concentration. However, all of the samples that have been dipped in the higher

pH solution have larger values of e' and E", as compared to the control, implying the

presence of more mobile species. So despite the fact that more carriers are being

introduced, the conductivity of the film decreases. This is an effect that is frequently

observed in polymer electrolytes based on PEO:salt mixtures in which the decrease in

conductivity with increasing salt content is usually attributed to an increase in the glass

transition temperature. This causes a stiffening of the matrix which significantly

decreases the mobility of the ions and this more than compensates for the increase in their

concentration. A similar effect may be responsible for the decrease in conductivity seen

here.

In addition, subtle variations in the properties could be due to the fact that the free

acids are being replaced by sodium carboxylate groups. In the former case protons are the

conducting species, while in the latter it is sodium ions, and protons are generally

observed to have higher mobilities than other ions due to their small size. It should also

be noted that while the acid groups can indeed form the sodium carboxylate, there is

nothing prohibiting both Na+ and C1- ions from swelling the film and so both types of ions

can be present. All of these possibilities make for a very complicated system.

4.3.2.4 Effects of Moisture

In addition to changing the ionic conductivity by controlling the number of ions

that are present, a way to increase the conductivity of thin polymer films is through the

use of plasticizers. In solid polyelectrolyte films, it is the strong ion pairing that occurs

between the macro-ion (i.e. the ionized polymer) and the small counter-ion that gives rise

to their glassy and brittle nature as well as to the low values of the conductivity.

Plasticizing the matrix with a compatible, low molecular weight solvent can have the

effect of breaking up this association. For the PEO:salt systems, propylene carbonate or

ethylene carbonate are commonly used. For polyelectrolytes, however, water is usually

Chanter 4 Dieletric Pronertie



the solvent of choice as evidenced in ion exchange and fuel cell membranes 10 1. Here, the

effect that a humid environment has on the electrical properties of sequentially adsorbed

layers of PAA and PAH is examined and the results are shown in Figure 4-18 and Figure

4-19. These films were again adsorbed with the pH of both the PAA and PAH solutions

set at 3.5, and the total film thickness was about 900A in the dry state. The complex

plane plot of the impedance shows that there is a dramatic 5 order of magnitude increase

in the conductivity (from 3 x 10-12 S/cm to 2 x 10-7 S/cm) brought about by hydrating the

film. Furthermore, the dielectric 'constant' increases to a large value of about 325 in the

hydrated state, a number which is indicative of ions building up at the interface. All of

these values were based on a measured film thickness of about 900A in the dry state. It

has been shown recently, however, that the thickness of sequentially adsorbed layers of

PAH and SPS can increase by as much as 18% when they are hydrated 9 8, 100. Any

increase in the film thickness brought about by hydration would cause an increase in the

calculated conductivity and dielectric 'constant' by the same factor. Consequently all of

the values reported here for the hydrated films can be considered to be lower estimates.

The reason for these large increases is mainly attributed to a solvation effect. The

water solvates the ions in the film and can cause an increase in both the effective

concentration of carriers as well as their mobility. These values can be compared to a

dielectric 'constant' of about 110 and a conductivity of 4 x 10-9 S/cm for similar films

that were heated to 110 0C in a dry environment, as shown previously in Figure 4-7 and

Figure 4-8. Heating the film as well as exposing it to moisture both increase the

conductivity, but the latter does so much more effectively by breaking up the ion pairs. In

addition, the final value of the low-frequency dielectric 'constant' is significantly higher

when the film is hydrated (E' = 700) than when it is heated to 110 0C (e' = 100). This

implies that in these PAH/PAA films, moisture not only acts to increase the mobility of

the ions by plasticizing the matrix, but it also increases their concentration by causing

more of the free acid groups to become ionized.
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Frequency, Hz
Figure 4-18 - Effect of a humid environment on the room temperature dielectric

characteristics of a PAH/PAA film made at a pH of 3.5 in both solutions
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Figure 4-19 - Effect of a humid environment on the room temperature impedance
characteristics of a PAH/PAA film made at a pH of 3.5 in both solutions
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4.3.3 PAHISPS Layers

4.3.3.1 Temperature Dependencies

The previous section dealt with the behavior of sequentially adsorbed layers of a

fully charged polyelectrolyte (PAH) together with one whose charge density can vary

with the pH (PAA). In this section, however, the behavior of two fully charged

polyelectrolytes will be examined. The polycation is the same that was used in the

previous section, namely PAH. The polyanion is sulfonated polystyrene (SPS) which,

being a much stronger acid than PAA, is also fully charged under the pH conditions that

are typically used. The structures of these polymers have been shown in Figure 4-1.

