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Abstract 
 

The goal of this research is to develop a methodology to select supervisory control metrics. This 

methodology is based on cost-benefit analyses and generic metric classes. In the context of this research, 

a metric class is defined as the set of metrics that quantify a certain aspect or component of a system. 

Generic metric classes are developed because metrics are mission-specific, but metric classes are 

generalizable across different missions. Cost-benefit analyses are utilized because each metric set has 

advantages, limitations, and costs, thus the added value of different sets for a given context can be 

calculated to select the set that maximizes value and minimizes costs. This report summarizes the 

findings of the first part of this research effort that has focused on developing a supervisory control metric 

taxonomy that defines generic metric classes and categorizes existing metrics. Future research will focus 

on applying cost benefit analysis methodologies to metric selection. 

Five main metric classes have been identified that apply to supervisory control teams composed 

of humans and autonomous platforms: mission effectiveness, autonomous platform behavior efficiency, 

human behavior efficiency, human behavior precursors, and collaborative metrics. Mission effectiveness 

measures how well the mission goals are achieved. Autonomous platform and human behavior efficiency 

measure the actions and decisions made by the humans and the automation that compose the team. 

Human behavior precursors measure human initial state, including certain attitudes and cognitive 

constructs that can be the cause of and drive a given behavior. Collaborative metrics address three 

different aspects of collaboration: collaboration between the human and the autonomous platform he is 

controlling, collaboration among humans that compose the team, and autonomous collaboration among 

platforms. These five metric classes have been populated with metrics and measuring techniques from 

the existing literature.  

Which specific metrics should be used to evaluate a system will depend on many factors, but as a 

rule-of-thumb, we propose that at a minimum, one metric from each class should be used to provide a 

multi-dimensional assessment of the human-automation team. To determine what the impact on our 

research has been by not following such a principled approach, we evaluated recent large-scale 

supervisory control experiments conducted in the MIT Humans and Automation Laboratory. The results 

show that prior to adapting this metric classification approach, we were fairly consistent in measuring 

mission effectiveness and human behavior through such metrics as reaction times and decision 

accuracies. However, despite our supervisory control focus, we were remiss in gathering attention 

allocation metrics and collaboration metrics, and we often gathered too many correlated metrics that were 

redundant and wasteful. This meta-analysis of our experimental shortcomings reflect those in the general 

research population in that we tended to gravitate to popular metrics that are relatively easy to gather, 

without a clear understanding of exactly what aspect of the systems we were measuring and how the 

various metrics informed an overall research question.  
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Given that we have comprehensively defined the supervisory control metric classes and 

subclasses, the next question is “Which specific metric(s) should I use to evaluate my system?” Based on 

the literature review conducted and the case studies examined, a preliminary list of evaluation criteria for 

supervisory-control metrics has been identified. This criteria list includes experimental constraints, 

construct validity, comprehensive understanding gained, statistical validity and efficiency, and 

appropriateness of the measuring technique. The refinement of this list and the development of a cost-

benefit methodology that can provide clear and tangible guidelines to select metric is the focus of ongoing 

research. While no such approach will ever be able to provide a metric checklist for every system and 

every research question of interest, we hope to provide theoretical grounding for why some measures 

could be better than others in some contexts.  
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1. Introduction 
  

Teams of humans and automation operating under a supervisory control paradigm are currently 

common across domains and applications: surveillance and target identification for military operations, 

health care applications such as robotics for surgery, mobility assistance and therapy, rock sampling for 

geology research, or other logistic applications such as personnel or material delivery. In all these 

examples, the operator plans and monitors the performance of an automated agent with a certain degree 

of autonomy, retaking manual control when needed.  

The most popular metric to evaluate the performance of these teams is mission effectiveness, but, 

frequently, this metric is not sufficient to understand performance issues and to identify design 

improvements. Mission effectiveness metrics can be insufficient to extract the information necessary to 

design more effective systems,[1]. However, little guidance exists in the literature on how to select 

additional meaningful metrics. In many cases, researchers rely on their own experience, choosing those 

metrics they have used previously. Alternatively, other experimenters measure every system parameter to 

ensure that every aspect of system performance is covered. These approaches lead to ineffective metrics 

and excessive experimental and analysis costs.  

The goal of this research is to provide guidelines for metric selection to evaluate teams operating 

under a human supervisory control paradigm. The approach is to develop a framework based on cost 

benefit analyses and generic metric classes, which will enable researchers to select a robust set of 

metrics that provide the most value. This report summarizes the findings of the first part of this research 

effort that has focused on developing a supervisory control metric taxonomy that classifies the metrics 

that could be gathered in a human-automation team. Future research will focus on developing a cost-

benefit methodology to select the most parsimonious set of metrics from these metric classes needed for 

effective team evaluation.  

The idea of defining metric classes is based on the assumption that metrics are mission-specific, 

but that metric classes are generalizable across different missions. In the context of this research, a 

metric class is defined as the set of metrics that quantify a certain aspect or component of a system. The 

concept of developing a toolkit of metrics and identifying classes to facilitate comparison of research 

results has already been discussed by other authors. For example, Olsen and Goodrich proposed four 

metric classes to measure the effectiveness of robots: task efficiency, neglect tolerance, robot attention 

demand, and interaction effort [2]. This set of metrics measures the individual performance of a robot; 

however, a particular robot performance does not necessarily explain the level of human performance. 

Since human cognitive limitations often constitute a primary bottleneck for human-automation teams in 

supervisory control applications, a metric framework that can be generalized should also include cognitive 

metrics to understand what drives human behavior and cognition.  

In line with this idea of integrating human and automation performance metrics, Steinfeld et al. 

suggested identifying common metrics in terms of three aspects: human, robot, and the system [3]. 
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Regarding human performance, they discussed three main metric categories: situation awareness, 

workload, and accuracy of mental models of device operations. This work constitutes an important effort 

towards developing a metric toolkit; however, this framework suffers from a lack of metrics to evaluate 

collaboration effectiveness among humans and among robots. In addition, a more comprehensive 

discussion on human performance is still required. For example, the authors do not include trust as a 

common metric required to evaluate operator performance. However, operators’ trust in robot behavior is 

often a key factor in team performance because it significantly affects whether and how the robot is used 

[4]. 

This research builds upon previous efforts conducted by Crandall and Cummings [5]. It refines, 

expands, and generalizes the set of metric classes already identified for teams consisting of a single 

human and multiple robots. This report discusses conceptual models for human supervisory control 

applications, identifies metric classes based on these models, and populates them with existing metrics. 

In addition, actual experiments conducted at HAL are discussed in the context of these metric classes. 

 

2. Terminology 
 

“Supervisory control means that one or more human operators are intermittently programming 

and continually receiving information from a computer that itself closes an autonomous control loop 

through artificial effectors and sensors to the controlled process or task environment [6].” 

This research uses the generic term “autonomous platform” to refer to the computer, the effectors, 

and the sensors that close an autonomous control loop. It should be noted that the term automation in the 

context of this research has the same meaning as autonomous platform. 

Many human supervisory control applications use the more popular term autonomous vehicles1 

(AVs). However, the term vehicle has certain implications in terms of mobility that are not generalizable 

across all human supervisory control applications. Thus, this report will not employ the words 

“autonomous vehicles.” 

This research also employs the term team to refer to a group of humans and automation 

performing a supervisory control task, in which the operators plan and monitor the performance of an 

autonomous platform with a certain degree of autonomy, and retake manual control when needed. 

                                                 
1An autonomous vehicle is an unmanned vehicle with some level of autonomy built in, from teleoperations to fully 

intelligent systems [7]. UVs can be unmanned aerial vehicles (UAVs), unmanned surface vehicles (USVs), 
unmanned undersea vehicles (UUVs), or unmanned ground vehicles (UGVs). This definition of an AV is broad 
enough to include weapons systems such as torpedoes, mobile mines, and ballistic and cruise missiles. 



 7 

3. Metric Taxonomy for Human Supervisory Control 
 

3.1. Supervisory control of a single autonomous platform  
 

While there are many possible configurations of human-autonomous platform teams, we first will 

describe our taxonomy for the single operator-single platform, and then build from this model. We 

propose that there are four conceptual groupings that form four metric classes for the single operator-

single platform configuration which include 1) autonomous platform behavior, 2) human behavior, 3) 

human behavior precursors, 4) and human - autonomous platform collaboration (Figure 1).  

The respective behaviors of the autonomous platform and the human are represented by the two 

control loops shown in Figure 1. Characteristic of supervisory control systems, the operator receives 

feedback on the autonomous platform and mission performance, and adjusts automation behavior 

through controls if required. The autonomous platform interacts with the real world through actuators and 

collects feedback on mission performance through sensors. The evaluation of team performance requires 

an understanding of both control loops, so these two loops represent the two fundamental metric classes 

of human-automation teams. 

However, evaluating the observable behavior of the human and the autonomous platform is 

insufficient. Optimizing team performance requires understanding the motivation and the cognitive 

processes leading to a specific human behavior. These factors are represented in our model by the 

metric class of human behavior precursors, which includes both cognitive and physiological precursors. It 

should be noted that human behavior is often related to the environmental conditions and the operator’s 

state when a given event occurs. In general, the response to an event can be described in terms of three 

set of variables [8]: a pre-event phase that defines how the operator adapts to the environment; an event-

response phase that describes the operator’s behavior in accommodating the event; an outcome phase 

that describes the outcome of the response process. Thus, in addition to human behavior, experimenters 

need to measure human behavior precursors to represent the operator’s state, and the autonomous 

platform behavior to represent the initial environmental conditions. 

Finally, it should be considered that the human and the autonomous platform constitute a team 

that works together to conduct a mission. Therefore, evaluating how well the human and the automation 

collaborate motivates the fourth metric class of collaboration.  

In addition to these four elements, two other concepts are represented in Figure 1: uncertainty, 

and the mission or the task. Uncertainty refers to the uncertainty associated with sensors (e.g., accuracy), 

actuators (e.g., lag), displays (e.g., transforming 3D information into 2D information), and the real world. 

This uncertainty propagates through the system reaching the operator who adapts his behavior to the 

uncertainty level by applying different cognitive strategies. The nature of the tasks/mission imposed on 

the operator is also represented in this figure because it affects performance. For example, high-

structured tasks, which can be planned in advance, are procedurally-driven, whereas low structured tasks 
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are generally emergent and require solving a new problem. Team performance can be understood only if 

considered in the context of the mission, the task, and the existing uncertainty. 
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Figure 1: Conceptual Model of Human Supervisory Control Applications. 
 

3.1.1. Autonomous platform behavior 
 

In terms of actual metrics that populate this class, we propose that for the autonomous platform 

behavior metric class, subclass metrics include usability, adequacy, autonomy, and self-awareness. 

Usability refers to several related attributes and has been traditionally associated with learnability, 

efficiency, memorability, errors, and satisfaction [9]. Adequacy refers to the ability to satisfactorily and 

sufficiently support the operator in completing the mission, and this metric subclass contains measures of 

accuracy and reliability. Autonomy is the ability of the platform to function independently; and self-

awareness corresponds to the autonomous platform’s awareness of itself [10]. 

In environments where social barriers for automation adoption are expected, it is important to 

evaluate automation accuracy, reliability, understandability, and ease of use as each can have a direct 

effect on operator’s trust on automation. Evaluating these automation characteristics that affect operator’s 

trust can help minimizing causes or sources of distrust, and therefore, increase the chances for a 

successful automation adoption. 
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3.1.2. Human behavior 
 

The human behavior metric class, in the context of Figure 1, refers to the decisions made and 

actions taken by the human to complete the mission. Divided attention and constant information 

processing are inherently human supervisory attributes, thus we propose that the two primary metric 

subclasses for human behavior efficiency are attention allocation efficiency and information processing 

efficiency. 

Attention allocation metric subclass assesses the operator strategies and priorities in managing 

multiple tasks and sharing his attention among them. Operators have limited attention resources that 

need to be shared between multiple tasks [11]. Although one single autonomous platform is controlled, 

the operator still performs multiple tasks such as monitoring the dynamics of the environment, identifying 

emergent events, monitoring the platform health, or executing manual control of the platform. How 

humans sequence and prioritize these multiple tasks provides valuable insights into the system. 

Information processing metrics measure how well the individual tasks and activities that compose 

the overall mission are conducted. Attention allocation efficiency metrics examine an operator’s ability to 

manage across tasks but information processing metrics provide insight within a task. These subclasses 

are related in that attention allocation will drive information processing for a specific task; however, 

information processing efficiency can provide additional information about the system. Instead of focusing 

on task management in attention allocation, this subclass focuses on an operators’ problem recognition, 

decision making, and action implementation. Evaluating problem recognition, decision making, and action 

implementation separately enables exploring and understanding which parts of the mission require 

additional support, and which design improvements can be more effective to maximize team performance. 

These three categories are based on the four-stage model of human information processing described by 

Parasuraman, Sheridan, and Wickens: 1) information acquisition, 2) information analysis, 3) decision and 

action selection, and 4) action implementation [12]. This research merges the stages of information 

acquisition and analysis into the problem recognition metric subclass. Acquisition and analysis of 

information are often hard to differentiate, and the human ability to recognize problems is a more valuable 

metric for the purposes of this research.  

We recognize that differentiation between information processing states is often difficult. For 

example, problem recognition and decision making are highly interconnected and it can be difficult to 

measure them separately. As Klein and Klinger discuss, decision making in complex environments under 

time pressure seems to be “induced by a starting point that involves recognitional matches that in turn 

evoke generation of the most likely action [13].” In these cases, the use of generic task efficiency metrics, 

such as performance metrics (e.g., the number of obstacles avoided by an autonomous vehicle when 

navigation is a primary task of the mission) and time metrics (e.g., the time required to detect and correct 

a deviation from the nominal route) can capture overall information processing efficiency. 

Table 1 summarizes the metric subclasses for the human behavior efficiency metric class and 

provides measure examples for illustrative purposes. 
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Table 1: Overview of Metrics Subclasses for Human Behavior Efficiency. 
Metric Subclasses Measure Examples 
Attention Allocation Efficiency % of time operator is focused on 

the highest priority task 
Recognition Efficiency Error detection rate 

Error detection time 
Decision Making Efficiency Correct decision rate 

Quality of decisions 

Information 
Processing 
Efficiency 

Task 
Efficiency 

Action Implementation 
Efficiency 

Control input activity 
Frequency of functionality usage 

 

3.1.3. Human behavior cognitive and physiological precursors 
 

While the two fundamental classes of human and autonomous platform behavior are necessary 

to understand system behavior, they are also insufficient because they do not address the underlying 

cognitive processes leading to specific operator behavior. These factors are represented by the metric 

class of human behavior precursors, which includes both cognitive and physiological precursors. In the 

context of this research, human behavior cognitive precursors refer to cognitive constructs or processes 

that exist or occur before a certain behavioral action is observed. Human behavior is driven by high level 

cognitive constructs and processes such situation awareness2 (SA). For our discussion, SA reflects short-

term knowledge about a dynamic environment. Poor SA or lack of understanding of a dynamic 

environment, when performing complex cognitive tasks, can have dramatic consequences such as the 

incident at Three Mile Island [14].  

SA is not the only human behavior cognitive precursor, mental workload, and operator emotional 

state are other examples of cognitive constructs and processes that can also lead to certain human 

behaviors. Mental workload results from the demands a task imposes on the operator’s limited resources; 

it is fundamentally determined by the relationship between resource supply and task demand [11]. 

Differences in operators’ skill levels and strategies can lead to differences in workload for the same task 

demands or task load. Thus, workload is not only task-specific, but also person-specific. The 

measurement of mental workload enables, for example, identification of bottlenecks in the system or the 

mission in which performance can, but does not break down in a particular experiment. Measurement of 

mental workload can also enable the comparison of systems that lead to similar performance. 

In addition to human behavior cognitive precursors, physiological precursors such as fatigue, or 

physical discomfort can also motivate certain human attitudes. Measuring physiological states can help 

the researchers understand the causes for observed human behavior. 

 

                                                 
2 SA is defined as “the perception of the elements in the environment within a volume of time and space, the 

comprehension of their meaning and the projection of their status in the near future” [15]. For example, in the 
context of human-robot teams, SA encompasses awareness of where each robot and team member is located and 
what they are all doing at each moment, plus all the environmental factors that affect operations [16]. 
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3.1.4. Human - autonomous platform collaboration 
 

Finally, the collaboration metric class examines how well the human and the autonomous 

platform collaborate. As mentioned previously, the human and automation need to work together to 

accomplish a common goal; the nature of their relation and how well they collaborate significantly affects 

the system performance. The metric subclasses that examine human-autonomous platform collaboration 

are autonomous platform - human awareness, human mental models, and human trust. 

Autonomous platform - human awareness is the degree to which automation is aware of humans, 

including humans’ commands and any human-originated constraints that may require a modified course 

of action or command noncompliance. Depending on the application, automation may need to have 

knowledge of humans’ expectations, constraints, and intents, thus it is critical to quantify an autonomous 

platform’s model of the human. While not typically found on operational autonomous platforms today, with 

increasing use of artificial intelligence onboard autonomous platforms, the automation could modify their 

behavior based on human actions and predicted states. It will be critical that such models are accurate, 

so how well these models match human intentions and actions should be evaluated.  

In terms of the mental model subclass, a human mental model3 is an organized set of knowledge 

with depth and stability over time that reflects the individual’s perception of reality. Mental models allow 

people to describe and understand phenomena, draw inferences, make predictions, and decide which 

actions to take, thus automation design should be consistent with people’s natural mental models [18]. 

Evaluation of mental models can inform displays design requirements and also training material 

development. 

Lastly, human trust in automation is the third metric subclass. Trust concerns an expectancy or 

an attitude regarding the likelihood of favorable responses [19]. Measuring trust is important because, as 

Parasuraman and Riley showed, trust drives misuse and disuse4 of automation [20]. People tend to rely 

on and use the automation they trust and tend to reject the automation they do not. Operators’ lack of 

trust in automation and the resulting automation disuse thwarts the potential that a new technology offers, 

and operators’ inappropriately excessive trust and the resulting automation misuse lead to complacency 

and the failure to intervene when the technology either fails or degrades. Thus, objectively measuring 

trust, arguably a difficult task, is important when system reliability and the domain culture could create 

trust barriers. 

