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Abstract

Price is the most visible signal produced by competition and interaction among a complex
ecology of entities in a system called financial markets. This thesis deals with statistical
analysis and model identification based on such signals. We approach this problem at various
levels of abstraction, with a particular emphasis on linking certain statistical anomalies
identified to specific frictions that are only observable in a more microscopic view.

We first give a brief review of the framework for the analysis of financial prices. We
highlight the important role of information by introducing the concept of informational
efficiency. The main body consists of two parts. Part A consists of Chapters 3, 4 and 5.
We first link unpredictability of financial returns, a direct consequence of the informational
efficiency, to the expected covariance structure of resulting return signals. We discuss a
particular algorithm designed to detect the existence of weak mean-reverting component in
the observed returns. Applying this detection scheme to US stock returns between 1995
and 2007, we detect a statistically significant but continually decreasing mean-reverting
component in the returns. To explain this observation, we link the mean-reverting component
to the arrival structure of buyers and sellers and their interactions. We discuss a particular
model for this interaction and apply various tests to establish the validity of the proposed
model. Part A concludes with an application of these tools in analyzing the sequence of
events in August 2007 which resulted in a breakdown of normal behavior of the system.

Part B, consisting of Chapters 6 and 7, also deals with the issue of predictability in
financial returns, but at a different frequency and based on a different set of instruments.
We first produce the evidence for an unusually high level of predictability among returns of
certain classes of hedge funds. To explain this observation, we discuss a model built based on
the notion of partially observed price signals. When prices are not observed, for example due
to lack of trading, the most recent price is used to calculate the value of an investment, and
this process results in perceived serial correlation in the calculated returns. We view this lack
of trading as the second example of friction in this system, and set out to link this friction
to the mean of the resulting returns signals. We find strong link between predictability and
first moment in certain groups of returns used.

Thesis Supervisor: Andrew W. Lo
Title: Harris & Harris Group Professor
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Chapter 1

Introduction

A financial asset is a contract that gives its owner a claim on a future income. For example,
the stock of a public company entitles the owner to future dividend payments of that firm.
While the specific motives, information or objectives of individual buyers and sellers may
be too complex and textured to be fully articulated, such a level of complexity is somehow
reduced to a single number: the price. The price is the most visible result of competition
and interaction among a complex ecology of entities with a wide range of skills, information
levels, and objectives.

From one perspective, the system of the world’s financial markets can be viewed as a
vast laboratory in which various entities interact to produce a large volume of data ready to
be used by scientists to achieve a more complete understanding of the interaction among the
entities involved. In response to the complexity of this system and the scope of questions
that arise in modeling and analyzing its behavior, recently researchers from a wider spectrum
of social and natural sciences and even engineering have joined forces with economists to
study and model the behavior of these systems. This thesis deals with statistical analysis,
model identification and inference based on financial prices with a particular emphasis on
linking certain statistical properties of prices to specific frictions in the system.

In Chapter 2, I will provide a short background of the conceptual framework and the
issues involved in modeling the behavior of financial pricing systems. In particular, I will
discuss the notion of informational efficiency of prices. The rest of the thesis will draw from
this conceptual framework, but will take a very practical approach in analyzing a specific set
of observations. It is my hope that the reader will find this thesis relevant in understanding
the mechanism behind the very specific phenomena that I set out to analyze.

The main body of the thesis consists of five chapters that can be separated into two
mostly independent parts. While both parts deal with the issue of predictability in financial
time series, and link the source of the predictability to various frictions in the system, they
deal with two relatively separate issues and work with time series from different sources and
sampled at different frequencies. For this reason, I have separated all chapters into two parts
each of which is self-contained and can be read independently.

All of the research presented here is either directly or closely related to the work I have
done with my thesis advisor, Professor Andrew Lo. While I do take responsibility for the
quality of the entire document, I would like to make a distinction between chapters that are
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directly the result of collaboration with Professor Lo, and those that are mostly based on
my own extensions. Specifically, Chapters 5 and 7 are most directly related to work I have
done with Professor Lo while the rest, and in particular, the models in Chapter 4 and 7 are
based on my independent activity. But to keep the format consistent, I will use a first person
plural narrative format for the entire document.

The first part of this thesis consists of Chapters 3, 4 and 5. These chapters deal with the
issue of predictability of financial price signals at high frequency, for example daily or even
intra-day level, and discuss the drivers that are behind price dynamics at these frequencies.
In Chapter 3, we will focus on developing a test for the hypothesis that future prices are not
predictable using a linear predictor based on the past prices; in other words, the changes in
financial price signals should be white noise. We will review different methods for testing this
form of predictability and highlight how a simple trading strategy, the Contrarian Trading
Strategy first introduced in Lehmann (1990) and Lo and MacKinlay (1990b), is related to a
measure of linear predictability in prices. We will then apply this strategy to the stock prices
between 1995 and 2007 and detect a relatively large but continually decreasing deviation from
unpredictability in prices. We provide an alternative view of the trading strategy as a simple
filtering or signal detection algorithm designed to detect the existence of a mean-reverting
component in financial return signals. Given this view, the empirical results prove that there
is indeed a mean-reverting component in the return signals at these frequencies, and the
strength of this component has been declining over time.

It will be argued that the deviation from unpredictability detected through these tests is
a by-product of certain types of friction in the way that financial assets, stocks in this case,
are traded. Therefore, while the perfect informational efficiency and unpredictability may be
possible in an idealized friction-less world, there are many impediments in the real world that
cause the actual behavior to deviate from what would be expected in the idealized setting.
In Chapter 4, we develop a model for one particular type of friction. We argue that the mean
reversion in price signals is a by-product of interactions between buyers and sellers and is
driven by temporary imbalances caused by the asynchronous arrival of buyers and sellers. In
order to alleviate these temporary imbalances, dealers are needed to sell the stock to buyers
and buy it from sellers as they arrive. The dealers, however, need to be compensated. So on
average, the dealers will buy the stock at a price slightly below what they would expect to
be able to sell it for later (to the future arriving buyers) and sell it at slightly above the price
that they expect to be able to buy the stock back for from future arriving sellers. We use this
idea and develop a model based on Grossman and Miller (1988) to capture this phenomenon.
Our model will link the time-series dynamics of observed prices to the time-series properties
of the arrival processes for buyers and sellers. We will outline a specific hypothesis for the
arrival processes of buyers and sellers and work out the implications of that hypothesis on
the observed price dynamics. The model also produces testable implications for the link
between price dynamics and other observables, such as volatility and transaction volumes,
in the system. In the empirical testing, we extend our previous signal detection algorithm
and apply that to test for various implications of the model under consideration. We find
strong support for validity of the hypothesis proposed, in particular for the link between the
strength of the mean-reverting component of returns and trading volumes or the volatility
of returns.
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Chapter 5 uses the results of earlier chapters to analyze changes in the system’s dynamics
based on various observables, such as prices and trading volumes, during the year 2007.
Based on this analysis, we detect a period of unusual stress in the system starting in late
July 2007. During this period, the pattern of trading volumes became more correlated with
certain well-known quantitative valuation factors. Since these factors are commonly used
by quantitative portfolio managers in making investment decisions, the higher correlation
confirms that during this period there was a rush by these investors to reduce the size of
their holdings. The pressure reached its highest level during the week of August 6, 2007
and resulted in a clear and distinct regime shift in the mean-reverting component of price
changes. Starting on August 10, there seemed to be a sudden reversal towards normal
system behavior. We conclude this chapter by showing some evidence on the increased
linkage between different sectors of the hedge fund industry, and discuss the implications of
these changes in the future stability of the system and price dynamics.

The second part of the thesis consists of Chapters 6 and 7. These two chapters concentrate
on the sources of predictability in the return signals on a monthly basis based on signals
generated by hedge funds and mutual funds. This analysis is primarily motivated by work
in Getmansky, Lo, and Makarov (2004).

After documenting the unusually high level of predictability among certain hedge funds
and validating the statistical significance of the observed patterns, we will discuss a model
based on Lo and MacKinlay (1990a) that links the perceived predictability in returns to the
issue of partially observed prices. The model is built based on the notion that prices are not
observed if no trade takes place in a given time period. In the absence of an observation of the
price signal, the most recent price is used to calculate the value of an investment and, hence,
the return. This process, as we will make precise, would give rise to perceived predictability
in observed returns. We will close this chapter by emphasizing an argument first made in
Getmansky et al. (2004) that if serial correlation is indeed a proxy for lack of trading, assets
that are more illiquid, i.e., trade less often, must exhibit higher serial correlation.

We start Chapter 7 by providing some additional evidence to support the view that serial
correlation is a good proxy for illiquidity of assets. The rest of this chapter will focus on
evaluating the link between illiquidity, as proxied by serial correlation of observed returns,
and the expected return. We refer to the difference between the expected returns that can
be contributed to higher illiquidity as the illiquidity premium and will discuss a clustering
based approach to estimate this premium. We will discuss our methodology in detail and
outline an approach meant to increase the precision of our analysis by adjusting returns for
other common sources of co-movement. Overall, our analysis supports the existence of a
positive illiquidity premium among certain categories of hedge funds and some categories of
mutual funds. We also find that this premium has declined over the last four years of our
sample and link that to changes in the overall behavior of this system.

Chapter 8 will summarize the main findings of the research and the original contributions.
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Chapter 2

Conceptual Background

A financial asset is a contractual agreement that gives its owner a claim on a set of future
cash flows. For example, the stock of a company gives the owner a claim on the future divided
of that firm. Financial assets are different from physical assets, such as a house, since they
don’t have any physical usage. They derive their value purely and directly from the future
set of cash flows. Hence, there must be a relationship between the prices of these assets and
the promised future cash flows. Understanding how investors assign value to uncertain cash
flows, based on their beliefs on the likelihood of different outcomes and their preferences for
each possibility, is the subject studied under the general title of Asset Pricing.

Since setting up experiments with a meaningful incentive structure in a realistically com-
petitive setting is almost never possible, the analysis of financial prices is almost entirely
empirical. Models developed to explain certain behavior are calibrated to the observed real-
izations, and tools from statistical inference are applied to test if the calibrated results are
consistent with the observed behavior. What makes the analysis of financial prices interest-
ing is the central role that uncertainty plays in setting prices. This implies that a distinction,
even if only conceptual, must be made between the first type of randomness that is due to
the non-experimental nature of testing, and the second type of randomness that is the sub-
ject matter of the study. Finding ways to take into account this second type of randomness,
which is often referred to as uncertainty, is what makes financial analysis interesting and
challenging.

A distinction should also be made between the positive versus normative®! nature of
these models. On one hand, models can be aimed to provide a description of the actual
behavior of the system. From this perspective, any deviation between the observed behavior
and the behavior prescribed by the model points to a failure in the modeling approach.
Alternatively, a model can be viewed as a prescription of what the behavior should be. In
this latter view, any deviation from the prescribed behavior would represent an opportunity
for an improvement in the system’s design or, more shrewdly, an opportunity that an investor
may be able take advantage of. In this sense, the analysis of financial pricing systems shares
the same positive versus normative tension that exists in much of the social sciences, and in

1

21A positive statement is a statement about a fact and contains no notion of approval or disapproval. A
normative statement is a statement about what is desirable and how the behavior should be. The same
distinction can be extended to modeling the financial system.
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particular economics, but is mostly absent in the natural sciences and engineering.

This conceptual background will be a brief overview and is only meant to provide context
for the rest of this thesis for readers with no background in financial modeling and analysis.
We will first review the general framework for developing asset pricing models in Section
2.1. There are many good references for the topics covered in Section 2.1 including the
following two: Cochrane (2005) provides a thorough textbook treatment of Asset Pricing,
while Campbell (2000) gives an overview of the same literature in a review-style paper.
Section 2.2 is focused on the informational role of prices, and discusses in some detail the
issue of informational efficiency. The exposition provided in this section is mainly based
on Chapter 2 of Campbell, Lo, and MacKinlay (1997) and Chapter 3 of Ross (2005).%2
Brunnermeier (2001) and Grossman (1989) provide a more theoretical treatment of some of
the issues.

2.1 Framework for Analyzing Prices

As mentioned earlier, financial assets are claims on a set of future cash flows. The prices of
these assets are set as agents in the economy analyze various trade-offs available to them,
and make their desired choice based on their preferences and available information. All
pricing models, i.e., models to map the uncertain future cash flows to the current price of
the asset, are built upon one or more of the following three principals: Arbitrage, Optimality,
and Equilibrium.?>

The basic intuition behind arbitrage-based pricing models is the absence of arbitrage
opportunities, i.e., trades that cost nothing to set up*? and yet can generate a positive
payoff under some realizations of the uncertain future with no possibility of negative payoff
in other states of the set of future possibilities. The most important special case of arbitrage-
based pricing is the law of one price, which states that two assets with identical payoffs
must have identical prices. For example, this is the law that enforces the price of shares
of a particular stock trading on two different exchanges to be identical at all times. Any
deviation would produce an arbitrage opportunity and such opportunities will be eliminated
instantly due to the extremely competitive nature of financial markets. In fact, the activity
of taking advantage of arbitrage opportunities by arbitrageurs is so essential to the behavior
of much of modern finance that, by referring to the arbitrageurs as sharks, Ross (2002) notes:
“Neoclassical finance is a theory of sharks and not a theory of rational homo economicus.”

Arbitrage-based pricing models are an example of relative pricing which does not price
any asset separately, but indicates if one asset is expensive or cheap relative to another asset.
These models put the minimum set of requirements on the preferences of the agents in the
system. Precisely for this reason, testing arbitrage-based pricing relationships is easier than

2 2Fama (1970), Fama (1991), and LeRoy (1989) are the classic references on this topic. Also see Malkiel
(2003, 2005) for a more recent perspective.

231t should be emphasized that these principles are not mutually exclusive and there are some strong
connections between them. For example, the existence of an arbitrage opportunity is not consistent with
optimality or equilibrium.

24 Arbitrage opportunities are constructed by financing the purchase of one group of assets by short selling
another group of assets.
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some of the other pricing models that we will review shortly. Even in this case, deviations
can persist if the arbitrageurs are constrained in a way or there are other structural rea-
sons that limit the arbitrage process. See, for example, Lamont and Thaler (2003), Froot
and Dabora (1999) for empirical examples and De Long, Shleifer, Summers, and Waldmann
(1990), Shleifer and Vishny (1997) or Abreu and Brunnermeier (2002) for examples of the-
oretical model dealing with such institutional or behavioral constraints. Perhaps a more
important question is why such deviation may happen in the first place. Often behavioral
reasons based on certain psychological pattern in decision making are offered as a potential
reason (see for example, Hirshleifer, 2001 and Daniel, Hirshleifer, & Teoh, 2002), but there
are competing explanations; see Ross (2002) for one such example.

The next level of pricing models are based on the optimality condition of investors. To
develop this approach, one has to formalize the optimization problem of each investor by
specifying the functional forms of their wutility function.>® To give the reader an idea, we
start with the case that investors derive their utility from consumption at the current and
next period, denoted by ¢; and c;y1, and they are impatient, i.e., prefer to consume earlier
rather than later. A prototypical approach is to model investors as solving an optimization
problem with an objective function of the following form

Ulersunn) = u(er) + Sulcinn) (2.1)

where ¢; and ¢;;; are the consumption in periods ¢ and period ¢ + 1, respectively, and ¢ is a
parameter that captures the impatience of investors.?® In addition, assume that in making a
decision when faced with uncertainty about the future outcomes, investors try to maximize
their expected utility.2” The first-order optimality condition for each investor implies that
for each asset that the investor can purchase, the following relationship must hold at the

optimal choices:?8

peu(ct) = OB [u(cri1)pis1] (2.2)

where p; and p;,, are the current and next period’s price, respectively,>® and E; denotes the

258ee Appendix G of Bertsekas (2000) for a review of utility functions.

26This is the standard model which is referred to as the separable class of utility functions since each part
only depends on the current consumption. Since the form the utility function used in creating the model
has profound implications on the behaviors of the system, researchers have modified all these assumption
in order to expand the set of possible behaviors. For example, Campbell and Cochrane (1999) introduce
the notion of habit into the utility and, hence, change the assumption that the utility only depends on the
current consumption. Epstein and Zin (1991) is an example of an approach to produce non-separable utility
functions.

2-7Similar to the previous assumptions, the assumption of expected utility maximization has been challenged
and some alternatives have been proposed to incorporate the behavioral aspect of decision making, such as
loss aversion or ambiguity aversion. See Starmer (2000) for a discussion on alternatives to expected utility
theory. Chapter 8 of Campbell et al. (1997) provides a good overview including examples for loss- and
ambiguity-aversion based models.

28Note that the agents also have a budget constraint that, in a sense, limits the alternative possible
combinations of ¢; and ¢;4; they can have. The relationship given here holds when ¢, and c;4; are selected
optimally subject to that constraint.

29Note that any payment from owning the asset at time ¢ + 1, for example a dividend, can be factored
into the price without loss of generality.
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expectation operator conditioned on the information at time . The above expression can be
restated as:

pe=E [5Mpt+1] (2.3)
u(cy)

The statement given in (2.3) is “the central asset pricing formula” and “most of the theory
of asset pricing consistent of specialization and manipulation of this formula” (Cochrane,
2005, page 6). Yet the above expression stops short of a full description of what determines
prices, i.e., relating the price to exogenous variables. (2.3) simply related one endogenous
variable, the current price, to two other endogenous variables, the consumption and the next
period’s price. In a sense, this expression itself is a relative pricing model just as we discussed
before. Yet this simple expression contains an enormous amount of information. In order to
see the full power of this expression, let’s restate it as:

_ w(Cet1) Pra1
1 = E; {5—11(%) o ] (2.4a)
= E; [mt+17"t+1] (2-4b)

where in the second expression myy; = du(ci1)/u(c;) and o417 = pry1/pPe- Mgy is often
referred to as the stochastic discount factor or the pricing kernel. 2'° This restatement of
the pricing equation is very useful in empirical analysis. For example, let’s consider the case
of a risk-free asset, i.e., an asset that promises a fixed and known payment at time ¢ + 1.
Without loss of generality, assume this payment to be 1, i.e., p;s; = 1. The formulation
states that the current price should be p; = E;[m;,1]. But we also observe the price of such
asset through observing the risk-free interest rate in the system, i.e., p, = 1/(1 4 r{), where
r{ is the risk-free interest rate. Putting these two expressions together, we arrive at the
following statement:

1
1+th

Therefore, the risk-free rate puts a certain restriction on the behavior of the pricing kernel
in terms of its conditional moment. Prices of other assets add additional constraints and,
from there, one can start to build various moment conditions to test the desired model that
characterizes the pricing kernel.2!! In spite of its elegance, testing the first-order condition
given in (2.2) is mired with difficulty; issues such as setting the functional form of the utility
function, specifying the information used in calculating the conditional expectation, and the
consumption level to use in the model make the testing difficult and the results produced not

Eimy] = (2.5)

2.10The reason it is called a discount factor may be more clear once the expression is restated as p, =
E¢[m¢+1Pe+1]. In this format, it is clear that m,,1 is a random variable used to discount various potential
outcomes in the next period depending on the utility and consumption of the investor in each of these states.
Since it is random based on the information at time t it is called the stochastic.

2-11This approach for building a test is called the Generalized Method of Moments approach. There are
alternatives such as methods based on Mazimum Likelthood Estimation. See Cochrane (2005) for an in-depth
discussion of various methods for estimating and evaluating asset pricing models.

22



very precise. For this reason, most empirically testable models add additional assumptions
to be able to aggregate agents’ first-order condition to find certain properties that must be
held in aggregate and, hence, in equilibrium. The Nobel prize-winning Capital Asset Pricing
Model (CAPM) is an example of this approach. We will review CAPM later in this thesis.

Aggregation also has the benefit of allowing one to make general statements about the
behavior of returns without dealing with the individual’s conditional expectations. With
respect to this later point, the conditional expectations are usually replaced with those
conditioned on a subset of publicly available information that seem to be applicable to
the model under consideration or simply replaced with the unconditional expectations (see
Chapter 8 of Cochrane, 2005 for further discussion on this issue). Furthermore, using this
approach gives us some hope to be able to finally link prices to truly exogenous variables.
See Cox, Ingersoll, and Ross (1985) for an elegant example of an equilibrium model that
links prices to exogenous variables.

For the purpose of this thesis, we are more interested in the behavior that is robust to
such generalized, and potentially untestable, assumptions about the form of the utility func-
tion, the information structure and the way that conditional expectations are formed.>12
One behavior that turns out to hold almost perfectly with a relatively weak set of assump-
tions deals with predictability of financial prices that result from a competitive price-setting
system. The issue of unpredictability is ultimately related to the role of prices as a tool for
aggregating information across the system. We turn to this topic next.

2.2 Information and Prices

As discussed in the first section, prices are set by economic agents, the smallest unit of
analysis in this system, as they decide how much of each financial asset to hold based on
their objectives and risk preferences, as well as their belief about future outcomes. This last
point, the fact that economic agents decide their holding of various financial assets based on
their belief, implies that in some sense, the prices that prevail as a result of the individual’s
decision-making process already incorporate their respective information. This intuition is
the basis for the notion of informational efficiency in financial markets. But “[e]xactly what
is meant by this attractive phrase is not entirely clear” (Ross, 2005, page 42). Malkiel (1992)
offers the following interpretation for this concept that gives this claim a more operational
meaning:

A capital market is said to be efficient if it fully and correctly reflects all relevant
information in determining security prices. Formally, the market is said to be
efficient with respect to some information set, €, if security prices would be
unaffected by revealing that information to all participants. Moreover, efficiency
with respect to an information set, €, implies that it is impossible to make
economic profits by trading on the basis of {2,.213

2.12Fqr a recent treatment of issues in this type of modeling and a discussion about the alternative ap-
proaches, see Farmer and Geanakoplos (2008).
2.13\e have made minor modifications, such as adding €, to adapt the statement to current formulation.
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The critical point from the above definition is the idea that markets are said to be efficient
with respect to a particular piece of information if, once that information is revealed to all
participants, prices do not change as a result. Depending on the information hypothesized
to be reflected in the prices, one can distinguish between three forms of market efficiency.
The weak-form efficiency is the situation that prices only reflect the history of past prices
themselves. Prices are said to adhere to semi-strong form efficiency if they reflect all publicly
available information. Finally, prices are said to be strongly efficient, i.e., adhere to the
strong form efficiency, if they reflect all privately available information in addition to the
past history of prices and public information.214

Informational efficiency is ultimately related to the success of the financial markets as a
pricing system in aggregating distributed information. As expected, this would depended on
many factors such as the structure of the market, the method of exchanging information, and
the decision-making process of the agents. For example, it is possible to design structures
in which herding is the more likely outcome and, in a sense, information cascades instead
being aggregated even if all the individuals act rationally; see Acemoglu, Dahleh, Lobel, and
Ozdaglar (2008), Brunnermeier (2001), Hirshleifer and Teoh (2002).215

In fact, by putting specific structural form on the way information is acquired or decisions
are made, one can find very interesting paradoxes with the notion of informational efficiency.
For example, if prices are informationally efficient then they are a sufficient statistics for all
private signals and, hence, no one would have an incentive to collect private information.
This point is made precise in Grossman and Stiglitz (1980) by putting proper structure
around the information structure and the decision making of individual agents. This issue
can be taken even one step further to claim that the new information is reflected in the
prices without any trade taking place, see Tirole (1982) or reference to No Trade Theorem in
Brunnermeier (2001). The key here is that the process by which information is acquired is
common knowledge. So “while someone else doesn’t know what you know, they do know that
you may know something useful and that you know that they know it, and so on” (Ross,
2005, page 42). In conclusion, Ross (2005) summarizes various paradoxes of the efficient
markets to say:

As a matter of economic logic, though, markets cannot be perfectly efficient. If
markets were perfectly efficient, then no one would have an incentive to act on
their own information or to expend the effort to acquire and process information.
It follows that there must be some friction in the market and some violation of
market efficiency to induce individuals to acquire and process information.

This type of informational efficiency of financial markets, if true, implies that future
returns, i.e., future changes in prices, are largely not due to the existing information, even
if that information is only held by a group of participants, and, hence, must be largely

214Note that informational efficiency does not imply that everyone can infer the actual information content
from the prices. See Brunnermeier (2001), page 24, for some discussion on the distinctions.

2150ne particularly interesting example is the career risk, i.e., the idea that individuals have a tendency to
go with the crowed since being wrong when everyone else is also wrong has smaller career risk. See Devenow
and Welch (1996) for some examples of this. Rajan (2006) discusses this as a potential risk for the overall
stability of the system.
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dependent on the new information, i.e., on the news.?'® Therefore, in an informationally
efficient market, future returns are due to new information and hence must be unpredictable.
The essence of this idea is succinctly summarized by the title of the Samuelson, 1965 pa-
per: “Proof that Properly Anticipated Prices Fluctuate Randomly.” This is the essential
requirement on which we will be basing our analysis in the next chapter.

216 Although we do not discuss this point here, the concept of information efficiency is very different from
alternative notions of efficiency in economic structures. See Farmer and Geanakoplos (2008) for an overview
of the distinction between informational and Pareto efficiency and Brunnermeier (2001) for a more rigorous
discussion.
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Chapter 3

Are Changes in Financial Prices
White Noise?

This chapter is dedicated to the study of predictability of financial price signals. As we
discussed in Section 2.2, a capital market is said to be efficient if it fully and correctly
reflects all relevant information in determining security prices. One particular ramification
of this type of efficiency, the so called informational efficiency, is that the changes in financial
prices should be unpredictable. In this chapter, we will look at the issue of unpredictability
is detail. In particular, we show that if the only information available for predicting future
prices are the current and past prices, for the same security or other securities, and the
predictor is only limited to using linear prediction approach, the test for unpredictability of
changes in prices is equivalent to testing if the changes in prices are white noise. We will
discuss a particular algorithm for testing this hypothesis. We also show that this algorithm is
in fact designed to extract a mean-reverting component in the changes of financial prices. We
will discuss the intuition behind why such mean-reverting component may exist and provide
some interesting empirical results about the changes in the strength of this mean-reverting
component over the last decade and also in 2007. This will set the stage for next chapter
were we look at a particular model for the mean-reverting component of the price signals
based on friction that govern the interaction of buyers and seller in real markets.

3.1 Some Notation and Definitions

First, we define some notation to avoid confusion moving forward. Let p;; be the value of
price signal for security 7 at time ¢. The price time series are not convenient for analysis
since, among other reasons, they are neither scale independent?! nor stationary.3? For these
reasons, the price time series are usually transformed into returns time series through one
the following two methods:

31For example, consider bundling together 10 shares of IBM and calling it Super IBM. This later creation
has statistical properties that are related to the original price signal. It is desirable to transform the price
signals such that the resulting signal has statistical properties that are invariant to such trivial manipulations.

32Price signals are typically modeled as a stochastic process with a unut-root. See Hamilton (1994) for
information on statistical tools that can be used in analyzing this type of stochastic processes.
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Definition 1 Let p,; be the time series of prices for security ¢. This time series can be
transformed into “returns” time series by one of the following two procedures:

simple return: 15, = pit/Pig-1— 1 (3.1a)
compounded return: r{, = log(p;;) — log(p;s-1) (3.1b)

Furthermore, we often work with the prices of many securities and through several time
periods. Each of the above two transformations has an advantage in one type aggregation;
the simple return is more convenient for cross-sectional (i.e., portfolio) aggregation and the
compounded return is more convenient for aggregation through time. See Chapter 1 of
Campbell et al. (1997) for further discussion.>*® To keep the discussion general, we will use
notation r;; to refer to security ¢’s return in period ¢, which can be calculated using either of
the above methods but we will specify in each case which of the methods is used. It should
be noted that for small changes, which are of most interest in this analysis as we will be
looking at changes over one-day intervals for example, the two quantities are very close to
each other.34

Let N be the number of securities, and hence the number of price and return signals
available for the analysis at each time ¢. Let Ry = [ry4, 724, -, rN,t]T be the N x 1 vector of
returns for time t. Assume R; to be a jointly covariance stationary stochastic process with
expectation E[Ry] = p = [p1, po, -+ , un]T. Denote by I'; the I-lag auto-covariance of Ry;
ie, T = [1;(0)] = E[(Re — p)(Res — p)7].

We will also use the concept of vector white noise in the discussion below so it is worth
defining it properly here. Let W; be an IV x 1 vector stochastic process. W, is a vector
white noise if E[W,] = 0, and E[W,WZ,] = 0 for all | > 1. Note that the elements of W,
can be contemporaneously correlated but must be uncorrelated across time.

3.2 A Framework for Analyzing Predictability of Prices

We now formulate the problem of predicting future changes in financial prices. We have
to decide on the information set to be used for prediction, the prediction approach (linear,
non-linear of a particular form, etc.) and the prediction evaluation metric (such as mean
squared error, mean absolute error, etc.).

With respect to the first issue, we will limit the information set only to the most recent
set of price changes. In other words, we will limit the predictor to only use the N x 1 vector of
R;_1, as defined in that notation’s section above, for predicting the period ¢’s price changes.
With respect to the second issue, we will limit the analysis only to the linear predictor class.
Furthermore, we will use the minimum mean squared criteria for both selecting the best
estimator and also for comparing estimator in this section.

33Some other complications not mentioned here are dividends and events such as stock splits. Most data
sources used in the empirical analysis of this thesis use a specific approach in addressing these issues in
turning prices into returns. In most cases, these data sources provide a time series of return, and not prices,
as an input to the empirical analysis.

3-4This point is easy to see using Taylor expansion.
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Future returns are said to be predictable given the estimation scheme, if the average
minimized prediction error criteria, in this case the minimum mean squared error, condi-
tioned on the available information is smaller that the same criteria unconditionally. This
statement should be clear as we work out the detail of the estimator form and the expression
for the minimum mean squared error in each case as given next. We consider two cases in
turn.

e Base Line: As the base line, consider the case that the estimator completely ignores all
available information and predicts the best unconditional prediction as the predicted
value. We will denote this estimator by 75 (Base Line). It is well-known that the
estimator in this case is given by: 7pp(r,:) = pi.>% The estimation error is simply
errorgr(rat) = it — tr(re) = iy — ps. Denote by Ag(i) the mean squared error of
this estimate. In this case, we have:

Br = Elerrorgr(riz)?]
= Bl(ris — 1i)%]
= o? (3.2)

This will be the base line for comparing the performance of other estimators that will
be considered next.

e Linear Estimator: Linear Least Squares (LLS) estimator is optimal in this case. The
estimator is given by

Fris(rus Re-1) = ﬂi+I‘Z;,R¢—1I‘1?{:_1Rt—1

= M+ FZ,Rt_lI‘f_th—l

where, T'r,_, is the covariance matrix for the elements included in R;-1, I';, r,_, I8
the covariance between r; and elements in R;_;, and f{t_l is the deviation between
the elements in R;_; and their means, i.e., R;_; = R;_1 — p. Note that due to the
assumption of covariance stationarity, we have ', , = 'y, and ', r,_, = ' g, In
this case, the error is given by errorprs(ris; Re—1) = 1ig — pta — I‘T“RtI‘ﬁiﬁt. It is easy
to see that the mean squared error in this case is given by:

35Fven in this case, one can claim that the estimator is using the knowledge about the unconditional
average as the prediction. Throughout this discussion, it is assumed that all the distributional properties
of returns is known in advance and does not need to be learned from the data. Hence, the information
available, such as recent returns, is ignored in this case in the sense that they do not enter or modify the
predicted value in any way.
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ts = Elerrorrrs(riReo1)?]
T 15 2
= F [(Ti,t — My — I‘T“Rt_ll"ﬁth“l) :l

= 012 - I‘Z;,Rt_lrl_},iFTuRt—l (3.3)

Comparing (3.2) and (3.3), it is clear that as long as ', g, , is not identically equal
to zero one can achieve some reduction in mean squared error using linear estimation
technique. This is the basis for the Random Walk Model®® for financial prices and will
be the basis of the hypothesis that will be tested in this section.

The hypothesis that will be outlined in the next section is to test if prices are predictable
using past prices alone, hence testing the Weak-form Efficiency based on the linear prediction
approach described above.

3.3 Hypothesis Testing

A hypothesis is a statement about the population parameter, for example “mean of a random
variable equal to zero,” or a certain relationship that must hold between different parame-
ters, for example “for normally distributed random variables, the second and forth central
moments have a ratio of 3 to 1.” In either case, the appropriateness of the model can be
validated by testing if the hypothesized relationship holds in the data. Since the population
parameters are unobservable (after all if that was not the case there would be no point in
statistical hypothesis testing), the appropriate parameter(s) must be estimated from a given
sample of observations. Typically, a hypothesis test is specified in terms of a test statistic,
a function of an observed data sample, which can be compared against the value of that
statistic if the data was truly following the supposed data generating process. Since the test
statistic is simply a function of observed data, it itself is a random variable and, therefore,
appropriate statistical distribution must be derived when comparing the observed value of
the test statistic in a given sample against its population counterpart if the hypothesis was
true.

In this section, we will focus on a testing approach designed to detect deviation from
Weak-form Efficiency coupled with Linear Estimator approach. As outlined above, this
hypothesis is equivalent to testing the null hypothesis that the covariance between future
returns and all lagged returns is zero. This null hypothesis is equivalent to testing if

Null Hypothesis: T = E[(R; — pt)(Ryp1 — p)7] =0 (3.4)

Recall that we have assumed the stochastic process for R; is a covariance stationary
process with mean p and auto-covariance matrix given by I';. Under this maintained hy-
pothesis, the null hypothesis outlined in (3.4) is equivalent to testing if the R, = p + W,

36This is in fact an example of an uncorrelated increment random walk.
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where W, is a white noise vector stochastic process. Therefore testing the null hypothesis
of (3.4) is equivalent to testing the null hypothesis that the changes in prices above the
long-term mean, p, is a white noise vector stochastic process.

To set the stage for the analysis, it would be appropriate to discuss how such a test
would be implemented in the case of a single return series. In this case, the hypothe-
sis proposed in (3.4) comes down to testing whether the covariance at one time lag, i.e.,
7i(1) = Cov(ris, mt-1) is equal to 0. This suggests a straightforward solution: estimate
4:(1) from the sample and compare the difference between the estimate and the expected
value under the null hypothesis (0 in this case) using appropriate sampling distribution. It
turns out that looking at the estimated correlation, defined as p;(1) = 4;(1)/%(0), has easier
statistical properties to work with.>” For example, a common statistic used to measure the
null hypothesis of the above form is based on the value of the following quantity estimated

using the available T samples of the returns for security i:>%

Qu(1) =T pi(1)

Under the above null hypothesis, it is easy to show that @,(1), known as the Box-Pierce Q-
statistic, would be asymptotically distributed as x?. By summing up the square of various
auto-correlations, the Box-Pierce Q-statistic is designed to detect deviation from the zero
auto-correlation in either direction. This statistic is by no means the only, or even the
preferred, way of testing for the above null hypothesis. There are many alternatives with
some having more precision to detect certain deviation better than others. For example, Lo
and MacKinlay (1988) use “variance ratio” defines as:

Var(riz + ri¢—1)
2. Var(rl’t)

to test a similar hypothesis. It is easy to show that the variance ratio is simply equal to
VRis = 1+ p;i(1). A test based on this statistic can be generalized to use longer horizon
returns.

In summary, both the @,; and the VR, , are simple functions of the first order serial
correlation. But which one is more appropriate? To answer this question, one has to define
the measure of appropriate. In the context of Neyman-Pearson hypothesis testing, there is a
fundamental tradeoff between size and power of a statistical test, more commonly referred
to as probability of Type-I and Type-II error.3® So one possible way to answer the above
question is by looking at which test has more power, i.e., higher probability of rejecting the
null hypothesis if the alternative hypothesis is true for a test with a given size (recall the size

VR;(2) =

3.7We work out the detail of the statistics of the first order serial covariance and the first order serial
correlation in Appendix A.4.3. The derivation outlines why g,(1) has more convenient statistical properties
than 4,(1).

3.8This statistic is called the Q-statistic and was first developed in Pierce and Box (1970). Ljung and Box
(1978) provide a modified version with better small sample distribution. Derivation of the asymptotic distri-
bution of this statistic is straightforward using Generalized Method of Moment (GMM). See the Appendix
in Campbell et al. (1997) or Chapter 14 in Hamilton (1994) for a review of GMM. We will also deal with
this issue in Section 6.1 of Chapter 6.

3.91n statistics, the terms Type-I error (also known as false positive) and Type-II error (or a false negative)
are used to describe possible errors made in a statistical decision process.
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is the probability of rejecting the null if it is correct and typically set to 5% or 2.5%). One
challenge in doing this type of analysis is determining the appropriate alternative hypothesis.
Lo and MacKinlay (1989) look at this type of question in great depth.

3.3.1 Test Statistic

The testing approach we will follow extends this basic intuition by estimating a particular
function of elements of the auto-covariance matrix in sample and comparing that against the
value under the above null hypothesis. As it turns out, the easiest way to outline this test
statistic is as the outcome of a particular algorithm. For reasons that will be clear shortly,
we will refer to this algorithm as the Contrarian Trading Strategy.3'° A trading strategy is
a procedure that specifies the amount of investment that must be made in each security 7 at
time ¢. The algorithm works as follows.

Consider the case of N securities with period ¢ return given by 7;;. The amount invested
in security 7, denoted by w, 4, is then selected as:

N
1 1
Wit = —_(Tz,t - Tm,t) where Tmt = N ;Tz,t (35)

N
Let’s define the profit, m;, as the change in value of this investment by time ¢ + 1. Given
the investment of w;;, the initial value of the investment is Zf\; L Wit. Notice that by the
construction outlined in (3.5), we have Zfil w;¢ = 0. The number of units of asset 7 that
can be purchased based on the initial investment of w;; is given by w,/p;;. Hence, the
change in the value of the investment by time ¢ + 1 is simply:

N N
_ wz,t
T = E — "Dyl — Wit
i=1 Pit =1
N——
=0

N
= Z Wi (T 41 + 1) where 7,41 is the “simple return” from Definition 1
i=1
N N
= Z Wyt Tit+1 + Z Wyt
=1 i=1
~——

=0

N
= Z Wi tTo 141 (3.6)
i=1

3-19This strategy was first studied in Lehmann (1990) and Lo and MacKinlay (1990b). But in this treatment,
we are using the strategy as a simple way of extracting a particular test statistic for testing the null hypothesis
outlined in (3.4). This usage is very different from the original analysis conducted in those papers. The

treatment here, in particular some of the mathematical derivations, is closely related to Lo and MacKinlay
(1990b).
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The expected value of m; will turn out, as will be shown shortly, to be related to the
auto-covariance matrix. The key to this particular trading strategy, and the reason it can
be used as a test for the above null hypothesis, is that the weights, i.e., the w,; specified in
(3.5), are linear in the past returns. Therefore, the expected profit of the strategy will be a
function of various elements of the first order auto-covariance matrix. To see this, substitute
the definition for w;; given in (3.5) into (3.6) and simplify as follows:

N i 1 X
™ = ; _']v(ri,t - szlrj,t) Tit+1
1 - 1
= = Z TjtTit4l = = ZTz’,tri,tH (3.7)
N T N3

This final expression for 7; makes it clear that the expected profit, E[m], will be a function
of expectation of the inner products of the current and the one time lagged returns, which
in turn can be written in terms of the first order auto-covariance function. The following
proposition makes this precise:

Proposition 3.1 Consider the collection of N securities and denote by Ry the N x 1 vector
of their period t returns, [ri.---7ny). Assume that R, is a jointly covariance-stationary
stochastic process with expectation E[Ry] = p = [p1---pn] and auto-covariance matrices
E[(Ri—i — p)(Ry — )] =Ty = [3,(1)]. Consider a net-zero investment strategy that invests
w,¢ dollars given by

N
1 1
Wiy = _N(ri’t — Tmt) where Ty = N ; Tit (3.8)

in security i. The ezpected profit, E|m), where m is given by

N
T = E’wi,m,tﬂ (3.9)
=1
18!
1, 1 ,
Elr] = smtTie— i) —o(k) (3.10)

where ¢ is an N X 1 vector of ones and

N N
1 1
2 2
= = i Bm ;) Hm = 37 i 3.11
o*(mn) N;m )™, N;ﬂ (3.11)
Proof: This is a special case of Proposition 4.3 for ¢ = 1.
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Proposition 3.1 shows that the trading strategy described in (3.5) generates an expected
profit that is a function of the I'; and o?(p). Under the null hypothesis of interest, see (3.4),
the first part of this expression is zero. So the expected profit should be negative. This is
summarized in the following corollary.

Corollary 3.1 Under the null hypothesis of

Ty = E[(R; — 1) (Ress — p)7] =0 (3.12)

The expected profit of the Contrarian strategy described by (3.8) where profit is calculated
by (3.9) is:

Elm] = —o*(p)
where,
1 & 1 &
) = 5D (=) = Y (3.13)
i=1 1=1

Proof: Follows immediately from Proposition 3.1.

Proposition 3.1 shows that the expected profit from the trading strategy described in this
section amounts to calculating a particular combination of the elements of the first auto-
covariance matrix, I';, as given by (3.10). Under the assumptions of the null hypothesis of
interest, this expression should be a negative value given by Corollary 3.1 and expression
(3.13).

Similar to the discussion we presented in Section 3.3 in connection with testing a null
hypothesis of a similar nature for the case of a single time series, there are other possible
combinations that can be used in testing the null hypothesis of interest. For example, it would
be entirely possible to use sum of the squared values of the elements of I'; to construct the
test statistics. So a natural question would be to ask what makes this particular combination
of the elements of I'; preferable?

The discussion regarding the difference between the Variance Ratio Test and the Q-
statistic still applies. This means that without a proper alternative hypothesis, there is no
basis upon which to judge which particular functional form of the elements of I’y would
be preferable. One reason that the proposed statistic in this section is superior to other
alternatives is that it has a clear economic intuition. On this basis, the deviations from the
null detected by this statistic can be directly mapped into a particular type of friction in
the market. This economic intuition and the implications captured by deviation detected by
this test will be explained after we present the empirical results in the next section.

3.4 Empirical Analysis

The data for the empirical analysis is obtained from Center for Research in Security Prices
(CRSP). Please see Section A.1.1 for an overview of the CRSP database and various filters
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applied and data cleaning steps taken prior to this analysis. The main data taken from this
database is the daily “Holding Period Return” for 1995 to 2007.31!

Before moving on to the main empirical analysis, it is worth taking a look at the statistical
properties of return signals that will be the subject of subsequent empirical analysis and
develop a general sense of the time series properties of these signals. Table 3.1 shows this
information. Each row shows the data for a given year. For example in 1995, the data
from 5,307 individual return signals were used to calculate the reported statistics. The
average of the daily means of these 5,307 price signals was only 13.73 basis points (bps)*!?
or 0.1373%. These types of statistics are usually referred to as the cross-sectional statistics
of the data since they are averages across the available cross-section. The cross-sectional
standard deviation of the means was 19.59 bps. So the variance of the means, i.e., the o?(u)
to be used in (3.10) was tiny 0.04 bps. The returns usually have a large daily volatility,
for example the cross-sectional average of daily standard deviations in 1995 was 295.9 bps
(cross-sectional standard deviation of this was 156.2 bps).

Financial price signals generally have a large noise when measured at high-frequency (for
example, at daily frequency as we do here). To give the reader a sense of this, we have
reported the cross-sectional average and standard deviation of the SNR defined as p;/0; in
the table as well. As can be seen, the signal-to-noise ratio is typically in the order of 1072,
making any statistical analysis on individual price signals difficult.

Table 3.1 also reports the estimates of the first order serial correlations, p;, for these return
signals. Even though the individual serial correlations are generally negative, the magnitudes
are generally small. This is similar to the observation made in a number of earlier studies, for
example Lo and MacKinlay (1988), that the stock returns seem to have a small negative serial
correlation that is of little economic impact. Also notice that even though the magnitude of
serial correlation seems to have increased (so it became less negative) in the first 3 or 4 years
of the sample, see Table 3.1, there does not seem to be a clear trend. The empirical analysis
presented in the next section provides a more direct test of the predictability, primarily by
looking at all elements of I'; instead of simply the diagonal elements reported in Table 3.1.

We now apply the trading strategy described in the previous section in equation (3.8) to
these return signals. We will then calculate the realized profit for each day based on (3.9).
Before we do this, however, we need to address one other potentially complicating factor.
The realized profit defined in (3.9) is a linear function of the w;;. Therefore, a larger trading
position, i.e., larger values of w;;, would result in a larger profit without really capturing
the economic value of deviation captured by this mathematical expression. In order to have
a proper economic intuition, we need to find a way to normalize the profit by the initial
investment. Recall that the w;; are the dollar investment amounts in security ¢ for day ¢
defined by (3.8). So the immediate approach would be to normalize the profit by the total

investment needed, i.e., by S~ | w;,. However, the ws defined in (3.8) by definition add up

311CRSP takes into account issues such as dividend and stock splits in calculating the returns based on
prices using an approach similar to the “simple return” from Definition (1). Please see the documentation
from CRSP for more information.