Both the SPS and the PAH tend to form more extended chain conformations in

solution due to the electrostatic repulsion of like charges along the chain. So when they

are sequentially adsorbed together, they can each lie flat on the surface, forming polymer-

polymer contact ion pairs, and therefore create very thin bilayers. Frequently, a salt such

as NaCl is added to the solution which effectively shields the charges along the polymer

chain from each other. This shielding reduces the amount of electrostatic repulsion and

thereby causes the chain to adopt a more coiled conformation in solution which, in turn,

makes for thicker bilayers.

Films of PAH/SPS were made both with and without added NaCl in the solutions used

for sequential adsorption, and at a pH of 3.5 for both solutions. For the films made

without adding any salt into the solution, a very thin bilayer thickness of approximately 2

Al/bilayer was observed, as expected. When salt was added, a concentration of 0.1 M

NaCl was used in both the PAA and the PAH solutions and this increased the bilayer

thickness to about 16 Albilayer. In both cases, 75 bilayers were deposited which gave a

total film thickness of close to 1200A and 150A for the cases with and without salt,

respectively.

Figure 4-20 shows the dielectric response from 220C to 3500 C for the case when

the PAH/SPS film was made without any added salt. The value of e' continuously

increases as the temperature is raised and it approaches a value of about 40 at low
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Figure 4-20 - Dielectric response of a PAH/SPS film made at a pH of 3.5 in both
solutions with no added salt

frequencies and at 3500C. This large increase in e' again implies the movement of ions to

the interfaces, but now at significantly higher temperatures. This suggests that the

sequential adsorption of two fully charged macromolecules does not result in the

complete elimination of all the small ions from the film, but rather some residual amount

of counter-ions are still retained in the film (Na+ from SPS and C1- from PAH). The same

behavior is observed for PAH/SPS films made with 0.1M NaCl added to both of the

dipping solutions, as shown in Figure 4-21, but now the magnitude of E' is even larger.

At 3500C, e' approaches a value of about 300 which is more than 7 times the value

observed for the PAH/SPS film made without salt and at the same temperature.

Assuming that the mobilities of the ions are the same in both cases, this would imply that

there are more residual ions trapped in the film for the case when salt was added to the
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Figure 4-21 - Dielectric response of a PAH/SPS film made at a pH of 3.5 and with 0.1 M
NaCI in both solutions

solutions. The additional ions could be a result of the salt that was added to the solutions

becoming incorporated into the film. However, another possibility is that the PAH and

SPS are forming fewer ion pairs with each other and so more of their small counter-ions

remain in the film. It is difficult to determine, however, which one is predominant.

The effects of these ions is further reflected in the temperature dependence of the

conductivity, as indicated in Figure 4-22. The linearity of the curves indicates that the

conduction is an activated process with an activation energy close to 1.2 eV. For the film

made with additional salt in the dipping solutions, the conductivity goes through a

transition, after which it continues to increase with temperature. The source of this

behavior is not completely understood at this time, but it may be due to the loss of bound

water at high temperatures. In both cases, however, about a four order of magnitude

increase in the conductivity was observed over the indicated temperature range.
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Figure 4-22 - Arrhenius plot of the conductivity of PAH/SPS films that were made with
and without added salt in the dipping solutions - A pH of 3.5 was used for both solutions
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Figure 4-23 - Dielectric characteristics at 1400C for PAH/SPS films that were made with
and without added salt in the dipping solutions - A pH of 3.5 was used for both solutions
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The behavior of the film at temperatures below that required to get significant ion

motion is shown in Figure 4-23. The figure only shows the response at 1400C, but the

behavior is essentially the same down to room temperature. In this case C', which

represents the bulk dielectric 'constant', changes from about 2-3 to about 5-6 depending

upon whether salt is added to the solution or not during sequential adsorption. Assuming

that any interfacial or orientational polarization is negligible due to the high rigidity of the

matrix, is seems plausible that an increase in the local, or atomic, polarization brought

about because of the presence of a larger number of small counter-ions (Na+ or C1-), is

responsible for the increase in the bulk dielectric constant.

