
M-ASSACHUSETTS INSTITUTE
OF TECHNO4LOGY

NOV 13 2008

LIBRARIES
Virtual Pan-Tilt-Zoom for a Wide-Area-Video

Surveillance System
by

Richard Sinn
S.B., EECS M.I.T., 2007

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2008
@ Richard Sinn, MMVIII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

in whole or in part.

Department of Electrical Engineering and Computer Science
August 22, 2008

Certified by
Dr. Pablo I. Hopman

MIT Lincoln Laboratory
Thesis Supervisor

Certified by
'I Dr. Christopher J. Terman

/ / Senior Lecturer
--- Thesis Supervisor

Accepted by
Arthur C. Smith

Chairman, Department Committee on Graduate Theses

This report is based on studies performed at Lincoln Laboratory, a center of research
operated by the Massachusetts Institute of Technology. This work was sponsored by the
Secretary of the Air Force/Rapid Capabilities Office under Air Force contract FA8721-

05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the
authors and not necessarily endorsed by the United States Government.

ARCH ,
ARCHIVES

Virtual Pan-Tilt-Zoom for a Wide-Area-Video Surveillance

System

by

Richard Sinn

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Advancements in the CMOS Image Sensor have enabled very high-performance, high-
resolution imaging systems to be built at relatively low cost. The availability of
high-pixel count video imaging systems that can cover a wide field-of-view enables a
surveillance technique called Virtual Pan-Tilt-Zoom. Virtual Pan-Tilt-Zoom provides
the same functional properties as a mechanical pan-tilt-zoom setup, but it does not
suffer from the physical limitations presented by a mechanical setup. A video system
using Virtual Pan-Tilt-Zoom would have immediate continuous access to a high-
pixel-count image representing a wide coverage area, and it would enable a user
to "virtually" pan, tilt, and zoom around the coverage area by reading out only the
relevant image data associated with a Region of Interest that is dynamically defined by
the user. This paper will examine the various camera electronics readout architectures
that are possible to support the Virtual Pan-Tilt-Zoom function. Then, this project
will examine and implement a specific implementation of the readout architecture for
a high-resolution video camera system developed at MIT Lincoln Laboratory. The
Multi-Aperture Sparse Imager Video System (MASIV) developed at MIT Lincoln
Laboratory incorporates CMOS imagers to create an 880 Megapixel image, and was
used as the platform to implement the camera electronics for Virtual Pan-Tilt-Zoom
functionality.

Thesis Supervisor: Dr. Pablo I. Hopman
Title: MIT Lincoln Laboratory

Thesis Supervisor: Dr. Christopher J. Terman
Title: Senior Lecturer

Acknowledgments

This project was possible because of the support, help, and guidance I have received

from many people. I acknowledge a few below, but it is by no means a complete list

of all the people who have supported and inspired me along the way.

First of all, thank you to my thesis supervisors, Pablo Hopman and Chris Terman,

for their honest advice and guidance throughout the project. I would also like to

thank the members of the Advanced Space Systems and Concepts group at MIT

Lincoln Laboratory for giving me the opportunity to pursue a project with the group.

A special thank you to Tom Karolyshyn for his patience, guidance and support in

helping me with the project. Also, thank you to Larry Candell, James Glettler, Daniel

Chuang, Fred Knight, Pete LaFauci, Mike Mattei and Bobby Ren for all their help

and support.

I would like to thank my friends for making my time at MIT a truly educational

experience. Thank you to Bobby Ren for hosting me in his house during the last

couple weeks so that I could finish my thesis, and of course for being my role model

and friend. Thank you to Dan Chuang, Nathan Hanagami, John Ho and Conor

Madigan for being my mentors, role models and friends. And last but not least,

thank you to Christian Deonier, Rich Lean, Tri Ngo and JinHock Ong for being the

best of friends.

Finally, I would like to thank my family for giving me the opportunity to pursue

my goals and dreams. Thank you Mom and Dad for supporting me and always

believing in me. Thank you for teaching me to always try hard and never give up.

Thank you Victor, my wonderful brother, for always inspiring me and bringing out

the best in me.

Contents

1 Introduction

1.1 Overview and Purpose

1.2 Virtual Pan-Tilt-Zoom Readout Architecture on the MASIV Camera

1.3 Thesis Organization

2 The MASIV Overview

2.1 MASIV System Description

2.2 Hardware Components of the MASIV System

2.2.1 CMOS Digital Image Sensor

2.2.2 Field-Programmable Gate Arrays and Camera

tronics .

2.2.3 RocketIO Multi-Gigabit Transceivers

2.3 Component Connections in the MASIV System . . .

2.3.1 Quadrant Layout

2.3.2 Aperture Connections

2.4 Camera Electronics Operation and Specifications

3 Design and Performance Considerations

3.1 VPTZ Specifications

3.1.1 Data Decimation

3.1.2 Data Flow

3.1.3 Self-Imposed Specifications and Digital Zoom

3.2 Performance Metrics of the Readout Architectures .

Readout Elec-

13

13

16

17

19

. 20

. 21

. 22

....... 25

. 26

. 27

....... 28

. 28

. 30

33

....... 34

....... 34

....... 35

. 36

. 37

3.3 Different Readout Architectures 41

3.3.1 Display Level VPTZ Decimation 41

3.3.2 FPGA Level VPTZ Decimation 43

3.3.3 Imager Level VPTZ Decimation 47

3.4 Summary of the Differences between the Readout Architectures . . . 53

4 Specific Implementation of a Camera Readout Architecture for VPTZ 55

4.1 Existing MASIV Firmware Overview 55

4.1.1 Imager Control Module 56

4.1.2 Logic Modules for Interfacing with RocketIO MGT 57

4.1.3 PowerPC and Register File 57

4.2 VPTZ Parameters 58

4.2.1 Coordinate Spaces and Region of Interest Start Point 58

4.2.2 VPTZ Subsampling and Number of Valid Pixel Columns and

Rows 60

4.2.3 Row Offsetting 62

4.3 Logic Implementation of the Readout Architecture 64

4.3.1 Main Decimation Logic 66

4.3.2 Timeslot Sorting of the Pixel Data before Buffering 69

4.3.3 Row by Row Buffering using BRAM 72

4.3.4 Logic to Read Pixel Data from the Buffers 77

4.3.5 Quadrant Selector Module 80

4.4 Testing and Debugging 82

4.4.1 Simulating the Main Decimation Logic 83

4.4.2 Simulating the Top Module 84

4.4.3 Simulating the Reading of the Buffer 87

5 Conclusion 91

5.1 Future Work 91

5.2 Summary 92

A VHDL Source Code

A.1 foveationtop.vhd

A.2 rectangles.vhd . .

A.3 fovbuf.vhd ...

A.4 read_fovbuf.vhd

A.5 quad-selector.vhd

B VHDL Test Benches

B.1 tbrectangles_new.vhd

B.2 tbfoveation_top.vhd

B.3 tbread_fov_buf.vhd

97

97

111

117

126

133

139

139

143

146

.

.

..

.

.

List of Figures

1-1 Traditional Mechanical Pan-Tilt-Zoom Cameras 14

1-2 Virtual Pan-Tilt-Zoom with Multiple Users and their Region of Interests 15

2-1 The Current MASIV System and the External Hard Disks. 19

2-2 MASIV Concept, Four Lenses, Four Sparse Arrays, Digital Image

Stitching [1]................................. 20

2-3 Sparsely Populated Focal Plane of 44 CMOS Imagers for One Aperture

[1]. 2 1

2-4 One Complete Aperture with a Medium-Format Lens [4]........ 21

2-5 Pixel Array Structure of a CMOS Imager [7] 24

2-6 Pixel readout for a normal Bayer pattern 25

2-7 Hardware Layout for One Aperture [4] 27

2-8 Quadrant Layout of the CMOS Imagers on Focal Plane Mosaic 29

2-9 The RocketIO Connections of the Four Apertures of the Current MA-

SIV Implementation 30

3-1 A simplified high level view of the data flow. 36

3-2 Sixteen External Cables Connections vs. One External Cable Connec-

tion for Image Data Transfer. 40

3-3 Block Diagram of Readout Architecture for Display Level Decimation. 42

3-4 Block Diagram of Readout Architecture for FPGA Level VPTZ Deci-

m ation .. . 44

3-5 Block Diagram of Readout Architecture for VPTZ Decimation in the

Imagers. 48

3-6 An example of a Region of Interest spanning multiple imagers. 50

3-7 Multiple Regions of Interests scenarios with same zoom mode within

one CMOS imager. 50

4-1 Pixel Dimensions of the Consolidated Coordinate Space of Entire Cov-

erage Area. 59

4-2 Row Offsetting During Vertical Subsampling in One Quadrant 63

4-3 High-Level Block Diagram of Readout Architecture 65

4-4 Block Diagram for the Part of the Architecture that Handles the Burst

Pixel Data 66

4-5 Block Diagram of Rectangles Module 67

4-6 State Transition Diagram for Skipping Decimation 69

4-7 Block Diagram Showing How Single Pixel Data Stream is Created from

Active Rectangles 70

4-8 Timing Diagram for Sorting Pixel Data into Timeslots of a Single Data

Stream 71

4-9 State Transition Diagram for Sorting Pixel Data into Timeslots of a

Single Data Stream 72

4-10 Buffer Module Block Diagram to Buffer Pixel Data into BRAMs . . . 73

4-11 Summary of the Bits in a Word 74

4-12 State Transition Diagram for FSM in the Buffer Module 76

4-13 Block Diagram for the Read Buffer module 78

4-14 State Transition Diagram for the FSM in Read Buffer Module 79

4-15 Block Diagram for the Quadrant Selector Module 81

4-16 State Transition Diagram for FSM in Quad Selector 82

4-17 Simulation of the Rectangles Module 84

4-18 Simulation of the Top Module 86

4-19 Simulation of the Read Buffer Module 88

4-20 Simulation of the Read Buffer Module Showing the Last Pixel of the

Row 89

List of Tables

2.1 Parameters and Specifications of the CMOS Imager [8] 23

2.2 Timing Specifications of the MASIV System 30

3.1 Calculation of Performance Metrics 38

3.2 Qualitative Comparison of the Different Architectures 53

4.1 Skip Modes and # of Skipped Pixels 61

Chapter 1

Introduction

1.1 Overview and Purpose

Traditional video surveillance systems often incorporate mechanical pan-tilt-zoom

(PTZ) schemes to achieve a wide coverage area. The ability to physically pan and

tilt the video camera increases the overall coverage area of the system because it

increases the number of points in the physical environment that can be observed

by the camera. As with any system involving moving parts, these mechanical PTZ

schemes often require maintenance, and can become complex and costly for higher

performance surveillance applications.

A video surveillance system with a mechanical panning and tilting setup is con-

strained by the inherent physical limitations of its mechanical structure. The speed at

which a user can scan around the coverage area is limited to how fast the camera can

physically slew around. Furthermore, multiple regions of the overall coverage area

cannot be viewed simultaneously in a mechanical PTZ setup because the camera can

only point toward one region at a time. Likewise, mechanical zooming is also bounded

by certain physical contstraints; the speed at which the user can zoom in and out of

the coverage area is limited to how fast the camera's optics can vary its focal lengths,

and multiple regions cannot be viewed at different zoom modes simultaneously. Fig-

ure 1-1 shows some examples of video surveillance systems with a traditional PTZ

setup.

Figure 1-1: Traditional Mechanical Pan-Tilt-Zoom Cameras

A Virtual Pan-Tilt-Zoom (VPTZ) system provides the user with something that
is functionally equivalent to a mechanical PTZ system but without the physical con-
straints. The fundamental basis behind the VPTZ concept is having a wide field-of-
view with many pixels. Rather than outputting the entire pixel data for the complete
visual field, the video system using VPTZ would read out only the relevant pixel data
associated with a Region of Interest that is defined by the user. The user would be
able to dynamically change his or her Region of Interest to view different sections of
the system's visual field all the while the camera remains stationary. Hence, the user
is "virtually" panning and tilting around the area with his or her Region of Interest.
The user would also have the ability to virtually zoom in and out of the visual field
by downsampling the Region of Interest at various different digital zoom modes.

The VPTZ application does not suffer from many physical limitations of a me-
chanical PTZ setup. The video system itself must be able to instantly produce a
high resolution image for a wide coverage area from a stationary position, and then
VPTZ can select and read out portions of the image data as needed for the user. The
advantages of VPTZ exist because the camera has immediate continuous access to
the pixel data of the entire coverage area. When a user changes his or her Region
of Interest to view a different section of the coverage area, the change will happen

492L

-Ift
ii

instantaneously because the VPTZ application has to just read out a different part of

the data set from the video camera. The system is not restricted by the speed of the

physical movements a normal camera would have to make in order to view a different

section of the coverage area because the entire coverage area is already under the

video camera's visual field. Thus, the VPTZ application can now support simultane-

ous viewings for multiple different sections of the coverage area because VPTZ has

access to the data to support the simultaneous viewings. This can allow for multiple

users to use the system, with each user controlling his or her own Region of Inter-

est and getting a sense that they are each viewing and controlling a unique camera.

Figure 1-2 gives a cursory view of multiple users with their Regions of Interest using

VPTZ.

Virtual Pan/Tilt/Zoom Concept

User #1

User #2

user #n

Figure 1-2: Virtual Pan-Tilt-Zoom with Multiple Users and their Region of Interests

Recent developments in digital image sensing technologies spurred by the rise in

demand for digital imaging consumer electronics have made high-performance, high-

pixel-count imaging systems more readily available. In particular, as a result of the

demands in the commercial markets, the advancements of the Complementary Metal

Oxide Semiconductor (CMOS) digital image sensor have made high-pixel-count video

imaging possible [2] [3]. Moderately sized video surveillance systems are now able to

obtain image data at increasingly higher resolutions for wider coverage areas.

The Multi-Aperture Sparse Imager Video System (MASIV) camera is an 880

Megapixel video imaging system being developed at MIT Lincoln Laboratory [1]. The

MASIV camera is the realization of the fact that high-pixel-count imaging systems

are now relatively inexpensive to obtain; it uses a unique approach to achieve its 880

Megapixel resolution by using multiple off-the-shelf CMOS image sensors and other

common electronic parts. Its original purpose is to be a monolithic staring sensor,

but its high-performance specifications make the MASIV camera an ideal platform

for the development and testing of the VPTZ concept.

1.2 Virtual Pan-Tilt-Zoom Readout Architecture

on the MASIV Camera

When given a very large image data set that represents a wide coverage area, VPTZ is

used to decimate the majority of the pixels generated by the cameras by windowing

and downsampling the image data to the user's Region of Interest. The readout

architecture for the camera electronics for VPTZ functionality essentially determines

where in the data flow to decimate away the image data that is not a part of the end

user's Region of Interest. In a digital video imaging system, the image data usually

flows from the image sensors to the camera's electronics to the end user.

In the MASIV system, the data can be decimated by the CMOS imagers, by

the camera electronics, or by external devices that the camera system is interfaced

to, such as a computer. The different VPTZ readout architectures determine which

component or components would do the main image data decimation for VPTZ func-

tionality. Certain system specifications and performance metrics such as the frame

rate of the system can change depending on the different VPTZ readout architectures.

Furthermore, the VPTZ readout architecture must be able to handle challenges such

as overlapping Regions of Interests if there are multiple users using the system as

shown in Figure 1-2.

1.3 Thesis Organization

In this thesis, we will examine the various camera electronics architectures for imple-

menting the VPTZ concept in the MASIV system. Chapter 2 provides a background

for the current implementation of the MASIV concept to create a high resolution

digital imaging video system. In Chapter 3, we will study the various readout archi-

tectures that are possible for implementing VPTZ and the tradeoffs associated with

the different architectures. In Chapter 4, we will describe a specific implementation

within the MASIV camera that demonstrates the VPTZ camera electronics architec-

ture. In Chapter 5, we will provide a discussion for future work and a summary of

the project.

Chapter 2

The MASIV Overview

The MASIV system is an airborne video sensor that was designed to observe a wide

coverage area at a very high-resolution for persistent surveillance applications [1]. It

was primarily constructed to save all the image data coming off of the cameras so that

the data could later be used for surveillance and analysis. Figure 2-1 shows a photo

of the current MASIV camera system alongside a chassis that contains the hard disk

drives designed to store several Terabytes of data.

Chassis (for hard disks, etc)
I /

MASIVS

Figure 2-1: The Current MASIV System and the External Hard Disks.

2.1 MASIV System Description

The MASIV system is a very high-pixel-count video imaging system. It creates a

contiguous image by stitching together four sparsely populated mosaics of smaller

sensors [1]. Figure 2-2 demonstrates this concept behind the MASIV system. The

small sensors that are populated on the mosaics of the MASIV are CMOS digital

image sensors. The CMOS imagers' performance, small size and availability are what

make the MASIV system's concept feasible.

n M n w Ia n
EWWW WWWUEEE7Wmrn~w..~ WUbAMWR4

HN W M
- m 2.~ - - m M me

I E :.Iim . U . m.,
B M MA

MMWu a VAM-ID WWWWW
WWWWWWEB~

=ie -flaws ion

* Each camera covers 25% of the field of view under a medium format lens
* 4 separate images can be stitched together to form a single large mosaic image

Figure 2-2: MASIV Concept, Four Lenses, Four Sparse Arrays, Digital Image Stitch-
ing [1].

Each of the mosaics corresponds to a focal plane of an aperture of the MASIV

system. The high-pixel-count is achieved by sparsely populating each of the focal

plane mosaics with 44 Five-Megapixel CMOS imagers in an array fashion. Figure

2-3 shows the sparsely populated focal plane mosaic for one aperture of the MASIV

system. The gaps that occur between the CMOS imagers on the focal plane mosaic

are filled in by the imagers from the other mosaics when the final contiguous image

is stitched together. Notice, that the corners of the focal plane are not populated

because the image quality of the optics in the corners are not usable. A single aperture

of the system with the lens attached to it is shown in Figure 2-4. There are a total

of four apertures with these focal plane mosaics in the MASIV system. The MASIV

system as shown in Figure 2-1 combines the four apertures together, thus employing

a total of 176 Five-Megapixel CMOS imagers to create an 880 Megapixel image.

Figure 2-3: Sparsely Populated Focal Plane of 44 CMOS Imagers for One Aperture

[1].

Figure 2-4: One Complete Aperture with a Medium-Format Lens [4].

2.2 Hardware Components of the MASIV System

The MASIV system is entirely made up of commonly available high-performance

electronic parts. The architecture of the system is designed to ensure that the data

readout from the 176 CMOS imagers can be supported. Because of the massive

amounts of pixel data that are generated, high-speed components and connections

must be used in order to sustain the data rates and payload for the 880 Megapixel

system.

The current implementation of the MASIV system is a fairly complex setup as

it needs to buffer, process and store 880 Megapixels worth of raw image data at 2

frames per second. Components such as Double-Data-Rate Random Access Memory

(DDR RAM) are used as data rate buffers for the image data coming off the CMOS

imagers; JPEG processing cards are used to compress the image frames coming off

the cameras. Though these components are critical to the current implementation of

the MASIV system, they are not actually important to the discussion of the readout

architecture for VPTZ functionality as described in this thesis. The VPTZ function-

ality provides an alternative way to read out the image data being generated by the

MASIV cameras, and it is not reliant on some of the components that are used with

the original implementation of the MASIV system. Therefore, only the major hard-

ware components of the MASIV system that will also be relevant to the discussion of

VPTZ will be discussed in detail.

2.2.1 CMOS Digital Image Sensor

The CMOS imager is what senses and collects the image information. The CMOS

imagers' relatively low cost and ease of availability make it a popular option for

both scientific and commercial high-performance imaging devices [6]. They are what

make the near-Gigapixel video rate imagery of the MASIV system possible. The

CMOS imager's resolution capabilities, small pixels, and compact form factor enable

the MASIV system to achieve very high-resolution images over a wide coverage area.

The CMOS imagers that are currently employed in the MASIV system are the Micron

MT9P001 5-Megapixel CMOS digital image sensors. Table 2.1 gives a quick summary

of the important specifications for this particular CMOS imager.

One of the key requirements needed for the MASIV system is that the image

sensor must be small and compact. The pixel dimensions for a typical CCD sensor is

on the order of about 101m x 10pm, but these particular Micron CMOS imagers have

Table 2.1: Parameters and Specifications of the CMOS Imager [8]
Parameter/Specification Value
Pixel Size 2.2 pm x 2.2 pm
Die Dimension 8.5mm x 7.95mm
Active imager size 5.70mm x 4.28mm
Total # of Active pixels 2,592H x 1,944V (5Mpixels)
Color filter array RGB Bayer Pattern
Max Frame rate at full resolution 15 fps
ADC resolution 12-bits
Power <317mW (15fps)

a pixel dimension of 2.2pm x 2.2pm. The small pixel size of these CMOS imagers

make possible for a compact focal plane, relatively low power consumption, and good

noise performance. The compact die form factor of these Micron CMOS imagers

enables the imagers to be closely packed to each other on the focal plane mosaics so

that there is a gap size of only one imager between the imagers. The gaps are filled

in by the imagers from the other apertures when the multiple apertures of the system

are combined together. In a four aperture setup like that of the MASIV system, the

external die dimensions must be smaller than two times the area of the active imaging

region of the CMOS imager chip. This is necessary in order to properly integrate the

imagery from the four apertures to create a large contiguous image as demonstrated

in Figure 2-2.

CMOS imagers inherently combine both the analog and digital components needed

for common camera electronics into a single integrated circuit. As a result, the analog-

to-digital-conversion (ADC) for each individual pixel data occurs on-chip, allowing

for high-speed, digitized readouts of valid pixel data from the imager itself [5]. A

CMOS imager has a photo-detecting circuit and amplifier for each pixel arranged in

a two-dimensional array. Thus the CMOS imagers collect and read out the pixels of

the image in an array fashion. Figure 2-5 shows the arrangement of the pixel array

structure in a typical CMOS imager. The Micron CMOS imager also incorporates a

Bayer color filter array on top of the pixel array to support red, green and blue color

readouts of the pixels. Figure 2-6 shows the pixel array readout for a normal Bayer

pattern; the raw pixels from the pixel array are ultimately delivered in quads of two

green pixels, one red pixel, and one blue pixel.

As shown in Table 2.1, the ADC resolution for a pixel is 12 bits, and so each pixel

value that is read out of the imager is 12 bits wide. The 12 bit pixel values are sent in

parallel via bond wires from the imager on the focal plane to the camera electronics.

One imager package has 48 pins used to interface with the electronics board, and

twelve of the pins are used for the pixel data [8]. Therefore in one aperture, there

are 528 bond wires used to connect the pixel data pins from all 44 imagers to the

camera electronics. Other important pinouts from the imagers are the frame valid

and line valid output pins, and they are driven high during active pixel read outs.

In total, there are over 2000 bond wires used to connect the 44 imagers to the focal

plane board of one aperture.

The pixel data is only valid when the frame valid and line valid signals are both

asserted high. During an active frame valid and line valid, a new pixel is read out

at every rising edge of the pixel clock, and pixels are read out row by row from the

pixel array, with each row reading one pixel at a time. The imagers' readout of the

raw pixel data reflects the Bayer filter color pattern as shown in Figure 2-6.

Figure 2-5: Pixel Array Structure of a CMOS Imager [7]

Bayer Pattern Color filter layout of pixels

R

G

R

G

G

B

G

B

R

G

R

G

G

B

G

B

Row 0

Row 1

Row 2

Row 3

Figure 2-6: Pixel readout for a normal Bayer pattern

2.2.2 Field-Programmable Gate Arrays and Camera Read-

out Electronics

The core MASIV camera electronics functionality is implemented with multiple Field-

Programmable Gate Arrays (FPGA). Four Xilinx Virtex-II Pro FPGAs are used to

manage the readout electronics of one aperture, for a total of sixteen FPGAs for the

complete MASIV system. The reason for having four FPGAs per aperture is partly

a result of the hardware layout of the aperture, and will be discussed in detail in

Section 2.3.

The Xilinx FPGAs are high-performance programmable logic chips with large

amounts of logic elements available in each device. The specific Xilinx FPGA devices

used in the MASIV system are the XC2VP50 FPGAs. These Xilinx FPGAs have

up to 88,192 internal registers/latches, 88,192 internal look-up tables (LUT) and two

embedded IBM PowerPC processors within each FPGA [10]. In the MASIV system,

the PowerPC is used as the interface for messaging and commanding between the

aperture's electronics and the external world.

There are also up to 8 MB of Block RAM (BRAM) embedded in each Xilinx

FPGA. In the MASIV system, these BRAMs are used as burst rate buffers to buffer

the image data bursting off the CMOS imagers.

2.2.3 RocketIO Multi-Gigabit Transceivers

The RocketIO Multi-Gigabit Transceiver (MGT) is a Xilinx-defined transceiver used

for high-speed serial data transfers. It is an embedded feature in the Xilinx FPGAs,

and it supports a maximum data transfer rate of up to 3.125 Gigabits/second [9].

It is used in the MASIV system to transmit data from the camera electronics to

the external devices. It is also used to receive commands and messages from the

external devices to the camera electronics. There are also RocketIO MGT connections

between the FPGAs for the data transfers and messaging that might occur between

the FPGAs. The Xilinx FPGAs have up to 16 RocketIO MGT cores embedded into

an FPGA, but the MASIV system currently employs only three RocketIO MGT cores

per FPGA. Each RocketIO MGT core provides two connections - one for transmitting

serial data transfers and one for receiving serial data transfers.

The RocketIO MGTs use a serial data transfer protocol defined by Xilinx. The

embedded RocketIO core in the FPGA serializes any signal with a parallel bus width

before transmitting it across the MGTs. Conversely, serialized signals received from

the MGT are converted back to parallel bus signals by the RocketIO cores. The

RocketIO MGTs use a standard 8b/10b encoding scheme: for every 8 bits of data

sent through the transceivers, 2 bits are used as control characters [9]. The maximum

clock rate that can be used with the RocketIO MGTs is 156 MHz.

The operation of the MASIV system is dependent on whether or not the image

data can be read out of the camera electronics as fast they are being generated.

Therefore, the essential threshold value to consider when designing the camera read-

out electronics is the maximum data rate supported by the RocketIO MGTs. The

system will only operate properly as long as the data coming off the apertures can be

supported by the RocketIO MGT data rate.

2.3 Component Connections in the MASIV Sys-

tem

The connections between the hardware components in the MASIV system affect the

operation of the aperture and how the readout architecture can be designed. Figure

2-7 shows an outline of the layout and connections of the major hardware components

in one aperture of the MASIV system. The arrows represent the physical connections

between the various components on the aperture board.

1 I I

Figure 2-7: Hardware Layout for One Aperture [4]

Each FPGA in the current MASIV system uses three RocketIO MGT connec-

tions: one to interface the camera electronics with an external source via a small

form-factor pluggable (SFP) device, and two to interface with the two neighboring

FPGAs in the aperture. As demonstrated in Figure 2-7, the FPGAs are connected

to each other using RocketIO MGTs in a ring fashion around the focal plane mosaic.

The FPGA's function is to receive commands and messages from an external source,

manage the occupying imagers, collect image data, and interface the data to the other

components.

2.3.1 Quadrant Layout

The hardware layout for one aperture of the MASIV system can be thought of as

being split into four identical quadrants. The four FPGAs on the aperture's circuit

board each occupy and control one quadrant of the board. In Figure 2-7, the four

FPGAs are labeled from "A" through "D," which corresponds that the four respective

quadrants are "A" through "D." There are a total of sixteen quadrants spread out

across four apertures in the complete MASIV system.