 

 

 

 

                                                 
3 The phrase “mental models” refers to organized sets of knowledge about the system operated and the environment 

that are acquired through experience [17]. 
4 Misuse refers to the failures that occur when people rely on automation inappropriately, whereas disuse signifies 

failures that occur when people reject the capabilities of automation. 
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3.1.5. The fifth metric class: mission effectiveness  
 

While not represented explicitly in Figure 1, there is a fifth metric class that measures aggregates 

system performance, that of mission effectiveness. Key performance parameters and effects-based 

outcomes represent meaningful system performance measures, but they are often system and mission 

dependent. However, while not always generalizable, having an overall mission effectiveness metric is 

critical in determining the severity of the impact of the other metric classes. For example, given a 

particular system, if mental workload is reported high, attention allocation seems inefficient, and SA 

measures low, but the overall mission effectiveness is high, either the system is very robust or more likely, 

there is a problem with one or more of the subclass measures or some aspect of the system was not 

adequately measured. Thus mission effectiveness metrics are critical for determining whether a system 

actually meets its stated objectives, but it can also provide insight into the validity of other system metrics. 

 

3.1.6. Metric classes for the supervisory control of one platform 
 

The conceptual model of human supervisory control of Figure 1 represents the need for 

evaluating five metric classes to understand the performance of a team composed of a single operator 

controlling a single autonomous platform. These metric classes are interrelated. For example, events in 

the real world are captured by the platform sensors and presented to the human operator through the 

display. Different display designs can affect human attention allocation and SA, which in turn will result in 

changes in human computer interaction (HCI) patterns, which can ultimately affect platform performance. 

Understanding system performance implies understanding the relations among these elements. 

The five generalizable metric classes that emerge from our model to evaluate human supervisory 

control applications are: 

 

1. Mission Effectiveness (e.g., key mission performance parameters) 

2. Autonomous Platform Behavior Efficiency (e.g., usability, adequacy, autonomy) 

3. Human Behavior Efficiency  

a. information processing efficiency (e.g., decision-making) 

b. attention allocation efficiency (e.g., scan patterns, prioritization) 

4. Human Behavior Precursors 

a. Cognitive Precursors (e.g., SA, mental workload, self-confidence) 

b. Physiological Precursors (e.g., physical comfort, fatigue) 

5. Human - Autonomous Platform Collaborative Metrics (e.g., mental models, trust)  

 

Evaluating the team performance requires applying metrics from each of these classes, but 

including metrics of every sub-class for every experiment can be inefficient and costly. As a rule of thumb, 



 13 

in addition to the more popular mission effectiveness, incorporating at least one metric from the other 

metric classes enables better system performance evaluation. 

 

3.2. Human and platform collaboration in supervisory control 
 

The previous section discussed a model for a one operator-one platform team, but multiple 

operators can collaborate to control multiple autonomous platforms. We have adapted our single 

operator-single platform model above to demonstrate how these same metric classes would be 

characterized in a multiple operator- multiple autonomous platform scenario. In these cases, two 

additional metrics subclasses for the collaborative metric class are required to evaluate not only human - 

autonomous platform collaboration, but also collaboration among humans, that is, human - human 

collaboration metric subclass, and collaboration among platforms, that is, autonomous platform - 

autonomous platform collaboration metric subclass.  

Figures 2 and 3 illustrate a scenario with two humans collaborating while each controlling an 

autonomous platform. These platforms also collaborate autonomously –collaboration layers are depicted 

by arrows. As shown in Figure 2, the human - autonomous platform collaborative metric subclass focuses 

on evaluating the collaboration between the operator and a piece of automation that he controls. However, 

human - human and the autonomous platform - autonomous platform collaborative metric subclasses are 

related to the collaboration efficiency among humans, or among different pieces of automation. Figure 3 

illustrates the scope of these two metric subclasses using the same conceptual model of human 

supervisory control that we have discussed previously. These metric subclasses are further discussed in 

the next sections. 
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Figure 2: Human / Autonomous Platform Collaborative Metrics 
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Figure 3: Human - Human & Autonomous Platform - Autonomous Platform Collaborative 

Metrics  

 

3.2.1. Supervisory control of multiple independent or collaborative platforms 
 

In a supervisory capacity, operators intermittently interact with autonomous platforms, so it is 

possible that an operator could control multiple vehicles, particularly as onboard automation increases. 

This section discusses a team of a single operator controlling multiple platforms. In these cases, the 

operator must continually shift attention among the platforms under his control, maintain situation 

awareness for the group of platforms, and exert control over a complex system [21]. 

We have adapted our single operator-single platform model above to demonstrate how these 

same metric classes would be characterized in a multiple autonomous platform scenario. However, single 

operator control of multiple platforms can be manifested in two ways: a) multiple platforms performing 

independent tasks (Figure 4), and b) multiple platforms performing collaborative tasks5 (Figure 6).  

In the simplest case of an operator controlling two independent platforms, the operator monitors 

the environment and the platforms’ status, decides on which one to focus attention, interacts with that 

platform, and returns to group monitoring, or decides to service another platform. In the independent 

multiple vehicle control case, no additional metric classes or subclasses are needed, but there other 

considerations for various subclasses. In terms of the human behavior metric class, additional attention 

                                                 
5 In this research collaboration between platforms means two or more platforms working together to accomplish a 

shared goal under human supervision. Also, this research does not distinguish between coordination, cooperation 
and collaboration. 
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allocation metrics should be considered such as measuring task/vehicle switching frequency, platform 

prioritization strategies, and length and quality of vehicle interaction. 
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Figure 4: Supervisory Control of Independent Platforms. 
 

In contrast with the independent multiple platform scenario, one operator can supervise multiple 

collaborative platforms. To perform dependent tasks or collaborative activities, platforms can 

autonomously collaborate or be manually coordinated by the operator. The case of an automated 

coordination layer is represented in Figure 5. In this example, the platforms directly coordinate among 

themselves and behave as a group without the operator’s intervention. Collaboration only occurs at the 

level of the autonomous platform. This motivates the need for the autonomous platform - autonomous 

platform collaborative metric subclass that evaluates the efficiency of this autonomous collaboration layer. 

This metric subclass should be measured whenever there is an automated coordination layer among 

autonomous platforms independently of the number of operators controlling them. 
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Figure 5: Automated Coordination between Autonomous Platforms. 

 

In reality, coordination tasks are often shared between the operator and the automation because 

of the need to keep the human-in-the-loop, the mission complexity, the unpredictability of the environment 

dynamics, and the uncertainty of programming robots’ behavior prior to the mission. Figure 6 illustrates 

the case of active human coordination, where the control loops for platform 1 and platform 2 are not 

independent and separated entities. Because the control loops of the platforms are no longer 

independent, servicing the platforms is inherently dependent. Controlling collaborative platforms requires 

the operator to understand the consequences of an action across both control loops and to actively 

coordinate between them. For example, making a decision for platform 1 in Figure 6 can involve acquiring 

and analyzing information related to platform 2, and implementing an action for platform 2 can require 

synchronizing it with another action for platform 1. Moreover, good human factors display design 

principles dictate that to the largest extent possible, information should be integrated [11], so the 

dependencies exist not just as the vehicle level, but also at the ground station level. 
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Figure 6: Supervisory Control of Collaborative Platforms. 
 

Just as in the independent case, the five metric classes are still sufficient, but several subclasses 

are impacted by these collaborative dependencies. The information processing efficiency subclass in the 

human behavior metric class is distinctly affected in the multiple platform control model. While in the case 

of independent platforms, problem recognition, decision making, and action implementation can be 

evaluated separately, for the collaborative platforms case, these will likely have to be analyzed in the 

aggregate, due to the inability to decouple the effects of the different platforms on these states.  

To account for the inter-platform collaboration, a new subclass is needed in the collaboration 

metric class, which is the autonomous platform - autonomous platform collaboration. In the single 

operator-single vehicle and single operator-multiple independent platforms models, all collaboration took 

place just between the operator and the platforms. With collaborative platforms, both the quality and the 

efficiency of the collaboration among vehicles can also be measured (e.g., information sharing such as 

path obstacles and the presence of unexpected threats). 

 

3.2.2. Human collaboration in supervisory control of multiple platforms 
 

Given the inherent team nature of command and control operations, the single operator-multiple 

platform architecture is somewhat artificial and in most cases, will probably be a multiple operator-multiple 

platform scenarios. Thus, we extend our model to address this configuration (Figure 7). For the 

collaborative metric class, the previously discussed subclasses (human-autonomous platform and 
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autonomous platform-autonomous platform collaboration) also apply for the multiple operator, multiple 

platform system. However, because of the introduction of additional operators, we add the human-human 

collaboration subclass.  
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Figure 7: Human Collaboration in Supervisory Control of Platforms. 
 

In command and control settings, a human team works together as a single entity to perform 

collaborative tasks, so performance should be measured at the holistic level rather than aggregating team 

members’ individual performance [22].Since team members must consistently exchange information, 

reconcile inconsistencies, and coordinate their actions, one way to measure holistic team performance is 

through team coordination, which includes written, oral, and gestural interactions among team members. 

Team coordination is generally assessed through communication analysis. Communication analysis can 

be characterized through two dimensions: physical data vs. content data, and static vs. sequential 

analyses [23]. Physical measures are relatively low-level measures such as duration of speech, whereas 

content measures account for what is actually said. Static measures are metrics of team communication 

at one point in time, or aggregate measures over some duration, whereas sequential analyses account 

for the ongoing stream of team interaction. 

In addition to measuring team coordination for the human-human collaboration metric subclass, 

measuring team cognition, which refers to the thoughts and knowledge of the team, can be valuable in 

diagnosing team performance successes and failures, and identifying effective training and design 

interventions [22]. Juts as for the individual operator, the team has an aggregate mental model as well as 

shared SA. Since efficient team performance has been shown to be related to the degree that team 

members agree on, or are aware of task, role, and problem characteristics [24], team mental models and 

team SA should be considered when evaluating the multiple operator, multiple platform architecture. 

Evaluating team mental models and SA requires assessing the similarity and consistency of the individual 

representations and understandings. However, each member does not have to be aware of every 
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change; the common picture is shared by the team, not necessarily by all its members individually. As 

Gorman et al. discuss, better performance does not necessarily mean all team members sharing a 

common picture [25]. In order to capture this aspect, one can measure metrics such as the percentage of 

knowledge that is redundantly distributed across team members, the percentage of knowledge that is 

uniquely distributed, and the percentage of knowledge that is not covered. 

In addition to team mental model and SA, understanding team cognition can also require 

evaluating workload distribution and social patterns and roles within the team. Evaluating workload 

distribution among team members is required in studies where team organization, configuration, or 

function allocation is explored. Generally, teams are designed so that workload is balanced among their 

members. Studies that explore team organization, configuration, or function allocation should also 

consider the existing social patterns, roles, and informal networks within the organization. The study of 

social patterns and roles is important because team dynamics are often driven by team roles. In addition, 

designing a team structure and organization that violates the existing social patterns and roles can have a 

detrimental effect on performance.  
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4. Generalizable Metric Classes for Human Supervisory 
Control 

 

Based on the operator-autonomous platform models presented in this report, five generalizable 

metric classes were identified through a principled approach for human-automation team evaluation. 

Examples of sub-classes are included in brackets. We have shown that these metric classes apply to any 

systems of humans and autonomous platforms, regardless of the platform type, and the combination and 

degree of collaboration between humans and-or autonomous platforms. It is important to note that these 

classes are not independent, thus in many cases metrics will likely be correlated. 

Which specific metrics should be used to evaluate a system will depend on many factors, but as a 

rule-of thumb, we propose that at a minimum, one metric from each class should be used to provide a 

multi-dimensional assessment of the human-automation team. Some metrics may be more valuable than 

others, and determining the optimal set of metrics a priori is an area of ongoing research. However, failing 

to follow either this or any other principled system evaluation metric approach means that some aspect of 

the system will not be measured, and thus some latent condition could later be manifested because of the 

failure to comprehensively evaluate the system. 

 

1) Mission Effectiveness (e.g., key mission performance parameters) 

 

2) Autonomous Platform Behavior Efficiency (e.g., usability, adequacy, autonomy, reliability) 

 

3) Human Behavior Efficiency 

a) Attention allocation efficiency (e.g., scan patterns, prioritization) 

b) Information processing efficiency (e.g., decision making) 

 

4) Human Behavior Precursors 

a) Cognitive Precursors (e.g., SA, mental workload ,self-confidence, emotional state) 

b) Physiological Precursors (e.g., physical comfort, fatigue) 

 

5) Collaborative Metrics 

a) Human / Autonomous Platform Collaborative Metrics (e.g., trust, mental models) 

b) Human / Human Collaborative Metrics (e.g., coordination efficiency, team mental 

model, team SA, workload distribution, social patterns and roles) 

c) Autonomous Platform / Autonomous Platform Collaborative Metrics (e.g., platforms’ 

reaction time to situational events that require autonomous collaboration) 
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5. Populating Metric Classes with Existing Metrics 
 

This section presents the literature review conducted on existing metrics and measuring 

techniques. The metrics and techniques are discussed in the context of the metric classes and 

subclasses presented previously. 

It should be noted that there is no single metric and technique that is best across all supervisory 

control applications. Each method entails strengths and weaknesses that the researcher must consider in 

the context of application. Future research efforts will explore the application of a cost-benefit analysis 

framework for the selection of most appropriate metrics. 

 

5.1. Mission effectiveness 
 

Mission effectiveness is a measure of how well a team of humans and automation accomplishes 

some mission. These metrics are mission-specific and are directly identified from mission objectives and 

goals, and mission success criteria. These metrics are also known as Key Performance Indicators. 

For example, Crandall and Cummings conducted an experiment where participants had to control 

multiple robots to remove as many objects as possible from a maze in a fixed time period [5]. The 

participants also had to ensure that when the time expired, all robots were out of the maze to avoid being 

destroyed. In this example, mission effectiveness was measured as the number of objects collected 

minus the number of robots lost. Another way of thinking about mission effectiveness metrics is to think 

about the mission objective function. An objective function is generally associated with an optimization 

problem and determines how good a solution is. In the previous example, the objective function of the 

game was to maximize the objects collected and minimize the robots lost. 

In general, mission effectiveness metrics can be time-based metrics (e.g., speed of performance) 

in time-critical missions, error-based metrics in safety-critical missions (e.g., number of omission and 

commission errors), or coverage-based metrics that measure how much of some larger goal is achieved 

(e.g., percentage of targets destroyed). 

 

5.2. Autonomous platform behavior efficiency 
 

Based on the existing literature, the main metric subclasses for autonomous platform behavior 

efficiency are usability, adequacy, autonomy, and self-awareness. 

 

5.2.1. Usability 
 

Usability refers to several related attributes. It is traditionally associated with learnability, 

efficiency, memorability, errors, and satisfaction [9].   
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Usability techniques can be classified into three main categories: (1) predictive evaluation that 

usually involves design reviews performed by experts; (2) observational evaluation that is based on 

observation of users interacting with the system; (3) participative evaluation where information is collected 

from users based on their subjective reports [26].  

Some of the most popular usability techniques are: 

o Questionnaires. For example, a three-item questionnaire was developed by Lewis to 

measure the users’ judgment of how easily and quickly tasks were completed [27]. Another 

popular questionnaire is the System Usability Scale (SUS), a 10-item questionnaire with a 

Likert scale format [28].  

o Heuristic Evaluation. Usability specialists judge whether each dialogue element follows 

established usability principles [29]. 

o Cognitive Walkthrough. A group of evaluators inspect the user interface by going through a 

set of tasks [30]. 

o Contextual inquiry. This is a structured field interviewing method [31]. 

o Cognitive interviewing method. Think aloud technique and verbal probing techniques are 

included in this category. 

o Focus Groups. 

 

5.2.2. Adequacy 
 

Automation can greatly affect operators’ behavior and team performance, thus it is important to 

evaluate automation’s adequacy to support and help operators complete the mission. This metric 

subclass contains objective measures of automation accuracy and reliability. In addition, subjective 

ratings are recommended as a complementary technique for this metric subclass. For example, the 

Modified Cooper Harper Scale for Unmanned Vehicle Displays (MCH-UVD) is a standardized technique 

developed for the Department of Defense to identify and categorize deficiencies in unmanned vehicle 

displays [32]. The key advantage of the MCH-UVD scale is that it guides operators to provide structured 

feedback about unmanned vehicle display deficiencies. Further, the deficiencies identified within the 

MCH-UVD 10 point scale are based on human factors design principles. A limitation to the scale is that it 

is not the “be all end all”. It can guide discussion to find key problems, but additional detailed user-

feedback and metrics are required for completeness. The MCH-UVD scale is shown in Figure 8. 
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Figure 8: Modified Cooper-Harper Scale for Unmanned Vehicles. 

 

5.2.3. Autonomy 
 

Autonomy is the ability of automation to function independently. Neglect tolerance has been 

proposed as a useful metric for measuring autonomy [33]. Neglect tolerance measures the amount of 

time the robot can be neglected before performance drops below an acceptable level. Another potential 

autonomy metric is the automation execution efficiency, which is measured as the relative proportion of 

time the robot is executing instructions during a mission as opposed to the time it is waiting for directions 

[34]. 

A different approach to evaluate autonomy is based on the idea that humans function as a 

resource for automation to compensate for limitations of autonomy [35]. Therefore, the number of times 

an operator interrupts his current activity to assist automation can also be used as an autonomy metric.  
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5.2.4. Self-awareness 
 

Self-awareness is the degree to which automation can accurately assess itself. To qualitatively 

measure self-awareness, Steinfeld et al. proposed assessing the following automation characteristics: (1) 

understanding of intrinsic limitations (mobility, sensor limitations, etc.); (2) capacity for self-monitoring 

(health, state, task progress) and recognizing deviations from nominal; and (3) effectiveness at detecting, 

isolating, and recovering from faults [3]. 