4.3.3.2 Effects of Moisture

Films of SPS and PAH were also exposed to a humid environment and their

dielectric properties measured. The conditions of deposition for these films were the

same as before. Namely, the pH of both solutions was set at 3.5 and in one case no extra

salt was added to either solution, while in a second case 0. 1M NaCl was added to both the

SPS and the PAH solutions. The effect that moisture has on the room temperature

dielectric characteristics is shown in Figure 4-24. In both cases, the low frequency

dielectric 'constant' increases to large values upon hydration, however it is significantly

higher in the case with added salt (E' = 500) than without(E' = 80). In addition, both cases

show at least a 4 order of magnitude increase in the conductivity when the film is

hydrated. However, the conductivity of the film made with additional salt in the solutions

is about 1 order of magnitude higher than that for the film made without. Note that the

conductivities quoted in the figure for the dry state represent upper estimates because

conductivities lower than this value for each sample could not be accurately measured.

The fact that these hydrated films have appreciable conductivity and a large dielectric

constant at room temperature, even in the case when no additional salt was added to the

solutions, reemphasizes that at least some of the small ions remain in the film after

sequential adsorption. The increase in going from the dry to the hydrated state is much

more pronounced in the case with salt added than without, implying the incorporation of

C__~~ I__ _ _rC L
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Figure 4-24 - Room temperature dielectric characteristics for a PAH/SPS film that was
made with and without added salt in the dipping solutions - A pH of 3.5 was used for both

solutions

more ions in the films made with salt. It is possible that the water is becoming

hydrolyzed into H+ and OH- ions which could then contribute to the conduction process.

However it is believed that the magnitude of the observed change in conductivity and

dielectric 'constant' is much larger than could be explained by this effect.

4.4 Discussion and Summary

The results of the previous sections show that the impedance and dielectric

characteristics of sequentially adsorbed layers can be used to obtain valuable insight into

the nature of the adsorption process. Table 4-1 provides a summary of all the previous

C~---~--~---~---~---~--~---~--------
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Salt in dipping Post Sequential Max E'
Sample Film pH solutions? Adsorption Treatment Temperature(C) Humidity a, S/cm (Low frequency) Figure #

Al PAH/PAA 3.5 no none 25 dry lx10 -12  (5) Figures 4-5
A2 PAH/PAA 3.5 no none 110 dry 4x10 -9 100 and 4-6
A3 PAH/PAA 3.5 no none 25 wet 2x10-7  325 Figure 4-13
A4 PAH/PAA 3.5 no NaOH 110 dry 4x10 -9  130
A5 PAH/PAA 3.5 no NaOH + 5x10 -3M NaCI 110 dry 3x10 -9 120 Figure 4-12
A6 PAH/PAA 3.5 no NaOH + 5x10 -2M NaCI 110 dry 7x10 -10 120
A7 PAH/PAA 5 no none 110 dry 2x10 -9  40 Figures 4-10
A8 PAH/PAA 6.5 no none 110 dry 2x10 -9  30 and 4-11
A9 PAH/PAA 3.5 no heat to 400oC then cool 25 dry 2x10 -12 (3) Figure 4-8
A 10 PAH/PAA 3.5 no heat to 400

0C then cool 125 dry 2x10 -12 (3)

S1 PAH/SPS 3.5 no none 25-140 dry < 10 -12 (2) Figures 4-14,
S2 PAH/SPS 3.5 no none 260 dry 2x10 -9 25 4-16, and 4-17
S3 PAH/SPS 3.5 no none 25 wet 3x10 -8 80 Figure 4-18
S4 PAH/SPS 3.5 yes none 25-140 dry < 10-11 (5) Figures 4-15,
S5 PAH/SPS 3.5 yes none 260 dry 1xl0-8 160 4-16, and 4-17
S6 PAH/SPS 3.5 yes none 25 wet 3x10 -7 500 Figure 4-18

**(x) means no loss

peak was observed

Table 4-1 - Summary of conductivity values and low-frequency E'values for PAH/PAA and PAH/SPS films

_ ,,~:, · _i .. · · ~-T ._ _; ; ·_· i-_· wI--- - --- I-" c, I,,

ChaDter 4. Dieletltricl PmnPrtiP.r 11 0



Chapter 4, Dielectric Properties 111

sections by quoting the conductivity of the samples, made and tested under the indicated

conditions, as well as their dielectric 'constant' at low frequencies. The values quoted for

E' are effectively the maximum that the sample displayed under the indicated conditions.