312 “Basis Points” (commonly denoted by “bps”) is a commonly used unit to report small numbers, 1
bps=10~% or 100 bps=1%.
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Table 3.1: This table reports a summary of cross-sectional statistics for the following basic
statistical measures of price signals: mean, standard deviation, first order serial correlation,
and the signal-to-noise ratio (defined as mean/standard deviation) based on the daily holding
period returns for years 1995-2007. 1 bps=10"%.

Mean (bps) Standard Dev (bps) Rho 1 SNR
Year Count Average StDev Variance Average  StDev Average StDev Average StDev
1995 5,307 1373 19.59 0.04 2959 156 2 -0.12 0.19 0.056 0061
1996 5,952 885 20.65 0.04 324 2 1796 -0 10 0.18 0.036 0 056
1997 5,984 11.06 20 40 0.04 315.7 156.5 -0.09 0.16 0.049 0062
1998 5,908 1.30 25 38 006 382.9 236.5 -0.04 0.16 0.005 0 056
1999 5,370 10 32 31.78 0.10 385.4 207.2 -0 06 0.15 0.018 0065
2000 5,362 -0.70 36 59 0.13 495.8 2620 -0 06 0.15 0.010 0063
2001 4,292 10 62 24 09 0.06 390.4 210.0 -0 04 0.15 0.035 0054
2002 3,987 219 2157 005 353.0 1870 -0 07 0.13 0.005 0.052
2003 3,681 19.38 1813 003 2570 118.7 -0 05 0.12 0077 0.050
2004 4,060 8 80 16 05 003 248.9 1276 -0.05 0.12 0041 0.054
2005 4,037 359 16.55 0.03 234 3 116 6 -0.05 0.12 0.018 0.057
2006 4,028 740 14.59 002 228.8 104.2 -003 0.12 0037 0.054
2007 4,012 001 19 61 004 258.1 1167 -0 06 012 0003 0 066

to 0 and the strategy described in (3.8) represented a $0 investment strategy.>1® To obtain a
sensible normalization, we will normalize the profit by the following normalization factor:3-14

LN
L = §;|wzt| (3.14)

and calculate the normalized profit, which we will refer to as the return as:

e = ?— where, 7; is defined in (3.9) and I is defined in (3.14)
¢

The result of applying this strategy to daily stock returns since 1995 is presented in
Figure 3.1. The average strategy profit or return for each year of this period is displayed.
The general pattern of the expected profits and returns are similar. A clearly declining
pattern in both the average profit and the average returns are observable.

The results for the statistical test of the null hypothesis of zero profit is reported in Table
3.2. The realized values of profit or return, m; and r;, may exhibit heteroskedasticity or serial-
correlation since subsequent periods share some data (namely return for day t, Ry, is used in
calculating the profit and return for day ¢ and also to establish w’s for day ¢+ 1). Therefore,
care must be taken in conducting the statistical test of these values. The generally accepted
approach in statistics is to use an estimator for the standard error of the mean estimator
that is robust to such dependency. The statistics reported in Table 3.2, and also later in

3 13Such strategies are referred to as arbitrage strategy in finance.

3-14This normalization factor is motivated by the regulation applied to entities, such as broker-dealers and
hedge funds, that may be engaged in these types of trades. Please see Khandani and Lo (2007) for a
discussion of this point.
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Table 3.3, are based on the Newey-West estimator using 3 lags.?!?

A t-stat value of greater than 2, associated with a test with size of 5%, is the generally
accepted level of significance for these types of tests. It can be seen that even in the most re-
cent year, 2007, the null hypothesis of zero expected profit can be rejected at all conventional
levels of significance.

Based on the reported return, we can get a sense of the actual economic significance of
these returns. For example in year 1995, the return for this strategy was about 1.2%/day
or about 350% per year (there are about 250 trading days in each year). Of course, in 1995
applying this type of strategy, i.e., trading across several thousand stocks each day, was not
possible as we will discuss further in the next section. But even in the most recent year,
the return was about 40-50% /year. So it is hard to argue that the economic significance of
the deviations is too small to be of interest to the very competitive business of investment
management. So what are the results telling us? This is the discussion that we will elaborate
on in the next section.
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Figure 3.1: This Figure shows our measure of the average value of the contrarian signal in
stock prices between 1995 and 2007. This value is measured using the average profit and the
average for the contrarian trading strategy between 1995 and 2007. The trading strategy
invests w;; dollars in security i on day t where w;y = — % (riy—rmy) and  rmy = vazl Tit-
Profit (m;) is calculated as m; = Zf\il w; i ¢+1 and return (ry) is calculated as ry = T+ where
I, = %Zf\;l |w;¢|]. Average returns are reported in percentage points. The average profits
are reported in basis points or “bps” where 1 bps=10"%.

3-15Gee the Appendix A.1.2 for further discussion on this issue and an introduction to the Newey-West
estimator.

37



Table 3.2: Formal statistical test of average profit and average return of a trading strategy
that invest w,; dollars in security i on day ¢ where w,; = —%(r,,t — Tme) and Ty =
% Zfil rit. Profit (m) is calculated as m; = Zf\il w;Tig+1 and return (r;) is calculated as
T, = ft where I; = %Zﬁ’__l |wi¢]. Under the null hypothesis of no-linear predictability, the
average profit should be zero. A T-stat of greater than 2, associated with a test with size
5%, is the generally accepted level of significance. T-stats are calculated using the Newey-
West approach using 3-lags. See Appendix A.1.2 for a discussion of the issues involved with
developing appropriate statistical significance in this case. Average returns are reported
in percentage points. The average profits are reported in basis points or “bps” where 1
bps=10"%.

Panel A: Daily Profit Data

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Average Profit (bps) 132 121 092 0.68 055 069 04 049 0.15 0.29 019 0.11 015
T-stat of Average 46 44 3266 12.90 8.70 706 368 2,98 704 5.36 9.82 763 461 378
Aveage Count 4,780 5,272 5,392 5,195 4,736 4,566 3,782 3,485 3,375 3,740 3,721 3,764 3,522

Panel B: Daily Return Data

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007
Average Return (%) 1.38 117 0.88 0.57 0.44 044 031 045 021 037 026 0.15 020
T-stat of Average 47 65 36.32 1937 1175 778 403 387 777 596 1053 8.41 478 5.13
Aveage Count 4,780 5,272 5,392 5,195 4,736 4,566 3,782 3,485 3,375 3,740 3,721 3,764 3,522

3.5 A Signal Detection Scheme

Recall that the investment this strategy makes on day t in stock ¢, or w,;, is based on that
stock’s day ¢ return and the average return of all stocks on that day as specified in (3.5)
which is repeated here to facilitate the discussion:

N
1 1
Wiy = —N(Ti't - rm,t) Where rm,t = N ; Tit (315)

So the investment in each stock is proportional to the amount by which it has under
performed the average as calculated in 7, ;. Similarly, the investment is negative for stocks
that have outperformed the average on that day. In summary, this strategy is betting on the
fact that days with positive return will be, on average, followed by days with negative return
and vice-versa. The fact that the profits reported in Figure 3.1 and Table 3.2 are positive
show that this “bet” is a profitable bet on average; i.e., it has a more than fair chance of
being correct.

From the engineering perspective, this trading algorithm is designed to detect the exis-
tence of a mean-reverting component in prices that are otherwise simply white noise signals.
We will refer to this as the contrarian signal component of prices. Hence, our algorithm is
simply a procedure for detecting this type of signal and the magnitude of the resulting av-
erage profits or returns are different transformation of the strength of the contrarian signal.
The results suggest that prices do have a small contrarian component and the strength of
this component of price signals has declined overtime. But why may this be the case? Here
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is one possible reason.

Recall that for every buyer there is a seller. But there is a difference between the times
that buyers have initiated a transaction and times that sellers have done so. Perhaps, stocks
that have outperformed the average on a given day tend to be more often traded in buyer-
initiated trades. For these stocks, there is a supply-demand imbalance in the direction of
excess buyers. The strategy discussed in this section simulates the behavior of an entity
who is willing to sell such stocks. On the other hand, stocks that have under performed are
the ones that have been more often initiated by sellers. Again, in this case, the simulated
strategy is acting as an entity who is willing to buy such stock. In both cases, the simulated
strategy is capturing the behavior of an entity who is willing to act as a balancing force in
the supply-demand imbalances that exist. So what type of entity is being captured by this
simulated strategy?

We argue that this is the behavior of dealers or what is more commonly referred to as
market-makers. These are the entities that, similar to a car dealership, are willing to buy
or sell stocks to interested sellers or buyers as they arrive in the marketplace. So the profit
documented in the empirical analysis may simply show the amount of profit captured by
such dealers acting in this market. Perhaps in the earlier parts of the sample this behavior
was not really achievable as it would have required simultaneously trading across more than
5,000 stocks. One would expect the profit to decline as the technology for this type of
activity becomes more widely available, and as more competitors enter the market. These
expectations are consistent with the pattern of observed profits and returns documented
above.

Table 3.3 gives some additional support for this argument. In this table, we have doc-
umented the profit of this strategy when applied to 10 size-sorted (when the total Market
Capitalization is used as the size) Deciles of stocks.3® Notice that the profits are always
more substantial among smaller stocks. Smaller stocks tend to be less widely traded and,
hence, providing the dealership service for these stocks is akin to being a dealership for ex-
otic cars; such dealers are expected to collect a higher premium for providing their service.
Motivated by this intuition, we will be providing a model for dealership’s behavior in chapter
4.

In order to set the stage for Chapter 5, we have shown the behavior of this strategy in
2007 in Figure 3.2. It can be seen that there was a substantial breakdown in early part of
August 2007. We will show in Chapter 5 that the model described in Chapter 4 can be used
to explain the mechanism behind this apparent system breakdown in 2007.

3.16The Deciles are constructed on the first trading day of January and July of each year and kept intact
for the subsequent 6 months.
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Table 3.3: Formal statistical test of average profit and average return of the contrarian trading strategy applied to 10 size-
sorted Deciles of stocks for each year between 1995 to 2007. Please see the caption of Table 3.2 for a description of the strategy
and values reported. Average returns are reported in percentage points. The average profits are reported in basis points (bps)

where 1 bps=10"*. The t-statistic calculated based on the Newey-West estimator with 3-lags is reported in the parenthesis.
Panel A: Daily Profit Data (bps)

Year Smallest Dcecile 2 Dceclle 3 Dcecile 4 Dcecile 5 Dcecile 6 Dcecile 7 Dcecile 8 Dcecile 9 Largest All

1995 4 24(50.5) 3.36(39.6) 2.24(32 6) 1.79(27 2) 1.12(18 3) 061(14.2) 0 19(4.5) -0 01(-0.3) -0 01(-0.6) 0.02(1.0) 1.32(46.4)
1996 4.31(40.4) 3 04(33 3) 2.17(31 3) 1.60(22 6) 0.98(11.8) 0.58(10.1) 020(3 6) -0.10(-1.9) -0.02(-0 5) 0.02(0 6) 121(32.7)
1997 3.26(34.1) 229(21.7) 161(15.4) 1.20(11.3) 074(6.4) 0.32(39) 0.07(1.0) -0 08(-1.0) 0.08(1.3) 011(2.7) 0.92(12 9)
1998 3.01(15.1) 1.92(10.8) 1.49(11.0) 0.86(6.9) 0.43(2.9) 006(0 6) -0.05(-0 6) -0.14(-1.5) 001(0.1) 0.09(1.6) 0.68(8 7)
1999 3.05(23 4) 1.78(10.7) 1.03(9.5) 053(3.8) 005(0.3) -0.08(-0.6) -0.19(-1 3) -0.38(-3.1) 001(0.1) 0.05(0.7) 0.55(7.1)
2000 320(22 8) 2.10(12.3) 1.26(5 9) 0 19(0.8) 0.11(0.5) 000(0 0) -0.16(-0.6) 028(09) 0.00(0.0) 0.06(0 2) 0.69(37)
2001 2.04(19.9) 1.28(13.6) 0.69(5.0) 034(1.9) 0 09(0.5) 017(0.9) 0.23(1.2) -0 14(-0.9) -0 19(-1.2) -0.16(-1.0) 0.40(3 0)
2002 1.43(17.0) 075(14.1) 0.56(6.4) 036(4 2) 0.33(3 6) 0.31(3.8) 031(3.5) 0.22(2.4) 013(1 3) 011(12) 049(7.0)
2003 0.76(14.0) 0.20(5.3) -0.06(-0.9) 004(0.7) 0.09(1.7) 016(32) 0.14(3.2) 0.10(2.9) 0.02(0 7) 0.02(1 1) 0.15(5 4)
2004 1.05(12.4) 0.39(7 4) 0.27(5 3) 0.36(7.6) 022(4.7) 023(52) 0.15(3.6) 0.10(3.2) 002(0.8) -0.01(-05) 0.29(9 8)
2005 0.97(10.3) 031(7.3) 0.11(2.6) 009(2.2) 008(2.4) 0.09(2.2) 004(1.4) 0.05(2.0) 0.01(0 4) 0.01(08) 0.19(7.6)
2006 068(10.5) 0.20(4.4) 0.10(2.1) 0 07(1.6) 0.04(1.0) -001(-0.2) -0.02(-0.7) 003(1 1) 0.03(1 5) -0.00(-0 2) 011(46)
2007 0.65(7.9) 024(4.0) 021(28) 0.20(2 9) 017(27) -0.06(-0.8) 001(0.1) -0.04(-1.1) -0 07(-1.6) -0 03(-1.0) 0.15(3.8)

Panel B: Daily Return Data (%)

Year Smallest Dcecile 2 Dcecile 3 Dcecile 4 Dcecile 5 Dcecile 6 Dcecile 7 Dcecile 8 Dcecile 9 Largest All

1995 3.57(54.8) 2.75(45 8) 1.94(32.7) 1.62(29.2) 1.07(18.8) 0.61(14.4) 0.21(4 6) -0.01(-0 3) -0.02(-0.6) 0.04(10) 1.38(47 6)
1996 3.58(44.7) 2.47(34 0) 1.82(32.0) 1.34(23.9) 0.84(13.1) 0.52(10.9) 0.19(3.5) -0 11(-2.0) -0 04(-0.8) 002(0.4) 1.17(36.3)
1997 2.83(36 6) 1.94(25.4) 1.34(19.2) 1.02(14 3) 0.62(8.1) 028(4.9) 0.04(0 8) -0.12(-2 0) 0.06(1.1) 0.14(30) 088(19 4)
1998 2.38(18 8) 1.45(12 8) 111(13.8) 062(7.7) 029(30) 0 03(0.4) -0 04(-0.7) -0.12(-1.7) 003(0.4) 010(1.9) 0.57(11.8)
1999 2.56(26.2) 1.41(152) 0.82(10.1) 038(4 1) -0.01(-0.1) -0.11(-12) -021(-23) -0.35(-3 8) -001(-01) 006(0.8) 044(7 8)
2000 2.58(26.1) 1.59(14.5) 0.92(7.3) 0.14(1.0) 003(0.3) -0 02(-0.2) -0.14(-1.0) 0.16(1.0) 0.00(0 0) 0.03(0.2) 0.44(4.0)
2001 2.15(23.8) 125(15.4) 0.57(58) 0.24(2.2) -0 01(-0.1) 006(0 6) 013(1.3) -0 10(-0.9) -0.11(-10) -0.11(-0.9) 0.31(3.9)
2002 1.67(19 5) 0.85(15.1) 0.53(6 5) 0.29(4 2) 028(3.9) 026(3.7) 0.28(3.6) 0.20(2 4) 011(1.2) 009(1.0) 045(7.8)
2003 1.00(14 2) 0.26(5.4) -0.07(-1.0) 004(0 6) 0.11(19) 020(3.6) 0.18(3 4) 015(3.1) 0.04(09) 0.05(1.3) 0.21(6.0)
2004 1.17(13.2) 0.48(8.5) 0.31(5.5) 0.38(7.8) 025(4.8) 0.29(5 5) 022(4.1) 0.15(3 4) 0.05(1.1) -001(-0.3) 0.37(10 5)
2005 1.05(12 0) 0.39(7.8) 0.13(2.5) 011(2.2) 0.09(2.3) 011(21) 0.05(1.4) 008(1.9) 0.01(0.4) 0.02(07) 026(8 4)
2006 0.86(11.9) 026(4.3) 0.11(2.0) 0.06(1 3) 005(1.1) -0.02(-0.3) -0.02(-0.8) 0.05(1.2) 006(1.7) -0 00(-0.0) 0.15(4.8)

2007 0.74(9.2) 0.26(3 8) 025(3.4) 024(4 3) 021(39)  -0.08(-0.9) 003(0.7)  -0.04(-0.8) -007(-12)  -004(-0.9) 0.20(5 1)
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Figure 3.2: The cumulative profit and return of the contrarian trading strategy in 2007.
Cumulative profit is simply the running sum of m; for the days since January 1, 2007. The
Cumulative return, r¢, is calculated as r{ = [[,(1+ 1) — 1. Please see the caption of Figure
3.1 for a description of the strategy, as well as the method for calculating profit, ;, and
returns, r;. Returns are reported in percentage points and profits are reported in basis
points or “bps” where 1 bps=10~*.

3.6 Chapter Conclusions

This chapter started with a relatively abstract notion of informational efficiency of price
signals. We discussed how this notion is related to the predictability of prices. We looked
at both linear and non-linear predictors and elaborated on the implications of each for the
dynamics of price signals. We looked at methods for testing predictability of the next day’s
return based on the most recent set of returns and linear predictors. It was shown that the
profit of the Contrarian Trading Strategy is one possible sample statistic for testing this type
of predictability.

In the empirical analysis, we detect a relatively large but continually decreasing deviation
from unpredictability in returns for the period of 1995 to 2007. We argued that the trading
strategy used is a simple procedure for detecting a mean-reverting signal among otherwise
white noise signals. Hence, our results suggest that there is indeed a weak mean-reverting
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component in the price signals and the strength of this component has declined in during
this sample.

We argued that the deviation from unpredictability detected through these tests is a
result of the arrival of buyers and sellers and the resulting supply-demand imbalance. As
mentioned before, while the perfect informational efficiency and unpredictability may be
possible in an idealized “friction-less” world, there are many impediments in the real world
that cause the actual behavior to deviate from what would be expected in the idealized
setting. Finally, we showed the performance of this test in two particular instances: among
different subset of stocks based on the company size and also in year 2007, to highlight the
kind of frictions that we believe play a major role in the behavior documented using these
tests. This set the stage for the model we will discuss in Chapter 4 regarding the underlying
frictions captured by the tests in this chapter.
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Chapter 4

Short-Term Deviation from White
Noise

In this chapter, we will take a closer look at predictability in price signals. As we argued
before, the profit of the trading strategy discussed in the last section is a function of the
elements of the auto-covariance matrix and can be used to detect small deviations from
perfect unpredictability of the underlying price signals. The evidence provided before shows
that the degree of deviation from efficient prices, i.e., the success of linear predictors using
only prior prices in the framework discussed in the last chapter, has declined over time.
Furthermore, the deviations have been consistently stronger among smaller stocks. This
behavior suggests that the level of predictability may a by-product of certain “frictions”
in the system that have been reduced over time. In other words, while under the idealized
world outlined in Chapter 2, prices should fully reflect all available information, and hence be
completely unpredictable, in the real world there are many impediments in the inner works
of the market system and the resulting price signals may deviate from the idealized setting
due to such frictions. In order to analyze the time-series properties of the resulting price
signals, one has to explicitly model the important frictions that may give rise to deviation
from perfect unpredictability.

We will explicitly model one such phenomenon and develop a hypothesis about the time-
series dynamics of price changes. A nice feature of the model developed here is that it
also produces testable hypotheses about the link between predictability of prices and other
observables of the system. The empirical hypothesis testing results are presented at the end
of this chapter.

4.1 Motivation

We will start by discussing a simple example to motivate the subsequent analysis. Consider
analyzing the time series of prices at which a particular item, say a particular make and
model of a car, is sold or purchased. Let’s represent the fair price of the item at time ¢ by
pi. What this means is that if you own this item and could instantly contact an interested
buyer when you decided to sell, for example if there was an auction held at that moment to
inform all interested buyers, you would be able to find someone to buy it from you for p;. Of
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course, the assumption that you could find the other party instantly is not very reasonable
and that is precisely the issue.

In reality, finding the buyer may be difficult and this difficulty gives rise to what is referred
to as the search friction. One way to alleviate this issue is to have an organized market, such
as the New York Stock Exchange, where all buyers and sellers come together. But even in
such a setting, there is still a friction since buyers and sellers arrive asynchronously at the
market; i.e., a buyer to offset an arriving seller may not arrive for a few seconds or minutes
after the time that the sellers has arrived. In this section, we will create a model that links
the synchronicity friction to predictability in the resulting price signals.

To better understand why this may be the case, consider a scenario in which buyers and
sellers arrive randomly and try to buy or sell an item instantly. Since a seller may not be
immediately available when a buyer arrives and vice versa, one can argue that dealerships are
needed to alleviate this synchronicity issue. For example, a dealer (think of a car dealership,
for example) can buy from the interested seller immediately and wait until an interested
buyer has arrived. Assuming an interested buyer will eventually arrive, the dealership is not
exposed to too much risk (they know a buyer will eventually come). But they still need an
incentive and should charge a fee to provide this service. One way for the dealers to get
this incentive would be to buy the item from the interested seller immediately but at a price
slightly below the fair value, p;, and then sell it to the interested buyer at a price slightly
above the fair value. Let 0 represent this spread, so the transaction prices are p; — § and
p} + &, respectively.*! Let b; be an indicator random variable which is 1 if the transaction
at time ¢ was initiated by a buyer and —1 otherwise. From the point of view of an outside
observer looking at the prices at which the transactions occur, they will see a time series of
prices governed by the following data-generating process:

pe = p; + 0b, (4.1)

For now, we will assume that each b, is +1 or —1 with probability 1/2 independent of
everything else. Let Ap, = p; — p;—1. It is easy to calculate the following statistics for the
observed price changes:

2
Var(Ap;) = Var(Ap}) + -(-52— (4.2a)
52
COV(Apt, Apt+1) —Z (42b)
Cov(Apy, Apirk) = 0, k>1 (4.2¢)

As can be seen in the above formulation, the subsequent price changes have a negative
covariance. This negative covariance is the result of imperfection in the mechanism by which
the arriving buyers and sellers engage in transactions. For example, if instead of randomly
arriving buyers and sellers, we had a situation where each day all interested parties came
together to do all their buying and selling, i.e., the auction scenario mentioned above, then
perhaps there would be no negative covariance in the resulting prices. In other words,

41This approach was first proposed in Roll (1984). See also Campbell et al. (1997).
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the observed negative covariance in this case is a result of the system’s frictions and the
actual mechanics of the trading process. For this reason, it is not hard to imagine that if
a technological change, for example more easily available communication networks, made it
easier for buyers and sellers to find each other, the resulting prices would move closer to
the actual fair price, i.e., p;. Furthermore, the variance of price changes is dominated by
the variance of the underlying fair value, i.e., the Var(Ap;) term. This later issue makes
it difficult to detect the small negative covariance term in the observed prices due to the
underlying trading process. This simple intuition is the motivation behind the model we will
discuss in the next section.

4.2 The Model

The model is described as the interaction between two types of entities: customers and deal-
erships. It builds upon the model developed in Grossman and Miller (1988). For simplicity,
we assume that there is only one item that is being exchanged and customers are interested
in holding this item (asset) as a part of their investment. Their motivation for holding this
asset is assumed to be exogenous to the model being discussed. We also assume that some of
these customers may decide due to exogenous reasons to reduce or increase their holding at
arbitrary points in time. It is also assumed that in aggregate, all customers are still happy to
hold the total amount of the asset outstanding. So their individual decision to buy more or
sell some of their holding really comes down to locating an interested seller or buyer, which,
due to the assumption about the aggregate behavior, always exists. One option is for each
customer to do a search and wait until the offsetting customer has been located. Alterna-
tively, we consider a situation where Dealership exists in order to alleviate the synchronicity
friction such that the arriving customers don’t have to wait until an offsetting customer has
been located in order to engage in a transaction.

We start by modeling the arrival of buyers or sellers as a random processes. As it will
turn out, this random processes drives the observed behavior of the system. Similar to the
intuition behind (4.1), prices increase when extra buyers arrive and drop when extra sellers
come to the market. Such increase or decrease is temporary, however, as offsetting buyers or
sellers arrive over the next several time periods resulting in the reversal of any price increase
or decrease induced by the imbalance. The exact behavior of the prices also depends on
the characteristic of the dealer. In a sense that will be made precise soon, if the dealers are
very aggressive then the temporary price change is smaller relative to the situations when
the dealers are less aggressive and hence need a larger price drop or increase, after arrival
of sellers or buyers, respectively, to accommodate the arriving customers. We next describe
the two building blocks of this model: Customer Arrival Process and Dealer’s Mazimization
Objective.

e Customer Arrival Process

Let n} ~ N(7,02/2) and 7} ~ N(9,0;/2) be iid Gaussian random variables that
represent the number of new arriving buyers and sellers at time t. Offsetting customers
will arrive over the subsequent time intervals to offset each of these new customers
completely. For example, due to arrival of 1} sellers at time ¢, a total of 6;7; buyers
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arrive by time ¢+ 1, another 6,7 buyers arrive by time t+2, etc. Given the assumption
that customers’ arrival will eventually fully offset each of n° or n{ we need to have
>.6; = 1. Please note the distinction between new and offsetting customers. The
cumulative number of arriving buyers and sellers as time ¢, denoted by ¢® and ¢}
respectively, are given by:

@ =m0+ 0, +6ami (4.3a)
@ = nj+6ml_+6aml, (4.3b)

Let 7, = n? — mi. 7, represent the excess number of new arriving buyers at time ¢.
Also denote by ¢; the imbalance between the cumulative number of buyers and sellers
at time t. Given the formulation above, ¢; has the following Moving Average (MA)
representations:

@ = ¢-q¢ (4.4a)
= (1 =) + 0.(0] = m) + 0o — ) — - - (4.4b)
= = -1 — Oz —--- (4.4¢)

6(L)n, (4.4d)

Dealer’s Maximization Objective

For the system to operate normally, the extra customers must be accommodated by
the dealership. But the dealership needs to be compensated on average for holding the
extra units. Intuitively, the price change r, = p; — p;_; must have a negative expected
value after time intervals in which there was an excess buyer. The idea is that the
dealers accommodate the extra buyers by selling them the item from their inventory
but the price at which they will sell the item is higher than the price for which they
expect to be able to buy the item back from the future arriving sellers. The same logic
applies to cases when there is an excess arriving seller. In summary, we expect to have
the following relationship between expected price changes, E[ry], and the imbalance,

qt:

E[Tt—H] = E[pt+1 “'pt] <0 if g >0 (45&)
Efri1] = Elpryr —p] >0 if ¢ <0 (4.5b)

In order to quantify the link between price changes, r;117 = p;r1 — p:, that is needed
to compensate the dealer, we will assume that each dealer is optimizing a simple two-
period optimization process. Their objective, written in terms of the number of units
of the asset they will purchase at this period, d;, has the following form:
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U(d) = —Eye otms1=9]
= —E[eo%m+1e2 (4.6)

where E,[-] is the shorthand notation used to represent the expectation conditional on
the information at time ¢, d; is the number of units of the asset they will buy, r;;; is
the immediate price change over the next time interval, « is a parameter that controls
the behavior of these dealers with lower values of « indicating a more risk-seeking
(aggressive) behavior*?, and c is the cost of their operation. The utility function of
the above form, i.e., exponential, is very common in this type of analysis.** Since the
next period’s price p;.; is not known, the objective is to optimize the expected value
of this utility function.

As discussed before, the model here is a simple representation of the impact of imbalance
on prices. But prices also change due to reasons beyond this model and in order to capture
those ezogenous drivers, we model the period-to-period price changes, pi1 — p;, as the sum
of a stochastic component that is not related to the arrival of buyers or sellers and a part
that is driven by the imbalance. More precisely, we will conjecture that the return process
has the following form:

Terl = P4l — Pt (4.7a)
= exogenous price changes + imbalance driven price changes (4.7b)

part we tr§ to model

The next proposition outlines the main theoretical result of this section. The proof is
given in the Appendix A.2.1.

Proposition 4.1 Let n, ~ N (0,0,2]) be a white-noise process representing the number of
excess new buyers arriving at time t. Assuming that the total cumulative excess buyers is
given by

@ = 6(L)ym (4.8)

and assuming that dealers optimize an exponential utility function of the following form

U(dy) = —E; [e'ad‘”“e"‘c] (4.9)

42(Qne way to link to form of the utility function is by looking at the coefficient of absolute risk aversion
defined as —%—,—((%). For U(w) = —e™ %" this coefficient is a

43Please see Bertsekas (2000), Appendix G, for an overview of decision theory under uncertainty, including
a discussion on various commonly used utility function and the coefficient of absolute risk aversion.
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where d; is the number of units they will purchase, T141 = pyi1 — p, « is their parameter of
risk aversion, and c is their cost. Under this structure, ry,y will have the following form:

Tt4+1 = Pt+1 — Dt = Vi1 — 0403% (4~10)

where vy ~ N(0,02) is the change in price due to ezogenous events.
Proof: See Appendiz A.2.1.

The above preposition creates a link between the imbalance quantity, ¢;, and the changes
in the observed price or ;. We arrived at this result (please see the proof) by looking at
the first-order conditions of the dealers according to the optimization problem formulated
in (4.9). In the long-run, i.e., when the system reaches its steady-state, there should a link
between the cost value, ¢ in (4.9), and the dynamics of the observed prices. Intuitively, if
price changes are too “volatile” compared to the cost of being a dealer, more dealers will
enter the market. So when the system has reached its steady-state behavior, it should be the
case that the sensitivity of price change to the imbalance quantity, ao? in (4.10), is somehow
linked to the cost ¢ in (4.9). The following proposition makes this link clear.

Proposition 4.2 Assume the same data-generating process as outlined in Proposition 4.1.
As outlined in Proposition 4.1, the sensitivity of the return, ryiq, to imbalance, q;, is ao?.
In steady-state, i.e., under the condition that dealers have entered the market such that there
s no long-term gain from being a dealer, we should have:

ao;, & — (4.11)
Proof: See Appendiz A.2.2.

We now discuss some of the implications of this model to validate the intuition and
develop further insight into the price dynamics.

4.2.1 Model Implications

e No Imbalance:

If g; = 0 then 7,41 = v441. So if there is no imbalance, then the price change is driven
by the exogenous source of uncertainty.

e Return and Imbalance

The dealer’s gain, 441, is random as it depends on the exogenous source of uncertainty
through v;,;. But their average gain is simply E;[r;1] = —ao2g; (note that g, is not
random conditioned on the information available to the dealer at time t). The relation
between customer arrival and the expected gain is consistent with the intuition we
outlined in (4.5). For example, after the arrival of buyers (recall that ¢, is positive for
buyers) the prices are expected to depreciate (decrease) over the following time period.
This means that in order to sell the extra number of units to excess buyers, the dealer
will offer to sell the asset to them at a price, p;, that is, on average above the price,p,1,

48



they expect to be able to buy back the asset at the next time period. Similarly, if there
are excess sellers (i.e., if ¢; is negative), the price is expected to appreciate over the
next time period, i.e., the dealers will buy the asset from seller at a price p; slightly
below the expected next period price of pyy;.

Sensitivity to Volatility

As seen in (4.10), the sensitivity of the returns to imbalance quantity, ¢, is an increasing
function of the volatility of the prices due to exogenous factors, o2. The relationship
is to be expected: if there is more uncertainty about the next period’s price due to
outside reasons, the dealers will need a larger price reduction (increase) in order to
accommodate the excess sellers (buyers).

Sensitivity to Dealer’s Aggressiveness

(4.10) shows that the relationship between return and imbalance quantity is an in-
creasing function of the o parameter. Recall that a controls the risk aversion of the
dealers, see (4.6), and lower values of « indicate a more aggressive, i.e. risk seeking,
behavior by the dealers. For more aggressive dealers, the amount of price deviation
needed to accommodate the extra customers is smaller, consistent with the expression
given in (4.10).

Steady-State Behavior

In the long-run, however, the model needs a feedback loop where the price sensitivity,
ac?, is related to the cost that dealers have to pay, ¢ in their optimization function
given in (4.6), to be present in this market. (4.11) makes this link clear. As expected,
as the cost of being a dealer becomes lower, more dealers will enter and the steady-state
sensitivity of returns to the imbalance is reduced. (4.11) also indicates a connection
between the form of the MA prices, (L), and the return sensitivity. Recall that by
assumption we know what > >, 6, = 1. The lowest value for the sensitivity, ao?

v?
corresponding to the case that Y_>° 6? is maximized, is achieved when one of 6; is 1

i=1"1
and the rest are zero. The more widlespread the value of 8; are, the lower the > 2 62
and the higher the price sensitivity will be. This is intuitively plausible because the
more widespread value of 6, correspond to a more slowly mean-reverting imbalance
process, g;. This corresponds to the case where the offsetting customers are slower to
arrive at the market after the arrival of each new customer and it is intuitively plausible
that the dealers would expect a higher return for providing immediacy to each new

customer in this case.

In the next few pages, we will hypothesize a specific model for the evolution of imbalance

and develop expectation for the price dynamics under that hypothesis. The empirical testing
of those implications will be the subject of the empirical analysis that will follow.

4.3 Hypothesis

The model developed in the first part of this section gives us the theoretical underpinning
that links time-series properties of price changes to the time-series characteristics of the
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imbalance quantity. The hypothesis that we will be dealing with in the rest of this section
is based on testing a particular form for the evolution of the imbalance quantity. In other
words, we will propose a particular form for §(L) function given in (4.8) and then conduct
some empirical validation to see if the proposed form is consistent with the observed behavior
of price changes in the system. Our model also produces testable implications regarding the
link between mean-reverting component of price changes and other observables of the system,
such as trading volume or the volatility of price changes, that will give us additional degrees
of freedom in our empirical validation.

To get started, let’s consider the following data-generating process for the returns:

Tig+l = Dit+1 — Dig (4.12a)
=tV T Aig (4.12b)

where
Vg1 = Biftrr + Ui (4.12¢)

/\1,t = Ei,t - (%@) 0€i,t_1 - (#) 026i,t—2 — e (412d)

According to (4.12b) in this formulation, r;;11 = p;t41 — piy consists of a mean,
and two random parts: \;; captures the prices changes due to customer imbalances while
v, ++1 captures the prices changes due to exogenous reasons (see also the decomposition for
price changes given in (4.7)). It is also assumed that f;, 7;; and €;; are zero mean white
noise (i.e., uncorrelated both through time and in the cross-section) with variance of a}, o3
and 0521, respectively. Note that sensitivity to f;, the common factor, implies that v;; are
cross-sectionally correlated. Note that the total variance of the individual returns, i.e., the
total variance of v, is partly due to the common factor of f;. More specifically, the above
formulation implies that o2 = 707 + 0.

Comparing (4.12d) with (4.4b), it is clear that in the hypothesis under consideration here
we have:

1 k=0
It is simple to see that

> =1

k=1

So this formulation satisfies one of the requirements for the customer arrival process,
namely the requirement that for each arriving buyer or seller, the offsetting customer will
arrive in subsequent time intervals to fully bring the system back to normal. Furthermore,
comparing (4.12b) with (4.10) we can see that A, is related to the imbalance quantity, g,
by the following relationship:

Az,t = aai%,t (414)
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Note that the subscript ¢ in (4.10) was left out since Proposition 4.1 was only dealing
with the case of a single time series. Lastly, €, is related to the imbalance shocks, 7,, by
the following relationship:

Ei,t = CYO'gz’fh',t (415)

In summary, A, ; in (4.12b) captures both the imbalance quantity, g;+, and the sensitivity
of the price changes to the imbalance, namely aoZ. In addition, €, in (4.12d) are the
rescaled versions of the imbalance quantities 7,; in (4 4b) (note that the subscript ¢ was left
out to simplify the notation in the earlier discussion since we were dealing with the case
of a single time series). These links will be important when we turn our attention to the
empirical model validation in the next section.

4.4 Model Validation Strategy

The hypothesis proposed in (4.12) speculates a particular form for the mean-reverting part
of price changes. Since the contrarian trading strategy was successful in Section 3.3.1 in
detecting this type of signal out of a large cross-section of price changes, we will base our
testing and validation approach on a similar algorithm.

The main difference is that instead of holding the constructed portfolio for one time
period, as we did in Section 3.3.1, we will hold it for multiple periods. The pattern of the
profit, and also the relationship between the profit and other observables of the system,
such as the trading volume or volatility, can then be used to validate if the data-generating
process outlined in (4.12d) is appropriate for describing the behavior of this system. We will
first describe this algorithm.

Given a set N securities with period ¢ return given by 7;, create a portfolio by investing
w;¢ dollars in security ¢ where w;; is given by:

1

Wy = ——ﬁ(ri,t —Tmyt) wWhere 7T,y =— (4.16)

i)
3

Define the profit, 7;(q), as the change in the value of this investment by time ¢ +¢. Given
the investment of w;, the initial value of the investment is Zz_l w,; which is equal to 0 as
discussed in Section 3.3.1. Furthermore, the number of units of asset 7 that can be purchased
is given by w, ;/p, ;. Hence, the change in the value of the investment by time ¢ + g is simply:
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N

N
wz,t
Wt(q) = E 'Pz,t+q‘§ Wyt
i=1

=1 Dig
N —r
=0
N
. wz,t
= * Pijt+q
i=1 £ht
N q
= Z wi,t_s_ Tit+l (4.17)
=1 =1

We will first work out the expected profit of the contrarian strategy as a function of the
holding period, g, for a general covariance-stationary data-generating process. Proposition
4.3 summarizes that result. The result when applied specifically to the null hypothesis of
interest in this section is given in Corollary 4.1. Proofs are give in Appendix A.2.3 and A.2.4,
respectively.

Proposition 4.3 Consider the collection of N securities and denote by R; the N x 1 vector
of their period t returns, [r1.---rny). Assume that R, is a jointly covariance-stationary
stochastic process with expectation E[R;] = p = [p1--- pun]’ and auto-covariance matrices
E[(Ri— — p)(Re — )] =T = [1,;(1)]. Consider a net-zero investment strategy that invests
w,¢ dollars given by (4.16) in security ©. The expected profit, E[m,(p)], where m(p) is given
by (4.17), is given by:

Elm(q)] = M(T1)+--+ M(Ty) ~ g a*(n) (4.18)
where,
1 ’ 1
M(A) = Nk AL - Ntr(A)
1< 1
o*(p) = i Z(Hi ~ pm)* and  py = N Zﬂi' (4.19)

Proof: See Appendix A.2.3.

Corollary 4.1 Under the data-generating process given in (4.12), the ezpected profit of the
contrarian strategy is given by:

1-61 (1<
Blr{a) ~ 5 (N > a) (4.20)
i=1
Proof: See Appendiz A.2.J.

(4.20) implies a concave relationship between the holding period, ¢, and the magnitude
of the expected profit, E[m(g)]. This is one of the implications we will be testing for in the
empirical analysis shortly
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The contrarian strategy bets on reversion in the part of the price change that is due to
imbalance quantity. Intuitively, one would expect to see a larger reversal among stocks that
typically have larger imbalance, i.e., stocks that have larger average magnitude of A; ;. To see

how this related to our testing approach, note that oi = {% (See (A.33) in the Appendix
A.2.4). So we would expect a higher profit among securities with higher volatility of afﬁ.
From our earlier discussion, we know that ¢;; = Ozcr,%z .+~ This would point us to believe that
the E[m;(q)] would be higher if we apply the strategy to stocks with higher return volatility,
i.e., higher afz, or higher imbalance volatility, i.e., stocks with larger swings in the magnitude
of m;;. We will draw on these two intuitions in the empirical analysis.

In the same spirit, we expect the magnitude of the price reversal to be larger on days
with larger imbalance quantities, for example on days that the ¢,; are larger on average.
To develop a test for this, we first work out the realized profit of the contrarian strategy in
terms of the €,,. This result is given in Proposition 4.4.

Proposition 4.4 Under the data-generating process given in (4.12), the realized profit of
the contrarian strategy is given by:

1 o,
ma) = (1= (NZ)
S o
—(1—69)(1—0)0 <"N’ > ef,t_1> - (1=~ 0)¢° (N > e?,t_z) -

i=1

_Uz(ﬂ)ft(ft+l + feaz+ -+ fraq) (4.21)

The above proposition decomposes the realized profit of the contrarian strategy into three
components. Each of these components has a distinct interpretations and it worth looking
at them in some detail.

e The first component, (1 — 69) (—]1\7 Zfil e%t), is undoubtedly positive. It is related to
the arrival of offsetting customers for new customers that had arrived at the time the
portfolio is established. The contribution is undoubtedly positive because by construc-
tion the imbalance is mean-reverting, i.e., §y = 1 in (4.13) and 6;, for all values of £ > 1
is negative.

e The second group of terms, terms like (1 — 67)(1 — 9)6 (7{,— >N e%,t_l), are related to
continual arrival of offsetting customers for customers that had arrived in prior time
intervals. This is related to the fact that all 6 for k£ > 1 in (4.13) are negative. Each
such term has a negative contribution to the overall m,(g) magnitude.

e The final term, 6%(8) fi(fix1 + fiez + + - + fi4q), is due to realizations of the common
factor. If the realization at the time of construction, f;, has the same sign as the total
of the realization of the subsequent ¢ periods, the contribution is negative. On the
other hand, the contribution is positive if these two random variables have opposite

signs.
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The essential insight from the above decomposition is that the term that contributes
positively to the proﬁt is the first term. Therefore, the realized profit is a linear and increasing
function of + Z i—1 €;. ?, and, therefore, we expect the profit to be higher on days with higher

'N' Zi:l 61'2,,9 We also expect the profit to be lower on days when the lagged value of this

measure, i.e., ﬁ Zfil eit_l, is high since that term contributes negatively to the value of
7(q). We will test both of these in the empirical analysis. The main challenge is that
the value of ¢,; are unobservable and we need to create a proxy for their value based on
observable quantities. How could we solve this problem?

One possible approach would be to use other observables that are correlated with the €;;.
A candidate to be used to construct a proxy for the value of the ¢;; is the observed volume.
But how is volume related to the imbalance quantities‘7 Recall that €;,; are rescaled versions
of the imbalance quantities, 7;, where €;; = ao? it~ Also recall that n;; = =n? '+ — T, Where
n°, and n?, are the number of arriving buyers and sellers respectively. But the number of
transactions that take place in each time interval is a function of the total number of arriving
buyers and sellers, which we denoted by qit and ¢;, in our formulation. These quantities are
in part due to new customers arriving on that day and partly due to the residual impact
from previous days. The relationship we hypothesized was given by (4.3a) and (4.3b), which
we repeat here for the 6(L) function of our null hypothesis:

1-96 1-0
qf,t = ﬂf,t - (_9_) 9ﬂf,t_1 - (T) 9277&‘2 — (4.22&)

s s 1-9 1-6
Q¢ = Tht— <—9—> 9773t—1 - < ) 927721:—2 — (4.22b)

°

In this framework, the observed volume on each day should be equal to the maximum
of the above two quantities; for example, if there are 100 buyers, i.e., qzt = 100, and 123
sellers, 1.e., ¢;, = 123 on a given day ¢, there will be 123 transactions on day ¢, 100 of
those transactions will be between buyers and sellers and the other 23 will be between sellers
(because there are extra sellers in this case) and the dealer. With this admittedly simplified
framework i 1n mind, we now measure the correlation between the volume;; = max(q?,, ¢¢,),
and €,; =1} '+ — ;¢ Instead of trying to work out the correlation in closed form in this clearly
simplistic setting, we only do a Monte Carlo simulation to ensure that the intuition holds;
i.e., to ensure that the ¢;; and volume;; are correlated. Figure 4.1 shows the result of this
Monte Carlo simulation for different values of the parameter 6. It seems there is consistent
correlation between the (unobserved) imbalance quantity and the observed daily volume if
our model linking the volume to imbalance is indeed correct. We w1ll use this relationship
to construct a proxy for the unobserved daily imbalance, i.e., Zz 1 Z +» in the next section
and use that proxy to test the relationship between the extracted 51gna] strength, m(¢q), and
the imbalance given by (4.21) in Proposition 4.4.
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Figure 4.1: This figure shows the correlation between €, = n} — i and volume, = max(q®, g7)

where:
q? = 77? - Eﬁ) 97]{—1 - éﬁg 9277%—2 -
qG =mn — —5—)9%1— 5 0°ny_g— -

for a sample of 10,000 realization of ¢;, volume, for each value of 6 generated using
realization of the standard normal random variables for n} and 7;.

