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Abstract

Stream programs represent an important class of high+pesfice computations. Defined by their
regular processing of sequences of data, stream progrgmeammost commonly in the context of
audio, video, and digital signal processing, though alseeiworking, encryption, and other areas.
Stream programs can be naturally represented as a graptegfandent actors that communicate
explicitly over data channels. In this work we focus on pergs where the input and output rates
of actors are known at compile time, enabling aggressivesfaamations by the compiler; this
model is known as synchronous dataflow.

We develop a new programming language, Streamlt, that eeysoloth programmers and
compiler writers to leverage the unique properties of theeshing domain. Streamlt offers several
new abstractions, including hierarchical single-inpag#e-output streams, composable primitives
for data reordering, and a mechanism calieléport messaginthat enables precise event han-
dling in a distributed environment. We demonstrate theiltelgg of developing applications in
Streamlt via a detailed characterization of our 34,006-lenchmark suite, which spans from
MPEG-2 encoding/decoding to GMTI radar processing. We alesent a novel dynamic analysis
for migrating legacy C programs into a streaming represiemta

The central premise of stream programming is that it enabhesompiler to perform powerful
optimizations. We support this premise by presenting @&sfinew transformations. We describe
the first translation of stream programs into the compredsathin, enabling programs written for
uncompressed data formats to automatically operate Hirestcompressed data formats (based
on LZ77). This technique offers a median speedup of 15x onncomvideo editing operations.
We also review other optimizations developed in the Strégmdup, including automatic paral-
lelization (offering an 11x mean speedup on the 16-core Raehine), optimization of linear
computations (offering a 5.5x average speedup on a Pentjuand cache-aware scheduling (of-
fering a 3.5x mean speedup on a StrongARM 1100). While thessformations are beyond the
reach of compilers for traditional languages such as C, leepme tractable given the abundant
parallelism and regular communication patterns exposdtidgtream programming model.

Thesis Supervisor: Saman Amarasinghe
Title: Associate Professor






Acknowledgments

| would like to start by expressing my deepest gratitude tahyisor, colleague and friend, Saman
Amarasinghe. From 4am phone calls in Boston to weeks of orere time in Sri Lanka and
India, Saman investeahfathomablg¢ime and energy into my development as a researcher and as
a person. His extreme creativity, energy, and optimism {@ahention mad PowerPoint skills!)
have been a constant source of inspiration, and wheneveat amy best, it is usually because | am
asking myself:What would Saman @ Saman offered unprecedented freedom for me to pursue
diverse interests in graduate school — including weeks iateworking with other groups — and
served as a fierce champion on my behalf in every possible lwapl forever treasure our deep
sense of shared purpose and can only aspire to impact othersch as he has impacted me.

Contributors to this dissertation Many people made direct contributions to the content of this
dissertation. The Streamlt project was a fundamentalliaborative undertaking, involving the
extended efforts of over 27 people. | feel very lucky to hagerbpart of such an insightful, ded-
icated, and fun team. Sectidn4 provides a technical overview of the entire project, inahgd
the division of labor. In what follows | am listing only a swiof each person’s actual contribu-
tions. Michael Gordon, my kindred Ph.D. student througtbatentire Streamlt project, led the
development of the parallelization algorithms (summatizeChapter 4), the Raw backend and
countless other aspects of the compiler. Rodric Rabbah gio&ued the project in many capaci-
ties, including contributions to cache optimizations (suanized in Chapter 4), teleport messaging
(Chapter 3), the MPEG2 benchmarks, an Eclipse interfaakttenCell backend. Michal Karcz-
marek was instrumental in the original language design §@&h&2) and teleport messaging, and
also implemented the Streamlt scheduler and runtime {b2avid Maze, Jasper Lin, and Allyn
Dimock made sweeping contributions to the compiler infiacture; | will forever admire their
skills and tenacity in making everything work.

Central to the Streamlt project is an exceptional array d&md. students, who | feel very priv-
ileged to have interacted with over the years. Andrew Lanith Ayrawal, and Janis Sermulins led
the respective development of linear optimizations, lirst@tespace optimizations, and cache opti-
mizations (all summarized in Chapter 4). Janis also implastethe cluster backend, with support
for teleport messaging (providing results for Chapter 3attklew Drake implemented the MPEG2
codec in Streamlt, while Jiawen Chen implemented a flexibdplgics pipeline and Basier Aziz
implemented mosaic imaging. Daviz Zhang developed a liglgiat streaming layer for the Cell
processor; Kimberly Kuo developed an Eclipse user interfac Streamlt; Juan Reyes developed
a graphical editor for stream graphs; and Jeremy Wong maddake scalability of stream pro-
grams. Kunal Agrawal investigated bit-level optimizasdn Streamlt. Ceryen Tan is improving
Streamlt’s multicore backend.

The Streamlt project also benefited from an outstandingfaetadergraduate researchers, who
taught me many things. Ali Meli, Chris Leger, Satish Ramaswaviatt Brown, and Shirley Fung
made important contributions to the StreamIt benchmarie detailed in Chapter 2). Steve Hall
integrated compressed-domain transformations into thea®iit compiler (providing results for
Chapter 5). Qiuyuan Li worked on a Streamlit backends for, @dllle Phil Sung targeted a GPU.

Individuals from other research groups also impacted tihea8tlt project. Members of the
Raw group offered incredible support for our experimems)uding Anant Agarwal, Michael
Taylor, Walter Lee, Jason Miller, lan Bratt, Jonathan Basizavid Wentzlaff, Ben Greenwald,
Hank Hoffmann, Paul Johnson, Jason Kim, Jim Psota, Nathani®oan, and Matthew Frank.