The quadrant layout stems from the symmetry of the layout of the CMOS imagers

in the focal plane mosaic. The forty-four CMOS imagers are essentially split into

quadrants of eleven imagers each as shown in Figure 2-8. Within each quadrant, the

eleven imagers are indexed from "0" to "10." The eleven imagers in the quadrant

are connected only to the corresponding FPGA of that quadrant. This means that

a single FPGA will be controlling and handling the burst data payload for only the

eleven imagers in its respective quadrant. The FPGAs control the imagers through a

two-wire, Micron-defined serial communication protocol. The CMOS imagers transfer

its pixel data to the camera electronics through twelve parallel bond wires as discussed

in Section 2.2.1.

Notice that the aperture diagram shown in Figure 2-8 is rotated by 90 degrees from

the aperture diagram shown in Figure 2-7. This is done to illustrate the direction in

which the CMOS imagers are actually packed on to the focal plane. From Table 2.1,

for one CMOS imager, there are 2,592 pixels in the horizontal direction, and 1,944

pixels in the vertical direction. Except for the case in which the corners of the focal

plane are not populated, there are six CMOS imagers packed horizontally onto the

focal plane, and eight CMOS imagers packed vertically, for a possible total of 15,552

raw pixels in both the horizontal and vertical directions of one focal plane mosaic.

2.3.2 Aperture Connections

The apertures of the MASIV system can be connected to each other or to other

external devices via the small form-factor pluggable (SFP) transceivers. The SFP is

°........[27 [j[0mm74 73mmF76
mm; 09mma

: 11 11 , -1XX A
117978

:WI
7 1 11110

9 11111

Figure 2-8: Quadrant Layout of the CMOS Imagers on Focal Plane Mosaic

an optical tranceiver that can be used with the Rocket IO MGTs, and it interfaces the

quadrant to a fiber optic cable. There is one SFP transceiver per quadrant, and it is

used as the physical connection to an external source for the RocketIO MGTs for that

particular quadrant. In the current MASIV implementation, each quadrant connects

to an external device to output the respective quadrant's image data. There is no

actual connection between the four apertures in the current MASIV implementation

because data from the quadrants are explicitly outputted to the dispaly terminal.

Therefore there are a total of sixteen fiber optic cables coming out of the complete

MASIV system to output the image data for storage on external disks.

However, for receiving commands and messages from an external source, each

aperture has only one quadrant connected to the external source. The command or

message is received by the quadrant and is passed down to the other quadrants in the

aperture via a daisy chain. Figure 2-9 illustrates how the quadrants of the apertures

are connected together and how information flows throughout the MASIV system.

The solid arrows represent the connections used to output the image data from the

CMOS imagers of the respective quadrants to an external source. The dashed arrows

Aperture 0

A4B

Ae I

Aperture 1

I

Aperture 2

C*
D

Aperture 2

A4

C

D
Aperture 3

- Image Data

- -> Commands/Messages

Figure 2-9: The RocketIO Connections of the Four Apertures of the Current MASIVImplementation

Table 2.2: Timing Specifications of
Timing Parameter
Overall System Clock
RocketlO Clock
CMOS Imager Pixel Clock

the MASIV System
Value

100 MHz
156 MHz
25 MHz

represent the daisy chain connection used to send commands and messages sent from
an external source down to the quadrants of one aperture.

2.4 Camera Electronics Operation and Specifica-

tions

The main system clock used by the camera electronics in all sixteen FPGAs of the
MASIV system is 100 MHz. The clock for the RocketIO MGTs is in a different clock
domain and runs at 156 MHz. The main system clock is not increased to match the
RocketIO clock domain of 156 MHz because it is easier to meet timing requirements
and specifications for the camera electronics at 100 MHz. These timing specifications
are summarized in Table 2.2.

The minimum frame rate that is tolerable for wide-area persistent surveillance
applications such as vehicle tracking is 2 Hz [1]. Therefore the current MASIV im-

I
RocketIO Clock
CMOS Imager Pixel Clock

plementation has an operating frame rate of 2 frames per second. The clock signal

to the CMOS imagers is known as the pixel clock, and the pixel clock used in the

current MASIV implementation is 25 MHz. Operating the CMOS imagers at a 25

MHz pixel clock enables the imagers to run at approximately 4 frames per second, but

the camera electronics of the current MASIV implementation limits the output's final

frame rate to 2 frames per second in order to minimize the number of frames written

to the external disks. The maximum pixel clock that can be supported by the Micron

CMOS imagers is 96 MHz, which is needed to run the imagers at the maximum frame

rate of 15 frames per second when operating at full resolution. When operating the

CMOS imagers at a lower resolution such as VGA, the frame rate can be increased

up to 150 fps.

All 176 CMOS imagers in the MASIV system are synchronized. It uses an exter-

nally generated pulse per second signal as a reference signal to align the frame start

signals of all the CMOS imagers. When a misalignment occurs, the camera electronics

drops pixel clock cycles to the misaligned imager until it is realigned again.

Because the imagers are aligned, all the image data from the CMOS imagers are

sent to the FPGAs at the same time. Therefore the FPGA must be able to handle

all the data coming off the eleven imagers from the quadrant. The current MASIV

implementation uses both BRAMs and DDR RAM to buffer the image data coming

from the imagers.

Chapter 3

Design and Performance

Considerations

Virtual Pan-Tilt-Zoom allows a user to cover a wide coverage area without being

limited to the physical constraints provided by a mechanical PTZ system. The current

MASIV implementation outputs all 880 Megapixels of raw data continuously at 2 Hz,

but by reading out only the data relevant to a user's Region of Interest, certain

performance capabilities of the system can be improved.

There are three primary readout architectures that are considered for VPTZ func-

tionality, and they differ in which component does the data decimation. The first ap-

proach considered is to decimate the data after the image data comes off the cameras.

This will be identified as the Display Level, and it is an abstraction for the external

devices that accept the image data coming out of the physical cameras of the MASIV

system. The decimation at the Display Level can be done in software in the display

terminal or anything else that can process and store the information. The second two

approaches considered are implemented within the camera electronics of the MASIV

system: CMOS Imager Level or the FPGA Level.

The performance metrics of the VPTZ implementation will vary depending on

which approach is used. This chapter will examine the performances and tradeoffs of

the various different readout architectures that are possible for VPTZ.

3.1 VPTZ Specifications

3.1.1 Data Decimation

The types of data decimation that must be considered for the VPTZ application

are windowing and subsampling. The windowing process is the foundation for the

virtual panning and tilting functionalities in VPTZ, while the subsampling process

is the foundation for the virtual zooming functionality in VPTZ. It is deciding which

components of the MASIV system should undertake this windowing and subsampling

decimation for the VPTZ that will determine the different performance capabilities

of the system.

The windowing process determines the field-of-view for the user's Region of In-

terest from the available coverage area of the system. Any part of the image data

that does not fall under the windowed dimensions of a user's Region of Interest is

decimated.

The subsampling process is used to reduce the image resolution. There are several

ways to subsample the image. The two considered for this project are skipping and

binning. The skipping process reduces the image resolution by not sampling entire

rows or columns of pixels and only using the selected pixels to form the field-of view.

In order to maintain the Bayer pattern color-filters used in the Micron CMOS imagers

(see Figure 2-6), the pixel skipping process is performed in pairs of pixels. This means

that a pair of pixels is read out before a variable number of pairs of pixels are skipped

for the final output image. The binning process also outputs only a selected number

of pixels, and it maintains the pattern of the Bayer filter readout as shown in Figure

2-6 by taking the adjacent same-color pixels that were to be skipped and combining

them into one output pixel. This combination process can be an average or summing

process. Both binning and skipping downsample and reduce the pixel count for the

output image.

Subsampling the image using the binning process does not cause aliasing because

the averaging of the nearby pixels acts as a low-pass filter. When using the binning

process, the pixels that are read out are not the raw pixel data of each individual

color as shown in Figure 2-6, but instead a low-pass filtered readout of the pixel

array. Subsampling the image using the skipping process maintains the readout of

the raw pixels thus potentially causing aliasing of the image. However, the aliasing is

not significant and can be mitigated by various higher level processes such as digital

filtering and demosaicing in the software. Peforming the skipping process in firmware

and then using the aforementioned anti-aliasing techniques at a higher level reduces

the amount of firmware that would need to be supported by the camera electronics

because the camera electronics would only have to provide the raw data to the end

user. In this thesis project, we only examine the skipping process in order to simplify

the readout architecture so that the camera electronics only has to read out the raw

pixels without performing the low-pass filtering. Future work could prevent aliasing in

the readout architecture by implementing a binning process in the camera electronics.

3.1.2 Data Flow

At the highest level, the image data always flows from the CMOS imagers to the

FPGAs to the Display Level. Figure 3-1 represents this generalized concept view of

the data flow. All the different readout architectures will have to follow this general

data flow as the physical layout and hardware connections in the MASIV system are

of this manner. In Figure 3-1, there are four big boxes labeled from Aperture 0 to

Aperture 3, which represents the four apertures of the MASIV system. Inside the big

boxes, there are two sets of four boxes. The first set of boxes represents the imagers

and the second set of boxes represents the FPGAs. The image data from the CMOS

imagers are sent to the FPGA of its respective quadrant. Finally, the image data is

sent from the FPGAs to the external display.

As discussed in Section 2.3.2, the apertures of the MASIV system can be connected

using the RocketIO MGTs via fiber cables. The way the apertures are connected

together affects the specifics of the data flow of the overall system and can also affect

certain performance metrics of the MASIV system.

MASIVSystem

Display

V

Figure 3-1: A simplified high level view of the data flow.

3.1.3 Self-Imposed Specifications and Digital Zoom

Considering the resolution support for many modern-day displays and monitors, we

will limit the image size of a user's Region of Interest. The size of the Region of

Interest for a particular user will be kept constant at 1 Megapixel (1024 pixels x 1024

pixels). By limiting the size of the Region of Interest to exactly 1 Megapixel, we

can reduce some of the complexities in the readout architecture design. This is a

reasonable limitation because 1 Megapixel is a sufficient Region of Interest size for

one user considering the limitations in resolution size for typical modern-day displays.

For example, most modern-day displays only support a resolution of a little over 1

Megapixels (e.g. monitor displays with 1280 pixels x 1024 pixels).

By keeping a constant image size, the field-of-view is increased when the image

is subsampled. This is because subsampling processes such as skipping reduces the

pixel count of an image without changing the field-of-view, but when the Region of

Interest must always output a constant number of pixels, more pixels must be read

out in order to compensate for the decimated pixels. These extra pixels that are read

out correspond to an area that is greater than the original field-of-view of the Region

of Interest prior to the subsampling. Hence subsampling and keeping the pixel count

APERTURE2

APERTUREO

APERTURE1 I

176 imagers/system 16 FPGAs/system

APERTURE3

CMOS Imagers FPGAs

QuadA 4 QuodA
Quad O QuadS

Qud " QIud D

44 imagers/camera 4 FPGAs/camera

I

ii
4

k

17 m er/ytm . P-ssse

constant for a Region of Interest gives the effect of digitally zooming out to view a

wider area of the visual field.

3.2 Performance Metrics of the Readout Architec-

tures

Table 3.1 presents an overview of the different readout architectures and performance

metrics associated with each approach. The different readout architectures are in-

herently grouped into three categories, which are sorted by the component that is

doing the VPTZ decimation: Display Level, FPGA Level, and CMOS Imager Level.

Under each category, the different operating modes are tabulated. These operating

modes may differ in how the apertures are connected, frame rate, number of users,

etc. The different operating modes can also require different readout architecture

designs depending on the specifications.

There are two performance metrics that we are concerned with when comparing

the different readout architectures. The first is the frame rate of the MASIV system,

which is how many image frames can be delivered to a user per second. The second

is the number of users that can simultaneously use the VPTZ functionality for the

MASIV system. The two metrics sometimes can have an indirect relationship with

each other, and different scenarios will usually tradeoff between the two metrics. For

example, a design that has a higher frame rate may not be able to support as many

users as one with a lower frame rate.

The columns on the right in Table 3.1 list the parameters and specifications for

the different readout architectures. The two right-most columns in Table 3.1 are ti-

tled "Frame Rate" and "# of Users." As the column's title suggests, these columns

lists the calculations for the frame rate and number of users for the system. When

calculating the frame rate or the number of multiple users, one of the values is held

constant in order to calculate the other value. The essential threshold value to con-

sider in the system is the maximum data rate value of the RocketIO MGTs, which is

Table 3.1: Calculation of Performance Metrics
Architecture # of Ex- Frame Rate (fps) # of Users

ternal
Fibers
(in pairs)

DISPLAY LEVEL
16 -4.69 large, server-side limited
1 .-3 large, server-side limited

FPGA Level
Mode 1 16 15 16 per quadrant
Mode 2 16 2 126 per quadrant
Mode 3 1 15 16 per system

CMOS IMAGER Level
1 user -55.48 to 157.08 1
n user on one imager, same skip mode -15 to 55.48 n
n user on one imager, different skip Variable Framerate n

mode

*Fixed parameters in normal font. Calculated parameters in italics.
*Assumptions and other Parameters: No overlapping users, Read out Bandwidth Limit = 3.125 Gb/s,

Region of Interest = 1 Megapixel

approximately 3.125 Gbits/second. By holding either the frame rate or the number

of users fixed, we can figure out what the maximum value for the other parameter can

be and still meet the data rate requirements for the system. To distinguish between

the calculated value and the fixed value in Table 3.1, the calculated value is italicized

whereas the fixed value is in normal font. The MASIV system will be able to function

as long as the data rate of the system is equal to or less than the maximum data rate

value of the RocketIO MGTs.

The "# of External Fibers" in Table 3.1 is the number of fiber cables that are

used to connect the MASIV system to the Display Level for image data transfer.

For commands and messages to the MASIV camera electronics, there are four fiber

channel connecting the external source to the apertures as described in Figure 2-9

of Section 2.3.2. We will only be investigating the situation when the number of

fiber cables used to connect the MASIV system to the Display Level for image data

transfers is 16 or 1 because these two cases are the two limiting cases for the system.

The number of external fibers is an effect of how the apertures are connected to

each other in the MASIV system. If the number of external fibers is 16, this means

that each of the sixteen quadrants of the MASIV system is directly connected to the

Display Level. There is no data flow of image data from one aperture to another

because all the image data from the respective quadrants are directly transferred to

the Display Level. Thus, the readout architecture for this design can be simplified to

be developed strictly on a per quadrant basis, but the system would have to physically

manage implementing sixteen fiber cables with receivers at the display. If the number

of external fibers is 1, this means that there is only one fiber cable connecting the

entire MASIV system to the Display Level. The apertures are connected such that

all sixteen quadrants of the MASIV system are daisy chained, with the final quadrant

from the final aperture being connected to the Display Level. The image data from

one end of the daisy chain will have to go through the quadrants of the MASIV system

before it can be sent to the Display Level. As a result, the readout architecture for

this setup is more complex but reduces the physical clutter of having to handle sixteen

fiber cables coming out of the MASIV system. Figure 3-2 shows an example of the

system having 16 external fibers versus the system having only one external fiber for

image data output.

Figure 3-2: Sixteen External Cables Connections vs. One External Cable Connection

for Image Data Transfer.

The number of external fibers can also affect the frame rate of the system or the

number of users that can be supported by the system. Depending on the readout

architecture, reducing the number of external fibers has the potential to decrease the

frame rate of the MASIV system or change the number of users that can be supported

by the system.

3.3 Different Readout Architectures

This section will study the performances and tradeoffs of each of the three different

readout architectures more thoroughly. The three different readout architectures

perform the VPTZ decimation at the Display Level, FPGA Level, or the CMOS

Imager Level. Within each of the three architectures, there are differences depending

on the parameters and specifications of the MASIV system, as well as depending on

the different user scenarios.

3.3.1 Display Level VPTZ Decimation

One possible design approach is to have all the decimation for the VPTZ done at

the Display Level. The Display Level decimation would most likely occur in software

defined functions in a computer. Therefore, in order for Display Level VPTZ deci-

mation to work, it will need to be able to access the data from the entire MASIV

camera system. All the CMOS imagers in the MASIV system would have to output

at its maximum resolution, and then the software decimation functions at the Display

will perform the necessary decimation processes. Even for a 1 Megapixel Region of

Interest image size, the MASIV camera electronics would still be required to read

out all 880 Megapixels worth of data to the software decimation function in order for

it to perform VPTZ. Figure 3-3 shows a high level block diagram for this readout

architecture. Though this architecture would be the least complex to implement and

could easily scale to many users, there would be several issues associated with this

approach.

The major issue with trying to do all the decimation at the Display Level is the

data throughput. The readout architecture would have to handle and buffer the data

being generated. The data leaving the cameras will have to be faster than the data

being generated by the cameras in order to successfully output all 880 Megapixels

worth of data. Using the VPTZ functionality with this readout architecture would

not reduce the bandwidth requirements in anyway because all the pixel data being

generated would have to be outputted by the MASIV camera electronics. Therefore

Decimation at Display Level

WsMpbds

Df data per fwame

Figure 3-3: Block Diagram of Readout Architecture for Display Level Decimation.

this readout architecture cannot fully benefit from the fact that VPTZ with a constant

Region of Interest size only requires a fraction of the complete image data.

Table 3.1 shows the maximum frame that is possible for Display Level VPTZ

decimation. When the MASIV system uses 16 external fibers, the maximum frame

rate is approximately 4.69 fps. When the MASIV system uses 1 external fiber, the

maximum frame rate is cut to be a sixteenth of the frame rate, which is approximately

.3 fps. This is because all the data that was being outputted by the sixteen fibers

now have to fit onto a single fiber cable, thus reducing the frame rate of the overall

system. This frame rate is not suitable for persistent surveillance applications, and

thus the current MASIV implementation uses 16 fiber channels to output the image

data 1

The frame rate for the MASIV system for Display Level decimation using 16

1The current MASIV implementation's camera electronics actually reduces the overall system's
frame rate from the possible ,4 fps down to the minimum required 2 fps in order to limit the number
of frames written to disk. See Section 2.4 for details.

MASIV Cameras

Imagers

Display

FPGAs

Pb Ri
Capture R RKornnot

external fibers is calculated using the RocketIO's maximum data rate:

RateMGT
fps =

Npi ximager * Nbit * I

RateMGT = Maximum RocketlO MGT Rate [Gbits/sec]

I = # of Imagers per Quadrant [imagers/quadrant]

Npizimager = # of Valid Pixels per imager [pixels/imager]

Nbit = ADC pixel bit width = 12 [bits/pixel]

One benefit of the Display Level VPTZ decimation is that it allows for a large

number of users. Because all the data is available for the VPTZ decimation processes

at the Display Level, it can be duplicated as necessary without penalty for the multiple

users, as long as the external server can support it.

To summarize, developing the VPTZ functionality for Display Level decimation

would be the easiest to implement because all the data that could possibly be gen-

erated by the cameras is already available, and it is relatively simple for software

processes to decimate through the data. However, data throughput from the cameras

remains a constraint, and there is no gain in frame rate performance for Display Level

decimation. Thus, the frame rates being generated by the system will be low.

3.3.2 FPGA Level VPTZ Decimation

Another possible readout architecture would perform the VPTZ decimation at the

FPGA Level of the MASIV system. In FPGA Level VPTZ decimation, the FPGA

would decimate all the extraneous data not requested by the users, and only output

the relevant pixel data for the requested Regions of Interests. As in Display Level

decimation, the bottleneck for data transfers occurs at the RocketIO MGTs, but

because only a fraction of the total pixels need to be transmitted across the MGTs

for FPGA Level decimation, higher frame rates can be supported by the bandwidth

in this readout architecture.

Similar to Display Level VPTZ decimation, VPTZ decimation by the FPGA re-

quires the CMOS imagers to be read out at full resolution. Therefore the maximum

system frame rate that can be achieved is limited by the frame rate of the imagers op-

erating at full resolution. However, the difference between the two is that in FPGA

Level VPTZ decimation, the FPGA would filter out the unnecessary pixels before

sending the relevant pixel information to the RocketIO MGTs. By the time the data

reaches the Display, only the relevant pixel data that was requested by the user will

remain, as opposed to the entire 880 Megapixel data set. This greatly eases the data

throughput levels at the RocketIO MGTs as well as the server-side requirements at

the Display. Figure 3-4 shows a high level block diagram for this readout architecture.

Decimation in FPGA

Figure 3-4: Block Diagram of Readout Architecture for FPGA Level VPTZ Decima-
tion

The frame rates for FPGA Level VPTZ decimation is shown in Table 3.1. For

the cases where there are 16 external fibers, the frame rate is held constant in order

to calculate the number of users that can be supported by the data rate limits of one

quadrant. We are interested in the case when all the users' Regions of Interests are

encompassed in one quadrant because this is the limiting case of this architecture.

The frame rate of the system used in the calculations is 15 fps, which is the maximum

frame rate of the CMOS imager when it is being read out at full resolution 2. For

the calculations, it is also assumed that there are no overlapping Regions of Interests

between the different users in the quadrant because overlapping Regions of Interests

do not contribute to the discussion of the limiting case of this architecture. For

example, if many users' Regions of Interests are completely overlapping each other

as shown in Figure 3-7, the readout architecture can theoretically just treat it as one

Region of Interest.

From this, we can determine the maximum number of users in one quadrant that

this particular architecture can support:

RateMT
Nuser =

Npiz_ROI * Nbit * fps

Nuser = # of Users [users]

fps = frames per second

RateMGT = Maximum RocketIO MGT Rate [Gbits/sec]

Npiz_ROI = # of Valid Pixels per ROI [pixels/frame]

Nbit = ADC pixel bit width = 12 [bits/pixel]

Mode 1 in Table 3.1 describes a system with 16 external fiber cables and the

imagers operating at the maximum frame rate of 15 fps. Assuming there are no over-

lapping Regions of Interests, Mode 1 can support up to approximately sixteen users

for one quadrant. Therefore, the entire system, which consists of sixteen quadrants,

can theoretically support up to 256 users, as long as the system does not exceed

sixteen users per quadrant.

If we maintain the 16 external fibers and reduce the operating frame rate of the

imagers, even more users can be supported by the system because more bandwidth is

2The baseline MASIV implementation only employs a 25 MHz pixel clock. See Section 2.4 for
details.

now available. The frame rate of the CMOS imager can be reduced by decreasing the

speed of the pixel clock to the CMOS imager. Mode 2 in Table 3.1 describes a system

with the imagers operating at 2 fps, which is the frame rate for the current MASIV

implementation. In this mode, the maximum number of users it can theoretically

support is increased to approximately 126 users per quadrant.

If a user's Region of Interest spans across quadrants, the frame rate of the system

can theoretically be increased because the amount of data that needs to be read out

of each quadrant is reduced. For example, if a user's Region of Interest is evenly

spaced across two quadrants, then the amount of data that needs to be read out of

each quadrant is reduced by half. As a result, more bandwidth is available to support

faster frame rates.

If the number of external fibers used for image data transfers is reduced to one

fiber cable as shown in Figure 3-2, the performance of the entire system will always

be the same as the limiting case of one quadrant in the sixteen external fiber modes.

This is because all the image data of the system must pass out of one quadrant. Mode

3 in Table 3.1 describes the system with only one external fiber cable and the imagers

operating at the maximum frame rate of 15 fps. In this case, the number of users the

entire system can support is sixteen users.

As a result of these artifacts that occur from having multiple users, implementing

VPTZ to multiple users for FPGA Level VPTZ decimation becomes more complex

than implementing multiple users for Display Level VPTZ decimation. In Display

Level VPTZ decimation, the number of users that can be supported is large and

there are no side effects to the camera electronics from having more users. However,

in FPGA Level VPTZ decimation, the number of multiple users is fundamentally

limited by the data rate of the system, and increasing the number of users can reduce

the frame rate of the system.

The frame rate of the MASIV system is fundamentally linked to the frame rate

of the CMOS imagers. With FPGA Level VPTZ decimation, the frame rate of the

system is limited to the frame rate of the imager running at full resolution because all

the CMOS imagers must be operating at full resolution for FPGA Level decimation.

3.3.3 Imager Level VPTZ Decimation

The CMOS imagers used in the MASIV system has the ability to perform many

camera processing functions on the chip itself. VPTZ decimation can be implemented

at the CMOS Imager Level by making use of these on-chip functions. The imagers

can be read out at a lower resolution depending on the requested Region of Interest,

and thus the operating frame rate of the imagers can be increased to greater than 15

fps.

In Imager Level VPTZ decimation, the FPGA still plays a big role in the readout

architecture because the FPGA acts as the controls for the CMOS imagers. The

FPGA can be thought of as the "brains" of the CMOS imager because the FPGA

commands the CMOS imager chip to perform the certain decimation functions such

as windowing and subsampling by configuring the value of the corresponding register

address space on the CMOS imager chip. Additionally, the data from the CMOS

imager still flows through the FPGA before it is transferred to the external display

terminal, just as it was for the Display Level and FPGA Level VPTZ decimation.

Figure 3-5 shows a high level block diagram view for the readout architecture

required to do Imager Level VPTZ decimation. Higher level software processes in

the display terminal determines the Region of Interest of the user and sends that

information down to the FPGAs of the MASIV system. The FPGA then sends

the corresponding windowing and subsampling commands for the user's Region of

Interest to the CMOS imagers. Finally, the imagers do the VPTZ decimation before

transmitting out the relevant pixel data.

Since the windowing and subsampling functions of the VPTZ are performed on

the CMOS imager chip itself, only the necessary pixel data are sampled and sent to

the FPGA and across the fiber cables. Therefore, the amount of data bursting off of

the imagers to the FPGA is greatly reduced. Additionally, this design could allow for

much faster rates because the CMOS imagers do not need to always be read out at

full resolution.

Depending on different scenarios, the frame rate can change considerably, espe-

Decimation in Imager

MA------V Cameras Display

FPGA II I

12bitsp44data Pix RIOfrmat 16

Capture I i

!- I

W. .dowi.ga..d ngd er/RO.
SubsamplingCommands Selector

AlI

I I

I I

SI I
SI I

I I
SI I

SI I
SI I
SI II t I Display
SI I
SI I

I---------------------I I

L----------------------------------

Figure 3-5: Block Diagram of Readout Architecture for VPTZ Decimation in the

Imagers.

IIIIIIIIIIIIIIII

I iIIIIIIIIIIIIIIIIIIIIIIIII

cially when multiple users are considered. In Table 3.1, we examine and calculate the

performance metrics for a few of these possible scenarios. The first scenario is if there

is only one user that has a Region of Interest of 1 Megapixel with no subsampling.

The frame rate for the CMOS imagers at different resolutions can be calculated by

using the formulas from the Micron Imager data sheet [8]. If the user's Region of

Interest happens to fall within one CMOS imager, then the frame rate that can be

achieved for a 1 Megapixel Region of Interest is approximately 55.48 fps. This is

because if the Region of Interest has a size of 1 Megapixel, then the CMOS imager

would only be required to read out at a resolution of 1 Megapixel, which would have

a frame rate of 55.48 fps.

In the above scenario, the frame rate of the imager can actually be increased if the

Region of Interest of the user spans across multiple CMOS imagers. Figure 3-6 shows

a couple of examples in which a user's Region of Interest can span across multiple

imagers. A user's Region of Interest can span across multiple CMOS imagers because

of the nature of the focal plane array of the MASIV system as described in Chapter 2.

Note that the four imagers represented in Figure 3-6 - ImO to Im3 - are from different

apertures. This is because of the layout of the imagers at the focal plane array and

how the imagers are eventually combined together to create the final image. If the

Region of Interest spans across multiple CMOS imagers, the resolution required from

each individual active CMOS imager will only be a fraction of the Region of Interest.