4.5 Empirical Analysis

This section contains the result of the empirical analysis of our model based on US stock
returns between 1995 and 2007. Unlike the analysis in Chapter 3, we will now limit the
study to using only stocks that are in the S&P 1500 index. We apply the contrarian strategy
described by (4.16) to this universe of stocks and then calculate the profit for a 1- to 10-
day holding period based on equation (4.17). We then calculate the average profit for each
holding period over the entire sample. The result of this analysis is presented in Figure 4.5.

We showed in Corollary (4.1) that under the null of the data-generating process given in
(4.12), the expected profit of the contrarian strategy will be of the following form:

q N
Blm(g)] ~ =50 (% > a> (4.23)

(4.23) implies a concave relationship between the holding period, g, and the magnitude
of the expected profit, E[m;(g)]. The results shown in Figure 4.5 agree with this expectation
surprisingly well.

We also mentioned before that the contrarian strategy is a tool to detect mean-reverting
signal among otherwise white noise price signals. As discussed previously (see also (4.7)),
this mean-reverting component in prices is driven by the reversion on the part of the price

LY



changes that is due to imbalance quantity. To see how this is related to the strength of the
signal detected by our testing strategy, note that the expression for E[r;(g)] given in (4.23)
is an increasing function of the volatility of the imbalance part of the signal, namely oi, also

2
see (4.7) and compare with (4.12). In our formulation ¢} = la—jg and €;; = aopm;. These
relationships produce two testable hypotheses:

e We would expect the o3 term and hence the value of E[m;(g)] to be larger among stocks
with higher volatility of returns, i.e., higher o2 .

e We would expect the value of E[m;(g)] to be larger among stocks with a higher volatility
of the imbalance, i.e., higher swing in the magnitude of their 7, ;.

To test the first implication, we simply divide the stocks into two subsets based on
their realized return over the twenty days prior to the day on which the portfolios are
constructed.*? twenty days is a somewhat arbitrary number and is selected to be short
enough to capture changes in the volatility of stocks over time. The result of this test is
shown in Figure 4.5. The data clearly supports the link between the magnitude of the
reverting component and the volatility of the returns produced by our model.

The Monte Carlo analysis shown in Figure 4.1 points to a potential link between the
daily volume and the magnitude of the imbalance. If this is the case, we would expect
stocks with higher volatility of daily volume to have higher volatility of 7, ;. Similar to our
earlier approach, we now divide the stocks into two subsets based on the volatility of their
daily volume as measured by the ratio of the actual number of shares traded divided by the
total number of shares outstanding®® over the last 20 days. The result of this application is
shown in Figure 4.4. Once again, the link between imbalance volatility and the strength of
the mean reverting component is validated in the data.

Figure 4.5 shows a final set of tests where we have applied a two-step filter: first, we
divided the universe of stocks into two subsets based on the volatility of their volume and
then we further divided each subset into two groups based on the volatility of their realized
returns. In all cases a window of 20 was used to measure the volatility of the daily turnovers
(see footnote 4.5), and the volatility of the daily returns. The final outcome is the following 4
subsets of stocks based on the volatility of their returns and volatility of their trading volume:
“Low Volume and Low Volatility,” “Low Volume and High Volatility,” “High Volume and
Low Volatility,” and “High Volume and High Volatility.” According to this analysis, it seems
that each filter achieves its goal of creating a separation in the strength of the mean-reverting
signal. Neither of the filters consumes the other one and the filter based on the volatility of
returns seems to create a larger separation in the strength of the mean-reverting signal.

So far the results presented in Figures 4.5, 4.4, and 4.5 have been based on dividing the
universe into 2 or 4 subsets based on various measures and evaluating the strength of the

44We have explicitly assumed that the realized volatility of the returns, T.t, 1S & good estimator of the
volatility of the “exogenous” part of the return or 1,4 in (4.12). This is clearly an upward biased estimator
since the realized volatility is in part due to the imbalance part of the signal, i.e., A;; in (4.12). But as we
argued before, this later component explains a small fraction of the daily volatilities so the bias should be
relatively small.

45 This measure called the “Turn Over” is a better measure of the volume as it is normalized for the trivial
transformations such as stock splits. Also, see Lo and Wang (2000, 2006).
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Figure 4.2: This figure shows the link between the strength of the mean-reverting component
of price signals and the mean reversion horizon using a trading strategy that invests w;; dol-
lars in security ¢ on day t where w;; = —%(n,t —Tmyt) and Ty = % Zf\il i+ between 1995
and 2007 for 1- to 10-day holding periods. g-day holding period profit, m:(g), is calculated
as Ty = Zfil Wy i (Tipr1 + -+ Titrg)-
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Figure 4.3: This figure shows the link between the strength of the mean-reverting component
of price signals and the mean reversion horizon using our contrarian trading strategy for the
unconditional case as well as the strength conditioned on past volatility. The unconditional
case, labeled “No Filter” in the figure, is the same as the data shown in Figure 4.5. To extract
the conditional signal strength, we simply divide the universe of stocks into two halves- “High
Volatility” and ”Low Volatility”- based on their realized volatility in the proceeding 20 days
and then apply the standard contrarian trading strategy to each subset. Also see the caption
of Figure 4.5 for a description of the strategy.
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Figure 4.4: This figure shows the link between the strength of the mean-reverting component
of price signals and the mean reversion horizon using our contrarian trading strategy for the
unconditional case as well as the strength conditioned on past volume. The unconditional
case, labeled “No Filter” in the figure, is the same as the data shown in Figure 4.5. To
extract the conditional signal strength, we simply divide the universe of stocks into two
halves-“High Volume” and ”Low Volume”- based on their trading volume in the proceeding
20 days and then apply the standard contrarian trading strategy to each subset.

Also see the caption of Figure 4.5 for a description of the strategy.
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Figure 4.5: This figure shows the link between the strength of the mean-reverting component
of price signals and the mean reversion horizon using our contrarian trading strategy for the
unconditional case as well as the strength conditioned on past volume and volatility. The
unconditional case, labeled “No Filter” in the figure, is the same as the data shown in Figure
4.5. To extract the conditional signal strength, we simply divide the universe of stocks into
two halves- “High Volume” and ” Low Volume”-based on their trading volume in the preceding
20 days. Each of these subset is divided into two halved based on the realized volatility in the
proceeding 20 days. The standard contrarian trading strategy is then applied to each of the
resulting four subsets: “Low Volume and Low Volatility,” “Low Volume and High Volatility,”
“High Volume and Low Volatility,” and “High Volume and High Volatility.” Also see the
caption of Figure 4.5 for a description of the strategy.
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mean-reverting signal component in each subset. These tests were based on the fact that
the mean-reverting part of the signals may be stronger among subsets with higher volatility
or higher volume, two hypotheses motivated by our theoretical model.

We have yet another way of testing the validating of our model based on looking at the
strength of the mean reverting component on days with high or low value of the imbalance
quantity. Intuitively, we expect to see larger mean reversion after days with larger imbalance.
Proposition 4.4 makes this link more clear and can be used as the basis to construct a test.
We showed in Proposition 4.4 that:

1L,
m(g) = (1-0% (ﬁ@)
16q1991N2 19‘110031N2
—(1-09(1-9) —A—,E €1 | — (1 —=07)(1—0) N;:lez,t_z —

_Uz(ﬁ)ft(le + firo + -+ ferg) (4.24)

As discussed before, the essential insight from the above decomposition is that the realized
profit is expected to be higher on days with higher % Zf\;l ef,t. We also expect the profit to
be lower on days when the lagged value of this measure, i.e., Zf;l €,_; is high.

To test this, we constructed a measure of + >N €, based on observed volumes. As

the Monte Carlo simulation in Figure 4.1 argued, the magnitude of ¢;; and volume;; have a
positive correlation. So one natural proxy for —11\7 Zf;l €’, is the following measure:

N
1
¥ Z E-Volume; ; (4.25a)
i=1
where E-Volume, ; = Volume; ; — Volume; , (4.25b)
- 1 <
Volume; ; = ~ Zl Volume; ;_; (4.25¢)
J:

The results of the analysis based on the value of this proxy are presented in Table 4.1.
We have used linear regression instead of dividing the days into two subsets based on the
value of the above measure since the relation given in (4.24) is linear and enforcing this
constraint may result in a clearer test. We have conducted a number of different alternative
specifications and robustness checks and the result of all alternatives is presented in Table
4.1.

Panel A shows the result when only the current proxy for the value of % Zfi] ef’t calcu-
lated through (4.25) is included on the right-hand side of the regression. Panel B shows the
case that both current and lagged values of this proxy are included on the right-hand side.
Specifically, we have calibrated linear models of the following form:
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N
1
Panel A:  m(q) = &+ ACyrrent (—]\7 Z E—Volume,,t> (4.26a)

1=1

N N
1 1
Panel B: ﬂt(q) = o+ )\Current (]—V; E E—Volumei,t> -+ )‘Lagged <—N' E E-Volumei,t_1>
i=1

=1
(4.26b)

where E-Volume;; is defined by (4.25). As expected, the coefficient for Aoy prent is positive,
indicating a higher strength for the mean-reverting signal on days with larger volume, and
hence larger imbalance. The coefficient for the lagged value of this measure, ALagged7
is negative, at values of ¢ larger than 3, again consistent with the relationship given in
(4.24). As a robustness check, we have estimated the same linear models in Panels C and
D but included a different constant for each year to capture the non-stationary in the mean
documented in Figure 3.1 in the last chapter. The analysis shows that our results are not
driven by such non-stationary.*¢

While the measure defined in (4.25) is successful in capturing the link between the imbal-
ance quantity and the strength of the mean-reverting signal, a simple improvement outlined
next makes the link much stronger. This alternative measure is defined as:

N
1
N Zl (N-Volume; +) (4.27a)
Vol 1t 4
where N-Volume, ; = olume,, — Volume; (4.27b)
’ o(Volume, ;)
-— 1
Volume, ; = - Z; Volume; ;_; (4.27¢)
]:
1 -
a(Volumei,t)2 == Z(Volumei,t_j — Volumei,t)2 (4.27d)
j=1

Intuitively, this measure tries to incorporate the level of noise in the daily volumes. For
example, the observation of high volume, Volume;,, for a stock that has had very volatile
volumes, i.e., high o(Volume; ), is assigned a lower importance than an observation of a high
volume for a stock that has smaller volatility of daily volumes.*” The same type of regression
analysis based on current and lagged measure of this measure, with and without the time
effect, is provided in Table 4.2. The positive link between the current values of this measure

46We suspected this to be a potential issue since the volume has increased in recent years just as the
mean of the mean-reverting signal has declined (see Figure 3.1 for the evidence of the latter claim). So it is
plausible that an interaction between these effects would be responsible for the pattern we observed in the
effect of volume on the strength of the mean-reverting signal.

47The relationship to Whitening-Filter and Generalized Least Squares should be clear.
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and the strength of the mean-reverting signal is statistically stronger now (compare the t-stat
of Table 4.2 with those in Table 4.1). The negative relationship between the lagged value of
this measure and the strength of the mean-reverting signal is also stronger and observed at
all lags but it is not statistically significant at the conventional levels of significance based

on the estimated t-stats.
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Table 4.1: This table shows the sensitivity of the realized profit of the contrarian strategy to average volume on the construction
day estimated through the following four regression models:

Panel A: m(q) = o+ ACyrrent (% >N E—Volume,',t)

Panel B: m(q) = o + AQyrrent (% Zf\il E-Volumei‘t> + )‘Lagged (% Zivzl E—Volumez,t_l)

Panel C: m(q) = a19951{1e1905) + * + * + Q0071 {te2007} + ACurrent % Zfil E-Volume; ;

Panel D: m(q) = a19951{te1995) + * - - + 20071 {te2007} + ACurrent (% sz\il E—Volume“) + )‘Lagged (% 221\;1 E—Volume,',t_1>

where m;(g) is the profit for the contrarian strategy established on day ¢ and held for ¢ days, E-Volume,; = E-Volume;; —
E-Volume, ; and E-Volume;, is the average of the daily volumes for security ¢ calculated over the 20 days prior to day ¢.

Holding Periods Length in Days
5

1 2 3 4 6 7 8 9 10
Panel A: Current Volume Only, No Time Effect
Current Lambda(t-stat) 0.01(0.54) 007(1 81) 0.07(1.46) 007(1 38) 0.08(1 62) 0 09(1.63) 008(1 58) 0.09(1 61) 0.10(1.60) 0 10(1 59)
Panel B: Current & Lagged Volume, No Time Effect
Current Lambda(t-stat) 0.01(0 34) 007(1 65) 0.07(1.32) 007(1 34) 0.10(1 73) 0 09(1.53) 0 09(1.49) 0 10(1 56) 0.11(1 56) 011(141)
Lagged Lambda(t-stat) 0.00(0.27) 0 00(0 06) 0.01(029) -0.00(-009) -002(-065) -0.01(-0.32) -002(-0.45) -002(-0.52) -003(-058) -001(-025)
Panel C: Current Volume Only with Time Effect
Current Lambda(t-stat) 0.01(0 58) 007(1 84) 007(1 49) 0.07(1.41) 0.09(1 65) 0 09(1 66) 0.09(1.62) 0 09(1.65) 0.10(1 64) 0 10(1 63)
Panel D: Current & Lagged Volume with Time Effect
Current Lambda(t-stat) 001(0.35) 007(1.67) 0.07(1 33) 008(1 35) 010(1.74) 0 09(1.55) 0.10(1.51) 0.10(1 58) 0.11(1 58) 0.11(1.43)

Lagged Lambda(t-stat) 001(033) 000013)  001(0.36) -000(-003) -002(-061) -001(-028) -002(-0.40) -002(-0.47) -0.02(-0.53) -001(-0.19)



Table 4.2: This table shows the sensitivity of the realized profit of the contrarian strategy to average volume on the construction
day estimated through the following four regression models:

Panel A: m(q) = o+ Acyrrent (% >N N—Volumez,t)

Panel B: 7,(q) = o + Aoyrrent (% Zf\il N—Volumei‘t) + ALagged (% Zfil N—Volumei,t_1>

Panel C: m(q) = a19951{1e1995) + * -+ + 20071 {2007} + ACurrent (—11\7 SN N—Volumei,t)

Panel D: 7m(q) = crggs1{re1905) + - - - + 20071 {te200m + ACurrent (—1{,— Zf\;l N-Volumelyt) + /\Lagged (% Zf\il N—Volumez,tq)

where m;(q) is the profit for the contrarian strategy established on day ¢ and held for ¢ days, N-Volume,; = VOhir(n\%i;rzzlu)m Cut
2,t

and Volume;; is the average of the daily volumes for security i calculated over the 20 days prior to day ¢t and o(Volume;.) the
K standard deviation of daily volume calculated over the same interval.

Holding Periods Length in Days
5 6

1 2 3 7 8 9 10
Panel A: Current Volume Only, No Time Effect
Current Lambda(t-stat) 0 14(1 69) 0.28(2.40) 024(161) 023(1.43) 0.28(1 84) 029(1.79) 0.30(179) 033(1.87) 0.36(1.95) 0.37(1.92)
Panel B: Current & Lagged Volume, No Time Effect
Current Lambda(t-stat) 017(178) 0 30(2.40) 0.25(1 63) 0 26(1.54) 035(2.11) 0.34(1 92) 0.37(1.94) 0 38(1.93) 042(2.03) 0.39(1.80)
Lagged Lambda(t-stat) -007(-1.20) -004(-0.55) -003(-0.36) -0.07(-0.74) -014(-129) -0.12(-097) -0.15(-1.10) -011(-0.83) -0.13(-092) -0.05(-0.32)
Panel C: Current Volume Only with Time Effect
Current Lambda(t-stat) 014(172) 0.28(2.43) 0.24(1.61) 0.23(1.43) 028(1 85) 029(1 81) 0.31(1 82) 0.34(1.90) 0.37(1.97) 0.38(1.95)
Panel D: Current & Lagged Volume with Time Effect
Current Lambda(t-stat) 0.17(1 78) 0 30(2 42) 025(1 63) 026(1.53) 035(2.11) 035(1 94) 0.37(1 96) 0.39(1 95) 0.42(2.04) 0.40(1.82)

Lagged Lambdat-stat) -007(-114) -004(-052) -0.03(-0.34) -0.07(-072) -014(-128) -012(-097) -014(-1.09) -0.11(-081) -0.13(-090) -0 04(-029)



4.6 Chapter Conclusions

In this chapter we dealt in greater depth with the issue of predictability in financial price
signals. We proposed a model where predictability in prices was caused by predictability in
the arrival of buyers and sellers. The model proposed produced testable hypotheses regarding
the link between the strength of the predictable part of price signals and the holding horizon,
the volatility of prices and even observed volumes. Our model validation strategy, based on
an extension of the test statistic proposed in the last chapter, was able to validate all those
hypotheses in the actual data.

The analysis in this chapter highlights the importance of understanding major frictions
in financial markets and their implications on how different parts of this complex system
interact and the effect of such friction on the eventual outcome of the interaction, such as
the observed prices. Such understanding can shed light on the drivers behind the apparent
breakdown in the normal course of behavior in August 2007 that was detected by our test
in Figure 3.2. The next chapter is dedicated to studying that breakdown in some depth.
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Chapter 5

Case Study: System Breakdown in
August 2007

This chapter focuses on applying the tools developed in the last two chapters to study a
specific example of price dynamics. We will argue that the major market disruption that
happened in August of 2007 can be detected using tools and explained by the model discussed
so far in this thesis.

We will start in Section 5.1 by giving the reader an overview of events leading to this
period. We cite media coverage of this period in order to crystallize the magnitude and the
spread of these events. Actual analysis starts in Section 5.2 where we will use our tools to
analyze system dynamics during that period. Section 5.3 studies these dynamics in greater
depth by bringing in information about which securities would have been of greatest interest
to hedge funds that, based on the media reports given in Section 5.1, suffered the most
severe losses in this period. It is not surprising that we will see the most dramatic change
in the dynamics when we focus on the appropriate subset of securities. Section 5.4 brings in
the data from intra-day transaction-by-transaction prices in order to give us more resolution
into market dynamics during that time. Using these tools, in particular the intra-day prices,
Section 5.5 focuses on detecting the epicenter of the crisis, to the nearest minute and even
subset of stocks among which the crisis started. We will finally conclude in Section 5.7.

This chapter draws heavily from our papers on this topic, namely Khandani and Lo
(2007, 2008). The interested reader should refer to our papers as this chapter is a short
summary of a more detailed analysis presented there.

5.1 Background and Overview

The months leading up to August 2007 were a tumultuous period for global financial markets,
with events in the U.S. sub-prime mortgage market casting long shadows over many parts
of the financial industry. The blow up of two Bear Stearns credit strategies funds in June,
the sale of Sowood Capital Management’s portfolio to Citadel after losses exceeding 50% in
July, and mounting problems at Countrywide Financial—the nation’s largest home lender—
throughout the second and third quarter of 2007 set the stage for further turmoil in fixed-
income and credit markets during the month of August.

67



But during the week of August 6, something remarkable occurred. Several prominent
hedge funds experienced unprecedented losses that week; however, unlike the Bear Stearns
and Sowood funds, these hedge funds were invested primarily in exchange-traded equities, not
in sub-prime mortgages or credit-related instruments. In fact, most of the hardest-hit funds
were employing long/short equity market-neutral strategies—sometimes called “statistical
arbitrage” strategies—which, by construction, did not have significant “beta” exposure and
were supposed to be immune to most market gyrations. But the most remarkable aspect
of these hedge-fund losses was that they were confined almost exclusively to funds using
quantitative strategies. With laser-like precision, model-driven long/short equity funds were
hit hard on Tuesday August 7, Wednesday August 8 and Thursday August 9.

In the following days, the financial press surveyed the casualties and reported month-to-
date losses ranging from —5% to —30% for some of the most consistently profitable quant
funds in the history of the industry. For example, the Wall Street Journal reported on
August 10, 2007 that:

After the close of trading, Renaissance Technologies Corp., a hedge-fund com-
pany with one of the best records in recent years, told investors that a key fund
has lost 8.7% so far in August and is down 7.4% in 2007. Another big fund
company, Highbridge Capital Management, told investors its Highbridge Statis-
tical Opportunities Fund was down 18% as of the 8 of the month, and was down
16% for the year. The $1.8 billion publicly traded Highbridge Statistical Market
Neutral Fund was down 5.2% for the month as of Wednesday... Tykhe Capital,
LLC—a New York-based quantitative, or computer-driven, hedge-fund firm that
manages about $1.8 billion—has suffered losses of about 20% in its largest hedge
fund so far this month... (see Zuckerman, Hagerty, & Gauthier-Villars, 2007)

By Friday, August 10, the combination of movements in equity prices that caused the
losses earlier in the week had reversed themselves, rebounding significantly but not com-
pletely. However, faced with mounting losses on August 7, 8, and 9 that exceeded all the
standard statistical thresholds for extreme returns, many of the affected funds had cut their
risk exposures along the way, which only served to exacerbate their losses while causing
them to miss out on a portion of the reversals on the 10. For example, David Viniar, Chief
Financial Officer of Goldman Sachs argued that:

We were seeing things that were 25-standard deviation moves, several days in
a row... There have been issues in some of the other quantitative spaces. But
nothing like what we saw last week. (Thal Larsen, 2007)

The “perfect financial storm” was over, just as quickly as it descended upon the quants.
But the impact was dramatic. For example, on August 14, the Wall Street Journal reported
that the Goldman Sachs Global Equity Opportunities Fund had “lost more than 30% of
its value last week...” (Sender, Kelly, & Zuckerman, 2007). The extraordinary fact that
these losses seemed to be concentrated among quantitatively managed equity market-neutral
or “statistical arbitrage” hedge funds caused this period to be referred to as the “Quant
Meltdown” or “Quant Quake” of 2007. So what happened to the quants in August 20077
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Sudden changes in financial prices are typically accompanied by either changes in the
underlying economic reality or sudden changes in the collective desire of market participants
to hold a given financial asset. With respect to the first set of drivers, the impact of such
broad-based revision in the underlying economic drivers should naturally be reflected in
other prices that are representations of the same underlying reality. But, as discussed in
Khandani and Lo (2007), the usual indicators such as various equity or bond indexes did
not change much during that week. The goal of this study is to develop an understanding
of the underlying drivers that caused these massive losses.

But because the relevant hedge-fund managers and investors are not able to disclose their
views on what happened in August 2007, we proposed to construct a simple simulacrum of a
quantitative equity market-neutral strategy and study its performance, as well as used other
publicly available hedge-fund data to round out our understanding of the long/short equity
sector during this challenging period. However, we recognize the difficulty for outsiders to
truly understand such complex issues, and do not intend to be self-appointed spokesmen for
the quants. Accordingly, we acknowledge in advance that we may be far off the mark given
the limited data we have to work with, and caution readers to be appropriately skeptical of
our analysis, as we are.

We argue that the losses reported in that week were due to a feedback loop started
by the initial losses caused by the decision of some managers to sell their holdings. This
initial impact, in turn, moved the prices in a way that cause a loss for other managers
who held portfolios with similar holdings. In response, those managers decided (forced or
otherwise) to reduce their holdings in the face of the prior losses. As with Long Term Capital
Management (LTCM) and other fixed-income arbitrage funds in August 1998, the deadly
feedback loop of coordinated forced liquidations leading to deterioration of collateral value
took hold during the second week of August 2007, ultimately resulting in the collapse of a
number of quantitative equity market-neutral funds, and double-digit losses for many others.
But in this case, we argue that the feedback loop was made worse due to reduced activity of
certain market makers. We will refer to this hypothesis about the sequence of “causes and
effects” as the Unwind Hypothesis.

This hypothesis, if true, underscores the apparent commonality among quantitative eq-
uity market-neutral hedge funds, and the importance of liquidity in determining market
dynamics. In the following few pages, we give a summary of our analysis. We conclude
this chapter by showing that the pattern of greater commonality is not limited only to the
“Quant” funds. This suggests that periods of this type of dislocation can happen due to
greater commonality among investment strategies and underscores the importance of better
understanding of this type of feedback dynamic.

5.2 Initial Inspection

Any change in the dynamic of customer arrival or the ability of the dealers to absorb the
rate of arriving customers would be reflected by a corresponding change in the time-series
properties of the price signals. For example, equation (4.10) in Proposition 4.1 in Section
4.2 showed that, under a very specific set of assumptions about the objective of the dealers
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and arrival process of the customers, the predictable part of the price signals essentially has
the same structure as the predictable part of the customer arrival process.

We start the inspection by looking at price changes for the signature of price movement
that would have been caused by the sudden arrival of a large buy or sell order for a specific
group of stocks. We use the same contrarian strategy applied in the last two chapters. Recall
that given a set N securities with period ¢t return given by 7;;, the contrarian strategy creates
a portfolio by investing w;; dollars in security ¢ where w,, is given by:

1

N
1
Wy = _N(Ti’t — Tmy) where 7= N ZT""" (5.1)

i=1

The profit, m(g), measured as the change in value of this investment by time ¢t + ¢, can
be calculated as:

N q
m(q) = Z(wz,tZTz',t+z> (5.2)
=1

i=1

Figure 5.1 show the cumulative profit of this strategy when applied to the S&P 1500
Index during 2007.5! The sudden drop and recovery of this strategy during the week of
August 6, following several weeks of lower than expected performance, captures much of the
dislocation during this period.

To develop some intuition for this dislocation, we need to recall the underlying economic
motivation for the contrarian strategy that was first discussed in Section 3.5. By taking
long positions in stocks that have declined and short positions in stocks that have advanced
over the previous trading day, the strategy actively provides liquidity to the marketplace
and acts as a balancing force for the constantly changing supply-demand imbalances. By
definition, losers are stocks that have under performed relative to some market average,
implying a supply/demand imbalance in the direction of excess supply that has caused the
prices of those securities to drop, and vice-versa for the winners. By buying losers and
selling winners, the contrarian are adding to the demand for losers and increasing the supply
of winners, thereby stabilizing supply/demand imbalances.

By implicitly making a bet on daily mean reversion among a large universe of stocks,
the strategy is exposed to any continuation or persistence in the daily returns, i.e., price
trends or momentum.>? Broad-based momentum across a group of stocks can arise from a
large-scale liquidation of a portfolio that may take several days to complete, depending on
the size of the portfolio and the urgency of the liquidation. In short, the contrarian strategy
under performs when the usual mean reversion in stock prices is replaced by a momentum,

5-1Components of the S&P 1500 as of January 3, 2007 are used. Strategy holdings are constructed and the
daily returns are calculated based on the Holding Period Return from the CRSP dataset. See Appendix A.1.1
for a discussion of the CRSP dataset. Components of the S&P 1500 Index is obtained from the Compustat;
see Appendix A.3.1 for an overview of the Compustat dataset.

5-2Note that positive profits for the contrarian strategy may arise from sources other than mean reversion.
For example, positive lead-lag relations across stocks can yield contrarian profits (see Lo and MacKinlay,
1990 for details).
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possibly due to a sizable and rapid liquidation.

Figure 5.1 also shows the total trading volume during this time. Serving as another
observable of the internal dynamics of the system, the trading volume also shows some
unusual patterns during this period. The above-normal volume observed in Figure 5.1 gives
additional support to the idea that the disruption captured by the contrarian strategy in
Figure 5.1 is caused by a sudden run for deleveraging, a process in which investors try to
close out their investment positions to turn their capital into cash either to stay out of the
market for some time or to obtain capital for other uses.®3
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Figure 5.1: The cumulative profit of the 1-day contrarian strategy and the 5-day moving
average of the NYSE volume during 2007. For the contrarian strategy, components of the
S&P 1500 Index based on the membership as of January 3, 2007, are used.

But if the momentum was indeed caused by a sudden rush to deleverage, one would
expect that in spite of immediate momentum in prices, perhaps lasting for a few days during
that week, prices would eventually revert back to “normal” levels as the offsetting customers,
in the sense discussed in the last chapter, would eventually arrive. To test the validity of this
hypothesis, we apply the daily contrarian strategy to prices for the first two weeks of August
2007 and in each case keep the portfolio for 1 to 5 days after the initial construction. The
result of this analysis is presented in Table 5.1. Each row of this table shows the cumulative
profit from holding a portfolio constructed on the date shown under the “Construction Date”
column based on the Contrarian Strategy shown in (5.1) where the profit is calculated using
(5.2).

For example, for a portfolio constructed based on the price movement on Monday, August

5-3The first day with extremely high volume is June 22, 2007, which was the re-balancing day for all Russell
indexes, and a spike in volume was expected on this day because of the amount of assets invested in funds
tracking these indexes.
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6, the 1-day holding profit is -1.64 bps - about 2 times the 1-day volatility of 0.88 bps for
the first 7 months of year 2007. Prices continued to move unfavorably for this portfolio
in the next two days, i.e., Tuesday and Wednesday of that week. By by the end of day
4, i.e., Friday August 10, the dynamics changed and previous losses turned into a profit.
The change between the cumulative return by the end of day 3, Thursday August 9, and
Friday is 1.39+1.96=3.35 bps. This may not seem like a large number but the usual shift
between cumulative 3 days and cumulative 4 days return in the first 7 months of that year
is 1.56-1.40=0.16 bps (see the last row in Table 5.1). So the 3.35 bps shows a move 20 times
larger than the usual magnitude!

What is more interesting is that this pattern repeats itself for a portfolio constructed
for each of the following 3 days, i.e., on Tuesday, Wednesday and Thursday of that week.
We report some of the numbers reported in Table 5.1 just to give the reader a sense of the
magnitude of the move. A portfolio constructed on Wednesday, August 8, had a cumulative
profit (loss) of -6.11 bps by the end of Thursday. But the cumulative profit changed sign on
Friday, turning into a positive cumulative profit of 5.79 bps. This again represents a jump
of 5.79+6.11=11.9 bps or 33 times the usual movement of 1.24-0.88=0.36 bps (see the last
row in Table 5.1) between day 1 and day 2 for the earlier times of that year. Note that, for
portfolios constructed based on the price movements on each day of that week a loss was
experienced before turning to a profit starting on August 10.

Table 5.1: Performance of the contrarian strategy applied to daily returns from August 1
to 15, 2007. Each entry shows the performance of the contrarian strategy based on daily
returns, with positions established based on stock returns on the “Construction Date”, and
positions are held for 1 to 5 days afterward. Notice that the profit of the portfolio established
on August 6 through 9 was negative before Friday; i.e., prices diverged more before finally
starting to revert on Friday, August 10.

Construction Date Total Holding Period Profit (bps)

1 Day 2 Days 3 Days 4 Days 5 Days

8/1/2007 0.12 -0.87 -2.28 -2.18 -0.29
8/2/2007 -0.53 -1.21 -1.95 -2.01 -2.15
8/3/2007 -0.27 -0.51 0.58 0.26 1.83
8/6/2007 -1.64 -2.00 -1.96 1.39 3.84
8/7/2007 -3.14 -4.90 1.50 4.36 4.93
8/8/2007 -6.11 5.79 11.94 12.71 12.54
8/9/2007 9.74 14.38 13.97 13.46 12.74
8/10/2007 -2.84 -3.34 -2.89 -3.59 -2.91
8/13/2007 0.22 0.96 4.45 5.41 4.42
8/14/2007 -0.70 -0.61 0.16 0.25 0.41
8/15/2007 -1.09 -0.47 0.25 0.62 1.37
2007 St. Dev 0.88 1.24 1.40 1.56 1.58

It seems that supply/demand imbalances returned to more normal levels as the daily
contrarian strategies started to recover on August 10 (see Table 5.1), presumably as new
capital flowed into the market to take advantage of opportunities created by the previous
days’ dislocation. The total amount of the strategy profit in five days is an indirect measure
of the imbalance on the construction day.>* As seen in Table 5.1, the imbalance was largest

54This can be seen based on the result in Proposition 4.4 in Section 4.4. As discussed in that section, the
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on August 8 and 9. This is consistent with the pattern observed in other measures presented
in this chapter and also with the media reports of these events that we cited earlier.

Based on the reports that losses were most severe among quantitative hedge funds, one
would expect to obtain a better view of the inner workings of this period by looking at
features that make a security of particular interest to the “quant” funds. We will turn to
this issue next.

5.3 Decomposing System’s Behavior Based on the Quant
Factors

As mentioned in the introduction to this chapter, much of the loss in those few volatile days in
August 2007 was concentrated among the quantitatively management equity portfolios. The
main construct of any quantitatively managed investment process is a forecasting framework
for the future prices of financial assets. Given such a forecast, a manager can position himself
to benefit by investing in assets that are undervalued based on the future forecasted price
and short-sell assets that are over valued according to the forecast. In the most simplistic
approach, securities can be ranked based on a combination of their characteristics that are
known to be, or historically have been, related to the future returns. For example, the ratio
of the price appreciation in the last month over the price appreciation over the proceeding 11
months is an example of a basic form of the Price Momentum metric. In order to better trace
out the dynamics of the events in those days, we will use five specific quantitative valuation
metrics to analyze price dynamics and trading volumes during 2007. The five metrics are
as follows: Price Momentum, Earnings Momentum, Book-to-Market, Earnings-to-Price, and
Cash flow-to-Market.55

In each month of the sample, each of these five quantitative valuation factors produces
a numerical measure for each stock. These numerical measures can then be turned into
decile rankings, with stocks in decile 10 being the ones that are relatively under-priced and
hence expected to appreciate in price, and those in decile 1 being overpriced and expected to
depreciate. Appendix A.3.2 gives the detail of the procedure for calculating these metrics.

To establish a potential link between the events in July and August 2007 and these
“quant” factors, we perform two cross-sectional regressions each day from January to Novem-
ber 2007°% using daily stock returns and turnover as the dependent variables:

first term of the profit is proportional to the amount of imbalance on the construction date.

55 Book-to-Market, Earnings-to-Price, and Cash flow-to-Market are examples of the Value metric and are
used extensively in the literature, see for example Lakonishok, Shleifer, and Vishny (1994). Price Momentum
and Earnings Momentum are examples of the Momentum metric and have been studied extensively in
connection with momentum strategies; see for example Chan, Jegadeesh, and Lakonishok (1996).

56At the time we obtained the Compustat data for this analysis, the Compustat database was still not
fully populated with the 2007 quarterly data; in particular, the data for the quarter ending September 2007
(2007Q3) was very sparse. Given the 45-day lag we employ for quarterly data, the lack of data for 2007Q3
means that the deciles can be formed for only about 370 companies at the end of November 2007 (the
comparable count was 1,381 in October 2007 and 1,405 at the end of September 2007). Since any analysis
of factor models for December 2007 is impacted by this issue, we will limit our study to the first 11 months
of 2007. See Appendix A.3.2 for more detail.
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where 7; ; is the return for security 7 on day ¢, D, y is the decile ranking of security 4 according
to factor f,>7 and TO;,, the turnover for security i on day ¢, is defined as:>®

Number of Shares Traded for Security ¢ on Day ¢
Number of Shares Qutstanding for Security 7 on Day t

TO;,: = (5.4)
If, as we hypothesize, there was a significant unwinding of factor-based portfolios in July and
August 2007, the explanatory power of these two cross-sectional regressions should spike up
during those months because of the overwhelming price-impact and concentrated volume of
the unwind. If, on the other hand, it was business as usual, then the factors should not have
any more explanatory power during that period than any other period.

Figure 5.2 displays the R?’s for the regressions (5.3) each day during the sample period.
To smooth the sampling variation of these R?’s, we also have displayed the 5-day moving
average of these R?’s. These plots confirms the unusual trading volume documented in Figure
5.1 were more heavily concentrated among stocks that were over- or under-valued according
to these quantitative valuation factors. Starting in late July, the turnover regression’s R?
increased significantly, exceeding 10% in early August. Moreover, the turnover regression’s
R? continued to exceed 5% for the last three months of our sample, a threshold that was not
passed at any point prior to July 2007. As expected, the daily return regressions typically
have lower R?’s, but at the same point in August 2007, the explanatory power of this
regression also spiked above 10%, adding further support to the Unwind Hypothesis.

To obtain a more precise view of the trading volume during this period, we turn to the
cross-sectional regression (5.3) of individual turnover data on exposures to decile rankings
of the five factors of Appendix A.3.2. Figure 5.3 displays the estimated turnover impact & £t
and R? of the daily cross-sectional regressions, which clearly shows the change in the trading
activity and R? among stocks with extreme exposure to these five factors. The estimated
impact is measured in basis points of turnover for a unit of difference in the decile ranking;
for example, an estimated coefficient of 25 basis points for a given factor implies that ceteris
paribus, stocks in the 10 decile of that factor had a 1% (4 x 25 bps) higher turnover than

57Note that the decile rankings change each month and they are time dependent, but we have suppressed
the time subscript for notational simplicity.

58Turnover is the appropriate measure for trading activity in each security because it normalizes the
number of shares traded by the number of shares outstanding (see Lo & Wang, 2000, 2006). The values of
the decile rankings are reflected around the “neutral” level for the turnover regressions because stocks that
belong to either of the extreme deciles—deciles 1 and 10—are “equally attractive” according to each of the
five factors (but in opposite directions), and should exhibit “abnormal” trading during those days on which
portfolios based on such factors were unwound.
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Figure 5.2: This Figure shows the 5-day moving average of the R*’s of the following cross-
sectional regressions of returns and turnover: r;; = oy + Z‘r}zl BssDi s + €, and TO;; =

'yt+2;=1 0| Ds,f —5.5|+m; ¢, where r;; is the return for security ¢ on day ¢, D; ¢ is the decile
ranking of security ¢ according to factor f, and TO;;, the turnover for security ¢ on day ¢, is
defined as the ratio of the number of shares traded to the shares outstanding. Five factors
are as follows: Price Momentum, Earnings Momentum, Book-to-Market, Earnings-to-Price,
and Cash flow-to-Market. See Appendix A.3.2 for more information on these factors.
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stocks in the 6 decile. The estimated coefficients are always positive, implying that the
securities ranked as “attractive” or “unattractive” according to each of these measures, i.e.,
Deciles 10 and 1, respectively, tend to have a higher turnover than the securities that are
ranked “neutral” (Deciles 5 or 6).

The coefficients for most factors, particularly the Price Momentum factor, exhibited an
increase during this period. Furthermore, the the R? of the cross-sectional regressions was
substantially higher on those days in August. While these observations are all consistent
with the Unwind Hypothesis, the explanatory power of these regressions and the estimated
impact of the factors (other than Price Momentum) on August 8 and 9 were not markedly
different than earlier in the same week. So what changed on August 8, 9, and 10 that yielded
the volatility spike and change in the dynamics of the contrarian strategy returns and also
in the reported losses among the most sophisticated quant hedge funds during this time?

We argue in the next section that a sudden withdrawal of liquidity by high-frequency
dealers may be one explanation.
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Figure 5.3: Estimated coefficients Sf’t and R? of the cross-sectional regression of daily
individual-stock turnover on absolute excess decile rankings for five valuation factors from
July 23, 2007 to August 17, 2007: TO;, = 4+ 3.5_; |Di s — 5.5(37, + &1, where TO; is the
turnover for stock 7 on day t and D; y is the decile assignment for stock ¢ based on factor f,
where the five factors are: Book-to-Market, Cash flow-to-Market, Earnings-to-Price, Price
Momentum, and Earnings Momentum.
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5.4 High-Frequency Analysis

We now turn our attention to intra-day price dynamics by applying a similar strategy to
transactions data from July to September 2007 for stocks in the S&P 1500 universe. We
will use this data for two distinct purposes: to construct portfolios similar to the portfolios
that were held by typical quant funds, and to more precisely study the changes in the price
dynamics in the first half of August 2007.

Figure 5.4 displays the cumulative returns of long/short market-neutral portfolios based
on the factors of Section 5.3 for the two weeks before and after August 6 (from 9:30 am
on July 23 to 4:00 pm on August 17). Each portfolio consists of investing $1 long in the
stocks in the 10 decile and investing $1 short in the stocks in the 1st decile of that month
according to each of the five quant factors. Each $1 investment is distributed using equal
weights among stocks in the respective decile. We then compute the value of long/short
portfolios using the most recent transactions price in each 5-minute interval.>® Portfolio are
rebalanced on the first day of August.

The patterns observed in Figure 5.4 suggest that on August 2 and 3, long/short portfolios
based on Book-to-Market, Cash flow-to-Market, and Earnings-to-Price were being unwound,
while portfolios based on Price Momentum and Earnings Momentum were unaffected until
August 8 and 9 when they also experienced sharp losses. But on Friday, August 10, sharp
reversals in all five strategies erased nearly all of the losses of the previous four days, returning
portfolio values back to their levels on the morning of August 6.

We now turn to applying the contrarian strategy to intra-day prices in order to study
the changes in the price dynamics during this time. For computational simplicity, we use
a simpler mean-reversion strategy than the contrarian strategy given in (5.1). This high-
frequency mean-reversion strategy is based on buying losers and selling winners over lagged
m-minute returns, where we vary m from 5 to 60 minutes. Specifically, each trading day
is broken into non-overlapping m-minute intervals, and during each m-minute interval we
construct a long/short dollar-neutral portfolio that is long those stocks in the lowest return-
decile over the previous m-minute interval, and short those stocks in the highest return-decile
over the previous m-minute interval.5!° The value of the portfolio is then calculated for the
next m-minute holding period, and this procedure is repeated for each of the non-overlapping
m-minute intervals during the day.>!!

Figure 5.5 plots the cumulative profit of this mean-reversion strategy from July 2 to
September 28, 2007 for various values of m, and a clear pattern emerges. For m =60 minutes,
the cumulative return is fairly flat over the three-month period, but as the horizon shortens,
the slope increases, implying increasingly larger expected returns. This reflects the fact

59We use the Cumulative Factor to Adjust Price (CFACPR) from the CRSP daily files to adjust for
stock splits, but do not adjust for dividend payments. This may cause a small approximation error in the
reported returns.

5-10Gtocks are equal-weighted. In case there is a tie between returns for several securities that cross the
decile threshold, we ignore all securities with equal returns to focus on the supply-demand imbalance, and
also to enhance the reproducibility of our numerical results. No overnight positions are allowed.

511We always use the last traded price in each m-minute interval to calculate returns; hence, the first set
of prices for each day are the prices based on trades just before 9:30 am plus m minutes, and the first set of
positions are established at 9:30 am plus 2m minutes.
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that shorter-horizon mean reversion strategies are closer approximations to marketmaking,
with correspondingly more consistent profits. However, for all values of m, we observe the
same dip in profits during the second week of August. Consider, in particular, the case
where m =5 minutes—on August 6, the cumulative profit levels off, and then declines from
August 7th through August 13th, after which it resumes its growth path at nearly the
same rate. This inflection period suggests that marketmakers may have reduced their risk
capital from August 7-13, returning to the market once the Quant Quake had passed. The
logic is straightforward: the existence of marketmakers typically provides a counterbalancing
force to attenuate such correlated liquidation-driven momentum among a large group of
stocks. Therefore, a sudden withdrawal of marketmaking capital in the face of mounting
price pressure would yield exactly the kind of price patterns observed over the week of
August 6, 2007.

Although NYSE/AMEX specialists and NASDAQ dealers have an affirmative obligation
to maintain orderly markets and stand ready to deal with the public, in recent years, a
number of hedge funds and proprietary trading desks have become de facto marketmakers
by engaging in high-frequency program-trading strategies that exploit mean reversion in
intra-daily stock prices.>!? But in contrast to exchange-designated marketmakers, such
traders are under no obligation to make markets, and can cease trading without notice. We
conjecture that these traders may have left the market during the second week of August,
either because of losses sustained during the start of the week, or because they were forced
to reduce their exposures due to unrelated losses in credit portfolios and other investments
within their organizations.

To explore the impact of varying holding periods on market making profits, we use lagged
5-minute returns to establish the positions of the mean-reversion strategy, and hold those
positions for m minutes where m varies from 5 to 60 minutes, after which new positions are
established based on the most recent lagged 5-minute returns. This procedure is applied for
each day and average returns are computed for each week and each holding period. Figure
5.6 shows the average return for different holding periods for each week of the sample. With
the notable exception of the week of August 6, the average return is generally increasing in
the length of holding period, consistent with the patterns in the daily strategy in Section 4.5
and Figure 4.5.