5



Hank Hoffmann, Nathan Schnidman, and Stephanie Seneffpatsoded valuable expertise on
designing and parallelizing signal processing applicetioExternal contributors to the Streamlt
benchmark suite include Ola Johnsson, Mani Narayanan, Ma&tenemo, Jinwoo Suh, Zain
ul-Abdin, and Amy Williams. Fabrice Rastello offered keights for improving our cache op-
timizations. Weng-Fai Wong offered guidance on severajegte during his visit to the group.
Streamlt also benefited immensely from regular and insigjltbnversations with stakeholders
from industry, including Peter Mattson, Richard Lethinhd&hapin, Vanu Bose, and Andy Ong.

Outside of the Streamlt project, additional individualsdeaalirect contributions to this dis-
sertation. In developing our tool for extracting streamafialism (Chapter 6), | am indebted to
Vikram Chandrasekhar for months of tenacious hacking ar&teéphen McCamant for help with
Valgrind. | thank Jason Ansel, Chen Ding, Ronny Krashinsktor Kuncak, and Alex Salcianu,
who provided valuable feedback on manuscripts that werporated into this dissertation. | am
also grateful to Arvind and Srini Devadas for serving on mgnaaittee on very short notice, and
to Marek Olszewski for serving as my remote agent of thedissssion!

The rest of the story Throughout my life, | have been extremely fortunate to haag &n amaz-
ing set of mentors who invested a lot of themselves in my petisgrowth. | thank Thomas “Doc”
Arnold for taking an interest in a nerdy high school kid, andgetting him loose with chemistry
equipment in a Norwegian glacier valley — a tactic which ceted my interest in science, espe-
cially the kind you can do while remaining dry. | thank Scotir@azine for taking a chance on
a high school programmer in my first taste of academic rebeart enriching experience which
opened up many doors for me in the future. | thank Vanessall&€@ead Mitchel Resnick for
making my first UROP experience a very special one, as evatelng my subsequent addiction to
the UROP program. | thank Andrew Begel for teaching me mamgth not least of which is by
demonstration of his staggering commitment, capacity,alhdround coolness in mentoring un-
dergraduates. I'm especially grateful to Brian Silvermeamentor and valued friend whose unique
perspectives on everything from Life in StarLogo to life omautg have impacted me more than he
might know. | thank Markus Zahn for excellent advice and guick, both as my undergraduate ad-
visor and UROP supervisor. Finally, I'm very grateful to Katnobe, who provided unparalleled
mentorship during my summers at Compaq and stimulated ntyrftesest in compilers research.

Graduate school brought a new set of mentors. | learned & deehfrom authoring papers
or proposals with Anant Agarwal, Srini Devadas, Fredo Ddravlichael Ernst, Todd Thorsen,
and Frédéric Vivien, each of whom exemplifies the role of aiftganember in nurturing student
talent. | am also very grateful to Srini Devadas, Martin Rih#Mlichael Ernst, and Arvind for being
especially accessible as counselors, showing interesyiwank and well-being even in spite of
very busy schedules. | could not have imagined a more suppe@rnvironment for graduate study.

| thank Charles Leiserson and Piotr Indyk for teaching mauabeaching itself. | will always
remember riding the T with Charles when a car full of Red Smsfasked him what he does for
a living. Imagining the impressive spectrum of possibldiesp | should not have been surprised
when Charles said simply, “l teach”. Nothing could be movetand | feel very privileged to have
been a TA in his class.

I'd like to thank my collaborators on projects other thare8ilt, for enabling fulfilling and
fun pursuits outside of this dissertation. In the microficsdab, | thank J.P. Urbanski for many late
nights “chilling at the lab”, his euphemism for a recurringpess whereby he manufactures chips
and | destroy them. His knowledge, determination, and divgoad nature are truly inspiring. |
also learned a great deal from David Craig, Mats Cooper, Téadsen, and Jeremy Gunawardena,

6



who were extremely supportive of our foray into microfluglit thank Nada Amin for her insights,
skills, and drive in developing our CAD tool, and for beingabrsolute pleasure to work with.

I’'m very thankful to my collaborators in applying technolotpwards problems in socio-
economic development, from whom I've drawn much supporttstFand foremost is Manish
Bhardwaj, whose rare combination of brilliance, deterriorg and selflessness has been a deep
inspiration to me. | also thank Emma Brunskill, who has be@emendous collaborator on many
fronts, as well as Sara Cinnamon, Goutam Reddy, SomaniiRand Pallavi Kaushik for being
incredibly talented, dedicated, and fun teammates. | am geateful to Libby Levison for in-
volving me in my first project at the intersection of techrgpl@and development, without which
| might have gone down a very different path. | also thank San@hakrabarti for being a great
officemate and friend, and my first peer with whom | could inigege this space together.

| am indebted to the many students and staff who worked witlomiie TEK project, includ-
ing Marjorie Cheng, Tazeen Mahtab, Genevieve Cuevas, Daeory, Saad Shakhshir, Janelle
Prevost, Hongfei Tian, Mark Halsey, and Libby Levison. loateank Pratik Kotkar, Jonathan
Birnbaum, and Matt Aasted for their work on the Audio Wiki. buld not have been able to
accomplish nearly as much without the insights, dedicatod hard work of all these individuals.

Graduate school would be nothing if not for paper deadliaesl, | feel very lucky to have
been down in the trenches with such bright, dependable, ar@itaining co-authors. Of people
not already cited as such, | thank Marten van Dijk, Blaise96ad, Andrew Lee, Charles W.
O’Donnell, Kari Pulli, Christopher Rhodes, Jeffrey Sheidbavid Wentzlaff, Amy Williams, and
Matthias Zwicker for some of the best end-to-end researplemences | could imagine.