If the value is in parentheses, it indicates that no dielectric loss peak was observed under

those conditions and so it essentially represents its bulk value. Otherwise, it is reflective

of ions building up at the interface.

It has been shown (samples Al and A2 in the table) that increasing the

temperature of PAH/PAA films up to 110 0C leads to large changes in their conductivity

as well as in their dielectric characteristics. The max value of E' increases to about 100 at

elevated temperatures implying the accumulation of mobile ions at the interfaces. If the

pH of the PAH and the PAA dipping solutions is increased, a systematic decrease in the

low frequency dielectric 'constant' at 110 0C is observed. The max value of E' decreases

from 100 to 40 to 30 as the pH increases from 3.5 to 5.0 to 6.5 (samples A2, A7, and A8).

This is attributed to fewer ions reaching the interface, and thereby causing an increase in

the apparent dielectric 'constant', as the pH is increased. This can be caused by a number

of effects which are related to the structure of the multilayer film. As the pH increases,

the degree of ionization of the PAA during the sequential adsorption process also

increases, and so the resultant film contains fewer free acid groups. So if protonic

conduction is the predominant mechanism, a decrease in the concentration of free acid

groups as the pH increases leads to a decrease in e' by reducing the carrier density.

However, decreasing the free acid concentration is not the only result of increasing the

pH. The increase in the charge density of the PAA as the pH increases results in the

formation of more polymer-polymer ion-pairs and so the film has a higher density of

ionic cross-links that can act to make the film more rigid. This can then effectively

decrease the mobility of any ions that are in the film. It is likely that both of these effects,

decreasing the carrier density as well as the mobility, are playing a role.

The efforts at trying to increase the conductivity of PAH/PAA films by

intentionally adding ions (samples A4, A5, and A6) proved to actually decrease the

conductivity potentially due to the formation of a more rigid matrix with increasing salt

concentration. However, plasticizing the film by equilibrating it with a humid

I~--~--~-~-----~-~-~----~-
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environment results in over a five order of magnitude increase in the conductivity as

compared to the dry state, and an increase of e' to about 325 (samples Al and A3).

Water, being a good solvent for the polyelectrolytes, can solvate the ions and act to

increase both their mobility through the matrix as well as their density.

For the PAH/SPS films, both increasing the temperature as well as plasticizing

them with water results in a large increase in their conductivity and low frequency

dielectric 'constant'. This suggests that in the sequential adsorption of two fully charged

macromolecules, some of the small ions do indeed remain in the film. Furthermore, the

addition of salt to the dipping solutions tends to result in more ions being incorporated

into the structure, either coming directly from the added salt, or possibly from the original

counter-ions.

Recent XPS results, however, have indicated that during sequential adsorption,

most of the small counter-ions are expelled from the film into the solution or rinse baths

in favor of forming ion pairs between the two polymers98, 100, 113. This suggests that the

concentration of ions responsible for the observed conductivity and dielectric

characteristics is below the detection limit of XPS, which is typically on the order of

1%114. A rough idea of the actual concentration of ions that are present can be obtained

by considering that the ionic conductivity is equal to the product of the concentration of

ions (n), their mobility (g), and the electronic charge (q). Relatively few studies on the

actual mobility of ions in polyelectrolyte films have been made. However if a

representative value of about 10-7 cm2/V.s is used for the room temperature mobility in

the dry statel15, then it is seen that for a conductivity of 10-12 S/cm, the concentration of

ions is very low at about 1014 cm-3 . Given that the concentration of polymeric repeat

units in these films is on the order of 1022 cm -3, it is seen that very few ions indeed are

incorporated into the film, consistent with recent XPS results.

It is interesting to speculate on the source of these small ions since it is frequently

assumed that they are all eliminated from the film. One possible explanation could be

due to the counter-ion condensation effect. As the charge density of the polymer chain

increases, the average distance between charges decreases. Once the distance between

charges reaches a certain critical length, the so called the Bjerrum length, no further
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increase in the net charge density can occur. This length is just the distance between

charges at which their electrostatic interaction energy just equals their thermal energy

kT 1 16 and in water at 293K, it has a value of about 7A. This distance is several times that

which would be expected if every repeat unit were charged and so it is seen that enough

counter-ions are condensed so as to maintain this minimum distance between charges.