To interpret the observed patterns in Figure 5.6, recall that this mean-reversion strategy
provides immediacy by buying losers and selling winners every 5 minutes. As quantitative
factor portfolios were being deleveraged and unwound during the last two weeks of July
2007, the price for immediacy presumably increased, implying higher profits for marketmak-
ing strategies such as ours. This is confirmed in Figure 5.6. However, during the week of
August 6, 2007, the average return to our simplified mean-reversion strategy turned sharply
negative, with larger losses for longer holding periods that week. In particular, the pattern
of losses in Figure 5.6 supports the Unwind Hypothesis in which sustained liquidation pres-
sure for a sufficiently large subset of securities created enough price pressure to overcome

512The advent of decimalization in 2001 was a significant factor in the growth of marketmaking strategies
by hedge funds because of the ability of such funds to “step in front of” designated marketmakers (achieve
price priority in posted bids and offers) at much lower cost after decimalization, i.e., a penny versus 12.5
cents.
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Figure 5.5: Cumulative profit of m-minute mean-reversion strategy applied to stocks in the
S&P 1500 universe from July 2, 2007 to September 28, 2007 for m =5, 10, 15, 30, and 60
minutes. No overnight positions are allowed, initial positions are established at 9:30 am plus
m minutes each day and all positions are closed at 4:00 pm. Components of the S&P 1500
are based on memberships as of the last day of the previous month.
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Figure 5.6: The average profit for the contrarian strategy applied to 5-minute returns from
July 2, 2007 to September 28, 2007. Each day is divided into non-overlapping 5-minute
intervals, and positions are established based on lagged 5-minute returns and then held for
5, 10, 15, 30, or 60 minutes. The average return for each holding period is calculated for each
week during this sample. No overnight positions are allowed, initial positions are established
at 9:40am each day and all positions are closed at 4:00 pm. Components of the S&P 1500
are based on memberships as of the last day of the previous month.
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the profitability of our short-term mean-reversion strategy, resulting in negative returns for
holding periods from 5 minutes to 60 minutes.

5.5 Detecting the Epicenter

The approach used in the last Section to detect the apparent regime shift during the week
of August 6 2007 can be used to more precisely detect the exact time and even the group
of stocks involved in this processes. In particular, we apply the contrarian strategy to
the following subsets of stocks: three market-cap based subsets (Small-,Mid-, and Large-
Cap subsets representing the bottom 30%, middle 40% and top 30% of stocks by market
capitalization), five factor-based subsets (each subset consists of stocks in either decile 1
or decile 10 of each of the five quantitative factors of Section 5.3), and six industry based
subsets, based on the twelve-industry classification codes available from Kenneth French’s
website.?!3 To each of these subsets, we apply the simpler version of the contrarian strategy
described in Section 5.4.

Table 5.2 and Figure 5.7 contain the returns of these portfolios from July 23 to August
17, the two weeks before and after August 6. Each entry in Table 5.2 is the average return
of the 5-minute contrarian strategy applied to a particular subset of securities over the
specified day. As discussed in Section 5.4, days with negative average returns in Table 5.2
correspond to those days when the trading activity started to exhibit momentum over the
relevant holding period used for the strategy. This interpretation allows us to visually detect
the intra-day emergence of price pressure and determine when the liquidation began and in
which factor-based portfolios it was concentrated. Based on these results, we have developed
the following set of hypotheses regarding the epicenter of the Quant Quake of August 2007:

1. The first wave of deleveraging began as early as August 1 around 10:45am, with the
activity apparently concentrated among factor-based subsets of stocks. One can vi-
sually detect the sudden abnormal behavior of the long/short portfolios at the exact
same time in Figure 5.4. Portfolios based on Book-to-Market and Earnings-to-Price
dropped in value while portfolios based on the other three factors, Cash flow-to-Market,
Earnings Momentum and Price Momentum, gained a little, suggesting that portfolios
being deleveraged or unwound during this time were probably long Book-to-Market
and Earnings-to-Price factors and short the other three. This wave of activity was
short-lived and by approximately 11:30 am that day, markets returned to normal. By
the end of the day, the contrarian strategy applied to all subsets except for Earnings
Momentum and Book-to-Market yielded positive average returns for the day (see Ta-
ble 5.2), implying that the liquidation may have been more heavily concentrated on
portfolios formed according to these two factors.

513Industry sata was obtained from the data library section of Kenneth French’s web site:
http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/

Please refer to the documentation available from that site for further details. Note that industries with fewer
than 100 stocks are included in the Other Industries subset.

82



2. The second wave started on August 6 at the market open, and lasted until approxi-
mately 1:00pm. Once again, the action was concentrated among factor-based subsets.
This time, the price pressure due to the hypothesized forced liquidation was strong
enough to overcome the idiosyncratic liquidity shocks and, as such, the contrarian
strategy applied to all factor-based subsets of stocks yielded negative returns for the
entire day. Earnings-Momentum and Book-to-Market portfolios within the financial
sector suffered the largest losses, implying that the deleveraging was strongest among
these groups of stocks. The patterns in Figure 5.4 suggest that the portfolios being
deleveraged were probably long Book-to-Market, Price Momentum, and Cash flow-
to-Market, and short Earnings Momentum and Earnings-to-Price. Appendix A.3.4
contains a more detailed analysis of the specific stocks that were affected. August 6
was remarkable in another respect—for the first time in our sample, the contrarian
strategy applied to all stocks also registered a loss for the day (see Table 5.2), implying
widespread and strong price pressure due to a forced liquidation on this day.

3. On August 7th, portfolios based on Price Momentum and Cash flow-to-Market contin-
ued to drift downward as Figure 5.4 shows, suggesting continued deleveraging among
portfolios based on these two factors. Furthermore, the contrarian strategy applied to
all stocks yielded a second day of negative returns, suggesting that the forced liquida-
tion carried over to this day.

4. August 8 was the start of the so-called “Meltdown”. On this day, the contrarian
strategy suffered losses when applied to any subset of stocks (factor-based, industry,
and market-cap). The sudden drop and subsequent reversal is clearly visible in Figure
5.4.

5. Starting on Friday August 10, the long/short factor-based portfolios sharply reversed
their losing trend, and by the closing bell on Monday August 13th, all five long/short
portfolios were within 2% of their values on the morning of August 8. We conjecture
that this reversal was due to two possible causes: new capital that came into the market
to take advantage of buying and selling opportunities created by the price impact of the
previous days’ deleveraging, and the absence of further deleveraging pressure because
the unwind that caused the initial losses was completed.

6. In addition to the hypothesized forced liquidation, we conjecture that part of the
losses from August 8 and 9 also stemmed from a reduction in liquidity, most likely
from certain hedge funds engaged in high-frequency marketmaking activities. Unlike
NYSE specialists and other designated marketmakers that are required to provide
liquidity, even in the face of strong price trends, hedge funds have no such obligation.
However, in recent years, such funds have injected considerable liquidity into U.S.
equity markets by their high-frequency program-trading activities. The reason we
believe that reduced marketmaking activity is partly responsible for the August 2007
Meltdown is as follows. As seen in Figure 5.3, the R?’s of the turnover regressions
based on (5.3b) were also elevated during the week of August 6, with values of 10%
or higher which were the highest R*’s for this regression during all of 2007. Also,
the R? of the return-based regression (5.3a) was 13.9% on August 8, once again a
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record-setting level for all of 2007. But these R*’s and impact estimates were—with
the exception of the Price-Momentum factor—elevated throughout the week of August
6, hence they cannot explain the widespread losses that occurred on August 8 and 9.
We suspect that at least part of the meltdown that began on August 8 was due to
a specific reduction in marketmakers’ capital, most likely by hedge funds engaged in
high-frequency mean-reversion trading strategies.

7. We conjecture that the motivation for the reduction in marketmaking capital is the
negative average returns for the all-stocks contrarian strategy during August 6 and
7th (see Table 5.2), which revealed a much larger pending unwind than marketmakers
could handle, and those marketmakers who had the option of reducing their exposure,
e.g., hedge funds, did so on August 8.

In Appendix A.3.4, we show how the contrarian strategy can be used to identify with

even greater precision the specific stocks and sectors that were involved at the start of the
Quant Meltdown of August 2007.
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Table 5.2: The average returns for the contrarian strategy applied to various subsets of the S&P 1500 index using 5-minute
returns for July 23, 2007 to August 17, 2007. Each day is divided into non-overlapping 5-minute intervals, and positions are
established based on lagged 5-minute returns and held for the subsequent 5-minute interval. The average return for each subset
of stocks over each day of this period is then calculated. No overnight positions are allowed, initial positions are established
at 9:40am each day and all positions are closed at 4:00 pm. All entries are in units of basis points.

By Size By Factor
Date Small-Cap Mid-Cap Large-Cap Book to Market Cash flow to Market  Earnings to Pice  Price Momentum Earnings Momentum
(Bottom 30%)  (Middle 40%) (Top 30%) {Decile 1&10) (Decile 1&10) (Decile 1&10) (Decile 1&10) {Dectle 1&10)
2007/7/23 618 345 194 543 597 589 638 309
2007/7/24 898 361 108 593 630 638 539 37
2007/7/25 798 151 063 598 519 722 653 138
2007/7/26 1356 420 278 742 10 62 885 913 843
2007/7/27 963 483 204 6 81 1049 8 52 758 472
2007/7/130 772 299 240 494 633 616 661 453
2007/7/31 740 252 053 277 an 143 274 319
2007/8/1 763 394 372 -0.83 056 044 042 -2.27
2007/8/2 928 769 164 480 663 734 784 630
2007/8/3 701 253 299 445 464 544 571 272
2007/8/6 -1 55 -1.02 -1.21 -6.52 -3.32 -333 -5.41 -8 11
2007/87 -1.02 -2.24 120 -0.68 010 -1.34 -1.04 -3.50
2007/8/8 -26.30 -18.07 -5.54 -16.16 -15.21 -18 81 -2327 -2008
2007/8/9 -7.93 -14.97 «2.57 -5.36 -7.93 ~5.72 -9.31 -11.08
2007/8/10 ~3.02 ~8.89 254 ~1.82 -0.25 2.02 -3.87 -1.58
2007/8/13 -8.10 ~324 041 ~7.22 -3.35 -5.05 -4.92 ~4.49
2007/8/14 594 620 499 600 559 6 66 732 539
2007/8/15 931 642 462 925 1112 1098 1109 557
2007/8/16 1297 864 761 942 850 1018 1185 805
2007/817 1817 1411 622 16 86 16 82 1786 1771 15 61
By Industry
Computer,
Date Software & h:ﬁln::cg w: ‘:Z‘:;‘Ie Manufactunng Me;:;ligqcﬁzm Other Industries All Stocks
Electronics '
2007/7/23 758 438 318 407 398 409 409
2007/7/24 841 538 384 496 587 490 490
2007/7/25 707 193 24 203 463 356 356
2007/7/26 1081 644 574 7585 760 707 707
2007/7/27 953 364 653 729 543 5 88 588
2007/7/130 610 382 386 540 670 472 472
2007/7/131 802 230 360 318 794 374 374
2007/8/1 918 327 1113 911 398 506 506
2007/8/2 953 530 942 600 1009 674 674
2007/8/3 1023 262 331 549 614 428 428
2007/8/6 301 -0.60 -1.57 -016 404 -1 30 -1.30
2007/8/7 048 -1.20 -2.20 240 558 -112 ~1 12
2007/8/8 -20.89 -12.18 -24.57 -1878 -16.36 ~18.69 -18 69
2007/8/9 -4.37 -3.92 ~11.69 -17 36 -7.01 -9.82 -8 82
2007/8/10 056 115 -10.56 -527 012 -4.38 -4 38
2007/6/13 378 188 8.20 282 107 4.90 490
2007/8/14 636 765 536 745 434 539 539
2007/8/15 832 678 559 1163 530 679 679
2007/8/16 869 894 989 1202 1296 946 946

2007/817 1467 15 66 1158 17 94 1371 1303 1303
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Figure 5.7: The cumulative returns for the contrarian strategy applied to various subset of the S&P 1500 index using 5-minute
returns for July 23, 2007 to August 17, 2007. Each day is divided into non-overlapping 5-minute intervals, and positions are
established based on lagged 5-minute returns and held for the subsequent 5-minute interval. The average return for each subset
of stocks over each day of this period is then calculated. No overnight positions are allowed, initial positions are established
at 9:40am each day and all positions are closed at 4:00 pm.



5.6 A Network View of the Hedge Fund Industry

One of the pillars of our Unwind Hypothesis that we have promoted in this chapter is
the apparent large degree of overlap between holding of different hedge funds. We also
hypothesized the sudden reduction in market-making activity, which in the current market
conditions is provided by specialized hedge funds, was in part responsible for the massive
losses in the week of August 6. The common theme of these observations is the large degree
of interdependence and interconnectedness among different sectors. Although the focus of
the study so far has been on a particular subset of hedge funds, namely quantitative equity
hedge funds, the issue of interdependence is of great importance in the larger framework,
specially when looking at the over stability of the system from a global perspective.

Perhaps some of the newly developed techniques in the mathematical theory of networks
will allow us to construct systemic measures for robustness of the system. Given the lack
of transparency in the hedge-fund industry, we have no direct way of gathering the data
required to estimate the “network topology” that is the starting point of these techniques.
One indirect and crude measure of the change in the “degree of connectedness” in the
hedge-fund industry is to calculate the changes in the absolute values of correlations® !4
between hedge-fund indexes over time. Using this measure, we will focus on the issue of
“Connectedness” among different hedge fund sectors in this section.

Using 13 indexes from April 1994 to June 2007 constructed by CS/Tremont,>!® we com-
pare their estimated pairwise correlations between the first and second half of our total
sample period: April 1994 to December 2000 versus January 2001 to June 2007. If, for
example, the absolute correlation between Multi-Strategy and Emerging Markets was 7%
over the first half of the sample and 52% over the second half, as it was, this might be a
symptom of increased connectedness between those two categories.

Figure 5.8 provides a graphical depiction of this network for the two sub-samples, where
we have used thick lines to represent absolute correlations greater than 50%, thinner lines to
represent absolute correlations between 25% and 50%, and no lines for absolute correlations
below 25%. For the earlier sub-sample, we estimate correlations with and without August
1998, and the difference is striking. Omitting August 1998 decreases the correlations no-
ticeably, which is no surprise given the ubiquity and magnitude of the LTCM event. But a
comparison of the two sub-periods shows a significant increase in the absolute correlations in
the more recent sample. The hedge-fund industry has clearly become more closely connected.

Perhaps the most significant indicator of increased connectedness is the fact that the
Multi-Strategy category is now more highly correlated with almost every other index, a

514Because most hedge-fund strategies involve shortselling of one type or another, the correlations between
the returns of various hedge funds can be positive or negative and are less constrained than, for example,
those of long-only vehicles such as mutual funds. And because in our context, “connectedness” can mean
either large positive or large negative correlation, we focus on the absolute values of correlations in this
analysis.

5 158pecifically, we use CS/Tremont’s Convertible Arbitrage, Dedicated Short Bias, Emerging Markets, Eq-
uity Market Neutral, Event Driven, Fixed Income Arbitrage, Global Macro, Long/Short Equity, Managed
Futures, Event Driven Multi-Strategy, Distressed Index, Risk Arbitrage, and Multi-Strategy indexes. See
Appendix A.4.1 for the definitions of these categories, and www.hedgeindex.com for more detailed informa-
tion about their construction. All indexes start in January 1994 except Multi-Strategy, which starts in April
1994.
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Figure 5.8: Network diagrams of correlations among 13 CS/Tremont hedge-fund indexes
over two sub-periods, April 1994 to December 2000 (with and without August 1998) and
January 2001 to June 2007. Thicker lines represent absolute correlations greater than 50%,
thinner lines represent absolute correlations between 25% and 50%, and no connecting lines
correspond to correlations less than 25%. CA: Convertible Arbitrage, DSB: Dedicated Short
Bias, EM: Emerging Markets, EMN: Equity Market Neutral, ED: Event Driven, FIA: Fixed
Income Arbitrage, GM: Global Macro, LSEH: Long/Short Equity Hedge, MF: Managed
Futures, EDMS: Event Driven Multi-Strategy, DI: Distressed Index, RA: Risk Arbitrage,
and MS: Multi-Strategy.
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Table 5.3: The difference of the absolute correlation matrices of CS/Tremont Hedge-Fund
Indexes using recent data (January 2001 to June 2007) and earlier data (April 1994 to
December 2000), where the earlier correlation matrix is estimated with and without August

1998.

Ly
! 2
g ¢ by g o
2 2 m 5 5 H
s o g £ 2 e 5 8
s & & = g e 3 = 2
2 a 4a 8 g 3 2 & a E 7 =
> ¢ & & 3 » & 3§ & F o % =
g § = z =2 g8 & 3 = 2 & ¥ 9
= o [ o = = m s ™ 2 o =
o @ = < = 8 o 2 £ s 8 g 2
Q o (] s o N ® ® 2
s ® ¥ & 8§ ° 3§ F § < §g§ e ¢
With August 1998 Included
Convertible Arbitrage 6% 6% -8% -28% 17% 21% -15% -12% -3% -26% 21%
Dedicated Short Bias -40% 2% 8% 286% 7% 0% -4% -3% 8% A43%
Emerging Markets A7% 20% 12% 3% -23% -14% 3% 58%
Equity Market Neutral 6% 29% 27% 8% 0% -20% -20% -13% 37%
Event Driven 8% -2% 28% 15% -4% 1% -6% -21% 70%
Fixed Income Arbitrage -28% 8% -17% 7% 15% 6% 7% 19% 6% -9%
Global Macro 17% 26% 20% 27% 16% 31% 14% 34% 22% 36%
Long/Short Equity 21% 7% 12% 8% 15% 35% 10% 8% 20% 56%
Managed Futures 5% 0% 3% 0% -4% 6% 31% 35 Y, 6% -13% 25%
Event Driven Multi-Strategy 12% 4% -23% -20% 1% -7% 14% 10% -3% -23% 62%
Distressed 3% -3% -14% -20% 6% 19% 34% 8% -6%
Risk Arbitrage 26% 8% 3% -13% -21% 6% 22% 20% -13%
Multi-Strategy 21% 43% 58% 37% 70% -9% 36% 56% 25%
Excluding August 1998
Convertible Arbitrage 15% 17% 7% -27% 24% 39% 5% 1% 18% -10% 13%
Dedicated Short Bias 12% 3% 28% -1% 13% 13% 13% 27% 39%%
Emerging Markets 2% -11% 25% 20% 20% -12% 8% 23% 54%
Equity Market Neutral 17% 9% 23% 20% 18% -12% 8% -5% -3% 36%
Event Driven 7% 12% - 35% 24% 11% 5% 1% -9% 57%
Fixed income Arbitrage 27% 3% -11% 22% 11% 5% 28% 16% -11%
Global Macro 28% 28% 25% 20% 21% 22% 17% 48% 33% 34%
Long/Short Equity 39% -1% 20% 18% 24% _ 49%
Managed Futures 5% 13% 20% -12% 11% '
Event Driven Multi-Strategy 1% 13% -12% -8% 5%
Distressed 18% 13% 8% 5% 1%
Risk Arbitrage “10% 27% 23% -3% -9%
Multi-Strategy 13% 39% 54% 36% 57%
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symptom of the large influx of assets into the hedge-fund industry. This increased correlation
is also consistent with the hypothesis that forces outside the long/short equity sector may
have caused an unwind of statistical arbitrage strategies in August 2007. In August 1998,
multi-strategy funds were certainly impacted by their deteriorating fixed-income arbitrage
positions, and no doubt many of them liquidated their statistical arbitrage portfolios to meet
fixed-income margin calls. But because multi-strategy funds were not as significant a market
force in 1998 as they evidently are now, their correlations to other strategies were not as
large as they are today.

Table 5.3 contains a more detailed comparison of the two correlation matrices. The
absolute correlation matrix from the earlier sample is subtracted from that of the more
recent sample, hence a positive entry represents an increase in the absolute correlation in
the more recent period, and is highlighted in red if it exceeds 20% (negative entries less
than —20% are highlighted in blue). Table 5.3 confirms the patterns of Figure 5.8: absolute
correlations among the various different hedge-fund categories have indeed increased in the
more recent sample, with considerably more positive entries than negative ones.

To capture the dynamics of these changes in correlation structure among the CS/Tremont
Indexes, in Figure 5.9 we plot the means and medians of the absolute values of 36-month
rolling-window correlations between the indexes, with and without the month of August
1998.

70%
== Mean (w/o August 1998) ~---Median (w/o August 1998)
~===Mean (with August 1998) ===Median (with August 1998
60%
50% \
= 40%
% mf
B, 1
8 30% 2, AA
SOVNTW
20%
10%
0%

Mar-97 Mar-98  Mar-99 Mar-00  Mar-01 Mar-02 Mar-03 Mar-04 Mar-05 Mar-06 Mar-07

Figure 5.9: Mean and median absolute 36-month rolling-window correlations among
CS/Tremont hedge-fund indexes from March 1997 to June 2007, with and without August
1998.

These graphs show that the mean and median absolute correlations among the indexes
have been steadily increasing in recent years, especially after 2004. The inordinate amount
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of influence that August 1998 has on these correlations underscores the potential for system-
wide shocks in the hedge-fund industry.

5.7 Chapter Conclusions

In this chapter we applied the tools developed in the last two chapters to analyze the events of
August 2007 among equity hedge funds. We were able to link these events to a very distinct
change in the price dynamics, where the usual mean reversion in returns was replaced by a
momentum during a period of a few days. Given the model and the analysis presented in
the last chapter, we were able to link the change in the price dynamics to a change in the
arrival dynamics of customers. We complemented our analysis by presenting evidence about
the explanatory power of typical quant factors in explaining the cross-section of trading
activity and returns during the same time. Higher explanatory power during the volatile
days supports our claim about higher commonality in customer arrival during that time.

We argued that certain aspects of risk in the hedge fund industry have increased due to a
higher degree of similarity between assets held by various funds and a higher dependence of
these hedge funds on other hedge funds and proprietary trading desks for providing liquidity
to the market. In particular, we presented some evidence to support our claim that the
volatility in August 2007 was in part due to a reduction in liquidity provision by certain
high-frequency market makers. Finally, we presented some indirect evidence regarding the
higher degree of correlation among a much larger and more diverse set of funds. This
evidence suggests that transmission channels to direct the shocks between various hedge
fund categories are stronger now.
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Chapter 6

Long-Term Deviation from White
Noise

This chapter builds upon the earlier chapters by looking at an alternative patterns of pre-
dictability in price signals. We will explore further the implications of the notion of infor-
mational efficiency.

In Section 3.2, we showed the link between the notion of informational efficiency and
predictability in prices (or, to be more precise, price changes). In Section 3.3, we showed how
testing for linear predictability is equivalent to testing the elements of the lagged covariance
matrix. The contrarian trading strategy outlined in Section 3.3.1 was applied in Section
3.4 to detect major deviation from the hypothesis of unpredictability. Based on the results
of that empirical analysis, we hypothesized that certain frictions may be the cause of this
deviation. Chapter 4 was focused on studying one particular type of friction. These tools
were used in Chapter 5 to study the sequence of events in August 2007 that, as we argued,
was linked to the change in normal system dynamics caused by a shift in trade arrival and
a reduction in the activity of market makers.

We continue the line of analysis in this chapter by looking at the evidence for predictabil-
ity among a very different set of signals and at a substantially different trading horizon. The
primary source of returns we use in this and the next chapter are the monthly returns of
mutual funds and hedge funds. These returns are different from the returns we focused on
in the earlier parts since they represent the returns generated by managers who are actively
in the marketplace trying to beat the market. As we discussed in Chapter 3, the intuitive
foundation of the informational efficiency hypothesis is that by the nature of competition
in financial markets, market participants try to take advantage of all available information
in predicting the fair price and take position in cases when their prediction of the price is
different from the prevailing price. This competition causes the level of price to include infor-
mation of all market participants. Hence any change in the price is due to new information
not previously available to any market participant (see the discussion in Section 2.2). For
this reason, serial correlation, as a simple measure of predictability, is often associated with
market inefficiencies.®! Using the same line of logic, the returns of managed portfolios, such

6-1This association is not totally correct as it has been shown that other sources, such as predictable changes
in the investment universe (things such as periods of economic prosperity versus recession or periods of high
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as a hedge fund, should definitely be unpredictable.

After all, predictability in the returns, particularly among hedge fund returns, seems
inconsistent with the popular belief that the hedge fund industry attracts the best and the
brightest managers in industry. If a fund manager’s returns are predictable, one implication
is that the manager’s investment policy is not optimal. To make this intuition more clear,
consider the following thought experiment: if the manager’s returns next month can be
reliably forecasted as positive, the fund manager should increase positions this month to take
advantage of this forecast, and vice versa for the opposite forecast. By taking advantage of
such predictability, the fund manager will eventually eliminate it, along the lines of original
proof in Samuelson (1965).

Several authors have documented significant deviation from unpredictability in the re-
ported returns of hedge funds.5? To bring this evidence to light, we have reported in Figure
6.1 the histogram of the estimate of the first order serial correlation of mutual funds and
hedge fund in the universe of our data.’® Three observations should be clear:

1. There is a large concentration of mutual funds with estimated serial correlation near
1.

2. With the exception noted in point 1, hedge funds tend to have higher estimated serial
correlation as compared to the rest of mutual funds.

3. In both cases, the histograms are not centered around 0, i.e., negative serial correlation
values are relatively rare and the average estimate seems to be reliably positive overall.

The information provided in Figure 6.1 lacks the rigors of an statistical test. We will
turn to this issue in Section 6.1. But before doing that, let’s try to build some intuition
regarding the nature of mutual funds that exhibit very high serial correlation.

Consider a mutual fund that invests in 1-month US government debt, or what is called
the Treasury Bills or the T-Bills.®* The reported returns of such a mutual fund would be
identical to the 1-month T-Bill rates. We plot the realizations of this rate and its mean for
January 1986 to December 2006 in Figure 6.2. As can be seen, this rate has a significant
variation around its sample mean, typically decreasing during recessions (such as early 1990s
and early 2000s) and increasing during good times. This is an example of the long-term
variations that we mentioned in footnote 6.1. Nevertheless, if we naively calculate the serial
correlation for such a time series, we will find a very high value. For example, the estimated
serial correlation for the time series shown in Figure 6.2 is 95.3%! This is consistent with
the fact that the series is very predictable; for example, months that have an above mean

inflation versus low inflation), can also give rise to a small amount of predictability in the returns. See LeRoy
(1989) and references therein for discussion of this topic.

62See Asness, Krail, and Liew (2001) for an early example.

63The hedge fund return data was obtained from the Lipper TASS Hedge Fund Database. Please see
Appendix A 4.1 for an overview of this database. The mutual fund return data was obtained from CRSP
Survivor-Bias-Free US Mutual Fund Database available from Center for Research in Security Prices. Please
see Appendix A.4.2 for an overview of this database.

6-4Such fund would be similar to the Money Market funds offered by many financial institutions as an
alternative to checking accounts.
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Figure 6.1: This figure shows the histogram of estimated first order serial correlation, p,; =
Corr(r; s, 7i4-1), in monthly returns for all hedge fund and mutual fund returns for the period
of 1986 to 2006 where r;, is the return for funds ¢ in month ¢. See Appendix A.4.1 and A.4.2
for an overview of the data used for this analysis.

realization are typically followed by another month that has a realization above the sample
mean and vice versa for a month with below sample mean realizations. But this is due
to the fact that months with high T-Bill rates are months during economic expansion and
months with low such rates are recession months, and since these periods tend to persist
once started, we will find high persistence in the returns of our hypothetical mutual fund.

One simple way to remove this effect is to use fund returns above the T-bill rate to calcu-
late the serial correlation values.%® This procedure is repeated and the empirical histograms
are reported in Figure 6.3. As can be seen, the exercise has removed the concentration of
estimates around 1 (compare with Figure 6.1). But there still seems to be some mutual
funds for which the level of estimated serial correlation is too large. In addition, even with
this correction, hedge funds tend to have large serial correlation estimates. Understanding
why this may be the case and its implications on the long-term behavior of the system are
the objective of the rest of this chapter and the next chapter.

The rest of this chapter is structured as follows. In Section 6.1 we will discuss proper

6.5The T-bill rate, which is the rate for 1-month investment in the US government debt, is used since the
reporting horizon of the mutual fund and hedge fund returns is also monthly.
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Figure 6.2: This figure shows why calculating serial correlation for a hypothetical mutual
fund that invests in 1-month Treasury Bills (T-Bill) from 1986 to 2006 gives a very high level
of serial correlation. Since, the T-bill rates vary widely around the sample mean during this
time and the variation is persistent, the serial correlation calculated from this series will be
very high; in fact, it will be near unity.

statistical distribution for the estimated serial correlation for the case of usual returns and
the case of returns with serial correlation of almost 1 or what we, for now and for lack of a
better word, refer to unusual returns. Section 6.1 will focus on the case of usual signals and
Section 6.1.2 will address the case of unusual signals. Section 6.1.3 will apply the statistical
tools developed in the two earlier sections to take a more precise view of the estimated serial
correlation, i.e., the same data reported in histograms in Figures 6.1 and 6.3. Once the
statistical significance of the estimated serial correlation values is established, we will, in
Section 6.2.1, develop a model of a certain type friction that may be behind the observed
unusually high serial correlation values. We will conclude in Section 6.3 by introducing one
of the central concepts in finance, namely the link between risk and return. We will connect
this idea with the framework familiar in statistical learning. This will set the stage for the
analysis between the friction outlined in Section 6.2.1 and long-term return of the hedge
funds and mutual funds in the next chapter.

6.1 Statistics of Serial Correlation of Signals Changes

In this section we develop proper sampling theory for the estimator of the first order serial
correlation of return signals.®¢ Let r, denote the time ¢ realization of the return signal and

66As we discusses in Section 3.1, price signals are difficult to analyze directly due to scaling issue and
also to a non-stationarity of the type we will discuss in this section. For this reason, prices are usually
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Figure 6.3: This figure show the histogram of estimated first order serial correlation, p,; =
Corr(ris — rft,Tig—1 — Tfe—1), in monthly excess returns for all hedge fund and mutual fund
returns for the period of 1986 to 2006. Returns are measures in excess of the 1-month
Treasury Bill (T-bill) rates. 7y, is the 1-month T-Bill prevailing at the beginning of month
t and r,; is the return for funds ¢ in month ¢.

let T be the total number of realizations of this signal available for the analysis. The first
order serial correlation is estimated by following expression:

(T-1)71 Zth_ll TtTi41 — [(T_ 1)~ Et 1 Tt] [ -1 EZ:Q Tt}
(T -1)~ Etlrg [ 1)” Ztlrt]

The following two section provide the sampling distribution of this estimator under a null
hypothesis of the following form:

p1 = (6.1)

Tt = Mt + € (62)

transformed into returns by one of the two methods we mentioned in Definition 1. In fact, using returns
as the starting point is so widespread that data sources usually provide the effective per-period return as
the starting point of any analysis. The data sources used in this analysis (described in Appendix A.4.1 and
A .4.2) directly provide the monthly return for various hedge funds and mutual funds.
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where i, is the time-varying expected return and ¢, is the unpredictable part of the return.
In particular, we will consider the following two cases:

e The case that y; is a constant equal to u. The appropriate sampling distribution for
p1 for this case is developed in Section 6.1.

e The case that p; is a random walk specified as yu; = Zf;(l, v, where v; are unpredictable
but permanent shocks to the expected value. This type of null hypothesis is considered
in Section 6.1.2.

The first case results in a stationary time series, while the second case results in a non-
stationary time series. We will not consider the more general case of stationary time series in
which p = 68(L)vy, where §(L) is the usual polynomial in the lag operator L and constrained
in a way that p, is a stationary process resulting in a stationary r; process. Detecting this
null-hypothesis without constraining the degree of persistence allowable in the y; process is
not possible through the simple approach based on p; that we are using. For testing this null
hypothesis, one has to ultimately address the underlying drivers of variation in the mean
along the lines of the drivers mentioned in footnote 6.1.57 For the purpose of this study, we
will not consider this more complicated version.

6.1.1 Stationary Case with Constant Mean

Recall that we are considering a null hypothesis where the data is generated through the
following data-generating process:

Hy : Ty = b+ € (6.3)

where p is the average return and ¢; is the unpredictable part of the return, so we have
Ele;|H;) where Hy = o(eq, -+ ,€); i.e., Hy is the set of all available information at time ¢.6%
This null hypothesis corresponds to the weakest form of the random walk hypothesis, or the
Uncorrelated Increments hypothesis presented in Chapter 2 of Campbell, Lo, and MacKinlay
(1997). Under this hypothesis, one can find the following distribution for the estimated first
order auto-correlation. Our proof, based on the Generalized Method of Moments is presented
in the Appendix.

Proposition 6.1 Under the null hypothesis of (6.3) where €, is a martingale difference se-
quence adopted to the filtration Hy = o(ey,- -+ ,€) and under some additional technical Tequ-
larity conditions listed in the proof, the first order sample auto-correlation has the following
asymptotic distribution:

67Getmansky et al. (2004) look at this issue using for example Hidden Markov Model (HMM) as the
structure giving rise to the time variation in the mean.

581, = o(e1, - ,€) is the o-algebra generated by {e1,---,e;}. See Shreve (2004) for definition and
relevant mathematical background.
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p ~ N(0,6% (6.4a)

1/2
o - (i) (6.4b)
Y€ '
Furthermore, 8 can be replaced by its consistent estimator, é, given by:
N ~y2\1/2
i = i) — ) (6.55)

> (re — f1)?
po= Ty (6.5b)

Proof: See Appendiz A.4.5.

The result given in Proposition 6.1 is robust to heteroskedasticity, i.e., conditional changes
in the variance, in the returns signals. This is important as it is commonly known that finan-
cial return time series exhibit very strong clustering in their volatility. So it is important that
the test statistic used for testing is based on the appropriate null that allows for conditional
heteroskedasticity in the returns. Intuitively, accounting for this effect is equivalent to using
the appropriate approach for estimating the standard errors of the estimator given in (6.1).

The test statistic presented in Proposition 6.1 is a subset of the more general Variance
Ratio test developed in Lo and MacKinlay (1988). We have presented this here for com-
pleteness of the argument. Furthermore, the proof provided in Appendix A.4.3 is based on
a different and much simpler approach.

6.1.2 Non-stationary Case
Consider the null hypothesis that the data is generated by a process of the following form:

Hy @ ri=pe+e
t—1
pe=p+ Y v (6.6)
=0

where both ¢; and v; are martingale difference sequences adopted to the filtration H, =
o(vi,-++ , Vi, €1, ,€&). Under this null hypothesis, it is assumed that Ele;1|H;] = 0,
E[vis1|Hs) = 0, and E[vgy1€41|He] = 0. In non-mathematical terms, H; represents all of the
available information at time ¢. OQur assumptions imply that shocks to expected returns and
the unexpected part of the return are unforecastable and that these shocks are concurrently
uncorrelated. These assumption are quite general and include many forms of leptokurto-
sis such as the stochastic volatility type of AutoRegressive Conditionally Heteroskedasticity
(ARCH) or any of the generalizations of such models. As presented in the proof, all that is
required for the main test of this null hypothesis to hold is the finiteness of moments up to
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the second order and some ergodicity conditions. Given all of these assumptions, it can be
shown that the limiting distribution for the sample auto-correlation is given by the following
proposition.

Proposition 6.2 Under the null hypothesis that the data is generated by the process given
in (6.6) where both €, and v; are martingale difference sequences adopted to the filtration
Hi=0(n, -, €1, ,€&) and under some additional requirements listed in the proof, we
have the following limiting distribution for the sample auto-correlation:

T(-1) 4 %(W(lf ~1) = W) f} W(udu— %
Jo W (u)2du — (f} W (u)du)?

(6.7)

where W (u) is the standard Brownian motion over interval [0, 1].
Proof: See Appendiz A.4.4.

Notice that the limiting distribution depends on the ratio of o, Any consistent estimator
of this ratio can be used to conduct an asymptotic test. To conduct tests presented in this
section, we have used the estimator outlined in the following corollary.

Corollary 6.1 Under the null hypothesis outlined in (6.6), we have that

», —Corr(Ary, Ary_1)
2Corr(Ary, Ary_q) + 1

2
0-6
2 (6.8)
where ATy =14 — T4_1.

Proof: See Appendiz A.4.5.

6.1.3 Empirical Application

We now apply the above sampling theory of the first order serial correlation to test the null
hypothesis of unpredictability, i.e., 7ho, = 0, in the reported returns. Such a test would shed
some light on the statistical significance of the values reported in Figures 6.1. To conserve
space, we have only reported the results based on the actual returns, i.e., the statistical
significance of the numbers shown in Figure 6.3 are not reported here. We have separated
the results based on the category of the fund to highlight significant differences between
categories that will be important in the next chapter. For definition of hedge fund categories
see Appendix A.4.1.

Asseen in Table 6.1, the estimated first order serial correlations are statistically significant
among a large fraction of funds in certain categories of hedge funds. For example, the first
order serial correlation is statistically significant among 79.4% of the Convertible Arbitrage
hedge funds and about 52.4% of Event Driven funds. A similar metric is only 3.6% among
Managed Futures or 8% among the Dedicated Short Biased hedge funds. Among mutual
funds, Asset Allocation funds have the lowest level of serial correlation and the estimates are
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significant only among 0.4% of these funds. This is in contrast with Fixed Income mutual
funds for which the null hypothesis can be rejected for 15.2% of all funds. Also note that the
Money Market funds show a very high level of serial correlation and the null hypothesis can
be rejected for 99.4% of all such funds. These funds, as we argued before, exhibit a unit-root
in their expected return due to their exposure to the short-term interest rates. Also notice
that negative and statistically significant first order serial correlation values are extremely
rare.

The data in Table 6.1 shows that the null hypothesis of rho, = 0 can be rejected for
26.8% of mutual funds for which we don’t have category information (row “Info. N/A”). As
noted in the discussion prior to Table A.2 in Appendix A.4.2, these are typically the older
funds which ceased to exist in the earlier part of the sample before the category information
was made available. We suspect that some of these funds are in fact Money Market funds for
which the returns are better represented by a unit-root process and can be separated using
our unit-root test. Note that the ratio of gf; is undefined under the null of p; = 0 and our
test for unit-root is invalid for those funds. Table 6.2 reports two different counts; one is the
percentage of funds for which the null of unit-root cannot be rejected and the second column
reports the percentage of funds for which the null of unit-root cannot be rejected but the
null hypothesis of rho; = 0 can be rejected. Given the point mentioned earlier about the 4
in cases for which the rho; cannot be rejected, we will focus on attention only on funds for
which that hypothesis is rejected. Based on this analysis, we suspect about 12.8% of funds
with no category information to be in fact Money Market type funds. We will ignore these
funds in our analysis in the next chapter.
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Table 6.1: This table gives a summary of statistical tests for the null hypothesis of p; = 0 in hedge fund and mutual fund
returns.

Fund Type Category Count Average Average Null of Rho_1=0 Rejected Null of Rho_1=0 Rejected Null of Rho_1=0 Rejected

Rho_1 p-Value (5% Test) & Positive Rho_1 & Negative Rho_1
Hedge Fund Convertible Arbitrage 101 38.3% 0.06 79.2% 79.2% 0.0%
Hedge Fund Dedicated Short Bias 25 9.2% 0.41 8.0% 8.0% 0.0%
Hedge Fund Emerging Markets 182 17.4% 0.24 36.3% 36.3% 0.0%
Hedge Fund Equity Market Neutral 153 11.4% 0.34 28.8% 24.2% 4.6%
Hedge Fund Event Driven 254 22.7% 0.16 52.4% 51.6% 0.8%
Hedge Fund Fixed Income Arbitrage 108 19.2% 0.27 25.9% 25.0% 0.9%
Hedge Fund Fund of Funds 631 18.9% 0.21 42.0% 41.5% 0.5%
Hedge Fund Global Macro 126 7.7% 0.41 8.7% 7.9% 0.8%
Hedge Fund Long/Short Equity Hedge 906 12.6% 0.35 16.1% 15.5% 0.7%
Hedge Fund Managed Futures 308 0.4% 0.51 3.6% 2.6% 1.0%
Hedge Fund Multi-Strategy 133 17.8% 0.21 42.1% 41.4% 0.8%
Mutual Fund Asset Allocation 1,133 5.3% 0.59 0.4% 0.4% 0.0%
Mutual Fund Convertible 74 10.0% 0.37 6.8% 6.8% 0.0%
Mutual Fund Equity 7,626 7.7% 0.48 5.5% 5.5% 0.0%
Mutual Fund Fixed Income 4,088 8.2% 0.41 15.2% 15.2% 0.0%
Mutual Fund Info. N/A 3,078 21.1% 0.35 26.8% 26.6% 0.2%
Mutual Fund Money Market 1,560 94.2% 0.00 99.4% 99.4% 0.0%

Mutual Fund Unclear (Muitiple Categories) 50 10.8% 0.44 12.0% 12.0% 0.0%
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Table 6.2: This table gives a summary of unit-root statistical test for different categories of mutual funds.

Category Count Average Null of No-Unit Root Null of Rho_1=0 Rejected
Rho_1 Rejected (5% Test) and Null of No Unit-Root
Not Rejected (5% Test)

Asset Allocation 1,133 5.3% 49.5% 0.1%
Convertible 74 10.0% 64.9% 0.0%
Equity 7,626 7.7% 50.0% 1.2%
Fixed Income 4,088 8.2% 85.5% 1.3%
Info. N/A 3,078 21.1% 54.1% 12.8%
Money Market 1,560 94.2% 6.0% 93.6%
Unclear (Multiple Categories) 50 10.8% 54.0% 0.0%



6.2 Partially Observed Signals and Deviation from White
Noise

We will now discuss a model for a particular type of friction that can give rise to observed
serial correlation in prices. The model discussed here is a generalization of the model in Lo
and MacKinlay (1990a). It works based on the idea that in the absence of a transaction, the
price associated with an asset remains same as the price from the most recent transaction.
For example, if the true price time series is p;;, the observed price time series, P74, will be
given by:

Dut if there was a trade in interval ¢
pit—1 if last trade was in interval ¢ — 1

PZt — Y pit—2 if last trade was in interval ¢t — 2 (6.9)

As we will show in this section, the effect of this stale pricing on the observed prices
creates an illusion of predictability and serial correlation. We will first describe the idea
through a simple simulation and then outline the model. To get started, we generate the
sample path for 500 sets of prices for 180 time periods (that would be 15 years for monthly
period length) based on a discrete version of a geometric Brownian motion data-generating
process. More precisely, p; ., the price at time ¢ for asset 4, is given by:

t
pz,t = eXp (Z(,uz + msr + Vi,'r))

=1

Under this data-generating process, the return for a security over a time interval is given
by log(pi:) — log(pit—1) = pi + m¢ + vy my represents the common random part of the
security’s return and v;; represents the specific random part of the return for security 2
and p; is the average return. For the simulations, we set u; = 0.005 and use independent
draws for a zero-mean normal random variable to generate realizations of m; and v;; with

om = 0.01 and o,, = 0.05.

Now consider the case when there is a 20% probability that each security is not traded
in a given interval. In the absence of a trade, the observed price remains same as the price
observed after the most recent transaction, i.e., the observed prices are determined through
(6.9). Also consider a scenario where we have a portfolio with an equal amount invested in
each of these 500 securities. The actual and observed value of the portfolio, p,; and Ppts
respectively, are simply the equal weighted average of the actual and the observed underlying
prices, i.e., p;; and p7, respectively. Recall that, as discussed before, the observed prices are
determined through (6.9) in the 20% of the time that there is no trade for a given security
in a given time interval.

Figure (6.2) shows one realization of a sample path of prices generated through this
process. We have calculated the actual and the observed value of the portfolio as the equal
weighted average of the actual and observed set of prices. The portfolio values, both actual
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and observed, are then turned into returns by taking the first difference®® of the value time
series. The first order serial correlation of the returns time series is calculated for both actual
and observed return and the p — Value of the Q351 test statistic based on the values of the
first three serial correlations of the portfolio return are calculated in both cases. Both the
magnitude of the first order serial correlation, 4.31% vs. 23.24%, as well as the p — Value
of the Q3 indicate that the partially observed underlying prices can give rise to perceived
serial correlation at the portfolio level. The model developed next will explicitly determine
the expression for the portfolio level serial correlation under a more general data generating
process.