Many people made the office a very special place to be. Mary &iDis an amazing force
for good, serving as my rock and foundation throughout mahyiaistrative hurricanes; | can’t
thank her enough for all of her help, advice, and good cheerttye years. I’'m also very grateful to
Shireen Yadollahpour, Cornelia Colyer, and Jennifer Tyakbose helpfulness | will never forget.
Special thanks to Michael Vezza, system administratoaextlinaire, for his extreme patience and
helpfulness in tending to my every question, and fixing etreng that | broke.

| thank all the talented members of the Commit group, and aalhe the Ph.D. students
and staff — Jason Ansel, Derek Bruening, Vikram Chandramekbleb Chuvpilo, Allyn Dimock,
Michael Gordon, David Maze, Michal Karczmarek, Sam Lars&arek Olszewski, Diego Puppin,
Rodric Rabbah, Mark Stephenson, Jean Yang, and Qin Zhaoouf toleratingway more than
their fair share of Streamlt talks, they offered the besttmgeeating, and traveling company ever.
| especially thank Michael Gordon, my officemate and trustieeshd, for making 32-G890 one of
my favorite places — I'm really going to miss our conversasi¢gand productive silences!)

I'd like to extend special thanks to those who supported nmeyinob search last spring. | feel
very grateful for the thoughtful counsel of dozens of peapi¢he interview trail, and especially to
a few individuals (you know who you are) who spent many hoailigrig to me and advocating on
my behalf. This meant a great deal to me. | also thank Kentayafia and others at MSR India
for being very flexible with my start date, as the submissiithig thesis was gradually postponed!

| am extremely fortunate to have had a wonderful support ogtwo sustain me throughout
graduate school. To the handful of close friends who joinedfon food, walks around town, or
kept in touch from a distance: thank you for seeing me thraighthick and thin. I'd like to
especially call out to David Wentzlaff, Kunal Agrawal, Ml Gordon and Cat Biddle, who held
front-row season tickets to my little world and made it so mbetter by virtue of being there.

Finally, I would like to thank my amazingly loving and suppee parents, who have always
been 100% behind me no matter where | am in life. | dedicatettt@sis to them.

7



Relation to Prior Publications

This dissertation alternately extends and summarizes ptiblications by the author. Chapters
1 and 2 are significantly more detailed than prior descnigtiof the Streamlit languag&KA02,
TKG*02, AGK*05] and include an in-depth study of the StreamIt benchmarte shat has yet to
be published elsewhere. Chapter 3 subsumes the prior géseof teleport messagindKS*05],
including key changes to the semantics and the first unigsmrescheduling algorithm. Chap-
ter 4 is a condensed summary of prior publicaticd¥ K102, LTA03, ATA05, STRA05 GTAO06],
though with new text that often improves the exposition. itea5 subsumes the prior report on
compressed-domain processifiglA07], offering enhanced functionality, performance, and read
ability. Chapter 6 is very similar to a recent publicatidC/A07]. Some aspects of the author’s
work on Streamlt are not discussed in this dissertatforA03, CGT+05].

Independent publications by other members of the Strearoltpgare not covered in this dis-
sertation KRA05, MDH 106, ZLRAOQS]. In particular, the case study of implementing MPEG2 in
Streamlt provides a nice example-driven exposition of titeelanguageNIDH*06].

Funding Acknowledgment

This work was funded in part by the National Science Fouwndatgrants EIA-0071841, CNS-
0305453, ACI-0325297), DARPA (grants F29601-01-2-01689601-03-2-0065), the DARPA
HPCS program, the MIT Oxygen Alliance, the Gigascale SystB@search Center, Nokia, and a
Siebel Scholarship.



Contents

1 My Thesis 17
1.1 Introduction. . . . . . . . . . e e 17
1.2 Streaming ApplicationDomain. . . . . . . . . . . ... 19
1.3 Brief History of Streaming. . . . . . . . . . .. . ... 20
1.4 TheStreamltProject. . . . . . . . . . . . 24
1.5 Contributions. . . . . . . . L 26

2 The Streamlt Language 29
2.1 Modelof Computation. . . . .. .. ... ... . 29
2.2 Filters . . . . . e 30
2.3 Stream Graphs. . . . . . . e 31
2.4 DataReordering . . . . . . . . . . 33
2.5 Experience Report. . . . . . . . . 36
2.6 RelatedWork. . . . . . . . . 52
2.7 Future Work. . . . . . e 53
2.8 ChapterSummary . . . . . . . . 55

3 Teleport Messaging 57
3.1 Introduction. . . . . . . .. 57
3.2 Stream Dependence Function . . . . . . . .. ... ... Lo 61
3.3 SemanticsofMessaging . . . . . . . ... 65
3.4 CaseStudy. . . .. . . . 70
3.5 RelatedWork. . . . . . .. 76
3.6 FutureWork. . . . . . . . 77
3.7 ChapterSummary . . . . . . . . . 78

4 Optimizing Stream Programs 79
4.1 Parallelization . . . . . . .. 80
4.2 Optimizing Linear Computations. . . . . . . . . . . . .. ... ... ... 86
4.3 Cache Optimizations. . . . . . . . . . . . e 95
4.4 RelatedWork. . . . . . . e 99
4.5 Future Work. . . . . . . 102
4.6 ChapterSummary . . . . . . . . . 104

9



5 Translating Stream Programs into the Compressed Domain 107

5.1 Introduction. . . . . . . . . e 107
5.2 Mapping into the CompressedDomain . . . . . . .. ... .. ... ...... 109
5.3 SupportedFile Formats. . . . . . . . .. ... ... 118
5.4 Experimental Evaluation . . . . . ... ... ... .. ... .. 120
55 RelatedWork. . . . . . . . e 128
5.6 Future Work. . . . . . . . . e 129
5.7 ChapterSummary . . . . . . . . . 129