Recent theoretical and experimental results on polyelectrolyte complexes in solution have

indicated that there is indeed a competition between polyelectrolyte complexation and

counter-ion bindingll17 and this could be a possible explanation of why some of the small

ions remain in the film. Furthermore, Nordmeierll1 7 indicates that the addition of salt to

the solutions destabilizes the formation of polyelectrolyte complexes, causing a lower

degree of complexation and a consequent higher degree of counter-ion binding. This

could explain the apparent larger concentration of ions seen here in PAH/SPS films made

with additional salt in the dipping solutions.

The behavior of PAHISPS films can be compared to that of PAH/PAA films when

the latter is adsorbed at a pH of 6.5. Under these conditions the PAA is highly charged,

like the SPS, and so the two systems should behave similarly. It is seen that at a

temperature of 110 0C, the PAH/PAA film (sample A8) reaches a conductivity of about

2x10-9 S/cm and e' has increased to a value of about 30. On the other hand, the PAH/SPS

films, both with and without salt, show no significant changes in their conductivity or

dielectric characteristics from 250 C to 1400C (samples S1 and S4). Instead the films

require much higher temperatures to achieve similar characteristics. By 2600 C, the

PAHISPS film made without salt (sample S2) has the same conductivity and a similar

value for E' as the PAH/PAA film at 110 0C (sample A8). This suggests that the ions are

less mobile in the PAH/SPS system than in the PAHIPAA one. Since both the SPS and

the PAA are fully charged in this regime, most of the conductivity likely comes from the

residual counter-ions left in the film, however any residual free acid groups from the PAA

might contribute to protonic conduction in the PAH/PAA films at low temperatures.

r- M-- - -~ -
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5. SUMMARY AND CONCLUSIONS

The subject of this thesis has basically been two fold. Initially, sequentially

adsorbed layers of PPV precursor and PAA were examined both in terms of their

adsorption characteristics and then in terms of their light emitting behavior. This then led

to a more fundamental study of the impedance and dielectric characteristics of some non-

electroactive model systems based on sequentially adsorbed layers of PAHIPAA and

PAH/SPS.

The effects that the polyelectrolyte solution conditions have on the sequential

adsorption of PPV precursor and PAA were initially examined. The resultant film

thickness was shown to be independent of the PAA concentration down to 10-3 M, but it

was highly dependent upon the PPV precursor concentration due to the fact that much

more dilute PPV precursor solutions were required due to its high viscosity. This shows

that the PPV precursor concentration should be closely monitored because subtle changes

in the concentration can result in drastic changes in the film thickness. Furthermore, the

pH of both of the solutions has been shown to influence the film thickness in a manner

that depends upon the degree of ionization of the PAA. The PAA is a weak

polyelectrolyte whose charge density varies with the pH such that a higher pH causes a

larger degree of ionization. This results in the chain adopting a more extended chain

conformation in solution, due to the electrostatic repulsion between like charges along the

chain, and consequently thinner PAA layers are observed when the pH of the PAA

solution increases. On the other hand, the degree of ionization of the PPV precursor does

not change with pH. However, the pH of this solution affects the deposition process by

controlling the charge density of the surface which is determined by the degree of

ionization of the previously adsorbed PAA layer. A larger pH in the PPV precursor

solution results in a higher charge density of the PAA on the surface and so a larger PPV

precursor thickness contribution is observed. Finally, it is seen that the incremental layer

thickness not only depends on the solution pH, but also on the thickness of the previously

adsorbed layer. In general, a thicker underlying layer tends to cause an increase in the
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thickness of the adsorbing layer, which is reflective of the fact that these layers are not

discrete lamella, but rather highly interpenetrated networks.

The above argument for the pH dependence of the thickness holds for relatively

low degrees of ionization of the PAA. As the PAA becomes more highly charged due to

a continued increase in the solution pH, a point is eventually reached (at a pH of about

6.5) where the total film thickness is observed to drop to very low values. In this state,

the system is behaving as two fully charged macromolecules both of which are in

relatively extended chain conformations. They can form one-to-one contact ion-pairs

with each other which result in the formation of very thin bilayers. This case can be

likened to the sequential adsorption of two fully charged macromolecules like PAH and

SPS where very thin bilayers are also observed. The transition between these regions is

basically an interplay between enthalpy and entropy. At low charge densities, entropy

dominates which results in relatively thick layers which maximize their configurational

entropy. At high charge densities, enthalpy dominates thus causing a collapse of the film

thickness to very small values.