6.2.1 The Model

Consider a collection of N securities and let r;, represent the unobservable return at time
t, for security 7. We assume that contemporaneous returns have a common component
captured by a linear structure given as follows:

Tt = M4 +ﬁzmt+ez,t 1= 17 >N (610)

where m; is a zero-mean common factor and ¢;; is zero-mean noise specific to security ¢ at
time ¢. Since €;,’s represent the random returns specific to security ¢ at time ¢, and we will
model them as temporally and cross-sectionally uncorrelated at all leads and lags. We also
assume that m; for different values of ¢ are independently and identically distributed and
uncorrelated with ¢;;_, for all 4, ¢, and k. Finally, let Var(m,;) = o2.

For security %, let 4;; be the indicator random variable for the trade event at time ¢, i.e.,
d;+ = 1 if a trade for security i takes place in time ¢ and takes the value of 0 otherwise. If a
security is not traded in a given time interval, the observed price will be unchanged during
that time interval so the “reported” return is 0 even though its true or virtual return is given
by (6.10). On the other hand, if a security is traded in time interval ¢, the observed return
is the sum of the virtual return in all prior consecutive time periods in which the security
was not traded. So the price “catches-up” to the true underlying price after each trade and
remains constant at other times. Viewed in terms of the prices, the observed set of prices
and underlying prices are related through (6.9) as described in the context of simulation in
the last part. So far, the model is the same as that in Lo and MacKinlay (1990a).

6.9This is different from the return definition given in Definition 1 but this should be sufficient for the
purpose of this illustrative simulation.

8.10Pjerce and Box (1970) proposed the following statistic for testing the significance of the first k auto-
correlation values:

m
m =T Z pz(k)
k=1
Under the null hypothesis of no auto-correlation, this statistic is asymptotically distributed as x2,. Ljung

and Box (1978) proposed the following finite-sample correction which provides a better fit to the x2, for
small samples sizes:

Ll 2
Qn=T(T+2)Y g,-—(_%
k=1
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Figure 6.4: A simulation example of the partially observed price signals. Sample paths for
prices of 500 securities for 180 time-periods are generated through a geometric Brownian
motion data-generating process given by p;; = exp (Etr=1(ﬂi +m; + Vi,T)) where p; = 0.005
and m; and v;; independent draws of normal random variable with zero man with ¢,, = 0.01
and o,, = 0.05. Each security has a 20% probability of not being traded in an interval in
which case the “observed price”, pf;, remains the same as the price after the most recent
transaction, also see (6.9). Actual and observed values of portfolio are calculated as the
equal weighted average of the actual and observed set of prices. The portfolio values, both
actual and observed, are then turned into returns by taking the first difference of the time
series. Finally, the first order serial correlation of the returns time series is calculated for
both cases. The p— Value of the Q)3 test statistic based on the values of the first three serial
correlation of the portfolio return are reported for both cases. Both the magnitude of the
first order serial correlation, 4.31% vs. 23.24%, and the p — Value of the Q3 indicate that
the partially observed underlying prices camggve rise to perceived serial correlation at the
portfolio level.



In the model proposed in Lo and MacKinlay (1990a), it is assumed that 6,; = 1 with
a fixed probability p; in each time period. Their model is capable of generating a negative
auto-correlation for each security while generating a positive auto-correlation for a portfolio
of securities. The intuition behind the model proposed here is to bridge this gap, i.e., by
explicitly modeling the dependence between 6, ; across ¢ for a fixed ¢, we will propose a model
that can generate both positive and negative correlation for portfolio returns.

For the case that &;; are completely correlated, the model proposed here will generate
negative auto-correlation for the portfolio, similar to the individual security return in the
Lo and MacKinlay (1990a) model. In this case, creating a portfolio of securities does not
achieve diversification across non-trading events and, hence, the portfolio is similar to a single
security when it comes to the non-trading event or the non-trading induced auto-correlation.
Therefore, the generated returns are negatively auto-correlated as was the case in the Lo
and MacKinlay (1990a) model for a single security. On the opposite extreme, where §;;
are completely independent, the model will generate positive auto-correlation similar to the
Lo and MacKinlay (1990a) model for a portfolio of securities. By adding a parameter that
controls the level of dependence between J;;’s for a fixed ¢, we will be able to create a model
that can generate both these extremes and values in between.

In order to model the cross-sectional dependence between d; s across ¢, we define 4, ; as
the indicator random variable for the following event:

dip = Hpiy + /1 = pj0s < ci} (6.11)

where 1, and 6;; are both N(0, 1), 14 are independent across ¢ and 6;; are independent across
both ¢ and t. p; is the parameter that captures the dependence among d;,;’s across 7. Finally,
parameter «; is set such that the unconditional trading probability is equal to p;. Given that
v; and ;; are both N(0,1) and independent, p,v; ++/1 — p?;; also has N (0, 1) distribution.
Hence «; should be set according to:

o = ®(p,) (6.12)

where ®(-) is the CDF for N(0,1) distribution. For our derivation, we will also need the
conditional trade probability condition on the realization of the common factor given by v.
This conditional probability, denoted by P/*(v), is given by the following expression:

Pl(v) = P(iz=1n=v))
- & (M) (6.13)

By definition of «; as given in (6.12), we have:

E,[P}(v)] = p, (6.14)
Also define:
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D = E,[P!"(v)*] (6.15)

and the following indicator random variable:

Xig (k) = 6,6(1 = 6ip—1) -+ (1 — dipmi) (6.16)

It is easy to see that the observed return is given by the following expression:
[eo]
iy = ZXi,t(k)Tz,t-k (6.17)
k=0

Portfolio Construction

Let I, denote the set of securities held in portfolio p. Let N, be the size of I,. We assume
that each portfolio consists of securities with a common trading probability and correlation
factor, i.e., that p; = p, and p; = p, for all securities in portfolio p. We also assume that
all securities are equally weighted in the portfolio.%!! The observed return of the portfolio
is approximately equal to the average of the individual return, i.e.:

1
o ™ N DT (6.18)

P jer,

The approximation is due to the fact that the returns are continuously compounded and
the logarithm of the sum is not the sum of logarithms.512 If the individual returns are small
and not too volatile, such an approximation is most likely valid in most cases. Using (6.17)
and (6.18), the portfolio return can be written as:

6-11This assumption can be relaxed by replacing certain expressions in the results with a properly weighted
average of the parameter that is assumed to be common across all securities. Since this model is only used
for illustrative purposes, we will make these assumption to facilitate the discussion.

612 Alternatively, if we assume returns are simple returns, see Definition 1, this expression would be exact
but we would have approximation error in (6.16). As we mentioned in the discussion after Definition 1, each
of the two methods for turning a price time series into a return time series has an advantage in one type
of aggregation; simple returns are easier to aggregate cross-sectionally to form a portfolio but compounded
returns are easier to aggregate across time.
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1
Tot = A Tot using 6.18
P er,
= _Z (Znt kX (K ) using 6.17
1,611, =0
o0
A Z (Z pi + Bimy g + €54 k) Xi,t(k)> using 6.10
161,, k=0
= ZZ_ (o + Bimyp— + €501) Xio(k)
k=0 i€lp

]
MS

Z zt(k + me— k_ Zﬂz 1,t k) + = Z fz,t‘kXi,t(k)

k=0 el p i€lp P i€l
[ 1

B30 D mXaa(k) + e KN Zﬂz Xoe(k) (6.19)
k=0 Np 1€l zeIp

The last expression is almost-sure convergence which holds because €,;_, are assumed
to be cross-sectionally uncorrelated with zero common mean. The inner sums in expression
(6.19) are the weighted cross-sectional averages of X, ;(k), which, as defined in (6.11), are
dependent through the common factor of ;. The final expression enables us to find various
time series properties of the observed returns we are interested in. But in order to arrive at
the general result, we will take all expectations in two steps by first conditioning everything
on the realization of 14’s and then, in the second step, taking the expectation over values of
l/t’S.

The first part of the above two-step approach involves taking the expectation over in-

dividual security 6;:’s. The resulting expressions will be a function of the 14’s as given
here:

—Zﬂz zt a;s’. Zlh zt(k)
zelp 'LGIp
ckf). ,U,pPpr(l/t) (1 —_ szp(l/t_l)) s (1 - PI’:JP(Vt_k))
2 Y (7, lc) (6.20a)
my— k—Zﬁz 1t [if; Ea[mt k—"ZBz %t k)
lEIp 1EIp
Y Bome kYR (P, k) (6.20b)
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where 7/ is a vector that contains the v,’s and

e L5 o
P jer,

8, - NL S s (6.21b)
Picr,

Y0 k) = Br(u) (1—PBr(v-1)) - (1= P (vis)) (6.21c)

Using (6.20a) and (6.20b), expression (6.19) can be written as:

roe = D (Hp + Bpmus) Y/7 (5, k) (6.22)
k=0

where, with a small abuse of notation, we have replaced the almost sure convergence with an
“=" sign. Now, we can take the expectation over ¥/ to arrive at various time series properties
of rp ;. The following proposition summarizes the time series properties of this model:

Proposition 6.3 Under the partially observed price signal model proposed in this section,
the return of the equally weighted portfolio has the following time series statistics:

Erpd = (6.232)
) 2u5(Dy” — pp) + 0B Dp’p
Var(ry,) = —> (2ppf Dz,,)pp” = (6.23b)

a3 — Dy’) 4 0®B2(pE — ppDyF)

Cov(rp s, Tpi1) = 20, — D (6.23c)
pp (Dy” — p2)C2 — (P2 — pp, DY)

Corr(ry .,y = £ 6.23d

OTT(Tp’t Tp,t—fl) (2p12) . 2D£p)cg — pngp ( )

Cov(rp e Tpeen) = (1=pp)"" Cou(ry o Tper1) (6.23¢)

Corr(ry i, Tpum) = (1= pp)" "' Corr(rp 75 111) (6.23f)

where
— Hp
Ca B0 (6.23g)

Proof: See Appendix A.4.6.

The above proposition captures the two possibilities, for a single security and for a port-
folio of securities, that was considered in Lo and MacKinlay (1990a) as special cases. The
next two corollaries summarize these special cases.

Corollary 6.2 If the non-trading events are completely correlated across the N securities,
the entire portfolio behaves simalar to a single security in terms of the non-trading events.
The first order serial correlation is given by:
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_,%2;(1 *‘Pp)
232 1-pp 2
o 6 + Zszlu’p

(6.24)

Corr(rz’t, TZ,m) =

Proof: This special case can be captured by setting for p, = 1. In this case, we have
D! = p,. Substituting this in (6.23d), the result follows immediately. This is the same as
the result in Lo and MacKinlay (1990a) equation 2.23.%13

Corollary 6.3 For the case that the non-trading events are completely uncorrelated across
the N securities, the first order serial correlation is given by:

CO”(Tz,t7T;,t+1) = 1-pp (6.25)

Proof: This special case can be captured by setting for p, = 0. In this case, we have
D! = pf,. Substituting this in (6.28d), the result follows immediately. This is the same as
the result in Lo and MacKinlay (1990a) equation 2.26. %1

The above expression indicates that the observed value of the first order serial correlation
is equal to 1 minus the trading probability. For example, if a portfolio contains securities
that have a 20% chance of not trading in each time interval (so the trading probability is
80%), the theoretical value of the first order serial correlation under this model for the case
where the trading events are completely uncorrelated will be 1 — 80% = 20%. Of course,
this is simply one extreme of the range of possibilities encompassed in this model. Figure
6.2.1 more fully captures the magnitude of the first order serial correlation as a function
of the trading probability for different values of the cross-sectional non-trading correlation
parameter, p, for different values of (, = B‘i";

Note that for a given level of {, and non-trading probability, the observed first order serial
correlation is a decreasing function of the cross-sectional non-trading correlation parameter,
p. This is to be expected. For example, in Corollary 6.2 we showed that in the case where
the non-trading events are fully dependent, this model reduces to the case of a single security
in Lo and MacKinlay (1990a) and the serial correlation expression given in Corollary 6.2,
which is negative for all parameter values.

6.3 Why Is This Important?

So far in this chapter we have documented the usually high level of serial correlation among
hedge funds. The model analyzed in Section 6.2.1 linked this serial correlation to the issue
of observability of the underlying signals. We showed that in cases where the underlying

6-13Note that Lo and MacKinlay (1990a) develop the expressions based on the non-trading probability. So
p, in their expression is equal to 1 — p, in our expression here. Also, since they develop the expression for a
single security, there is no concept of §; i.e., o; in their expression is equal to 8,0 in our expression.
6-14Note that Lo and MacKinlay (1990a) develop the expressions based on the non-trading probability. So
p, in their expression is equal to 1 — p, in our expression here.
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Figure 6.5: This figure shows the magnitude of the first order serial correlation of observed
return on the non-trading model discussed in Section 6.2.1. The three plots are for different
values of the (, = B—’:”; Each line shows the magnitude for a different value of the p pa-
rameter. Recall that this parameter controls the degree of correlation between non-trading
events subject to a fixed unconditional trading probability. This probability is shown on the

horizontal axis here in each plot.
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assets don’t trade frequently, the process of using old price signals in calculating the value of
a portfolio of assets will result in a perceived predictability in the changes of the calculated
portfolio value. The reader may wonder why the analysis presented here is important. Aside
from the interest in analyzing the unexpected observation among hedge fund returns and
understanding the frictions involved, the discussion of this section is also interesting as it
applies to developing a better understanding of the drivers of the returns, i.e., appreciation
in prices, in the long run. The next chapter is dedicated to analyzing the effect of this issue
on the long-term price appreciation. But before we can do that, we need to provide some
background.

In general, one of the important problems in finance is understanding the drivers of
the expected returns. From a statistical perspective, this is done by linking the expected
return to other observable characteristics of the security of interest. One of the first models
proposed for this purpose is the Noble Prize winning Capital Asset Pricing Model (CAPM).
This model creates a link between the expected return of security, i, and the covariance of
the return of the security with a benchmark return with the following form:

Elr] = Bidn (6.26a)
_ Cov(ri,Tm)
where, B = ~Nartr) ) (6.26b)

and r,, is the return of the market portfolio (usually taken as the portfolio of all stocks)
and )\, is a constant referred to as the market risk premium.%!5 This model is remarkable
because it indicates that the expected return should be linear in the covariance of the return
of that security with the return of the market. But what is the market portfolio?

The CAPM is an equilibrium model which uses the fact that all risky assets, such as
stocks, need to provide enough compensation for the investors so that in aggregate investors
are happy holding those assets. When formulated properly, this idea guides us in selecting the
market portfolio. According to this approach, the market portfolio should be the portfolio of
all risky assets available to the investors when each of them is weighted by its market value.
For example, the S&P 500 Index, which is a market weighted index of the 500 largest stocks
in the US, is a commonly used proxy. The link between expected return and covariance with
the market return can as be written in the form of a linear regression as follows:

Tot = O+ BiTmg + €in (6.27)

’

The CAPM model predicts that «; = 0. Hence, the part of the return that is perpen-
dicular to the market return, i.e., a, + €;4, should have a zero-mean.®1® In a more abstract

615Tn reality, the model requires all returns to be measured in ezcess of the risk-free rate. While such
considerations are essential in theoretical analysis and empirical testing, for the purpose of this discussion,
and to keep the notation simple and clean, we will not write the return in the excess form.

6.16The CAPM is developed by making assumptions either about the utility function of the agents in the
system or about the distribution of the returns. In the second method for deriving CAPM, it is needed
to assume that returns are normally distributed. See any Financial Economics textbook for a treatment of
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and statistically friendly notation, the objective in this type of analysis is to find a set of
characteristics as well as a functional form such that:

E[r;] = f(Characteristics of asset i) (6.28)

For example, although developed from rigorous theoretical characterization of optimiza-
tion by agents and return characteristics, the CAPM implies that the only important char-
acteristic is 3, = Cov(r,, )/ Var(r,) and the f(-) is a linear function.

If serial correlation is in fact a by-product of lack of trading of the underlying security,
then it would be reasonable to suspect that funds that tend to hold assets that are harder
to trade, i.e., the more illiquid assets, tend to have higher average return relative to funds
that hold easier to trade assets. The objective in the next chapter will be to test this
hypothesis. We will do this by grouping funds used in this chapter into five clusters based on
the estimated serial correlation and then conducting statistical tests about the difference in
the long-term return of the portfolio with the highest serial correlation minus the portfolio
with the lowest serial correlation.

6.4 Chapter Conclusions

We changed the attention in this chapter to the sources of predictability at monthly time
scale. We started by documenting a peculiar observation that returns of certain investments,
such as hedge funds, tend to display extremely high levels of predictability. We argued that
this is in contrast with the general knowledge that hedge fund managers tend to be “smart” in
using their informational advantage and, hence, that their returns should be unpredictable.
We then proposed a simple model that generated predictability in observed returns of a
portfolio based on the idea that if some of the securities held in the portfolio are not traded
in every time interval, such as a month, the price of those securities used for calculating the
value of the portfolio will be stale. The model proposed in this section for how this pricing
process takes place is simple enough to be analytically tractable. As we discussed, this model
can produce positive or negative serial correlation at the portfolio level depending on the
structure of the cross-sectional dependence between how securities are traded.

We closed this chapter by discussing the general problem of analyzing the long term
drivers of expected returns for financial prices. The final chapter of this thesis will elaborate
the link between serial correlation of returns and the long-term expected returns.

CAPM and other equilibrium models.
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Chapter 7

Linking Long-Term Deviation from
White Noise to the Signal Mean

This chapter builds upon the issue of unusually high predictability among hedge funds that
we disused in the last chapter. As we discussed in Section 6.3, if predictability is a by-
product of unobservability of the underlying prices due to lack of transaction, one would
expect that assets with higher serial correlation of returns are more illiquid in a sense. We
are interested to see if there is any relationship between the serial correlation of returns, p,,
and the expected returns, E[r;], i.e.:

Elr,] L f(p;, other characteristics of asset i) (7.1)

We will analyze this question using a variety of techniques based on the returns of a large
sample of hedge funds, mutual funds, and US common stocks. For the case of hedge fund
return data, we will use the TASS Hedge Fund Database. This is the same source of data
that was used in the last chapter, details of which are discussed in Appendix A.4.1. We
will also continue to use the CRSP Mutual Fund Database to obtain mutual fund return
data. The details of this data source are discussed in Appendix A.4.2. We will not use
Money Market mutual funds or mutual funds for which the hypothesis of unit-root was not
rejected based on the statistical tests used in Section 6.1.3. We will also use the returns of
100 standard stock portfolios to extend the reach of our coverage. Stock portfolios, instead
of individual stocks, are used to reduce the noise in our input data. Additionally, these 100
portfolios are one of the standard benchmarks used in this type of analysis. The details of
this source are discussed in Appendix A.5.1. provides some additional analysis on the link
between serial correlation of returns in various asset classes and their level of illiquidity.

This chapter is structured as follows. Section 7.1 In particular, in the case of hedge
funds we have access to other measures of illiquidity, such as the Lockup Period or the
redemption notice period,”! which can be used to verify that serial correlation is indeed

7-1These are the restrictions commonly enforced on the investors of hedge funds by the fund managers
which are commonly believed to associated with the level of illiquidity of their underlying asset. We will
discuss this further in Section 7.1.
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a proxy for the illiquidity of the underlying assets held by a fund. Section 7.2 discusses
our methodology for analyzing the link between serial correlation and expected returns, i.e.,
our approach for calibrating a model for the generic relationship expressed in (7.1). We will
outline an approach based on grouping individual funds or stock portfolios into clusters using
their estimated serial correlation. The difference between the expected returns of different
clusters can then be used to estimate the premium for holding the more illiquid assets. We
also discuss two methods for taking into account other characteristics that can contribute
to the return differential expressed in (7.1) by adjusting the returns for such characteristics.
Looking at the adjusted returns will increase the ability of our approach to detect smaller
return differentials by reducing the noise in our model. We will elaborate on these claims
when we outline our approach in Section 7.2. Sections 7.3 and 7.4 apply this general method
to our data set. Section 7.3 contains the results based on raw returns and we will report
the results based on the adjusted returns in Section 7.4. In Section 7.5, we will develop this
analysis further by looking at this measure of illiquidity among different categories of hedge
funds. In Section 7.6, we will look at the evolution of this premium during the later part of
our sample period, years 1998 to 2006. We will be able to draw some interesting insight on
the effect of macro-economic variables on this premium. We will conclude in Section 7.7.

7.1 Motivation

We will start by looking at hedge funds and use this to promote our proposed measure of
liquidity. In the case of hedge funds, we have access to some auxiliary variables that can be
used to evaluate the liquidity of investment strategies followed by a given fund. For example,
Liang (1999) uses the “Lockup Period,” i.e., the number of days since the initial investment
for which the investor’s shares are “locked up” and cannot be redeemed, as a proxy for
the liquidity of different hedge funds. In a more recent study, Aragon (2007) uses both the
Lockup Period and the Redemption Notice Period, as the controlling variables to account for
different liquidity characteristic of hedge funds. To give the reader a sense for the variability
of these measures in our data, we have provided the average values and some distribution
characteristics of these two measures for different categories of hedge funds in our data set
in Table 7.1.72 Each part of this table is sorted by the relevant measure in descending order.
One can observe that categories such as Event Driven or Convertible Arbitrage appear near
the top in both lists, while categories such as Managed Futures and Global Macro are at
the bottom. Note that a substantial percentage of funds in each category have no Lockup
Period, and for such funds, the redemption notice period is the only factor imposing liquidity
constraint on the invertors. Lookup periods of more than 1 year are very rare, and hence,
the redemption notice period is perhaps the primary liquidity constraint on the investors of
most active hedge funds, although an investor would clearly consider both constraints in his
or her decision to invest in a given fund. Although it possible to use these measures to proxy
for the liquidity of a given hedge fund, our hope here is to create a liquidity measure that
can be estimated directly based on observed returns and, hence, can be used to measure the
liquidity of mutual funds and portfolios of stocks.

72G8ee Appendix A.4.1 for details of our data set and the definition of hedge fund categories.
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Table 7.1: This table shows the vast difference between the Redemption Notice Period and
the Lockup Period among different categories of hedge funds. The data is sorted by the
average of the relevant measure in each part. For the definition of these categories please
see Appendix A.4.1.

Panel A: Redemption Notice Period

Average Redemption Redemption Distribution
Category Count Notice Period in Days
<10 10-30 >30

Event Driven 254 50 10% 33% 57%
Fund of Funds 631 40 16% 26% 58%
Convertible Arbitrage 101 37 15% 47% 39%
Fixed Income Arbitrage 108 34 29% 33% 38%
Multi-Strategy 133 34 20% 44% 35%
Equity Market Neutral 153 32 16% 50% 33%
Long/Short Equity Hedge 906 31 156% 59% 26%
Emerging Markets 182 27 32% 43% 24%
Dedicated Short Bias 25 25 28% 60% 12%
Global Macro 126 20 33% 55% 13%
Managed Futures 308 8 62% 34% 4%
Panel B: Lockup Period
Category count Average Lockup Period Lockup Distribution

in Months None Upto 1 Year More
Event Driven 254 54 60% 35% 6%
Long/Short Equity Hedge 906 44 65% 32% 3%
Convertible Arbitrage 101 3.1 74% 25% 1%
Multi-Strategy 133 28 74% 25% 2%
Equity Market Neutral 153 25 78% 20% 1%
Emerging Markets 182 2.1 84% 13% 3%
Fixed Income Arbitrage 108 19 82% 17% 1%
Dedicated Short Bias 25 1.9 80% 20% 0%
Fund of Funds 631 19 86% 12% 1%
Global Macro 126 10 93% 6% 1%
Managed Futures 308 05 96% 4% 0%
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Following the argument of Getmansky et al. (2004), we take the view that the observed
autocorrelation in returns is a by-product of difficulty to correctly price the different assets in
a portfolio, and the “claimed” returns of any portfolio with this issue would tend to exhibit
higher autocorrelation values. To make this more clear, and to provide the reader with
some evidence on the universality of this issue, Table 7.2 shows the characteristics of the
monthly returns for several representative equity and fixed income factors.”> We have also
shown the p-value for Ljung and Box Q-statistic™* for the joint significance of the first three
sample autocorrelation values. Looking at the returns of equity indexes, the hypothesis of
no autocorrelation cannot be rejected for the indexes that include the largest and the most
liquid set of assets, such the S&P 500 and the Wilshire 750 Large Cap indexes. The story is
different among smaller stocks in the same market, captured by the S&P 600 Small Cap or the
Wilshire 1750 Small Cap index, for which the null of no autocorrelation can be rejected at 5%
significance level. In order to highlight the difference between the predictability of tradable
and non-tradable assets, we have presented the return for two emerging market indexes.
The first index, the S&P/IFC Emerging Markets Composite Index, is simply a “tracking”
index, while the second index, the S&P/IFC Emerging Markets Investable Composite, is an
“investable” index. Observe that the null hypothesis can be easily rejected for the “tracking”
index while the null cannot be rejected in the case of the “investable” index. This observation
argues that the process of pricing the portfolio involved in the investable index is more
efficient, or perhaps that this index invests in a more liquid set of assets relative to the set
of assets tracked by the first index. So even the simple Ljung and Box Q-statistic verifies
the validity of the Samuelson (1965) argument regarding the lack of predictability in the
returns for investable assets. The trend is similar among fixed income factors where the
Q-statistic comes close to the critical value for rejecting the null, but this hypothesis cannot
be rejected for the indexes tracking the more liquid US government bond securities. Again,
lack of predictability can be rejected in the case of indexes tracking the corporate bond and
mortgage-backed securities which are more illiquid. This observation suggests that the serial
correlation is quite common, and not unique to hedge funds.

As mentioned before, the unique set of information available for hedge funds enables us
to evaluate the degree to which serial correlation is a proxy for illiquidity of hedge funds.

73Data for all these factors is obtained from the Global Financial Database. All series are total returns
and based on monthly frequency. Data from January 1986 to December 2006 was used when available to
maximize the overlap with the data used in the rest of our study. Wilshire 1750 Small Cap was only available
until March 2006, the Merrill Lynch Mortgages Index was available until February 2004, and the S&P/IFC
Emerging Markets Investable Composite was available starting in January 1989.

7“4Pierce and Box (1970) proposed the following statistic to test the significance of the first k autocorrelation
values

Qm = sz2(k)
k=1

Under the null hypothesis of no autocorrelation, this statistic is asymptotically distributed as x2,. Ljung
and Box (1978) proposed the following finite-sample correction, which provides a better fit to the x2, for
small samples sizes:

p* (k)

T-k

Qn=T(T+2))_
k=1
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Table 7.2: Return statistics for several representative set of equity, fixed income and emerging
market indexes. To maximize the overlap with the data used in the rest of this study, returns
from January 1986 to December 2006 were used when available. See footnote 7.3 for the
exact time periods. All values are based on monthly returns and not annualized.

Index Name Mean StDev Skewness Kurosis Rho_1 Rho_2 Rho_3 Q-Statistic (3 Lags)
q-value p-value
S&P 500 Large Cap 11% 43% -0 832 5964 -13% -38% -10% o4 94%
S&P 400 Mid Cap 13% 48% -0 862 6210 64% -85% -91% 502 17%
S&P 600 Small Cap 10% 53% -1188 7619 13% -38% -137% 833 4%
Wilshire 5000 10% 44% -1 032 6554 36% -5 0% -38% 131 73%
Wilshire 750 Large Cap 10% 44% -0 840 5716 05% 51% -14% 072 87%
Wilshire 1750 Smalt Cap 11% 54% -1 060 6842 133% -62% -12 0% 874 3%
S&P/IFC Emerging Markets Composite Global 10% 64% 0571 4704 17 4% 90% -42% 1016 2%
S&P/IFC Emerging Markets Investable Compostite 11% 65% 0570 4731 139% 60% -28% 518 16%
US Gov - 5 Year 06% 14% -0 084 3005 14 4% -66% 13% 665 8%
US Gov - 10 Year 07% 22% 0019 3425 93% -111% 02% 817 10%
US Gov - 30 Year 08% 33% 0144 3943 69% -114% 32% 592 12%
US AAA Corp Bond Index 08% 15% -0 091 4269 15 5% 66% 21% 800 5%
Merrili Lynch Mortgages Index 07% 11% -0159 4074 151% -117% -22% 843 4%

Comparing the data provided in Table 7.1 with the data provided in Table 6.1 of Section
6.1.3 is supportive of the general notion that serial correlation in returns and illiquidity of
the underlying assets are closely related. For example, Convertible Arbitrage and Event
Driven, which appear near the top of both lists in Table 7.1, have the two highest average
first order serial correlation values at 38.3% and 22.7%, respectively. Similarly, the Managed
Futures and Global Macros funds have the two lowest values of average serial correlation in
their returns, at 0.4% and 7.7%, respectively, and they also appear at the bottom of both
lists in Table 7.1.

To make this claim more statistically rigorous, we have fitted a linear model to link the
redemption notice period of a fund, which as argued above is the most relevant measure of
the illiquidity for most hedge funds, to the first order serial correlation. Table 7.3 shows the
estimates for the cross-sectional regression of

redemption, = & + pl,,-:\ + €

for all hedge funds in our data set as well as for different categories separately. The point
estimate of the linear regression coefficient, ), is positive and statistically significant when
all funds are used. Looking at the details of the relationship in each of the 11 categories,
we can see that in all but one category the point estimate is positive. It is also statistically
significant at 5% level in 7 out of the 11 categories. The clear relationship observed in Table
7.3 gives us more confidence that the observed autocorrelation of returns as a valid proxy
for illiquidity of the assets involved in the investment.

With the above argument in place, we now have more confidence to use serial correlation
to evaluate the illiquidity of mutual funds and portfolios of US stocks for which other measure
such as the Redemption Notice Period or Lock-Up Period are not relevant.
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Table 7.3: Estimates of the cross-sectional regression of the form redemption; = & +p1,,~5\+ €
for all hedge funds as well for each of the 11 categories. Redemption period is measured in
days. The t-stat are reported in parenthesis.

Category Count Alpha T-stat RSQ

All 2927 25.8(40 6) 421(14 8) 7.0%
Convertible Arbitrage 101 26.0(4.64) 28.5(2.14) 4 4%
Dedicated Short Bias 25 21.9(4.42) 35.7(1.11) 5.2%
Emerging Markets 182 21.6(6 18) 31 8(1.88) 1.9%
Equity Market Neutral 153 27.9(12.9) 37 0(3.97) 9 5%
Event Driven 254 42.7(11.4) 31 6(2.31) 2.1%
Fixed Income Arbitrage 108 27 6(7 25) 34.1(2.51) 56%
Fund of Funds 631 329(18.5) 39.7(5.38) 4 4%
Global Macro 126 19 4(10.4) 12.4(1.03) 09%
Long/Short Equity Hedge 906 317(347) -37(-0.7) 01%
Managed Futures 308 8.22(10.6) 16.6(2 53) 21%
Multi-Strategy 133 24.1(7.21) 55.4(4.11) 11.5%

7.2 Methodology

This section outlines our approach for testing the link between serial correlation and the
expected returns. In mathematical terms, we are interested in identifying if there is a
relationship such as:

E[r] L f(p;, other characteristics of asset 1) (7.2)

Our approach is based on grouping funds into clusters based on their serial correlation.
The average return of the funds in each of the resulting cluster can then be used to assess
if there is any link between serial correlation, and hence the level of the illiquidity of the
underlying assets, and average returns.

This approach has the advantage that it is non-parametric and does not enforce any
particular form, such as linear, between the level of liquidity, as measured by serial correlation
of returns, and the expected returns. In other words, by using a clustering-based approach
we avoid defining any particular functional form for f(-) in (7.2). Furthermore, in the most
basic approach that will be outlined shortly, we even avoid defining “other characteristics”
in (7.2). The hope here is that the clusters we create are similar along all dimensions that
can contribute to the return differential other than the level of serial correlation. Given this
and if we have enough entries in each cluster such that the noise is “washed out,” the average
return of the entries in each cluster would give us a direct measure of the impact of serial
correlation on the returns.

One shortcoming of this approach, like any other non-parametric technique, is that the
approach may not be very precise and will be affected by the noise in the data; i.e., even
if the entries in each cluster are uniform along all other dimensions that contribute to the
expected returns other than the serial correlation, their return may be too noisy and the
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number of funds in each cluster may be too few to achieve enough diversification in each
cluster such that the calculated average can be meaningful. Another shortcoming is that
this approach may lack power if serial correlation is correlated with another “characteristic”
that contributes to the expected returns. Under that circumstance, this approach will not
be able to separate the effect of serial correlation from the effect of this other characteristic.

Addressing these shortcomings is difficult as it requires putting more structure on the
form of f(-) in (7.2), which would require identifying the list of “other characteristics” that
contribute to the expected returns and put structure on how those characteristics are related
to expected returns. Below we will outline two alternative approaches for addressing these
issues.

Detailed Approach

We will use non-overlapping periods to estimate the serial correlation and then to mea-
sure the average return to avoid any data mining or data snooping in our analysis. More
specifically, our approach is as follows. We use the serial correlation estimated over the prior
five years to rank available funds into five portfolios on January of each year. The first such
ranking is constructed for January of 1991 since we use the data starting from January 1986
and the first time that five years of data is available is January of 1991. We then calculate
the equal weighted raw or adjusted, where adjustment is done based on various methods
that will be explained shortly, returns of funds in each of these portfolios for each month
of the subsequent year. The final result is 192 x 5 monthly data points for January 1991
to December 2006 and each of the five portfolios. The time series of the returns of these
five portfolios, which we will refer to as the “liquidity portfolios,” will serve as the input to
much of our analysis. To get a more direct measure of impact of liquidity, we also use the
time series of the difference between the return of the most liquid portfolio, i.e., funds in the
lowest serial correlation bin, and the most illiquid portfolio, i.e., funds in the highest serial
correlation bin. We refer to this portfolio as the “liquidity spread portfolio” in the discussion
that follows.

We now explain our approach for calculating “adjusted” returns. We use two different
approaches based on using the historical correlation between returns of each fund or each of
the five liquidity portfolios, which are constructed based on the procedure outlined above,
and a set of pre-specified time series. We first describe our approach and then discuss the
time series used.

e Time Series Adjustment Approach:

The monthly returns for each of the five liquidity portfolios are linked throughout dif-
ferent years creating a time series with 192 monthly returns (January 1991 to December
2006). We then treat each of the resulting time series as the realization of the return
associated with a particular level of asset liquidities. We then run a regression of the
following form:

Tpt = Gp+ Z Bp, sl +épy Vt € {January gqy, - - , Decemberaggg } (7.3)
f
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where the set of factors, i.e., f;, in the above regression, are time series selected from
a set of 9 generic risk factors listed in Appendix A.5.2. We will elaborate more on this
shortly. By using this regression we are trying to decompose the in-sample average
return of each of the portfolios into components in the direction of each of the specified
factors plus a residual average return. The resulting regression coefficients provide a
measure of the sensitivity of the returns to each of the specified factors. Alpha from this
regression provides a measure of adjusted returns. The same analysis is also repeated
for the returns of the liquidity spread portfolio described above.

¢ Residual Adjustment Approach:

While the above approach is ideal for addressing the most immediate question regarding
the link between adjusted returns and liquidity, it suffers from two shortcomings. First,
by conducting one time-series regression, we implicitly assume that the loading on
various factors, i.e., Bp,f in (7.3), are constant through time. Qualitatively, this is
similar to assuming that fund’s characteristics are not changing through time. Such
assumptions are common in the case of stock portfolios but may be less reasonable for
hedge funds. Furthermore, obtaining a single adjusted return does not enable us to
assess the change in the liquidity premium through time.

We use a second adjustment approach to address these shortcomings. In this approach,
we use the prior five years of returns to calibrate an optimal linear predictor for the
return of each fund based on a pre-specified set of factors. The estimated betas and
the realization of the factors in each month of the following year are used to calculate
the prediction error or what we will be referring to as the “residual returns” for each
fund. The following two questions specify this approach in mathematical terms:”->

Tiv = O;+ ZB:}ft + &, Vt € {January,,_,--- ,December,, 1} (7.4a)

7
Tit = Tig— ZBZ}ft Vt € {January,,,- - - , December,, } (7.4b)
)

The equal weighted average residual returns for the funds in a given liquidity portfolio
provide us with 192 x 5 monthly data points for January 1991 to December 2006 and
each of the five portfolio. The average of each thess five time series provide a measure
similar to the alpha calculated from the first approach. But the actual realization can
also be used, as done in Section 7.6, to see the evolution of the liquidity premium.”-

"5Note that in (7.4b) we have enforced the assumption that the alpha from the first regression is zero and
only used the estimated betas in calculating the residual returns.

760f course the residual from (7.3) can also be used as a measure of liquidity premium for each month. Qur
approach is preferable as it uses two non-overlapping time periods for estimation of betas and the subsequent
residual calculation.
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Risk Factors

We use various subsets of 9 factors to control for the risk exposure of different funds.””
The detailed description of these factors is provided in Appendix A.5.2, but we give a sum-
mary here to preserve the continuity of the exposition. The factors we used are as follows:
US Stock Market Index, the Lehman Brothers US Aggregate Government Bond Indez, the
Lehman Brothers Universal High-Yield Corporate Index, the Goldman Sachs Commodities
Index, USD Trade Weighted Dollar Index, the CBOE Volatility Index Fama-French Small
Minus Big (SMB), Fama-French High Minus Low (HML), and the stock market Momentum
factor.

The first five factors capture the broad sources of commonality due to equities, fixed
income, credit, commodities and the currency markets. We also use three factors related to
size, measured by Fama-French Small Minus Big (SMB) factor, value, measured by Fama-
French High Minus Low (HML) factor, and the stock market momentum since these factors
have been studied extensively in asset pricing literature and are known to contribute to the
expected returns.

We also include the first difference in the CBOE Volatility Index to capture any exposure
to changes of market volatility that a particular fund may be exposed to. Even though this
factor does not translate immediately to returns using any investment strategy, it can still
add value to our analysis by capturing communality due volatility exposure of different funds
arising from non-linear instrument included in some trading strategies. This effect should
be more significant for hedge funds but we have decided to keep this factor in the rest of our
analysis in order to keep our results consistent across different asset classes. This factor in
its initial format has a much higher level of volatility than all of the other factors. In order
to avoid any numerical issues arising from this substantial difference, we decided to use a
rescaled version of this factor by rescaling the monthly values to set their in-sample level of
volatility to be the same as volatility of US Stock Market factor. This is purely a rescaling
and won’t change any of our analysis.

To given the reader a sense of the robustness of our analysis to different ways of controlling
for risk, we use 4 different sets of factors in the risk-adjustment approaches outlined above.
These four factor sets are as follows:

1. Market Only: Only the return of the US Stock Market index is used.

2. 4-Factor Set: The US stock market factor plus size (SMB), value (HML), and the
momentum factors are used.

3. Broad Factor Set: All 9 factors listed in above.

4. Lagged Market: Current and one lagged return of the US Stock Market Index are
used.

In the last approach for risk adjustment we control for both current and lagged exposure
to the stock market factor. This approach was first promoted by Scholes and Williams

77For reference on common factors among hedge funds, please see Fung and Hsieh (2001) and Hasanhodzic
and Lo (2007). For mutual funds see Sharpe (1992).
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(1977) in trying to estimate the “total” betas of a portfolio as the sum of both current and
lagged market exposure. We should emphasize that the lagged exposure to a risk factor is
a result of the illiquidity of the underlying assets. By including the lagged beta, we try to
account for some of the illiquidity of the underlying assets. While this may be adequate
for assets that draw most of their illiquidity exposure in form of lagged exposure to a given
factor, for example different portfolios of US common stocks or equity mutual funds, it will
probably be inadequate in capturing the illiquidity for hedge funds that most likely have a
more complicated illiquidity exposure. Nonetheless, we have included this in our analysis to
provide additional detail and to give more confidence in the robustness of our approach.

Exploratory Analysis

Before moving to our main analysis, we provide some exploratory data on the exposure
of various fund categories to the risk factors used in this study. Table 7.4 give a summary
of time-series regressions of the form (7.4a). As expected, hedge funds have much lower R?
values and have positive alphas.

Table A.5 shows that some of the factors used have a positive serial correlation. For
example, the Lehman US Universal High-Yield Corporate Index has a first order serial
correlation value of 37.5%. In addition, high serial correlation is, in a sense, similar to
having momentum in returns. In order to explore the link between serial correlation and
exposure to other risk factors, we calculate the correlation between the beta for each factor
and the estimated serial correlation by treating the estimate for each estimation window, k,
and fund, 7, as an observation of a pair of random variables [pF, z’f f]. All such observations
are then pooled together and the cross-sectional correlation is calculated and reported in
Table 7.5. Note that funds with higher serial correlation also tend to have higher exposure
to the Lehman US Universal High-Yield Corporate Index (shown under column LH_HY) in
Table 7.5, to the size (shown under column SMB in Table 7.5). The data does not show
any connection between the momentum factor (column UMD in Table 7.5) and the serial
correlation. The table shows that there is a very high correlation between exposure to the
size factor and serial correlation of returns among stock portfolios. For mutual funds, the
size factor seems to have the highest correlation among Equities funds and the high-yield
index seems to have the highest correlation among Fixed Income funds. The results are a
little less clear for hedge funds and there is a lot of heterogeneity among different categories.
This analysis highlights the importance of taking into account and adjusting for the level of
exposure to these factors in order to obtain results that can be statistically meaningful and
also to avoid false positive, i.e., to avoid contributing return differential due to exposure to
the high-yield factor, for example, with the differential due to illiquidity.
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Table 7.4: Summary of the estimated exposures to various risk factors based on all five-year estimation windows from 1986
to 2006. For each factor, the median as well as the 25 and 75 percentile values, in parenthesis, is shown. We have also
included the same statistics for the constant in regression, alpha, and the resulting time-series R? value. The reported alpha
values are multiplied by 10,000 (i.e., translated into basis points) and the factors’ exposures are multiplied by 100 in order
to make the estimated values easier to display. The number of observations for each fund type is reported. The abbreviated
names for factors are as follows: US Stock Market (MARKT), Lehman US Aggregate Government Bond Index (LH_-GO),
Lehman US Universal High-Yield Corporate Index (LH-HY), Goldman Sachs Commodities Index (GSCI), Trade Weighted
USD Index (USD), Rescaled CBOE Volatility Index (VIX_S) as well as Small-minus-Big (SMB), High-minus-Low (HML), and
the Momentum (UMD) factors.