6 Migrating Legacy C Programs to a Streaming Representation 131
6.1 Introduction. . . . . . . . . L 131
6.2 Stability of Stream Programs. . . . . . . . .. ... 133
6.3 Migration Methodology . . . . . . . . . . .. ... .. 136
6.4 Implementation. . . . . . . . ... 139
6.5 CaseStudies. . . . . . . . . e 140
6.6 RelatedWork. . . . . . . . . . 145
6.7 Future Work. . . . . . . . e 147
6.8 ChapterSummary . . . . . . . . . . e 148

7 Conclusions 149

Bibliography 152

A Example Streamlt Program 167

B Graphs of Streamlt Benchmarks 173

10



List of Figures

1 MyThesis. . . . . . . . e 17
1-1 Stream programming is motivated by architecture antiGgn trends. . . . . . 18
1-2 Example stream graph for a software radio with equalizer. . . . . . . . .. .. 19
1-3 Timeline of computer science efforts that have incaapeat notions of streams. . 21
1-4 Space of behaviors allowable by different models of cotaon. . . . . . . . .. 22
1-5 Key properties of streaming models of computation.. . . . . ... .. ... .. 22
The StreamltLanguage . . . . . . . . . . . . 29
2-1 FIRfilterin Streamlt.. . . . . . . . . . . ... 31
2-2 FIRAilterinC.. . . . . . . . 31
2-3 Hierarchical stream structuresin Streamlt. . . . . . .. ... ... ... .... 32
2-4 Example pipeline with FIRfilter. . . . . . . .. . .. .. ... ... ... ..., 32
2-5 Example of a software radio with equalizer.. . . . . . . . ... ... ... ... 33
2-6 Matrix transposein Streamlt.. . . . . . . ..o 34
2-7 Data movementin a 3-digit bit-reversed ordering. . . . . . . .. .. ... ... 35
2-8 Bit-reversed ordering in an imperative language.. . . . . . . .. .. ... ... 35
2-9 Bit-reversed ordering in Streamlt. . . . . .. .. ... L. 35
2-10 Overview of the Streamlt benchmark suite.. . . . . . . . ... ... ... ... 37
2-11 Parameterization and scheduling statistics for 8tigsenchmarks.. . . . . . . . 38
2-12 Properties of filters and other constructs in Streaerichmarks. . . . . . . . .. 39
2-13 Stateless version of a difference encoder, using pgelid prework. . . . . . . . 40
2-14 Stateful version of a difference encoder, using irgestate. . . . . . . .. .. .. 40
2-15 Use of teleport messaging in Streamlt benchmarks.. . . . . . .. ... .. .. 44
2-16 CD-DAT, an example of mismatched I/Orates.. . . . . ... ... ... .... 46
2-17 JPEG transcoder excerpt, an example of matched I/®rate. . . . . . . .. .. 46
2-18 Refactoring a stream graph to fit a structured programgmmodel. . . . . . . . . . 47
2-19 Use of Identity filters is illustrated by the 3GPP benahm. . . . . . . .. .. .. 48
2-20 A communication pattern unsuitable for structuredastrs.. . . . . . . .. .. .. 49
2-21 Accidental introduction of filter state (pedanticexde). . . . . . . . .. .. ... 50
2-22 Accidental introduction of filter state (realexample) . . . . . . . ... ... .. 51
Teleport Messaging . . . . . . . . . o e e 57
3-1 Example code withouteventhandling.. . . . .. ... ... ... ........ 61
3-2 Example code with manual event handling.. . . . . ... ... ... ...... 61
3-3 Example code with teleport messaging.. . . . . . . . ... .. ... ... 61
3-4 Stream graphforexamplecode.. . . . . .. . ... ... ... . 61