 

5.3. Human behavior efficiency 
 

5.3.1. Attention allocation efficiency 
 

In supervisory control applications, operators supervise a series of dynamic processes, sampling 

information from different channels and looking for critical events. Evaluating attention allocation 

efficiency involves not only assessing if the operator knows where to find the information or the 

functionality he needs, but also if he knows when to look for a given piece of information or when to 

execute a given functionality [36]. Attention allocation metrics help with understanding whether and how a 

particular element on the display is effectively used by operators. In addition, attention allocation 

efficiency metrics also measure operators’ strategies and priorities. Main metrics and techniques for 

attention allocation efficiency are shown in Table 2. 

 

Table 2: Overview of Metrics & Techniques for Attention Allocation Efficiency. 
Metrics Techniques Measure Examples 

Eye Movement 

Tracking 

Proportion of time that the visual gaze spent 

within each “area of interest” of the interface 

Human-Computer 

Interactions 

Average number of visits per min to each 

“area of interest” of the interface 

 

Switching time (if multiple autonomous 

platforms are controlled) 

TRACS 
Frequency of use of low level vs. high level 

information detail per application 

Attention Allocation & 

Operators’ Strategies 

and Priorities 

Verbal Protocols Operators’ task and event priority hierarchy 

 

As shown in Table 2, there are three main approaches to study attention allocation: eye 

movements (e.g., visual attention among the various elements of an interface), hand movements (e.g., 

human-computer interactions), and verbal protocols (e.g., operators verbalizing their thinking process). 
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TRACS is included in the hand movements’ category because it is based on measuring human-computer 

interactions. 

If operators are controlling multiple autonomous platforms, it can be relevant to study operator’s 

attention distribution among platforms (e.g., percentage of time the operator is engaged with each 

platform). Other metrics that are found in the literature to measure attention allocation efficiency among 

multiple platforms are switching times and wait times caused by lack of operator SA (called WTSA) [39]. 

Switching times are defined as the time required to decide which autonomous platform the operator 

should service after he has completed an interaction with another platform; WTSA is the time an 

autonomous platform is in a degraded performance state due to lack of operator SA. This latter metric 

can be difficult to measure since it must be distinguished from those times that a platform is in a degraded 

performance state and the operator does not attend it because he is busy attending other tasks. 

It should be noted that, in general, we are interested in comparing actual attention allocation 

strategies with optimal strategies, however, optimal strategies might ultimately be impossible to know. In 

some cases, it might be possible to approximate optimal strategies via dynamic programming or some 

other optimization technique. Otherwise, the expert operators’ strategy or the best performer’s strategy 

can be used for comparison. 

Table 3 summarizes the main advantages, limitations, and recommended use of the metrics and 

techniques included in Table 2, which will be further defined and discussed in the following sections. 

 

  Table 3: Overview of Techniques for Attention Allocation Efficiency. 
Technique Main Advantages Main Limitations Recommended Use 

Eye Movement 

Tracking 

Continuous measure of 

visual attention allocation 

Noise. Limited correlation 

between gaze and thinking. 

Equipment & training. Intensive 

data analysis 

Research phase, in 

conjunction with other 

metrics 

Human-

Computer 

Interactions 

Continuous measure of 

subjects’ actions 

Directing attention does not 

always result in an immediate 

action. Sensitive to other factors 

For interactive 

interfaces (not for 

supervisory behavior) 

TRACS 

Visual representation 

eases pattern recognition 

and comparisons 

Need to be customized for each 

interface and task 

For interactive 

interfaces (not for 

supervisory behavior) 

Verbal 

Protocols 

Straight forward. 

Insight into operators’ 

priorities and decision 

making strategies 

 

Time intensive. Dependant on 

operator’s verbal skills. Recall 

problems with retrospective 

protocols, and interference 

problems with real-time protocols 

Research phase, in 

conjunction with other 

metrics 
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5.3.1.1. Eye movement tracking 
 

Extensive research has been conducted with eye trackers and video cameras to infer operators’ 

attention allocation strategies based on the assumption that the length and the frequency of eye fixations 

on a specific display element indicate the level of attention on the element [37][38]. 

Attention allocation metrics based on eye movement activity can be dwell time (or glance 

duration) and glance frequency spent within each “area of interest” of the interface. These measures can 

be normalized to mitigate strong differences between subjects and enable comparisons, as done by 

Janzen and Vicente in their study of operator attention allocation in real-time, interactive thermal-hydraulic 

process control [40]. 

Visual resources are not the only human resources available. However, as information 

processing starts with information acquisition, typically through our visual senses, visual attention can be 

used to infer operators’ strategies on the employment of cognitive resources. 

 

5.3.1.2. Human-computer interactions 
 

The hand movements, or human-computer interactions, reflect the operators’ physical actions, 

which are the result of the operators’ cognitive processes. Thus operators’ mouse clicking can be used to 

measure operators’ actions and infer on operators’ cognitive strategies. For example, to obtain a 

comprehensive understanding of their experiments on attention allocation in thermal-hydraulic process 

control, Janzen and Vicente measured the number of operators’ visits to each display window, in addition 

to the dwell time [40]. 

It should be noted that some authors have proposed a method for tracking human operator’s 

attention based on a single metric that combines operators’ eye and hand movement behaviors [41]. The 

experimental studies revealed that the inter-relationships between the eye fixation and the mouse clicking, 

such as the eye fixation over the mouse clicking ratio and the differentiation between the eye fixation and 

the mouse clicking frequencies, are sensitive to operator’s performance variations on different interfaces 

and to different operators. However, this study presents several limitations and further validation work is 

still required. 

 

5.3.1.3. TRACS: Tracking Resource Allocation Cognitive Strategies 
 

TRACS, a technique based on measuring human-computer interactions, provides a two-

dimensional visual representation of operators’ strategies during decision-support system interactions. 

TRACS depicts the user’s thought process and actions, allowing for identification and evaluation of where 

individuals spend cognitive resources [42]. 

Figure 9 shows an example of TRACS visualization interface. As depicted in Figure 9, the two 

TRACS axes of MODE and Level of Information Detail (LOID) respectively correspond to the general 
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functionalities of an interface, as well as the information types available. TRACS assumes that every 

mouse click on the interface is a conscious decision of the operator to interact with the automation. Using 

a correspondence matrix for the two axes, each interface click is mapped to a specific MODE and LOID 

entry in the matrix, and linked to the previous and next clicks. For each click, a circle is added to the 

corresponding TRACS cell. The width of the circle is proportional to the number of times that particular 

action is repeated. Two cells are connected by a line when visited in sequence; the thickness of these 

lines increases each time a connection is repeated.  

 
Figure 9: TRACS visualization interface. 

 

Because TRACS is a standardized representation of an individual’s cognitive strategy, it can be 

used to compare strategies between different users performing the same tasks, or to compare strategies 

across different interfaces. 

 

5.3.1.4. Verbal protocols 
 

Verbal protocols require the operators to verbally describe their thoughts, strategies, and 

decisions, and can be employed simultaneously while operators perform the task, or retrospectively after 

the task is completed.  

Verbal protocols are usually videotaped so that researchers can compare what the subjects were 

saying and simultaneously observe the system state through the interface the subjects were using. This 

technique provides insights into operators’ priorities and decision making strategy, but it can be time 

consuming and depends on operators’ verbal skills. 
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5.3.2. Information processing efficiency 
 

Human supervisory control applications require operators to monitor, process information, make 

decisions, take actions, and recover from errors if needed. Information processing efficiency metrics are 

grouped in three main categories: recognition efficiency –which includes task monitoring efficiency and 

error recovery–, decision making efficiency, and action implementation efficiency. The fourth generic 

subclass, task efficiency, is included for those cases in which disaggregating human behavior in the 

previously mentioned three categories is not possible or too costly. 

Most popular metrics and techniques for information processing efficiency are summarized in 

Table 4. 

 

Table 4: Overview of Metrics & Techniques for Information Processing Efficiency. 
Metrics Techniques Measure Examples 

Human-Computer 

Interactions 

Reaction time 

Search time 

Correct recognitions vs. errors 

Error detection rate 

Speed of error recovery 

Recognition 

Efficiency 

Expert Ratings 
Severity of errors  

Quality of error recovery (impact) 

Human-Computer 

Interactions 

Decision rate 

Number correct decisions / number errors 
Decision 

Efficiency 
Expert Ratings Quality of decisions  

Action 

Implementation 

Efficiency 

Human-Computer 

Interactions 

Control input activity 

Movement time 

Task Efficiency 
Human-Computer 

Interactions 
Interaction time 

 
Human-computer interactions (HCIs) are the observable outputs of human decisions, and they 

are commonly used to measure human behavior efficiency. However, these metrics can be insufficient to 

understand the decision making, or the error’s magnitude. For that reason, expert ratings can be used as 

a complementary technique to the analysis of human-computer interactions.  

Table 5 summarizes the main advantages, limitations, and recommended use of these three 

techniques. 
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Table 5: Overview of Techniques for Information Processing Efficiency. 
Technique Main Advantages Main Limitations Recommended Use 

Human-Computer 

Interactions 

Continuous measure of 

subjects’ actions 

Recognition does not 

always result in an 

immediate action. 

 

For interactive 

interfaces with human 

manipulation (not for 

supervisory behavior) 

Expert-ratings 

Evaluate the impact of errors 

and decisions in complex 

systems when errors do not 

have an immediate effect 

Dependant on the 

observer’s expertise. 

Variability and inconsistency 

if multiple experts are used 

To evaluate complex 

systems in conjunction 

with other metrics 

 

5.3.2.1. Recognition, decision-making, and action implementation efficiency 
 

Based on our model, human actions and decisions should be analyzed in terms of problem 

recognition (e.g., access to information about the environment dynamics), decision making (e.g., use of 

what-if functionalities to explore consequences of actions), and action implementation (e.g., entering new 

coordinates for a robot’s destination). Such decomposition enables a more comprehensive evaluation of 

system performance. However, disaggregating HCIs may not always be possible. 

Figure 10 illustrates a typical timeline for human information processing, which includes the 

recognition, decision making, and action implementation stages. 

 
Figure 10: Example of Human Information Processing 

 

Popular metrics from these categories can be found in Gawron’s human performance measures 

handbook [43]. Some examples are: 

 

 

System 
performance 

degrades  
or new event 

occurs 

 

Human reacts 
(starts checking 
info) 
 

  

Human decides 
what to do (starts 
executing the 
plan) 

The plan has 
been executed  
(stops interacting 
with the system) 

Interaction Time 

 

Human 
recognizes the 
situation 
 

Recognition Decision Making Action Implementation 
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Recognition Efficiency 

− Search time, which is the length of time for a user to retrieve the desired information. 

− Recognition time, which is the length of time required by a user to understand and 

recognize a problem or a given situation. 

− Reaction time, which is the time elapsed between stimulus onset and response onset. In 

order to use this metric, the scenarios should contain observable stimulus (e.g., alarms, 

or off-nominal conditions or parameters). Reaction time can be seen as a particular case 

of recognition time. 

− Correct recognitions vs. false recognitions. 

 

Measuring recognition efficiency is important because supervisory control applications often 

require humans to be passive monitors of automated systems and humans are poor monitors by nature 

[4]. Recognition efficiency also includes the ability of the human to detect automation failures or other kind 

of errors or off-nominal conditions, which is also known as monitoring efficiency. Metrics for monitoring 

efficiency are, for example, error detection rate or miss rate. One potential problem with these metrics is 

that, in most domains, errors or critical signals are very rare, and operators can go through an entire 

career without encountering them. For that reason, it is not possible to include in an experiment such rare 

events with sufficient frequency to permit statistical analysis. 

In safety-critical systems, error tolerance and error recovery are key issues. Therefore, 

considering metrics such as speed of error recovery, and quality of error recovery or impact can be 

important for these systems. However, as it occurs with the assessment of monitoring efficiency, the 

frequency of appearance of errors in an experiment has to be representative of real life applications, 

which generally is insufficient for a statistical analysis. 

Most of the metrics mentioned above are calculated from human-computer interaction analysis. 

However, the employment of experts’ ratings can be helpful to evaluate, for example, the severity of 

errors, and the quality of error recoveries.  

 

Decision Making Efficiency 

− Decision rate, which is the total number of decisions made divided by the interval elapsed 

time. 

− Correct decisions rate, which is the rate of correct decisions over all decisions. 

− Error rate. 

− Ratio of number correct decisions / number errors. 

− Correctness score, which is a five-point subjective rating developed to evaluate human’s 

problem-solving performance. 
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Most of the metrics mentioned above are calculated from human-computer interaction analysis. 

However, the employment of experts’ ratings can be helpful to evaluate, for example, the quality of 

operators’ decisions (correct decisions vs. errors, impact of the decision) and how well operators 

recognized and diagnosed different situations.  

 

Action Implementation Efficiency 

− Execution time, the time length required for a user to execute a given plan. 

− Movement time, which is the time from the initial touch on the control device to the final 

lift-off of the finger from the control. This metric can be seen as a particular case of 

execution time. 

− Control input activity, which is the total number of control reversals in each controller axis 

divided by the interval elapsed time. 

− Frequency / rate of tool usage. 

− Amount of time no control input was given to the system. 

 

5.3.2.2. Task efficiency 
 

Disaggregating human behavior may not always be possible or efficient. In these cases, generic 

task efficiency metrics, such as performance metrics (e.g., the number of obstacles avoided by an 

autonomous vehicle, for example, if navigating is a main task of the mission) and time metrics (e.g., the 

time required to detect a deviation from the nominal route and correct it) would constitute the information 

processing metric subclass. 

It should be noted that task time is generally not very useful in isolation, but can be useful for 

comparisons relative to other similar designs of displays or to measure improvements in a display. In 

particular, interaction time, which is the amount of time a human spends interacting with an autonomous 

platform to accomplish a given task, is a popular task efficiency metrics [44][45][46]. 

 

5.4. Human behavior cognitive precursors  
 

5.4.1. Mental workload 
 

Workload is a result of the demands a task imposes on the operator’s limited resources. Thus, 

workload is not only task-specific, but also person-specific. The measurement of mental workload enables, 

for example, identification of bottlenecks in the system or the mission in which performance can but does 

not break down in a particular experiment, and to compare systems that lead to similar performance. 

Mental workload metrics can be classified into three main categories: performance, subjective, 

and physiological metrics. Table 6 summarizes the existing metrics and techniques to measure mental 

workload. 
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Table 6: Overview of Metrics & Techniques for Mental Workload. 
Metrics Techniques Measure Examples 

Primary-Task 
Speed or accuracy completing the primary 

task Performance 

Measures 
Secondary Task 

Time to respond to messages through an 

embedded chat interface 

Unidimensional self-ratings Modified Cooper-Harper scale for workload  Subjective 

Measures Multidimensional self-ratings NASA TLX 

Eye Movement Activity 
Blink frequency 

Pupil diameter 

Electrocardiogram Heart rate variability coefficient 

Electroencephalogram 

Amplitudes of the N100 and P300 

components of the event-related potential 

(ERP)  

Physiological 

Measures 

Galvanic Skin Response Skin electrical conductance (in Siemens) 

 

Table 7 provides an overview of the main advantages, limitations, and recommended use of the 

metrics and techniques included in Table 6. 

 

Table 7: Overview of Techniques for Mental Workload. 
Technique Main Advantages Main Limitations Recommended Use 

Primary Task 

Performance 

Direct measure on the 

performance of the 

system of interest 

Insensitive in the 

“underload” region. 

Affected by other factors 

In conjunction with 

other workload metrics 

Secondary Task 

Performance 

Sensitivity Interference with the 

primary task performance 

Embedded Secondary 

Tasks 

Self-Ratings 

High face validity, cheap, 

easy to administer 

Recall problems Not to be used with 

secondary task 

technique 

Techniques to 

Measure 

Physiological 

Parameters 

Continuous, real-time 

measure 

Noise-to-signal ratio. 

Sensitivity to stress. 

Equipment & Training. 

Data analysis 

Only in laboratory 

settings 
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5.4.1.1. Performance measures: primary and secondary task 
 

Performance measures are based on the principle that workload is inversely related to the level of 

task performance [11]. Performance measures can be either on the primary task or on a secondary task. 

 

− Primary Task Performance 

Primary task performance should always be studied in any experiment, but this measure presents 

severe limitations as a mental workload metric. This metric is only sensitive in the “overload” region, when 

the task demands more resources from the operator than are available. Thus it does not discriminate 

between two primary tasks in the “underload” region (i.e., the operator has sufficient reserve capacity to 

reach perfect performance) that impose different demand levels on the operators. In addition, primary 

task performance is not only affected by workload levels but also by other factors, such as correctness of 

the decisions made by the operator.  

Additional problems of this technique are the difficulty to determine adequate complexity levels for 

the scenarios so that the metric is sensitive, and the difficulty to make comparisons between different 

tasks if they differ in how they are measured or what those measures mean (e.g., compare reaction times 

with precision to follow a certain path). 

 

− Secondary Task Performance 

In this technique, a secondary task is imposed on operators as a measure of their residual 

resources or spare capacity [47]. Secondary task performance is assumed to be inversely proportional to 

the primary task demands imposed on the operators’ resources. This measure is sensitive to differences 

in task demands, practice, and other factors that are not reflected in the primary task performance. Some 

of the secondary tasks that have been proposed and employed are, for example, producing finger or foot 

taps at a constant rate, generating random numbers, or reacting to a secondary-task stimulus [11]. 

An advantage of this technique is that it is designed to predict the amount of residual attention an 

operator would have in case of an unexpected failure or event requiring his intervention. However, the 

main limitation of this technique is that it may interfere with and disrupt performance of the primary task. 

However, problems with obtrusiveness can be mitigated if embedded secondary tasks are used. In those 

cases, the secondary task is part of operators’ responsibilities but has lower priority in the task hierarchy 

than the primary task. For example, Cummings and Guerlain used an embedded chat interface as an 

embedded secondary tasking measurement tool [48]. 