These changes in bilayer thickness and composition with pH can significantly

affect the performance of PPV/PAA light emitting devices. It was observed that

increasing the PAA pH from 2.5 to 3.5, while holding the PPV precursor pH constant at

4.5, resulted in a 4 fold increase in the light output and a 1.5 order of magnitude increase

in the external quantum efficiency for films of similar total thickness. The device made

at PAA pH of 3.5 has a bilayer thickness that is almost half that for the pH 2.5 case, and

its composition is made up of about 10% more PPV precursor. These two effects may

combine to create a more interpenetrated bilayer structure with more efficient

recombination of electrons and holes.

In addition, these LEDs have been shown to have many other interesting features

that are not typically associated with pure spin coated films of PPV. A time dependent

'charging' process in which the light, current, and external quantum efficiency all

increase with time has been interpreted in terms of an electrochemical mode of operation.

Ions that are incorporated into the film, due to the counter polymer that is used for

sequential adsorption, can move under the applied voltage and build up at the electrode

Chanter 5. Conclusions 11'
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interfaces. These space charge layers can significantly decrease the barrier to charge

injection and this manifests itself in a number of ways. It has been shown that as this

'charging' process proceeds, a systematic decrease in the turn-on voltage from about 8.5V

to 3V is observed corresponding to the decrease in the injection barrier. Furthermore, the

current density increases by about 8 fold upon charging, but the total light output and the

external quantum efficiency increase by about 2 orders of magnitude or more. At a

conversion temperature of 300TC, greater than 1000 cd/m 2 was observed. Given that the

amount of light that is typical of a pure spin coated film of PPV with an aluminum

electrode is on the order of 50-100 cd/m 2 , this emphasizes the fact that a different

mechanism must be responsible for the behavior. The reverse bias characteristics of these

devices is also indicative of a light emitting electrochemical cell (LEC) type of behavior.

It has been shown that significant light and current are detected when the device is tested

in reverse bias. This behavior is usually a hallmark of electrochemical behavior since

pure PPV films characteristically show rectification behavior where no current or light is

generated in reverse bias.

One of the problems in dealing with this PPV precursor material, however, is in

obtaining consistent results. Qualitatively, the device behavior that has been described

above is virtually always observed, however the magnitudes of the light output, current

density, efficiency, and turn-on voltages can vary over time. Attempts to improve the

behavior by increasing the ionic conductivity through intentionally adding extra salt ions

into the film failed. Whenever this was done, the device performance was much poorer

than for the case when extra salt was not added to the film. It was shown that one of the

effects of introducing these extra salt ions was to quench the photoluminescence and this

may have been part of the reason for the decrease in device performance.

The desire to more fully understand and control the behavior of these devices led

to the study of the impedance and dielectric characteristics of PAHIPAA and PAH/SPS

sequentially adsorbed multilayers as model systems. In the PAH/PAA system, a

temperature dependent DC conductivity and dielectric response was observed from 250C

to 110 0C and was interpreted in terms of an activated ionic conduction process. The

dielectric response showed a loss peak that shifted to higher frequencies with temperature
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and a low frequency dielectric 'constant' of about 100 which was associated with the

accumulation of ions at the electrode interfaces. The conductivities were quite low,

consistent with that observed for other simple polyelectrolyte materials, and ranged from

1x10 -12 S/cm at room temperature to about 4x10 -9 S/cm at 110 0C. At higher

temperatures, an irreversible change in the dielectric characteristics was observed in

which the loss peak began shifting to lower frequencies as the temperature increased.

This was interpreted in terms of an amidation reaction between the PAH and PAA to

produce a dense, cross-linked film in which ionic motion became more hindered.

It was previously observed 115, 116 that the pH of the PAH and PAA solutions used

during the sequential adsorption of these films drastically changes the resultant film

structure in a manner similar to that just described for the PPV precursor/PAA system.

Here, the impedance and dielectric characteristics were studied for PAH/PAA films

adsorbed at a pH of 3.5, 5.0, and 6.5 in both solutions. All three cases showed a

temperature dependent conductivity from 25TC to 110 0C with an activation energy close

to 1 eV. The conductivities observed for the pH 3.5 case were consistently about a factor

of 2 higher that that observed for the other two cases. Furthermore, a continuous decrease

in the low frequency dielectric 'constant' was observed as the pH was increased. As the

pH of the dipping solutions is increased, the degree of ionization of the PAA increases

and so fewer free carboxylic acid groups get incorporated into the film. So if protonic

conduction is the dominant mechanism of ionic transport in these films, an increase in the

pH corresponds to a decrease in the carrier density. Furthermore as the pH increases,

more ionic cross-links are formed between the PAH and the PAA, due to an increasing

PAA charge density, and so this could result in a decrease in the mobility of the ions. A

combination of these two effects is likely responsible for the observed behavior.