3-5 Execution snapshots illustrating manual embeddingofrol messages.. . . . . 61
3-6 Execution snapshots illustrating teleport messaging. . . . . . . ... .. ... 61
3-7 Example stream graph for calculation of stream deperedemction. . . . . . . . 62
3-8 Example calculation of stream dependence function. . . . . . . . ... .. .. 62
3-9 Pullscheduling algorithm.. . . . . . . .. ... .. ... .. ... . ... . ... 63
3-10 Scheduling constraints imposed by messages.. . . . . . . .. .. .. .. ... 68
3-11 Example of unsatisfiable message constraints.. . . . . .. ... ... .. ... 69
3-12 Constrained scheduling algorithm.. . . . . . . . ... .. ... ... ...... 70
3-13 Stream graph of frequency hopping radio with telep@s$saging.. . . . . . . .. 71
3-14 Code for frequency hopping radio with teleportmessggi . . . . . . . .. ... 72
3-15 Stream graph of frequency hopping radio with manualrobmessages. . . . . . 73
3-16 Code for frequency hopping radio with manual controtsages. . . . . . . . . . 74
3-17 Parallel performance of teleport messaging and maweait handling. . . . . . . 76
Optimizing Stream Programs. . . . . . . . . . . . . e 79
4-1 Types of parallelismin streamprograms. . . . . . . . . .. .. ... ...... 80
4-2 Exploiting data parallelism in the FilterBank benchkaar . . . . . . . ... ... 82
4-3 Simplified subset of the Vocoder benchmark.. . . . . .. ... ... ... ... 83
4-4 Coarse-grained data parallelism applied to Vocoder.. . . . . . . ... .. ... 84
4-5 Coarse-grained software pipelining applied to Vocoder . . . . . . . .. .. .. 84
4-6 Parallelizationresults.. . . . . . . . ... 85
4-7 Example optimization of linear filters. . . . . . . .. ... ... ... ... ... 87
4-8 Extracting a linearrepresentation. . . . . . . . ... ... oL 88
4-9 Algebraic simplification of adjacent linear filters. . . . . . . ... .. ... ... 88
4-10 Example simplification of an IIR filter and a decimator. . . . . . . . .. .. .. 89
4-11 Mapping linear filters into the frequency domain.. . . . . .. .. .. ... ... 90
4-12 Example of state removal and parameter reduction.. . . . . . .. .. .. ... 91
4-13 Optimization selection for the Radar benchmark. . . . . . ... .. ... ... 93
4-14 Elimination of floating point operations due to lineatimizations. . . . . . . . . 94
4-15 Speedup due to linear optimizations. . . . . . . .. ... .. ... ... .. .. 94
4-16 Overview of cache optimizations. . . . . . . . . . . . .. ... ... ... 96
4-17 Effect of execution scaling on performance. . . . . . . . .. .. .. ... ... 97
4-18 Performance of cache optimizations on the StrongARM. . . . . . . . . . . .. 98
4-19 Summary of cache optimizations on the StrongARM, lRemB8 and Itanium 2.. . 99
Translating Stream Programs into the Compressed Domain . . . . . .. ... ... 107
5-1 Example of LZ77 decompression. . . . . . . . . .. ..o 109
5-2 Translation of filters into the compressed domain.. . . . . . .. .. ... ... 110
5-3 Example Streamlt code to be mapped into the compressedido. . . . . . . . . 111
5-4 Example execution of a filter in the uncompressed and cesspd domains.. . . 111
5-5 Translation of splitters into the compressed domain.. . . . . . .. .. ... .. 113
5-6 SPLIT-TO-BOTH-STREAMS function for compressed splitter execution.. . . . . 114
5-7 SPLIT-To-ONE-STREAM function for compressed splitter execution. . . . . . . 115
5-8 Example execution of splitters and joiners in the corsgped domain.. . . . . . . 115
5-9 Translation of joiners into the compressed domain. . . . . . ... .. ... .. 116

12



5-10 DbIN-FROM-BOTH-STREAMS function for compressed joiner execution. . . . . 117

5-11 DbIN-FROM-ONE-STREAM function for compressed joiner execution. . . . . . 118
5-12 Characteristics of the videoworkloads. . . . . . .. .. ... ... ... .... 121
5-13 Table of results for pixel transformations.. . . . . . .. ... ... ... .... 123
5-14 Speedup graph for pixel transformations.. . . . . . . . ... ... ... .. .. 124
5-15 Speedup vs. compression factor for all transformation . . . . . .. ... ... 125
5-16 Examples of video compositing operations.. . . . . . . ... ... .. ... .. 126
5-17 Table of results for composite transformatians.. . . . . . . .. ... ... ... 127
5-18 Speedup graph for composite transformations.. . . . . .. ... ... ... .. 127
Migrating Legacy C Programs to a Streaming Representation . . . . . . ... . .. 131
6-1 Overviewofourapproach. . . . . . . . . . .. . 133
6-2 Stability of streaming communication patterns for MRE@ecoding.. . . . . . . 135
6-3 Stability of streaming communication patterns for MR8ading. . . . . . . . .. 135
6-4 Training needed for correct parallelization of MPEG-2. . . . . . .. ... ... 135
6-5 Training needed for correct parallelizationof MP3.. . . . . . ... ... .. .. 135
6-6 Stream graph for GMTI, as extracted usingourtoal.. . . . . . ... .. .. .. 137
6-7 Stream graph for GMTI, as it appears in the GMTI specificat. . . . . . . ... 137
6-8 Specifying data parallelism.. . . . . . . . ... ... .. ... .. 138
6-9 Benchmark characteristics.. . . . . . . . . .. .. 140
6-10 Extracted stream graphs for MPEG-2 and MP3 decoding. . . . . . ... ... 142
6-11 Extracted stream graphs for parser, bzip2, and hmmer.. . . . . . . .. .. .. 143
6-12 Steps taken by programmer to assist with paralletimati. . . . . . . .. .. ... 144
6-13 Performanceresults. . . . . . . . . ... 145
CoNnclusions. . . . . . . . 149
Example Streamlt Program . . . . . . . . . . ... 167
Graphs of Streamlt Benchmarks. . . . . . .. .. .. ... ... ... ... ..... 173
B-1 Streamgraphfor3GPP.. . . . . . . . . . ... 174
B-2 Streamgraphfor802.11a. . . . . . . . . . . .. . 175
B-3 Stream graph for Audiobeam.. . . . . . . .. ... L Lo 176
B-4 Stream graphfor Autocor.. . . . . . . ... 177
B-5 Stream graph for BitonicSort (coarse).. . . . . . .. . ... ... 178
B-6 Stream graph for BitonicSort (fine, iterative). . . . . . . . .. ... .. 179
B-7 Stream graph for BitonicSort (fine, recursive). . . . . . . .. ... ... ... 180
B-8 Stream graphfor BubbleSort.. . . . . . . . ... o o 181
B-9 Stream graph for ChannelVocoder.. . . . . . . ... .. ... .. ... ..., 182
B-10 Stream graph for Cholesky.. . . . . . . . . . . . .. . .. ... ... ... 183
B-11 Stream graph for ComparisonCounting.. . . . . . . . . . .. .. .. ... ... 184
B-12 Stream graphfor CRC. . . . . . . . . . . . .. 185
B-13 Stream graph for DCT (float).. . . . . . . . . . . . . . ... . .. .. ... 186
B-14 Stream graph for DCT2D (NxM, float).. . . . . . . . . ... ... .. ... ... 187
B-15 Stream graph for DCT2D (NxN, int, reference).. . . . . . . . . .. .. .. ... 188
B-16 Stream graphforDES. . . . . . . . . . . ... 189