Another potential problem of this technique is derived from the fact that humans have different 

type of resources (e.g., perceptual resources for visual signals vs. perceptual resources for auditory 

signals) [49]. Workload differences that result from changes in a primary task variable can be greatly 

underestimated if the resource demands of the primary task variation (such as reacting to a visual stimuli) 

do not match those of most importance for secondary task performance (such as reacting to an auditory 

stimuli). 
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5.4.1.2. Subjective measures: self-ratings 
 

This technique requires operators to rate the workload or effort experienced while performing a 

task or a mission. Self-ratings have been widely utilized for workload assessment in multi-task 

environments, most likely due to its ease of use. Additional advantages are their non-intrusive nature, 

their low cost, and participant acceptability. Disadvantages include recall problems, and the variability of 

workload interpretations between different individuals. Self-ratings measure perceived workload rather 

than actual workload. However understanding how workload is perceived can be sometimes as important 

as measuring actual workload. 

Another potential problem is the difficulty that humans can have to introspectively diagnose a 

multidimensional construct, and in particular to separate physical and mental workload [49]. In addition, it 

is unclear whether subjects’ reported workload correlates with peak or average workload level. Self-

ratings complement the information provided by other metrics, but can be of little diagnostic value in the 

evaluation of the cause of intensive workload in system design. These metrics are recommended in 

conjunction with other forms of metrics.  

Self-rating scales can be unidimensional or multidimensional. 

 

− Unidimensional Self-rating Scale 

Unidimensional scale techniques involve asking the participant for a scaled rating of overall 

workload for a given task condition or at a given point in time. The most popular unidimensional self-rating 

scales are described in Appendix A. 

 

− Multidimensional Self-rating Scale 

Multidimensional scale techniques require the operator to rate various characteristics of 

perceived workload. This technique presents better diagnostic abilities than the unidimensional scale 

technique, and it can be used to diagnose causes and determine the nature of workload. However, 

different humans can differently understand and rate the same dimension, and moreover, they can have 

problems distinguishing and rating separately each of these dimensions. For example, the NASA-TLX 

multidimensional scale requests subjects to rate effort, mental demand, and physical demand. The 

difference between effort and demand can be unclear or even not understood by some subjects. In order 

to minimize these effects, multidimensional scales should be kept simple and with unambiguous wording, 

and experimenters should always provide definitions. The most popular multidimensional self-rating 

scales are described in Appendix B. 

 

5.4.1.3. Physiological measures 
 

Physiological parameters such as heart rate, heart rate variability, eye blink rate, galvanic skin 

response, and brain activity are measures of autonomic or central nervous system activity. Thus, these 
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measures are indicative of operators’ level of effort and engagement, and have also been used to assess 

operator workload. However, it is important to notice that physiological measures do not necessarily 

assess workload. These metrics are also sensitive to changes in stress, alertness, or attention, and it is 

almost impossible to discriminate whether the physiological parameters vary as a consequence of mental 

workload or the changes are due to these other factors. 

An advantage of physiological measures is the potential for a continuous, real-time measure of 

ongoing operator workload. Such a measure can be used to optimize operator workload, using times of 

inactivity to schedule less critical tasks or deliver non-critical messages so that they do not accumulate 

during peak periods [50]. Moreover, this type of measure could be used to implement adaptive 

automation, which is one technique for optimizing workload [51]. It should be noted that behavioral 

metrics might also be valid approaches for this type of implementations. 

Some problems associated with physiological measures are noise, their sensitivity to emotional 

factors, and operators’ opposition to wear equipment that imposes physical constraints. In addition, 

validation studies of physiological measures have reported contradictory results. Also, most of this 

validation work has been done in laboratory settings with controlled experiments with controlled stimuli, 

making it hard to generalize to real world settings. 

The most popular techniques and metrics are: 

 

− Eye Movement Activity 

Eye activity measures, which can be obtained with an eye tracker, correlate with cognitive 

demands and have been used to measure real-time workload. Examples of workload metrics are blink 

rate and duration, dwell time, fixation frequency, pupil diameter, and saccadic extent. Findings indicate 

that blink rate, blink duration, and saccade duration all decrease with increased workload, while pupil 

diameter, number of saccades, and the frequency of long fixations all increase [52]. 

 

− Cardiac Functions: Electrocardiogram (ECG) 
Heart rate variability is used as a measure of mental load since it is more sensitive to differences 

in workload than the actual heart rate. Heart rate variability is generally found to decrease as the 

workload increases [53].  

 

− Brain Activity: Electroencephalogram (EEG) 
The electroencephalogram is the only physiological signal that has been shown to accurately 

reflect subtle shifts in workload that can be identified and quantified on a second-by-second timeframe. 

However, it also reflects subtle shifts in alertness and attention, which are related to workload, but can 

reflect different effects. In addition, significant correlations between EEG indices of cognitive state 

changes and performance have been reported based on studies conducted in different domains and 

environments [54][55][56]. 
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− Galvanic Skin Response (GSR) 
Galvanic skin response (GSR) is the change in electrical conductance of the skin attributable to 

the stimulation of the sympathetic nervous system and the production of sweat. Perspiration causes an 

increase in skin conductance, thus GSR can be indicative of workload, as well as stress levels [57]. 

 

5.4.2. Situation awareness 
 

Applying the framework developed by Drury et al. [10] to teams of humans and autonomous 

platforms, we can define human situation awareness6 as: 

 

− the human understanding of 

o locations, identities, activities, status, and surroundings of the autonomous platforms,  

o and the overall goals of the joint human-automation activities and the moment-by-

moment measurement of the progress obtained against the goals, 

− and the certainty with which the human knows the afore mentioned information. 

 

In addition, the term “understanding” refers to both the understanding of the current situation and 

dynamics, and the ability to anticipate future-situation events [15]. Presumably, good operators have a 

better understanding of the current state than poor operators do, but expert operators differ from 

intermediate operators because of their better predictions of the future [58]. 

Situation awareness metrics can be classified into two main categories: implicit and explicit 

metrics. The implicit metrics comprise the performance-based measures and the process-based 

measures. The explicit metrics comprise the subjective measures and the query-based measures. Table 

8 summarizes the existing metrics and techniques to measure situation awareness. 

                                                 
6 In this research the term “situation awareness” refers to “human situation awareness”. In order to refer to the 

situation awareness that the autonomous platforms have we will use the term “platform situation awareness”. 
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Table 8: Overview of Metrics & Techniques for Situation Awareness. 
Metrics Techniques Measure Examples 

Communication Analysis 
Communication rate 

Anticipation ratio 

Verbal protocols 
Operator feeling confused or lost 

Operator double-checking information 

Process-based 

Measures 

Eye tracking 
The point-of-gaze (EPOG) 

Fixation times 

General Behavioral 

Measures 

Time required to return to the original 

flight path after a deviation 

Testable Responses Speed & accuracy of operators’ response 

Implicit 

Metrics 

Performance-

based 

Measures 
Global Implicit Measure 

Performance score showing progress 

toward accomplishing task goals 

Observer ratings 

Neutral expert rating participant’s level of 

SA using a Likert-type scale ranging from 

“1” to “7” Subjective 

Measures 

Self-ratings 

Participants rating the amount of SA 

experienced using a Likert-type scale 

ranging from “1” to “7” 

Off-line query methods 

(memory-based) 
Accuracy of operators’ response 

On-line query methods 

(perception-based) 
Operators’ response time 

Explicit 

Metrics 

Query-based 

Measures 

Post-experiment 

questionnaires 
Accuracy of operators’ response 

 

Table 9 provides an overview of the main advantages, limitations, and recommended use of the 

metrics and techniques included in Table 8. 
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Table 9: Overview of Techniques for Situation Awareness. 
Technique Main Advantages Main Limitations Recommended Use 

Communication 

Analysis 

Continuous measure of 

SA 

Time intensive. 

Communicativeness can be 

non-correlated with 

knowledge 

To measure team SA, 

not individual 

members’ SA 

Verbal protocols 

Insight into the 

operator’s cognitive 

processes 

Time intensive. Depends on 

operator’s verbal skills. 

Recall problems with 

retrospective protocols. 

Interference problems with 

real-time protocols 

Research phase, in 

conjunction with other 

metrics 

Eye tracking 

Insight into developing 

SA and processing info. 

Continuous measure of 

SA 

Noise-signal ratios. Non-

correlation between gaze 

and thinking. Equipment & 

training. Intensive data 

analysis 

Research phase, in 

conjunction with other 

metrics 

General Behavioral 

Measures 

Evaluate ultimate 

consequences of a 

given knowledge state 

and users’ recovery 

state 

Sensitivity to other factors 

such as skill level, 

strategies, and workload 

In conjunction with 

Testable Responses 

Testable Responses 

Evaluate ultimate 

consequences of a 

given knowledge state 

and users’ recovery 

state 

Not possible to test 

concurrently workload and 

performance. Repeatability. 

Interferes with subject’s 

attention allocation 

Final testing phases of 

an operational system 

Global Implicit 

Measure (GIM) 

Non-intrusive. 

Continuous metric 

Cost. Sensitive to other 

factors such as workload 

Not recommended 

Observer ratings 

Observer knows true 

state of affairs. Non-

intrusive 

Observer does not know 

operator’s internal 

understanding 

Field testing in 

conjunction with 

Testable Responses 

Self-ratings 

Inexpensive. Easy to 

use. Face validity. Non-

intrusive 

A metacomprehension7 

metric. Recall problems if 

administered post-trial 

Operational tools, to 

promote user 

acceptance 

                                                 
7 Metacomprehension refers to knowing what is needed as knowledge and to knowing how much of that knowledge 

you have. 
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Technique Main Advantages Main Limitations Recommended Use 

Off-line query methods 

(memory-based) 

Objective and direct 

measure. Assesses 

global SA 

Recall problems. 

Intrusiveness of freezing 

scenarios (interferes with 

performance) 

Research phase or 

studies where system 

performance is not 

measured 

On-line query methods 

(perception-based) 

Objective and direct 

measure 

 

Interference with workload, 

attention, and primary task 

performance 

Recommended if 

queries are embedded 

in the tasks 

Post-experiment 

questionnaires 

Easy to use. Non-

intrusive 

Recall problems. Punctual 

SA evaluation 

Recommended in 

conjunction with other 

metrics 

 

5.4.2.1. Process-based measures 
 

Process measures examine the operator’s cognitive processes upon which situation awareness 

is built. 

 

− Communication Analysis 

This technique requires examining the verbal exchanges between people involved in a task. 

Individual team members’ SA awareness is inferred from what they say. 

Some examples of SA metrics based on communication analysis are the total communication 

rate, the anticipation ratio (i.e., communications transferring information/communications requesting 

information), or communication content analysis (e.g. quality and frequency of communications by type). 

Communication analysis can be very helpful to analyze team processes but not so much to 

understand team members’ SA: an operator may know a lot but be uncommunicative. In addition, it does 

not tell us about what information is being processed, or how that information is being integrated and 

utilized. Also, this technique can be tedious and time intensive. 

 

− Verbal Protocols 

Verbal protocols require the operators to verbally describe their thoughts, strategies, and 

decisions while interacting with the system, and they are also known as “thinking aloud” protocols. This 

technique can be executed concurrently during the experiment or retrospectively requesting the subject to 

review a video recording of the experiment. Retrospective protocols are less intrusive but rely more on 

subjects’ memory and require longer experimental sessions. The ability to infer operator’s SA from this 

technique is limited. However, it can provide much insight into the cognitive processes employed to 

perform tasks. Its effectiveness is determined by the verbal skills of the operator. In addition, analyzing 
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verbal protocols can be very time consuming. Usually, this technique provides an incomplete picture of 

the situation. 

Since verbal protocols are based on operators’ thoughts and strategies, some examples of actual 

SA metrics can be the number of times the operator got confused or felt lost, or the number of times the 

operator needed to double check some information. 

 

− Eye Tracking 

This technique is based on tracking operators’ eye movements during task performance. It is 

believed that eyes and eye-movements can tell us some things about the human mind. Some examples 

of SA metrics based on eye tracking are fixation times, visual scan patterns, and the eye point of gaze 

(EPOG). Identifying where someone is looking helps us infer the information being processed at each 

moment and understand the interaction between the operator and the display. Moreover, important 

information as well as badly displayed or confusing information can lead to long eye fixations. 

Existing literature is contradictory in terms of the usefulness of this technique to assess SA. 

Durso et al. studied chess players’ SA and concluded that the eye movements seemed to be the most 

complicated of all the SA methodologies studied and yielded the fewest insights [59]. However, 

Smolensky concluded that “evaluation of eye movements might be used to assess certain contributing 

constructs to SA [60].”  

The main limitation of this technique is the difficulty in getting the critical signal-to-noise ratios. In 

addition, it is unclear whether where one looks tells you what one is thinking about. For example, focusing 

on, or tracking an object does not necessarily demonstrate a high level of awareness. Moreover, a 

subject can be aware of an event or an object in the field of vision even if it has never been focused or 

directly tracked. Another limitation of this technique is that these measures rely on visual information, and 

human awareness is also affected by other modalities, such as auditory information. The need for 

specialized equipment and training, and the extensive expertise and time required to analyze the data 

also limit the applicability of this technique. 

Eye tracking is useful to conduct research and understand how people develop SA and process 

information in complex environments. However, its ability to infer SA as a state of knowledge for design 

evaluation is limited. This technique is recommended to understand operators’ attention allocation 

strategy rather than their actual SA.  

 

5.4.2.2. Performance-based measures 
 

Performance measures examine the operator’s observable response and actions and their impact 

on the system, given their knowledge state, rather than directly examining the operator’s knowledge state. 

These measures are very useful to answer research questions such as “does the user have sufficient 

situation awareness?”, “does operator-achieved SA lead to the desired system performance?”  

The most popular metrics and measuring techniques are: 
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− General Behavioral Measures 

Operator’s behavior reflects his actual knowledge, as well as the perceived reliability of the 

knowledge, both important components of SA. However, these metrics are also sensitive to other factors 

such as workload, expertise, or decision strategy. Discerning whether people are behaving in a certain 

manner because of their SA or as the result of lack of skill, or poor strategies, or excessive workload is 

often difficult. Moreover, an expert participant may be able to achieve acceptable performance even when 

his SA is inadequate. Therefore, behavior measures are often used in combination with scenarios where 

situations have been created that, given an acceptable level of SA, will cause the operator to react in a 

predicted manner. It should also be noted that the ability to infer SA from performance measures depends 

highly on the scenarios constructed and the type of performance measures (e.g. nominal vs. non-nominal 

conditions) [61]. 

 

− Testable Responses  

This technique consists on including SA revealing events embedded in the scenarios such as 

errors, unexpected incidents, or rare situations. Users are presented with realistic situations, which if they 

have sufficient SA, require decisive and identifiable actions [62]. This technique measures real-time 

responses of operators in time-critical situations. For example, Midkiff and Hansman in a flight simulator 

study allowed subjects to overhear communications which suggested that another aircraft had not 

departed the runway the subjects were very close to landing on [63]. In this case, action was required to 

avoid a collision; a lack of action was considered as a lack of situation awareness. 

The most crucial aspect is the design and scripting of the situations so that a clear and 

unambiguous response is mandated if operators have sufficient SA. In addition, incidents should happen 

at a rate which is realistic and reasonable. In terms of subjects’ behaviors, all probable actions should be 

evaluated. In the example of Midkiff’s and Hansman’s experiment, most subjects’ reaction was to query 

ATC to confirm the information rather than immediately start a go-around procedure. 

The SA metric can be the speed and/or the accuracy of operators’ response. The number of 

strong reactions, uncertain and weak responses, and the lack of action are also SA metrics. 

It should be noted that this technique can only be used in simulation environments. It can be 

combined with the observer rating technique so that domain experts rate the appropriateness of the 

subjects’ reaction and actions. 

A main limitation of this technique is having enough data so that a statistical analysis can be 

conducted. The main reasons are the difficulty of making situations repeatable for different subjects, and 

the limited number of incidents that the same user can be exposed to without biasing his attention 

allocation strategy. Finally, this technique should not be used during concurrent testing of workload or 

performance because the inclusion of unexpected or unusual events embedded in the scenario results in 

workload and performance not being representative of nominal conditions. 
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− Global Implicit Measure (GIM) developed by Brickman et al. [64] 

The GIM technique provides an objective and real-time measure of situation awareness by 

comparing human performance during complex tasks against previously defined behavioral constraints 

(e.g. rules of engagement). It was originally developed for pilots. This technique is based on the 

assumption that the pilot is attempting to accomplish known goals at various known priority levels. 

Therefore, it is possible to consider the momentary progress toward accomplishing these goals [65]. In 

this approach, a detailed task analysis is used to derive rules that link measurable behaviors to the 

accomplishment of mission goals. Each of these rules is treated as an individual implicit probe and 

assessed at the frame rate of the simulation. For any time period during the mission, the SA metric can 

be calculated as the proportion of the implicit probes that have been correctly accomplished by the 

operator at to that moment.  

The main limitation of this technique is cost since it requires multiple interface and scenario-

specific GIM scoring algorithms to be developed and tested. In addition, one can argue that the GIM only 

provides a measure of performance and that deviations from the prescribed rules are not necessarily a 

result of poor SA.  

 

5.4.2.3. Subjective measures 
 

Subjective measures require the operator or a field expert to make judgments about their or 

other’s knowledge state. For example, on a given scenario or task, a participant might be asked to use a 

Likert-type scale ranging from “1” to “7” in rating the amount of SA experienced. In the case of observer 

ratings, an unbiased, neutral expert is asked to observe a participant perform a task and rate the 

participant’s level of SA.  

Self-ratings measure metacomprehension rather than comprehension of the situation; it is unclear 

whether or not operators are aware of their lack of SA. In addition, humans seem to have different 

opinions on what SA actually is, estimating the SA experienced differently. Vidulich & Hughes found that 

about half of the participants in their experiments rated their SA by gauging the amount of information to 

which they attended; while the other half of the participants rated their SA by gauging the amount of 

information they thought they had overlooked [66]. 