Observations

All Funds Used in the Study 97,511
Hedge Funds

All Hedge Funds 11,666
Convertible Arbitrage Hedge Funds 408
Dedicated Short Bias 118
Emerging Markets 749
Long/Short Equity 3,408
Equity Market Neutral 445
Events Dnven 1,138
Fixed Income Arbitrage 379
Fund of Funds 2514
Globat Macro 487
Managed Futures 1,469
Mulu-Strategy 569

Mutual Funds

All Mutual Funds 85,845
Asset Allocation Mutual Funds 8,172
Equities Mutual Funds 40,038
Fixed income Mutual Funds 30,121
Convertible Bond Mutual Funds 562

Stock Portfollos

100 Value Weighted Portfolios 1,681

Alpha (bps)

-225(-18 20,16 43)

4390(7 33,82 71)
6471(3 77.92 21)
6123(33 77,122 33)
5110(-38 31,111 39)
50 83(8 35,95 27)
45 49(20 90,88 38)
63 03(36 62,88 24)
54 34(24 89,82 89)
2964(7 15,56 02)
42 50(-9 80,87 84)
19 40(-25 23,75 59)
50 35(15 09,81 50)

-438(-19 31,10 59)
-5 63(-16 88,5 00)
-609(-28 91,15 55)
-278(-1250,8 13)
082(-13 52,18 06)

4 34(-22 82,31 62)

MARKT

57 48(2 91,97 27)

21 16(2 99,52 83)
075(-8 01,6 53)

-108 73(-140 52,-50 30)

62 15(23 90,101 75)
51 68(24 07,81 39)
265(-2 86,16 29)
10 30(2 05,25 86)
078(-4 08,6 86)

20 28(7 87,37 60)
1128(-3 74,45 74)
6 60(-13 00,27 39)
15 74(2 05,47 89)

65 85(2 91,99 20)
59 93(49 32,68 30)
99 07(86 95,112 82)
162(-071,4 65)

63 23(54 10,72 15)

103 90(89 94,118 05)

LH_GO

12 36(-8 31,52 92)

462(-16 46,27 82)
-2 38(-16 87,7 69)
473(-13 03,30 31)
15 03(-119 78,24 56)
357(-20 00,25 05)
387(-7 84,16 88)
6 17(-2165,6 52)
475(-1167,2231)
484(-10 64,19 31)
20 54(-3 33,55 54)
6162(7 96,114 71)
0 44(-14 20,15 26)

14 08(-7 34,55 09)
21562(10 74,31 19)
-4 30(-19 70,8 57)
61 47(43 79,73 03)
0 19(-14 23,11 00)

081(-18 66,18 37)

LH_HY

294(-3 37,10 49)

440(-7 49,17 60)
1300(6 14,24 50)
-1 16(-10 64,9 96)
2140(4 44,50 71)
0 13(-1175,14 92)
008(-5 17,7 65)
1451(277,29 76)
5 31(-1 42,16 94)
5 80(-0 73,12 40)
342(-13 15,20 94)

-13 38(-34 91,7 85)

4 85(-3 10,16 00)

283(-302,972)
160(-2 06,6 73)
-176(-8 34,7 25)
524(2 22,11 63)
1478(7 36,21 98)

-259(-15 06,9 31)

ascl

013(-139,303)

197(-1 10,6 61)
057(063,2 64)
056(-4 54,6 12)
335(-120,12 34)
234(-209,7 68)
067(-159,3 21)
071(-172,3 43)
052(-103,2 75)
2.38(0 46,5 18)
087(-351,6 90)
637(-276,16 46)
159(-0 46,4 42)

000(-1 41,2 53)
031(-076,176)
159(-157,5 79)
057(-138,022)

246(030,4 71)

-0 46(-5 81,4 51)

usD

0 47(-576,388)

4.40(-7 44,19 19)
251(-567,1262)
-4 12(-14 99,6 96)
15 11(-4 65,48 58)
557(-9 10,22 03)
108(-9 36,8 80)
362(-363,1126)
238(-1 92,8 28)
620(-292,18 74)
385(-18 48,28 09)

-139(-28 19,26 18)

378(-7 44,12 96)

065(-559,284)
-142(-5 44,2 46)
092(-13 35,8 11)
041(-211,124)
-160(-7 50,2 82)

192(-8 56,12 49)

vIX_s

0 65(-3 30,5 55)

531(-3 49,16 88)
051(-4 43,5 65)
-1.56(-21 20,6 92)
243(-14 42,19 97)
879(-4 59,23 92)
033(-459,7 13)
136(-474.7 81)
166(-2 88,8 26)
681(1 06,14 51)
351(-824,16 91)
909(-5 98,25 11)
575(2 15,16 88)

043(-329,4 38)
056(-2 34,3 95)
1 88(-4 28,10 55)
-021(-276,187)
6 15(2 57,10 84)

005(-8 54,7 93)

SMB

200(-2 18,18 30)

9 95(1 34,23 50)
424(1 05,10 06}

-17 67(-57 84,-5 70)

16 70(4 70,32 51)
2130(7 07,41 56)
124(-4 83,9 82)
773(2 79,16 06)
107(-178,4 64)

9 44(3 57,17 30)
773(1 96,20 85)
409(-15 37,18 62)
8 14(2 00,18 68)

148(2 41,14 04)
-1.08(-6 27,4 40)
10 84(-6 22,37 94)
055(-1 17,2 46)
18 56(14 67,26 22)

58 65(19 36,93 09)

HML

4 44(-1 62,16 59)

653(-3 09,20 00)
079(-330,5 10)
18 42(1 87,42 51)
1569(2 28,36 73)
953(-10 10,30 47)
075(-5 75,11 53)
828(276.16 51)

1 89(-2 00,9 06)
624(057,14 10)
10 23(-5 56,24 40)
425(-16 13,1974)
4.48(-157,1361)

424(-1 49,15 88)
651(0 87,14 95)
10 34(-13 16,35 53)
299(0 14,6 31)

2 85(-5 12,14 35)

35 66(1 16,66 09)

UMD

0 40(-3 09,4 95)

271(270,1123)
0 84(-2 92,184)
6 26(-15 66,8 02)
473(-4 69,15 83)
3 61(-5 70,15 80)
1 90(-2 33,8 40)
089(-187,411)
043(-1623 14)
5 28(0 56,11 10)
315(-375,1315)
167(-7 71,16 60)
229(-1 15,6 91)

028(-3 14,3 91)
-0 80(-4 34,2 31)
0 89(6 35,10 86)

026(-1 08,1 31)
493(-1 55,12 76)

-4 96(-13 09,4 05)

RSQ (%)

84 58(67 55,92 49)

4199(27 39,58 59)
3277(21 46,42 47)
73 47(65 99.80 41)
43 34(30 43,55 58)
5132(35 95,67 29)
2702(19.87,39 10)
4273(29 82,56 08)
26 26(18 16,39 41)
4853(34 12,63 48)
30 14(20 01,45 93)
26 90(19 34,36 61)
4117(25 34,57 03)

8704(7278,93 18)
9378(88 90,96 63)
8928(8107,93 70)
79 96(68 26,90 35)
87 43(83 10,90 99)

84 02(77 55,88 30)
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Table 7.5: This table provides an overview of the link between serial correlation and exposure to risk factors for different funds.
The values are calculated as follows. Let {8 f, pF] be the estimated exposure to factor f and the serial correlation for fund i
over the estimation interval k. The cross-sectional correlation between f 7's and p¥’s is then estimated across all estimates for
the funds in the specified subgroup. The actual number of observations used to calculate the correlation is reported. See the
caption of Table 7.4 for the abbreviated name of different risk factors used here.

Observations MARKT LH_GO LH_HY GSCI uUsD VIX_S SMB HML UMD
All Funds Used in the Study 97,511 -7.4 -11.23 1032 -06 3.4 13.24 15.51 078 -175

Hedge Funds

All Hedge Funds 11,666 -2.62 -16 67 11.65 -3.41 277 2.89 7.74 3.83 -7.04
Convertible Arbitrage Hedge Funds 408 -32.38 -183 -3.58 -20.29 -27.19 -13.62 -11.86 4.78 0.79
Dedicated Short Bias 119 14.81 -6.39 474 21.90 -6 10 -1.70 -6.63 -17.23 898
Emerging Markets 749 -0.84 -13.94 0.80 -5.99 7.86 5.77 12.83 77 -3.11
Long/Short Equity 3,409 -4 63 -10.21 428 -2.00 1049 874 8.38 1.87 -622
Equity Market Neutral 445 405 6.81 -2.84 -6.80 -0.03 -6 07 4.88 763 -11.87
Events Driven 1,138 -5 80 -18 34 14 32 531 621 14.32 5.87 1032 1.96
Fixed Income Arbitrage 379 -14.84 -14.62 -301 -1082 =745 -12.35 8.12 009 3.54
Fund of Funds 2,514 836 -20.05 15.04 3.58 526 12.19 14.98 529 -259
Global Macro 467 -1.99 -8.64 -4 07 6.43 -943 -509 -2.10 14.40 -0.26
Managed Futures 1,469 -3.34 1033 -478 6.72 -17.51 1298 6.92 -822 -873
Multi-Strategy 569 -13.69 -31.39 1491 0.81 6.49 1313 378 8.87 -3.86

Mutual Funds

All Mutual Funds 85,845 -5.16 -8.65 10.02 -1.48 0.17 15.13 16.64 -0.21 -196
Asset Allocation Mutual Funds 6,172 -0.59 -1344 1344 -477 -3.32 11.93 2994 14 83 -4.91
Equities Mutual Funds 40,038 8.49 -11.85 211 -196 0.7 2347 3208 4.59 -1.4
Fixed income Mutual Funds 30,121 -1.96 -28 37 2126 2.84 -6.72 15.56 -11.45 -20 84 -2.62
Convertible Bond Mutual Funds 562 -40.61 12.8 16 71 -17.53 -18 67 -10.55 26 26 21 -38 64

Stock Portfolios

100 Value Weighted Portfolios 1,681 -16.85 -191 975 -11 88 52 5.4 52.74 257 -4.98



7.3 Analysis Based on Raw Returns

Table 7.6 gives a summary of the average return for the five liquidity portfolios as well as the
liquidity spread portfolio based on raw returns (i.e., returns unadjusted for the risk exposure)
from 1986 to 2006.

Our analysis is limited by data availability issues. For example, as reported in Table A.2,
our data set contains only 74 Convertible mutual funds. For this reason, we have not shown
the results for this subgroup in Table 7.6 as in most years each of the five liquidity portfolios
would have contained too few funds to diversify away the noise and produce statistically
reliable numbers. This limitation is even more severe among hedge funds as seen in Table
A.2. To address this issue, we have combined all hedge funds into three sub-groups based
on the general knowledge regarding the liquidity of the instruments used in their investment
strategies and the length of their redemption notice period reported in Table 7.1. These
three sub-groups are as follows: the “Most Illiquid” subset contains Convertible Arbitrage,
Fixed Income Arbitrage, Event Driven categories while the “Most Liquid” subset contains
Managed Futures, Dedicated Short Bias, and Global Macro categories of hedge funds. The
remaining five categories are placed in a the “Medium Liquidity” sub-group.”®

The results shown in Table 7.6 provide the initial suggestion that there is a link between
the average return and the serial correlation even before adjusting for other sources of risk.
For example, the average return is almost monotonically increasing in the portfolio liquidity
when all hedge funds are used in constructing the portfolios (see the second row in Table 7.6).
Also, the difference between the highest and lowest portfolios, or what we have been referring
to as the liquidity spread, is also positive although not statistically significant. A surprising
observation is that the subset of hedge funds that contains the most liquid set of strategies
shows the largest value for the liquidity spread, 4.24% /year, versus only 1.69%/year among
the illiquid subset of funds. We will see later that this holds even after adjusting for the risk
exposure.

The analysis based on all mutual fund data (see row 6 of Table 7.6) does not point to any
interesting link between serial correlation and average returns. The link is much more clear
among the Fixed Income mutual funds and to some extent among the Equities mutual funds,
while there is no such effect observable for Asset Allocation funds. This should be expected
as Asset Allocation funds tend to achieve their investment goal by investing in more liquid
assets. Also as seen in Table 6.1 in Section 6.1.3, the null of zero serial correlation can only
be rejected for 0.4% of Asset Allocation mutual funds while the similar metric is 5.5% and
15.2% for Equities and Fixed Income funds, respectively.

Lastly, the data in Table 7.6 points to a potential link between serial correlation and
average return even among the 100 stock portfolios used in this study. Given the strong
link between serial correlation and size reported in Table A.4 in Appendix A.5.1 and also in
Table 7.5, one may suspect that the effect captured here is the well-known size effect. We
will see in the next section that the addition of the size factor (Small-Minus-Big or SMB)
does not fully eliminate the effect observed here.

78Fund of Funds are placed in this group even though they have a slightly longer notice period compared
to Convertible Arbitrage and Fixed Income Arbitrage since we believe that the longer period is partially due
to the delegated nature of fund management in these funds.
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Table 7.6: Assets in the specified subset are grouped into five portfolios based on the first
order serial correlation of returns estimated over prior five years. Equal weighted average
return for each of the five groups is calculated for each month in the following year. This
procedure is repeated for 1991 to 2006, giving a total of 192 data points between January
1991 and December 2006. Reported t-stats are based on the Newey-West estimator with
3-lags. “Difference” column reports the statistics for the return of High minus the return
of Low portfolios. The 3 subset of hedge funds are as follows: Illiquid Hedge Funds subset
contains Convertible Arbitrage, Fixed Income Arbitrage, and Event Driven, Liquid Hedge
Funds subset contains Managed Futures, Global Macro, and Dedicated Short Bias. The
remaining five categories are placed in the Medium Liquidity Hedge Funds. Stock portfolios
are the standard 100 two-way sorted portfolio based on market capitalization and book-
equity/market-equity ratio.

Average Return (% Annualized)

Funds Used Low 2 3 4 High Difference Count
All Funds 9.18 (4.06) 9.42 (4.18) 8.94 (4.64) 8.33 (4 65) 9.25 (5.66) 0.07 (0.03) 192

All Hedge Funds 773(417) 960(502) 1043(450) 1177(600) 1128(6.25) 3.54 (1.70) 192
llliquid Hedge Funds 9.09 (5.64) 11.20(771) 1095(7.42) 11.70(7.63) 10.78 (8.63) 1.69 (1.47) 192
Medium Liquidity Hedge Funds  11.12(599) 11.80(5.40) 1351 (5.56) 11.91 (4.77) 11.97 (5 35) 0.86 (0.49) 192
Liquid Hedge Funds 3.31 (1.20) 6 75 (2.49) 7.72 (2 47) 6.92 (2.46) 7 55 (2.70) 4.24 (1.48) 192
All Mutual Funds 922 (384) 944 (3 89) 865 (4.48) 802 (4 39) 895(494) -027(-0.12) 192
Asset Allocation Mutual Funds 8.87 (4.73) 9.27 (4 54) 8.90 (4.40) 8.67 (4 25) 8.73(5.08) -0.14(-0.15) 192
Equities Mutual Funds 1148(368) 1158(345) 1169(3.39) 1215(3.31) 13.28 (3 53) 180 (0 96) 192
Fixed Income Mutual Funds 570 (577) 588 (574) 5.94 (6.06) 612 (6.33) 7.40(7.61) 1.70 (2.56) 192

Stocks (100 Value Weighted) 15.18 (4 36) 14 91 (4 04) 15.58 (3.90) 16.97 (4.05) 18 88 (3.91) 3.70 (1.25) 192

128



7.4 Analysis Based on Adjusted Returns

Tables 7.7 and 7.8 give the summary of adjusted returns based on two alternative adjustment
procedures outlined in the previous section. As mentioned before, we use four different sets
of factors for adjustment to give the reader a sense for robustness of our approach. We have
also repeated the relevant row from Table 7.6 to make it easier to compare the adjusted
return with the returns prior to adjustment. This data is reported in rows labeled “raw” in
Tables 7.7 and 7.8.

Results from the two approaches used for adjustment are qualitatively similar. The
average adjusted return for the liquidity spread portfolios, i.e., the difference between the
most liquid and the most illiquid set of funds, reported under the column labeled “Difference”
is almost always positive and very often statistically different from zero. It seems that our
adjustment approach has been successful is reducing the volatility of the portfolio returns
and hence the estimated spreads are more precise and more often statistically significant.

Based on the data presented in Panel A of these two tables, the premium is even visible
among all funds once the returns are adjusted for their risk exposure. But, as expected, the
premium is more visible among hedge funds. For example, the liquidity spread for hedge
funds estimated based on the first approach and using the Broad Factor Set is 3.96%/year.
The second risk-adjustment approach based on the same set of funds and factors produces
a premium of about 4.85%/year. The estimated premium among the most illiquid hedge
funds is 3.90% and 3.87% based on the first and the second risk-adjustment approach in both
cases using the Broad Factor Set. Similar to the trend seen in Table 7.6 for raw returns, the
liquidity spread seems to be larger among the most liquid hedge funds. For example, Table
7.7 produces a risk-adjusted liquidity spread of 4.95% for this subset of funds based on the
Broad Factor Set, while Table 7.8 shows that the second risk-adjustment approach produces
even a larger spread 7.42%/year. Note that in all these cases the risk adjustment produced
by the Lagged Market model is very similar to the values produced by the other models. So
at least in this case it appears that simply including the beta with respect to lagged market
return does not capture all of the illiquidity premium embedded in these returns.

Among different mutual funds categories, Asset Allocation mutual funds almost never
show any statistically significant liquidity spread (see rows 6 through 10 in Panel C of Tables
7.7 and 7.8). The Fixed Income funds (see rows 16 through 20 in Panel C of Tables 7.7 and
7.8) show positive liquidity spreads which are in all but one case statistically significant.
For example, the liquidity spread based on the Broad Factor Set using the first approach
is 2.74% /year, while the second approach produces a slightly smaller but still statistically
significant spread of 1.11%/year. The results among the Equities mutual funds (rows 11
through 15 in Panel C of Tables 7.7 and 7.8) are not as clear. For example, the first risk-
adjustment approach produces illiquidity premiums that are not distinguishable from zero
for this subset of funds, while the second approach produces a premium that come close to
the critical level in only one case (see row 14 in Panel C of Table 7.8). Contrary to the case
of hedge funds, the Lagged Market Model seems to capture most of the illiquidity premium
among Equities mutual funds. This should not come as a surprise as the lagged exposure to
the market factor is the result of the illiquidity of the underlying assets and since the equity
factor is the most important risk factor among Equities mutual funds (see Table 7.4 for the
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supporting evidence), and controlling for illiquidity by allowing for lagged exposure to this
factor captures much of the illiquidity premium among these funds. Hedge funds, on the
other hand, draw their illiquidity from a much broader set of factors and hence the simple
control for lagged market factors does not change the results in any significant way as seen
in Tables 7.7 and 7.8.

The results from the 100 stock portfolios shown in Panel D of these two tables are also
mixed. For the adjustment models other the Lagged Market Model, the estimates are always
positive but not statistically significant in most cases. While controlling for the exposure to
the size (SMB) factor seems to reduce the magnitude of this premium, for example reducing
it from 4.37%/year to 2.14%/year in Table 7.8, it does not seem to make it economically
irrelevant. In fact, the estimates after controlling for the size exposure seem to be more
accurate as seen by the larger t-statistics (compare row 2 vs. row 3 of Panel D in Table 7.7
and Table 7.8). Lagged exposure to the US Stock Market Factor seems to capture most of
the illiquidity premium among this group of assets.
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Table 7.7:

Assets in the specified subset are grouped into five portfolios based on serial correlation esti-
mated over proceeding five years. Equal weighted average return for each of the five groups
is calculated for each month in the following year. The resulting 192 such monthly returns
(January 1991 to December 2006) are linked across time and time-series regressions are ran to
calculate the risk-adjusted alpha based on the following regression:

Tpt =Gp+ 3 By s fi+ &y Wt € {January,gq;, - -+ , Decemberaoos }

T-stat calculated based on the Newey-West estimator with 3-lags are reported in parenthesis.
Factor sets are as follows:

Market Only contains the concurrent return of US stock market.

4-Factor Set contains the return for US stocks market plus size, value, and momentum factors.
Broad Factor Set is as described previously (see caption of Table 7.4).

Lagged Market contains the concurrent and lagged return of US stock market.

Alpha (Annualized In %)

Funds Used Factor Set Low 2 3 4 High Difference Count
Panel A: All Funds

Al Raw 9.18(4.07) 9.42(420) 894(466) 833(466) 9.25(567) 0.07 (003) 192
All Market Only 161 (161) 1.63(1.87) 2.69(317) 361(308) 547(502) 386(220) 192
Al 4-Fcator Set 1.00(0.95) 060(0.71) 089(1.26) 142(116) 315(2.81) 215(113) 192
Al Broad Factors Set -075(-0.84) -0.90(-1.22) -0.75(-1.06) -0.70 (-0 68) 094 (1.04) 169 (104) 192
Al Lagged Market 145(1.42) 155(1.69) 2.64(2.83) 344(273) 507(462) 362(208) 192
Panel B: Hedge Funds

All Hedge Funds Raw 7.73(419) 960(504) 1043(452) 11.77(602) 11.28(6.26) 354 (1.70) 192
All Hedge Funds Market Only 493(271) 700(428) 703(376) 7.59(5.44) 782(4.69) 289 (120) 192
All Hedge Funds 4-Fcator Set 3.30 (1 91) 545 (304) 5.25 (2 64) 524 (4.13) 6 04 (3.66) 2.74 (1 16) 192
All Hedge Funds Broad Factors Set 0.99 (0.64) 295 (178) 3.05 (1.76) 342(303) 4.95 (3.86) 396 (2.30) 192
All Hedge Funds Lagged Market 552(300) 6.70(404) 688(359) 678(4.46) 661(3.54) 109 (0.43) 192
llliquid Hedge Funds Raw 909(565) 1120(7.72) 1095(743) 11.70(7.65) 1078 (8.64) 169 (147) 192
INliquid Hedge Funds Market Only 6.39(480) 9.07(752) 867(6.16) 982(6.94) 966(7.66) 327(324) 192
llliquid Hedge Funds 4-Fcator Set 544(361) 752(715) 736(548) 8.83(590) 862(7.43) 318(308) 192
lihiquid Hedge Funds Broad Factors Set 3.75 (3.17) 6.29 (5 38) 6 99 (6 06) 7 81 (6.24) 765 (7.12) 390 (4.10) 192
llliquid Hedge Funds Lagged Market 555 (3 81) 800 (6 93) 7.66 (5 39) 843 (5 65) 8.59 (6 69) 3.04 (287) 192
Medium Liq. Hedge Funds Raw 11.12(600) 11.80(5.41) 1351(557) 1191(4.78) 1197 (536) 0.86 (0.49) 192
Medium Liq Hedge Funds  Market Only 622(5.10) 697(454) 778(474) 623(344) 756(377) 1.34(0.66) 192
Medium Lig. Hedge Funds 4-Fcator Set 508 (4.64) 572(3.78) 5.40(3.74) 356(2.18) 544(2.85  0.37(0.17) 192
Medium Liq. Hedge Funds Broad Factors Set 2.95 (2.61) 4 68 (3.07) 3 30 (2.45) 2.19 (1.68) 429 (2 88) 134 (078) 192
Medium Lig. Hedge Funds  Lagged Market 6.31(5.33) 631(4.13) 6.93(4.04) 509(259 6.31(286) 000 (000) 192
Liquid Hedge Funds Raw 3.31 (1.20) 675 (2 49) 7.72 (2 47) 6.92 (2.47) 7.55 (2.70) 4.24 (1.48) 192
Liquid Hedge Funds Market Only 2 61 (0.88) 675 (239) 9.72 (2 96) 802 (2.91) 7.76 (3.00) 5.15 (2 03) 192
Liquid Hedge Funds 4-Fcator Set -0 58¢-0.19) 3.28 (1.09) 7.96 (2.29) 546 (1.82) 5.67 (2 06) 6.26 (2.30) 192
Liquid Hedge Funds Broad Factors Set -343(-1.25) -087(-032) 2.44 (0.85) 1.11 (043) 152 (0.56) 495 (188) 192
Liquid Hedge Funds Lagged Market 385 (1.29) 816(2.72) 10.67 (3.19) 8.49 (3.07) 890 (3.29) 505 (198) 192
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Table 7.7 (Continued)

Alpha (Annualized in %)
Funds Used Factor Set Low 2 3 4 High Difference Count
Panel C: Mutual Funds
All Mutual Funds Raw 9.22 (3.85) 944 (390) 8 65 (4 49) 8.02 (4.40) 895 (4.95) -0.27 (-0 12) 192
All Mutual Funds Market Only 117 (117) 100 (0 94) 229 (2.70) 3 30 (2 60) 489 (3.73) 3.71 (1.82) 192
All Mutual Funds 4-Fcator Set 0.63(0.58) 013(012) 063(087) 116(084) 246(168) 1.84(0.79) 192
All Mutual Funds Broad Factors Set -105(-112) -1.03(-113) -109(-157) -100(-090) 025(022) 130(068) 192
All Mutual Funds Lagged Market 0.93(0.90) 090(081) 229(247) 3.20(2.35) 457(3.39) 3.64(1.75) 192
Asset Allocation Mut Funds  Raw 8.87 (4.75) 927 (4.56) 890 (4.41) 8 67 (4.26) 8.73(509) -0.14 (-0 15) 192
Asset Allocation Mut Funds  Market Only 234 (352) 212 (376) 189 (2.89) 1.54 (2.11) 3.46 (349) 112 (117) 192
Asset Allocation Mut Funds  4-Fcator Set 150 (2.20) 1122 51) 075 (1.50) 009 (0.19) 155 (2.39) 0.05 (0.07) 192
Asset Allocation Mut. Funds  Broad Factors Set -037(-092) -0865(-240) -0.73(-2.17) -1.38(-327) -0.46(-0.76) -009 (-0.13) 192
Asset Allocation Mut. Funds  Lagged Market 245 (385) 218(379) 1.95 (2.93) 1.62 (2 04) 326 (3.01) 081 (0.81) 192
Equity Mutual Funds Raw 11.48(369) 11.58(3.46) 1169(3.40) 12.15(332) 13.28(3.54) 1.80 (0.96) 192
Equity Mutual Funds Market Only 067085 -008(-010) -036(-0.44) -031(-028) 126 (072) 060 (0.33) 192
Equity Mutual Funds 4-Fcator Set -0.92 (-126) -1.19(-1.42) -1.39(-1.89) -1.37(-1.61) -1.39(-1.47) -047(-0.41) 192
Equity Mutual Funds Broad Factors Set -0.58 (-0.77) -060(-0.69) -087(-1.16) -060(-0.70) -120(-128) -062(-0.52) 192
Equity Mutual Funds Lagged Market 0.37(045) -0.28(-030) -056(-061) -058 (-050) 051(029) 0.14 (0 08) 192
Fixed Income Mutual Funds Raw 570(578) 5 88 (5.75) 5.94 (6 07) 6 12 (6 35) 7 40 (7 62) 170 (2 56) 192
Fixed Income Mutual Funds  Market Only 4.89 (4.59) 5.45 (4.94) 545 (5 29) 568 (5 58) 689 (7.16) 200 (2 89) 192
Fixed Income Mutual Funds  4-Fcator Set 369 (2.94) 3.96 (3.12) 394 (347) 424 (3.82) 5 65 (5.45) 1.96 (2 66) 192
Fixed Income Mutual Funds  Broad Factors Set -1.12(-174) -0.86(-1.44) -064(-1.31) -035(-0.95) 162 (3.35) 2.74 (3.56) 192
Fixed Income Mutual Funds  Lagged Market 4.92 (4 49) 5.55 (4 81) 5.52 (5.14) 5.83 (5.54) 6 80 (6.96) 1.87 (2.98) 192
Panel D: Stocks
Stocks (100 Value Weighted) Raw 1518 (437) 1491(405) 1558(3.91) 16.97(4.06) 18.88(392) 3.70 (1.25) 192
Stocks (100 Value Weighted) Market Only 384(177) 339(148) 2.71 (1.34) 4.66 (1.75) 6.88 (1.99) 3.04 (1 00) 192
Stocks (100 Value Weighted) 4-Fcator Set 0.08(009) -139(-119) -064(-063) -048(-0.47) 219(2.13) 2.10 (1 55) 192
Stocks (100 Value Weighted) Broad Factors Set 094(091) -033(-029) -0.66(-0.65) -017(-0.16) 1.69(1.79) 0.75 (0 54) 192
Stocks (100 Value Weighted) Lagged Market 289(119) 242(0.98) 1.78(080) 3.15(1.12) 372(1.12) 0.83(029) 192
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Table 7.8:

Assets in the specified subset are grouped into five portfolios based on serial correlation esti-
mated over preceding five years. The return for each asset attributable to a set of pre-specified
factors are taken out using the Residual Calculation formula below where the 3 values are
estimated based on the preceding five years of data using the Sensitivity Estimation formula
given below. The equal weighted average of the residual return for each portfolio in each month
of that year is calculated to give us one data point for that month. The statistics of the mean
of these portfolios calculated across the 192 months between January 1991 and December 2006
are reported. T-stat calculated based on the Newey-West estimator with 3-lags are reported in
parenthesis. The four different sets of factors used are described in the caption of Table 7.7.

Sensitivity Estimation: 7, =& + Y, @"} fi + € Vt € {January,,_s, - ,December,,_,}
Residual Calculation: 7, =75 — > B fi Vt € {January,,, -, December,,}

Average Return (% Annualized)

Funds Used Factor Set Low 2 3 4 High Difference Count
Panel A: All Funds

All Raw 918 (4 06) 942(418) 894 (4 64) 8 33 (4 65) 9 25 (5 66) 007 (0 03) 192
All Market Modet 169 (2 47) 143(213) 170(255) 231(324) 473(611) 304(371) 192
Al 4-Factor Set 056 (0 84) 085(140) 097 (158) 140 (202) 295 (491) 239 (326) 192
All Broad Factor Set -052 (-1 09) -026 (-051) -0 12 (-0 25) 008 (021) 200 (4 33) 252 (4 62) 192
All Lagged Market 208(309) 137(192) 139 (188) 180(237) 369 (467) 161(189) 192
Panel B: Hedge Funds

All Hedge Funds Raw 773(417) 960 (5 02) 1043 (4 50) 11 77 (6 00) 1128 (6 25) 354 (170) 192
All Hedge Funds Market Mode! 471(282) 792 (4 39) 8 09 (3 88) 8 38 (5 36) 7 64 (5 53) 293 (151) 192
All Hedge Funds 4-Factor Set 356(213) 601(351) 6 60 (3 26) 634 (479) 521 (451) 164 (094) 192
All Hedge Funds Broad Factor Set 119 (0 64) 438(232) 541 (246) 571(385) 604 (5 46) 485 (267) 192
All Hedge Funds Lagged Market 552 (337) 871 (4 40) 7 92 (3 96) 776(481) 593(443) 041(023) 192
IIhguide Hedge Funds Raw 909 (5 64) 1120(7 71) 1095 (7 42) 11 70 (7 63) 1078 (8 63) 169 (147) 192
Ithquide Hedge Funds Market Model 467 (397) 7 34 (6 09) 931(716) 8 33 (5 94) 890 (8 08) 423(414) 192
lihgquide Hedge Funds 4-Factor Set 266(211) 544 (4 14) 573(416) 494 (269) 559 (4 76) 293 (240) 192
lihnguide Hedge Funds Broad Factor Set 258 (207) 727(617) 739(541) 527 (310) 645(572) 387 (273) 192
liiquide Hedge Funds Lagged Market 426(367) 581(477) 786 (6 01) 650 (4 67) 7 22 (7 06) 297 (288) 192
Medium Liguidity Hedge Funds Raw 11 12(599) 11 80 (5 40) 13 51 (5 56) 1191 (477) 1197 (5 35) 086 (049) 192
Medium Liquidty Hedge Funds Market Model 711 (6 05) 802 (5 28) 858 (521) 642 (3 46) 742 (443) 031(018) 192
Medium Liguidity Hedge Funds 4-Factor Set 521(427) 589 (4 55) 6 30(463) 458 (2 95) 571(424) 050(032) 192
Medium Liquidity Hedge Funds ~ Broad Factor Set 304 (255) 479(311) 598 (4 54) 328 (150) 662 (5 04) 358 (226) 192
Medium Liquidity Hedge Funds  Lagged Market 704(612) 737(481) 766 (457) 487 (2 60) 543(333) -161(-0.96) 192
Liquide Hedge Funds Raw 331(120) 675 (2 49) 772(247) 692 (2 46) 7 55 (2 70) 424 (148) 192
tiquide Hedge Funds Market Model 084 (029) 813(279) 779 (2 44) 925(315) 842(291) 758 (259) 192
bLiquide Hedge Funds 4-Factor Set -118 (-0 41) 735(258) 6 33 (2.00) 9 37 (3 06) 674(229) 792(2.70) 192
tiquide Hedge Funds Broad Factor Set -344 (-1 23) 342(113) 220(062) 4 42 (1 45) 398 (131) 7 42 (2 62) 192
Liquide Hedge Funds Lagged Market 260(092) 970 (326) 9 50 (2 98) 1079 (348) 976 (321) 717 (228) 192
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Table 7.8 (Continued)

Funds Used Factor Set Average Return (% Annualized)

Low 2 3 4 High Difference Count
Panel C: Mutual Funds
All Mutual Funds Raw 922 (384) 9 44 (3 89) 865 (4 48) 802 (4 39) 895 (4949) -027(-012) 192
All Mutual Funds Market Model 137(201) 082(116) 109 (163) 177 (248) 401 (512) 264(299) 192
All Mutual Funds 4-Factor Set 030(047) 038 (0 63) 042 (065) 094 (130) 234372 204 (247) 192
All Mutual Funds Broad Factor Set -0 68 (-1 43) -0 71 (-1 39) -059 (-1 21) -0 38 (-0 96) 100 (2 56) 167 (3 15) 192
All Mutual Funds Lagged Market 168 (249) 074(097) 082 (109) 132(175) 304 (386) 135(148) 192
Asset Allocation Mutual Funds Raw 887(473) 927 (454) 890 (4 40) 8 67 (4 25) 873(508) -014 (-0 15) 192
Asset Allocation Mutual Funds Market Model 167(291) 135(241) 123(188) 121(173) 261 (295) 094 (1 45) 192
Asset Allocation Mutual Funds 4-Factor Set 107 (2 03) 0386 (184) 058(1.17) 038 (062) 120(178) 014 (029) 192
Asset Allocation Mutual Funds Broad Factor Set -055 (-1 53) -0 54 (-1 65) -062 (-1 79) -0 93 (-1 86) -024 (-049) 030(068) 192
Asset Allocation Mutual Funds Lagged Market 224(393) 146 (257) 129 (194) 094 (132) 178(191) -047 (-0 66) 192
Equities Mutual Funds Raw 1148 (368) 11 58 (3 45) 11 69 (3 39) 1215(3 31) 1328(353) 180 (0 96) 192
Equities Mutual Funds Market Model 017 (023) -008(-011) -028(-037) -013(-013) 140(083) 124 (068) 192
Equities Mutual Funds 4-Factor Set -120(-151) -0 89 (-1 30) -074(-107) -0 68 (-0 92) 012(013) 132(115) 192
Equities Mutual Funds Broad Factor Set -115¢-171) -047 (-0 65) -031(-045) -0 18 (-0 24) 088 (091) 204 (198) 192
Equities Mutual Funds Lagged Market 071(094) -0 00 (-0 00) -061(-082) -113(-104) -076(-043) -1 47 (-075) 192
Fixed Income Mutual Funds Raw 570(577) 588 (574) 594 (6 06) 612 (6 33) 740 (7 61) 170 (2 56) 192
Fixed Income Mutual Funds Market Mode! 405(387) 404 (374) 405 (4 03) 440 (4 58) 549 (6 24) 145 (2 25) 192
Fixed Income Mutual Funds 4-Factor Set 304 (281) 314 (2 86) 324(322) 372(384) 458 (537) 155 (248) 192
Fixed Income Mutual Funds Broad Factor Set 012 (024) 016 (0 32) 009 (024) 024 (106) 123 (4 08) 111 (205) 192
Fixed Income Mutual Funds Lagged Market 418 (392) 420(383) 428 (4 08) 447 (449) 473 (509) 055 (087) 192
Panel D: Stocks
Stocks (100 Value Weighted) Raw 1518 (4 36) 1491 (404) 15 58 (3 90) 16 97 (4 05) 1888 (391) 370(125) 192
Stocks (100 Value Weighted) Market Model 264 (147) 219(116) 229(118) 387 (164) 702(219) 437 (1 48) 192
Stocks (100 Value Weighted) 4-Factor Set -0 36 (-0 36) -096 (-0 97) -102 (-1 02) 006 (005) 178(198) 214 (194) 192
Stocks (100 Value Weighted) Broad Factor Set -040(-037) -0 68 (-0 69) -0 63 (-0 63) 008 (007) 200(208) 241(209) 192
Stocks (100 Value Weighted) Lagged Market 290(164) 131(068) 032 (0 16) 077(031) 189(057) -101(-034) 192

7.5 1Illiquidity Premium by Hedge Fund Category

This section contains the analysis for each of the 11 hedge fund categories. Given the wide
array of strategies followed by hedge funds and in particular the non-linearity and volatility
exposure of some of those strategies, it would be reasonable to expect that risk adjustment
based on the Broad Factor Set would produce the best set of results. Motivated by this
intuition and in order to conserve space, we only report the risk-adjusted results based on
the Broad Factor Set. Due to the data availability issues discussed previously, for some
categories we can only construct the liquidity portfolios for the later part of the sample. The
actual number of months involved for calculating each of the values presented in Table 7.9 are
also reported. Since we can construct the liquidity portfolios for each of the 11 categories in
the period after January 1998, the next section will use the period of 1998 to 2006 to discuss
the evolution and the drivers of the illiquidity premium.

The most illiquid categories of funds, in particular Convertible Arbitrage and Fixed
Income Arbitrage funds, exhibit large and in most cases statistically significant illiquidity
premium. The analysis reported in Table 7.9 suggests that the high illiquidity premium
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among the most liquid hedge fund categories (recall that this subset include Global Macro,
Dedicated Short Bias, and Managed Futures) found in Table 7.7 and 7.8 is primarily driven
by the large premium among Managed Futures funds. One surprising result in Table 7.9 is
the negative illiquidity premium among Global Macro hedge funds. Although the premium
is only statistically significant in Panel A, the result does seem to be robust as it is negative
in all three cases. This also seems to be robust to different set of factors used for risk
adjustment, for example, using the second approach but using the Market factor as the
only risk factor produces a premium of -6.5%/year while using the 4-Factor Set produces a
premium of -8.2%/year (note that these results are not reported in Table 7.9).

Table 7.9 also reports the results for the average of the 11 individual time series, one
for each of the 11 categories. This result is labeled as “All (Category Neutral)” since it
includes all hedge fund returns available and it also includes the same 1/5 of the funds in
each category. The liquidity spread constructed based on this return has the benefit that it is
not biased to include funds with higher serial correlation (such as Convertible Arbitrage) on
its plus side and funds with low serial correlation (such as Managed Futures) on its negative
side. Next, we will use the time series of this liquidity spread to visualize the evolution of
this premium in the last 9 years of our sample.

7.6 Evolution of the Illiquidity Premium: 1998-2006

In this section we focus on the evolution of the illiquidity premium and try to connect the
realized return with various drivers that we expect to be related to the illiquidity premium.
1998 is the first year for which all 11 hedge fund categories have at least 5 funds with the
required data, i.e., with five year of reported returns so the serial correlation and betas can
be estimated. For this reason, we have focused our analysis here for the period after 1998.
Even this short period of time is interesting as it starts shortly before the fall of Long-Term
Capital Management in 1998 and ends with several years of great stability, low volatility
and significant increase in risk taking in the period of 2004-2006. We would expect that
funds holding the most illiquid assets were hit during the 1998 volatile period. Perhaps that
volatility would force some of the players out of the market, resulting in a higher premium for
holding the illiquid assets in the years following 1998. According to this logic, the tremendous
growth of the assets under management by hedge funds, and also the reduction in volatility,
which in turn allowed the illiquid assets to be held by leveraged investors at a higher leverage
ratio, would have increased the competition for these illiquid assets. This process would have
in turn increased the liquidity of these assets and reduced the premium for holding these
assets in the latter part of our sample. Before discussing our results, we should remind the
reader that given the limited amount of data available, our analysis lacks the required level
of significance in some cases.

We start off by creating an overall measure of the illiquidity premium by taking the
equal weighted average of the 11 liquidity spreads corresponding to each of the 11 hedge
fund categories. This corresponds to the time series of the return used for the analysis
reported in the row labeled as “All (Category Neutral)” in Table 7.9. Figure 7.1 shows the
cumulative sum of this measure between January 1998 and December 2006. This figures
shows that the first year of our sample, and in particular the second half of 1998, was a
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Table 7.9: Similar to the analysis presented in Tables 7.7 and 7.8 but applied to each of
the 11 hedge fund categories. The All(Category Neutral) time series is the equal weighted
average of the above 11 time series. Panel A contains the raw returns, Panel B contains
alphas with respect to the Broad Factor Set. Panel C contains the residuals with respect to
the Broad Factor Set.

Panel A: Raw Returns
Annualized Mean (%)

Lowest 2 3 4 Highest Difference Count
Convertible Arbitrage 734 (157) 10.80 (4 49) 1049 (4 63) 6 01 (2.65) 981 (7 12) 2.47 (0 56) 144
Dedicated Short Bias -3.00 (-0.44)  -8.04 (-1.08)  -4.97 (-051) 1.68 (0.25) 4.38 (0.90) 7.37 (1.22) 120
Emerging Markets 846 (147) 1315(191) 13.75 (2 13) 16 39 (2 64) 1047 (1.72) 2.01 (0 65) 144
Long/Short Equity 1414(575) 14.69(5.23) 1343(451) 1482(518) 15.46(578) 1.32 (0.75) 192
Equity Market Neutral 9.48 (5.39) -2 06 (-0.83) 6.99 (3 82) 859 (4 08) 810 (4.45) -138(-067) 120
Events Driven 11.28 (6.73) 12.14 (8.03) 1264 (7 11) 1177 (7 47) 11.77 (8 33) 049 (0.45) 192
Fixed income Arbitrage -0.81 (-0.41) 8.55 (4 24) 519 (2.56) 623 (351) 395 (1.17) 4.76 (1.30) 131
Fund of Funds 7.53 (3.91) 8.84 (5 05) 9 96 (4.92) 1022 (4.12) 9 87 (5.64) 2.34 (1.02) 192
Global Macro 10.74 (3.57) 954 (2 39) 679 (1.71) 1322 (291) 348 (1.32) -7 26 (-2.11) 180
Managed Futures 3.63(123) 608 (2 00) 850 (2 72) 694 (2 01) 7.53 (2.38) 3.91(151) 192
Muiti-Strategy 11 42 (3.00) 980(1.99) 1559(331)  11.82(403) 6.93 (185  -449 (-0.82) 108
All (Category Neutral) 7.93 (5 62) 918 (6 02) 9.72(6.15) 1074 (6.15) 9.52 (6.67) 1.59 (1.30) 192

Panel B: Alpha After Adjusting for Broad Factor Set

Alpha (Annualized in %)
Low 2 p3 4 High Difference Count
Convertible Arbitrage -023 (-0 07) 6.45 (2.89) 691(4.19) 4.53 (2.24) 969 (6 70) 9.91 (2-?8) 144
Dedicated Short Bias 292 (0.49) 2.36 (052) 1.46 (0.17) 1224 (333) 749 (247) 457 (0.62) 120
Emerging Markets -009 (-0.02) -2.05 (-0 44) 0.54 (0.11) 229(048) -1.08(-0.25) -0.99(-0.28) 144
Long/Short Equity 6.74 (5.15) 3.33(2.73) 2.62 (164) 4.03 (2 33) 419(3.76) -2.55(-1.82) 192
Equity Market Neutral 942 (525) -3.59(-155) 229 (122) 579 (303) 510(314) -4.32(-2.05) 120
Events Driven 5.76 (4.21) 681 (5.28) 7.99 (6 54) 7 15 (4 90) 761(701) 186 (1.90) 192
Fixed Income Arbitrage -2.51 (-1.73) 301 (1.38) 3.87 (1.69) 223(099) 457 (144) 7 08 (2.08) 131
Fund of Funds 028 (0.13) 239(1.41) 3.01(170) 392 (2.16) 3.73 (2 97) 3.45 (1 36) 192
Global Macro 443 (158) 346 (086) -3.21(-0.77) 507(1.04) -1.30(-047) -573(-151) 180
Managed Futures -390 (-1.23)  -1.24 (-043) 266(0.82) -1.56 (-0.51) 100 (0.29) 491 (1.73) 192
Multi-Strategy 3.43(1.34) 596 (1 20) 9.77 (2.73) 7 73 (4.70) 364 (102) 0.21 (0.05) 108
All (Category Neutral) 2 30 (2.16) 2.99 (2 37) 3.34 (2.34) 444 (2 82) 392 (3 38) 1.62 (1.39) 192
Panel C: Residual After Adjusting for Broad Factor Set
Annualized Mean (%)
Lowest 2 3 4 High_est Difference Count

Convertible Arbitrage -1.93 (-0.52) 557 (311) 5.83 (2.95) 388(203) 806 (551) 9.99 (2.72) 144
Dedicated Short Bias 5.49 (1.17) 418 (0 85) 3.37 (0.57) 553 (0.84) 8.63(2.84) 315(0.71) 120
Emerging Markets 1.43 (0.33) 623(1.18) 11.90 (2.14) 12.01 (2 24) 8.03 (1.38) 6.59 (1.66) 144
Long/Short Equity 4.49 (3.70) 573 (4 40) 4.24 (3.12) 2.35 (1.16) 7.95 (5 42) 3.45(2.11) 192
Equity Market Neutral 8.13(4.95) -4.86(-1.64) 486 (190) 8.32 (3.13) 8.39 (3.34) 0.26 (0.10) 120
Events Driven 4 68 (3.41) 7.75 (5 85) 5.45(3.18) 6.98 (5.23) 5.99 (4 02) 1.31(1.03) 192
Fixed Income Arbitrage -2 58 (-1.06) 2 00 (0.90) 559 (2.70) 333(1.75) 4.08 (1 26) 6.66 (1.60) 131
Fund of Funds 1.51 (0.66) 403 (2.12) 3.26 (1.85) 3.79 (1.34) 526 (4.37) 3.75 (1 68) 192
Global Macro 590 (192) 671(1.75)  -0.47 (-0 12) 365(0.74) -0.39(-015) -6.28(-170) 180
Managed Futures -2.94 (-0.95) 0.37 (0.10) 4.32 (1.26) 282(0.73) 4.59 (1 40) 7.53 (2.78) 192
Multi-Strategy 1.85 (0.46) 1.40 (0 34) 7.83(1.63) 9.20 (4.72) 7 39 (3.02) 5.54 (124) 108
All (Category Neutral) 151(097) 4.14 (2 41) 3.63 (2 52) 399 (1.79) 6.18 (4 84) 4.67 (3.68) 192
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difficult year for funds holding the illiquid assets. In the following 4 year, funds holding
these assets performed well. In fact, by the end of year 2002 the combined return of the
illiquidity portfolio had reached 30% based on the cumulative sum. The last four years of the
sample show a substantial drop in this premium, perhaps driven by the issues we mentioned
earlier such as increase in the assets under management of the funds competing for these
illiquid assets and the general reduction in volatility and resulting higher leverage for holders
of these assets.