13



B-17 Stream graph for DTOA.. . . . . . . . . . . 190

B-18 Stream graphfor FAT. . . . . . . . . . . . . 191
B-19 Stream graph for FFT (coarse, default).. . . . . .. .. ... ... ... .... 192
B-20 Stream graph for FFT (fine 1). . . . . . . . . . . . . . . .. ... .. ... ... 193
B-21 Stream graph for FFT (fine 2). . . . . . . . . . . . . . . .. ... .. .. .. .. 194
B-22 Stream graph for FFT (medium).. . . . . . . . . .. .. ... ... ... 195
B-23 Stream graph for FHR (feedback loop).. . . . . . . . ... ... ... ... .. 196
B-24 Stream graph for FHR (teleport messaging). . . . . . . . . . ... ... .... 197

B-25 Stream graph for FMRadio.. . . . . . . . .. .. ... .. ... 198
B-26 Stream graphforFib. . . . . . . . . ... 199
B-27 Stream graph for FilterBank. . . . . . . . . . . . ... . 200
B-28 Stream graphfor GMTI.. . . . . . . . . . . . . . .. 201
B-29 Stream graph for GP - particle-system. . . . . . .. .. ... ... ... ..., 202
B-30 Stream graph for GP - phong-shading. . . . . . .. .. ... ... ....... 203
B-31 Stream graph for GP - reference-version.. . . . . . .. ... .. ... ..... 204
B-32 Stream graph for GP - shadow-volumes. . . . . . . ... ... ... ...... 205
B-33 Stream graphfor GSM.. . . . . . . . . . ... 206
B-34 Stream graph for H264 subset.. . . . . . . . . . . ... ... L L. 207
B-35 Stream graph for HDTV.. . . . . . . . . . . . . 208
B-36 Stream graph for IDCT (float). . . . . . . . . . . . .. . .. ... .. .. .. .. 209
B-37 Stream graph for IDCT2D (NxM-float). . . . . . .. . ... ... ... ..... 210
B-38 Stream graph for IDCT2D (NxN, int, reference). . . . . . . .. ... .. .. .. 211

B-39 Stream graph for IDCT2D (8x8, int,coarse). . . . . . . . . .. .. ... .... 212

B-40 Stream graph for IDCT2D (8x8, int, fine). . . . . . . . .. .. ... .. .. ... 213

B-41 Stream graph for InsertionSort.. . . . . . . .. ... 214
B-42 Stream graph for JPEG decoder.. . . . . . . . . ... ... 215
B-43 Stream graph for JPEG transcoder. . . . . . . . .. ... Lo 216
B-44 Stream graph for Lattice. . . . . . . . . . . ... 217
B-45 Stream graph for MatrixMult (coarse).. . . . . . . . . ... ... ... 218
B-46 Stream graph for MatrixMult (fine).. . . . . . . . . .. ... ... ... ... 219
B-47 Stream graph for MergeSort.. . . . . . . ... L 220
B-48 Stream graphforMosaic . . . . . . . . . ... 221
B-49 Stream graphfor MP3. . . . . . . . . . 222
B-50 Stream graphforMPD. . . . . . . . . . . ... 223
B-51 Stream graph for MPEG2 decoder. . . . . . .. ... ... ... ... ..... 224
B-52 Stream graph for MPEG2 encoder. . . . . . . . . . ... ... ... 225
B-53 Stream graphfor OFDM. . . . . . . . . . . . . . . . 226
B-54 Stream graph for Oversampler.. . . . . . . . . . . .. . .. .. ... ... 227
B-55 Stream graph for Radar (coarse). . . . . . . . . .. ... .. ... .. ... 228
B-56 Stream graph for Radar (fine). . . . . . . . . . . . ... ... .. 229
B-57 Stream graph for RadixSort. . . . . . . . . .. ... L 230
B-58 Stream graph for RateConvert.. . . . . . . . . . . .. . .. ... ... .. .. 231
B-59 Stream graph for Raytracerl.. . . . . . . . . . . ... . ... ... 232
B-60 Stream graph for RayTracer2. . . . . . . . . . . . . . .. .. ... ... ... 233
B-61 Stream graphfor SAR. . . . . . . . .. 234

14



B-62 Stream graph for SampleTrellis. . . . . . . ... .. .. ... ... ... ... 235

B-63 Stream graph for Serpent.. . . . . . . . ... L 236
B-64 Stream graphfor TDE.. . . . . . . . . . . . . . 237
B-65 Stream graph for TargetDetect.. . . . . . . . . . . .. . .. .. ... ... ... 238
B-66 Stream graph for VectAdd. . . . . . . . . .. ... . 239
B-67 Stream graph for Vocoder. . . . . . . ... 240

15



16



Chapter 1

My Thesis

Incorporating streaming abstractions into the prograngmanguage can simultaneously improve
both programmability and performance. Programmers arendeined from providing low-level
implementation details, while compilers can perform delakation and optimization tasks that
were previously beyond the reach of automation.

1.1 Introduction

A long-term goal of the computer science community has beeautomate the optimization of
programs via systematic transformations in the compilewel/er, even after decades of research,
there often remains a large gap between the performancengditerl code and the performance
that an expert can achieve by hand. One of the central diffésuis that humans have more in-
formation than the compiler, and can thus perform more agire transformations. For example,
a performance expert may re-write large sections of theiegimn, employing alternative algo-
rithms, data structures, or task decompositions, to p@ducersion that is functionally equivalent
to (but structurally very different from) the original pn@mn. In addition, a performance expert
may leverage detailed knowledge of the target architeetsiech as the type and extent of parallel
resources, the communication substrate, and the caclse-simenatch the structure and granular-
ity of the application to that of the underlying machine. h@icome this long-standing problem
and make high-performance programming accessible to rperes, it will likely be necessary to
empower the compiler with new information that is not cutigembedded in general-purpose
programming languages.