However, it is important to evaluate both objective and subjective SA and make sure that both 

coincide [13]. Errors in perceived SA quality, over-confidence or under-confidence in SA, may be as 

harmful and affect individuals’ or teams’ decision making as errors in their actual SA [67]. In addition, 

subjective measures have the advantage of being non-intrusive and easy to use, and require minimal 

training. To ensure comprehensiveness subjective measures can be used in conjunction with other 

measures such as query-based measures, which are presented below. 

In the case of observer ratings, observers have information regarding the true state of affairs but 

cannot observe the operator’s internal understanding of the situation. For example, an operator could be 

aware of a piece of information but he could provide no observable evidence of this knowledge. Observer 
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rating techniques are most commonly used to assess SA during tasks performed “in-the-field”. In the case 

of a simulated environment, we recommend to use observer ratings in conjunction with the Testable 

Response Technique. 

The most popular SA subjective metrics and techniques are described in Appendix C. 

 

5.4.2.4. Query-based measures 
 

Query measures are objective and direct measures, which require the operator to report pieces of 

task-relevant information. Query-based measures attempt to directly capture the operator’s state of 

knowledge and require a detailed analysis of SA requirements. 

The most popular query metrics and techniques are: 

 

Off-line query methods (memory-based)  

The off-line query method is based on briefly halting the simulation at randomly selected intervals, 

blanking the displays, and administering a battery of queries to the operators. The SA metric assesses 

global SA by calculating the accuracy of operator’s responses compared to the reality. 

The most popular off-line method is the Situation Awareness Global Assessment Technique 

(SAGAT). This technique has been validated and applied across a variety of domains including aviation, 

air traffic control, power plant operations, teleoperations, driving, and military operations [68]. 

According to the creator of the method, its main challenges are: 

− administering the questions at the right time during the simulation so that the questions do 

not interfere with operator’s performance, workload, and attention, but still provide a 

comprehensive picture of operator SA, 

− and determining the appropriate questions, which cover the entire range of relevant SA 

issues. 

Due to the nature of this method, it can only be used in a simulation environment. In addition, 

some researchers have pointed out that recall problems can limit the applicability of this method: if the 

operator does not have a good picture of the situation when queried, that does not mean that he or she 

did not have the picture while performing the task [13]. 

 

On-line query method (perception-based)  

In the on-line query method8, operators are presented with queries about the situation while the 

situation remains present and while they continue to perform the primary task [69]. This method leaves 

the operator in context and assumes that knowing where to find a piece of information is indicative of 

good SA. The SA metric is the operator’s response time. If an operator has the answer to the query in his 

active memory, response time should be short. If the information is not available, but the operator knows 

                                                 
8 This method is also known as the real-time probes method. 
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where to find it, then response time will be longer, but not as long as the case in which the operator does 

not know where to find the info [69].  

The most popular on-line query method is the Situation Present Assessment Method (SPAM). 

According to the SPAM method developer, answers’ accuracy tells us about SA when it fails while 

response time can help us in investigating what happens when SA succeeds [13]. A limitation of this 

method is the potential correlation between real-time probes and workload. Operators’ speed of response 

is dependent on workload and spare capacity, thereby raising the concern that real-time probes may 

reflect measures of workload as well as SA [68][70]. 

 

Post-experiment questionnaires 

In the case of post-experiment questionnaires, operators are presented with the queries after they 

finish the experiment. The SA metric is the accuracy of operators’ response. This method only assesses 

SA at one point in time, after the experiment, which limits the ability of this metric to represent operators’ 

SA along the experiment. In addition, operators are required to retrospectively recall their status of 

knowledge. 

A questionnaire administered after an experiment can provide limited information about the 

process and operators’ knowledge state. However, it is low-cost, easy to use, and non-intrusive, so it is 

recommended if used in conjunction with other metrics. 

 

5.4.3. Self-confidence 
 

Operators’ self-confidence in their own abilities plays a major role in operators’ effective use of 

automation [71]. Research results suggest that people are often overconfident in their abilities, both in 

forecasting future events [72] and in their general knowledge [73].Overconfidence can result in operators 

less and less likely to delegate control to automation, and thus failing to benefit from the capabilities of the 

automation. On the contrary, lack of confidence can result in excessive reliance on automation and failure 

to intervene when needed. 

Self-confidence is measured with subjective ratings. For example, Lee and Moray asked subjects 

to rate how high their self-confidence was in controlling the different parts of a simulated semi-automatic 

pasteurization plant [71]. 

 

5.4.4. Emotional state 
 

Emotions and moods are temporary feelings that affect behavior. Thus, the state of a person's 

emotions and the mood can affect system performance. However, it is out of the scope of this research to 

measure individual emotional differences. This metric subclass is included in the model for completeness, 

but specific metrics and techniques to measure the emotional state of subjects are not discussed. 
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5.5. Human behavior physiological precursors  
 

5.5.1. Physical workload 
 

Physical workload is defined and measured in terms of energy expenditure. Traditionally, human 

physical work is measured in kilocalories and oxygen consumption [74]. 

However, measures of physical workload are becoming less and less relevant, in particular in 

human supervisory control domains, where automation is assuming the functions that require large forces 

and that once were the responsibility of the human operator. 

While it is still possible for an operator to become physically fatigued, specially during an 

emergency when some of the automation fails, it is far more likely for designers to worry about mental, 

rather than physical, overload [75]. 

 

5.5.2. Fatigue 
 

Fatigue tests are important, for example, to determine appropriate shifts by answering questions 

such as ‘how tired do you have to be before your performance might be appreciably affected?’ 

A considerable number of studies have measured fatigue effect by measuring the related 

reductions in performance on tests like Simple Reaction Time and vigilance tasks, like the Mackworth 

Clock test developed to evaluate vigilance in British Air Force radar technicians during World War II [76], 

both in laboratory and field studies [77][78][79]. 

Physiological measures, such as adrenaline and noradrenaline production, cortocosteroid 

production, brain electrical activity, eyelid closure, eye position/eye movement, heart rate, and gross body 

movement have also been found sensitive of the onset and detection of fatigue [80]. 

Electroencephalography (EEG), which provides insight into cerebral arousal, is one of the most popular 

physiological fatigue measures.  

Despite the variety of objective measures available, fatigue remains essentially a subjective 

experience [80]. Thus, self-ratings of fatigue are very popular in the literature. However, it should be 

noted that physiological fatigue may not be detected until extreme subjective fatigue is reported [81]. 

Fatigue due to lack of sleep can be underestimated, and fatigue due to physical activity can be 

overestimated; activity, such as muscular effort, can also alter the perception of sleepiness. 

 

5.5.3. Physical comfort 
 

Humans are sensitive to the conditions in their workplace, such as temperature, light, noise or 

even the chemicals being used. If these sensitivities are unable to be managed within the workplace, 

performance may decline, thus it can be important to evaluate operators’ physical comfort. However, it is 
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out of the scope of this research to discuss metrics and techniques to measure physical comfort. This 

metric subclass is included in the model for completeness. 

 

5.6. Collaborative metrics 
 

5.6.1. Human - autonomous platform collaborative metrics 
 

5.6.1.1. Autonomous platform - human awareness 
 

Autonomous platform - human-awareness is the degree to which the autonomous platform is 

aware of humans, including humans’ commands and any human-originated constraints that may require a 

modified course of action or command noncompliance. Depending on the application, automation may 

need to have knowledge of humans’ expectations, constraints, and intents. “Awareness violations” that 

occur during the execution of the task, for example, robots running into victims in a search and rescue 

mission, has been proposed as a metric to measure human-awareness [16]. 

 

5.6.1.2. Trust 
 

Trust is a human attitude toward automation that affects reliance. Trust concerns an expectancy 

regarding the likelihood of favorable responses [19]. People tend to rely on and use the automation they 

trust and tend to reject the automation they do not. Operators’ lack of trust in automation often forms a 

barrier, thwarting the potential that a new technology offers. On the other hand, excessive trust results in 

complacency and the operator failing to intervene when the technology fails.  

The metrics available to measure trust can be classified into two main categories: implicit and 

explicit metrics. The implicit metrics refer to measures based on operators’ use of automation. The explicit 

metrics are subjective measures. Table 10 summarizes the existing metrics and techniques for trust. 

 

Table 10: Overview of Metrics & Techniques for Trust. 
Metrics Techniques Measure Examples 

Implicit 

Metrics 

Use of 

Automation 

Human-Computer 

Interactions 

Frequency and duration of manual control 

Actions abstraction level and information 

integration level 

Unidimensional Rating 

Scale 
Lee and Moray trust scale 

Explicit 

Metrics 

Subjective 

Measures Multidimensional Rating 

Scale 
Human-Computer Trust (HCT) scale 
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Table 11 provides an overview of the main advantages, limitations, and recommended use of the 

metrics and techniques included in Table 10. 

 

Table 11: Overview of Techniques for Trust. 
Technique Main Advantages Main Limitations Recommended Use 

Human-Computer 

Interactions 

Objective measure Sensitive to other 

factors such as 

workload and self-

confidence 

For interactive interfaces 

with human manipulation 

(not for supervisory 

behavior) 

Unidimensional trust 

rating scale 

Direct measure of a 

purely psychological state 

Difficult to capture the 

complexity of trust in 

one single dimension 

If no particular barriers for 

automation adoption, such 

as system reliability and 

cultural issues, are 

expected 

Multidimensional 

trust rating scale 

Direct measure of a 

purely psychological state 

Limited validation 

evidence 

Research phase or early 

stages in the design 

process 

 

5.6.1.2.1. Implicit measures: use of automation 
 

Lee and Moray’s research showed a strong relationship between operators’ trust and their 

reliance on automation [71]. Thus, operators’ use of automation can be an indirect indication of operator’s 

level of trust. 

Simple implicit trust metrics such as the frequency of use of certain tools, and the frequency and 

duration of manual versus automated control can be obtained from human-computer interactions. The 

abstraction level of the actions performed9, and the integration and processing level of the information 

accessed by the operator can also be indicative of operator’s trust levels. Low reliance on automation can 

result in actions with low abstraction levels, such as manually flying an aircraft, or in accessing 

information with low processing and integration levels, such as constantly checking the raw data. On the 

contrary, performing actions with high abstraction levels, or accessing information with high processing 

and integration levels can indicate excessive reliance on automation. 

The main disadvantage of implicit measures is that the use of automation is not only affected by 

trust but also by other factors such as workload, time criticality of the situation, and self-confidence. Lee & 

                                                 
9 The abstraction level of an action refers to the degree the action is described in terms of physical processes or 

system instances; actions at the lowest level are defined in terms of physical components and processes, whereas 
high level actions are described in terms of purposes and goals. For example, aviate is at a lower abstraction level 
than navigate, but navigate is at a lower abstraction level than payload management. 
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Moray demonstrated that shifts between automation versus manual control model can be predicted by the 

ratio between trust and self-confidence [71]. 

 

5.6.1.2.2. Explicit measures: subjective ratings 
 

Some authors consider that trust is a purely psychological state and can be assessed only by 

subjective rating [82]. Thus, the use of subjective questionnaire-based rating scales is the most common 

means of measuring trust. These rating scales usually include several levels because, as Muir and Moray 

concluded, trust is not a discrete variable, but variable levels of trust can exist between none and total 

[83]. 

The most popular subjective rating techniques are: 

 

Single rating scale to evaluate operators’ overall trust [71] 

Lee and Moray used a simple ten point rating scale from ”not at all” to “completely” in their 

experiments to evaluate operators’ overall trust. After completing their task, subjects were asked 

questions such as “how much did you trust the automatic controller of the steam pump?” 

The main drawback of this technique is the difficulty of capturing the complexity of a 

multidimensional construct such as trust with a unidimensional rating scale. 

 

Muliple rating scales to elicit dimensions of trust  

Multidimensional rating scales present better diagnostic abilities than the unidimensional scales. 

However, humans can have problems distinguishing and rating separately individual dimensions such as 

integrity, reliability, accuracy, dependability, or confidence. These terms refer to different automation 

aspects, but often generate the same responses from participants. In addition, the same word can have 

different meanings for different subjects, in particular words such as reliability, accuracy, and even trust 

that seem to depend on the cultural and national background of the subject. Thus, multidimensional 

scales should be kept simple and with unambiguous wording, and experimenters should always provide 

definitions. 

Muir and Moray questioned their subjects about three aspects of automation to estimate trust: the 

degree of trust in automation’s display, the degree of trust in automation responding accurately, and the 

overall degree of trust in automation [83]. Other popular and more complex multiple rating scales are 

described in Appendix D.  

 

5.6.1.3. Mental model efficiency 
 

Mental models allow people to describe and understand phenomena, draw inferences, make 

predictions, and decide which actions to take. Evaluating humans mental models on automation and the 
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mission is important because it can feed directly into the automation design and the content of training 

materials.  

Since individual’s mental model reflects the individual’s perception of reality, mental models vary 

in their accuracy and coherence [84]. In general, evaluating mental mode efficiency comprises assessing 

their accuracy and coherence.   

Main metrics for mental model efficiency are shown in Table 12. 

Table 12: Overview of Metrics for Mental Models Efficiency. 
Metrics Measure Examples 

Similarity of participants’ mental model and that of subject matter 

experts Accuracy of a Mental Model  

Similarity of participants’ mental model and that of the best performer 

Similarity of participants’ mental model and system architecture 

Similarity of participants’ mental model before and after the 

experiment  Coherence of Mental Models 

Similarity among participants’ mental models 

 

Assessing the accuracy of mental models is important because those of experts differ from those 

of non-experts, and moreover, mental models can predict individual performance. For example, Rentsch 

et al. found in their experiments that participants who reported high experience tended to use fewer 

categories or dimensions to describe a concept, used more abstract definitions, and represented their 

knowledge more consistently than those reporting low experience [85].  

Regarding the coherence of mental models, it is important to evaluate the consistency between 

participants’ mental models and system architecture, and the stability of mental models. The similarity of 

participants’ mental models before and after the experiment can provide an indication of mental models’ 

stability. Furthermore, for new systems and concepts of operation, it can be important to identify and 

understand the mental model of the participant who performed best in the experiment so that effective 

training programs can be designed. 

Mental model evaluation is composed of two main stages: knowledge elicitation, and mental 

model representation and analysis. Knowledge elicitation is the practice of explicating the domain-related 

knowledge held by an individual; it includes the concept generation (i.e., determining the concepts that 

the participants will develop mental models of) and the concept rating (i.e., describing the relationships 

between the concepts). The mental model representation and analysis includes deriving the actual mental 

models and determining their similarity to other mental models. 

The concepts to be rated can be generated by subject matter experts or participants. In the latter 

case, participants are not restricted by the concepts the subject matter experts generate, and more 

realistic mental models can be elicited. However, comparisons across participants can be difficult. 
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Table 13 includes the most popular techniques for knowledge elicitation, and Table 14 the most 

popular ones for mental model representation and analysis. These techniques are described in 

Appendices E and F. 

In general, mental model elicitation techniques are time consuming, labor intensive, imply 

cognitively draining tasks for the participants, and relatively complicated analyses. Most recommended 

techniques are: visual card sorting technique, causal mapping (coupled with the distance ratio formula), 

and pairwise ratings (coupled with multidimensional scaling or Pathfinder algorithm) [86]. 

 

  Table 13: Overview of Techniques for Knowledge Elicitation. 
Technique Main Advantages Main Limitations Recommended Use 

Cognitive Interviewing 

Straight- forward Relies on interviewer’s 

abilities and 

interpretations 

Initial research stage to 

familiarize with the domain 

Verbal Protocols 

Explicit elicitation of 

participants’ strategies 

Incomplete picture. 

Difficulty to compare 

among participants 

To study operators’ cognitive 

strategies, in conjunction 

with behavioral metrics 

Pairwise Rating 

Time efficiency Repetitive nature of 

pairwise ratings can 

induce a response set 

When research time is 

constrained 

Causal Mapping 

Versatility Focus on causal 

relationships between 

concepts 

In domains driven by causal 

relations 

Card Sorting 

Quick, inexpensive, 

easy-to-administer, and 

flexible 

Captures “surface” 

characteristics 

Content-centric rather 

than task-centric 

Initial phases of information 

architecture design 

Repertory Grid Method 
High validity and 

reliability 

Prohibitive amount of 

time required 

Only when ample research 

time is available 
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Table 14: Overview of Techniques for Mental Model Representation and Analysis. 
Technique Main Advantages Main Limitations Recommended Use 

Multidimensional 

Scaling (MDS) 

Relevant dimensions for 

users are identified. 

Pictorial representation of 

concept clusters 

Not always easy to identify 

the appropriate variation of 

the technique 

Coupled with pairwise 

ratings 

Distance Ratio 

Formula (DR) 

It can isolate 3 different 

type of differences 

Cannot be generalized to 

maps of different types 

Coupled with causal 

mapping 

Pathfinder Algorithm 

Applied to a variety of 

domains (e.g., aviation, 

HCIs, education) 

Arbitrary layout of items in a 

Pathfinder network 

Coupled with pairwise 

ratings 

 

5.6.2. Human - human collaborative metrics 
 

5.6.2.1. Team coordination efficiency 
 

Team coordination is generally assessed through communication analysis. Communication 

analysis can be characterized through two dimensions: “physical” data vs. “content” data, and “static” vs. 

“sequential” analyses [23]. Physical measures are relatively low-level measures such as duration of 

speech, whereas content measures account for what is actually said. Static measures are metrics of team 

communication at one point in time, or aggregate measures over some duration, whereas sequential 

analyses account for the ongoing stream of team interaction. 

In general, communication analysis is very time consuming, thus it requires automation in 

measurement and analysis. Kiekel et al. proposed to use Latent Semantic Analysis (LSA) to assess 

communication content, either statically or sequentially, Procedural Networks (PRONET) to address 

either physical or content-based sequential data, and Clustering Hypothesized Underlying Models in 

Sequence (CHUMS) to address sequential physical data [23].  

LSA is a model of human language that can be used to code communication content and to 

determine similarity among utterances [87]. CHUMS is a clustering approach to determine pattern shifts in 

sequential data. PRONET is a sequential analysis that relies on the network modeling tool, Pathfinder 

[88]. PRONET can be used to determine what events “typically” follow one another, for a given lag, and to 

identify “typical” chains of events. For example, PRONET helps identify events that tend to co-occur in 

time such as, pilot begins speaking--navigator interrupts--pilot finishes speaking. 