Attempts at increasing the concentration of ions in the PAH/PAA layers, by

dipping the completed film in a high pH salt solution, actually resulted in a decrease in

the observed conductivity and a shifting of the dielectric loss peak to lower frequencies.

It is believed that the increase in salt concentration results in a decrease in the mobility of

the ions so as to cause an overall decrease in the conductivity. This effect is frequently

observed in PEO:salt mixtures due an increase in the Tg as the salt concentration
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increases. Plasticizing these films with water, however, resulted in a large increase in

both the conductivity (up to 2x10 -7 S/cm) as well as the low frequency dielectric

'constant' (up to 325). In the dry state, strong binding between the small ions and the

macro-ions leads to low values of the conductivity. Water can act to solvate these ions

thus increasing their mobility as well as the concentration of those that are free to move.

PAH/SPS layers behave slightly differently, however, in the sense that much

higher temperatures are required to get any significant change in the impedance or

dielectric response. For PAH/SPS layers made both with and without salt in the dipping

solutions, no significant change in the conductivity or the dielectric characteristics was

observed up to a temperature of 1400C, contrary to that seen for PAH/PAA layers. Below

this temperature, a relatively constant value of E' was observed and interpreted as a bulk

value due to any local polarization of the medium and it was higher in the case with salt

in the dipping solutions than without (5 as compared to 2). Above 1400C, the

conductivity and the low frequency dielectric 'constant' do increase significantly with

temperature for both cases suggesting that some of the small ions do indeed remain in the

film after sequential adsorption. Furthermore, the value of the low frequency dielectric

'constant' at 3500 C for PAH/SPS films made with salt in the dipping solutions is about 7

times higher than that for films made without salt. This, combined with the fact that the

bulk value of e' is greater in the case with salt, suggests that more ions are incorporated

into the films for the case with salt into the dipping solutions than for the case without.

These additional ions could either be coming directly from the added salt, or possibly

from the original counter-ions due to the formation of fewer polymer-polymer ion-pairs.

Testing these PAH/SPS layers in a humid environment at room temperature results in a

low frequency dielectric 'constant' of 500 and 80 and a conductivity of 3x10-7 S/cm and

3x10 -8 S/cm, for the case with and without salt in the dipping solutions, respectively.

These relatively large values, compared to the dry state, again imply that some level of

ion concentration does indeed remain in the film and that a higher concentration exists in

the case with salt.

Finally, the properties of PAH/SPS layers has been compared to PAH/PAA layers

adsorbed at a pH of 6.5 where the PAA can be considered to be highly charged, similar to

, 
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the SPS. It was shown that even though both systems result in the formation of very thin

bilayers, significant differences in their conductivities and dielectric properties exist. The

PAH/SPS film had to be heated to about 2600 C in order for the film to exhibit similar

characteristics to the PAH/PAA film at 110 0C. This implies that the ions are significantly

less mobile in the PAH/SPS structure than they are in the PAH/PAA. This could be due

to a more rigid matrix of the PAH/SPS film, however any residual protonic conductivity

that exists in the PAH/PAA film might also be responsible for the conductivity at

relatively low temperatures.

In summary, then, it has been shown that the light emitting characteristics of

sequentially adsorbed layers of PPV and PAA are related to the finite ionic conductivity

that exists in these films. The ionic conductivity as well as the dielectric characteristics

of PAH/PAA and PAH/SPS sequentially adsorbed multilayers were then studied using

impedance spectroscopy to provide some insight into the nature of the sequential

adsorption process. Further work on improving the ionic conductivity of these films may

result in better control and an improvement in the device performance. This line of work

has recently been started by trying to incorporate a PEO-like segment into the polyanion.

A copolymer has been made from monomers containing a PEO-like pendant group and

another containing a PAA-like pendant group in the hopes that the PEO-like group will

facilitate ion motion in these film. On the whole, it seems that the sequential adsorption

process provides a unique opportunity with which to control the architecture of these

films on a molecular level, but more work is required to fully realize its potential.
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