One promising approach to automating performance optimizé to embed specific domain
knowledge into the language and compiler. By restrictingraton to a specific class of programs,
common patterns in the applications can be embedded in tigeidge, allowing the compiler to
easily recognize and optimize them, rather than havingfew the patterns from complex, general-
purpose code. In addition, key transformations that arevkianly to experts in the domain can be
embedded in the compiler, enabling robust performance dgoren application class. Tailoring the
language to a specific domain can also improve programniees, las functionality that is tedious
or unnatural to express in a general-purpose language candsenctly expressed in a new one.
Such “domain-specific” languages and compilers have aetibvoad success in the past. Exam-
ples include Lex for generating scanners; YACC for geneggpiarsers; SQL for database queries;
Verilog and VHDL for hardware design; MATLAB for scientifiocodes and signal processing;
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Figure 1-1: Stream programming is motivated by two promimiesnds: the trend towards parallel
computer architectures, and the trend towards embedded¢cdatric computations.

GraphViz for generating graph layouSGK*02]; and PADS for processing ad-hoc dakdF05.

If we are taking a domain-specific approach to program ogttion, what domain should we
focus on to have a long-term impact? We approached thisiguést considering two prominent
trends in computer architectures and applications:

1. Computer architectures are becoming multicore.Because single-threaded performance has
finally plateaued, computer vendors are investing excassistors in building more cores on
a single chip rather than increasing the performance of glesicore. While Moore’s Law
previously implied a transparent doubling of computer genfance every 18 months, in the
future it will imply only a doubling of the number of cores ohip. To support this trend, a
high-performance programming model needs to expose dlegbarallelism in the application,
supporting explicit communication between potentialighdbuted memaories.

2. Computer applications are becoming embedded and data-cem¢. While desktop comput-
ers have been a traditional focus of the software industeyekplosion of cell phones is shifting
this focus to the embedded space. There are almost fowrbdéll phones globally, compared
to 800 million PCs Med0§. Also, the compute-intensive nature of scientific and datian
codes is giving way to the data-intensive nature of audio\adeo processing. Since 2006,
YouTube has been streaming over 250 terabytes of video pa#y04, and many potential
“killer apps” of the future encompass the space of multiraestiiting, computer vision, and
real-time audio enhanceme®BC*06, CCD*08].

At the intersection of these trends is a broad and integspace of applications that we
term stream programs A stream program is any program that is based around a regfisdsam
of dataflow, as in audio, video, and signal processing apiins (see Figuré-2). Examples
include radar tracking, software radios, communicatiootquols, speech coders, audio beam-
forming, video processing, cryptographic kernels, andvogt processing. These programs are
rich in parallelism and can be naturally targeted to distell and multicore architectures. At the
same time, they also share common patterns of processihgnddaes them an ideal target for
domain-specific optimizations.

In this dissertation, we develop language support for sirpeograms that enables non-expert
programmers to harness both avenues: parallelism and despacific optimizations. Either set
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Figure 1-2: Example stream graph for a software radio witheéger.

of optimizations can yield order-of-magnitude performaumaprovements. While the techniques
used were previously accessible to experts during manufdrpence tuning, we provide the
first general and automatic formulation. This greatly losviére entry barrier to high-performance
stream programming.

In the rest of this chapter, we describe the detailed progsedf stream programs, provide a
brief history of streaming, give an overview of the Streaprtiject, and state the contributions of
this dissertation.

1.2 Streaming Application Domain

Based on the examples cited previously, we have observesttkam programs share a number of
characteristics. Taken together, they define our conaepfithe streaming application domain:

1. Large streams of data. Perhaps the most fundamental aspect of a stream programatig th
operates on a large (or virtually infinite) sequence of datas, hereafter referred to aslata
stream Data streams generally enter the program from some extsonece, and each data
item is processed for a limited time before being discardElis is in contrast to scientific
codes, which manipulate a fixed input set with a large degirdata reuse.

2. Independent stream filters. Conceptually, a streaming computation represents a segquen
of transformations on the data streams in the program. Weefdr to the basic unit of this
transformation as éilter: an operation that — on each execution step — reads one or more
items from an input stream, performs some computation, amsvone or more items to
an output stream. Filters are generally independent afdcetained, without references to
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global variables or other filters. A stream program is the position of filters into astream
graph, in which the outputs of some filters are connected to thetsypliothers.

3. A stable computation pattern. The structure of the stream graph is generally constanhguri
the steady-state operation of the program. That is, a oes#diof filters are repeatedly applied
in a regular, predictable order to produce an output stréamis a given function of the input
stream.

4. Sliding window computations. Each value in a data stream is often inspected by consecutive
execution steps of the same filter, a pattern referred to siglimg window Examples of
sliding windows include FIR and IIR filters; moving averagesl differences; error correcting
codes; biosequence analysis; natural language processiage processing (sharpen, blur,
etc.); motion estimation; and network packet inspection.

5. Occasional modification of stream structure. Even though each arrangement of filters is
executed for a long time, there are still dynamic modifiagaito the stream graph that occur
on occasion. For instance, if a wireless network interfa@xperiencing high noise on an input
channel, it might react by adding some filters to clean up idpeas; or it might re-initialize a
sub-graph when the network protocol changes from 802.11uet8otH.