 

5.6.2.2. Team situation awareness 
 

The metrics and techniques to measure team situation awareness are similar to those used to 

evaluate individual situation awareness. For example, it is possible to extend query methods such as 
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SAGAT and SPAM to the team situation. Cooke et al. have applied the SPAM method, in which the 

environmental cues remain present on the display, in several studies [22]. The authors typically query 

each individual on the team about aspects of the task environments in the present or future. Team 

awareness accuracy is estimated through aggregation of individual accuracy scores. In addition, the 

similarity or agreement of individual responses is also calculated as another metric of team situation 

model.  

In addition to query-based metrics, metrics of team situation awareness based on communication 

analysis are popular in the literature. These metrics are based on the idea that team communication 

(particularly verbal communication) supports the knowledge building and information processing that 

leads to SA construction [89]. The main advantage of these measures is that they can be used to 

measure team situation awareness in the field, in real time, and unobtrusively. 

For example, Gorman et al. applied a communication-based measure of team situation 

awareness in an experiment where command and control teams had to overcome a communication 

channel glitch [25]. Their team situation awareness metric included the number of times team members 

had independently noted the glitch, the number of times team members discussed the glitch, and the 

number of times team members coordinated actions to circumvent the glitch.  

Furthermore, Bolstad et al. are developing a tool called Automated Communication Analysis of 

Situation Awareness (ACASA) that combines computational linguistics and machine learning techniques 

coupled with LSA to automatically analyze team communication and predict team situation awareness 

[90].  

 

5.6.2.3. Team mental model 
 

As in the case of individual mental models, the evaluation of team mental models consists of a 

two-step process: knowledge elicitation, and mental model analysis and metric calculation. The 

techniques to elicit knowledge are explained in Appendix E. One of the most popular one is to ask the 

users to estimate the pairwise relatedness of task-relevant concepts. It should be noted that in the case of 

teams, the concept pairs are selected so that it is possible to discriminate between team members with 

accurate and poor mental models or between team members with different task roles.  

Most popular team mental model metrics are accuracy metrics, coherence metrics, 

heterogeneous accuracy metrics, and knowledge distribution metrics. Accuracy and coherence metrics 

are similar to those discussed for individual mental model evaluation; they refer to the similarity of mental 

models across participants and between each participant and the reality. Heterogeneous accuracy 

metrics are based on the idea that team members are given specific roles and that this division of labor 

corresponds to specific portions of the knowledge base. Cooke et al. propose to “chunk” or partition the 

knowledge base into units associated with each team member’s role to measure heterogeneous accuracy 
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[91]. Chunks can also consist of the same concepts but represent a different view or perspective on that 

information. 

Knowledge distribution metrics are based on the concept that the manner in which specific 

knowledge is distributed among team members can be a critical factor in team performance [92]. 

Coverage is a popular metric for knowledge distribution; coverage refers to how much of the knowledge is 

shared among the team. An example of how to measure coverage is to determine the percentage of 

knowledge that is redundantly distributed across team members, the percentage of knowledge that is 

uniquely distributed, and the percentage of knowledge that is not covered.  

 

5.6.2.4. Workload distribution 
 

Evaluating workload distribution among team members is required in studies where team 

organization, configuration, or function allocation is explored. Generally, teams are designed so that 

workload is balanced among their members. The metrics and techniques to evaluate workload were 

discussed in section 5.4.1.  

In the initial phases of such studies, operator utilization can also be used. Utilization is defined as 

the ratio of the time the operator spends interacting with the system, or servicing events, to total mission 

time, and it can be estimated by using discrete-event simulation [93]. Utilization measures temporal load, 

and it is a not a workload measure per se because the time the operator spends interacting with the 

system depends on many different factors. However, it can be a useful metric to detect potential 

overloads in the team and to explore the tasks and responsibilities distribution in a team that better 

balance the temporal load among the members.  

 

5.6.2.5. Social patterns and roles 
 

Studies that explore team organization, configuration, or function allocation should also consider 

the existing social patterns, roles, and informal networks within the organization. The study of social 

patterns and roles is important because team dynamics are often driven by team roles. In addition, 

designing a team structure and organization that violates the existing social patterns and roles can have a 

detrimental effect on performance. 

A role is the typical behaviors that characterize a person in a social context [94]. It is normal that 

various members come to play different roles in the social structure. In general, three roles commonly 

emerge in groups: the task-oriented role, the socioemotional role, and the self-oriented role [95]. The 

roles that people adopt are often related to their personalities. An important aspect of social patterns is 

informal networks. Networks of, for example, trust, advice, communication, and respect exist within any 

organization, and their understanding can be useful to maximize system performance. 

However, it is out of the scope of this research to discuss metrics and techniques to measure 

social patterns and roles. This metric subclass is included in the model for completeness. 
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5.6.3. Autonomous platform - autonomous platform collaborative metrics 
 

The efficiency of automated collaboration among multiple platforms can be measured by the 

platforms’ speed and reaction time to situational events without the operator’s intervention. In addition, 

one can also measure performance metrics for the specific activities that are based on autonomous 

collaboration among platforms without the human intervention. These metrics will highly depend on the 

application and the mission.  

Another alternative approach is to measure the four complexity measures for characterizing multi-

robot distributed algorithms proposed by McLurkin and Kaelbling: accuracy, physical running time, 

communication complexity, and configuration complexity. Accuracy measures how well the robots 

achieve the desired physical configuration. The physical running time takes into account the robot’s 

velocity, the speed at which messages propagate throughout the network, and the complexity of the 

environment. Communication complexity measures communication range, available bandwidth between 

neighboring robots, and messaging rate needed to adapt to changing network topology. Configuration 

complexity quantifies the minimum number of robots required for an algorithm, the amount of information 

stored in their configuration, and the algorithmic cost of storing and retrieving this information. This is still 

an on-going research, and the authors are working to define these complexity metrics and use them to 

predict the performance of a library of multi-robot algorithms10. 

                                                 
10 Futher information can be found at http://publications.csail.mit.edu/abstracts/abstracts07/jamesm/jamesm.html 
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6. Case Studies: Past Research  
 

6.1. An ecological perceptual aid for precision vertical landings 
 

6.1.1. Background 
 

The Vertical Altitude and Velocity Indicator (VAVI) is an integrated flight instrument display 

component intended for a heads-up display (HUD). The VAVI is designed to aid astronauts and pilots with 

precision vertical landing and hover operations. The VAVI conveys altitude and vertical velocity 

information to indicate unsafe situations and hover maneuvers in an integrated form. The display 

instrument takes advantage of direct-perception interaction by leveraging ecological perception and 

emergent features to provide quick perception and comprehension of critical flight parameters in an 

integrated fashion. The VAVI display is shown in Figure 11. 

 
Figure 11: The Vertical Altitude and Velocity Indicator (VAVI) 

 

To test the effectiveness of the VAVI, an experiment was conducted, in which participants flew a 

simulated Harrier vertical landing flight profile using Microsoft Flight Simulator (MSFS) 2004. Participants 

were recruited for their helicopter pilot experience or PC flight simulator experience. Two heads-up 

displays were implemented: one which included the VAVI, and another which displayed altitude and 

vertical speed information consistent with operational V/STOL aircraft head-up displays. A 2x2 ANOVA 

design was utilized in which the heads-up display was a between-subjects factor, and flight task, which 

included hovering and landing, was a within-subjects factor. Participants completed two test scenarios 

which involved hovering at a specified altitudes and descending using either a static or dynamic vertical 

speed heuristic. Further information on this research can be found in [96]. 

 

6.1.2. Metrics 
 

The metrics used in this experiment are: 
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− Hover accuracy 

Hover accuracy is measured as the difference between the commanded hover altitude and the 

actual hover altitude. The actual hover altitude, defined as the altitude that the participant tried to maintain, 

was determined to be the altitude at the time that the participants indicated they were beginning their 

hover. 

− Hover precision 

Hover precision addresses the ability to maintain a precise hover. Deviations from the actual 

hover altitude are captured using a root mean square error (RMSE). In the measure of hover precision, 

the desired variable corresponds to the altitude at the first second of the self-initiated 20 second hover 

and actual corresponds to the altitude at every second during that 20 second interval. 

− Vertical Speed Precision 

The ability to maintain a static descent rate was also measured using a RMSE. The RMSE of 

vertical speed from the completion of the hover to landing was calculated. Participants were not penalized 

for being within 10% of the commanded static descent rate, and participants were also not penalized for 

having a positive (> 0 fpm) vertical speed indicating that they were climbing and not descending. 

− Descent Duration Error 

The descent duration is a measure of the comparison between the time that it should have taken 

the participant to descend, had they descended according to the commanded dynamic or static vertical 

speed heuristic, versus the actual time of descent. 

− Workload Measures 

Participants rated their perceived mental workload on a ten-point scale, with 1 corresponding to 

minimal or no mental workload, and 10 corresponding to the highest mental workload the participant has 

experienced. 

 

Table 15 summarizes the actual metrics and the corresponding metric classes used in this 

experiment. 

Table 15: Metric classes and actual metrics used to evaluate the VAVI 
Metric Class Metric Subclass Metric 

Mission Effectiveness N/A Hover accuracy 
Hover precision 
Vertical speed precision 

Autonomous Platform 
Behavior Efficiency 

N/A N/A (manual control, 
research question about 
data visualization) 

Human Behavior 
Efficiency  

Information Processing 
Efficiency (task efficiency) 

Descent duration error 

Human Behavior 
Precursors 

Workload Workload self-rating 

Collaborative Metrics N/A None 
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6.1.3. Results 
 

Table 16 summarizes the results obtained for each metric. 

 

Table 16: Results of the VAVI evaluation 
Metric Class Metric  Results 

Hover accuracy No significant difference 
Hover precision No significant difference 

(marginal significance for 
expert users) 

Mission Effectiveness 

Vertical speed precision Significantly lower with the 
VAVI 

Human Behavior 
Efficiency  

Descent duration error No significant difference 

Human Behavior 
Precursors 

Workload self-rating Marginal significance, lower 
workload with the VAVI 
(significant difference for 
experts) 

 

In addition to the global analysis, the subgroup of best performers was separately studied. Hover 

precision showed marginally significant improvement with use of the VAVI, while workload results strongly 

indicated a lower mental workload associated with the VAVI. These results indicate improved hover 

performance and reduced perceived workload with use of the VAVI when used by an expert subset of 

participants. 

 

6.1.4. Discussion and conclusions 
 

Mission effectiveness and information processing efficiency metrics were important in this 

experiment. However, the experimenters also measured workload in order to better understand the VAVI 

effect and the reasons behind subjects’ behavior. This latter metric proved to be essential.  

In this experiment, the metric subclasses of attention allocation efficiency, situation awareness, or 

mental model efficiency were not considered, but they could have provided additional insight. Attention 

allocation efficiency, and, in particular, subjects’ visual behavior, can help in understanding how a 

particular display directs and affects users’ attention allocation strategy. Also, it can be interesting to 

measure the effect of the display on situation awareness, and to use retrospective think-aloud to capture 

subjects’ cognitive strategies and mental models to understand how the display is used. But there is the 

risk that the benefits obtained from measuring these additional metrics do not justify their cost. A rigorous 

cost-benefit analysis is required to determine which of these metrics provide enough added value for this 

particular experimental setting and constraints. This type of analysis will be conducted in the second 

phase of this research effort.  

Finally, the experimenters in this example concluded that the hover performance was a difficult 

metric to capture because the 20 seconds during which the participants indicated to the experimenter that 
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they were hovering, did not necessarily capture the participants’ best hover performance throughout the 

cycle. It is important to carefully select performance metrics so that they capture the relevant performance 

aspects. For example, experimenters should think about whether one wants to capture the user 

performance during a given period of time or the user performance when a given event or behavior 

happens. In conclusion, prior to define performance metrics, experimenters should clearly identify and 

define the relevant mission parameters, behaviors, and success criteria.  

 

6.2. Decision support for lunar and planetary exploration 
 

6.2.1. Background 
 

This research effort studied decision support for planetary-surface traversals. Different 

automation levels and visualization interfaces were evaluated. Figure 12 shows the interface, with which 

the participants were able to make, modify and submit the least-costly paths they had planned. 

 
Figure 12: PATH Interface 

 

The PATH Interface is a decision support tool to plan and optimize paths based on objective 

functions important to planetary-surface traversals. In particular, this research studied visualization of 

equal cost contours (LOEC) showing areas on the map that had equal cost for the objective function. 

These LOEC were represented with colored gradients as shown in Figure 12. In addition, this research 

effort also explored displaying terrain-elevation contours. PATH Interface displayed elevation contours in 

two ways: grayscale-filled contour map and contour lines overlaid on top of levels of equal cost 

visualization. For the grayscale map, shown in Figure 13, white was the highest elevation while dark gray 

was the lowest elevation, black remains obstacles. 
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Figure 13: Grayscale-filled contour map 

 

Human-in-the-loop testing was employed to understand the effects of the automated assistance 

and different visualizations on path planning performance across multivariate cost functions. In two 

separate experiments, participants were tasked to make obstacle-free, least-costly paths based on given 

cost functions. In the first experiment, three independent variables were tested: type of visualization (3 

types: elevation contours, levels of equal cost (LOEC), and combination of elevation contours and LOEC); 

level of automation (2 levels: passive and active); cost function (2 functions, Elevation Score, and Sun 

Score). While visualization type was a between-subject variable, cost functions and automation type were 

within-subject variables, resulting in a 2 x 2 x 3 repeated measures design. 

In the second experiment three independent variables were tested, but under two experimental 

matrices. Within one matrix, the variables were type of visualization (the same 3 as those of experiment 

1) and cost function (4 increasingly complex cost functions: Distance, Time, Metabolic, and Exploration). 

Within the second matrix, the variables were type of visualization (the same 3 types as those of 

experiment 1), cost function (Time and Exploration), and type of scenario (nominal and off-nominal). The 

off-nominal scenario represented a degraded automation condition. In the nominal scenario, participants 

were told they could rely on the PATH interface to provide them with accurate path cost based on the cost 

functions. In the off-nominal scenario, participants were informed that PATH’s cost function models were 

inaccurate. Since only a subset of the nominal cost functions were tested in the off-nominal case, two 

experimental matrices were required for the analysis and statistical models. While the visualization type 

was a between-subjects variable, the cost function and the scenario type were within-subjects variables. 

Thus, there was a 3 x 4 repeated measures design for the first experimental matrix, and a 2 x 2 x 3 

repeated measures design for the second matrix. Further information on this research can be found in 

[123]. 

 

6.2.2. Metrics 
 

The metrics used in this experiment are: 
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− Path Cost Error 

Path planning performance was measured by path cost errors that were calculated by comparing 

the path cost generated by the participant to the automation’s minimum path cost. 

− Total Time 

The total time to complete trial was a main performance metric in this experiment. 

In the second experiment, the total time to complete task, was converted to time penalty. 

Participants were asked to complete the task as well and as fast as possible. The time pressure was 

imposed by showing the participant a timer, an incremental clock. The penalty time started after 4 

minutes, which was not told to the participants.  

− Percent Time Spent Modifying Path 

The percent of time spent modifying a path was the time spent by subjects, after having created 

an initial path, on modifying this path by moving, adding, and deleting waypoints. 

− Path Cost Profiles: true time, differential cost, and non-optimal satisficing 

In the second experiment, the path cost profiles were also analyzed. In particular, the measures 

used were: true time, differential cost, and non-optimal satisficing. 

True time is how long a participant took to arrive to the minimum path cost found. It differs from 

total time or time penalty because it reflects the actual time that it took a participant to optimize a path, 

excluding any time spent afterwards attempting to find another solution. Short true times indicate that 

participants were able to optimize the path quickly. 

Differential cost is the path cost error difference (in percent) between the first path cost the 

participant made for a particular trial and the submitted path cost. This metric helps to assess how much 

path cost error decreased during the optimization process. A negative differential cost would indicate that 

the participant submitted a path that was worse than the first one they had made. A small differential cost 

would indicate that the participant’s first path attempt was close in cost to the submitted least-costly path. 

Non-optimal satisficing refers to actions taken by a participant attempting to find a lower path cost 

after a minimum was already achieved. Specifically, non-optimal satisficing is defined as 1) cost surplus: 

the difference between the minimum path cost achieved and the submitted path cost, and 2) time surplus: 

the percent of time spent between those ([total time – true time]/total time). 

− Situation Awareness 

Situation awareness was measured through the number of situation awareness (SA) questions 

that were answered correctly. Multiple choice questions were used as a global measure of the 

participants SA. After every trial, participants were asked two questions about the previous trial. 

Specifically, participants were asked about the elements in the display (e.g., sun positions), and the cost 

functions (e.g., how path costs would be affected by changes in variables). There were a total of eight 

multiple-choice questions asked, four per automation level.  

In the second experiment, performance metrics in off-nominal conditions can be considered as 

performance measures of situation awareness. If subjects could not rely on automation, they had to rely 
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on their own knowledge and understanding of the environment, thus subjects’ performance in off-nominal 

mode was considered as an implicit measure of their situation awareness. 

 

Table 17 and 18 summarize the metrics used in the first and the second experiment. 