If the user's Region of Interest is limited to be 1 Megapixel, and that region spans

across two CMOS imagers, then the resolution that will need to be read out from

each of those two CMOS imagers will be less than 1 Megapixel. In the case that the

Region of Interest is evenly spaced across the CMOS imagers, the maximum frame

rate can reach up to 157 fps for a 1 Megapixel Region of Interest spanning evenly

across multiple imagers.

Adding in multiple users for CMOS Imager Level VPTZ decimation quickly in-

creases the complexity of the system. Let us begin by examining the case of having

n multiple users with no subsampling on only one CMOS imager. This means that

each of Regions of Interests for the n users will be within the area covered by one

ROI Spans 2 CMOS imagers

Figure 3-6: An example of a Region of Interest spanning multiple imagers.

CMOS imager. We will examine three cases that can occur in this scenario. Figure

3-7 gives a visual overview of these three situations.

The cases presented in Figure 3-7 lead to different performances because of the

way frame sizing works in the CMOS imager. The windowing functionality for VPTZ

decimation in the CMOS imager is essentially configuring the frame start and frame

size values of the CMOS imager. The frame start values determine where in the pixel

array to begin the readout of the CMOS imager, and the frame size determines how

much of the pixel array to read out. Therefore, the readout of the pixel data from

the CMOS imager is inherently of a rectangular shape. In the first case presented in

Figure 3-7, none of the Regions of Interests of the users overlap each other, and thus

No Overlap of ROI Partial Overlap of ROI

i JJi

CompleteOverlap of ROI

CMOS nager

Figure 3-7: Multiple Regions of
CMOS imager.

Interests scenarios with same zoom mode within one

ROI Spans 4 CMOS imagers

the "shape" of all the valid pixels that need to be read out from the CMOS imager

is not a rectangle. There are two possible approaches to handle this case.

The first approach would be to read out the entire CMOS imager at full resolution,

and then select out the necessary pixel data for the different Regions of Interests in

the FPGA. In this approach, the frame rate of the CMOS imager will automatically

be limited to the maximum frame rate of reading the imager out at full resolution,

which is 15 fps.

The second approach makes use of the fact that the CMOS imager reads out the

pixel array row by row from top to bottom. If we assume that the direction of the

read out of the pixel array begins at the top left corner of the CMOS imager and

ends at the bottom right corner, then we can determine a rectangular region that

will encompass all the Regions of Interests on the CMOS imager. By figuring out

the location of the Region of Interest that is closest to the top of the CMOS imager

and the location of the Region of Interest that is closest to the left side of the CMOS

imager, we can determine the start of the rectangular region. Conversely, by figuring

out the location of the Region of Interest that is closest to the bottom of the CMOS

imager and the location of the Region of Interest that is closest to the right side of

the CMOS imager, we can determine the end of the rectangular region. The dotted

line around the three Regions of Interests for the first case of Figure 3-7 represents

this rectangular region. In this approach, only this rectangular region will need to be

read out instead of the entire resolution of the CMOS imager. Because there are areas

of the rectangular region that are not a part of the Regions of Interests, the FPGA

will still have to be used to select out the pixel data for the Regions of Interests from

the rectangular region. Even still, this approach will be more efficient than having to

always read out the CMOS imager at full resolution, thus enabling faster frame rates.

The second case presented in Figure 3-7 has the Regions of Interests partially

overlapping each other within one CMOS imager. The approach to handle this case

is actually the same as before: a rectangular region that will encompass all the Regions

of Interests is determined for read out. However, the rectangular region for this case

will be smaller than in the previous case because there will exist pixels that are

common to more than one Region of Interest. As a result, this case will have faster

frame rates than in the previous case because the readout of the rectangular region

from the CMOS imager is smaller.

The third case presented in Figure 3-7 has the Regions of Interests completely

overlapping with each other. In this case, the different Regions of Interests each

completely share the same pixels. In essence, the size of the rectangular region that

encompasses the multiple Regions of Interests in the previous two cases is now the

size of one Region of Interest. Therefore, this case can be thought of as having only

one Region of Interest. For an Region of Interest of 1 Megapixel, the maximum frame

rate would be up to 55.48 fps.

The above three cases limited all the Regions of Interests to be within one im-

ager with no subsampling. As soon as subsampling is introduced and the Regions

of Interests are allowed to span across multiple imagers, the complexity increases

further. First of all, when multiple Regions of Interests with different subsampling

is introduced, the approach of defining a rectangular region that can encompass the

multiple Regions of Interests becomes very complex. When the CMOS imager needs

to be subsampled, the whole imager must be subsampled at that same subsampled

mode; one cannot have a portion of the CMOS imager readout be subsampled at one

mode while another portion of the imager subsampled in a different mode. Thus,

if two Regions of Interests with different subsampling modes exist within the same

CMOS imager, the imager must take turns switching back and forth between the

different subsampling values of the different Regions of Interests. Therefore, as Table

3.1 shows, the frame rate for this scenario would be divided by the number of Regions

of Interests with different subsampling modes. Moreover, the frame rate value that

is being divided by the number of different Regions of Interests would actually be

variable because the frame would dynamically change as the CMOS imager switches

back and forth between the different subsampling modes.

In summary, while Imager Level VPTZ decimation offers the highest potential

frame rate for the MASIV system, it comes at a substantial complexity cost. There are

many special cases to handle, and each different case leads to different performances.

Table 3.2: Qualitative Comparison of the Different Architectures
Implementatiori # of Users Frame Rate
Complexity Supported

Display Level Decimi- Low Complexity Large, Limited Slowest
ation by Server-Side
FPGA Decimation Moderate Com- Limited by Moderate

plexity RocketIO band-
width

Imager Decimation High Complex- Limited by Fastest
ity RocketIO band-

width

3.4 Summary of the Differences between the Read-

out Architectures

Table 3.2 provides a qualitative comparison of the different readout architectures

discussed in this chapter.

Among the three design candidates for the readout architecture, the architecture

for CMOS Imager Level VPTZ decimation would be the most complex to implement.

This is because the nature of the readout process for the imagers makes handling

multiple users very complex. However, this architecture has the potential for achieving

the highest frame rate performance amongst the three readout architectures.

Both Display Level and FPGA Level decimation require the full-resolution readout

of the CMOS imager, and thus the frame rate of the system is limited by the imager's

full-resolution frame rate. However, the readout architecture implementation is less

complex to implement than Imager Level decimation because all the pixel data is

available to the component performing the VPTZ decimation.

Display Level decimation enables support for a large number of users because the

software performing the decimation has access to all the image data and can reproduce

data for multiple users as necessary without penalty. However, the frame rate is

severely limited in order to meet the RocketIO bandwidth limitations of outputting

all 880 Megapixels worth of data from the apertures.

For FPGA Level decimation, it is easier to implement multiple user functionality

than Imager Level decimation because the FPGAs have access to all the pixel data. It

can achieve faster frame rates than Display Level decimation because the Regions of

Interests are limited to only 1 Megapixel, thus allowing for more bandwidth allocation

than having to transfer all 880 Megapixels. However, the architecture for FPGA

decimation is still fundamentally limited by the RocketIO bandwidth limitations,

and multiple users can only be supported as long as all data rate requirements can

be met.

In this project, we implement a readout architecture using FPGA Level decimation

because it is a reasonable comprimise between complexity and performance. The

amount of data being read out of the system is greatly reduced, and thus the system's

frame rate can be increased to meet the imager's operating frame rate of ~4 fps at the

current pixel clock rate. As the pixel clock rate to the imagers is increased, the frame

rate of the system can scale up to the maximum frame rate of the imager running at

full resolution.

Chapter 4

Specific Implementation of a

Camera Readout Architecture for

VPTZ

The camera readout electronics for the VPTZ application are implemented with pro-

grammable logic in the FPGAs. This chapter will describe the logic implemented

in the FPGA for a specific readout architecture that demonstrates the concepts of

VPTZ on the MASIV system. All the firmware logic was implemented using VHDL,

and was developed and compiled in the Xilinx ISE 8.2 environment. All the VHDL

source code modules for the VPTZ readout architecture are included in Appendix A.

The specific readout architecture that is implemented in this thesis is the FPGA

Level VPTZ decimation as described in Section 3.3.2 of Chapter 3. All the specifica-

tions and design decisions for the implemented architecture will be discussed in this

chapter.

4.1 Existing MASIV Firmware Overview

The VPTZ application is essentially implementing an alternative readout architecture

for the MASIV system in lieu of the current readout architecture. Thus, existing

firmware used for other applications such as imager controls, housekeeping, clock

signal control and RocketIO interfacing can still be used with the readout architecture

for VPTZ.

We will briefly outline some of the important existing firmware modules in the

camera electronics developed at Lincoln Laboratory for the current MASIV imple-

mentation that that the VPTZ readout architecture also relies on.

4.1.1 Imager Control Module

The imager control module interfaces with the eleven CMOS imagers of the quadrant.

Using the 100 MHz master system clock, the imager control module generates the

25 MHz pixel clock signal to the imagers by sampling the master system clock on

every fourth clock cycle. The imager control also uses an externally generated pulse

per second signal to make sure that the operation of all the imagers in the quadrant

are synchronized together. The pulse per second signal is used as a reference sync

to accurately time-stamp new frames. If an imager happens to be misaligned, the

imager control module will drop the pixel clock cycles to that misaligned imager

until it is aligned again. The imager control module also detects to see if any of the

eleven imagers in the quadrant have failed or malfunctioned. If a failed imager exists,

then the imager control module disables that bad imager from the rest of the camera

electronics.

The imager control module reads in and registers the frame valid, line valid, and

twelve-bit data bus signal from each of the eleven imagers. Since all the imagers are

aligned together, the imager control module selects the frame valid and line valid

signals from one of the imagers to be the master frame valid and master line valid

signals for the rest of the camera electronics in that quadrant. Selecting a single

master frame valid and line valid signal reduces the amount of logic that is passed

around in the FPGA. The imager control module then sends the registered master

frame valid, master line valid, and data bus to the VPTZ readout electronics. The

registered data bus sent to the VPTZ readout electronics is 132 bits wide because it

encompasses the twelve bit data output bus from all eleven imagers of the quadrant.

4.1.2 Logic Modules for Interfacing with RocketIO MGT

The RocketIO multi-gigabit transceivers operate in a different clock domain from

the master system clock of the camera electronics (see Section 2.4). First-in-first-out

(FIFO) modules with independent clock configurations are used to interface between

the two clock domains. These FIFOs are implemented using the Xilinx Core Genera-

tor software from the Xilinx ISE development environment, and they are very robust

in synchronizing signals from one clock domain to another clock domain. The FIFOs

created by the Xilinx Core Generator are implemented using the embedded BRAMs

in the Xilinx FPGAs.

As discussed in the previous chapters, each FPGA uses three RocketIO MGT

cores - one MGT core to interface with an external source, and two MGT cores to

interface with the FPGAs from the two adjacent quadrants. The RocketIO MGT

cores are also instantiated using the Xilinx Core Generator software. The RocketIO

MGT core used in the FPGA can translate the serial data into parallel buses for

use in the FPGA, and also translate parallel buses into serial data for use with the

MGTs (see Section 2.2.3 for details). A logic module in the camera electronics exists

to multiplex and manage the data between the three MGTs used within the FPGA

so that the data can flow through the system as specified by the readout architecture.

This module determines how the quadrants are functionally connected and whether

data should be passed to the neighboring quadrants or transferred out through the

small form-factor pluggable (SFP).

4.1.3 PowerPC and Register File

One of the two embedded PowerPC is used to perform the higher level functions

of the FPGA. The PowerPC processes the commands and message data from an

external source. It sends the appropriate configuration data to the camera electronics

in the FPGA based on the command and message data received. The PowerPC

can also accept messages generated by the camera electronics itself for tasks such

as housekeeping. A custom-made Register address file in the FPGA acts as the

interface between the rest of the firmware electronics of the FPGA and the PowerPC.

The Register address file is attached to the PowerPC's on-chip peripheral bus and

has access to the PowerPC's address spaces. Based on the command and message

data received, the PowerPC configures an address of the Register file, which in turn

activates the corresponding signal in the Register file with a designated value. The

Register file then sends out the corresponding signal to the rest of the camera's

firmware electronics.

4.2 VPTZ Parameters

The parameters needed to perform VPTZ are the starting point of the Region of

Interest, the subsampling mode, and the number of valid pixel columns and rows

that needs to be read out. The parameters will be calculated by software in the

Display Level and then sent to the camera readout electronics. These parameters are

what define the Region of Interest for the user.

4.2.1 Coordinate Spaces and Region of Interest Start Point

The starting point of a user's Region of Interest is determined based on the fact that

the Micron CMOS Imager has a pixel array of 2,592 x 1,944 pixels. As a result of

the pixel array, the Region of Interest's starting point is calculated on a coordinate

system with each pixel equaling one unit of the coordinate, and the origin being at the

absolute start of the imager's pixel array readout. Consequently, the end coordinate

point for one imager is (2591, 1943), which is located at the end of the imager's pixel

array because that is the 2,592nd pixel on the 1,944th line. This is known as the

imager coordinate space and it is used for one imager. It is the coordinate system

that the VPTZ readout architecture will reference when handling the readout and

decimation of image data for each imager.

However, from a user's perspective at the Display Level, knowing the pixel coordi-

nates of each individual imager is not very useful. Instead, the user will determine his

or her starting point for the Region of Interest from a consolidated coordinate space

that encompasses the entire image area covered by all the imagers in the MASIV

system. Therefore, one pixel is still equal to one unit of the coordinate system, but

the entire coordinate space will be a result of the total dimensions that occur from

combining the imagers of the four apertures of the MASIV system together. The

complete dimensions of the consolidated coordinate space are illustrated in Figure

4-1 (not drawn to scale) assuming that there is no overlap between the imagers when

the focal planes are combined 1

Origin:

31104

3888

31104

Figure 4-1: Pixel Dimensions of the Consolidated Coordinate Space of Entire Cover-
age Area.

Note that corners of the consolidated coordinate space are blank because the

corners of the focal plane mosaic are not populated with CMOS imagers (Figure

1In reality, there are overlaps between the imagers when the four apertures are stitched together,
but this was not addressed in this thesis project

i (0

31103M 114\
I I I

2-3). When the four focal planes of the MASIV system are combined to create

the final overall image of the entire coverage area, it creates these blanks at the

corners. However, in order to preserve a simple coordinate numbering system, the

blank corners will still be indexed with coordinate units.

A software process in the Display Level maps the points in the consolidated coor-

dinate space to the imager coordinate space of the corresponding imagers it belongs

to. Once a user determines the starting point of his Region of Interest using the

consolidated coordinate space, this software process will calculate the start point co-

ordinate value into the imager coordinate space and send that value to the FPGA in

control of the corresponding imager.

The camera electronics have no knowledge of the consolidated coordinate space

used at the Display Level. The readout electronics only needs to receive a starting

coordinates value defined in imager coordinate space for each of the eleven imagers

under its control. If the Region of Interest in the consolidated coordinate space

happens to span across multiple imagers, the software processes at the Display Level

will determine a corresponding starting point for each of the spanned imagers that

the Region of Interest encompasses and then send those values to the corresponding

FPGAs. The implementation of the readout architecture in this chapter treats each

of the imagers as separate entities, thus requiring a start coordinate value for each

imager that has valid image data.

4.2.2 VPTZ Subsampling and Number of Valid Pixel Columns

and Rows

In this implementation of the VPTZ architecture, a simple skipping process is used

to subsample the image data. The skipping process can skip entire columns and/or

rows of pixels for data decimation.

As mentioned in Section 3.1.1, the readout architecture must maintain the Bayer

pattern readout employed in the CMOS imagers. The Bayer pattern filter arranges

the color information in pairs in both the horizontal and vertical direction, and thus

Table 4.1: Skip Modes and # of Skipped Pixels
Skip Mode Total Pixels/ # of Skipped

Skip Interval Pixels

2x 4 2
4x 8 6
8x 16 14
16x 32 30
32x 64 62

the skipping process must be performed in pairs. If the skip mode is 2x, then the

readout architecture would read out two pixels, and then skip the next pair of pixels.

A skip mode of 4x would read out two pixels, and then skip the next three pairs

of pixels. Twice the value of the skip mode is equal to the total number of pixels

that are in a skip interval. A skip interval is equal to the two valid pixels plus

the number of skipped pixels. A user defines the skip mode desired for his Region of

Interest at the Display Level, and then that value is sent as a parameter to the camera

readout electronics. Table 4.1 shows a summary of the number of pixels involved for

the skip mode values that are allowed in this implementation of the VPTZ readout

architecture. The skip mode is limited to modes that can be divided and multiplied

by a factor of 2 for easier implementation in the digital logic.

The pixel count of a Region of Interest for a user will be kept constant at 1

Megapixels, or 1024 pixels x 1024 pixels. Software processes at the Display Level

can determine how many valid columns and valid rows of pixels would be needed per

imager to fulfill the constant pixel count size of the Region of Interest. The number

of valid columns and valid rows of pixels is calculated according to how the Region of

Interest is subsampled and spanned across the imagers. For example, if a Region of

Interest with no subsampling is spanned evenly across two imagers in the horizontal

direction, then the number of valid pixel columns needed from each of the imagers

would be 512 columns. This information is then sent down as a parameter to the

corresponding FPGA. The number of valid pixel columns and rows required for every

imager in the system is calculated and sent as a parameter to the camera electronics

of the system.

In summary, the skip mode, the start coordinates for each imager, and the total

number of valid pixel columns and rows needed for each imager are calculated by

software at the Display Level and then sent as the VPTZ parameters to the camera

electronics readout architecture.

4.2.3 Row Offsetting

Because all the imagers are operating simultaneously, the readout architecture has to

somehow manage the pixel data bursting off of all eleven imagers of the quadrant at

the same time. A restriction is placed on the system so that the readout architec-

ture will have to manage only the burst pixel data from up to three imagers of the

quadrant. The 1 Megapixel size limit of the Region of Interest means that a Region

of Interest will span across multiple imagers within the same quadrant only when

it is subsampled. By exploiting the fact that the Region of Interest is subsampled

and that pixel data is read out row by row, row offsetting is employed to ensure that

imagers along the vertical direction of the quadrant do not have the same valid rows

for VPTZ readout.

Figure 4-2 gives an overview of row offsetting for one quadrant (not drawn to

scale). In Figure 4-2, there is both vertical and horizontal subsampling, and the

Region of Interest spans across multiple imagers in the quadrant in both the horizontal

and vertical direction. There is a chance that the Region of Interest can have the

same valid row for read out between the imagers placed along the vertical direction of

the quadrant. In Figure 4-2, Imager 3 and Imager 4 have a valid row of pixels at row

n and Imager 6 and Imager 7 also have a valid row of pixels at row n. Normally, the

pixel data being burst out of those four imagers at row n would have to be managed by

the camera electronics. However, if we offset the valid row that needs to be read out

of Imager 6 and Imager 7 to instead be at row n + 2, then the readout architecture

will only have to manage the data from Imager 3 and Imager 4 during row n's read

out.

Row offsetting is implemented by simply changing the start coordinate parameter

to the imagers so that the imagers along the vertical direction of the quadrant do

not start reading out the same row of pixels. It is a tolerable restriction because no

information is actually lost during the row offsetting. Information is not lost because

the row offsetting exploits how the rows are skipped during vertical subsampling:

there are always at least two rows of pixels that are immediately decimated after two

valid rows are read out. The row offset restriction works in pairs of rows in order to

maintain the Bayer pattern. If there were two imagers along the vertical direction of

a quadrant that required the same pair of valid rows to be read out, the restriction

would allow the original pair of valid rows to be read out from the first imager, but

then offset the second imager's valid rows to occur during the decimation rows of the

first imager. Thus, image information is not lost but slightly distorted by a couple

pixels at most.

Subsampled
nterest

XX

Row
Offsetting. ro

row n 14 3

yn+2 1 I 6 -

10 G
Figure 4-2: Row Offsetting During Vertical Subsampling in One Quadrant

I r---"t---

4.3 Logic Implementation of the Readout Archi-

tecture

In the implementation that is discussed in this chapter, the camera electronics readout

architecture is designed to perform the data decimation in the FPGAs and only output

the pixels encompassed by the Region of Interest. The readout architecture must be

able to manage the pixel data so that it meets the bandwidth requirements for the

data bursting off the imagers and for the data rate limits at the RocketIO MGTs.

The symmetry of the quadrant layout of the hardware components on the aperture

board enable the camera electronics' firmware to be significantly duplicated across

the FPGAs. The readout architecture for the VPTZ application can be implemented

for one quadrant, and then copied to the other quadrants of the system. Therefore

in the subsequent sections we will examine in detail the firmware implementation of

the readout architecture for one quadrant of the system.

Figure 4-3 shows a high-level block diagram of the readout architecture for one

quadrant. The pixel data from the eleven imagers of the quadrant is read out at full

resolution by the Imager Control module as described in Section 4.1.1. The Imager

Control module then sends the pixel data and the master frame valid and line valid

signals to the Rectangles modules. The Rectangles module handles the main data

decimation of windowing and subsampling the pixel data as needed for VPTZ. As

a result of the row offsetting described in Section 4.2.3, there should only be valid

pixel data from up to three imagers being outputted by the Rectangles modules. The

valid pixel data from up to three imagers is then sent to logic that interleaves the

pixels from the different imagers into a single data stream; the data stream is divided

into timeslots, and the logic places the pixel data from the different imagers into

the appropriate timeslot of the data stream. As a result of the timeslot sorting, the

arrangement of the pixel data on the data stream is slightly jumbled because it does

not reflect the spatial placing of the imagers on the focal plane nor does it reflect

the pixel array readout of the imagers. Therefore, the data stream is untangled when

written into a Block Random Access Memory (BRAM) module in the Buffer module.

Each pixel from the jumbled data stream is written into an appropriate address of

the BRAM so that when the data stream is read out by the Read Buffer module,

the pixels on the data stream will be arranged correctly. The data stream is then

sent to the Quadrant Selector module to prepare the data stream to be transferred

out of the quadrant by the RocketIO MGTs. Because the quadrants of the system

are all daisy chained together, there may be image data from another quadrant being

passed through the current quadrant. The Quadrant Selector module handles this

by alternating the readout of the pixel data from the current quadrant or from the

external quadrant.

Imager 0

Smager 10 Imager Control

ToMGTs
Quadrant Selector Valid Image Data Transfer out of

Quadrant)

Figure 4-3: High-Level Block Diagram of Readout Architecture

A slightly more detailed block diagram for the part of the readout architecture

that handles the pixel data bursting off the imagers is illustrated in Figure 4-4. The

logic for this part of the architecture is encompassed in the VHDL top module labeled

"Foveation Top Module." The corresponding source code, named foveationtop.vhd,

and its underlying modules are included in Appendix A. The thick arrows in Figure

,--------------------------------------
--

4-4 represent image data buses, and the thin arrows represent control and enable sig-
nals. The imager control module sends the image data from all eleven imagers of the
quadrant plus the master frame valid and line valid signals to eleven Rectangles mod-
ules. There are actually eleven Rectangles modules instantiated because each module
corresponds to the eleven imagers of the quadrant. Using the VPTZ parameters set
by the user, the Rectangles modules decimates away the pixels that do not belong to
the Region of Interest of the user. The decimated image data then goes through some
logic hardware to prepare it to be written into a set of buffers. The valid pixels are
buffered into BRAM memory in the Buffer module and then read out as specified by
additional logic hardware.

VPTZ Parameters oveation Top Module

ooo

Rectangles 0
Imager 0 Data Rectangles 1

.... DatrmagerRectangles 2

Rectangles 10 ta' a

Decimated Data

Imager Controls

,ontrot Sgrials

Master Frairie Valid I

Master Lin Valid

* *

Pi7st L "I

C C

1.03 Conrl Sinals---
Io t c... ,s+°.,+

Figure 4-4: Block Diagram for the Part of the Architecture that Handles the BurstPixel Data

4.3.1 Main Decimation Logic

The main data decimation needed for VPTZ functionality is performed in the Rectan-
gles modules. The Rectangles module takes in data from the imager at full resolution

1
t

and then performs the windowing and subsampling decimations. It decimates the

data by simply not asserting the output valid signal for the unnecessary pixels from

the Rectangles module. The logic for the Rectangles module is fairly straightforward,

and a block diagram is illustrated in Figure 4-5.

Di al rnllnt Line Count

,olumns

Figure 4-5: Block Diagram of Rectangles Module

The Rectangles module takes in as parameters the skip mode, the starting coordi-

nates for the imager, and the total number of valid pixel columns and rows required

for that imager. If the total number of valid pixel columns or rows is equal to zero,

it means that there are no valid pixels required from that imager and the Rectangles

module automatically decimates away the entire imager by not asserting the output

valid signal for the entire imager. Otherwise, the Rectangles module uses two finite

state machines (FSM) to enable or disable the readout of the pixel data based on the

skip mode parameter. One FSM determines the readout based on column skipping

and the other FSM determines the readout based on row skipping. Both FSMs are al-

ways running concurrently. The outputs of the FSMs are control signals to determine

--- --- ------ --------------------------

the final output valid signal of the Rectangles module. The Rectangles module also

takes in the pixel count and line count of the pixel array readout for the imagers. This

is used as the reference for coordinate points in the image coordinate space: the pixel

count corresponds to the columns of the pixel array, and the line count corresponds

to the rows of the pixel array.

Using the skip mode parameter, the Rectangles module calculates the skip interval

as described in Table 4.1. This information is used by the two FSMs to determine

how many pixels need to be decimated for every set of valid pixels. There are two

state machines to handle the pixel skipping because the pixel array of the CMOS

imager is read out row by row. Row skipping determines whether or not the row is

valid for read out. If a row is valid for read out, then column skipping is used to

determine the valid pixels for that row. If a row is not valid for read out, then all the

pixels in that row are decimated. Figure 4-6 shows the state transition diagram for

the two FSMs. The two FSMs each have three analogous states: an initial wait state,

a valid state, and a skip state. While in the initial wait state, the state machine waits

for the pixel or line count to equal the start coordinate parameters. Once the start

coordinate is reached, the state machine transitions into the valid state and enables

the logic to read out the valid data. If there is no subsampling, the state machine

will remain in this state until the number of valid pixels that is requested is read

out. If there is subsampling, the state machine will remain in the valid state for two

valid pixels in order to maintain the Bayer pattern, then transition to the skip state.

It will remain in the skip state for the number of columns or rows it needs to skip

before transitioning back to the valid state. It will continue to transition between

these two states until the total number of valid pixel columns and rows requested by

the parameters has been read out.

In summary, the Rectangles modules output the valid pixel data from the corre-

sponding imagers with accompanying valid signals to some logic that will merge the

valid pixel data into a single data stream. Also as shown in Figure 4-5, the total num-

ber of valid pixel columns which is accepted as an input by the Rectangles module is

passed out as an output of the module. This information is later used to determine

FSM For Column Skipping FSM For Row Skipping

ROW INrT

ef
NoValid Pixels Requesled

-~ ~~~ - . .- ,-

Figure 4-6: State Transition Diagram for Skipping Decimation

the addressing of the BRAM buffers.