Figure 7.6 shows the cumulative return of the liquidity spread portfolio for each of the 11
categories.”® As reported in Table 7.9, Global Macro funds seem to have a negative liquidity
spread, while categories such as Fixed Income and Convertible Arbitrage experienced two of
the highest cumulative returns during this period. Without any exception, the slope for all
11 time series in Figure 7.6 shrunk towards zero in the second half of the sample, giving a
very strong indication that the pattern observed in Figures 7.1 based on the average of these
11 time series was not strongly influenced by any one of them.

To get a better sense for the macro predictors of the liquidity spread, we regressed
the monthly returns of the category neutral liquidity spread (i.e., the time series that was
cumulated through time to produce Figure 7.1) against the lagged values of a few different
factors that we expected to be related to the liquidity premium. In particular, we used the
lagged value of the CBOE Volatility Index, the lagged value of 3-Month Treasury Yields, the
3-Month LIBOR Spread (3-Month LIBOR minus 3-Month Treasury) as well as the lagged
values of the Term Spread (10 year minus 1 year US Treasury), Default Spread (yield of BAA
minus AAA bonds). The result of these regressions is shown in Table 7.10. This analysis
shows that the premium for holding the illiquid assets is higher in more volatile periods. This
effect seems to be overshadowed when other factors are added to the regression. Overall, the
premium seems to be higher in periods with higher volatility, higher Treasury rates as well
as periods with higher Default and Term Spread. These results are consistent with the basic
economic intuition. For example, during periods of higher volatility, some of the leveraged
players are forced to sell and hence the premium for being able to hold these assets during
these times should be higher. Similarly, periods with lower Treasury yield, Default or Term
Spread would force the asset managers to shift their attention to holding more illiquid assets
as they search for yield (see also Rajan (2006) for a very interesting discussion of this issue).
This would, in turn, increase the competition and reduce the premium for holding these
assets.

7SNote that the data reported in this fizure is based on the return since January 1998, while the results
in Table 7.9 use all available data for each category which goes to earlier than 1998 in most cases.
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Figure 7.1: This figure shows the cumulative monthly returns of the Category Neutral Liquid-
ity Spread Portfolio from January 1998 to December 2006. The Category Neutral Liquidity
Spread Portfolio is the equal weighted average of the 11 Liquidity Spread Portfolios. Each
Liquidity Spread Portfolio is the difference between the equal weighed average residual return
for all funds in the high serial correlation quintile minus the low serial correlation quintile
where the portfolios are constructed based on the prior five-year serial correlation and the
Broad Factors Set based on the beta values estimated over the prior five years are used to
calculate the residuals.
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Figure 7.2: This figure shows the cumulative monthly returns of the Liquidity Spread Port-
folio for different categories of hedge funds based on monthly returns from January 1998 to
December 2006. Each Liquidity Spread Portfolio is the difference between the equal weighed
average residual return for all funds in the high serial correlation quintile minus the low serial
correlation quintile where the portfolios are constructed based on the prior five-year serial
correlation and the Broad Factors Set based on the beta values estimated over the prior
five years are used to calculate the residuals. See the caption of Table 7.8 for details of the
residual calculation procedure and definition of Broad Factors Set. Hedge fund categories
are as follows: Convertible Arbitrage (CA), Dedicated Short Bias (DSB), Emerging Markets
(EM), Long/Short Equity (EQ_LS), Equity Market Neutral (EQ_MN), Events Driven (ED),

Fixed Income Arbitrage (FI), Fund of Funds (FOF), Global Macro (GM), Managed Futures
(MF), and Multi-Strategy (MS).
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Table 7.10:

This table shows the basic statistics and the sensitivity of the Category Neutral Liquidity Spread Portfolio to different
economic variables based on the data from January 1998 to December 2006. See caption of Table 7.1 for a description
of the Category Neutral Liquidity Spread Portfolio. Data from January 1998 to December 2006 is used. All values are
reported in the unites of basis points. T-stats are based on the Newey-West estimator with 3 lags. VIX in the COBE
Volatility Index, Term Spread in the difference between 10 year and 1 year US government bond yields, Defaults Spread
is the difference between yield on the BAA and AAA bonds, and 8M LIBOR Spread is the difference between 3-month
LIBOF rates and the 3-month T-Bill rates. Data is obtained from Federal Reserve monthly statistical release and are in
units of percentage points.

Panel A: Basic Statistics

Mean Star?dgrd Skewness Best Worst
Deviation

29.69 (2.53) 110 ~1764 354(03-2000) ~385(08-1998)

Panel B: Regression Against Lagged Volatility and Interest Rate Variables

Constant ViX 3M Treasury 3MLIBOR Spread  Default Spread Term Spread RSQ (%) Count
29.69 (2.53) 0.00 108
-11.30 (-0.55) 1.84 (1.80) 1.84 108
-9.19 (-0.29) 1.85 (1.86) -0.65 (-0.11) 1.85 108
-10.03 (-0.32) 1.92 (1.98) 5.96 (0.66) -78.54 (-1.08) 3.01 108
-125.50 (-2.24) 1.21 (1.08) 13.12 (1.62) -68.39 (-0.92) 116.18 (1.74) 6.12 108

-275.60 (-3.05) -0.05 (-0.05) 44.62 (2.26) -56.02 (-0.73) 121.59 (2.05) 51.28 (1.94) 8.60 108



7.7 Chapter Conclusions

We started this chapter by presenting some additional analysis to support the claim that
serial correlation can be used as a proxy for the illiquidity of the underlying asset. We then
turned to the analysis of the linkage between serial correlation and the mean of returns
as a way to measure the impact of illiquidity on the returns, or what is usually called the
illiquidity premium. We looked at the link between serial correlation of returns and their
mean using a variety of statistical techniques.

In general, we found an economically and statistically significant link between average
returns and serial correlation of returns. We found the link to be more important for certain
categories of hedge funds and for Fixed Income mutual funds and more visible after we had
applied our adjustment approach to reduce the noise in the data. We estimated the liquidity
spread among hedge funds at about 3.96%/year. The similar measure among Fixed Income
mutual funds was about 2.74%/year. We did not find much indication of the illiquidity
premium among Equities and Asset Allocation mutual funds or the 100 portfolios of US
common stocks. Looking at the difference among various hedge fund categories, we found
that the categories traditionally known to involve the illiquid assets, such as Convertible
Arbitrage and Fixed Income arbitrage exhibited large illiquidity premium (9.91%/year and
7.08% /year, respectively), but Managed Futures hedge funds that are not usually mentioned
in connection with illiquidity exposure also exhibited a large illiquidity premium of about
4.91%/year. We also found that the Global Macro funds exhibited a negative illiquidity
premium in our sample, which was somewhat surprising.

Lastly, we applied our methodology to analyze the evolution of the illiquidity premium
in the period of 1998 to 2006. We found that while 1998 was a difficult year for funds
with significant illiquidity exposure, the subsequent four years brought great return for these
funds. We argued that the increased competition and higher leverage finally reduced the
illiquidity premium towards zero in the last four years of our sample.
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Chapter 8

Summary, Contributions, and
Conclusions

This thesis dealt with statistical analysis and model identification based on financial prices.
We took the view that prices are signals produced by the local financial markets, and, hence,
they should be a reflection of the information and objectives of the entities acting in this
system as well as frictions that constrain these interactions. We approached this problem
at various levels of abstraction, with a particular emphasis on linking certain statistical
anomalies identified at higher levels of abstraction to specific frictions that are only observable
in a more microscopic view. With this perspective in mind, we looked at the issue of linear
predictability in financial prices.

In this section, we first give a brief summary of the thesis, the main themes, and the
finding of the work. We then review the original contributions of the research. Just as the
thesis was separated into two parts, this summary is also organized into two parts.

Part A focused on the issue of linear predictability at daily or intra-day frequency. We
discussed a signal-extraction algorithm for extracting the predictable part of the price move-
ments. In the empirical application, we found that changes in financial prices have a weak
mean-reverting component. We then linked the predictability to microscopic interactions
among buyers, sellers, and dealers. The model proposed to make this link precise also pro-
duced a number of hypotheses about the behavior of the system and links among various
observables, all of which stood well in empirical testing. We finally used this view and the
tools developed here to look at a sequence of events in August 2007 that caused major losses
for a certain class of hedge funds. We were able to document a distinct regime shift in the
mean-reverting component of the prices during a few days in August 2007. We linked this
period to the changes in the arrival behavior of buyers, sellers, and dealers.

While the trading algorithm used in Chapter 3 was originally used in Lehmann (1990)
and Lo and MacKinlay (1990b), the perspective of looking at this trading strategy as a
signal-extraction algorithm is new and original. It is precisely this alternative interpretation
that results in the extensions of this algorithm that we used in Chapter 4. In particular, the
analysis in Section 4.4 can be viewed as pre-filters applied to the signal prior to applying
the signal-extraction procedure. The model proposed in Chapter 4 is motivated by the
model in Grossman and Miller (1988), but it is a substantial extension of that model. Most
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importantly, the analysis presented in Chapter 5 regarding the intricate dynamic of trading
mechanism, and its breakdown in August of 2007 is entirely new and has received a lot of
attention from the academic, policy-making, and industry audiences alike. The evidence
regarding higher level of linkage between various hedge fund sections, i.e., various parts of
the world’s financial system, which was presented in Chapter 5, is also new and should be
of interest from a global stability and linkage perspective.

Part B focused on the issue of linear predictability at monthly frequency. We documented
an unusually high level of predictability among hedge funds, which, as we discussed, should
show the lowest level of predictability. We proposed a model to link this unpredictability
to the unobservability of the underlying prices due to lack of trading. This suggests that
assets with less liquidity, i.e., assets that trade less frequently, should exhibit a higher level
of linear predictability. Using this concept, we set out to analyze the link between illiquidity
and the expected values for returns produced by a large and heterogeneous, with respect
to liquidity, group of assets. Overall, our analysis supported the existence of a positive
illiquidity premium among certain categories of hedge funds and some categories of mutual
funds. We also find that this premium has declined over the last four years of our sample
and link that to changes in the overall behavior of this system.

The model proposed in Chapter 6 is an extension of Lo and MacKinlay (1990a). But
it is a neat and important extension as it unifies the case of a single return signal and the
case of a portfolio of assets, the two cases that were treated differently in Lo and MacKinlay
(1990a), into one coherent treatment. The link between linear predictability and illiquidity
was first promoted by Getmansky et al. (2004). But the analysis in Chapter 7 that links this
hypothesized relationship with the difference in expected returns and, hence, the calculation
of the illiquidity premium, is original. In particular, the finding that there has been a sub-
stantial change in the illiquidity premium in the last four years of our sample has important
implications from the global system analysis perspective.
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Appendix A

Appendix

The appendix provides explanations, proofs, or overview of the data. This information was
not presented in the main body to enhance the continuity of the exposition. The appendix
is separated into a number of sections according to the relevant chapter number in the main
text.

A.1 Appendix for Chapter 3

This part of the appendix contains supplemental materials and relevant data descriptions
for Chapter 3. Appendix A.1.1 describes the The Center for Research in Security Prices
(CRSP) dataset, which is the main source of historical stock prices and returns used for the
analysis presented in this thesis. Appendix A.1.2 provides a short background on the issues
related to dealing with heteroskedasticity and autocorrelation in conducting basic statistical
tests.

A.1.1 Overview of the CRSP Data

The Center for Research in Security Prices (CRSP) is a research center at the Graduate
School of Business of the University of Chicago. It maintains the most comprehensive col-
lection of price, return, and volume data for all equities listed on all US markets, including
the NYSE, AMEX and NASDAQ markets.

The main data used from this database is the daily Holding Period Return. This entry
is the change in the total value of an investment in a stock over some period of time per one
dollar of initial investment. We will use this data primarily at daily frequency. It should be
noted that the Holding Period Return incorporates the effect of distribution through dividend
in the price. This database provides additional information such as the total number of
shares and the closing prices, among other things, which are used in places where we need
to rank stocks based on the total market capitalization (market capitalization equals the
total number of shares multiplied by the price of each share). For the study in Chapter 3,
we only use prices for US-based companies (share type “10” or “11”), and limit the study
to stocks that were in the sample on the first day of January or July in the respective year,
and had at least 100 days of reported prices for the given year. For the study in Chapter 4,
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we furthermore limit the set to the stocks that are part of the S&P 1500 Composite Index,
roughly corresponding to the largest 1,500 companies traded on the US exchanges. The data
for S& 1500 Index memberships is obtained from the Compustat database and re balanced
once a month on the last trading day. Please see Appendix A.3.1 for an overview of the
Compustat database.

A.1.2 Heteroskedasticity and Autocorrelation in Statistical Test

We often encounter situations in which we need to test a hypothesis about the mean of a
random variable. In other cases, the test can be formulated in the form of testing the mean
of a random variable after transforming the data. In the cases that we deal with most often
in this thesis, the random variable is the realization of a stochastic process indexed by time.
The profit of the Contrarian Trading Strategy in Section 3.4 is an example of such a setting.

The most direct approach would be to calculate the sample mean and use that for hy-
pothesis testing. While under the independent and identically distributed (iid) assumption
about the random variables, the standard central limit theorem applies, some adjustment
must be made when random variables are autocorrelated and also the conditional variance
changes in the sample. The following proposition gives this necessary adjustment to the
variance of the sample mean. To keep the result in the most general form, we present it for
the case of vector random processes.

Proposition A.1 (See Hamilton (1994), Chapter 10 ) Let'y; be an n-dimensional covariance-
stationary vector process with moments given by:

Elyd = n (A.1)
El(y: — )y —w)7] = Ty (A.2)

Assume the autocovariances are absolutely summable. Let the sample mean be given by:
1 I
V=7 % (A.3)
=1

Then:
1. ¥r L H
2. limpoo [T E{(¥r — 1) (Fr — w)7]] =8 = 321X
3. VI(37 — 1) % N(0,8)
4. (Newey-West Estimator) Define

q
~ ~ v ~ A
ST:PO+§j[1-———] (T, +I7) (A.4)
v=1 q+1
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where I, is the sample estimator for Ty, defined as

T
N 1 _ _
L, == > (vt~ V) Vi —¥1)" (A.5)
t=v+1

then T, is positive semi-definite by construction and is a consistent estimator of S as
long as both T and q go to infinity such that ¢/T* — 0.

We appeal to this result for most of our statistical tests in Section 3.4. We used the value
of ¢ = 3 for most our tests but the reported results are robust to different values of q.

A.2 Appendix for Chapter 4

This appendix contains background data and proofs related to Chapter 4.

A.2.1 Proof for Proposition 4.1

We need to prove a simple lemma first. The proof of Proposition 4.1 will be given after this.

Lemma A.1 Let x be a normally distributed random variable with mean p and variance of

02, i.e., z ~ N(p,0%). Consider an objective function of the form

U(d) = —E [e™**] (A.6)
The value of d that mazimizes the above objective function is
_ K
d= = (A.7)

and the value of the objective function at the optimal point is

U (#) = —exp (-%2‘—2) (A.8)

Proof: From the moment-generating function for the normal random variable, we know
that E[e*] = exp(u + 02/2). Noting that —ad ~ N(—ady, a®d*c?), we know that

202 2
—-FE [e_o‘dz] = —exp (—adu + 2 (;20 ) (A.9a)
S0,
_ —adz 2 2
B e (com ST ot Ao
9P —-E e—odz a’d?o? 2
__8(1[2 ] = —exp (—ad,u + ) ((—a,u +a’do®)” + 01202) (A.9c)
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Setting (A.9b) to zero, we get the desired optimality condition. The second derivative
given by (A.9c) is always negative, which means the above optimal point is the global
minimum. (A.8) will follow immediately by substituting the optimal value of d into (A.9a)

Proof of Proposition 4.1

First, notice that the objective function of the dealers is given by

U(dy) = —EJem 0% Prri-reac] (A.10)

where d; is the number of units they will purchase, p;+1 — p; is the random price change, « is
their parameter of risk aversion, and c is their cost. We will refer to d; as their demand. The
only part of the above objective that depends on their demand is the term e~@%(Pe+1-2)  So
the optimal point for the objective given in (A.10) is the same as the optimal point for the
reduced objective given by

U‘(dt) — _Et[e"adt(Pt+1_Pt)] (A.ll)
The hypothesized price dynamic is given by

Tt+1 = Pt+1 — Pt = Vg1 — aaiqt (A~12)
So,
Pt41 — Pt~ N(—aalz,%, 03) (A.13)

Using this fact and based on the reduced utility function given in (A.11), lemma A.1
implies that the demand is given by

d = Et[Pt+1 - Pt]
=
aVar(pir1 — pr)
- —aopq
- ao?

Therefore, under the price dynamics given in (A.12), the quantity demanded by the
dealers is exactly equal but opposite to the imbalance quantity ¢;. So this price dynamics
represents one possible fixed point equilibrium for the system. We conjecture that this is
the unique equilibrium but in general it is very difficult to prove uniqueness in this type of
model.

A.2.2 Proof for Proposition 4.2

Recall that the utility function for the dealership is given by

U(dy) = —E,y[eo%Peri=pd o] (A.15)
Using (A.13) and (A.8) from Lemma A.1, we can calculate the value of the objective
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function at the maximum. We will denote this a U(g;) since it will only be a function of g;.
It is given by

~ 1
U(qs) = —exp (ac — —2-a20V2qt2> (A.16)

This gives us the expected benefit the dealers extract from being in the market at time ¢.
Note that it is increasing an a function of the imbalance g;; i.e., the dealers expect to extract
a higher benefit after larger imbalance periods. The idea is that in the long run, the benefit
dealers extract from being a dealer should exactly offset their cost. So in the steady-state,
the expectation of the above expression when the expectation is taken over ¢; should be 1.

Recall that ¢; = 0(L)n,. Hence, we have:

@ ~ N(0,02) 67 (A.17)
=0
S0,
qt2 2

We need to use the moment-generating function for x?(1) random variable. If z ~ x?(1)
then:

Ele™] = (1—-2t)7'/2 (A.19)

Using (A.18) and (A.19) to simplify the expectation of U(g;) we have:

E [f/'(qt)] = E [— exp <ac . -;-oﬂau?qf)]

- ~1/2
= —exp(ac) (1 + o’olol Z 6',2)

1=0

In the steady-state, we need
o -1/2
exp(ac) (1 +a’olo] Z 03) =1 (A.20)
=0

Using the approximation that exp(z) = 1 + x for small z and assuming that the cost, c,
is small we find the following solution:
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2c

ac? 02203092 (A.21a)
2
~ 0—‘; (A.21b)

A.2.3 Proof for Proposition 4.3

Recall that we are considering the profit of a market-neutral strategy which invests a w;,
defined as:

1 1
W,y = —-ﬁ(r,,t — Tmst) where rp; = i ; Tut
in security 3. Define m;(q) as the profit for this strategy for a position put together at time
t and held for g periods. This quantity is given by:

N
m(g) = Y wy Pt

=1 =1
T
= TN (roe(riger + -+ rtrq)) + Tt (Tmpt1 + -+ + Trntrp)
i=1

Now, take the expectation:

N N N
E[m(p)] = —~% > (1) + -+ male) + aud) + 7\,1—5 Yo g+ + ) + qpansg)

i=1 i=1 j=1

(A.22)

Now, look at the group of terms at each lag and try to simplify. For lag I, the group of
terms has the structure:
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1 N N N 1 N N 1 N
—"ﬁ z_; (711( + :u’z ZZ 71] + /j'zN] = 32 ZIZI'YZ,J(Z) - —]\7 2’71,1(0 +
- - Ly o
_Q'ZIZMP«J_NZI,U?
=1 j=1 1=

W" (i )e — Ntr(uu')) (A.23)
where ¢ is an N x 1 vector of ones. To simplify this, let’s define the following operator

M(A) = ~]V2-L ‘AL — —tr(A)- (A.24)

Note that M(-) is linear so

M(A+B) = M(A)+M(B) (A.25a)
M(aA) = aM(A) (A.25Db)

In addition, for any column vector ¢, N x 1, define o?(c) as

N
1 1
2 2
o(c) = N ;zl (¢, — ¢m)® where ¢, = N (A.26)

iM-
o

Also note that if A = cc’ where ¢ is an N x 1 column vector it is easy to show that

N
MA) = 13" Yee -3 Y4
i=1 j=1 i=1

= —o%(c) (A.27)

Putting all these together, and substituting (A.23) into (A.22), we get:

Elm(q)] = M(T1)+- -+ M(Tq) + qM(up')
= M(T) + -+ M(T,) — qo*(p) (A.28)

A.2.4 Proof for Corollary 4.1

This corollary deals with the expected profit of the contrarian strategy under the following
data generating process:
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Tit41 = Pig+1 — Pigt

= Wi+ Vigr1+ Aig (A.29a)
where,
Vigr1 = Biftrr + Vign (A.29b)
1-6 1-¢6
)\i,t = 6t — (T) 961",5_1 - (—-‘9—-) 92€i,t—2 —_ (A29C)
o = pfie1+ 2 (A.29d)

In (A.29a) of the above formulation, 7,441 = p,141 — pit consists of a mean, p,, and
two random parts: A;; captures the prices changes due to customer imbalances while v, ¢4
captures the prices changes due to exogenous reasons. In the above formulation, z’s, 7, +'s
and €;;’s are zero mean white noise (i.e., uncorrelated both through time and in the cross-
section) with variance of 02, 07 and 0?2, respectively. Note that sensitivity to f;, the common
factor, implies that v;:’s are cross-sectionally correlated. Note that this date generating
process is slightly more general than the one proposed in (4.12) in that we now allow the
common factor to have a non-zero serial correlation denoted by p. Clearly setting p = 0 gets
us back to the basic case.

The profit expression derived in Proposition 4.3 are a function of the variance-covariance
matrix of r;;’s. Given the assumption that ¢,; and 2, are uncorrelated at all leads and lags,
the variance-covariance of 7;;’s can be decomposed to a part due to customer imbalances
and another part due to the common factor. We will refer to these parts are I'; y and I’y f,
respectively, which are related to the overall variance-covariance matrix I'; by:

I=T\+T; (A.30)

Since the M(-) operator used in the calculation of the contrarian profit is linear, the
above decomposition will simplify our work in calculating the profits. We will now turn to
calculating each component of I;.

Calculation of I'; ¢

fi is a simple AR(1) process so its variance and covariance are given by :

1
2 2
9 = 1__p202
!
_ P 2 _ 1.2
Viefon = l_pgaz_paf

Also recognize that f; is multiplied by g; in the r,;, which will cause the covariance terms
due to the common factor between different securities to scaled accordingly. Putting these
together, we have:
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Ty = BB o} (A.31)

where 3 is a column vector of all 3;’s. Appealing to the linearity and other properties of
M(+) discussed in the last section, we have:

M(Fl,f) = M(ﬂﬂTplU?")
= —Jo2?(B) (A.32)

Calculation of T’ ,

Variance of );; is given by:

ai = <1+

- 2, (A.33)

To calculate the covariance between A,; and A;;1;, we need to look at the cross-product
of the MA coefficients for the (infinite) common ¢;,’s between \;; and \;;4;. This expression
is given by:

7Az,t vAz,t+l

6'o? (A.34)
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where we use our expression for af\l to simplify this. Putting these together, we have the
following expression for I'; 5

o 1-96
NP dlag(“—gl Oxp ,—75105\,\,)
N—-11-6
and M(T1y) = — Z TRAL (A.35)

1=1
Profit Expressions

We can now combine the expression for I'; y and I'; x to find the expression for the profit
of the contrarian strategy. Recall that the profit is given by:

Blm(q)] = M(T1)+--+M(Ty) - qo*(p) (A.36)
Due to linearity of M(-) and using (A.30), we can rewrite this as:

E[m(q)] = M(T1p)+---+M(Typ) + M(Trp) +--- + M(Tq5) — qo° ()
(A.37)

The two parts of this expression can be simplified as follows:

ML)+ MTa) = 3 |55 Z 7%

=1 1=1

61 AZ
=1 i=1

N-1gh1-61-67 ,

RE Z 59 9T

=1

N-1g 1-¢¢
= = > . o} (A.38)
i=1

M(Trg) +-+ M(Tyy) = — Zpl%%az(ﬁ)

- -pll";q o2%(B) (A.39)

Substituting (A.38) and (A.39) into (A.37) we arrive at the final expression:
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N

N -1 1-69 1—p?
Elm(a)] =~z 2 —5—% ~ 1=, 250 (8) — 4’ () (A.40)
i=1

The second part of this expression is zero for the case that p = 0. Also, We showed in
Table 3.1 that for practical signals the last part, i.e., 02(3), is very small and can be ignored.
Finally, for large values of N we can use the approximation that &=t ~ +. Putting these
together we have:

q N
E[my(q)] ~ 1—29 (%Zai) (A.41)

A.2.5 Proof for Proposition 4.4

This proposition deals with the form of the realized profit of the contrarian strategy under
the following data generating process:

Tig+1 = Do+l — Pit (A.42a)
= i+ Vg1 + Aig (A.42b)
where,
Vigt1 = PBifir1 + Vi (A.42c)
1-6 1-6
)‘z,t = Ei,t - (T) gei,t——l — (—0—) 9261‘)1,_2 —ee (A42d)

In the above formulation, f’s, 7;;’s and €;,’s are zero mean white noise (i.e., uncorrelated
both through time and in the cross-section) with variance of 0%, o3, and o2, respectively.
Recall that the contrarian strategy invests w;; defined as:

N
1 1
Wyt = ——N(ri,t —Trmyt) where rp,,= N E Tit
i=1

in security 7. The cumulative g period profit, m;(q), is given by :
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=z

p’x
'ﬂ't(q) — Z wi’t 1, t+q

i=1 Pi

q
Wyt E Tit+1

= Z Z Wy tT5 t+1 (A43)

‘,__/

IMZ

Let’s simplify the expression in the parenthesis above:

N N 1 1 X
Z WigTig+l = Z (—'N‘ (Ti,t N Z T],t)> a4l
1=1

11 1 &
= (—‘N‘-*-W)Zh,m,m-l-mz Z TjeT0,t+l

i=1 i=1 j=1,ji

= 1_ N2Z Z TjTit+1 (A-44)

i=1 j=1,j#1

We can now simplify each part in turn. Expanding (A.42) from above we know r,; and
71+ terms have the following form:

- 1-6 1-6
Tig = Wi+ Bife+Vip+ €1 — (—9—> Oe; 1o — (T) 9261;’,5_3 —

- 1-6 1-0
Tigrl = Wi+ Bifter+ Vg + €11 — (T) O¢; t11-2 — (T) 92€i,t+l—3 -
(A.45)

The key is to use the fact the f;’s, 7;,’s and ¢€;,’s are zero mean and uncorrelated both
through time. Hence, the law of large number can be applied in each of the summation
terms above to drop many of the cross-terms and to obtain convergence in probability type
of results. We look at each term in turns:
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p
—

= |

1-6\2
( Llve, o+ (L) e )—
s

fefeni (A.46)

2!

i Mz an

N
%Z Z T5tTi -+ e sz Z BiB; [t fet (A.47)

=1,j# 1=1 j=1,j#

Terms involving f;’s from the two expression can be collected and simplified using (A.24),
(A.25b) and (A.27) as follows:

Zﬂ fefen + QZ Z et = MBS firr)
N

1=1 j=1j#i
—fofeiM(BB)
= —ftft+102(ﬁ) (A-48)

Analyzing the collection of terms involving the ¢,;’s is simpler when we look at the
contribution of such term in (A.46) as it is aggregated over [ € {1,2,---,q} as needed in
(A.43). After some simplification we have:

N
terms involving €,;_;’s: -l——g—g (0 +02 -+ 9") (71[— Z e?’t_1>

i=1

L
=(1-99 (7\7 > e;{t_l) (A.49)
i=1
1-6\* . k k+1 1« 2
terms involving €, ;’s for k > 1: (T) (6542 4 643 ... 4 gr+1) -5 Z €1k
i=1

= (1-679(1-0)6*" 1( NZGH k) (A.50)
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Using (A.48), (A.49), and (A.50) to simplify (A.43) we get:

1L,
m(g) = (1-69) N €it—1

i=1

—(1—69(1-6) ( ﬁ: )-(1—9q)1— ( if )

“Uz(ﬁ)ft(ftﬂ + figa o+ fiag) (A.51)

A.3 Appendix for Chapter 5

This Appendix contains various supplemental data for Chapter 5. Appendix A.3.1 provides
an overview of the Standard & Poor’s Compustat database. Appendix A.3.2 discusses five
specific quantitative valuation metrics used in Section 5.3. Appendix A.3.3 provides a short
overview of the NYSE Trade and Quote (TAQ) data source used in the high-frequency
analysis in Section 5.4. Finally, Appendix A.3.4 provide some detail on the specific stock
involved in the un-wind starting on August 6th.

A.3.1 Overview of Compustat Data

Balance-sheet information is obtained from Standard & Poor’s Compustat database via
the Wharton Research Data Services (WRDS) platform. We use the “CRSP/Compustat
Merged Database” to map the balance-sheet information to CRSP historical stock returns
data. From the annual Compustat database, we use:

Book Value Per Share (item code BKVLPS)

Basic Earnings Per Share Excluding Extraordinary Items (item code EPSPX)
Net Cashflow of Operating Activities (item code OANCF)

Fiscal Cumulative Adjustment Factor (item code ADJEX_F)

We also use the following variables from the quarterly Compustat database:

¢ Quarterly Basic Earnings Per Share Excluding Extraordinary Items (item

code EPSPXQ)
e Cumulative Adjustment Factor by Ex-Date (item code ADJEX)
e Report Date of Quarterly Earnings (item code RDQ)

There is usually a gap between the end of the fiscal year or quarter and the date that the
information is available to the public. We implement the following rules to make sure any
information used in creating the factors is, in fact, available on the date that the factor is
calculated. For the annual data, a gap of at least 4 months is enforced (for example, an
entry with date of December 2005 is first used starting in April 2006) and to avoid using old
data, we exclude data that are more than 1 year and 4 months old, i.e., if a security does
not have another annual data point after December 2005, that security is dropped from the
sample in April 2007). For the quarterly data, we rely on the date given in Compustat for
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the actual reporting date (item code RDQ, Report Date of Quarterly Earnings) to ensure
that the data is available on the portfolio construction date. For the handful of cases that
RDQ is not available, we employ an approach similar to that taken for the annual data. In
those cases, to ensure that the quarterly data is available on the construction date and not
stale, the quarterly data is used with a 45-day gap and any data older than 135 days is not
used (for example, to construct the portfolio in April 2007, we use data from December 2006,
and January or February 2007, and do not use data from April or March 2007).

A.3.2 Construction of Typical Valuation Vectors

We focus our analysis on five of the most studied and most highly cited quantitative eg-
uity valuation factors: three value measures, Price Momentum, and Earnings Momentum.
The three value measures, Book-to-Market, Earnings-to-Price, and Cashflow-to-Market, are
similar to the factors discussed in Lakonishok et al. (1994). These factors are based on
the most recent annual balance-sheet data from Compustat and constructed according to
the procedure described below. The two remaining factors—Price Momentum and Earnings
Momentum—have been studied extensively in connection with momentum strategies (see for
example Chan et al. (1996)). The Earnings Momentum factor is based on quarterly earnings
from Compustat, while the Price Momentum factor is based on the reported monthly returns
from the CRSP database. At the end of each month, each of these five factors is computed
for each stock in the S&P 1500 index using the following procedure:

1. The Book-to-Market factor is calculated as the ratio of the Book Value Per Share
(item code BKVLPS in Compustat) reported in the most recent annual report (subject
to the availability rules outlined in Appendix A.3.1) divided by the closing price on
the last day of the month. Share adjustment factor from CRSP and Compustat are
used to correctly reflect changes in the number of outstanding common shares.

2. The Earnings-to-Price factor is calculate based on the Basic Earnings Per Share
Excluding Extraordinary Items (item code EPSPX in Compustat) reported in the
most recent annual report (subject to the availability rules outlined in Appendix A.3.1)
divided by the closing price on the last day of the month. Share adjustment factor
available in CRSP and Compustat are used to correctly reflect stock splits and other
changes in the number of outstanding common shares.

3. The Cashflow-to-Market factor is calculated based on the Net Cashflow of Operat-
ing Activities (item code OANCF in Compustat) reported in the most recent annual
data (subject to the availability rules outlined in Appendix A.3.1) divided by the total
market cap of common equity on the last day of the month. Number of shares out-
standing and the closing price reported in CRSP files are used to calculate the total
market value of common equity.

4. The Price Momentum factor is the stock’s cumulative total return (calculated using
holding period return from CRSP files which includes dividends) over the period span-
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ning the previous 2 to 12 months.?!

5. The Earnings-Momentum factor is constructed based Quarterly Basic Earnings
Per Share Excluding Extraordinary Item (item code EPSPXQ in Compustat)
using the standardized unexpected earnings, SUE. The SUE factor is calculated as
the ratio of the earnings growth in the most recent quarter (subject the availability
rules outlined in Appendix A.3.1) relative to the year earlier divided by the standard
deviation of the same factor calculated over the prior 8 quarters (see Chan et al. (1996)
for a more detailed discussion of this factor).

At the end of each month during our sample period, we divide the S&P 1500 universe into
10 deciles according to each factor. Decile 1 will contain the group of companies with the
lowest value of the factor; for example, companies whose stocks have performed poorly in
the last 2 to 12 month will be in the first decile of the Price Momentum factor. Deciles 1
through 9 will have the same number of stocks and decile 10 may have a few more if the
original number of stocks was not divisible by 10. We do not require a company to have
data for all five factors or to be a U.S. common stock to be used in each ranking. However,
we use only those stocks that are listed as U.S. common shares (CRSP Share Code “10” or
“117) to construct portfolios and analyze returns.A? For example, if a company does not
have 8 quarters of earnings data, it cannot be ranked according to the Earnings Momentum
factor, but it will still be ranked according to other measures if the information required for
calculating those measures is available.

This process yields decile rankings for each of these factors for each month of our sample.
In most months, we have the data to construct deciles for more than 1,400 companies.
However, at the time we obtained the Compustat data for this analysis, the Compustat
database was still not fully populated with the 2007 quarterly data; in particular, the data
for the quarter ending September 2007 (2007Q3) was very sparse. Given the 45-day lag
we employ for quarterly data, the lack of data for 2007Q3 means that the deciles can be
formed for only about 370 companies at the end of November 2007 (the comparable count
was 1,381 in October 2007 and 1,405 at the end of September 2007). Since any analysis of
factor models for December 2007 is impacted by this issue, we will limit all our study to the
first 11 months of 2007.

A.3.3 Overview of TAQ Data

The NYSE Trade and Quote (TAQ) database contains intra-day transactions and quotes data
for all securities listed on the NYSE, the American Stock Exchange (AMEX), the National
Market System (NMS), and SmallCap issues. The dataset consists of the Daily National
Best Bids and Offers (NBBO) File, the Daily Quotes File, the Daily TAQ Master File, and
the Daily Trades File. For the purposes of this study, we only use actual trades as reported in

A-1The most recent month is not included, similar to the Price-Momentum factor available on Kenneth
French’s data library (see footnote 5.13).

A 2This procedure should not impact our analysis materially as there are only 50 to 60 stocks in the
S&P indexes without these share codes, and these are typically securities with share code “12”, indicating
companies incorporated outside the U.S.
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the Daily Trades File. This file includes information such as the security symbol, trade time,
size, exchange on which the trade took place, as well as a few condition and correction flags.
We only use trades that occur during normal trading hours (9:30am to 4:00pm). We also
discarded all records that have a Trade Correction Indicator field entries other than “00”4-3
and removed all trades that were reported late or reported out of sequence, according to the
Sale Condition field.A* During the 63 trading days of our sample of TAQ data from July 2,
2007 to September 28, 2007, the stocks within the universe of our study—the S&P 1500—
yielded a total of approximately 805 million trades, ranging from a low of 4.9 million trades
on July 3, 2007 to a high of 23.7 million trades on August 16, 2007. The cross-sectional
variation of the number of trades was quite large; for example, there were approximately 11
million trades in Apple (AAPL) during our sample period while Lawson Products (LAWS)
was only traded 6,830 times during the same period. On average, we analyzed approximately
11.3 million trades per day to develop our liquidity measures.

Using transactions prices in the Daily Trades File, we construct 5-minute returns within
each trading day (no overnight returns are allowed) based on the most recent transactions
price within each 5-minute interval, subject to the filters described above. These returns are
the inputs to the various strategy simulations reported in Section 5.4.

A.3.4 Extreme Movers on August 6, 2007

Simulations of simple strategies such as the contrarian strategy can be used to pinpoint the
beginning of market dislocations when applied to transactions data. Recall that the intra-day
contrarian strategy of Section 5.4 invests $1 long in the worst performing decile and $1 short
in the best performing decile of lagged 5-minute returns. Given the position w;; of security
7 at time ¢, the security’s contribution to the portfolio’s profit or loss over the next period
is simply w;r,;. If this value is negative, it suggests that the security experienced either a
negative return following a period of under-performance (recall that we invest $1 long in the
worst performing decile), or a positive return following a period of out-performance. While
such an outcome may be purely random, a sufficiently high number of such occurrences over
a given day indicates a price trend for that security and systematic losses for the contarian
strategy. Therefor, the number of periods in which a security exhibited negative contributions
to the portfolio:

Z I{Wt,trz,t<0} (A.52)
t

can be used as a metric to detect the start of an unwind of mean-reversion strategies, as
well as a possible decline in market liquidity due to losses accumulated by marketmaking
strategies.

Under the scenario of pure randomness, i.e., independently and identically distributed

A3 According to the TAQ documentation, a Trade Correction Indicator value of “00” signifies a regular
trade which was not corrected, changed or canceled. This field is used to indicate trades that were later
signified as errors (code “07” or “08”), canceled records (code “10”), as well as several other possibilities.
Please see the TAQ documentation for more details.

A4These filters have been used in other studies based on TAQ data; see, for example, Christie, Harris and
Schultz (1994) or Chordia, Roll and Subrahmanyam (2001). See the TAQ documentation for further details.
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mean-zero returns, each security has a 1/5 chance of being included in the contrarian portfolio
in each time period (recall that we long and short the bottom- and top-performing deciles).
Once the portfolio is established, each position has a 1/2 chance of contributing a loss
(negative returns following a period of under performance or position return following a
period of outperformance).A Therefore, each security has a 1/10 chance of contributing a
negative value to the return of the contrarian strategy over each interval so the expected
value of (A.52) for each security on any given day is 7.6 (recall that the contrarian strategy
takes position 76 times each day, starting at 9:40am and closing final positions at 4:00pm).

We have ranked securities according to this metric for August 6, 2007 and list the secu-
rities with the top 50 values in Table A.1. We have also reported the decile ranking of each
security according to each of the five valuation factors as well as their market-capitalization
decile. The Open, High, Low and the Closing price as well as the High-Low spread, as a
measure of the intraday volatility, and the overall return for the day are also reported.

The stocks’ factor rankings in Table A.1 do not look random, but clearly show that the
extreme losers were concentrated in the financial sector, and had extreme factor rankings in
at least three of our valuation factors and in size—high Book-to-Market, high Earnings-to-
Price, low Earnings Momentum, and low market cap.

A-5Recall that we are using 5-minute returns, which is close to zero mean, hence the loss probability of 1/2
is a reasonable approximation.
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Table A.1: Top 50 securities with highest loss rankings from the contrarian strategy applied to 5-minute returns of stocks in
the S&P 1500 on August 6, 2007. Securities are ranked based on ), Itw, ., <0y Where w;, is the weight assigned to security
7 based on the returns over the preceding 5-minute interval and r;, is the return over the subsequent 5-minute interval. The
realized value for this metric is contained in the column “Periods with Loss”.

€91

Factor and Size Declles Price and Return Data
High-Low
Ticker Name Industry Perlods BM CFM  EP ERN - PRC o Open($) High($) Low($) Close(s) Spread Day Return
with Loss MOM MOM
{% of Close)
RDN RADIAN GROUP INC Money & Finance 35 10 10 10 1 8 2327 2450 17 44 2323 30% 0%
SPF STANDARD PACIFIC CORP NEW Other Industnes 34 10 1 10 1 3 1225 1228 751 1056 45% -14%
FFIV F 5 NETWORKS INC Computer, Software & Electronics 31 2 2 2 10 7 8383 8400 7030 7243 19% -14%
iMB INDYMAC BANCORP INC Money & Finance 29 10 1 10 1 4 1818 2115 1825 2003 14% 4%
SmpP STANDARD MOTOR PRODUCTS INC Computer, Software & Electronics 27 10 9 4 5 10 1 1092 1092 788 862 35% 21%
MTG MG ! C INVESTMENT CORP WIS Money & Finance 26 10 9 10 1 3 8 3375 3555 2893 3328 20% -1%
BZH BEAZER HOMES USA INC Cther industries 25 10 1 10 1 1 2 1132 1160 1012 1096 14% -3%
FRNT FRONTIER AIRLINES HLOGS INC Cther industries 25 10 8 1 2 1 1 525 527 451 489 16% 1%
GFF GRIFFON CORP Manufacturing 25 9 2 10 1 2 2 1570 1592 1200 1298 30% -17%
VvCi VALASSIS COMMUNICATIONS INC Other Industries 24 4 [} 9 1 1 2 952 966 767 788 25% “17%
LAB LABRANCHE & COINC Money & Finance 24 10 10 10 1 1 1 510 637 510 819 21% 21%
LFG LANDAMERICA FINANCIAL GROUP INC Money & Finance 24 10 9 9 1 9 4 57 10 5843 5432 5701 7% 0%
MESA MESA AIR GROUP INC NEV Other Industries 24 10 1 10 1 1 1 645 645 542 811 17% 5%
ROIAK RADIO ONE INC Other Industries 23 10 9 1 4 2 2 487 492 351 405 35% 7%
CHUX O CHARLEYS INC Wholesale & Retail 22 10 10 5 5 7 1 1676 1676 1547 1639 8% 2%
cBG C B RICHARD ELLIS GROUP INC Money & Finance 2 1 3 4 10 9 8 3118 3229 2808 3210 13% 3%
CFC COUNTRYWIDE FINANCIAL CORP Money & Finance 22 10 1 10 2 3 9 2470 2675 2364 2675 12% 8%
omMG O M GRQUP INC Manufactunng 22 7 9 2 1 9 4 43 50 4404 4029 4259 9% 2%
CHP C & D TECHNOLOGIES INC Computer, Software & Electronics 22 N/A 1 1 6 1 1 485 485 413 432 17% “11%
NDN 99 CENTS ONLY STORES Wholesale & Retail 22 8 2 2 5 7 3 "7 1215 1120 1196 8% 2%
CELL BRIGHTPOINT INC Wholesale & Retail 22 4 1 7 1 2 3 1270 1273 1185 1234 7% -3%
ABK AMBAC FINANCIAL GROUP INC Money & Finance 22 10 9 10 1 3 8 6242 8458 57 80 64 32 1% 3%
PNM P N M RESQURCES INC Other Industries 21 10 8 8 5 3 5 2277 2350 2105 2237 11% 2%
ASTE ASTEC INDUSTRIES INC Manufactuning 21 3 2 3 9 10 4 5023 5287 47 61 5250 10% 5%
SRDX SURMODICS INC Other Industries 21 2 3 2 4 8 3 44 92 48 85 44 52 4857 9% 8%
ETFC E TRADE FINANCIAL CORP Money & Finance 21 7 8 9 4 2 8 1598 1629 1473 1619 10% 1%
CAS CASTLEAM&CO Wholesale & Retail 21 5 3 9 4 4 2 2929 2929 26 86 2800 9% 4%
um UNIVERSAL TECHNICAL INSTITUTE IN Other Industries 21 2 6 5 2 7 2 2306 2380 2200 2330 8% 1%
SPC SPECTRUM BRANDS INC Computer, Software & Electronics 21 10 10 1 1 2 1 450 450 377 415 18% -8%
SRT STARTEK INC Other industries 21 9 8 3 1 1 1 1027 1119 1019 1108 9% 8%
KBR KBRINC Other Industries 20 5 10 2 N/A NA 7 3193 3260 3115 3249 4% 2%
UNF UNIFIRST CORP Wholesale & Retail 20 8 8 6 8 9 2 3751 3911 3525 3876 10% 3%
MHO M I HOMES INC Other Industries 20 10 1 10 1 1 1 2366 2391 2249 2384 8% 1%
PRAA PORTFOLIO RECOVERY ASSOCIATES IN  Money & Finance 20 4 5 6 10 9 3 4652 5164 4426 5152 14% 1%
CcHB CHAMPION ENTERPRISES INC Other Industries 20 5 5 10 1 9 3 1154 1154 1026 1088 12% 6%
BsC BEAR STEARNS COMPANIES INC Money & Finance 20 S 1 10 1 2 9 106 89 11381 9975 11381 12% 6%
FED FIRSTFED FINANCIAL CORP Money & Finance 20 10 1 10 3 3 2 4073 4300 3873 4175 10% 3%
LEH LEHMAN BROTHERS HOLDINGS INC Money & Finance 20 8 1 10 10 5 10 56 50 5850 5263 5827 10% 3%
NILE BLUE NILE INC Wholesale & Retail 20 1 2 2 9 10 4 8200 8481 7820 8200 8% 0%
MEE MASSEY ENERGY CO Other Industries 20 6 8 2 8 3 5 1910 1914 17 80 1807 7% 5%
BBX BANKATLANTIC BANCORP INC Money & Finance 18 10 1 6 N/A 1 1 775 848 783 839 1% 8%
MBI MBI AINC Money & Finance 19 10 7 10 4 4 8 50 81 56 20 48 85 5620 13% 1%
OMN OMNOVA SOLUTIONS INC Other Industries 19 2 7 2 1 2 1 522 542 480 527 12% 1%
IFC IRWIN FINANCIAL CORP Morney & Finance 18 10 10 10 3 1 1 1018 1037 932 1000 11% 2%
PMTC PARAMETRIC TECHNOLOGY CORP Computer, Software & Electronics 12 2 2 3 10 8 5 17 31 17 49 1618 1661 8% -4%
MTEX MANNATECH INC Health Care, Medical Eq, Drugs 19 5 9 10 7 4 1 919 943 859 893 9% -3%
CAR AVIS BUDGET GROUP INC Other industries 19 10 10 1 NA ] 6 2405 24 97 2122 2328 16% -3%
MRO MARATHON OiL CORP Other Industries 19 5 9 10 7 8 10 5029 5073 46 97 4924 8% 2%
RSCR RES CARE INC Heaith Care, Medical Eq, Drugs 19 8 5 8 5 4 2 1871 1913 17 €2 18 60 8% 1%
CAE CASCADE CORP Manutacturing 19 4 5 ] 10 10 3 6805 6857 63 51 66 14 8% -3%



A.4 Appendix for Chapter 6

This appendix contains the background and some supporting material for Chapter 6 of
this thesis. Appendix A.4.1 provides an overview of the TASS Hedge Fund Database while
Appendix A.4.2 provides a similar overview for the CRSP Mutual Fund Database. Appendix
A.4.3, A.4.4, and A.4.5 give the proofs for the statistical tests used in Section 6.1. Finally,
Appendix A.4.6 gives the proof for the time-series properties of the portfolio’s observed
return under the model of Section 6.2.1.