 

Table 17: Metrics used to evaluate the PATH Interface in the first experiment  
Metric Class Metric Subclass Metric 

Mission Effectiveness N/A Path cost error 
Total time 

Autonomous Platform 
Behavior Efficiency 

N/A None 

Human Behavior 
Efficiency  

Information Processing 
Efficiency (task efficiency) 

Percent time spent 
modifying path 
 

Human Behavior 
Precursors 

Situation Awareness Post-experiment 
Questionnaire 

Collaborative Metrics N/A None 

 
Table 18: Metrics used to evaluate the PATH Interface in the second experiment 

Metric Class Metric Subclass Metric 

Mission Effectiveness N/A Path cost error 
Total time 

Autonomous Platform 
Behavior Efficiency 

N/A None 

Human Behavior 
Efficiency  

Information Processing 
Efficiency (task efficiency) 

Percent time spent 
modifying path 
True time  
Differential cost 
Non-optimal satisficing 

Human Behavior 
Precursors 

Situation Awareness Performance metrics in off-
nominal conditions 

Collaborative Metrics N/A None 

 

6.2.3. Results 
 

Table 19 and Table 20 summarize the results obtained for each metric. 
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Table 19: Results of the first evaluation of the PATH Interface 
Metric Class Metric  Result 

Path cost error Significant reduction for active automation Mission Effectiveness 
Total time Significant reduction (by about 1.3 minutes) 

when using active automation 
Human Behavior 
Efficiency  

Percent time spent 
modifying path 

Significant difference between automation 
levels. With passive automation, 
participants spent a large portion of time 
modifying paths 

Human Behavior 
Cognitive Precursors 

Situation awareness Significant reduction for active automation 

 
Table 20: Results of the second evaluation of the PATH Interface  

Metric Class Metric Subclass Metric 

Path cost error Significant differences among cost functions Mission Effectiveness 

Total time No significant differences, but the LOEC 
group spent fewer time to optimize the Time 
cost function (the one with the longest times) 

Percent time spent 
modifying path 
 

No main effect between visualization groups 
and cost functions. The trend is that 
participants that had the LOEC visualization 
tended to spend longer time modifying paths 

True time  
 

Significant difference between cost functions 

Differential cost 
 

In the cost function with the smallest 
differential cost, Exploration, there is a 
marginal main effect of visualization. 
Participants with just the LOEC visualization 
had a significantly smaller differential cost 
than the participants in the elevation 
contours & LOEC visualization group.  

Human Behavior 
Efficiency  

Non-optimal 
satisficing 

Participants did not submit sub-optimal path 
costs relative to the achieved minimum. But, 
they spent on average between 20 – 35% of 
their time conducting non-optimal satisficing. 
With the Time cost function, participants had 
a significantly lower percent time surplus 
than with Metabolic and Exploration 
functions. 

Human Behavior 
Cognitive Precursors 

Situation awareness In the off-nominal cases, the LOEC 
participants emerge as being the better 
performers. 

 

In conclusion, the results of the first experiment showed that the effect of the level of automation 

was strong and consistent across all dependent variables. The second experiment focused on testing 

only passive automation in order to further examine visualization effect. Results showed that, for the 

Exploration cost function, the most complex one because of the highest number of variables, the levels of 

equal cost (LOEC) visualization helped participants initially make paths that were close to their optimal. 



 63 

The best performers under the nominal conditions were mostly in the elevation-contour group. 

However, in the off-nominal cases, the LOEC participants emerge as being better performers. The 

reasons behind this may be that while visualization did not have a main effect on performance, it did 

influence the choice of subjects’ strategies. Participants with the additional LOEC visualization tended to 

spend more time modifying the Time function, which assisted them during degraded automation 

conditions. The levels of equal cost visualization, which aggregates all variables into one cost map, 

helped reduce the complex problem, in terms of providing an efficient optimizing strategy, and promoted 

sensitivity analysis for difficult problems.  

For the task of path optimization, humans perform best when they leverage sensitivity analysis. 

As the presence of the LOEC visualization promoted sensitivity analysis, the conclusion of this research 

was that visualization is a desirable attribute in decision support aids during the optimization of paths. 

 
6.2.4. Discussion and conclusions 
 

In the first experiment, only one human behavior efficiency metric was considered, whereas in the 

second experiment three more metrics from this class were measured, enabling a more comprehensive 

understanding of the experiment. These additional metrics complement the information provided by the 

original ones. 

However, it is an open question whether the three additional metrics were necessary, or the same 

results would have been obtained adding only one or two metrics. Correlation among these metrics 

should be further analyzed to understand the relationships among them. Based on the results obtained, 

non-optimal satisficing turned to be an important metric, while true time and differential cost revealed less 

about subjects’ behaviors. A rigorous cost-benefit analysis would be needed to answer whether or not, 

non-optimal satisficing and percent time spent modifying path would have been sufficient metrics for this 

study. 

It should be noted that the percent time spent modifying paths only describes a method of 

conducting sensitivity analysis. This method was the most frequent one, the strategy chosen by 26 

participants. However, there is another type of sensitivity analysis, creating multiple paths, that was 

conducted by the remaining 8 participant. It is important that performance metrics capture all possible 

behaviors and strategies, not only the most popular or straight-forward ones. 

Regarding performance metrics, there were no significant correlations between errors and time 

measures. This indicates that both type of metrics can reflect different effects and provide complementary 

information. However, some of the time metrics were correlated. For example, there was a significant 

correlation within the Time function between non-optimal satisficing time surplus and true time (Pearson 

correlation = -0.48, p = 0.005). This might indicate that after spending a long time attempting to solve the 

Time function path, participants did not spend additional time conducting non-optimal satisficing once a 

minimum path was found. Correlation between metrics should be carefully studied since it can indicate 

that both metrics refer to the same phenomenon. 
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No metrics from the attention allocation efficiency were included in this experiment. Analyzing 

interactions between the participant and the PATH interface (mouse clicks) per interface element (i.e., a 

particular button, or area of interest) could potentially provide further insight into the individual elements of 

the interface. Regarding human behavior precursors, only situation awareness was measured. However, 

workload measures might have provided additional insights on the complexity of each cost function, and 

on how certain visualizations support better decision making and partially mitigate task complexity. 

Finally, collaborative metrics such as trust or mental model efficiency would have helped understanding 

whether the subjects understood and trusted the decision-support tool.  

 

6.3. Assessing the impact of auditory peripheral displays for UAV 
displays 

 

6.3.1. Background 
 

The focus of this experiment was audio cues in unmanned aerial vehicle (UAV) interfaces. The 

objective was to determine whether sonifications maximize the information conveyed to UAV operators 

more efficiently than typical discrete alarms used in current ground control stations. In addition, the impact 

of continuous versus discrete alerting on operators was also explored.  

Participants had to control the UAVs, ensuring that they did not deviate form their paths and they 

did not arrive late to their targets. The test bed used for the experiment is the Multiple Autonomous 

Unmanned Vehicle Experimental (MAUVE), which has been developed at HAL. 

The experiment was a 4x2 fixed factor repeated measures model, with two independent 

variables: the audio condition (a between-subjects treatment), and the number of vehicles under control 

(a repeated within-subjects factor). The audio conditions were: 1) a threshold audio condition11 for both 

the late arrivals and course deviations, 2) a continuous oscillating course deviation audio condition12 with 

threshold alerts for the late arrivals, 3) a continuous modulated late arrival audio condition13  with a 

threshold alert for course deviations, and 4) an oscillating course deviation alert and a modulated late 

arrival alert. 

The second independent variable, the number of vehicles under control, had two levels: single 

UAV and multiple UAV. In the single level, the participant supervised only one UAV, while in the multiple 

factor level, the participant supervised four UAVs. Further information on this research can be found in 

[124]. 

 

 

                                                 
11 The threshold course deviation alert consisted of a single beep. 
12 The oscillating alert consisted of comb filters that were applied to a mix of pink noise and the ambient signal. 
13 The modulated alert consisted of discrete harmonic signals continuously playing. 
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6.3.2. Metrics 
 

The metrics that were used in this experiment are: 

 

− Course Deviation Reaction Time  

The course deviation reaction time indicates how quickly the participant responded to the audio 

cue that warned him about a UAV being deviated from its path. The scenarios included four triggered 

course deviations that requiref the participant to respond. 

− Course Deviation Errors  

Course deviation errors of omission are the number of times the participant failed to respond to 

one of the four triggered course deviations. 

− Late Arrival Reaction Time  

Late arrival reaction time indicates how quickly the participant responded to the audio cue that 

warned him about a UAV being late to its target. Four late arrivals were present in each test scenario and 

were caused when a UAV slowed down because of headwinds. 

− Late Arrival Errors 

Late arrival errors of omission are the number of times the participant failed to respond to one of 

the four triggered late arrivals. 

− Workload Metrics 

Secondary-Task performance workload measure: The number of radio calls missed was 

measured as an indication of the operator’s level of mental workload. The secondary task consisted of 

participants monitoring air traffic radio communications and acknowledging the word “Push” by clicking 

“Acknowledge Push” button on the display. 

NASA Task Load index: The NASA TLX, a subjective workload measure, was administered after 

each condition. 

 

Table 21 summarizes the metrics classes and actual metrics used in this experiment. 

 

Table 21: Metrics used in the Auditory Peripheral Displays study 
Metric Class Metric Subclass Metric 

Mission Effectiveness N/A Course deviation errors 
Late arrival errors 

Autonomous Platform 
Behavior Efficiency 

N/A None 

Human Behavior 
Efficiency  

Information Processing 
Efficiency 

Course deviation reaction time 
Late arrival reaction time 

Human Cognitive 
Precursors 

Workload Secondary task performance 
NASA TLX 

Collaborative Metrics N/A None 
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6.3.3. Results 
 

Table 22 summarizes the results obtained for each metric. 

 

Table 22: Results of the Auditory Peripheral Displays study 
Metric Class Metric  Result 

Course deviation 
errors 

No significant differences Mission Effectiveness 

Late arrival errors No errors 
Course deviation 
reaction time 

Oscillating course deviations 
alerts promoted the best 
performance  

Human Behavior 
Efficiency  

Late arrival reaction 
time 

Modulated late arrival alerts 
promoted the best performance  

Secondary task 
performance 

No significant differences Human Behavior 
Cognitive Precursors 

NASA TLX No significant differences 

 

In conclusion, the experiment showed that sonifications for two different events, the combination 

audio scheme, promoted the best performance for the two reaction time dependent variables. This 

combination scheme consisted of oscillating course deviations alerts and modulated late arrival alerts. 

The workload equality was not a surprise, because the two scenarios in this experiment were designed to 

have comparable workloads, with the multi UAV scenario dividing the monitoring tasks over four vehicles 

instead of just one. The subjective ratings, the NASA TLX confirmed that the participants felt the two 

scenarios were comparable in workload. 

 

6.3.4. Discussion and conclusions 
 

In this experiment, selected metrics are directly related to the mission (i.e., monitoring course 

deviations and late arrivals) and reflect the most important aspects of controlling a UAV. The omission of 

course deviations and late arrivals can often prove disastrous and affect the health of the UAV. 

The main problem with error metrics is that often participants do not commit sufficient errors to 

conduct a statistical analysis. As shown by this case study, error metrics are required, but the 

experimenter should not rely on them and should measure other metrics, such as reaction times. In 

addition, it is important to design the experiment with the appropriate complexity level so that participants 

do not commit too few or too many errors.  

Reaction time, a metric from the human behavior efficiency class, was also measured because 

lower reaction times affect control efficiency even if late responses do not automatically imply harmful 

results. Furthermore, the goal of alarms is to attract users’ attention so that they respond quickly to 

potential threads. Thus, reaction times are a direct measure of the efficiency of alarms. It should be noted 
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that reaction times to different events are often correlated, reflecting related effects that should not be 

reported independently.  

Regarding attention allocation efficiency, the experimenters could have included a post-

experiment survey or use a verbal protocol to better understand how the different alarms affected 

subjects’ attention allocation. Collaborative metrics were not included either; however, in this experiment, 

the reliability of the auditory alarms was not simulated, thus measuring trust was not applicable. In 

addition, auditory alarms are simple concepts that do not require evaluating any related mental model. 

Finally, workload was measured through two different metrics. The same conclusions were 

derived from each metric. This indicates that there was no added value on measuring two different 

workload metrics for this experiment.  
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7. Case Studies: On-going Research  
 

7.1. Research Environment for Supervisory Control of Heterogeneous 
Unmanned Vehicles (RESCHU) 

 

7.1.1. Background 
 

This research effort will conduct two experiments in which subjects have to supervisory control 

heterogeneous unmanned vehicles. The first experiment will compare remote testing trough internet to 

controlled testing environments with the physical presence of the experimenter. The second experiment 

will validate a human-supervisory control model of unmanned vehicle operators that predicts system 

performance. 

Subjects’ task in both experiments is to conduct a surveillance and reconnaissance mission, 

navigating the unmanned vehicles, operating video cameras, and recognizing targets. 

 

7.1.2. Metrics 
 

The metrics that will be used in this experiment are: 

− Number of targets correctly identified by operator. 

− Operator utilization, defined as the time the user is interacting with the interface divided by 

total mission time. 

− Vehicle wait, defined as the time a vehicle has to wait from the moment it needs operator’s 

attention until it receives it from the operator. 

− Response time to threat areas, defined as the amount of time it takes for the operator to 

respond to threat areas that might be in the paths of vehicles. This is considered an indication 

of situation awareness of the operator. 

 

Table 23 summarizes the metrics classes and actual metrics to be used in these experiments. 
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Table 23: Metrics to be used in the RESCHU research study 
Metric Class Metric Subclass Selected Metric 

Mission Effectiveness N/A Number of targets correctly 
identified 

Autonomous Platform 
Behavior Efficiency 

N/A None 

Information Processing 
Efficiency 

Operator utilization Human Behavior 
Efficiency  

Attention Allocation 
Strategy 

Vehicle wait 

Situation Awareness Response time to threat 
areas 
Awareness self-rating 

Human Behavior 
Precursors 

Workload Workload self-rating 

Collaborative Metrics N/A None 

 

7.1.3. Discussion and conclusions 
 

The metrics selection in this experiment is driven by the model that wants to be validated. 

However, in a more generic experiment, additional metrics from human information processing efficiency 

could help in understanding the individual components of the mission and provide additional insight. 

Some examples of this type of metrics are: time required to identify a target, number of times that the 

shortest goal is assigned to an unmanned vehicle, time spent modifying unmanned vehicles’ paths, 

number of objects incorrectly identified. Regarding attention allocation efficiency, since the operator has 

to control several vehicles, metrics such as switching times and homogeneity of attention allocation 

among vehicles could also be measured. 

Regarding human behavior precursors, response time to threat areas will be measured as an 

indication of situation awareness. This performance metric can be very helpful, however, it evaluates a 

very particular aspect of situation awareness and it is sensitive not only to variation in SA, but also to 

variations in other factors, such as workload, skill level, or operators’ strategies. Additional metrics that 

would complement this response time are, for example, the number of times that the shortest goal is 

assigned to an unmanned vehicle, or the number of times a target is overpass without identifying it while 

operating the video camera. Subjective metrics of situation awareness are easy to administer and can 

provide interesting results. However, humans are very often unaware of their lack of awareness. The on-

line query methods and the testable responses are also recommended techniques to measure situation 

awareness, but they might interfere with primary task performance and, therefore, confound the validation 

of the model of interest. 
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8. Conclusions from the Case Studies 
 

The lessons learned and conclusions that can be extracted from these case studies are: 

 

− Mission Effectiveness, Human Behavior Efficiency, and Human Behavior Precursor metric classes 

are the most popular ones. Including a metric from each of these classes seems to be the minimum 

recommended set of metrics. This hypothesis and the added value of incorporating additional metrics 

for a given experiment should be evaluated with a cost-benefit analysis. Such methodology will be 

developed in the next stage of this research effort. 

− Collaborative Metric and Autonomous Platform Behavior Efficiency classes were not included in any 

of the experiments analyzed. The added value of these metric classes is still to be evaluated since 

there was no case study to discuss it. 

− Attention allocation efficiency metrics were only included in the on-going experiment, from which 

there are no available results yet. Metrics to capture users’ strategies can add value to an 

experiment. However, it is still to be demonstrated the actual value of measuring the interactions of 

participants with an interface (e.g., mouse clicks), administering post-experiment surveys, and 

conducing verbal protocols to better understand how the different elements of an interface affect 

subjects’ attention allocation and strategies. 

− Performance metrics should be chosen so that they capture the most relevant performance aspects 

of a mission. Prior to defining performance metrics, experimenters should carefully think about the 

mission parameters and behaviors of interest that need to be captured. 

− Performance metrics should capture all possible behaviors and strategies, not only the most popular 

or straight-forward ones. 

− Performance metrics should be analyzed taking into account operators’ state or initial conditions prior 

to a given response or behavior. 

− Errors and time metrics tend to be uncorrelated, indicating that these metrics can reflect different 

effects and provide complementary information. 

− Some time metrics tend to be correlated, for example, reaction times to different events. These 

effects should not be reported independently. 

− Participants tend to commit insufficient errors to conduct a statistical analysis on this type of metrics. 

It is recommended to use other metrics in addition to error-based metrics. For example, in research 

studies related to the effectiveness of alarms, reaction times should also be measured. 

− Experiments should be designed with the appropriate complexity level so that participants do not 

commit too few or too many errors if error-based metrics are measured. 

− The use of two different metrics to measure the same aspect of the system is not always justified. 

Most of the time, the same conclusions are derived from both set of data resulting in wasted 

resources and an inflation of the type I error.  
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9. Preliminary Evaluation Criteria for Supervisory Control 
Metrics 

 

As discussed in this report, there are multiple metrics and measuring techniques that can be used 

to evaluate supervisory-control applications. All of these metrics and techniques have advantages and 

limitations, and the actual set of metrics that provide the most value for a given experiment will depend on 

the context and the application. Based on the results and conclusions presented in this report, we have 

identified a preliminary list of evaluation criteria for supervisory-control metrics. This list will be refined in 

the next stage of the project, and it will be used as the basis to develop a cost-benefit methodology to 

select supervisory control metrics. The preliminary evaluation criteria that have been identified are: 

 

Experimental Constraints: 

Time: How much time is required for the measurement and analysis of this metric? 

Cost: How costly is the metric to measure and analyze? There will also be a cost for time.  

Experimental setting: Which experimental setting is this metric appropriate for? (e.g., field testing vs. 

simulation environment)  

Development phase: How far in the system development does this metric require us to be? 

 

Construct validity: How well is each metric measuring what I want to measure?  

Power to discriminate between similar constructs: How well does the metric discriminate between 

abstract constructs that are hard to measure such as workload, or attentiveness (e.g., Does galvanic 

skin response really measure workload, or does it measure stress?).   