4.3.2 Timeslot Sorting of the Pixel Data before Buffering

Logic exists to combine the valid pixel data from multiple Rectangles modules into a

single data stream. The data stream is divided into timeslots, and pixel data from

one Rectangles module occupies one timeslot of the data stream. As a result of the

row offsetting described in Section 4.2.3, there can at most only be three Rectangles

modules generating valid pixel data for a given row, and thus there are only three

unique timeslots reserved for pixel data in the data stream. Figure 4-7 is a block

diagram illustrating how the pixel data sent from the multiple Rectangles modules are

multiplexed into one data stream before it is sent to the buffers. A single Rectangles

module asserts a valid signal if there is valid pixel data on the current row, and it

also outputs the total number of valid pixel columns expected for the present row of

the module. Sequential logic uses the valid signals from the Rectangles modules to

determine which of the eleven Rectangles modules actively have valid pixel data for

the row. The sequential logic can find up to three active Rectangles modules that

have valid pixel data for the row, and passes that information to a FSM. The FSM

uses this information to output the number of valid pixel columns required for only

the active Rectangles modules. The FSM also multiplexes the valid pixel data from

I \

NI

the active Rectangles modules into the appropriate timeslot of the data stream.

Output from the 11
Rectangles Modules

aa SignaisRect 0
Rect 1 --------- -Roct 2 - - - - - - - - - -

Red 10.

Total # of Valid Pixel ColORect 0
Rect 1

Rect 10

Decimated Pixel Data
Rect 0
Redl 1

Rect 2

Rect 10

Figure 4-7: Block Diagram Showing How Single Pixel Data Stream is Created fromActive Rectangles

The pixel data can be merged into a single data stream using timeslots because the
master system clock runs at 100 MHz while the pixel clock runs at 25 MHz, and pixel
data is read out from the imagers on the rising edge of the pixel clock. Therefore,
pixel data remains valid for four system clock cycles because there are four master
system clock cycles for every one period of a pixel clock. Hence, it is actually possible
to sample a valid pixel from up to four different imagers during one pixel clock cycle,
but our implementation only needs to sample up to three different imagers. Figure
4-8 illustrates a timing diagram showing how the pixel data from up to three imagers
can be sampled and placed into the timeslots of one data stream.

The FSM controls a multiplexor to multiplex the valid pixel data from the corre-
sponding Rectangles modules into the appropriate timeslot of the data stream. Figure
4-9 shows a state transition diagram for the FSM. There are four states in the FSM
- a Start state and three analogous Find states - and each state represents a timeslot
of the data stream. The FSM waits in the Start state during the blanking state of
the imagers. Once the imagers enter its active state, the Start state occupies the
first timeslot of the data stream and the FSM transitions into the first Find state.
In the first Find state, the FSM uses the information sent from the sequential logic
to find the first Rectangles module with valid data. If there is valid pixel data from

System Clock

Pixel Clock
.,,, i i

Imager 0 Data

Imager 1 Data

Imager 2 Data

Data Stream

Data Valid

Figure 4-8: Timing Diagram for Sorting Pixel Data into Timeslots of a Single Data

Stream

a Rectangles module during the Find state, the FSM will multiplex the pixel data

onto the second timeslot of the data stream and output an accompanying valid sig-

nal. The FSM transitions into the next Find state at the rising edge of the master

system clock. During the next Find state, the FSM checks to see if there is valid

pixel data from the next Rectangles module. If there is valid data, then the FSM will

multiplex the pixel data into the next timeslot of the data stream and output the

accompanying valid signal. If there is no Rectangles module with valid pixel data at

any of the Find states, then the FSM will not output a valid signal and there will be

null data multiplexed into the corresponding timeslot of the data stream. Each Find

state also outputs the number of valid pixel columns expected from the Rectangles

module for the corresponding timeslot. The FSM continuously transitions through

the four states at every system clock cycle until the current row is finished and the

imager returns to its blanking state.

In summary, a single stream of pixel data is sent to the buffers. The FSM sends a

valid signal to the buffer to indicate when the pixel data on the stream is valid. The

FSM also sends to the buffer the number of valid pixel columns to expect from up

to three Rectangles modules. This information is used to determine the addressing

Rising edge of
Start , sy.s Find First

Rising edge of Rising edge ofsystem clock system clock

SFind Third Find Second\
mgrsel imgrsel
valid Rising e ge of valid

system clock

Figure 4-9: State Transition Diagram for Sorting Pixel Data into Timeslots of a Single
Data Stream

scheme for the BRAM buffers.

4.3.3 Row by Row Buffering using BRAM

The readout architecture buffers pixel data from the quadrant on a row by row basis,
and it uses two BRAMs to buffer the pixel data of the quadrant. The BRAMs
are customized and instantiated in the firmware by using the Xilinx Core Generator
development tool. The pixel data is written to and read out of the BRAMs by "ping
ponging" between the two BRAMs: while a row's pixel data is being read out of one
BRAM, the next row's pixel data is being written into the other BRAM. This throttles
the data being generated so that no valid pixels are lost. The Buffer module also
inserts control words into the BRAMs to classify the data written into the BRAMs.
Figure 4-10 shows a block diagram of the Buffer module depicting the writing process
to the BRAMs. The Buffer module takes in a pixel data stream, a valid pixel signal,
and up to three total number of valid pixels signal. The valid pixel signal indicates
when the pixel data stream has valid pixel data and it is used as the Write Enable
signal to the buffers. The total number of valid pixels signal indicates the number of
valid pixels that exist on the current row of the corresponding imager and it is used to
determine the addressing scheme used to write to the BRAMs. The FSM determines
what type of data word gets written to the BRAMs, and which address to write the

Out

Total #
Total #

Total #

Dull IIII
II

II
III

IIII
II
III
IIII

1I

Figure 4-10: Buffer Module Block Diagram to Buffer Pixel Data into BRAMs

word into.

Pixel data is 12 bits wide but the words written into the BRAMs are 16 bits wide.

The RocketIO MGTs use 16 bit words for its serial data transfers, and thus the pixel

data written into the BRAMs are expanded to 16 bit data words. The control words

that are written into the BRAMs are also 16 bits wide. Figure 4-11 summarizes the bit

information for the two different types of words that can be written into the BRAMs.

The system distinguishes between a control word and a data word by looking at the

most significant bit (MSB) of the word. If a word's MSB is a '1,' then it is a control

word, otherwise it is a data word. During the buffering of normal pixel data, the

lower 12 bits of the data word are the pixel data and the upper four bits are kept to

zero. However, on the last valid pixel, the 15th bit (bit 14) is asserted to indicate the

end of the row.

A control word is written into the BRAM at the beginning of every new row of

valid pixel data within the quadrant. The control word uses bits 14 down to 12 to

j / 1

classify the row of data that will follow the control word. If it is the first row of
the quadrant, then bits 14 down to 12 will be set to "010" to indicate the start of
frame for the quadrant, otherwise it will be set to "000" to indicate a start of row
for the quadrant. If bits 14 down to 12 are set to be "101" then it indicates that
the words following the control word are some metadata header information, which
will be discussed in detail in Section 4.3.4. The control word also indicates which
quadrant and aperture the following row of pixel data belongs to.

Bits 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control
Word

Data
Word

Word Frarng Irlofrmation Quad ID Camera ID Free User IDType

Word End of Free
Pixel DataType Line

Control Word Summary: Data Word Summary:
- bit 15: Word Type - bit 15: Word Type

"1" = Control Word "1" = Control Word
"0" = Data Word "0" = Data Word

- bits 14-12: Framing Information - bit 14: End of Line
"010" = Start of Frame "1" = End of Line (last valid pixel)"000" = Start of Line "0" = Regular valid pixel
"101" = Metadata Header Start

- bits 13-12: Not used
- bits 11-10: Quad ID - bits 11-0: Pixel Data
- bits 9-8: Camera ID
- bits 7-2: Not used
- bits 1-0: User ID

Figure 4-11: Summary of the Bits in a Word

Valid pixel data from the quadrant is buffered into the BRAMs one row at a time.
The limiting case that determines the size of the BRAMs is when a user's Region of
Interest is entirely contained in one quadrant. In this case, there will be 1024 valid
pixels for a row, and the BRAM will have to buffer all 1024 pixels. When the control
words are included into the BRAMs, the BRAM will have to at least be 1025 words
deep. Therefore, the BRAM that is instantiated in the Buffer module is 1025 words
deep and 16 bits wide. The addresses of the BRAM correspond to the depth of the

BRAM, and thus there are 1025 address spaces in one instantiation of the BRAM:

the first address location of the BRAM is Ox000 and the last address location of the

BRAM is 0x400.

In the case when a Region of Interest spans across multiple imagers in the same

quadrant, the pixel data is written into the BRAMs to reflect the spatial placement

of the imagers in the quadrant. The ordering of the pixel data in the data stream

coming into the Buffer module does not exactly reflect the spatial placement of the

imagers in the quadrant because of the way the pixel data from the different imagers

are merged onto the timeslots of the data stream as described in Section 4.3.2. The

merging process handles the challenge of capturing valid pixel data that occur at the

same time across multiple imagers, but as a result, the overall arrangement of the

pixel data on the data stream do not accurately represent the spatial relationship of

the imager layout on the quadrant. However, if the pixel data from the data stream

can be written into the appropriate addresses of the BRAM, the pixel data can later

be easily read out to reflect the spatial ordering of the imagers in the quadrant. To

retain the spatial layout of the imagers onto the BRAMs, the pixel data from the

same imager should be written next to each other in the BRAM's addresses; this

requires the BRAM to be divided into sections that correspond to the active imagers.

The BRAM can be divided into sections by offsetting the addresses so that the pixel

data from the same imager can occupy a block of addresses of the BRAM. The Buffer

module uses the total number of valid pixels signals to help determine the appropriate

address offset for the start of the different sections in the BRAM. For example, if a

Region of Interest happens to span across three imagers in the same quadrant, the

BRAM will be divided into three sections corresponding to the three imagers. The

start address for the first section of the BRAM corresponding to the first imager

will not require an offset, but the start address for the second section of the BRAM

corresponding to the second imager will require an offset equal to the total number

of valid pixels from the first imager. Similarly, the start address for the third section

of the BRAM corresponding to the third imager will require an offset equal to the

combined total number of valid pixels from the first and second imagers. An FSM

then goes through the data stream and fills in the BRAM accordingly.

The state transition diagram for the FSM is show in Figure 4-12. The states

in this FSM correspond to the timeslots of the data stream. However, there is an

extra state, labeled Write Header in Figure 4-12, which enables the control word to

be written to the BRAM if it is a start of frame or start of row for the quadrant.

The control word is always written into the first address space of the BRAM, which is

Address Ox000. After the control word is written into the BRAM, the FSM transitions

into the states that correspond to the timeslots of the data stream. Each timeslot of

the data stream within a pixel clock cycle represents the pixel data from a different

imager, and the FSM exploits this fact to write the pixel data to the appropriate

section of the BRAM. These states output a count that keeps track of the number of

valid pixels read out so far for the corresponding imager. The count is combined with

the address offset information determined by the total number of valid pixels signal

in order to determine the actual address of the BRAM that the pixel data should be

written into.

Figure 4-12: State Transition Diagram for FSM in the Buffer Module

After the row of valid pixel data for the quadrant is finished writing into one

BRAM, the Buffer module then writes the next row of valid pixel data into the

next BRAM. The Buffer module alternates the writing of the rows between the two

BRAMs. Consequently, the read out of the buffered pixel data alternates between

the BRAMs that are not being actively written to.

4.3.4 Logic to Read Pixel Data from the Buffers

The Read Buffer module controls the readout of the pixel data from the BRAM

buffers. Using a FSM, the Read Buffer module sends a Read Enable signal to the

Buffer module to command the BRAM to start reading out the pixel data. Deter-

mining which address to read out from the BRAM is actually determined by some

simple logic in the Buffer module as shown in Figure 4-10; the address that is read

out of the BRAMs is in sequential order starting from Address Ox000. Reading out

the BRAM in this order ensures that the pixel data represent the spatial layout of the

imagers on the focal plane. The Read Buffer module also appends metadata header

information to the first row of the frame in the quadrant. The metadata header

information is generated from the embedded PowerPC and it conveys system and

housekeeping information such as frame counts, board temperature, etc. The usage

of the metadata header information is inherited from the original implementation of

the MASIV system, and it is still used with this VPTZ readout architecture because

of some interfacing requirements needed by the current data acquisition software and

also because of its usefulness. There are thirty-two words of metadata header infor-

mation that the Read Buffer module must append onto the first row of the frame.

The Read Buffer module also appends a control word in front of the metadata header

information in order to classify that the data being sent is the metadata header infor-

mation (see Figure 4-11). While the metadata header information is being outputted,

the pixel data being read out from the BRAMs are buffered into a FIFO. The FIFO

is sixteen bits wide and thirty-two words deep because there is a potential of up to

thirty-two pixel data words that need to be buffered while the thirty-two metadata

words are read out. Because the metadata header information is only appended to

the first row of every quadrant's frame, only the first row of data will need to be

buffered into a FIFO. The rest of the rows are read out normally from the BRAMs.

Figure 4-13 illustrates the block diagram for the Read Buffer module.

Read Buffer Module

Infefrom PPC

Interface with
Buffer Module o

Data from Datastream ToQuad
Data from BRAM FIFO --- 1 Selector

2- 2

....t-l
1

FIFO Control

Write Done

Read Done

Data Valid

Sea Enable

Figure 4-13: Block Diagram for the Read Buffer module

Using the Write Done signal sent from the Buffer module, the FSM generates the

Read Enable signal to the BRAMs. The FSM also generates the control signals to

the FIFO so that it can buffer the pixel data while multiplexing the metadata header

information onto the output data stream. The state transition diagram for the FSM

is shown in Figure 4-14.

There are two paths the FSM can take. The first path is when the Read Buffer

module is reading from the BRAMS the first row of the frame and needs to append

the metadata header information; the second path is for normal row readout from the

BRAMs. The outputs of the FSM are the Read Enable signal to control the readout

of the BRAMs, and a valid signal to indicate that the data stream being outputted

by the Read Buffer module is valid. For the first path the FSM transitions into the

Frame Start Wait state after receiving a start of frame signal. The FSM then waits

in the Frame Start Wait state until the first row is finished writing into the BRAM.

After the first row is finished being buffered into the BRAM, the FSM transitions

into the Header state and starts outputting the metadata header information. It also

begins the read out of the BRAM by asserting the Read Enable signal. While the

metadata header is being outputted, the data from the BRAM are buffered into a

FIFO. Once all thirty two metadata header words are transmitted, then the FSM

transitions into the Read FIFO state to start reading out the buffered data from

Figure 4-14: State Transition Diagram for the FSM in Read Bufer Module

79

the FIFO. After all the pixel data is finished reading out of the BRAM, the FSM

transitions into the Rest of FIFO state to read out the rest of the data buffered in

the FIFOs.

For all the other rows that are read out of the BRAMs, the FSM follows the second

path. In the second path, the data is simply read directly from the BRAMs. There

are three delay states because the BRAM instantiations themselves have inherent

registers at the outputs that delay the readout of data by a few system clock cycles.

Finally, the Read Buffer module sends the pixel data from the BRAMs and the

accompanying valid signal to some logic that will prepare the data to be transferred

across the RocketIO MGTs.

4.3.5 Quadrant Selector Module

The Quadrant Selector module is the interface between the quadrant and the Rock-

etIO MGTs. This module selects whether the data received from an external quad-

rant or the data generated from the current quadrant should be transmitted across

the RocketIO MGT. This implementation of the VPTZ readout architecture daisy

chains all the quadrants of the entire MASIV system together as shown in Figure 3-2.

Therefore all the quadrants, with the exception of the first one, will have data from

an external quadrant passing through it.

The Quadrant Selector module uses two FIFOs to buffer the image data: the Int

FIFO is used to buffer the data generated by the current quadrant, and the Ext FIFO

is used to buffer the data received from an external quadrant. Data received from an

external quadrant are synchronized to the RocketIO clock domain, and so the FIFO

used to buffer the data from the external quadrants synchronizes the data to the

100 MHz system clock. An FSM is used to decide which FIFO should be read out

and passed to the RocketIO MGTs. Figure 4-15 illustrates the block diagram for the

Quadrant Selector module.

The Quadrant Selector module always reads out the pixel data row by row. While

the FSM is reading a quadrant's row of data from one of the FIFOs, pixel data from

the other quadrant is being stored into the other FIFO. A state transition diagram for

uad Selector Module

Data fri

Valid f

Data f

Valid i

Figure 4-15: Block Diagram for the Quadrant Selector Module

the FSM is shown in Figure 4-16. The FSM initially waits in an Idle state until the

FIFOs begin to fill up. When there is data detected in the FIFO, then the FSM will

transition into a state that will start reading out the FIFO and pass the data to the

RocketIO MGTs. If both FIFOs fill up at the same time, preference is given to passing

out the data generated from the current quadrant, and the FSM will transition to

the Start Int FIFO state. While in this state, the Quadrant Selector module reads

out the data in the Int FIFO until the end of the row. Once the row is finished, the

FSM transitions into the Stop Int FIFO state and checks to see if data is present in

the Ext FIFO. If data is present in the Ext FIFO, then the FSM will transition to

the Start Ext FIFO state and read out the data in the Ext FIFO until the end of the

row. After it is finished reading the row from the Ext FIFO, it will check again to

see if there is data present in the Int FIFO. If there is data present, it will transition

back to the Start Int FIFO, and start the process over again. Otherwise, if there is

no data present in the other FIFO, the FSM will transition back to the Idle state. In

essence, if data is always present between the two FIFOs, the FSM will constantly

alternate reading out the data between the two FIFOs.

The FIFOs used in the Quadrant Selector module are sixteen bits wide and 2048

words deep. Although a row of data from one quadrant will only be at most 1057

words deep (1024 pixels + 1 control word + 32 metadata header words), the FIFOs

N__~

Data present in Int FIFO
Select = None Data present in Ext FIFO

;/~

Empty

End of Row
\ End of Row

Data present
in Ext FIFO

Data present
in Int FIFO

Figure 4-16: State Transition Diagram for FSM in Quad Selector

are a little bit bigger to absolutely ensure that no data is lost while it is being buffered.

The output of the Quadrant Selector module gets sent to the RocketIO MGTs,
to transfer the row's data onto the next quadrant, or to the external devices if it is

the last quadrant.

4.4 Testing and Debugging

At the time of this writing, a completely working display for the VPTZ application

was still under development. The logic modules were tested by creating simulations

of the operations of the modules using the ModelSim SE Plus 6.2f software tool.

The modules were simulated both as independent entities and as well as connected

entities. The test benches and other simulation codes used to simulate the modules

are included in Appendix B. We will examine some of the simulations for the VHDL

modules for the VPTZ readout architecture.

4.4.1 Simulating the Main Decimation Logic

Figure 4-17 shows the simulation results for the Rectangles module described in Sec-

tion 4.3.1. The figure shows the simulation at two different time scales: the larger

time scale, shown at the top of Figure 4-17, is used to show the general signal patterns

created by the Rectangles module, and the smaller time scale, shown at the bottom

of the figure, is used to show a more focused view of the simulation. Some of the

parameters needed by the Rectangles module, such as the clock signal are generated

by the test bench. Other parameters, such as the VPTZ parameters of the start

coordinates are hard coded in the test bench.

A VHDL module is used simulate the behavior of the imagers. The imager test

module simulates the outputs of the frame valid and line valid signals of the actual

imagers, and it also simulates data that could be generated by the imagers. The

pixel data output that is simulated by the imager test module is a test pattern that

corresponds to the column number of the pixel array of the imager that is being read

out, and it is represented by the vidreg signal in Figure 4-17. Moreover, the first

pixel that is outputted by the test pattern corresponds to the row number of the pixel

array that is being read out. This test pattern is used because it simplifies viewing

the operation of the skipping decimation process of the pixel data. The system clock

is labled clock and the pixel clock is labeled imgr_sample_en.

The simulation in Figure 4-17 shows a few select signals that demonstrate the

operation of the Rectangles module. The name for the bottom two signals, labeled

pixeLvalid and pixeLdata are highlighted in Figure 4-17 and they represent the out-

puts of the Rectangles module. The VPTZ parameters that were hardcoded for this

simulation were the skip mode, the total valid pixel column and lines, and the start

coordinates. The skip mode parameter was set to be 2x; the total valid pixel columns

and lines were both set to be eight; the start coordinate was set to be (4,2).

The skipping happens in both the column and row directions of the pixel array;

the results of the row skipping can be seen at the top of Figure 4-17, and the results of

the column skipping can be seen at the bottom of the Figure. Because the skip mode

is 2x, two valid pixel columns or rows are outputted, and then two pixel columns or

rows are skipped. The pixel column or row is skipped because the pixelvalid signal

is not asserted during the skipped pixels.

The start coordinates are (4,2), so the Rectangles module does not begin out-

putting valid pixel data until the second row of pixels and the fourth pixel column

for every row. Because the total number of valid pixel columns and lines are set to

eight, the Rectangles module will only read out eight valid pixel columns for every

row, and only eight valid rows.

Cusor 1 5565 ns

Figure 4-17: Simulation of the Rectangles Module

4.4.2 Simulating the Top Module

Figure 4-18 shows the simulation for the top module illustrated by Figure 4-4. The

simulation for the top module includes the eleven Rectangles module instantiation,

the logic used to timeslot the valid data into a single data stream, and the Buffer

module. On the top of Figure 4-18 shows the simulation of the top module at the

beginning of a valid row, and the bottom of the Figure shows the simulation at the

end of a row.

The hard coded parameters used in the simulation for the Rectangles module in

Section 4.4.1 is used again in this simulation. Moreover, the parameters are sent to

three Rectangles modules to simulate the limiting case of three imagers having valid

pixel data at the same time. In order to simplify viewing the three different imagers

in the simulation, the imager test pattern that is outputted by the imager test module

is slightly different for the three simulated imagers. The first and third imager output

the test pattern as described in Section 4.4.1, but the second imager always outputs

a pixel value of OxAAA.

The names of the important signals in Figure 4-18 are highlighted on the left of the

simulation window. The timeslotted data stream and the accompanying valid signal

is represented by the active_pixeldata and the activepixelvalid signal respectively.

The data words that are written into the buffer are represented by either the datain_0

or datain1 signal. In the timing regions presented in Figure 4-18, the data word

is represented by the datain_O signal because the system is writing to BRAM 0

while reading from BRAM 1. The BRAM address in which the words are written to

is represented by the wraddr signal. The signal wrentmp(0) represents the write

enable signal to the BRAM indicating when the word should be written into the

BRAM.

Notice that the first word written into the BRAM on top of Figure 4-18 is the

control word with the value OxA002. This means that the following row is the start of

the frame for the quadrant, and that the data belongs to the user with an ID of 0x2.

The control word is written into address location Ox000 (shown as a decimal number

in the simulation window). The pixel data words are written into the corresponding

address locations with the correct address offset determined by the three total number

of valid signals (which are represented by totalvalid_pixelsimgr0/1/2_datched signals

in the simulation window).

On the bottom of Figure 4-18, notice that the last data word written is 0x4019.

This means that this is the last valid pixel for the row because bit 14 of the data

word is asserted.

I I-CD

> I> V4J
L) Q 1 1

444vA~4+4444

4.4.3 Simulating the Reading of the Buffer

Figure 4-19 and Figure 4-20 shows the simulation for the Read Buffer module dis-

cussed in Section 4.3.4. This section simulates the operation of the Read Buffer

module connected to the top module of Section 4.4.2. The top of Figure 4-19 shows

the beginning stages of the Read Buffer module when it appends the 32 metadata

header words to the output data stream. Random information is generated by the

test bench and used as placeholders for the 32 metadata header words 2. The bottom

of Figure 4-19 shows the timing region for when the Read Buffer module is done with

appending the metadata header words and starts outputting pixel data. Figure 4-20

shows the timing region for the end of the row.

The names of the important signals are highlighted to the left of Figure 4-19

and 4-20. One of the outputs of the Read Buffer module is the Read Enable signal,

represented by readen in the simulation windows. The readen signal enables the

BRAMs from the Buffer module to start reading out. The other outputs of the Read

Buffer module are the riodata and riovalid signal, which are the final data stream

and the accompanying valid signal that will be transmitted across the RocketIO

MGTs. The signal data_outO represents the data readout from BRAM 0 of the

Bufer module; in the timing regions examined in Figure 4-19 and Figure 4-20, the

data is read from BRAM 0. The address of the BRAM that is being read out is

represented by the rdaddr signal.

From the simulation window on top of Figure 4-19, notice that the first word on

the riodata signal is a control word with the value OxD000. This indicates that the

following words on the riodata stream will be metadata header words. The pixel

data words being read out from the BRAM is stored in the FIFO while the metadata

header words are being outputted by the Read Buffer module. Notice that the BRAM

address that is being read out is in sequential order starting from address location

0x000. The bottom of Figure 4-19 shows the region for when the Read Buffer module

finishes outputting the thirty-two metadata header words data words and starts to

read out the data words that were stored in the FIFO. Notice that riodata signal is
2Design and code by Tom Karolyshyn of Lincoln Laboratory

now the first word that is read out of the FIFO and it is the control word with the

value OxA000, which indicates that the pixel data to follow is the first row of the

frame.

Cursor 1 1485 ns

Cursor 1 I 1805 ns

Figure 4-19: Simulation of the Read Buffer Module

Figure 4-20 shows the timing region for when the riovalid signal is the final pixel

of the row, and it is the last valid data word to be outputted by the Read Buffer

module.

Figure 4-20: Simulation of the Read Buffer Module Showing the Last Pixel of the

Row

Chapter 5

Conclusion

5.1 Future Work

The implementation of the readout architecture for data decimation is only a part

of what is required to have a completely working VPTZ system. In this project we

demonstrated the electronics portion of the VPTZ functionality: the ability to gen-

erate and decimate the data for a user's Region of Interest in the camera electronics.

The decimated results were shown on a frame grabber data acquisition device to

establish that the proper raw data was being produced by the cameras for the end

user. Future work would expand the ability to view the image data from the MASIV

cameras more suitably. First of all, the user interfaces for the display for the VPTZ

application would need to be created. Also, work in image processing techniques such

as image stitching, registration and demosaicing is actively being done for the current

MASIV implementation, and this would need to be extended to include image data

from the VPTZ read out as well.

As for the firmware implementation of the readout architecture, future work could

be done to further improve the performance metrics of the camera system. For ex-

ample, the pixel clock to the imagers can be increased in a future implementation of

the camera electronics. The pixel clock to the imagers used in this project is 25 MHz,

but the imagers can receive up to a 96 MHz pixel clock rate. Increasing the pixel

clock to this frequency would change the implementation of the readout architecture,

but would enable faster frame rates. Furthermore, a new generation of the MASIV

hardware is currently under development, which would create opportunities for other

developments as well.

5.2 Summary

In this project, we examine and develop a video camera readout architecture to sup-

port the concepts of Virtual Pan-Tilt-Zoom for a high-pixel-count video system with

a wide field-of-view. The VPTZ application allows a user to virtually pan, tilt, and

zoom around a wide coverage area without having to physically move the camera.

Technological advancements of the CMOS imager enable the 880 Megapixel imagery

of the MASIV camera system, and the availability of large pixel counts allows for the

development of novel, alternative uses such as VPTZ for the video camera system.

The primary use of the MASIV system as an airborne surveillance sensor requires the

readout and storage of a tremendous amount of raw data from the cameras. However,

the shear amount of pixel data that must be read out from the camera electronics

imposes a limit on frame rates and other performance metrics. The VPTZ applica-

tion provides a different use of the MASIV system by creating an alternative way to

manage the read out of pixel data from the cameras. In VPTZ, the amount of data

needed to be read out of the camera electronics is greatly reduced to reflect only a

portion of the coverage area requested by an individual user. Most of the pixel data

is decimated by the camera readout architecture, and only the fraction of pixels that

encompass the user's Region of Interest needs to be read out by the camera electron-

ics. As a result of the data decimation, certain performance metrics can be enhanced

when the camera system employs the VPTZ functionality. Most notably, the frame

rate of the system can be increased, and the video system can be used to support

multiple users.