A.4.1 Overview of TASS Hedge Fund Database

Hedge fund data was obtained from the Lipper TASS Database.*® This database contains
the historical returns as well as legal structure, investment style, management fee style,
contact information, fund flow, and self-claimed sources of risk exposure for different funds.
The database is divided into two parts: “Live” and “Graveyard” funds. Hedge funds are
recorded in the Live database if they are considered active as of the date of the snapshot.
Once a hedge fund decides not to report its performance, liquidates, closes to new investment,
restructures, or merges with other hedge funds the fund is transferred into the Graveyard
database. A hedge fund can only be listed in the Graveyard database after having been listed
in the Live database. Since the TASS database fully represents returns and asset information
for live and dead funds, the effects of “survivorship bias” are minimized. However, the
Graveyard database became active only in 1994, so funds that were dropped from the Live
database prior to 1994 are not included in the Graveyard database, creating the possibility
of a certain degree of survivorship bias. The database is also subject to “backfill bias.” This
issue arises because when a fund decides to be included in the database, TASS adds the fund
to the Live database and includes all available prior performance of the fund. Since funds
do not need to meet any specific requirements to be included in the TASS database, funds
are more likely to decide to apply for TASS membership after having experienced several
good months of returns. Given the voluntary nature of reporting, another potential issue
sometimes associated with such a data set is the “self-selection bias” arising from the fact
that funds with very good or very bad performance may decide to no longer report their
returns. Please refer to Agarwal and Naik (2005) for a more comprehensive review of other
data sources available for hedge fund returns and other potential biases associated with such
data sets.

Hedge fund data was obtained from TASS in January 2008. However, there can be up
to several months of delay in fund reporting. For this reason, we have decided only to use
the data up to December 2006 in our study.A” As of January 2008, this database consists
of information on 8,729 funds. Each fund is assigned to one of the 11 investment category

A-6We thank the MIT Sloan School of Management for their support in obtaining access to this data set.
In particular, Svetlana Sussman has be instrumental in making the necessary arrangements.

A-TThis could bias our data set to slightly overestimate Graveyard funds, and underestimate Live funds as
of December 2006 since TASS categorizes funds based on the information available until January 2008. This
effect is not relevant in our analysis since we will not do a separate analysis based on this classification and
Live and Graveyard information in Table A.2 is simply provided for better assessment of the diversity in the
data set.
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styles and on the information disclosed regarding the nature of their activities. A summary
definition of these 11 styles is given below for reference. We have limited our study to only
funds with at least 5 years of monthly reported history in our study period - January 1986
to December 2006. Funds that reported returns in frequencies other than monthly, such as
quarterly, have been excluded from the study as well. Table A.2 gives a breakdown of the
funds used in this study. Table A.3 gives important statistics of our data set.

TASS Primary Categories Definitions

The following is a list of descriptions of the categories for which CS/Tremont constructs
indexes, taken directly from the CS/Tremont web site (www.hedgeindex.com).

Convertible Arbitrage. This strategy is identified by investment in the convertible
securities of a company. A typical investment is to be long the convertible bond and short
the common stock of the same company. Positions are designed to generate profits from
the fixed income security as well as the short sale of stock, while protecting principal from
market moves.

Dedicated Short Bias. This strategy is to maintain net short as opposed to pure short
exposure. Short-biased managers take short positions in mostly equities and derivatives.
The short bias of a manager’s portfolio must be constantly greater than zero to be classified
in this category.

Emerging Markets. This strategy involves equity or fixed income investing in emerging
markets around the world. Because many emerging markets do not allow short selling,
nor offer viable futures or other derivative products with which to hedge, emerging market
investing often employs a long-only strategy.

EquityMarket Neutral. This investment strategy is designed to exploit equity market
inefficiencies and usually involves being simultaneously long and short matched equity port-
folios of the same size within a country. Market neutral portfolios are designed to be either
beta or currency neutral, or both. Well designed portfolios typically control for industry,
sector, market capitalization, and other exposures. Leverage is often applied to enhance
returns.

Event Driven. This strategy is defined as “special-situations” investing designed to
capture price movement generated by a significant pending corporate event such as a merger,
corporate restructuring, liquidation, bankruptcy or reorganization. There are three popular
sub-categories in event-driven strategies: risk arbitrage, distressed securities, and multi-
strategy.

Risk Arbitrage. Specialists invest simultaneously in long and short positions in
both companies involved in a merger or acquisition. Risk arbitrageurs are typically long the
stock of the company being acquired and short the stock of the acquiring company. The
principal risk is deal risk, should the deal fail to close.

Distressed. Hedge fund managers invest in the debt, equity or trade claims of
companies in financial distress and general bankruptcy. The securities of companies in need
of legal action or restructuring to revive financial stability typically trade at substantial
discounts to par value and thereby attract investments when managers perceive a turn-
around will materialize. Managers may also take arbitrage positions within a company’s
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capital structure, typically by purchasing a senior debt tier and short selling common stock,
in the hopes of realizing returns from shifts in the spread between the two tiers.

Multi-Strategy. This subset refers to hedge funds that draw upon multiple
themes, including risk arbitrage, distressed securities, and occasionally others such as invest-
ments in micro- and small-capitalization public companies that are raising money in private
capital markets. Hedge fund managers often shift assets between strategies in response to
market opportunities.

Fixed Income Arbitrage. The fixed income arbitrageur aims to profit from price
anomalies between related interest rate securities. Most managers trade globally with a
goal of generating steady returns with low volatility. This category includes interest rate
swap arbitrage, the United States and non-US government bond arbitrage, forward yield
curve arbitrage, and mortgage-backed securities arbitrage. The mortgage-backed market is
primarily US-based, over-the-counter and particularly complex.

Global Macro. Global macro managers carry long and short positions in any of the
world’s major capital or derivative markets. These positions reflect their views on overall
market direction as influenced by major economic trends and or events. The portfolios of
these hedge funds can include stocks, bonds, currencies, and commodities in the form of
cash or derivatives instruments. Most hedge funds invest globally in both developed and
emerging markets.

Long/Short Equity. This directional strategy involves equity-oriented investing on
both the long and short sides of the market. The objective is not to be market neutral.
Managers have the ability to shift from value to growth, from small- to medium- to large-
capitalization stocks, and from a net long position to a net short position. Managers may
use futures and options to hedge. The focus may be regional, such as long/short US or
European equity, or sector specific, such as long and short technology or healthcare stocks.
Long/short equity hedge funds tend to build and hold portfolios that are substantially more
concentrated than those of traditional stock hedge funds.

Managed Futures. This strategy invests in listed financial and commodity futures
markets and currency markets around the world. The managers are usually referred to as
Commodity Trading Advisors, or CTAs. Trading disciplines are generally systematic or
discretionary. Systematic traders tend to use price and market specific information (of-
ten technical) to make trading decisions, while discretionary managers use a judgmental
approach.

Multi-Strategy. Multi-Strategy hedge funds are characterized by their ability to dy-
namically allocate capital among strategies falling within several traditional hedge fund dis-
ciplines. The use of many strategies, and the ability to reallocate capital between strategies
in response to market opportunities, means that such hedge funds are not easily assigned to
any traditional category. The multi-strategy category also includes hedge funds employing
unique strategies that do not fall under any of the other descriptions.
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A.4.2 Overview of CRSP Mutual Fund Database

The mutual fund data was obtained from “The CRSP Survivor-Bias-Free US Mutual Fund
Database” based on the downloaded data in February 2008.A8 This data set also suffers from
some biases noted in the accompanying documentation provided by CRSP. For example,
there is a selection bias favoring the historical data for the best past performing private
funds which became public. In addition, upon any split, the past history is inherited by any
resulting fund which introduces some return averaging bias in the data source.

We will use funds with at least 5 years of monthly reported history in our sample period
of January 1986 to December 2006. Funds that had missing months were excluded from
the study. To make data comparable with the hedge fund data, we have assigned “Live”
and “Graveyard” classification to mutual funds based on their reporting history. A mutual
fund is counted as Live if it reported returns in December 2006, and counted as Graveyard
otherwise. We use the “Main Category” field of CRSP data to categorize mutual funds into
one of the following categories: Asset Allocation, Convertible, Equity, Fixed Income, and
Money Market. This field has only been available since July 2003 and about 20% of the funds
that meet the minimum reporting history requirement do not have any category information.
These funds will be included in any analysis that does not require category information with
the exception of any such fund for which we fail to reject the null hypothesis of unit-root
at 5% significance level as outlined in Section 6.1.3. Furthermore, we have used historical
end-of-year category information. As a result, there are 50 funds that have had more than
one category classification over our sample study period. These funds will be included in the
analysis that does not require category information, but will be left out from any analysis
relevant to different categories of funds. We will exclude all Money Market funds from our
study as the returns for these funds are better represented by a unit-root type non-stationary
process; see Section 6.1.2 for the details. The remaining 15,654 funds will be used in any
analysis that does not require category information. Table A.2 gives a breakdown of the
funds used in this study. Table A.3 gives important statistics of our data set.

A 8This data was obtained through MIT Sloan access to Wharton Research Data Services (WRDS).
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Table A.2: Breakdown for the composition of hedge fund and mutual fund data used in this
study. Please see Section 6.1.3 for more detail about the unit-root test.

Panel A: Hedge Funds

Category Live Graveyard Combined
Convertible Arbitrage 57 44 101
Dedicated Short Bias 12 13 25
Emerging Markets 102 80 182
Equity Market Neutral 106 47 1563
Event Driven 157 97 254
Fixed Income Arbitrage 69 39 108
Fund of Funds 437 194 631
Global Macro 56 70 126
Long/Short Equity Hedge 562 344 906
Managed Futures 135 173 308
Multi-Strategy 110 23 133
To be Used in the Study 2,927

Panel B: Mutual Funds

" 5 Failed the Unit
Category Live Graveyard Combined Root Test
Asset Allocation 981 152 1,133 1
Convertible 59 15 74 0
Equity 6,580 1,046 7,626 88
Fixed Income 3,578 510 4,088 53
Info. N/A 10 3,068 3,078 395
Money Market 1,335 225 1,560 1,460
Unclear (Multiple Categories) 50 0 50 0
To be Used in the Study 15,654
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Table A.3: Summary statistics for all funds with at least 5 years of reporting history after January 1986. Results are given
for different categories of hedge funds and mutual funds, based on both raw and excess returns. All numbers are based on
monthly returns and not annualized. The last column shows the p-value of Ljung and Box Q-statistic calculate based the
first 3 lags autocorrelation values. We also provide summary statistics for all funds excluding funds with a unit-root in their
reported returns; see Section 6.1.3 for details.

Mean Standard Deviation Skewness Kurtosis Sharpe Ratio Rho 1 Q-Stat (3 Lags) p-Value
Fund Type  Category Count Average SD Average SD Average SD Average SD Average SD Average SD Average SD
By Fund Type and Category
Hedge Fund  Convertible Arbitrage 101 082% 040% 193% 152% 027 155 763 1177 077 177 38 3% 17 3% 005 013
Hedge Fund  Dedicated Short Bias 25 021% 047% 591% 334% 030 039 528 260 009 260 92% 12 5% 037 026
Hedge Fund  Emerging Markets 182 133% 112% 6 63% 410% -033 150 917 789 027 789 17.4% 11 2% 024 027
Hedge Fund  Equity Market Neutral 153 072% 039% 216% 148% 034 093 557 399 046 399 114% 20 0% 027 029
Hedge Fund  Event Driven 254 098% 061% 2 45% 257% -020 134 793 920 054 920 227% 15 2% 015 023
Hedge Fund  Fixed Income Arbitrage 108 075% 053% 213% 1 66% -132 291 1722 2358 057 2358 192% 20 4% 026 032
Hedge Fund  Fund of Funds 631 070% 036% 225% 168% 013 127 727 736 043 736 189% 15 0% 023 028
Hedge Fund  Global Macro 126 086% 094% 4 70% 290% 038 097 616 383 023 383 77% 13 6% 035 028
Hedge Fund  Long/Short Equity Hedge 906 118% 064% 4 75% 279% 039 114 672 572 030 572 126% 14 1% 030 029
Hedge Fund  Managed Futures 308 091% 072% 6 05% 385% 031 081 541 3N 018 391 04% 11 7% 040 030
Hedge Fund  Multi-Strategy 133 095% 054% 304% 278% -005 197 997 1319 048 1319 17 8% 17 2% 019 025
Mutual Fund  Asset Allocation 1,133 052% 024% 263% 079% -0 50 039 413 184 022 184 53% 67% 065 024
Mutual Fund  Convertible 74 072% 020% 324% 081% 035 048 541 220 023 220 10 0% 61% 048 028
Mutual Fund  Equity 7,626 073% 049% 5 34% 1% -035 052 434 323 015 323 77% 80% 055 028
Mutual Fund  Fixed Income 4,088 044% 013% 125% 062% -049 0860 494 490 041 490 82% 10 9% 026 022
Mutual Fund  Info N/A 3,078 053% 039% 292% 2 64% 038 092 508 713 075 713 211% 30 0% 037 032
Mutual Fund  Money Market 1,560 028% 050% 041% 6 59% 001 081 276 745 184 745 94 2% 10 0% 000 006
Mutual Fund  Unclear (Multiple Categories) 50 056% 028% 331% 187% -039 0860 400 134 041 134 108% 112% 062 029
By Fund Type Only
Hedge Funds 2,927 095% 067% 387% 313% 006 139 743 862 037 862 14 9% 16 7% 027 029

Mutual Funds 15,654 061% 041% 3.71% 246% 041 061 463 433 027 433 83% 10 8% 046 030



A.4.3 Proof of Proposition 6.1

We use the Generalized Method of Moments (GMM ) approach to prove Proposition 6.1. The
necessary result is given by the following Lemma. Please see Chapter 14 of Hamilton (1994)
for a review of the GMM theory.

Lemma A.2 (Generalized Method of Moments) Let w; be an (h x 1) vector stochastic pro-
cess. Let 0y denote an unknown (a x 1) vector of coefficients that characterizes the density of
observed values. Finally, let o(wy, 0) be an (rx 1) vector valued function, ¢ : (R*x R*) — R".
We assume the following technical conditions hold:

o {w;:t e {l,00}} is stationary and ergodic

e fy € ©, where © is an open subset of R®

V0 € © ¢(-,0) and 22(-,0) are Borel measurable

o o(w,-) is a continues on © for all w

E(%2(w,")] ezits and it is full rank

For true 6, 6y, we have E[p(0, wy)] = 0.

Let 07 solves %Zf o(wy, 0) = 0. Hansen (1982) shows that the following holds:

br > 6, (A.53a)
VT (b — ) 3> N(0,Vp) (A.53b)
where
Vo = H'sH™Y (A.54a)
1 — dp
1 1T
Y = TIEI;OE —T—;le(wtﬂo)go(ws,é’o)] (A.54c)

Proof of Proposition 6.1

The proof follows almost immediately by setting up the appropriate moment conditions
and appealing to Lemma A.2. In this case, we need to estimate three parameters of the time
series: mean, yu, variance, do, and autocovariance, ;. Hence, the moment conditions can be
set up as follows:
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Ty — U
plw,0) = | (re—p)>—ds (A.55)
(re —p)(re-1—p) —m

where

r
wy = t
| Tt-1

2
9: d2

st

It is easy to show that in this case the H matrix in expression (A.54a), itself given by
(A.54b), is equal to —I. So the variance of the estimator for 8, given by (A.54c), is equal to:

T Tt — K
Jim E % S| re—p?—ds [7s—p (rs —p)* —da, (rs —p)(reer—p) —m ]
te=1 | (re—p)(rem1 — ) —m
(A.56)
Since autocorrelation is a function of the three estimated parameters, the Delta method
can be used to estimate the variance of the autocorrelation estimate once the variance of the
0 estimate is known. Let p = g(f) = 2+. Then

0

ag m
ds
Putting all these together, we have
0
VT(5 — po) ~ N 0,[0 -3 31;}2 —1;% (A.58)
d2

where ¥ is given by (A.56). Note that under this null hypothesis, 7, = 0 and, hence,
the second entry in the partial derivation given on line (A.57) is zero. So all we need to
calculate the variance of p is the ¥33 where X is given by A.56. Furthermore, since there is
no persistence in the returns, it is easy to see that all the terms ¢ # s in (A.56) are equal to
zero. Noting that ; = 0, this expression implies that:

1 T
Yaz = [lim B t;(rt — 1) (re1 — p)?
= E [(Tt - H)Q(Tt—1 - M)Q] (A.59)
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Appealing to (A.58), we have:

. 1X33
p~N(0 T ) (A.60)

Finally, notice that each element of the final expression, X3 3 and d3 can be estimated by
any consistent estimator. The most natural estimator is to replace each of these expression
with their sample counterpart to get

Y33 = IZQQ 1 (A.61a)
dy = T & (A.61b)

Substituting (A.61a) and (A.61b) back into (A.62), we arrive at the desired result:

A.4.4 Proof of Proposition 6.2

For the proof of Proposition 6.2, we will be using the following result from the Functional
Central Limit Theory.

Lemma A.3 (Functional Central Limit Theory) (Hamilton, 1994, Chapter 17 and Ibragi-
mov & Phillips, 2004) Let v, and €; be two martingale difference sequences adopted to fil-
tration My, i.e., E{ny|Hi—1] = 0 and Ele|Hi—1] = 0. Also assume that E[ve|Hi—1] = 0.
Furthermore assume that both vy and €; have finite second moments and are ergodic up to
second order, i.e.:

o BE(}) =02 >0and E() =02 >0
T T
b 1/T Zt:l Uzt - 0-1% and 1/T Zt:l O-Ezt - 0-62t
o Ely|™ < oo and Elg|™ < 0o for some ry > 2 and ry > 2
o 1/TZZ:1 2 262 and 1/T YL, & 5 o2

Define p; as the partial sum of vy, i.e.:

t—-1

He = V; (A63)

=1

The following asymptotic results hold:
1TV, %0, W(t/T)
2. T-3/2 > i 4 o, fol W (u)du
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3. T2y 24 o2 [ W(u)?du

4o TS vy 5 1/202(W(1)2 — 1)
5 T fuer % 0,00 [} W(w)dV

6. T32% ji2e; 4, olo, fol W (u)2dV

where W (u) and V (u) are uncorrelated Brownian motion on [0, 1]

Proof of Proposition 6.2

Recall that under the null hypothesis of the unit-root in the expected returns, the returns
are assumed to be given by a data-generating process of the following form:

Hy @ ri=p+e
t—1

pe=p+ Yy v
1=0

where both ¢ and v, are martingale difference sequences adopted to the filtration H; =
oV, Vs €1, ,€), 1.6., we assume Eleyy1|Hy] = 0,E[viq1|Hy] = 0, and E[vgp1€41|He) =
0. To make direct application of Lemma A.3, write p; = p+ ti;, where f; has the same form
as the expression given in A.63. Now assume we estimate the serial correlation by running
the following regression:
Tey1 = @+ pry + 1
We will then have:
(T =) S e = [(T = 1) ztudkT—n*ziﬂJ
p= (A.64)
G Ryt [GERVED vrirt

p — 1 will be equal to:

aun*thmH—m—(—n”tAHW' r1) (A.65)
T- ) S — (T = 1) o o) |

We can replace T — 1 with T as it will be inconsequential in large samples. Then rewriting
this expression in terms of the quantity of interest, 77!(p — 1), we have:

p-1=

T r(re — ) — [T=22(rp — 1)) [T—S/Q S "‘t]
p)
T 2Zt 17"t [T 3/2Zt 17”t]
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We find the asymptotic expression for various elements of the above expression and
use the Continuous Mapping Theorem to find the desired asymptotic expression. Start by
looking at the expression in the denominator.

T T
T2 er = T Z(u + A+ e)?
t=1 t=1
T T T
YTy Ty
t=1 t=1 t=1

T T T
+ T2 2um + T2 2pe+T72) 2

t=1 t=1 t=1

Out of the six terms on the right-hand side of the final expression, only term 7°~2 Zthl i
does not converge to zero in probability. The limiting distribution of this term is readily
given by item 3 in Lemma A.3. T723"0  4? — 0 since T2 30 42 — 2. T-2YL €% can
be written as T—(T! Ethl €?), which converges to zero by the second order ergodicity as-
sumption presented in Lemma A.3. T2 Zthl 2417y can be written as T~1/22.(T~%/2 Z;‘rzl 1)
which again converges to zero in probability due to item 2 in Lemma A.3. T2 ZZ;I 2p€s
can be written as T~12u(T~' Y7, €), which converges to zero in probability due to €;, is
a martingale difference sequence, i.e., zero mean, and first order ergodicity. And finally,
T2 2, = T"HT 'L, 2/ie;) 2 0 using item 5 in Lemma A.3. Putting all these
together, we have:

T 1
T2 er < 03/ W (u)?du (A.67)
0

t=1

Finding the limiting expression for the second term in the denominator, (T-3/2 37 r,)?
is much simpler. First, note that 7-%23°7 r, = T=32 3T 4 T-3/2 5T 17, 4T-3/2 ST e
The first and third part converge to zero in probability for reasons already presented in the
above argument. From item 2 in Lemma A.3 we have: T-%2%,_ /iy 2 o, fol W (u)du.
Combining these limiting expressions and appealing to the Continuous Mapping Theorem,
we get:

(T3 1) % (o, /0 W (w)du)? (A.68)

We apply a similar approach to find the limiting expressions for the two terms given in
the numerator of expression A.66 as follows:
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T-1
T 2 re(regr—re) = T Z(N + fie + €) (Ve + €41 — €)

t=1
T-1 T-1

= T Z(N +e) (v + e —e) + T Z fir(vg + €1 — €2)
=1 t=1

Using an argument similar to what is already presented in the last few lines, it is easy to
show that:

T-1
7! Z(,u +e)+ e —e) > —a? (A.69)
t=1

Rewrite the second part as T} Ztﬂ fi(vitep—€) =T Zt—l fgvp+T 1 Zz:ll fi(€s1—
€:)- The limiting expression for the first part can be found using results presented in Lemma
A.3. Rewrite this as:

T-1
TN G 5 1/202W (1) —1) (A.70)

t=1
The second part is a telescoping sum which can be simplified to

-1
T Zﬂt(ftﬂ —a) = T!

t=1

~
-

t—

-

(]
' M

Vz(6t+1 - €t)

o~
Il
—

=1

X
)
'Iﬂ
—

= T v; (€t+1 - Et)
1

+

t=i

i\
._.o

1
= T vi(er — €41)
i=1

— T-1
= GT(T—l z l/i) - T—l Z Vi€i+1
i=1 1=1
20 (A.71)

where we used the fact that 77! Zl 2 N O since 1/, is a martingale difference sequence and

ergodic for the first moment and T* E 1 Vi€i41 2, 0 since €;+1 1S a martingale difference
sequence with respect to H;. The final term we have to calculate is T~ ?(rr — ;). The

second part of this T~/%r; £ 0 by the assumption regarding finiteness of the second moment

for v; and €. The first part can be rewritten as T~ V2rp = T~Y2(ji, +er) LA o,W(1). So we
have
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T"1/2(TT —r1)

T-3/2 Zrt} 4 o2 /W(u (A.72)

Substituting (A.67), (A.68), (A.69), (A.70), (A.71), and (A.72) into (A.66) and appealing to
the Continuous Mapping Theorem, we get the desired result:

T(p—1) %03(1/1/'(1)2 -1)—-o2W(1 fo (u)du — o
o2 fo 2du — (o, fo W (u)du)?
1 2
W) -1)-wW(Q) (u)du — Z
<4 ( lf‘) : (A.73)
Jo W(U)Qdu — (Jo W(u)du)?
A.4.5 Proof of Corollary 6.1
Recall that ry = py + €, = p + fiy + €;. Taking the first difference of this we have:
A’I"t = Tt —Ti—1
= V1t € — € (A74)

Using the fact that v, and €, are martingale difference sequences adopted to filtration H,
allows us to easily calculate the Corr(Ary, Ar;_1) as:

Cov(Ary, Ary_q)
Var(Ar)
_0-62

2 2
o;+ 20

Corr(Ary, Ary_y) =

The expression for 342 given in Corollary 6.1 follows immediately.

A.4.6 Proof of Proposition 6.3

Recall that for each security, we assigned the indicator random variable, d;;, that shows if
security ¢ was traded in period t. J;; was defined as:

Giz = Hpivy + /1 = pi0,: < 0} (A.75)

where v, and 6, are both N (0, 1), v, are independent across ¢ and 6; ; are independent across
both 7 and t. p; is the parameter that captures the dependence among 4, s across i. Note
that that the unconditional trading probability is equal to p;. This was assured by setting
a; = ®7(p,). Let I, denote the set of securities held in portfolio p. We also assumed
that all the securities in this portfolio have the unconditional trading probability of p,, i.e.,
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Vi € I,,p, = pp and p; = p,. For these securities, the conditional probability condition on
the value of v is given by:

Pr(y) = @(%jﬂ) (A.76)

PJ?(v) is a random variable. It will be useful for the derivation to define its second
moment as follows:

e = B, [Pr(v) (A.77)

As outlined in the discussion prior (6.22), the observed return of the portfolio is given
by:

ot = Do (tp + Bymu—i) Y (7, k) (A.78)

where the portfolio mean, p,, and beta, 3, are defined as:

1
Hp = 37 Ha (A.79)
Np
1€y
1
B = 25 (A.79b)
P ier,

and
YR k) = PP (v1) (1 - P;’f’(z/t_l)) e (1 — szf’(ut_k)) (A.79c¢)

is a random variable defined in terms of realization of the common random variable v that
controls the non-trading event. The expression given in (A.78) already takes into account
the cross-sectional expectation, i.e., over individual security 6;;. We only need to take the
expectation over I/ to arrive at various time-series properties of To: 88 given here:
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E [r;,tj} = E [Z (:U'p + 5pmt—k) Y;pp (7, k)
k=

= > (up+ Bymu—i) pp(1 — pp)F

= Hp (A.80)

o

> (ko + Bomuci) (ip + Byme) YL (7, k)Y (7, 1)

=0

[
K
1 17

E [(1p + Bpme—i) (1p + Bome)| B [V (7, )Y (7,0)]  (A.81)

o~
Il
=)
o~
I
=)

(A.81) has three different cases:

o [ <k
E Y@ kY #,1)] = Dr(1-2p,+ D) (1 —p,)"
E[(n+ Bmu-i) (u+ Bme)] = /112)
o [ =k
E [Y/?(7,k)Y/"(7,1)] = D&(1-2p,+ Dor)*
E[(p+ Bmuy) (+ Bme)] = p2+ pB20”
el >k

E Y/ (7, k)Y/(7,1)] = D(1-2p,+ D)*(1~p,)*
E[(u+ Bmei) (p+ Bmey)) =

Substitute these back into (A.81) to get:

E [r"zt] = “?’(QDZP —Pp) + ‘72512)D£ppp
P (Qpp - Dﬁp)pp

Finally, we can use this to find the variance of observed returns

2N§(D£p ) + UzﬂQDp Pp
(2pp — D" )pyp
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We can use a similar approach to find the autocovariance of the return:

Cov(r? Tpt> thrn) = E [r;’trz‘,’,tm] — /,Lf)
= E (kp + Bomei) (1o + Bymesn—) Y/ (7, K)Y (7,0)] | — 11}
- (A.83)
The final expression has five different cases:
e l<n
E [Y7 (7, )Y (7, 0] = pi(1—pp)*"
E[(p + Bmi-r) (u+ fmeen-d)] = p (A.84)
o [=n

E [Y (7, k)Y{.(7,0] = pi(pp — Dpr)(1—pp)" !

E [(1+ Bmy—i) (1 + Bisyn_t)] .%2;

n<l<n+k

E[Y/(@,k)Y{.(0,0] = pp(pp — D)1 —pp) 171 (1 — 2p, + Dpp)' ™"
E (1 + Bmy_t) (11 + Bmigyni)] N?,

n+k=1

E [Y/* (7, k)Y.(7,0)] = pp( — DEY(1 —pp)" (1 — 2p, + D27
E (1 + Bmu—y) (b + Bmupn)] = pp+ 020

n+k<l

B (Y775, Y225, )
E [(p + Brmu—i) (1 + Bmiegn—i)]

Pp(pp — D2)(1 — p,) 571 (1 — 2p, + D)
2
Hy

These can be substituted into (A.83) to find the autocovariance for general value of n.
The final result is surprisingly simple:

27..2 Pp 222(,.2 Pp
pa(ps — Dyp”) + 0B, (p; — ppDp”)
Cov(rps Tpes1) = —— p2p —DI;”’ b PP (A.85)
D Y4

Cov(rp s Toran) = (L=pp)" ' Cov(ry 75 111) (A.86)
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Also using (A.82) to find the autocorrelation of the observed returns as given below:

P (D5 — P22 = (P2 — ppDf7))

Corr(rz,ty TZ,H-I) (2p2 — 2D£p)<.2 — ppsz (A87)
P P
Corr(ry i Tpin) = (1— pp)"_ICOrr(r;’t, Tot+1) (A.83)
where
Hp
= - A.
Cp B, (A.89)

A.5 Appendix for Chapter 7

This appendix contains the background and some supporting material for Chapter 7 of this
thesis. Appendix A.5.1 provides an overview of the 100 stock portfolios used in this chapter.
Appendix A.5.2 contains some information on the various risk factors used to control for
co-movement among funds and stock portfolios.

A.5.1 Overview of 100 Stock Portfolios

The stock return data set consists of the standard 100 Size and Book-to-Market sorted
portfolios constructed at the end of each June by intersecting 10 portfolios based on size
(market equity, ME) and 10 portfolios based on the ratio of book equity to market equity
(BE/ME).*? The historical data for these portfolios is available for a much longer period
but we decided to use only the period 1986-2006 to put all our three data sources on a
similar historical timeline in order to make comparisons between results easier. Out of the
100 portfolios, 3 portfolios® !9 had missing data points due to lack of any security falling
in the relevant intersection of size and BE/ME decile. We will only include these portfo-
lio in our analysis if they have data for the relevant time period. Table A.4 presents the
summary statistics of the monthly returns. To conserve space, we have aggregated the data
two ways, either based on the size decile or the book-to-market equity decile to which a

A-9Data was obtained from the data library section of Kenneth French’s web site:
http: //mba.tuck.dartmouth.edu/pages/faculty/ken.french/

According to the description supplied with the data, the size breakpoints for year t are the NYSE market
equity decile at the end of June. Furthermore, the BE/ME for June of year t is the book equity for the last
fiscal year end in t-1 divided by ME for December of t-1. The BE/ME breakpoints are also NYSE deciles.
The portfolios for July of year t to June of t+1 include all NYSE, AMEX, and NASDAQ stocks for which
we have market equity data for December of t-1 and June of t, and positive book equity data for t-1. Firms
with negative book equity are not included in any portfolio. Please refer to the documentation available
from that site for further details.

A-10Pportfolio in the intersection of size decile 6-BE/ME decile 10 and the portfolio in the intersection of
size decile 10-BE/ME decile 8 did not have data for July 2000 to June 2001. Similarly the portfolio in the
intersection of size decile 10-BE/ME decile 10 did not have data for July 1999 to June 2000 and again from
February 2001 to June 2001.
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portfolio belongs. The data, when sorted by size decile, highlights in more detail the relation
between autocorrelation and size as we previously elaborated on. This is consistent with our
hypothesis that autocorrelation in returns is a proxy for illiquidity of an asset which in this
case can be anecdotally related to the fact that smaller stocks are harder to trade and each
trade will have a larger price impact.A-!!

A-11Gee Mech (1993) and Lewellen (2002) for more extensive studies of sources of autocorrelation in portfolios
of stocks.
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Table A.4: This table contains relevant statistics for the 100 size and book-equity /market-equity (BE/ME) sorted portfolios.
We have aggregated the results based on the relevant size or BE/ME decile and presented the statistics for both value and
equal weighted returns. Note the apparent relation between size and autocorrelation. Values presented here are based on raw

returns.

Decile

S1

s2
S3
S4
S5
S6*
s7
S8
S9

S10*

BEME1
BE/ME2
BE/ME3
BEME4
BEMES
BE/MES6
BE/ME7
BE/MES*
BEME9
BE/ME10"

Min

015%
018%
0 56%
069%
075%
074%
105%
102%
1 05%
0 58%

015%
060%
081%
103%
104%
1.05%
107%
0 58%
113%
099%

Mean
Average

124%
122%
124%
1.15%
122%
120%
127%
122%
121%
1 06%

077%
103%
112%
122%
122%
128%
136%
128%
135%
138%

Max

165%
180%
160%
1 54%
143%
184%
1 44%
148%
150%
125%

126%
122%
133%
150%
137%
160%
180%
155%
165%
1 84%

Min
504%
521%
4 76%
4 96%
4 93%
4 63%
4 54%
4 45%
418%
4 59%

502%
479%
498%
4 87%
4 59%
449%
476%
418%
459%
550%

StDev
Average

641%
6 56%
604%
6 00%
585%
547%
536%
544%
505%
530%

764%
6 33%
599%
570%
519%
515%
508%
492%
532%
617%

Max

881%
9 02%
848%
834%
7 98%
7 86%
710%
757%
624%
697%

9 02%
818%
771%
7 43%
578%
624%
574%
581%
697%
6 89%

Min

-083
-120
-124
-133
-112
-093
-114
-092
-108
-092

-037
-093
-095
-124
-119
-122
-133
-1 05
-120
-0895

Skewness
Average

-012
-034
-082
-078
-078
-067
-069
-058
-058
-039

-009
-037
-054
-064
-087
-060
-077
-065
-066
-054

Max

104
066
-005
-0 11
-007
-027
033
-002
-032
043

042
053
028
066
-031
104
-039
-027
043
008

Min
605
548
511
479
407
462
440
390
376
421

407
461
523
497
559
500
421
390
455
376

Kurtosis
Average

838
773
667
674
678
607
701
581
518
568

550
615
695
743
690
735
660
609
725
583

Max

1554
1192
860
867
848
693
900
852
672
1016

785
825
852
1192
900
1554
918
872
1016
729

Min

002
002
007
008
009
009
018
015
020
o1

002
007
013
019
020
021
022
oM
016
014

Sharpe Ratio
Average

021
020
022
020
022
022
024
023
024
020

on
017
019
022
024
025
027
026
026
022

Max

1554
1192
860
867
848
693
900
852
672
1016

785
825
852
1192
900
1554
918
872
1016
729

Min

132%
6 6%
31%
61%
-02%
41%
-23%
-36%
-65%
-4 8%

10%
-02%
-1 1%
-25%
07%
-20%
-4 8%
-65%
21%
-36%

Rho_1
Average

22 9%
14 9%
14 3%
111%
105%
89%
6 0%
4 3%
28%
-01%

78%
75%
89%
83%
109%
94%
104%
97%
108%
15 3%

Max

331%
25 6%
232%
20 8%
16 2%
126%
137%
11 9%
96%
39%

22 9%
20 3%
20 9%
22 8%
20 3%
204%
24 3%
24 5%
271%
331%

Q-Stastic (3 Lags) p-Value

Min

000
000
000
000
003
000
003
003
014
008

000
000
000
000
000
000
000
000
000
000

Average

000
003
005
009
015
029
036
045
052
066

032
016
016
021
009
028
037
032
031
029

Max

003
010
027
030
032
086
097
089
095
097

092
0789
073
097
033
095
089
097
078
086

* Portfolio in the intersection of size decile 6-BE/ME decile 10 and the portfolio in the intersection of size decile 10-BE/ME decile 8 did not have data for July-2000 to June-2001 Similarly the portfolio tn the intersection of size decile 10-BE/ME decile 10 did not hav
data for July-1999 to June 2000 and again from February-2001 to June-2001 Please see the text for detalls We have excluded these portfolios in all calculation related to autocorrelation, and will only include these portfolio in the rest of our analysis if they have d:

for the retevant time penods



A.5.2 Overview of Generic Risk Factors

We use various subsets of 9 factors to control for the risk exposure of different funds. These
factors are as follows. The first five factors capture the broad sources of common risk due
to equities, fixed income, credit, commodities and the currency markets. The factors are
as follows: Fama-French US Market Index, Lehman Brothers US Aggregate Government
Bond Index, Lehman Brothers Universal High-Yield Corporate Index, Goldman Sachs Com-
modities Index, and USD Trade Weighted Dollar Index. We also use three factors related
to size, measured by: Fama-French Small Minus Big (SMB) factor, the value, measured by
Fama-French High Minus Low (HML), and the stock market momentum that have been
studied extensively in asset-pricing literature.*12 We also include the first difference in the
CBOE Volatility Index to capture any exposure to changes of market volatility that a par-
ticular fund may be exposed to. Even though this factor does not translate immediately
to returns using any investment strategy, it can still add value to our analysis by capturing
the volatility exposure of different funds arising from the nonlinear instruments included in
some trading strategies. This effect should be more significant for hedge funds but we have
decided to keep this factor in the rest of our analysis in order to keep all our results consis-
tent across different asset classes. This factor in its initial format has a much higher level of
volatility than all of the other factors. In order to avoid any numerical issues arising from
this substantial difference, we decided to use a rescaled version of this factor by rescaling
the monthly values to set their in-sample level of volatility to be the same as volatility of
US Stock Market factor. This is a purely rescaling and mathematically won’t change any of
our analysis.

Table A.5 shows summary statistics of the factors used for sample of 1986-2006. It is
worth noting that the only two factors for which the null of no autocorrelation can be rejected
are the Lehman Brothers Universal High-Yield Corporate Index and the CBOE Volatility
Index. The Lehman index most likely suffers more severely from non-trading mark-to-market
inaccuracy in its pricing since it is the tracking index for high-yield corporate bonds that
trade less frequently. The volatility factor can also have serial correlation, in this case
negative, since it is well known that financial returns have stochastic volatility and can be
fitted well using GARCH models. Of course the CBOE Volatility Index is based on option-
implied volatility and the connection between this and the realized volatilities is not direct,
but there should be a direct relation.

A12Fama-French US Market Index, SMB, HML, and Momentum factors are obtained from WRDS. Goldman
Sachs Commodities Index, and the USD Trade Weighted Dollar Index are obtained from the Global Financial
Database. The total return of the Lehman Brothers US Aggregate Government Bond Index and Lehman
Brothers Universal High-Yield Corporate Index are obtained from Data Stream. We use the monthly total
return values for the US Market, Lehman US Government Bond, Lehman High-Yield and the Goldman
Sachs Commodities Index to capture the effect of any dividend and/or coupon payments on the time series
of returns.
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Table A.5: Statistics for the factors that will be used to account for common sources of
variations among returns of hedge funds, mutual funds, or portfolios of common stocks.
Calculations are done based on monthly returns and values are not annualized. Data from
January 1986 to December 2006 is used. The Rescaled CBOE Volatility Index has been
rescaled to have the same level of in-sample volatility as the US Stock Market factor for
1986 to 2006 period. The Broad Factor Set that will be used in later parts of this paper
for risk adjustment of return consists of the following factors: US Stock Market, Lehman
US Aggregate Government Bond Index, Lehman US Universal High-Yield Corporate Index,
Goldman Sachs Commodities Index, Trade Weighted USD Index, Rescaled CBOE Volatil-
ity Index, Small-minus-Big (SMB), High-minus-Low (HML), and the Momentum (UMD)
factors.

Q-Statistic (3 Lags)

Factor Name Mean StDev Skewness Kurosis Rho_1 Rho_2 Rho_2 gvalue p-valve
US Stock Market 103% 4 38% -103 642 39% -5 4% -4 1% 152 68%
Lehman US Aggregate Government Bond Index 073% 163% 006 367 11 8% -9 4% -11% 642 9%
Lehman US Universal High-Yield Corporate Index 124% 367% 038 1105 37 5% 6 3% -25% 3673 0%
Goldman Sachs Commodities Index 090% 542% 034 414 91%  -108% 26% 587 12%
Trade Weighted USD Index -012% 2 54% 034 346 79% 06% -14% 155 67%
Change in the CBOE Volatility Index -2 58% 451% 278 26 82 -17 3% 17% -132% 1350 0%
Rescaled CBOE Volatility Index* -003% 4 38% 278 2682 -173% 77% -132% 1350 0%
Fama-French Small Minus Big Factor 0 06% 3 50% 083 1098 -3 4% 27% -134% 503 17%
Fama-French High Minus Low Factor 038% 318% 009 604 9 4% 57% 87% 496 18%
Momentum Factor 078% 4 44% -068 925 3 7% -62% 47% 190 59%

Table A.6: Historical correlation between monthly returns for factor listed in Table A.5.
Data from January 1986 to December 2006 is used. Factors are as follows: US Stock Market
(MARKT), Lehman US Aggregate Government Bond Index (LH.GO), Lehman US Universal
High-Yield Corporate Index (LH_HY), Goldman Sachs Commodities Index (GSCI), Trade
Weighted USD Indexr (USD), Rescaled CBOE Volatility Index (VIX_.S), Small-minus-Big
(SMB), High-minus-Low (HML), and the Momentum (UMD) factors.

MARKT LH.GO LHHY GSCI USD VIXS SMB  HML UMD
MARKT 100% 7% 52% -3% 8% 61%  19%  -49% -8%
LH_GO 100%  23% 1% 20%  15%  -20% 6% 14%
LH_HY 100%  -12% 9% 33%  26%  -14%  -18%
GSCI 100% 1% 0% 8% 3% 1%
uUsD 100%  -11% 5% 4% 7%
VIX_S 100%  22%  24% 10%
SMB 100%  -44%  12%
HML 100% 9%
UMD 100%
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