Intra-subject reliability: Does the metric assess the same construct for every subject? Subjective 

responses have lower intra-subject reliability.    

 

Comprehensive understanding gained: How much does this set of metrics explain the whole 

phenomenon? 

Proximity to the primary research question: How much does this metric help me answer what I 

ultimately want to learn? For example, a workload metric may not tell much without a mission 

effectiveness metric. 

Amount of additional understanding gained: Given that I have other metrics, how much more do I 

learn from this metric? 

Causal relations with other metrics:  How well does this metric help explain underlying reasons for 

other metrics collected? 
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Statistical validity/efficiency: How much does this set o metrics support the statistical analysis? 

Correlation with other metrics: How correlated is this metric with others we are collecting? Need to 

be cautious when collecting more than one metric in a specific metric class. We may measure the 

same phenomenon, which will result in inflated type I errors, and also wasted resources. 

Effect size: Based on my research questions, am I expecting a good separation between different 

conditions for this metric? 

Frequency of observations: Will this metric result in enough observations to enable us extract 

meaningful information? This will be driven by time and cost related to collecting observations. 

 

Measuring technique: How appropriate is this measuring technique? 

Non-intrusiveness: How intrusive is the equipment needed to collect this metric? 

Realism: How much does the measuring technique interfere with the nature of the task?  
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Appendix A: Unidimensional Workload Self-Rating Scales 
− Modified Cooper-Harper Scale [99] 

This technique consists of a structured rating to elicit a single dimensional rating. Participants are 

requested to follow a binary decision tree containing increasingly specific questions in order to reach a 

final rating between 1 and 10. The scale is shown in Figure 14. 

It is argued that conventional scales can suffer from operator judgment and selection variability, 

whereas a decision tree flowchart scale may reduce the variability due to its tighter structure [100]. 

 

 
Figure 14: Modified Cooper-Harper Scale. 
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− Bedford Workload Scale [101] 

This scale was created by trial and error with the help of Royal Aircraft test pilots to assess pilot 

workload. The Bedford scale also involves the use of a hierarchical decision tree to assess participant 

workload; participants follow the decision tree to derive a workload rating for the task under analysis. The 

scale is shown in Figure 15. 

This scale is similar to the Modified Cooper-Harper scale, as it also uses a hierarchical decision 

tree. However, this scale was specially developed for pilot workload assessment, whereas the Modified-

Cooper Harper scale was developed for applications beyond aircraft environment. 

 Figure 15: Bedford Scale. 
 



 82 

Appendix B: Multidimensional Workload Self-Rating 

Scales 
− Subjective Workload Assessment Technique (SWAT) [102] 

SWAT rates three major workload dimensions: time load, mental effort, and psychological stress, 

through a 3-point scale. This technique involves a two-step procedure: scale development, and event 

rating. In the first step, participants rank all possible 27 combinations of the 3 levels of the 3 workload 

dimensions, based on what they consider to be the lowest to highest workload. Then the SWAT scale is 

developed by calculating the corresponding score (1 to 100; 0 represents virtually no perceived workload 

and 100 represents high workload) for every combination of ratings on the three subscale. Then, 

participants perform the task under analysis and report the perceived workload, rating each of the 

workload dimensions. The researcher then maps the set of ratings to the SWAT score (1 to 100), which 

has been calculated during the development phase. This data is transformed by means of conjoint 

measurement, into an interval scale of workload. Table 24 shows the SWAT rating scales. 

 

Table 24: SWAT Rating Scales. 
TIME LOAD MENTAL EFFORT LOAD STRESS LOAD 

1. Often have spare time: 
interruptions or overlap 
among activities occur 
infrequently or not at all. 

1. Very little conscious mental 
effort or concentration 
required: activity is almost 
automatic, requiring little or no 
attention. 

1. Little confusion, risk, 
frustration, or anxiety 
exists and can be easily 
accommodated 

2. Occasionally have 
spare time: interruptions 
or overlap among 
activities occur frequently 

2. Moderate conscious mental 
effort or concentration 
required: complexity of activity 
is moderately high due to 
uncertainty, unpredictability, 
or unfamiliarity; considerable 
attention is required. 

2. Moderate stress due 
to confusion, frustration, 
or anxiety noticeably 
adds to workload: 
significant compensation 
is required to maintain 
adequate performance.  

3. Almost never have 
spare time: interruptions 
or overlap among 
activities are very 
frequently, or occur all 
the time 

3. Extensive mental effort and 
concentration are necessary: 
very complex activity requiring 
total attention. 

3. High to very intense 
stress due to confusion, 
frustration, or anxiety: 
high to extreme 
determination and self-
control required. 

 

− NASA TLX [103] 

In this technique participants are required to rate six subscales: mental demand, physical demand, 

temporal demand, effort, performance, and frustration. Then, participants are repeatedly asked to choose 

which of a pair of subscales contributes more to their overall workload, until all possible pairs of subscales 

have been compared. In order to calculate the workload metric, the ratings from the six subscales are 

combined into a single weighted measure of workload using the number of times a particular subscale 
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was preferred as its weight. Examples of the NASA TLX rating scales and pair scale-rating questions are 

shown in Figures 16-17. 

An advantage of this technique is that there is a free automated computer application of the 

NASA-TLX available for download at the NASA website. 

 

Figure 16: NASA TLX Rating Scales. 
 

 

 
Figure 17: Example of NASA TLX Pair Rating Questions. 
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Appendix C: SA Subjective Metrics and Techniques  
− Situation Awareness Rating Technique (SART) developed by Taylor [104] 

SART requires the operator to rate the 3 or 10 dimensions shown in Table 2514. Operators are 

asked post-trial to rate each dimension on a Likert scale of 1 to 7. Alternatively, specific categories (low 

vs. high) or pairwise comparisons can also be used. The SA metric is calculated based on the total 

scores obtained for each of the three dimensions. The formula to calculate the SA metric is 

“Understanding - (Attentional Demand – Attentional Supply)”.  

 

Table 25: SART Dimensions. 

 
 

SART dimensions are generic and so can be applied to many different domains. SART is a 

widely used method and has a number of associated validation studies. However, the SART dimensions 

only reflect a limited portion of SA, and the rating is sensitive also to performance and workload 

differences. Testing of the technique often reveals a correlation between SA and performance, and also 

between SA and workload. 

 

− Situation Awareness – Subjective Workload Dominance Technique (SA-SWORD) developed 

by Vidulich & Hughes [66] 

This technique requires participants to do comparative self-ratings, comparing self-assessed SA 

from one trial to another. Therefore, SA-SWORD can only be used with within-participants experimental 

designs. A judgment matrix comparing each task to every other task is filled in with each subject's 

evaluation of the tasks. The SA metric is calculated using a geometric means approach. 

The SA-SWORD technique can be useful to compare two different interface design concepts and 

their effect upon operator SA. In addition, comparative self-ratings encourage within-participant 

consistency but in some situations, the number of comparisons required can become quite large, making 

                                                 
14  . The 3-D SART requires the subject to rate only the 3 domains but the 10-D SART requires rating the 10 

constructs. 
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the use of these measures impractical [105]. Finally, there is limited evidence of the use of this technique 

in the literature. 

 

− SA Rating Scale (SARS) developed by Waag & Houck [106] 

SARS can be used as a self-rating or an observer rating technique. It was developed for aviation 

and it measures SA rating the 31 behaviors presented in Table 26 in a 6-point scale with acceptable and 

outstanding as anchors. The 31 SARS behaviors are divided into 8 categories representing phases of 

mission performance. These categories and associated behaviors were developed from interviews with 

experienced pilots. The SA metric is obtained by calculating an average score for each category and also 

a total SARS score (sum of all rating). 

Table 26: SARS Behaviors. 

 
 

This scale combines assessments on many dimensions besides SA, including decision making 

abilities, flight skills, performance, and the subjective impressions of a person’s personality traits. 

Moreover, the scale is closely tied to the particular aircraft type and mission, so the applicability of this 

measure to other domains is doubtful. 

 

− Cranfield Situation Awareness Scale (C-SAS) developed by Dennehy [107] 

C-SAS can be used as a self-rating or an observer rating technique. It requires to rate each of 

these five subscales: knowledge; understanding and anticipation of future events; management of stress, 

effort and commitment; capacity to perceive, attend, assimilate and assess information; and overall 

situation awareness. The SA metric is calculated by adding all the subscales scores together. A high 

score indicates a high level of SA. The technique can be used during or after the experiment. C-SAS has 

been subjected to only limited use. 
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− Mission Awareness Rating Scale (MARS) developed by Matthews, Beal, and Pleban [108] 

MARS is a development of the CARS technique15, but it was designed specifically for use in the 

assessment of SA in military exercises. The technique comprises two separate sets of four questions. 

The first set of four questions pertain to assessing SA content, for example, how well the respondent 

thinks he or she understands the situation. The second set of questions addresses workload, for example, 

how much mental effort is required to achieve understanding in a given situation. In both sets, the first 

three questions are about the ease of identification, understanding, and projection of mission critical cues; 

the fourth assesses how aware the participant felt during the mission. Figure 18 illustrates the first part of 

this questionnaire. 

 
Figure 18: MARS Questionnaire (Part 1: ability to detect and understand important cues). 

 

The technique was developed for field trials instead of simulation trials and it is normally 

administered after the trial or mission completion. MARS can be used across domains with minimal 

modifications. A potential disadvantage is the construct validity of this technique; it could be argued that 

MARS rates the difficulty in acquiring and maintaining SA rather than the actual SA because the second 

set of questions is formulated as “how difficult –in terms of mental effort–  was to”. In addition, the 

technique has only limited validation evidence. 

 

 

                                                 
15 Crew Awareness Rating Scale (CARS) was developed by McGuinness and Foy [109].The technique elicits 

self-ratings of SA post-trial from participants and it also consists on two sets of four questions each.  
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− China Lake SA (CLSA) developed by Adams [110] 

CLSA is a five-point rating scale based on the Bedford Workload Scale. It was designed at the 

Naval Air Warfare Center at China Lake to measure SA in flight. CLSA is a unidimensional scale, which 

can be insufficient for capturing SA’s richness and complexity. In addition, the technique has only limited 

validation evidence. The rating scale is presented in Figure 19. 

 

 

 
Figure 19: China Lake SA Rating Scale. 
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Appendix D: Multiple Rating Scales to Elicit Dimensions of 

Trust  
Jian, Bizantz, and Drury developed from empirical evidence a twelve-item questionnaire to 

measure trust in automation [111]. This questionnaire incorporates a seven point rating scale in the range 

from “not at all” to “extremely”. Subjects are requested to rate the degree of agreement or disagreement 

of with these twelve trust-related statements. This measure represents the first attempt at empirically 

generating a scale to measure trust in automation. Figure 20 shows the questionnaire. 

 
Figure 20: Twelve item questionnaire developed by Jian et al. [111] 
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Madsen and Gregor developed the Human-Computer Trust (HCT) scale, which consists of five 

main constructs each with five sub-items as shown in Figure 21 [112]. These five items are drawn from an 

original list of ten trust constructs as having the most predictive validity. Madsen and Gregor claim that the 

HCT has been empirically shown to be valid and reliable. 

 

 

 

 

Figure 21: Human-Computer Trust (HCT) Scale developed by Madsen & Gregor [112] 
 

A limitation of this technique is that it assumes that the user has already several months of 

experience with the system.  
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Figure 22 shows another multidimensional rating scale, the SHAPE Automation Trust Index [113] 

This technique was developed by Eurocontrol to measure human trust in Air Traffic Management systems. 

This measure is primarily concerned with human trust of ATC computer-assistance tools and other forms 

of automation support, which are expected to be major components of future ATM systems. This 

questionnaire is based on Madsen & Gregor work. This questionnaire was developed in close 

collaboration with air traffic controllers, updating and simplifying the original Madsen’s & Gregor’s 

questionnaire to make it easy to use and understand. In particular usability evaluation trials, and construct 

validity feedback from air traffic controllers were collected. A main advantage of this technique is that their 

creators did actively work to create their scales to reflect how air traffic controllers understand trust. 
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Figure 22: SHAPE Automation Trust Index developed by Eurocontrol [113] 
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Appendix E: Knowledge Elicitation Techniques 

 
− Cognitive Interviewing  

Cognitive interviewing techniques, such as open interviews, question-answer interviews, and 

inferential flow analysis, can be used to elicit mental models. For example, in the open interview form, the 

researcher engages the participant in an open conversation to elicit domain concepts and the 

relationships between them. This technique has been used, for example, by Cavaleri & Sterman [114], 

and Redding & Cannon [115]. 

Although cognitive interviewing is straight-forward, it relies heavily on the interviewer's 

interpretations. In addition, this technique only captures information that can be expressed verbally. This 

technique is recommended at the very initial stage of a research, as a starting point for obtaining 

information about the domain of interest. 

 

− Verbal Protocols 

In this technique, participants are asked to think aloud and the researcher identifies the 

relationships between concepts from participants’ verbalizations. This technique is used to obtain 

information about decision making strategies and general reasoning processes. It is particularly useful for 

uncovering decision making errors [86]. 

Its limitations are the labor-intensive process of collecting and analyzing data, and the difficulty to 

systematically make comparisons among participants. In addition, humans have limited consciousness of 

their actual thought structures and this technique usually provides an incomplete picture. However its use 

is recommended in domains in which verbalization is a normal part of task performance. Furthermore, it 

can provide valuable insights into participants’ cognitive strategies if used in conjunction with other 

behavioral metrics for attention allocation and information processing efficiency.  

 

− Pairwise Ratings 

In this technique, participants are presented with all possible pairs of concepts one pair at a time, 

and they are requested to provide a similarity or relatedness ratings for each pair. Then, a matrix of 

pairwise ratings is created that can be analyzed with multidimensional scaling [116] or the Pathfinder 

algorithm [117]. 

This method is time efficient, it requires little reading or writing, and the mental model is not 

articulated by the participant, but inferred through statistical analysis. A disadvantage is that the repetitive 

nature of pairwise ratings can induce a response set. The pairwise rating method is recommended when 

research time is constrained. 
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− Causal Mapping 

This is the most commonly used technique in an organizational or management setting. 

Participants are presented an expert-generated list of concepts and they are requested to select the “n” 

most important concepts. These “n” concepts are then placed in a “nxn” matrix and participants indicate if 

one concept causes the other. Participants need to identify the direction of the causal relation (concepts 

in the rows are sources while those in the columns are targets), its nature (+ or -), and its strength 

(usually -3 to 3). To compare two causal maps, the causal mapping matrices can be analyzed using a 

Distance Ratio (DR) Index [118]. This technique is recommended for the elicitation of information about 

the causal relations between concepts.  

 

− Card Sorting 

This technique involves sorting a series of cards, each labeled with a concept, into groups that 

make sense to participants. Participants also have to explain why they arranged the cards in those 

groups. This technique has been used to examine various types of models, including social mental 

models [119], reasoning mental models [120], and mental models of competitive industry structures [121]. 

In addition, card sorting is used by many information architects as an input to the structure of a site or 

product. 

Card sorting is quick, inexpensive, easy-to-administer, and flexible. However, in contrast to other 

techniques, visual card sorting might capture only “surface” characteristics, eliciting knowledge that is 

easily and often accessed from short-term memory. Another disadvantage is that card sorting is an 

inherently content-centric technique that neglects users’ tasks. In addition, the sorting is quick, but the 

analysis of the data can be difficult and time consuming, particularly if there is little consistency between 

participants. This technique is recommended when research time is restricted. 

 

− Repertory Grid Method (RGM) 

In this technique, 3 concepts are presented at a time to participants, and they are requested to 

describe how 2 of these concepts differ from the third on a particular dimension. After several trios of 

concepts, a list of dimensions or constructs with opposing poles is obtained. Next, the concepts are rated 

using these dimensions. The data elicited through this method is usually analyzed with multidimensional 

scaling. An example of the application of this method can be found in [122]. 

Advantages of this method include high validity, it is well grounded theoretically, George Kelly’s 

Personal Construct Theory, and reliability, it produces similar representations over time) [86]. A 

disadvantage is the prohibitive amount of time required to administer the technique. RGT should be used 

only when there is ample research time available. 
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Appendix F: Mental-Model Analysis and Representation 

Techniques 

 

− Multidimensional Scaling (MDS) 

MDS generates spatial configurations that give a pictorial representation of how concepts are 

clustered within a multidimensional space. The strength of a dimension in a mental model is calculated in 

terms of a structural ratio (i.e., the ratio of the mean distance between concepts in the same category to 

the mean distance between concepts in different categories). More information about this technique can 

be found in [123]. 

This technique can be used to identify the dimensions that an individual uses to judge the 

similarity between clusters of concepts and the dominance of a particular concept within an individual’s 

mental model. A potential problem with this technique is that there are a number of variations of scaling 

techniques to choose from, and the most appropriate technique is not always easy to identify [86]. 

 

− Distance ratio Formula (DR) 

DR calculates the degree of similarity between two maps, represented as expanded association 

matrices. The idea is to sum the differences between the two maps and then divide that sum by the 

greatest possible difference (if DR = 0, then the maps are identical; if DR = 1, then the distance between 

the maps is maximum). More information about this technique can be found in [124]. 

This technique can be used to isolate 3 types of differences: differences in the strengths of 

commonly held beliefs, differences attributable to the existence or nonexistence of beliefs involving 

common concepts, and differences attributable to beliefs consisting of unique concepts. A disadvantage 

is that the formula treats the absence of a link between two concepts the same as the absence of a link 

attributable to the absence of a concept. Another problem is that the formula cannot be generalized to 

maps of different types [86]. 

 

− Pathfinder Algorithm 

Pathfinder is a computerized networking technique that is used to derive associative networks 

based on perceived relatedness among a selected set of concepts. It takes in raw scores (i.e., pairwise 

comparisons) in a form of upper or lower triangle matrix and generates a network. Concepts that are 

highly related are separated by a few links and appear close together in the Pathfinder network. More 

information about this technique can be found in [125]. 

A disadvantage of this technique is that the layout of items in a Pathfinder network is arbitrary (i.e., 

it represents associative but not semantic information about conceptual relationships) [86]. 

 