The user's Region of Interest is limited in this project to be 1 Megapixel in size

because most modern displays and monitors only have support for images a little over

1 Megapixel in size. Therefore, the amount of data that is needed from the cameras is

significantly reduced from 880 Megapixels to 1 Megapixel per frame. In this thesis we

discussed three approaches to decimating the extraneous data: decimation in software

at the display level, decimation by the CMOS imagers, or decimation by the camera

electronics via an FPGA. Each approach has its tradeoffs with regards to complexity

and performance. In the readout architecture implemented in this project, the data

decimation required for VPTZ functionality is performed in the camera electronics by

the FPGAs. This approach provides a balance between complexity and performance

- it enables faster frame rates than the software level decimation, and it is not as

complex as developing the data decimation process by the imagers.

VPTZ functionality enables a new surveillance technique involving a high-performance

video imaging system. Moreover, the readout architecture used to support VPTZ

functionality adds new capabilities to the existing video system as demonstrated in

this this project.

Bibliography

[1] Mark Beattie, Larry Candell, Pablo Hopman, and William Ross. Multi-Aperture
Sparse Imager Video System. February 2007.

[2] BECTA. Recent trends in digital imaging. Technical report, British Educational
Communications and Technology Agency, March 2004.

[3] Abbas El Gamal. Trends in CMOS image sensor technology and design. IEDM
2002, December 2002.

[4] James Glettler. Multi-Aperture Sparse Imager Video System: A Gigapixel Video
Sensing System for Persistent Surveillance. Briefing Given at MIT Lincoln Lab-
oratory, May 2007.

[5] James Janesick. Dueling detectors: CMOS or CCD? The choice depends on the
application. OE Magazine, pages 30-33, February 2002.

[6] Canon Professional Network. Capturing the image: CCD and CMOS sensors,
2008.

[7] Matt Renzi. Active pixel sensor. Presentation Given at MIT Lincoln Laboratory,
April 2006.

[8] Micron Technology. MT9P001 1/2.5-inch 5-Mp digital image sensor features data
sheet, 2005.

[9] Xilinx. RocketIO Transceiver User Guide, February 2007. ug024 (v3.0).

[10] Xilinx. Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete data
sheet, November 2007. DS083.

Appendix A

VHDL Source Code

A.1 foveation_top.vhd

The following VHDL code is the implementation of the top module for the VPTZ

readout architecture as well as the logic described in Section 4.3.2 (to sort the pixel

data into timeslots of a single data stream).
- This is the top module that handles the burst pixel data from the

- eleven imagers. It corresponds to the "Foveation Top Module" in the thesis

and it encompasses the eleven "Rectangles" module, the logic to timeslot the pixel

-- data into one pixel stram, and the "Buffer" module.

-- This module is instantiated in the higher level MASIV system top module, which

-- is not included in this appendix. Various comments of code that are not

-- related to the VPTZ application may have been commented out or not included

in this appendix.

- This module receives the pixel data signals , and frame valid and line valid

-- signals from the imager control module.

library IEEE;

use IEEE. STD-LOGIC-1164 .ALL;

use IEEE. STD-LOGIC.ARITH .ALL;

use IEEE. STD-LOGICUNSIGNED. ALL;

-- custom package with some helper functions

use work . sweetpackage . all ;

--- Uncomment the following library declaration if instantiating

any Xilinx primitives in this code.

-- library UNISIM;

-- use UNISIM. VComponents. all ;

entity foveation-top is

generic(

QUADID : in stdlogicvector(1 downto 0) := "00";

CAMERAAD : in std_logic.vector (1 downto 0) := "00";

USERID : in stdlogicvector(1 downto 0) := "00"

Port (

: in std-logic; -- async reset

: in std-logic; -- system clock

-- from imgrctrl

imgr.sample-en

fval-master

Ival-master

fval-rise

fval-fall

Ival-rise

Ival-fall

vid.all

std-logic; -- sample incoming data and framing signals from imager

std-logic

std-logic;

std-logic;

stdlogic;

std-logic;

std-logic;

std.logic.vector (131 downto 0);

-- user defined params for size and location of region of interest (ROI)

start.x.all : in std-logic-vector (131 downto 0);

start.y.all : in std-logic.vector (131 downto 0);

total-valid-pixels.all : in std-logic-vector(120 downto 0);

total.valid-lines.all : in std-logic.vector(120 downto 0);

-- user defined params for digital zoom (skip mode)

column-skip.mode : in std-logic.vector (7 downto 0);

row.skip.mode : in std-logic.vector (7 downto 0);

ReadEn : in std-logic;

wr-done-pulse : out std-logic;

rd-done : out std-logic;

first-imgr.sel : out std-logic.vector(3 downto 0);

first-line.active-start : out std-logic ;

ReadData : out std-logic.vector(15 downto 0)

end foveation-top;

architecture Behavioral of foveation-top is

signal imgr.sel, imgr-selreg : std-logic-vector (3 downto 0);

signal mux.sel , mux-sell , mux.sel2 : std-logic-vector (3 downto 0);

signal mux.sel0Oreg , mux.sell-reg , mux.sel2.regl , mux.sel2.reg2 : std-logic.vector (3 downto 0)

signal fval-master.reg , fval-master-reg2 , Ival-master-reg , Ival-master-reg2 , Ival-master-reg3

std-logic;

signal fval-master-int , Ival-master-int : std-logic

signal Ival-rise.int , Ival.rise-reg.2.buf : std-logic;

signal Ival-fall-int, Ivalfall- reg_2_buf : std-logic;

signal pixel-count , next-pixel-count

signal line-count , next-line.count

: std-logic.vector (11 downto 0);

: std-logic.vector(11 downto 0);

signal frame-count : std-logic-vector (11 downto 0);

signal buffers-empty : std-logic;

type pixel-coords.array is array(10 downto 0) of std-logic-vector(11 downto 0);

signal start.x.array , start.y.array : pixel-coords-array;

type validsignals.array is array(10 downto 0) of std-logic;

signal line.start.array , line-start.array.reg , frame-start.array , fval-rect.array ,

Ival-rect.array : valid.signals-array ;

Reset

Clock

signal pixelvalid.rectarray , pixelvalid_rect-array.regl , pixelvalid.rect.array.reg2

std-logicvector(10 downto 0);

type data.array is array(10 downto 0) of stdlogicvector(ll downto 0);

signal vidarray , vidreg , vid.reg_int : data.array;

signal pixeldatarect array , pixeldatarectarray.reg1 , pixeldata.rect-array-reg2

data.array;

signal line_active, frame-active-start : std-logic-vector (10 downto 0);

signal first-line.active.start.int , first-line.activestart-regl , first-line-active-start.reg2 ,

firstlineactive.start_reg3 : std-logic;

signal firstline : stdlogic.vector(10 downto 0);

signal first-line_2_buf : stdlogic ;

signal active-pixelvalid , active-pixel-validreg : stdlogic;

signal active-pixeldata, active-pixel-data-reg : stdlogic.vector (11 downto 0);

signal imgrspan , imgr_span-reg : stdlogic;

type total-valid-pixels-arraytype is array(10 downto 0) of stdlogic.vector(10 downto 0);

signal totalvalidpixels.array : total-valid.pixels.arraytype ;

type totalvalidlines.array-type is array(10 downto 0) of std-logic-vector(10 downto 0);

signal totalvalidlinesarray : totalvalid-lines.array type ;

type find.valid-imgrstatus type is (st-findFirst , st findSecond , st findThird , stfindDone);

signal find.valid imgrstatus : find-valid.imgrstatustype;

signal total-valid-pixels-imgr0 , total-valid-pixels-imgrl , totalvalidpixelsimgr2

stdlogic-vector(10 downto 0);

signal totalvalid-pixels-imgrl-regl , totalvalidpixels-imgrl-reg2 std-logic.vector(10

downto 0);

signal imgr.sampleenl , imgr-sample.en2 , imgr.sampleen3 : stdlogic

signal headerbuf-en : std-logic;

begin

-- vptz.params.i : entity work. vptz.parameters.arranger

-- Port map (

-- Reset => Reset

--- Clock => Clock,

-- OnelmgrWindowStartX => OnelmgrWindowStartX, -- : in stdlogicvector(15 downto 0);

-- OnelmgrWindowStartY => OnelmgrWindowStartY, -- : in std-logicevector(15 downto 0);

-- OnelmgrValidPixels => OnelmgrValidPixels, -- : in std-logic-vector (14 downto 0);

-- OnelmgrValidLines => OnelmgrValidLines, -- : in std-logic-vector(14 downto 0);

-- startnx.all => startxall , -- : out stdlogicvector (131 downto 0);

-- start-yall => start-.yall , -- : out std-logic.vector (131 downto 0);

-- totalvalid-pixels.all => totalvalid-pizelsall , -- : out stdlogicvector(120 downto 0);

-- total-validlines-all => total-valid linesall , -- : out std-logic-vector(120 downto 0)

-- initialize arrays

start-xarray <= (startxall(131 downto 120),

startxall(119 downto 108),

start-.yarray <=

start.x-all (107

start._xall (95

startxall (83

startxall (71

start.xall (59

start-x-all (47

start.x.all (35

start.x.all (23

start.x all (11

(start.y.all (131

start.yall (119

start-y.all (107

start-y_all (95

start.y.all (83

start-y.all (71

start.yall (59

start-yall(47

starty.all (35

starty_-all (23

start-y.all (11

total-valid.pixels.array <=

total-valid-lines.array <=

vid.array <= (vid.all (13

vid-all (11

vid-all (1C

vid-all (95

vidall (83

vid-all (71

vid.all (59

vid-all (47

vid-all (35

vid.all (23

vid.all (11

(total-valid-pixelsall (120

total-valid-pixelsall (109

total-valid-pixels-all (98

total-valid-pixels-all (87

total-valid-pixelsall (76

total valid-pixels.a11 (65

total-valid-pixels.all (54

total.valid-pixels.all (43

total-valid-pixels-all (32

total-valid-pixels-all (21

tot alvalid.pixels.all (10

(total-valid-linesall (120

totalvalid-lines-al (109

total-valid-lines-all (98

total.valid-lines-al (87

total-valid-lines al (76

total-valid-linesall (65

total-valid-lines.al (54

total-valid-lines-all (43

total-valid-lines-al (32

total.valid-lines.al (21

total valid-linessal (10

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

120),

108),

96) ,

84)

72)

60)

48),

36),

24)

12),

0));

-- for simulation guide purposes

process(Reset , Clock)

begin

100

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

96) ,

84),

72),

60),

48),

36),

24),

12),

0));

120),

108),

96),

84),

72),

60),

48),

36),

24),

12),

0));

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

downto

110)

99)

88)

77)

66)

55)

44)

33)

22)

11)

0))

110),

99)

88)

77)

66),

55)

44)

33)

22),

11),

0));

If Reset = '1' then

imgr.sample-enl <= '0';

imgr.sample-en2 <= '0';

imgr.sample-en3 <= '0';

elsif risingedge(Clock) then

imgr-sample-enl <= imgr.sample.en;

imgr.sample.en2 <= imgr.sample-enl;

imgr-sample-en3 <= imgr-sample-en2;

end if;

end process;

{ input signal delays })-----

-- delay an imgr-sample.en cycle to align with

-- input rise/fall signals from imgr.ctrl.vhd.

process(Reset, Clock)

begin

if (Reset = '1') then

fval-master-int <= '0';

Ival-master-int <= '0';

fval-master-reg <= '0';

Ival-master.reg <= '0';

elsif rising.edge(Clock) then

if (imgr-sample.en = '1') then

fval-master-int <= fval-master;

Ival-master-int <= Ival-master;

fval-master-reg <= fval-master-int;

Ival-master-reg <= Ival-master-int;

-- delay for signals to fov-buf. vhd

fval-master-reg2 <= fval-master.reg;

Ival-master-reg2 <= Ival-master-reg;

end if;

Ival-master.reg3 <= Ival-master.reg2;

end if;

end process;

- vid-reg is delayed , thus

-- matching with fval-master.reg and the input rise/fall signals from imgr-ctrl.vhd.

vid-loop: for ii in 0 to 10 generate

vid.delay: process(Reset , Clock)

begin

if (Reset = '1') then

vid.reg(ii) <= (others => '0');

vid-reg-int(ii) <= (others => '0');

elsif rising.edge(Clock) then

if imgr-sample.en = '1' then

vid.reg.int(ii) <= vid.array (ii);

vid.reg(ii) <= vid.regint(ii);

end if;

end if;

end process;

end generate;

(END input signal delays)

101

-- keep a frame count for easy calibration identification

process(Clock , Reset)

begin

if Reset = '1' then

frame-count <= (others => '0');

elsif rising.edge(Clock) then

if (fval-fall = '1' and imgr.sample-en = '1') then

frame-count <= frame-count + '1'

end if;

end if;

end process;

-- ===={{Pixel Count and Line Count added by richsinn}}====--

process (Reset, Clock)

begin

if (Reset = '1') then

pixel-count <= (others => '0');

line.count <= (others => '0');

elsif rising.edge(Clock) then

if (imgr-sampleen = '1') then

pixel-count <= next-pixel-count;

line-count <= nextline.count;

end if;

end if;

end process;

-- next state of pizel count and line count is computed with combinational logic

next-pixel-count <= (others => '0') when (lval-master-reg = '0') else

(pixel-count + 1);

next-line-count <= (others => '0') when (fval-master.reg = '0') else

(line-count + 1) when (Ival-fall = '1') else

line-count;

-....={ Begin Rectangles Module Decimation process }=== --

rect-loop: for ii in 0 to 10 generate

rectangles-inst : entity work. rectangles

Port map (

Reset => Reset,

Clock => Clock,

imgr-sample.en => imgr-sample.en,

vid.reg => vid-reg(ii),

Ival => Ival-master-reg ,

fval => fval-master.reg,

Ival-fall => Ival-fall ,

pixel-count => pixel.count,

line.count => line.count ,

-- user defined params for size and location of region of interest (ROI)

start-x => start.x.array (ii),

start.y => start.y.array(ii),

total-valid-pixels => total.valid-pixels.array(ii),

total-valid-lines => total-valid-lines.array(ii),

-- user defined params for digital zoom (skip mode)

columnskipmode => column-skip.mode,

row.skipmode => row.skip.mode ,

frame-active.start => frame-active-start (ii),

102

firstline => firstline (ii),

line.activeout => lineactive (ii) ,

pixelvalid => pixelvalidrectarray (ii)

pixeldata => pixel-datarectarray (ii)

end generate;

- Use firstline signal from rectangles.vhd to

-- determine the start of frame header information when writing to

-- the BRAM buffer in fov-buf.vhd.

- If any of the firstline signals from rectangles is active it is

-- to activate the signal to fovbuf. vhd because the three imagers

-- that are spanned across will always be on the same line

process (Clock , Reset)

begin

if Reset = '1' then

first-line_2_buf <= '0';

elsif risingedge(Clock) then

if first-line(0) = '1' then

firstline.2-buf <= '1';

elsif firstline (1) = '1' then

first-line_2_buf <= '1';

elsif firstline (2) = '1' then

firstline.2.buf <= '1';

elsif firstline (3) = '1' then

firstline.2-buf <= '1';

elsif first-line (4) = '1' then

first_line_2-buf <= '1';

elsif firstline (5) = '1' then

firstline.2-buf <= '1';

elsif first-line (6) = '1' then

first-line_.2 buf <= '1';

elsif firstline (7) = '1' then

firstline_.2 buf <= '1';

elsif firstline (8) = '1' then

first_line_2_buf <= '1';

elsif first-line (9) = '1' then

first-line_2_buf <= '1';

elsif firstline (10) = '1' then

firstline_2-buf <= '1';

else

firstline_2-buf <= '0';

end if;

end if;

end process;

-- Use frame-activestart signal from rectangles. vhd

-- to pulse the firstlineactive-start signal. The first-line.active-start pulse is used to

-- in readfovbuf. vhd to determine that the metadata header info

-- must be sent with every new frame.

firstlineactive-start <= firstlineactive-start-int ;

process (Clock , Reset)

begin

if Reset = '1' then

firstline-activestartint <= '0';

elsif risingedge(Clock) then

if frameactivestart (0) = '1' then

first.lineactivestartint <= '1';

elsif frameactive-start(1) = '1' then

first_lineactive-start-int <= '1';

103

elsif frame.active.start (2) =

first-line-activestart-int

elsif frame.active.start (3) =

first-line.active-start-int

elsif frame.active.start (4) =

first-line-active-start-int

elsif frame.active-start (5) =

first line-active-st art int

elsif frame.active.start (6) =

first-line-active-start-int

elsif frame.active-start(7) =

first-lineactive-start-int

elsif frame-active-start (8) =

first-line.active-start-int

elsif frame.active-start (9) =

first-line.active-start.int

elsif frame-active-start (10) =

first-line-active-start-int

then

'1then

then

'1then

then

'1';

then

'1then

then

'1 ';

then

'1';

then

'1'

then

'1'

then

'1'"

else

first-line-active-start-int <= '0';

end if ;

end if;

end process;

-- delay signal to use to latch the

-- out to be used in ImHeaderRdAddr

process (Clock, Reset)

begin

if Reset = '1' then

first-line-active-start.regl

first-line-active.start-reg2

first-line-active.start.reg3

elsif rising.edge(Clock) then

first-line.active-start-regl

first-line-active.start-reg2

first-line-active-start-reg3

end if;

end process;

mux.selO for

of read-fov.buf.vhd

= '0';

= '0';

= '0';

first-line.active.start.int ;

first-line-active.start.regl ;

firstA ine-act ive-start-reg2

line-start-loop: for ii in 0 to 10 generate

line-start.delay: process(Clock)

begin

if rising-edge(Clock) then

if imgr.sample-en = '1' then

pixel-valid.rect.array.regl (ii) <= pixel-valid.rect.array (ii);

pixel-data.rect.array-regl (ii) <= pixeldata-rect.array (ii);

end if;

line-start.arrayreg(ii) <= line-start-array(ii);

pixel-valid-rect.array.reg2(ii) <= pixel.valid.rect.array.regl(ii);

pixel-data.rect.array-reg2(ii) <= pixel-data.rect-array.regl(ii);

end if;

end process;

end generate;

-- FSM to determine the three active imagers in the quadrant

process(Reset , Clock)

begin

if Reset = '1' then

find-valid-imgr-status <= st-findDone;

104

imgr-sel <= x"F";

imgr.sel-reg <= x"F";

active.pixel-valid <= '0';

active-pixel-valid reg <= '0';

total valid-pixels-imgr0 <= (others =>'O');

total.valid-pixels-imgrl <= (others =>'O');

total-valid.pixelsimgr2 <= (others =>'O');

imgr.span <= '0';

elsif rising-edge(Clock) then

case find.validnimgr-status is

when st-findFirst =>

case mux-sel0 is

when x"O0" => active-pixel-valid <= pixel-valid-rect.array.regl (0);

total.valid-pixels.imgr0 <= total-valid-pixels-array (0);

when x"1" => active-pixel-valid <= pixel-valid-rect.array.regl (1);

total-valid-pixels-imgr0 <= total-valid-pixels.array (1);

when x"2" => active-pixel-valid <= pixel-valid.rect.array.regl (2);

total-valid-pixelsimgr0 <= total-valid.pixels.array (2);

when x"3" => active-pixel-valid <= pixel-valid.rect.arrayregl (3);

total-valid.pixels-imgr0 <= total-valid.pixels.array (3)

when x"4" => active-pixel-valid <= pixel-valid-rect.array.regl (4);

total-valid-pixelsimgr0 <= total-valid-pixels.array (4);

when x"5" => active-pixel-valid <= pixel-valid.rect.arrayregl (5);

total-valid.pixels-imgr0 <= total-valid-pixels.array (5);

when x"6" => active-pixel.valid <= pixel-valid.rect.array.regl (6);

total-valid.pixels-imgr0 <= total.valid-pixels.array (6);

when x"7" => active-pixel-valid <= pixel-valid-rect.array.regl (7) ;

total-valid-pixels-imgr0 <= total valid-pixels.array (7);

when x"8" => active-pixel-valid <= pixel-valid.rect-array-regl (8);

total-valid-pixels-imgrO <= total-valid-pixels.array (8);

when x"9" => active-pixel-valid <= pixel-valid-rect.array.regl (9);

total-valid-pixels-imgrO <= total.valid.pixels.array (9);

when x"A" => active-pixel-valid <= pixel.valid-rect.array.regl (10);

total-valid.pixels-imgr0 <= total-valid-pixels-array (10);

when others => active.pixel-valid <= '0';

total-valid-pixels.imgrO <= (others =>'O');

end case;

imgr-sel <= mux-selO;

imgr.span <= '1';

find.valid.imgr.status <= st-findSecond;

when st-findSecond =>

case mux-sellreg is

when x"O" => active-pixel-valid <= pizel-valid.rect-array (0);

totalvalidpizelsimgrl <= total-valid.pixels.array (0);

when x"l" => active-pixel-valid <= pixel-valid.rect.arrayregl (1);

total.valid-pixelsimgrl <= total-valid-pixels.array (1);

when x"2" => active-pixelvalid <= pixel-valid-rect.arrayregl (2);

105

total.valid.pixels.imgrl <= total valid-pixels-array (2)

when x"3" => active-pixel-valid <= pixel-valid.rect.array-regl (3);

total-valid-pixels-imgrl <= total_valid-pixels-array (3);

when x"4" => active-pixel-valid <= pixel-validrect.array.regl (4);

total-valid.pixelsimgrl <= total-valid-pixels.array (4);

when x"5" => active-pixelvalid <= pixel-valid-rect.array-regl (5);

total.valid-pixelsimgrl <= total-valid-pixels-array (5);

when x"6" => active-pixel-valid <= pixel valid-rect.array-regl (6);

total-valid-pixelsimgrl <= total-valid-pixels-array (6);

when x"7" => active-pixel-valid <= pixel-valid-rect.array-regl (7);

total-valid-pixelsimgrl <= total valid.pixels.array (7);

when x"8" => active-pixel-valid <= pixel-valid-rect-array-regl (8);

total-valid-pixels-imgrl <= totalvalid-pixelsarray (8);

when x"9" => active.pixel-valid <= pixel-valid.rect-array.regl (9) ;

total.valid-pixelsimgrl <= total valid-pixels.array (9);

when x"A" => active.pixel-valid <= pixel-valid-rect.array_regl (10);

total-valid-pixels.imgrl <= total-valid.pixels.array (10);

when others => active-pixel.valid <= '0';

total-valid-pixels-imgrl <= (others =>'O');

end case;

imgr.sel <= mux.sell-reg;

imgr.span <= '1';

find.valid-imgr.status <= st-findThird;

when st-findThird =>

case mux.sel2-reg2 is

when x"O" => active-pixel-valid <= pixel-valid-rect.array (0);

totalvalidpixelsim gr2 <= total-valid-pizels-array (0);

when x"1" => active-pixel-valid <= pixel-valid-rect-array (1);

totalvalidpizelsimgr2 <= total.valid-pixels.array (1);

when x"2" => active.pixel.valid <= pixel-valid.rect-array.regl (2);

total valid-pixels-imgr2 <= total valid-pixels.array (2);

when x"3" => active.pixel-valid <= pixel-valid-rect.array.regl (3);

total valid-pixelsimgr2 <= total-valid-pixels.array(3);

when x"4" => active-pixel-valid <= pixel-valid.rect.array.regl (4);

total-valid.pixels-imgr2 <= total-valid-pixels.array (4);

when x"5" => active-pixel-valid <= pixel-valid-rect.array-regl (5);

total.valid-pixels.imgr2 <= total.valid-pixels.array (5);

when x"6" => active-pixel-valid <= pixel-valid-rect.array-regl (6);

total.valid.pixels.imgr2 <= total valid-pixels.array (6);

when x"7" => active-pixel-valid <= pixel valid-rect.arrayregl (7) ;

total.valid.pixels-imgr2 <= total-valid-pixels.array (7);

when x"8" => active-pixel-valid <= pixel-valid.rect.arrayregl (8);

total.valid-pixels.imgr2 <= total valid-pixels.array (8);

when x"9" => active-pixel-valid <= pixel valid-rect.array-regl (9) ;

total.valid-pixels-imgr2 <= total-valid-pixels.array (9);

when x"A" => active-pixel-valid <= pixel.valid.rect.array-regl (10);

total-valid-pixelsimgr2 <= total-valid-pixels-array (10);

when others => active-pixel.valid <= '0 ';

totalvalid-pixelsimgr2 <= (others =>'O');

end case;

imgr.sel <= mux.sel2-reg2;

imgr.span <= '1 ';

find-validimgrstatus <= st-findDone;

106

when st-findDone =>

if imgr.sample.en = '1' and Ival-master.reg3 = '1' then

findvalid_imgrstatus <= st-findFirst;

end if;

imgr-sel <= x"F";

imgr_span <= '0';

active-pixel-valid <= '0';

end case;

imgrselreg <= imgr.sel;

imgr.span.reg <= imgr-span;

active-pixelvalidreg <= active-pixel-valid;

end if;

end process;

process(Clock)

begin

if rising.edge(Clock) then

if imgr-sample.en = '1' then

totalvalid-pixels-imgrl-regl <= totalvalid-pixels.imgrl;

total-validpixels-imgrlreg2 <= totalvalidpixelsimgr.reg ;

end if;

end if;

end process;

- NOTE in the latency delays: activepixeldata , activepizxelvalidreg ,

-- imgrselreg are aligned.

process(Clock)

begin

if risingedge(Clock) then

case imgr.sel is

active-pixel-data

active-pixel-data

active-pixeldata

active-pixel-data

active-pixel-data

active-pixel-data

active-pixeLdata

active-pixeldata

active-pixel-data

activepixeLdata

active pixeldata

<= pixel_datarect arrayreg2 (0)

<= pixeldatarect array_reg2 (1)

<= pixel data-rect-arrayreg2 (2)

<= pixeldatarectarray_reg2 (3)

<= pixeldatarect arrayreg2 (4)

<= pixeldatarectarray.reg2 (5)

<= pixeldata.rect arrayreg2 (6)

<= pixeldata rectarrayreg2 (7)

<= pixel_datarect arrayreg2 (8)

<= pixeldata-rect array_reg2 (9)

<= pixeldata.rect array_reg2 (10);

when others -> active-pixeldata <= (others => '0');

end case;

end if;

end process;

process (Reset, Clock)

begin

if (Reset = '1') then

Ivalriseint <= '0';

Ivalrisereg._2buf <= '0';

Ival-fall-int <= '0';

Ivalfallreg._2buf <= '0 ';

elsif risingedge(Clock) then

if imgr-sample-en = '1' then

lvalrise- int <= lval-rise;

Ival-rise-reg_2buf <= lvalriseint;

107

when

when

when

when

when

when

when

when

when

when

when

x" 0"

x" 1"

x" 2"

x"3"

x" 4"

x" 5"

x" 6"

x" 7"

x" 8"

x" 9"

x" A"

Ival-fall-int <= Ivalfall;

Ival-fall-reg._2 buf <= Ival.fall-int;

end if;

end if;

end process;

-- determine the values for muxzselO,1,2

process (Clock , Reset)

begin

if Reset = '1 ' then

mux.selO <= x"F";

elsif rising.edge(Clock) then

if line.active(0) = '1' then

mux-sel0 <= x"O";

elsif line.active(1) = '1' then

mux.sel0 <= x"1";

elsif line.active (2) = '1' then

mux-selO <= x"2";

elsif line-active (3) = '1' then

mux.selO <= x"3";

elsif line.active (4) = '1' then

mux.sel0 <= x"4";

elsif line.active(5) = '1' then

muxsel0 <= x"5";

elsif line.active (6) = '1' then

mux.selO <= x"6";

elsif line-active(7) = '1' then

mux.sel0 <= x"7";

elsif line.active (8) = '1' then

mux.sel0 <= x"8";

elsif line.active(9) = '1' then

mux.sel0 <= x"9";

elsif line-active(10) = '1' then

mux-selO <= x"A"

else

mux.sel0 <= x"F";

end if;

mux-sel0Oreg <= mux.sel0;

end if;

end process;

-- latch muzxsel0 value only on new frames. To be

-- sent to read.fov-buf.vhd so that it can be used to

-- determine ImHeaderRdAddr.

process (Clock , Reset)

begin

if Reset = '1' then

first.imgr.sel <= (others => '0');

elsif rising.edge (Clock) then

if first-line-active-start.reg3 = '1' then

first-imgr.sel <= mux.sel0;

end if;

end if;

end process;

process(Clock , Reset)

begin

if Reset = '1' then

108

mux.sell <= x"F";

muxsellreg <= x"F";

elsif risingedge(Clock) then

if lineactive (0) = '1' then

muxsel2 <= x"O0"'

if line-active(l1) = '1' and mux.sel0 /= x"l" then

mux-sell <= x"1";

elsif line-active(2) = '1' and muxsel0 /= x"2" then

muxsell <= x"2";

elsif line-active (3) = '1' and muxsel0 /= x"3" then

muxsell <= x"3"

elsif line-active (4) = '1' and muxsel0 /= x"4" then

muxsell <= x"4";

elsif line-active (5) = '1' and muxsel0 /= x"5" then

mux.sell <= x"5";

elsif line.active (6) = '1' and muxsel0 /= x"6" then

muxsell <= x"6";

elsif line-active (7) = '1' and mux-sel0 /= x"7" then

mux.sell <= x"7";

elsif line-active (8) = '1' and mux-sel0 /= x"8" then

muxsell <= x"8";

elsif line.active (9) = '1' and mux-sel0 /= x"9" then

muxsell <= x"9";

elsif lineactive(10) = '1' and mux_sel0 /= x"A" then

mux_sell <= x"A";

else

mux-sell <= x"F";

end if;

muxsell-reg <= mux-sell;

end if;

end process;

process (Clock, Reset)

begin

if Reset = '1' then

mux-sel2 <= x"F";

mux-sel2.regl <= x"F"

muxsel2_reg2 <= x"F";

elsif risingedge(Clock) then

if line.active (0) = '1' then

muzxsel2 <= x"O";

if lineactive (1) = '1 ' then

muxzsel2 <= z"1";

if lineactive(2) = '1' and muxsell /= x"2" and mux_selO /=

muxsel2 <= x"2";

elsif line_active (3) = '1' and muxsell /= x"3" and muxselO

mux-sel2 <= x"3";

elsif line-active (4) = '1' and mux-sell /= x"4" and mux-selO

muxsel2 <= x"4";

elsif line-active (5) = '1' and muxsell /= x"5" and muxselO

muxsel2 <= x"5";

elsif lineactive(6) = '1' and mux.sell /= x"6" and mux.selO

muxsel2 <= x"6";

elsif line-active (7) = '1' and muxsell /= x"7" and muxselO

muxsel2 <= x"7";

elsif lineactive(8) = '1' and mux-sell /= x"8" and muxselO

muxsel2 <= x"8";

elsif lineactive (9) = '1' and muxsell /= x"9" and mux-selO

mux-sel2 <= x"9";

109

x"2" then

/= x" 3" then

/= x"4" then

/= x" 5" then

/= x" 6" then

/= x"7" then

/= x"8" then

/= x" 9" then

elsif line.active(10) = '1' and mux.sell /= x"A" and mux.sel0 /= x"A" then

mux.sel2 <= x"A";

else

mux.sel2 <= x"F";

end if;

mux.sel2-regl <= mux-sel2;

muxsel2_reg2 <= mux-sel2.regl;

end if;

end process;

process(Clock)

begin

if rising.edge(Clock) then

if (line.count = conv-std-logic.vector(0, line-count 'LENGTH)) then

buffers-empty <= '1';

else

buffers.empty <= '0';

end if;

end if;

end process;

fov.bufi : entity work. fovbuf

generic map(

QUAD-ID => QUADJD,

CAMERA-ID => CAMERA-ID,

USER-ID => USERID

Port rnap(

Reset => Reset,

Clock => Clock,

imgr.sample-en => imgr.sample.en,

first-line => first-line.2.buf,

Ival => Ival-master-reg2 ,

Ivalrise => Ival-rise-reg_.2buf,

Ival.fall => Ival-fall-reg_.2buf,

total-valid.pixels-imgr0 => total-validpixels-imgr0 ,

total-valid-pixelsimgrl => total-valid-pixels-imgrl ,

total-valid-pixels-imgr2 => total-valid-pixels-imgr2 ,

imgr-ID => imgr.sel.reg,

imgr.span => imgr.span ,

active-pixel-valid => active.pixel-valid-reg ,

active-pixel-data => active-pixel-data,

ReadEn => ReadEn,

wr-done.pulse-out => wr-done-pulse,

rd-done => rd.done,

ReadData => ReadData

end Behavioral;

110

A.2 rectangles.vhd

The following VHDL code is the implementation of Rectangles module described in

Section 4.3.1.
-- Rectangles module.

-- This is instantiated in the foveationtop .vhd.

-- Each Rectangles module corresponds to one imager, thus there are eleven

-- Rectangles instantiation in one quadrant.

library IEEE;

use IEEE. STD_LOGIC 1164.ALL;

use IEEE. STDLOGICARITH .ALL;

use IEEE. STD-LOGICUNSIGNED. ALL;

-- custom package with some helper functions

use work. sweet-package. all ;

--- Uncomment the following library declaration if instantiating

any Xilinx primitives in this code.

-- library UNISIM;

-- use UNISIM. VComponents. all;

entity rectangles

Port (

Reset

Clock

imgrsample_en

vidreg

Ival

fval

Ival_fall

pixelcount

linecount

std-logic; -- async reset

stdlogic; -- system clock

std-logic;

: in stdlogic.vector (11 downto 0);

std-logic;

std-logic;

std-logic;

std-logicvector (11 downto 0)

std-logicvector (11 downto 0)

-- user defined params for size and location of region

start.x : in std-logic-vector (11 downto 0);

start.y : in std.logicvector (11 downto 0);

total-valid-pixels : in stdlogic.vector(10 downto 0);

totalvalid-lines : in std-logic.vector (10 downto 0)

-- user defined params for digital zoom (skip mode)

columnskipmode : in stdlogic.vector (7 downto 0);

row.skip.mode : in std-logic.vector (7 downto 0);

frame-active.start

firstline

lineactiveout

pixel-valid : out std-logic;

pixel-data : out std-logicvector (11 downto 0)

end rectangles;

architecture Behavioral of rectangles is

signal totalvalid-pixelslatched , totalvalid-lines-latched : stdlogic.vector(10 downto 0);

111

of interest (ROI)

: out std-logic;

: out stdlogic;

: out stdlogic;

signal valid-pixel-counter , valid-line.counter : std-logic.vector (10 downto 0);

signal max-row.skipcounter-int , max.columnskip-counterint : std-logic.vector (8 downto 0);

signal max-row.skipcounter , max-column.skip-counter : std-logic.vector (8 downto 0);

signal row-skip.counter , column-skip-counter : std-logic.vector (8 downto 0);

signal start.x.valid , starty_.valid : std-logic.vector (11 downto 0);

signal column.skipmode.valid , row-skip.mode.valid : std-logic.vector (7 downto 0);

signal skip.pixel , skip-row.pixel , skip.column-pixel : std-logic;

type columnpixel-status-type is (COLINIT, COLVALIDPIXEL, COLSKIP-PIXEL);

signal column.pixel-status : column.pixel.status-type;

type row-pixel-status-type is (ROW-INIT, ROW.VALIDPIXEL, ROWSKIPPIXEL);

signal row-pixel-status : row.pixel-status-type;

signal first-line.int , first-line.reg : std-logic;

signal line-active-int : std-logic;

signal pixelvalid-int : std-logic;

begin

{ Windowing Logic)

only update the parameters in between frames or in between lines.

process(Clock)

begin

if rising.edge(Clock) then

if fval = '0' then

start.x.valid <= start.x;

start-y-valid <= start-y;

column.skipmode-valid <= column.skip.mode

row.skip.mode-valid <= row.skip.mode ;

end if;

if Ival = '0' then

total-valid-pixels-latched <= total-valid.pixels;

total.valid-lines-latched <= total-valid-lines;

end if;

end if;

end process;

Determine the maximum count needed to determine the skip mode =-

-- (This is the total number of pixels in an interval -> 2 valid pixels + skipped-pixels).

max-row.skip-counter-int <= (others => '0') when (row.skipmode = conv.std-logic.vector(0,

row-skipmode ' length)) else

((row.skipmodevalid(7 downto 0) & '0') - 1);

max.column-skipcounter-int <= (others => '0') when (column.skip.mode = conv.std-logic.vector

(0, column-skipmode 'length)) else

((column.skipmode.valid(7 downto 0) & '0') - 1);

-- only update the new skip counter in between frames.

process(Reset , Clock)

begin

112

if (Reset = '1') then

maxrowskipcounter <= (others => '0');

maxcolumn-skipcounter <= (others => '0');

elsif rising.edge(Clock) then

if fval = '0' then

maxrowskipcounter <= maxrow.skipcounter-int;

max.column-skipcounter <= maxcolumnskip-counterint;

end if;

end if;

end process;

-- == Determine Pixel skipping

-- Signal 'skip.pixel ' is determined by the two state machines below (row and col mode)

skippixel <= skip.rowpixel or skip.columnpixel;

-- State machine to determine col skip mode

process(Reset, Clock)

begin

if (Reset = '1') then

skipcolumn.pixel <= '1';

column-skip.counter <= (others => '0');

valid.pixel-counter <= (others => '0');

column.pixel-status <= COL-INIT;

elsif rising.edge(Clock) then

case columnpixelstatus is

when COL_INIT =>

if (Ival = '0' or fval = '0' or totalvalid-pixels-latched = convstd-logicvector

(0, totalvalid-pixelslatched 'LENGTH)) then

skipcolumnpixel <= '1 ';

column-pixelstatus <= COL-INIT;

elsif (pixelcount = startx_.valid) then

skip.column-pixel <= '0';

columnpixelstatus <= COLVALIDPIXEL;

else

skip.columnpixel <= '1';

columnpixelstatus <= COLINIT;

end if;

columnskipcounter <= (others => '0');

when COL-VALIDPIXEL =>

if(lval = '0' or fval = '0' or total-valid-pixelslatched = conv.std-logic.vector

(0, totalvalid-pixels-latched 'LENGTH)) then

skipcolumnpixel <= '1 ';

column-pixel-status <= COLINIT;

elsif validpixelcounter = totalvalid-pixelslatched then

valid-pixelcounter <= (others -> '0');

skipcolumnpixel <= '1 ';

columnpixelstatus <= COL-INIT;

elsif (columnskip.mode.valid = convstd-logic.vector (0, columnskipmode-valid'

LENGTH) and imgr_sampleen = '1') then

skipcolumn-pixel <= '0';

valid pixelcounter <= valid.pixelcounter + 1;

column.pixelstatus <= COL.VALIDPIXEL;

-- before skipping , always output first two pixels to maintain bayer pattern

113

elsif(column-skip.counter = x"01" and imgr.sample.en = '1') then

column-skipcounter <= column-skip-counter + 1;

valid.pixel-counter <= valid.pixelcounter + 1;

skip.column-pixel <= '1 ';

column-pixel-status <= COL-SKIP-PIXEL;

elsif imgr-sample-en = '1' then

column-skipcounter <= column.skip.counter + 1;

valid.pixel-counter <= valid-pixel-counter + 1;

skip.column-pixel <= '0';

column.pixel-status <= COL.VALIDPIXEL;

end if;

when COLSKIP-PIXEL =>

if(lval = '0' or fval = '0' or totalvalid-pixels-latched = conv.std-logic-vector

(0, total-valid.pixels-latched 'LENGTH)) then

skip.column.pixel <= '1';

column-pixel-status <= COLINIT;

elsif valid.pixel-counter = total-valid-pixels-latched then

skipcolumn-pixel <= '1';

valid.pixel-counter <= (others => '0');

column-pixel-status <= COL-INIT;

elsif (column.skip.counter = max.column-skip.counter and imgr.sample-en = '1')

then

skip.column-pixel <= '0';

column-skip.counter <= (others => '0');

column-pixel-status <= COL-VALID-PIXEL;

elsif imgr-sample-en = '1' then

column-skip.counter <= column-skip.counter + 1;

column-pixel-status <= COLSKIP-PIXEL;

end if;

end case;

end if;

end process;

-- State machine to determine row skip mode

process(Reset , Clock)

begin

if (Reset = '1') then

skip.row.pixel <= '1';

row.skip.counter <= (others => '0');

valid-line.counter <= (others => '0');

row.pixel-status <= ROW-INIT;

line.active.int <= '0';

frame.active-start <= '0';

elsif rising.edge(Clock) then

case row.pixel-status is

when ROWINIT =>

if (fval = '0' or total validJlinesJlatched = conv.std-logic.vector(0,

total-valid-lineslatched 'LENGTH)) then

skip.row.pixel <= '1';

row.pixel-status <= ROWINIT;

elsif (lval = '1' and line.count = start-y.valid) then

skip-row.pixel <= '0';

rowpixel-status <= ROWVALIDPIXEL;

else

skip-row.pixel <= '1';

114

row.pixelstatus <= ROWINIT;

end if;

rowskipcounter <= (others => '0');

line.active-int <= '0';

when ROW-VALID-PIXEL ->

if (fval = '0' or total-valid-lines-latched = conv_stdlogic.vector(0,

total-valid-lines-latched 'LENGTH)) then

skiprowpixel <= '1';

row.pixelstatus <= ROWINIT;

elsif valid-line-counter = totalvalidlineslatched then

validlinecounter <= (others => '0');

skiprow-pixel <= '1';

row.pixel-status <= ROWJNIT;

elsif (rowskip.mode.valid = conv.std-logic.vector (0, row-skipmodevalid 'LENGTH)

and Ivalfall = '1' and imgr_sampleen = '1') then

skip.row-pixel <= '0';

valid-line-counter <= valid-line-counter + 1;

rowpixelstatus <= ROW-VALIDJPIXEL;

-- before skipping , always output first two pixels to maintain bayer pattern

elsif (row.skip.counter = x"01" and Ivalfall = '1' and imgrsample-en = '1') then

skip.row-pixel <= '1';

row_skipcounter <= row.skipcounter + 1;

valid-line-counter <= validline.counter + 1;

rowpixelstatus <= ROWSKIP.PIXEL;

elsif (Ivalfall = '1' and imgrsample-en = '1') then

skip.row-pixel <= '0';

row.skip.counter <= row.skipcounter + 1;

validJline.counter <= validJline.counter + 1;

row.pixel-status <= ROW-VALID-PIXEL;

end if;

-- this signal 's assertion is used to indicate that there are valid pixels on this

line

if (Ival = '1') then

line-active-int <= '1';

else

lineactive_int <= '0';

end if;

when ROWSKIP-PIXEL =>

if (fval = '0' or totalvalid-lines-latched = conv_stdlogic-vector(0,

total-valid-lines-latched 'LENGTH)) then

skip.row.pixel <= '1';

rowpixel_status <= ROWJNIT;

elsif valid-line-counter = totalvalid lines-latched then

skiprowpixel <= '1';

valid-linecounter <= (others => '0');

rowpixel-status <= ROWJNIT;

elsif (rowskipcounter = max.rowskipcounter and Ivalfall = '1' and

imgr.sampleen = '1 ') then

skiprowpixel <= '0';

row.skip.counter <= (others => '0');

115

row pixel-status <= ROW.VALIDPIXEL;

elsif (Ivalfall = '1' and imgr.sample.en = '1') then

skip.row-pixel <= '1';

row.skip.counter <= row.skipcounter + 1;

row.pixel-status <= ROW.SKIPPIXEL;

end if;

line-active-int <= '0';

end case;

end if;

end process;

-- == {Assign outputs)

first-line-int <= '0' when ((lval = '0') or (total-valid-lines-latched =

conv-std-logic.vector(0,total-validJlines.latched 'LENGTH))) else

'1' when (line-count = starty_.valid)

else '0 ';

first-line <= first-line-int;

process (Clock , Reset)

begin

if Reset = '1' then

first-line.reg <= '0';

elsif rising.edge(Clock) then

first-line.reg <= first-line.int;

frame.active-start <= first-line-int and not first-line.reg;

end if;

end process;

process (Clock , Reset)

begin

if (Reset = '1') then

pixel-valid <= '0';

pixel-data <= (others => '0');

line-active.out <= '0';

elsif rising.edge(Clock) then

if imgr.sample-en = '1' then

line.active.out <= line.active-int;

if fval = '0' or Ival = '0' then

pixel-valid <= '0';

pixel.data <= (others => '0');

else

pixelvalid <= not skip.pixel;

pixel-data <= vid-reg;

end if;

end if;

end if;

end process;

end Behavioral;

116

A.3 fov_buf.vhd

The following VHDL code is the implementation of the Buffer module described in

Section 4.3.3.
- This is the Buffer module with the 2 BRAM instantiations

It is instantiated in the foveation-top .vhd top module.

library IEEE;

use IEEE. STD_LOGIC-1164 .ALL;

use IEEE. STD_LOGIC-ARITH .ALL;

use IEEE .STDLOGICUNSIGNED. ALL;

Uncomment the following library declaration if instantiating

any Xilinx primitives in this code.

-- library UNISIM;

-- use UNISIM. VComponents. all;

-- custom package with some helper functions

use work.sweetpackage.all;

entity fovbuf is

generic(

QUAD-ID : in std-logicvector (1 downto 0) := "00"

CAMERA-ID in stdlogic.vector (1 downto 0) := "00";

USERID in std-logic.vector(1 downto 0) := "00"

Port (

Reset

Clock

imgrsample-en

first-line

Ival

Ival.rise

Ivalfall

: in stdlogic

: in std-logic

: in stdlogic

: in std-logic

: in std-logic;

: in std-logic

in std-logic

total.validpixels : in

imgr

total-valid-pixelsimgr0

total-validpixelsimgrl

tot alvalidpixels-imgr2

imgrID

imgr-span

active-pixel-valid

active-pixel-data

ReadEn

wrdone.pulseout

rd.done

ReadData

: in

: in

: in

: in

in

out

out

out

async reset

system clock

stdlogicvector(9 downto 0); -- # of valid pixels on one line of one

in std-logic.vector(10 downto 0);

in std-logic.vector(10 downto 0);

in stdlogicvector(10 downto 0);

stdlogic.vector (3 downto 0);

std-logic;

std-logic;

std-logic.vector (11 downto 0);

stdlogic ;

stdlogic;

stdlogic;

stdlogicvector (15 downto 0)

end fovbuf;

architecture Behavioral of fov.buf is

component burst-pixel-buf

port (

clka : IN stdlogic;

117

dina : IN std-logic.VECTOR(15 downto 0);

addra : IN stdlogic.VECTOR(10 downto 0);

wea : IN std-logicVECTOR(0 downto 0);

clkb : IN std-logic;

addrb : IN std-logic-VECTOR(10 downto 0);

doutb : OUT std-logicVECTOR(15 downto 0)

END component;

constant START.OFFRAME : std-logic-vector(3 downto 0) := x"A"

constant START-OFLINE : std-logic.vector(3 downto 0) := x"8"

constant END.OF.LINE : std-logic.vector(3 downto 0) := x"4"

signal Ival-regl , Ival-reg2 : std-logic;

signal Ival-rise-reg : std-logic;

signal lval-fall-reg : std-logic;

signal valid-pixel-count.imgr0 , valid-pixel-count-imgrl , valid-pixel-countimgr2

std-logic-vector(10 downto 0);

signal valid-pixel-count-imgr0.reg , valid-pixel-count-imgrl-reg , valid.pixel-count-imgr2.reg

std.logic.vector (10 downto 0);

signal latch.en : std-logic;

signal overall-valid.pixels-latched : std-logic.vector(10 downto 0);

signal overall-valid.pixel-count : std-logic.vector(10 downto 0);

signal active-pixel-data-regl , active-pixel datareg2 , active-pixel-data.reg3 ,

active-pixel-data-reg4 , active-pixel-data-reg5 : std-logic-vector(ll downto 0);

signal active-pixel-valid-regl , active-pixel-valid-reg2 , active-pixel-valid.reg3 ,

active-pixel-valid-reg4 , active-pixel-valid.reg5 : std-logic;

signal imgrID.regl , imgrID-reg2 , imgrIDreg3 , imgr-ID-reg4, imgrIDreg5: std-logic-vector (3

downto 0) ;

signal imgr.span.regl , imgr.span-reg2 : std.logic

signal total valid-pixels-imgr0lJatched , total-valid.pixels-imgrllatched ,

total-valid-pixels-imgr2_latched : std-logic.vector(10 downto 0);

signal header-en.buf , header.en-buf-regl , header.en.buf-reg2 : std-logic;

signal frame-start-flag , frame-start-flag-regl , frame-start-flag.reg2 , frame-start-flag-reg3

std-logic;

signal wr-buf-sel : std-logic.vector(0 downto 0);

signal rd-buf-sel : std-logic.vector(0 downto 0);

signal data.prefix : std-logic.vector (3 downto 0);

signal imgractive, imgr.active-regl , imgr.active.reg2 : std-logicvector (2 downto 0);

signal addr-l-offset , addr-2.offset : std-logic-vector(10 downto 0);

signal wr-addr, rd-addr : std-logic.vector (10 downto 0);

signal write-en0 , write.en-l : std-logic.vector (0 downto 0);

signal write-en.tmp : std-logic.vector (0 downto 0);

signal data-in.0, data-in-1 : std-logic-vector(15 downto 0);

signal data-out.0, data.out-1 : std-logic.vector (15 downto 0);

type wr.addr.ctrltype is (st-wrldle , st-wrHeaderPacket , st-wrImgr , stwrImgrl , st.wrImgr2);

signal wr-addr-ctrl : wr.addr.ctrl-type;

118

signal wr-done : stdlogic;

signal end_oflineflag , end_of_lineflagregl , endoflineflag.reg2 : stdlogic;

begin

-- signal delays

-- to do later: too many system clock delays->when appropriate should instead make use of

imgr-sampleen delays

process (Clock, Reset)

begin

if Reset = '1' then

Ival-regl <= '0';

Ivalfallreg <= '0';

Ivalrise.reg <= '0';

active-pixel-valid-regl <=

active-pixel-valid.reg2 <=

active-pixel-validreg3 <=

active-pixel-valid.reg4 <= '

active-pixel-valid-reg5 <=

activepixeldataregl <= (o

activepixeldatareg2 <= (o

active-pixeLdata-reg3 <= (o

active-pixeldata.reg4 <= (o

activepixeldata.reg5 <= (o

imgrID.regl <= (others => '

imgrIDreg2 <= (others => '

imgrID-reg3 <= (others => '

imgrID.reg4 <= (others => '

imgrID_reg5 <= (others => '

imgr-span-regl <= '0';

imgr-span.reg2 <= '0';

valid-pixel-countimgr0_reg

valid-pixelcountimgr 1 reg

validpixelcountimgr2_reg

elsif risingedge(Clock) then

if imgrsampleen = '1' then

Ival-regl <= Ival;

Ival-reg2 <= Ival_regl;

0';

0';

0';

0';

0';

thers

thers

thers

thers

thers

0')

0')

0 ');

0');

0');

'0')

'0');

'0');

'0 ');

'0 ');

(others => '0');

(others => '0');

(others -> '0');

Ival-fall-reg <= Ivalfall;

end if;

Ivalrise.reg <= Ival_rise;

active-pixel-validregl

active-pixelvalidreg2

active-pixelvalidreg3

act ive-pixel-valid_reg4

activepixelvalid-reg5

activepixelvalid ;

active-pixelvalidreg ;

act ive-pixel-valid-reg2

act ive-pixel-valid-reg3

act ivepixel_valid-reg4

active-pixeldataregl <= active-pixel-data;

active-pixeldata_reg2 <= active-pixel-dataregl

active-pixeldata.reg3 <= active-pixel-datareg2;

active.pixel-data-reg4 <= activepixeldata.reg3;

active-pixeldatareg5 <= activepixeldatareg4;

imgrIDregl <= imgrID;

imgrID-reg2 <= imgrIDregl

imgrID.reg3 <= imgrID.reg2;

119

imgrIDreg4 <= imgrIDreg3;

imgr.ID.reg5 <= imgrIDreg4;

imgr.span.regl <= imgr.span;

imgr-span-reg2 <= imgr.span.regl;

valid-pixel-count.imgr0Oreg

valid-pixel-count.imgrl-reg

valid-pixel-countimgr2-reg

<= valid-pixel-count.imgrO;

<= valid.pixel-count.imgrl;

<= valid-pixel-count.imgr2;

-- latch the total-valid.pixels for the entire line. Only updates the new total valid pixels

-- at the beginning of an entire line for the active imagers.

process (Clock , Reset)

begin

if Reset = '1' then

total-valid-pixels-imgr0Olatched <= (others => '0');

total-valid-pixels-imgrllatched <= (others => '0');

total-valid-pixels.imgr2-latched <= (others => '0');

overall-valid-pixels-latched <= (others => '0');

elsif rising-edge(Clock) then

if latch.en = '1' then

total-valid.pixels.imgr0Olatched <= total valid.pixels.imgr0;

total-valid-pixels-imgr-llatched <= total-valid-pixels.imgrl;

total.valid.pixels-imgr2-latched <= total-valid.pixels.imgr2;

overall.valid-pixels-latched <= total-valid-pixels-imgr0 + total.valid-pixels-imgrl +

total.valid-pixels-imgr2;

end if;

end if;

end process;

-- Must use delayed signals for the offset calculation because the

-- input from foveation.top module resets values before valid pixels ends.

-- Notice in addr-2.offset , we have to use total.valid-pixelsimgr0.reg2 ,

-- which is twice as delayed.

addr-l-offset <= total.valid-pixels.imgr0_latched;

addr.2.offset <= total-valid-pixels.imgr0Olatched + total-valid-pixels.imgrllatched;

-- Muz the appropriate write address for the BRAMs

-- imgr.active signal is determined by the wr-addr.ctrl FSM below.

write.en.0(0) <= write-en.tmp(0) when wr-buf.sel = "0" else '0';

write.en.1 (0) <= write-en.tmp(0) when wr-buf.sel = "1" else '0';

process(Reset, Clock)

begin

if Reset = '1' then

wr-addr <= (others => '0');

write.en.tmp <= "0";

overall.valid-pixel-count <= (others => '0');

elsif rising.edge(Clock) then

if overall valid-pixelsJiatched = "00000000000" then

overall.valid.pixel.count <= (others => '0');

write.en-tmp <= "0";

elsif overall.valid.pixel.count >= overall.valid-pixelslatched then

overall.valid-pixel.count <= (others => '0');

write.en-tmp <= "0";

else

120

end if;

end process;

case imgr-active_reg2 is

when "000" =>

-- write header information into address space 0 of BRAM.

wraddr <= (others -> '0');

if headerenbuf-reg2 = '1' then

write_entmp <= "1";

else

write.en-tmp <= "0";

end if;

when "001" =>

wraddr <= valid-pixelcountimgrreg ;

if activepixelvalid-reg5 = '1' then

write-entmp <= "1";

overallvalid-pixelcount <= overall-valid-pixelcount + 1;

else

write.en-tmp <= "0";

end if ;

when "010" =>

wr_addr <= addrloffset + validpixelcountimgrlreg;

if activepixelvalid-reg5 = '1' then

writeentmp <= "1";

overall.valid-pixelcount <= overallvalid-pixel-count + 1;

else

write.en-tmp <= "0";

end if;

when "100" =>

wr-addr <= addr_2_offset + valid-pixelcount.imgr2_reg;

if activepixelvalidreg5 = '1' then

write-entmp <= "1";

overallvalidpixelcount <= overall-validpixelcount + 1;

else

write-entmp <= "0";

end if;

when others =>

wr.addr <= (others => '0') ;

writeen-tmp <= "0";

end case;

end if;

end if;

end process;

process (Clock , Reset)

begin

if (Reset = '1') then

endof-line-flag <= '0';

elsif risingedge(Clock) then

if (wraddr = overallvalidpixels_latched - 1) then

endoflineflag <= '1';

else

endoflineflag <= '0';

end if;

121

end.of-line-flag-regl <= end.of-line.flag;

end.of-line-flag-reg2 <= end-of-line-flag.regl;

end if;

end process;

process (Clock , Reset)

begin

if Reset = '1' then

wr-done <= '0 ';

elsif rising.edge(Clock) then

If overall-valid-pixels-latched = "00000000000" then

wr-done <= '0';

elsif overallvalid-pixel-count >= overall-valid-pixels-latched then

wr-done <= '1';

else

wr-done <= '0';

end if;

end if;

end process;

wr-done.pulse-out <= wr.done;

-- write.buf.sel is a std-logic.vector(O downto 0), hence the

-- double quotes (") around the single digit.

-- To be used for "ping-ponging" between the BRAMs line by line.

process(Reset , Clock)

begin

if Reset = '1' then

wr-buf-sel <= "0";

elsif rising.edge(Clock) then

if wr-done = '1 ' then

wr-buf-sel <= wr-buf-sel + 1;

end if;

end if;

end process;

-- Assign the data that goes into the BRAM

data.prefix <= (others => '0');

process(Reset , Clock)

begin

if Reset = '1' then

datajin.0 <= (others => '0');

data-inA1 <= (others => '0');

elsif rising.edge(Clock) then

If wr-buf-sel = "0" then

-- if bit15 (MSB) is high, then it's a control word

if frame-start-flag-reg3 = '1' then

data-in-0 <= START-OFFRAME & QUAD-ID & CAMERAID & "00" & x"O" & USERJID

elsif header.en buf-reg2 = '1' then

datain-0 <= START-OFLINE & QUADID & CAMERAID & "00" & x"O" & USERID;

elsif end ofJline-flagreg2 = '1' then

datajin.0 <= END.OFLINE & active.pixel-data-reg5;

else

data.in.0 <= data.prefix & active.pixel -data.reg5;

end if;

elsif wr-buf-sel = "1" then

-- if bit15 (MSB) is high, then it 's a control word

122

if frame.start.flagreg3 = '1' then

data-inA1 <= START-OFFRAME & QUADJD & CAMERAJD & "00" & x"O" & USERID ;

elsif header.en.buf.reg2 = '1' then

data-inA1 <= START-OFLINE & QUADJD & CAMERAJD & "00" & x"O" & USERAID;

elsif end-of-line-flag.reg2 = '1' then

data.in-i <= END.OF.LINE & active-pixel-data.reg5;

else

data-inA1 <= data-prefix &

end If;

active-pixel-dat areg5 ;

end if;

end if;

end process;

process(Reset, Clock)

begin

if Reset = '1' then

header-en.buf-regl <= '0';

header-en.buf.reg2 <= '0';

frame.start.flag-regl <= '0';

frame-start.flag.reg2 <= '0';

frame-start.flag.reg3 <= '0';

imgr-active.regl <= (others => '0');

imgr.active-reg2 <= (others => '0');

elsif rising.edge(Clock) then

header-en.buf-regl <= header-en.buf;

header-enhbufreg2 <= header-en-buf-regl;

frame-start-flag-reg 1

frame-start-flag-reg2

frame-start-flag-reg3

<= frame.start-flag;

<= frame-start-flag.regl;

<= frame-start-flag.reg2;

imgr.active-regl <= imgr-active;

imgr.active-reg2 <= imgr.active.regl;

end if;

end process;

process(Reset, Clock)

begin

if Reset = '1' then

header-en-buf <= '0';

wr.addr.ctrl <= st-wrldle;

valid-pixel.count-imgr0 <=

valid.pixel-count.imgrl <=

valid-pixel-count.imgr2 <=

imgr-active <= "000";

latch.en <= '0';

frame.start-flag <= '0';

elsif rising.edge(Clock) then

case wr.addr.ctrl is

(others => '0');

(others => '0');

(others => '0');

when st-wrldle =>

if Ivalfall-reg = '1' then

if valid-pixel-count-imgrO

valid-pixelcount-imgrO

end if;

if valid-pixel-count-imgrl

valid-pixel-count-imgrl

end if;

= total-valid.pixels.imgr0olatched then

<= (others => '0');

= total-valid-pixels-imgrl-latched then

<= (others => '0');

123

if valid.pixel.count-imgr2 = total-valid.pixelsimgr2-latched then

valid-pixel-count-imgr2 <= (others => '0');

end if;

wr.addr.ctrl <= st.wrldle;

-- use earlier imgr-span.regl value to set Header packet

elsif imgr-span-regl = '1' and Ival-rise-reg = '1' and first-line = '1' then

wr.addr.ctrl <= st-wrHeaderPacket;

frame-start-flag <= '1';

latch-en <= '1';

elsif imgr-span.regl = '1' and Ival-rise-reg = '1' then

wr.addr.ctrl <= st-wrHeaderPacket;

-- set latch.en high one clock cycle early

latchen <= '1';

-- imgr.span.reg2 is one clock cycle earlier than

-- active.pixel-valid.reg2 (which is used in later states to determine valid

pixel count)

elsif imgrspanreg2 = '1' then

wr.addr-ctrl <= st-wrImgr0;

end if;

header-en-buf <= '0';

imgr-active <= "000";

when st-wrHeaderPacket =>

-- Check to make sure line is valid:

-- Use earlier Ival.reg to make sure the header word gets written correctly.

-- (no longer used) Later states use Ivalkreg2 to make sure the last pixels get

written correctly .

if Ival-regl = '0' then

wr.addr.ctrl <= st-wrldle;

elsif imgrspanreg2 = '1' then

wr.addr.ctrl <= stwrImgr0;

-- ground signal one clock cycle early

end if;

frame-start-flag <= '0';

latch.en <= '0';

headeren-buf <= '1';

imgr-active <= "000";

when st-wrImgr0 =>

if valid.pixel-count-imgrO = total.valid-pixels-imgr0-latched then

valid-pixel-count-imgrO <= (others => '0');

elsif active-pixel-valid.reg2 = '1' then

valid-pixel-count-imgrO <= valid-pixel-count-imgrO + 1;

end if;

latch.en <= '0';

imgr.active <= "001";

header-en-buf <= '0';

wr.addr.ctrl <= st.wrImgrl;

when st.wrImgrl =>

if valid-pixel-count-imgrl = total-valid-pixels-imgrl-latched then

124

valid-pixelcount_imgrl <= (others => '0');

elsif activepixelvalid_reg2 = '1' then

valid.pixelcount.imgrl <= valid-pixelcount.imgrl + 1;

end if;

latch-en <= '0';

imgr-active <= "010";

header-en-buf <= '0';

wr-addr.ctrl <= st-wrlmgr2;

when st-wrlmgr2 ->

if validpixelcountimgr2 = totalvalid_pixelsimgr2._atched then

valid-pixelcountimgr2 <= (others => '0');

elsif active.pixelvalid-reg2 = '1' then

valid-pixel-count-imgr2 <= valid.pixelcount.imgr2 + 1;

end if;

latch-en <= '0';

imgr.active <= "100";

header-enbuf <= '0';

wraddrctrl <= st-wrldle;

end case;

end if;

end process;

-- Instantiate the two BRAMs

buf-0 : burst-pixel-buf

port map (

clka -> Clock

dina => data-in.0

addra => wr-addr

wea => writeen_0 ,

clkb => Clock

addrb => rd.addr

doutb -> data.out-0)

bufl : burst-pixel-buf

port map (

clka => Clock

dina => data-in1 ,

addra => wr-addr

wea => write-en ,

clkb => Clock

addrb => rdaddr

doutb => data-out_l);

Read Control Logic ---

process(Reset , Clock)

begin

if Reset = '1' then

rdaddr <= (others => '0');

elsif rising_edge(Clock) then

if ReadEn = '1' then

if rd_addr >= overallvalid pixels-latched then

125

rd.addr <= (others => '0');

else

rd.addr <= rdaddr + 1;

end if;

else

rd.addr <= (others => '0');

end if;

end if;

end process;

process(Reset , Clock)

begin

if Reset = '1' then

rd.done <= '0';

elsif rising.edge(Clock) then

if (rd-addr = (overall-valid-pixelslatched - 1)) then

rd-done <= '1';

else

rd-done <= '0';

end if;

end if;

end process;

rd-buf-sel <= not wr.bufsel;

process(Reset , Clock)

begin

if Reset = '1' then

ReadData <= (others => '0');

elsif rising.edge (Clock) then

if rd-buf-sel = "0" then

ReadData <= data.out.0;

elsif rd-buf-sel = "1" then

ReadData <= data.out.1;

end if;

end if;

end process;

end Behavioral;

A.4 read fovbuf.vhd

The following VHDL code is the implementation of the Read Buffer module described

in Section 4.3.4.
-- This is the Read Buffer module. It controls the read out

-- of the pizel data from the BRAMs in the "Buffer" module.

-- This is instantiated in the overall system top module.

library IEEE;

use IEEE. STDLOGIC-1164 .ALL;

use IEEE . STD-LOGICARITH. ALL;

use IEEE. STDLOGICUNSIGNED .ALL;

---Uncomment the following library declaration if instantiating

126

any Xilinx primitives in this code.

-- library UNISIM;

-- use UNISIM. VComponents. all ;

entity readfovbuf is

generic (

VERSION : stdlogicvector(15 downto 0) := x"DEAD"

Port (

Reset in stdlogic ; -- async reset

Clock : in std-logic; -- system clock

FrHeaderRdAddr

FrHeaderRdData

ImHeaderRdAddr

ImHeaderRdData

CameraId

QuadId

: out

: in

: out

: in

: in

: in

stdlogicvector (5 downto

std-logicvector (11 downto

std-logicvector (5 downto

std-logic.vector (11 downto

std-logic.vector (1 downto

stdlogic.vector (1 downto

imgr-sample-en : in std-logic; -- sample incoming

most likely fallingedge of imager master clock)

-- interface wtih foveationtop . vhd

wr-done-pulse : in std-logic;

rddone : in std-logic;

firstline-active-start : in std-logic ;

firstimgr.sel : in std-logic-vector(3 downto 0);

ReadData : in std.logic.vector (15 downto 0);

ReadEn : out std-logic;

-- to Rocket I/O

riodata : out std-logic.vector(15 downto 0);

riovalid : out std-logic

data and framing signals from imager (

end readfovbuf;

architecture Behavioral of readfovbuf is

component pixelheaderbuf -- 32 words deep, 12 bit words, single clock

port (

clk : IN stdlogic;

din: IN std-logic.VECTOR(15 downto 0);

rd.en: IN std-logic;

rst : IN stdlogic;

wr_en: IN stdlogic;

almost-empty: OUT stdlogic;

dout: OUT std-logic.VECTOR(15 downto 0);

empty: OUT std-logic;

full: OUT stdlogic;

valid: OUT stdlogic)

END component;

constant HEADER-INFO

of metadata header

: std-logic.vector (3 downto 0) := x"D" -- to indicate start

signal rd.done.regl , rd-donereg2 : stdlogic ;

signal ReadData.regl, ReadDatareg2 : stdlogicvector (15 downto 0);

signal rd-donelatch : stdlogic;

127

signal read-fifo : std-logic;

signal write-fifo , write-fifo.tmp , write-fifo-regl , write-fifo.reg2 : std-logic;

signal fifo.empty , fifo-almost-empty , fifo.full , fifo-valid : std-logic;

signal data-fromfifo : std-logic.vector (15 downto 0);

signal end-of-line-flag , end.of-line-flag.regl : std-logic;

signal data-fromBRAM : std-logic.vector (15 downto 0);

type control-state.type is (st.cIdle , st-cFrameStartWait , st.cHeader , st.cRead.Fifo,

st.cRest.ofFifo ,

st.cDelayl , stcDelay2 , st.cDelay3 , st-cNormalLineRead) ;

signal control-state : control-state-type;

signal header.en , header-en.reg : std-logic

signal imgr-hdr-en : std-logic;

signal headerprefix : std-logic.vector (3 downto 0);

signal header-data.reg , header-data.reg2 : std-logic.vector(11 downto 0);

signal riovalid-tmp , riovalid-regl , riovalid-reg2 : std-logic;

signal riodata-int : std-logic.vector(15 downto 0);

signal header-count , header-count_reg : std-logic.vector (4 downto 0);

signal fifo-readout.en , fifo.readout-en.reg : std-logic;

begin

-- taken from ddr-read-ctrl.vhd

FrHeaderRdAddr <= '0' & header-count;

ImHeaderRdAddr <= first-imgr.sel & header-count(1 downto 0);

fifo.duringheader-i : pixel-header.buf

port map (

clk => Clock , --- IN

din => ReadData,--image-data.reg , -- IN

rd.en => read-fifo , -- IN

rst => Reset , -- IN

wr.en => write.fifo ,--header-en , -- IN

almost-empty => fifo.almost-empty, -- : OUT std-logic;

dout => data-from-fifo , -- OUT

empty => fifo.empty , -- OUT

full => fifo-full , -- OUT

valid => fifo-valid -- OUT

process (Clock , Reset)

begin

if (Reset = '1') then

rd.done.regl <= '0';

end.of-line-flag.regl <= '0';

elsif rising.edge(Clock) then

rd.done.regl <= rd.done;

rd.done.reg2 <= rd.done-regl;

fifo.readout.enreg <= fifo-readout.en;

header-count.reg <= header-count;

header-en-reg <= headeren;

128

ReadData.regl <= ReadData;

ReadData.reg2 <= ReadData-regl;

end-of-line-flag.regl <= end.of-line-flag;

end if;

end process;

process(Clock , Reset)

begin

if (Reset = '1') then

write-fifo.regl <= '0';

write-fifo-reg2 <= '0';

write-fifo <= '0';

elsif rising.edge(Clock) then

write.fifo-regl <= write.fifo-tmp;

write.fifo.reg2 <= write-fifo.regl;

write-fifo <= write.fifo-reg2;

end if;

end process;

rd.done-latch <= '0' when (header.en = '0') else

'1' when (rd.done = '1' and header-en = '1') else

rd.done-latch;

process (Clock , Reset)

begin

if (Reset = '1') then

fifo.readout.en <= '0';

header-count <= (others => '0');

header-en <= '0';

read-fifo <= '0';

write.fifo-tmp <= '0';

riovalid-tmp <= '0';

ReadEn <= '0 ';

control-state <= st.cIdle;

end-of-line-flag <= '0';

elsif rising-edge(Clock) then

case control-state is

when st-cIdle =>

if (first-line.active-start = '1') then

control-state <= st.cFrameStartWait;

elsif (wr-done-pulse = '1') then

control.state <= st-cDelayl;

else

control-state <= st-cldle;

end if;

ReadEn <= '0';

fifo.readout-en <= '0';

header-count <= (others => '0');

header-en <= '0 ';

read.fifo <= '0';

write.fifo.tmp <= '0';

riovalid-tmp <= '0';

end-of-line.flag <= '0';

when st-cFrameStartWait =>

if (wr-done-pulse = '1') then

129

control-state <= st-cHeader;

else

control.state <= stcFrameStartWait;

end if;

ReadEn <= '0';

fifo-readout-en <= '0';

header-count <= (others => '0');

header.en <= '0';

read-fifo <= '0';

write-fifo-tmp <= '0';

riovalid-tmp <= '0';

end.of-line-flag <= '0';

when st-cHeader ->

-- State transition control:

-- Use header-count to determine how long to stay in this state,

-- which should be for 32 clock cycles

if (header-count = "11111") then

control-state <= st-cRead.Fifo;

-- add a start of frame flag here to indicate to start reading out from FIFO?

else

control-state <= st-cHeader;

end if;

if (rd.done-latch = '1') then

write-fifo-tmp <= '0'; -- no more pixels to buffer

else

write-fifo-tmp <= '1'; -- buffer pizels while outputting metadata info (headers

end if;

ReadEn <= '1';

header-count <= header.count + 1;

header-en <= '1 ';

read-fifo <= '0';

riovalid-tmp <= '1';

end.of-line-flag <= '0';

-- keep reading and writing to fifo for the first line.

when st-cRead-Fifo =>

if (rddone-latch = '1') then

write-fifo.tmp <= '0';

read-fifo <= '1';

control-state <= st.cRest-ofFifo;

elsif (rd-done = '1') then

write-fifo-tmp <= '0 '; -- stop writing to Fifo

read-fifo <= '1';

control-state <= st-cRest.oftFifo;

else

write.fifo-tmp <= '1'; -- continue writing to fifo for first line of valid

pixels

read-fifo <= '1 '; -- read from fifo

control-state <= st-cRead.Fifo;

end if;

ReadEn <= '1';

fifo.readout.en <= '1 ';

header.en <= '0 ';

riovalid-tmp <= '1';

130

endofline-flag <= '0 ';

Read out the remaining pixels in the fifo for the first line

-- At most, 32 more pixels to buffer after line ends

when stcRestofFifo ->

if (fifo-almost-empty = '1') then

control-state <= st.cIdle;

readfifo <= '0';

riovalidtmp <= '0';

endofline-flag <= '1';

else

controlstate <= st.cRest-of.Fifo;

readfifo <= '1';

riovalidtmp <= '1';

end-of_line-flag <= '0';

end if;

ReadEn <= '0';

fiforeadout-en <= '1';

headeren <= '0';

write-fifotmp <= '0'; -- stop writing to FIFOs

when st-cDelayl ->

controlstate <= stcDelay2;

ReadEn <= 1 ';

fiforeadouten <= '0 ';

headeren <= '0';

read-fifo <= '0';

write_fifotmp <= '0';

riovalidtmp <= '0';

end-ofline-flag <= '0';

when stcDelay2 =>

controlstate <= stcDelay3;

ReadEn <= '1 ';

fiforeadouten <= '0';

header.en <= '0 ';

readfifo <= '0';

write-fifo.tmp <= '0';

riovalid-tmp <= '0 ';

end.of-line-flag <= '0';

when st_cDelay3 =>

controlstate <= stcNormalLineRead;

ReadEn <= ' 1 ';

fifo.readout.en <= '0 ';

headeren <= '0';

readfifo <= '0';

write-fifo-tmp <= '0 ';

riovalid-tmp <= '0 ';

endoflineflag <= '0';

when stcNormalLineRead ->

if (rddonereg2 = '1') then

control_state <= st_cIdle;

end.of-line-flag <= '1';

else

131

control-state <= st.cNormalLineRead;

end-of-line-flag <= '0';

end if ;

ReadEn <= '1 ';

fifo-readout-en <= '0 ';

header-en <= '0';

read-fifo <= '0';

write-fifo-tmp <= '0 ';

riovalid-tmp <= '1';

end case;

end if;

end process;

-- set flag to read from imager ram for last 4 pixels

process (Clock , Reset)

begin

if (Reset = '1') then

imgr.hdr.en <= '0';

elsif rising.Edge(Clock) then

if header-en = '0' then -- reset

imgr.hdr.en <= '0';

elsif header-count-reg = "11010" then -- set for last 4 pixels

imgr.hdr.en <= '1 ';

end if;

end if;

end process;

-- select which Header data to read: ImHeaderRdData or FrHeaderRdData or none.

process(Clock, Reset)

begin

if (Reset = '1') then

header-data.reg <= (others => '0');

header-datareg2 <= (others => '0');

elsif rising-Edge(Clock) then

if header-en = '0' then -- 1st pixel

header-data.reg <= CameraId & QuadId & first.imgr.sel & x"O";

elsif imgr.hdr.en = '1' then

header-datareg <= ImHeaderRdData;

else

header.data.reg <= FrHeaderRdData;

end if;

header-datareg2 <= header-data-reg;

end if;

end process;

process(Clock)

begin

if rising-edge(Clock) then

if header-en = '1' then

if header-count-reg = "00000" then

header-prefix <= HEADER-INFO;

else

header-prefix <= x"O";

end if;

else

header-prefix <= (others => '0');

end if;

end if;

end process;

132

process (Clock , Reset)

begin

if (Reset = '1') then

data-from.BRAM <= (others => '0');

elsif rising-edge(Clock) then

data-fromBRAM <= ReadData;

end if;

end process;

-- output final riodata to mgt

process (Clock , Reset)

begin

if (Reset = '1') then

riodata <= (others => '0');

riodata-int <= (others -> '0');

elsif rising.edge(Clock) then

if headerenreg = '1' then

riodataint <= headerprefix & headerdata-reg2;

elsif (fifo-readoutenreg = '1') then

riodata-int <= data.from-fifo;

else

riodataint <= datafromBRAM;

end if;

riodata <= riodata-int;

end if;

end process;

-- output final riovalid to mgt

process(Reset , Clock)

begin

if Reset = '1' then

riovalid <= '0';

riovalid.regl <= '0';

riovalid.reg2 <= '0';

elsif rising.edge(Clock) then

riovalidregl <= riovalid-tmp;

riovalid_reg2 <= riovalid-regl;

riovalid <= riovalidreg2;

end if;

end process;

end Behavioral;

A.5 quadselector.vhd

The following VHDL code is the implementation of the Quadrant Selector module

described in Section 4.3.5.
-- This is the Quadrant Selector module which decides whether to send to the MGTs

-- pizxel data from this quadrant or an external quadrant. This is instantiated

- in the overall system top module.

library IEEE;

use IEEE. STDLOGIC-1164 .ALL;

use IEEE. STDLOGICARITH .ALL;

use IEEE .STDLOGIC.UNSIGNED. ALL;

133

Uncomment the following library declaration if instantiating

any Xilinx primitives in this code.

-- library UNISIM;

-- use UNISIM. VComponents. all

entity quad-selector is

Port (

Reset : in std-logic;

Clock : in std-logic;

usr.rst : in std-logic;

usrclk : in std-logic;

data-frominternal : in std-logic.vector(15 downto 0);

valid-from-internal : in std-logic ;

data.from.external : in std-logic.vector (15 downto 0);

charisk.from.external : in std-logic.vector (1 downto 0);

-- to mgt-block.vhd

sel-data-out : out std-logic.vector (15 downto 0);

sel-data.valid : out std-logic

end quad.selector;

architecture Behavioral of quad-selector is

-- component declaration for FIFO with Common Clock

component data-from.quad-fifo

port (

clk : IN std-logic;

din: IN std-logic.vector (15 downto 0);

rd.en: IN std-logic;

rst : IN std-logic;

wren: IN std-logic;

dout: OUT std-logic.vector (15 downto 0);

empty: OUT std-logic;

full: OUr std-logic;

valid : out std-logic)

end component;

-- component declaratiom for FIFO with Independent Clocks

component data-from.ext-fifo IS

port (

din: IN std-logic-VECTOR(15 downto 0);

rd.clk: IN std-logic;

rd.en: IN std-logic;

rst : IN std-logic;

wr.clk: IN std-logic;

wr-en: IN std-logic;

dout: OUT std-logicVECTOR(15 downto 0);

empty: OUT std-logic;

full: OUT std-logic;

valid: OU std-logic);

END component;

constant END.OFLINE : std-logic.vector(3 downto 0) := x"4"

type fifo.rd.ctrl-statetype is (st-rdIdle , st.rdStartInt , st-rdStoplnt, st-rdStartExt,

st.rdStopExt) ;

signal fifo.rd-ctrl-state : fifo.rd.ctrl-state-type;

134

signal int.wren_fifo , int-rdenfifo : std-logic;

signal intfifo_data.out: stdlogic.vector(15 downto 0);

signal intfifoempty intfifo.full , int.fifo.valid : stdlogic;

signal ext-wren-fifo , extrden.fifo : std-logic;

signal ext-fifo_data.out : stdlogic.vector (15 downto 0);

signal ext-fifoempty , extfifofull , ext.fifo.valid : std-logic;

signal data.from-internalreg , data.from_externalreg : stdlogic.vector(15 downto 0);

signal int.data-prefix , extdataprefix : std-logic.vector (3 downto 0)

signal rd-stop.flag : stdlogic;

signal data.sel : stdlogic.vector (1 downto 0);

begin

- === { FIFO Instantiation }

-- There are two FIFOs in this module. The "int" FIFO is a Common Clock FIFO,

-- and is used to buffer the data coming from this quadrant.

-- The "ext" FIFO has Independent Clocks, and is used

-- to buffer data coming from the external quadrants. The corresponding

-- enable/valid signals are labled accordingly: int.xxxxxx or ext.xxx.xxx.

-- FIFO to buffer data coming from this quadrant.

-- Note: This FIFO is a Common Clock FIFO.

int.quad-fifo-i : datafrom.quad-fifo

port rnap (

clk => Clock,

rst => Reset,

wr_en => int.wrenfifo,

din => data-frominternalreg ,

rd.en => int.rd.enfifo,

dout => int-fifodata_out,

empty => intfifo.empty,

full => intfifo-full ,

valid => int-fifo.valid

-- FIFO to buffer data coming from the external quadrant.

-- Note: This FIFO has Independent Clocks. Used to change

-- the clock domains of the data coming from external quads.

ext.quadfifo-i : data-from.ext-fifo

port map (

rst => Reset,

wr_clk => usrclk,

wr.en => ext.wr_enfifo,

din => data.from.external-reg ,

rd.clk => Clock,

rd.en => ext-rd-en-fifo,

dout => ext-fifo.data-out,

empty => ext-fifo-empty,

full => ext.fifofull ,

valid => ext-fifo.valid

.-. { Signal Delays }

-- Delay the data before buffering into the FIFO.

process(Reset , Clock)

begin

135

if (Reset = '1') then

data-fron-internal-reg <= (others => '0');

elsif rising.edge(Clock) then

datafrominternalreg <= data-from-internal;

end if;

end process;

process(usr.rst , usrclk)

begin

if (usr-rst = '1') then

data.from.external.reg <= (others => '0');

elsif rising.edge(usrclk) then

data-from.external-reg <= data-from-external;

end if;

end process;

- ==== { Write FIFO signals }

-- Determine the write enable signals

process(Reset, Clock)

begin

if (Reset = '1') then

int-wr.en-fifo <= '0';

elsif rising.edge(Clock) then

int.wr.en-fifo <= validfrominternal;

end if;

end process;

process(usr-rst , usrclk)

begin

if (usr-rst = '1') then

ext-wr-en-fifo <= '0';

elsif rising.edge(usrclk) then

if (charisk-fromexternal = "00") then

ext.wr.en-fifo <= '1';

else

ext-wr.en.fifo <= '0';

end if;

end if;

end process;

-- ==== { Read FIFO Signals }

-- Determine the read enable signals

int.data.prefix <= (others => '0') when int-fifo.valid = '0'

else int-fifo-data.out(15 downto 12);

ext.data.prefix <= (others => '0') when ext-fifo.valid = '0'

else ext-fifo.data.out(15 downto 12);

int.rd-en.fifo <= '0' when (int.data-prefix = END-OFLINE) else

'0' when (rd-stopflag = '1') else

'1' when ((int-fifo.empty = '0') and (data-sel = "01")) else
'0 ';

ext.rd.en-fifo <= '0' when (ext-data-prefix = END.OF.LINE) else

'0' when (rd-stop.flag = '1') else

'1' when ((ext-fifo.empty = '0') and (data.sel = "10")) else

'0';

- ==== State Machine }

-- State machine to determine the data.sel signal , which is the mux selection that

-- determines which FIFO (int or ext) to read from.

136

-- Will read out an entire (buffered) line of a quadrant before switching to the other FIFO.

-- Also , sets the valid signal rd-stop-flag , which is used to control the read enable signals.

process(Reset , Clock)

begin

if (Reset = '1') then

rd.stop-flag <= '0';

data-sel <= "00";

fifo.rd.ctrl-state <= st.rdIdle;

elsif rising-edge(Clock) then

case fifo.rd-ctrl-state is

when st.rdIdle =>

-- State transition

-- Preference is to read from the int FIFO first.

if (int.fifo.empty = '0') then

fifo.rd-ctrl-state <= st-rdStartInt;

elsif (ext-fifoeempty = '0') then

fifo.rd-ctrl.state <= st.rdStartExt;

end if;

rd.stop-flag <= '0';

data-sel <= "00";

when st-rdStartInt =>

-- State transition

-- Also , the pulse rd-stopflag is asserted one clock cycle early , so that

-- it goes high with the state transition.

if (int.data.prefix = END.OFLINE) then

fifo.rd-ctrl-state <= st.rdStopInt;

rd-stop-flag <= '1';

else

rd-stop.flag <= '0';

end if;

data-sel <= "01";

when st-rdStopInt =>

If (ext-fifo-empty = '0') then

fifo.rd-ctrl-state <= st.rdStartExt;

else

fifo.rd-ctrlstate <= st.rdIdle;

end if;

rd-stopflag <= '0';

data-sel <= "00";

when st.rdStartExt =>

-- State transition

-- Also , the pulse rd-stop.flag is asserted one clock cycle early, so that

-- it goes high with the state transition.

if (ext.data.prefix = END.OF-LINE) then

fifo.rd.ctrl-state <= st.rdStopExt;

rd-stop-flag <= '1';

else

rd-stop-flag <= '0';

end If;

137

data.sel <= "10";

when st-rdStopExt =>

if (int.fifo.empty = '0') then

fifo-rd-ctrlstate <= st-rdStartInt;

else

fifo.rd-ctrlstate

end if;

rd-stopflag <= '0';

data.sel <= "00";

end case;

end if;

end process;

-- Select which FIFO's data to output (int or ext).

process (Clock , Reset)

begin

if Reset = '1' then

sel-data-out <= (others => '0');

sel-data.valid <= '0 ';

elsif rising.edge(Clock) then

case data-sel is

when "00" =>

sel-data.out <= (others => '0');

sel-data.valid <= '0 ';

when " 01" =>

sel-data.out

sel-data-valid

when " 10" =>

sel-data-out

sel-data-valid

when others =>

sel-data-out

sel-data.valid

<= int-fifo-data.out;

<= int-fifo.valid;

<= ext-fifo-data-out;

<= ext-fifo.valid;

<= (others => '0');

<= '0 ';

end case;

end if;

end process;

end Behavioral;

138

<= st-rdIdle;

Appendix B

VHDL Test Benches

B.1 tb _rectangles_new.vhd

The following VHDL test bench is the simulation described in Section 4.4.1.
-- This is the test bench to test the Rectangles module.

LIBRARY ieee ;

USE ieee .std-logic.1164 .ALL;

USE ieee .std-logic.unsigned .all;

USE ieee. numeric-std .ALL;

ENTY tb.rectangles.new-vhd IS

END tb.rectangles.new-vhd;

ARaCIM XIRE behavior OF tb.rectangles.new.vhd IS

-- Component Declaration for the Unit Under Test (UUT)

C(h4CONI' rectangles

Reset : IN std-logic;

Clock : IN std-logic;

imgr-sample.en : IN std-logic;

vid-reg : IN std-logic.vector(11 downto 0);

Ival : IN std-logic;

fval : IN std-logic;

Ival-fall : IN std-logic;

pixel-count : IN std.logic.vector(11 downto 0);

line.count : IN std-logic.vector(11 downto 0);

start.x : IN std-logic.vector(11 downto 0);

start-y : IN std-logic.vector(11 downto 0);

total-valid.pixels : IN std-logic.vector (10 downto 0);

total-valid-lines : in std-logic.vector(10 downto 0);

column-skip.mode : IN std-logic.vector(7 downto 0);

row-skip-mode : IN stdlogic.vector(7 downto 0);

frame.active.start : OUT std-logic;

first-line : OUT std-logic;

line.active.out : OUT std-logic;

pixel-valid : OUr std-logic;

pixel-data : OUr std-logic.vector(11 downto 0)

139

END aCOEONI;

constant SAMPLE-POINT : std-logicvector(1 downto 0) := "01";

-- Inputs

SIGNAL Reset : std-logic := '0';

SIGNAL Clock : std-logic := '0';

SIGNAL imgrsample-en : std-logic := '0';

SIGNAL Ival-master-reg : std-logic := '0';

SIGNAL fval-master-reg : std-logic := '0';

SIGNAL master-lval-fall : std-logic := '0';

SIGNAL vid-reg : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL pixel-count : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL line.count : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL startx : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL start.y : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL total.valid.pixels : std-logic.vector(10 downto 0) := (others=>'O');

signal total-valid-lines std-logic.vector(10 downto 0) := (others=>'O');

SIGNAL column-skipmode : std-logic.vector(7 downto 0) := (others=>'O');

SIGNAL row.skip.mode : std-logic.vector(7 downto 0) := (others=>'O');

-- Outputs

SIGNAL line-start : std-logic:

SIGNAL frame.active-start : std-logic;

SIGNAL first-line : std.logic;

SIGNAL line.active.out : std-logic;

SIGNAL pixel-valid : std-logic;

SIGNAL pixel-data : std-logic.vector(ll downto 0);

signal fval-master-int : std-logic := '0';

signal fval-master : std-logic := '0';

signal lval-master.int : std-logic := '0';

signal Ival-master : std-logic := '0';

signal master-fval-rise : std-logic := '0';

signal master-fvalfall : std-logic := '0';

signal master.lval-rise : std-logic := '0';

signal next-pixel-count, next-line.count : std-logic.vector(11 downto 0);

SIGNAL data.reg : std-logic.vector(131 downto 0) := (others=>'O');

signal vid.reg-int : std-logic.vector(11 downto 0) := (others => '0');

signal TP-Framevalid, TP-LineValid : std-logic;

signal TP.Video : std-logic.vector(11 downto 0);

signal clkdiv.counter : std-logic.vector (1 downto 0);

signal imgr.CE : std.logic;

BEGIN

Reset <= '1', '0' after 145 ns;

Clock <= not Clock after 5 ns; -- 100 mhz

-- Instantiate the Unit Under Test (UUT)
uut: rectangles POLTVIMAP(

Reset => Reset,

Clock => Clock,

imgr-sample-en => imgr-sample.en,

vid.reg => vid-reg ,

140

lval => Ival-master-reg,

fval => fval-master-reg,

Ival-fall => master-lval-fall

pixel-count => pixel-count,

line-count => line-count,

start.x => x"004",

start-y => x"002",

total-valid.pixels => "000" &

total-valid-lines => "000" & x"O" & x"8"

column-skip-mode => x"02",

row.skip.mode => x"02",

x"0" & x"8" ,--total-valid-pizels ,

line-start => line-start ,

frame.active-start => frame.active-start,

first-line => first-line ,

line.active.out => line.active-out,

pixel-valid => pixel-valid,

pixel-data => pixel.data

-- This is the module that simulates the behavior of an imager.

-- It simulates pizel data and frame valid and line valid signals

imgr.TestPattern-i : entity work. imgr.TestPattern

generic map(

BUS-WIDTH => 12

ACTIVE.ROWS => x"020" , -- good for simulation

ACTIVECOLS => x"020" ,

TOTAL.ROWS => x"040"

TOTAL-COLS => x"040"

port rnap(

Reset => Reset,

Clock => Clock,

ImagerClockEn => imgr.sample-en, -- use as a clock enable at the master clock rate ...

Enable => '1' , -- '0' = Pass Through, '1' = overwrite with image data

ModeSelect => '' ' 0' '0' = external timing, '1 ' = internal timing

- Data Out module

FrameValidOut => TP-Framevalid,

LineValidOut => TP.LineValid,

DataOut => TPVideo,

-- output to foveation-top.vhd for simulation

fval-master => fval-master,

Ival-master => Ival-master,

masterfval.rise => master-fval-rise,

masterfval.fall => master-fval-fall,

master-lval-rise => master-lval-rise,

master-lval-fall => masterlJval-fall ,

data.reg => data.reg

-- delay an imgr-sample.en cycle to align with

-- input rise/fall signals from imgr.ctrl .vhd.

process(Reset, Clock)

begin

if (Reset = '1') then

fvalmaster-int <= '0 ';

141

Ival-master-int <= '0 ';

fval-master.reg <= '0';

Ival-master.reg <= '0';

elsif rising.edge(Clock) then

if (imgr.sample-en = '1') then

fval-master-int <= fval-master;

Ival-master-int <= Ival-master;

fval-master-reg <= fval.master-int;

Ival-master-reg <= Ival-master-int;

vid.regint <= data-reg(11 downto 0);

vid-reg <= vid-reg-int;

end if;

end if;

end process;

pix-line.count:

process (Reset ,Clock)

begin

if (Reset = '1') then

pixel-count <= (others => '0');

line.count <= (others => '0');

elsif risingedge (Clock) then

if (imgr.sampleen = '1') then

pixel-count <= next-pixel-count;

line.count <= next-line.count;

end if;

end if;

end process;

-- next state of pixel count and line count is computed with combinational logic

next-pixel.count <= (others => '0') when (Ival-master-reg = '0') else

(pixel.count + 1);

next-line.count <= (others => '0') when (fval-master-reg = '0') else

(line-count + 1) when (master-lval.fall = '1') else

line-count;

imgr.clock :

process(Reset, Clock)

begin

if Reset = '1' then

clkdiv.counter <= "00";

elsif risingedge(Clock) then

clkdiv.counter <= clkdiv-counter + '1'

end if;

end process;

process(Reset , Clock)

begin

if (Reset = '1') then

imgrCE <= '0';

elsif rising-edge(Clock) then

if clkdiv-counter = SAMPLE-POINT then

imgrCE <= '1';

else

imgrCE <= '0';

end if;

end if;

142

end process;

imgr.sample-en <= imgr-CE;

B.2 tb_foveationtop.vhd

The following VHDL test bench is the simulation described in Section 4.4.2.
-- This is the test bench to test the "Foveation Top Module" as described in

-- the thesis.

-- Simulations were done in Modelsim

ImBRARY ieee;

USE ieee. std-logic.1164 .ALL;

USE ieee . std-logic-unsigned . all;

USE ieee . numeric.std .ALL;

ENTITY tb-foveation-top.vhd IS

END tb-foveation-top-vhd ;

ARIlflECIX)RE behavior OF tb.foveation-top.vhd IS

-- Component Declaration for the Unit Under Test (UUT)

WvIOENIr foveation-top

PCRT(
Reset : IN std-logic;

Clock : IN std-logic;

imgr.sample-en : IN std-Iogic;

fval.master : IN std-logic;

Ival.master : IN std-logic;

fval.rise : IN std-logic;

fval.fall : IN std-logic;

Ival-rise : IN std-logic;

Ival.fall : IN std-logic;

vid.all : IN std-logic.vector(131 downto 0);

start.x.all : in stdlogic.vector (131 downto 0);

start-y-all : in std-logic.vector (131 downto 0);

total-valid.pixels.all : in std-logic.vector (120 downto 0);

total.valid-lines.all : in std-logic.vector(120 downto 0);

column-skipmode : IN std-logic.vector(7 downto 0);

row.skip.mode : IN std-logic.vector(7 downto 0);

ReadEn : in std-logic;

wr.done-pulse : out std-logic;

rd.done : out std.logic;

first.imgr.sel : out std-logic.vector(3 downto 0);

firstline-active.start : out std.logic;

ReadData : out std-logic.vector(15 downto 0)

END CWIVNENr;

constant SAMPLE-POINT : std-logic.vector(1 downto 0) := "01";

-- Inputs

SIGNAL Reset : std-logic := '0';

SIGNAL Clock : std-logic := '0';

SIGNAL imgr.sample.en : std-logic := '0';

SIGNAL fval.master : std-logic := '0';

143

SIGNAL Ival-master : std-logic := '0';

SIGNAL masterfval-rise : std-logic := '0';

SIGNAL masterfvalfall : std-logic := '0';

SIGNAL masterlvalrise : std-logic := '0';

SIGNAL master-ival-fall : std-logic := '0';

SIGNAL data.reg : std-logic.vector(131 downto 0) := (others=>'O');

SIGNAL start.x.all : std-logic.vector(131 downto 0) := (others=>'O');

SIGNAL start-yall : stdlogic-vector(131 downto 0) := (others=>'O');

signal total-valid.pixels-all : std-logic-vector(120 downto 0);

signal total-valid-lines.all : std-logic-vector(120 downto 0);

SIGNAL column-skipmode : std-logic.vector(7 downto 0);--(43 downto 0) := (others=>'O');

SIGNAL row.skip-mode : std-logic.vector(7 downto 0);--(43 downto 0) := (others=>'O');

signal ReadEn std-logic := '0';

-- Outputs

SIGNAL frame.count-out : std-logic.vector (11 downto 0);

SIGNAL line-start : std-logic;

SIGNAL frame-start : std-logic;

SIGNAL fval-fov : std-logic;

SIGNAL lval-fov : std-logic;

SIGNAL pixel-valid-fov : std-logic;

SIGNAL pixel-data-fov : std-logic.vector(ll downto 0);

signal wr-done-pulse : std-logic;

signal rd.done : std-logic;

signal first.imgr.sel : stdJlogic.vector(3 downto 0);

signal first-line.active-start : std-logic;

signal ReadData : std-logic-vector(15 downto 0);

signal TP-Framevalid, TP-LineValid : std-logic;

signal TP-Video : std-logic.vector(11 downto 0);

signal clkdivcounter : std-logic-vector(1 downto 0);

signal imgr.CE : std-logic;

BEGIN

Reset <= '1', '0' after 145 ns;

Clock <= not Clock after 5 ns; -- 100 mhz

-- for sim purposes

process(Clock, Reset)

begin

if Reset = '1' then

ReadEn <= '0 ';

elsif risingedge(Clock) then

if wr-done.pulse = '1' then

ReadEn <= '1';

end if;

end if;

end process;

-- Instantiate the Unit Under Test (UUT)

uut: foveation.top POTTIMAP(

Reset => Reset,

Clock => Clock,

imgr.sample.en => imgr-sample-en

fval-master => fval-master,

lval-master => lvalmaster,

fval-rise => master-fval-rise,

fval-fall => master-fval-fall,

144

Ival-rise => master-lval-rise,

Ival-fall => master-lval-fall,

vid-all => data-reg,

start-x-all => x" FFF000000000000000000000000000000" ,

start-yall => x" FFF000000000000000000000000000000" ,

totalvalid-pixels-all => "

000" & "

00000000000" & "00000001000" & "00000001000" & "00000001000" ,

total.validljines.all => "

000"

& "00000000000" & "00000001000" & "00000001000" & "00000001000",

column-skip.mode => x"04",

row.skip.mode => x"02",

ReadEn => ReadEn, -- : in std.logic;

wr-done-pulse => wr-done-pulse, -- : out std.logic;

rd.done => rd-done, -- : out std-logic;

first.imgr.sel => first-imgr.sel, -- : out std-logic;

first-line.active.start => first-line-active-start ,--: out std-logic;

ReadData => ReadData -- : out std.logic.vector(15 downto 0)

-- This is the module that simulates the behavior of an imager.

-- It simulates pizel data and frame valid and line valid signals

imgr.TestPattern-i : entity work. imgr.TestPattern

generic map(

BUS-WIDTH => 12

ACTIVE.ROWS => x"020" , -- good for simulation

ACTIVE.COLS => x"020"

TOTAL.ROWS => x" 040"

TOTAL-COLS => x"040"

port map(

Reset => Reset,

Clock => Clock,

ImagerClockEn => imgr.sample-en, -- use as a clock enable at the master clock rate ...

Enable => '1' , -- '0' = Pass Through, '1' = overwrite with image data

ModeSelect => '' ' 0' '0' = external timing, '1' = internal timing

- Data Out module

FrameValidOut => TP.Framevalid,

LineValidOut => TP.LineValid,

DataOut => TPVideo,

-- output to foveation.top .vhd for simulation

fval-master => fval-master,

Ival.master => Ival-master,

master-fval.rise => master-fval-rise,

master-fval-fall => master-fval-fall ,

masterlval.rise => master-lval-rise,

master-lval-fall => master-lval-fall,

data.reg => data-reg

imgr.clock

process (Reset , Clock)

begin

if Reset = '1' then

clkdiv.counter <= "00";

145

elsif rising.edge(Clock) then

clkdiv.counter <= clkdiv.counter + '1'

end if;

end process;

process(Reset , Clock)

begin

if (Reset = '1') then

imgrCE <= '0';

elsif rising.edge(Clock) then

if clkdiv.counter = SAMPLE-POINT then

imgr-CE <= '1';

else

imgrCE <= '0';

end if;

end if;

end process;

imgr-sample-en <= imgrCE;

B.3 tbread_fov_buf.vhd

The following VHDL test bench is the simulation described in Section 4.4.3.
-- This is the test bench to test the "Read Buffer" module.

-- Tests were run under ModelSim.

LIBRARY ieee ;

USE ieee . std-logic-1164 .ALL;

USE ieee . std-logic.unsigned . all;

USE ieee. numeric.std .ALL;

ENTITY tb.read-fov-buf-vhd IS

END tb.read.fov.buf.vhd;

ARCHrE1CTIURE behavior OF tb.read-fov.buf-vhd IS

-- Component Declaration for the Unit Under Test (UUT)

C0IFOfNE'T read-fov-buf

PRTr(
Reset : IN std-logic;

Clock : IN std-logic;

FrHeaderRdData : IN std-logic.vector(11 downto 0);

ImHeaderRdData : IN std-logic.vector(11 downto 0);

Camerald : IN std.logic.vector(1 downto 0);

QuadId : IN std-logic.vector(1 downto 0);

imgr.sample.en : IN std-logic;

wr-done-pulse : IN std-logic;

rd.done : IN std-logic;

first-line-active-start : IN std-logic;

first-imgr.sel : in std-logic.vector(3 downto 0);

ReadData : IN std-logic.vector(15 downto 0);

FrHeaderRdAddr : OUT std-logic.vector(5 downto 0);

ImHeaderRdAddr : OUT std-logic.vector(5 downto 0);

ReadEn : OUT std-logic;

riodata : OUr std-logic.vector(15 downto 0);

riovalid : OUT std-logic

146

END XIVIFONEN17;

component header.ram

port (

a : IN std-logic.VECTOR(5 downto 0);

d : IN std-logic.VECTOR(11 downto 0);

dpra : IN std-logic.VECTOR(5 downto 0);

clk : IN std.logic;

we : IN std-logic;

spo : OUT std-logic-VECTOR(11 downto 0);

dpo : OUT std-logic.VECTOR(11 downto 0));

END component;

constant SAMPLE.POINT : std-logic.vector(1 downto 0) := "01";

-- Inputs

SIGNAL Reset : std-logic := '0';

SIGNAL Clock : std-logic := '0';

SIGNAL imgr-sample-en : std-logic := '0';

-- SIGNAL fval-master : std-logic := '0';

SIGNAL lval-master : std-logic := '0';

SIGNAL wr.done-pulse : std.logic := '0';

SIGNAL rd-done : std.logic := '0';

SIGNAL first-line.active-start : std-logic := '0';

signal first-imgr-sel : std-logic-vector(3 downto 0);

SIGNAL FrHeaderRdData : std-logic.vector(ll downto 0) := (others=>'O');

SIGNAL ImHeaderRdData : std-logic.vector(11 downto 0) := (others=>'O');

SIGNAL CameraId : std-logic.vector(1 downto 0) := (others=>'O');

SIGNAL QuadId : std-logic.vector(1 downto 0) := (others=>'O');

SIGNAL ReadData : std-logic.vector(15 downto 0) := (others=>'O');

-- Outputs

SIGNAL FrHeaderRdAddr : std-logic.vector(5 downto 0);

SIGNAL ImHeaderRdAddr : std-logic.vector (5 downto 0);

SIGNAL ReadEn : std-logic;

SIGNAL riodata : std-logic.vector(15 downto 0);

SIGNAL riovalid : std-logic;

-- internal signals

signal fval-master : std-logic := '0';

signal lval-master : std-logic := '0';

signal master-fval.rise : std-logic := '0';

signal master-fval-fall : std-logic := '0';

signal master-lval.rise : std-logic := '0';

signal master-lval-fall : std-logic := '0';

signal data-reg : std-logic.vector(131 downto 0) := (others=>'O');

signal TP.Framevalid, TP-LineValid : std-logic;

signal TPVideo : std-logic.vector(11 downto 0);

signal clkdiv-counter : std-logic.vector (1 downto 0);

signal imgr.CE : std-logic;

FrHeaderWrAddr

FrHeaderWrData

FrHeaderWrEn

ImHeaderWrAddr

ImHeaderWrData

ImHeaderWrEn

: std-logic-vector (5 downto 0);

: std-logic.vector(11 downto 0);

: std-logic;

: std-logic.vector (5 downto 0);

: std-logic.vector(11 downto 0);

: std-logic;

147

signal

signal

signal

signal

signal

signal

BEGIN

Reset <= '1', '0' after 145 ns;

Clock <= not Clock after 5 ns; -- 100 mhz

-- Instantiate the Unit Under Test (UUT)

uut: read-fov-buf POFTMNIAP(

Reset => Reset,

Clock => Clock,

FrHeaderRdAddr => FrHeaderRdAddr,

FrHeaderRdData => FrHeaderRdData,

ImHeaderRdAddr => ImHeaderRdAddr,

ImHeaderRdData => ImHeaderRdData,

Camerald => Camerald,

QuadId => Quadld,

imgr.sample-en => imgr.sample-en,

wr-done.pulse => wr-done.pulse,

rd.done => rd-done,

first.line.active.start => first-line.active-start ,

first-imgr-sel => first-imgr.sel, -- : in std-logic.vector(3 downto 0);

ReadData => ReadData,

ReadEn => ReadEn,

riodata => riodata,

riovalid => riovalid

foveation-topi : entity work. foveation-top PORTMAP(

Reset => Reset,

Clock => Clock,

imgr-sample-en => imgr.sample.en,

fval-master => fvalmaster,

Ival-master => Ival-master,

fval-rise => master-fval-rise,

fval-fall => master-fval-fall,

Ivalrise => masterJlvalrise,

Ival-fall => masterJlval-fall,

vid.all => data-reg,

startx-all => x" FFF000000000000000000000000000000" ,

start-y-all => x" FFF000000000000000000000000000000",

total-valid-pixels.all => "

00" & "

000000000000" & "00000001000" & "00000001000" & "00000001000" ,

total valid-lines.al => "

000"

& " 00000000000" & "00000001000" & "00000001000" & "00000001000" ,

column-skip.mode => x"04",

row-skip.mode => x"02",

ReadEn => ReadEn, -- : in std-logic;

wr-done-pulse => wr-done.pulse , -- : out std-logic;

rd.done => rd-done, -- : out std-logic;

first-imgr.sel => first-imgr-sel , -- : out std-logic;

first-line.active-start => first-line.active-start ,--: out std-logic;

ReadData => ReadData -- : out std-logic.vector(15 downto 0)

-- This is the module that simulates the behavior of an imager.

-- It simulates pizel data and frame valid and line valid signals

imgr.TestPattern-i : entity work. imgr-TestPattern

generic map(

148

BUS-WIDTH => 12 ,

ACTIVE-ROWS => x"020" , -- good for simulation

ACTIVECOLS => x" 020"

TOTALROWS => x" 040"

TOTALCOLS => x" 040"

port map(

Reset => Reset,

Clock => Clock,

ImagerClockEn => imgr.sampleen, -- use as a clock enable at the master clock rate

Enable => '1' , -- '0' = Pass Through, '1' = overwrite with image data

ModeSelect -> '' ' 0' '0' = external timing, '1' = internal timing

-- Data Out module

FrameValidOut => TP-Framevalid,

LineValidOut => TP.LineValid,

DataOut => TPVideo,

-- output to foveation.top .vhd for simulation

fvalmaster => fvalmaster,

Ivalmaster => Ivalmaster,

masterfvalrise -> masterfvalrise,

master-fval-fall => masterfvalfall ,

masterlvalrise => masterlvalrise,

master-lval-fall => master-lval_fall,

datareg => datareg

imgr_clock :

process(Reset , Clock)

begin

if Reset = '1' then

clkdiv.counter <= "00";

elsif risingedge(Clock) then

clkdiv-counter <= clkdiv.counter + '1'

end if;

end process;

process(Reset , Clock)

begin

if (Reset = '1') then

imgrCE <= '0 ';

elsif risingedge(Clock) then

if clkdiv.counter = SAMPLE-POINT then

imgrCE <= '1';

else

imgrCE <= '0';

end if;

end if;

end process;

imgrsample-en <= imgrCE;

-- write the header with random information (written by Tom Karolyshyn of LL)

frheaderrami : header.ram

port map(

a => FrHeaderWrAddr

149

d => FrHeaderWrData

clk => Clock

we => FrHeaderWrEn

spo => open

dpra => FrHeaderRdAddr

dpo => FrHeaderRdData

imheaderram-i : headerram

port rnap(

a =-> ImHeaderWrAddr

d => ImHeaderWrData

clk => Clock

we => ImHeaderWrEn

spo => open

dpra => ImHeaderRdAddr

dpo => ImHeaderRdData

process

begin

FrHeaderWrAddr <= "000000";

FrHeaderWrData <= x"000";

FrHeaderWrEn <= '0 ';

wait for 1 us;

wait until risingedge (Clock);

for ii in 0 to 31 loop

wait until risingedge(Clock);

FrHeaderWrEn <= '1 ';

wait until risingedge (Clock);

FrHeaderWrEn <= '0 ';

FrHeaderWrAddr <= FrHeaderWrAddr + '1';

wait until rising.edge (Clock);

FrHeaderWrData <= FrHeaderWrAddr & FrHeaderWrAddr;

wait until rising.edge (Clock);

end loop;

wait;

end process;

process

begin

ImHeaderWrAddr <= "000000";

ImHeaderWrData <= x"000";

ImHeaderWrEn <= '0';

wait for 1 us;

wait until risingedge(Clock);

for ii in 0 to 31 loop

wait until rising.edge(Clock);

ImHeaderWrEn <= '1 ';

wait until risingedge(Clock);

ImHeaderWrEn <= '0 ';

ImHeaderWrAddr <= ImHeaderWrAddr + '1';

wait until rising-edge(Clock);

ImHeaderWrData <= ImHeaderWrAddr & ImHeaderWrAddr

wait until risingedge (Clock);

end loop;

wait;

end process;

END;

150