6. Occasional out-of-stream communicationln addition to the high-volume data streams pass-
ing from one filter to another, filters also communicate sraaibunts of control information
on an infrequent and irregular basis. Examples includegihgrthe volume on a cell phone,
printing an error message to a screen, or changing a coaffician adaptive FIR filter. These
messages are often synchronized with some data in the stfeaimstance, when a frequency-
hopping radio changes frequencies at a specific point ofémsinission.

7. High performance expectations.Often there are real-time constraints that must be satisfied
by stream programs; thus, efficiency (in terms of both lateartd throughput) is of primary
concern. Additionally, many embedded applications arendéd for mobile environments
where power consumption, memory requirements, and codeasézalso important.

While our discussion thus far has emphasized the embedadéektdor streaming applications,
the stream abstraction is equally important in desktop amges-based computing. Examples in-
clude XML processingBCG" 03], digital filmmaking, cell phone base stations, and hypecsal
imaging.

1.3 Brief History of Streaming

The concept of a stream has a long history in computer sciseeeStephen$fe97 for a review
of its role in programming languages. Figure depicts some of the notable events on a timeline,
including models of computation and prototyping environtsehat relate to streams.

The fundamental properties of streaming systems transttendetails of any particular lan-
guage, and have been explored most deeply as abstract nbdelsputation. These models can

LIn this dissertation, we do not explore the implicationsyriamically modifying the stream structure. As detailed
in Chapter 2, we operate on a single stream graph at a times oy transition between graphs using wrapper code.
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Figure 1-3: Timeline of computer science efforts that ham®rporated notions of streams.

generally be considered as graphs, where nodes represenbficomputation and edges repre-
sent FIFO communication channels. The models differ in @geilarity and determinism of the
communication pattern, as well as the amount of bufferitgradd on the channels. Three of the
most prevalent models are Kahn Process Netwdfleh}4, Synchronous Dataflon.M87], and
Communicating Sequential Processe®#7§. They are compared in Figure4 and Tablel-5
and are detailed below:

1. Kahn Process Networks also known aprocess networksre a simple model in which nodes
can always enqueue items onto their output channels, lempts to read from an input channel
will block until data is ready (it is not possible to test fdret presence or absence of data
on input channels). Assuming that each node performs ardetistic computation, these
properties imply that the entire network is deterministi@t is, the sequence of data items
observed on the output channels is a deterministic funaifotihose submitted to the input
channels. However, it is undecidable to statically deteenthe amount of buffering needed
on the channels, or to check whether the computation migidldek. Process networks is the
model of computation adopted by UNIX pipes.

2. Synchronous Dataflow (SDF)is a restricted form of process network in which nodes exe-
cute atomic steps, and the numbers of data items producedaasdimed during each step
are constant and known at compile time. Because the inpubatplit rates are known, the
compiler can statically check whether a deadlock-free @ti@c exists and, if so, can derive
a valid schedule of node executions. The amount of buffemgggded can also be determined
statically. Many variations of synchronous dataflow haverbéefined, including cyclo-static
dataflow BELP95 PPL93 and multidimensional synchronous datafloMl02]. Due to its
potential for static scheduling and optimization, syncimes dataflow provides the starting
point for our work.

3. Communicating Sequential Processes (CSH in some ways more restrictive, and in others

more flexible than process networks. The restriction is @gadus communication: there is
no buffering on the communication channels, which meansdheh send statement blocks
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Figure 1-4: Space of behaviors allowed by Kahn process n&syeynchronous dataflow (SDF),
and communicating sequential processes (CSP). The sehafioes considered are: buffering
data items on a communication channel, making a non-detestici choice, and deviating from a
fixed I/O rate. While these behaviors could always be emdlatside a single Turing-complete
node, we focus on the behavior of the overall graph.

Communication | Buffering Notes

Pattern
Kahn process Data-dependent, | Conceptually |- UNIX pipes
networks but deterministic | unbounded
Synchronous Static Fixed by - Static scheduling
dataflow compiler - Deadlock freedom
Communicating | Data-dependent, | None - Rich synchronization
Sequential allows non- (Rendezvous) | Pprimitives
Processes determinism - Occam language

Table 1-5: Key properties of streaming models of computatio

until being paired with a receive statement (and vice-Jerhae flexibility is in the synchro-
nization: a node may make a non-deterministic choice, fange, in reading from any input
channel that has data available under the current schethikeproperty leads to possibly non-
deterministic outputs, and deadlock freedom is undecedalhile CSP itself is an even richer
algebra for describing the evolution of concurrent systehis graph-based interpretation of its
capabilities applies to many of its practical instantiaipincluding the Occam programming
language.

While long-running (or infinite) computations are often cl@sed using one of the models
above, the descriptions of finite systems also rely on othedeals of computationComputation
graphs[KM66] are a generalization of SDF graphs; nodes may stipulateitharder to execute a
step, a threshold number of data items must be available ampahchannel (possibly exceeding
the number of items consumed by the node). While SDF schegltaisults can be adapted to the
infinite execution of computation graphs, the original ttyemf computation graphs focuses on de-
terminacy and termination properties when some of the s)aré finite Actorsare a more general
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model providing asynchronous and unordered message péstimeen composable, dynamically-
created noded{BS73 Gre75 Cli81, Agh85. Petri nets are also a general formalism for modeling
many classes of concurrent transition systeRet§2 Mur89].

In addition to models of computation, prototyping envira@nts have been influential in the
history of streaming systems. The role of a prototyping Emment is to simulate and validate
the design of a complex system. While it has been a long-stgrpbal to automatically generate
efficient and deployable code from the prototype design ratice most models are re-written
by hand in a low-level language such as C in order to gain thg@é&sformance and functional-
ity needed. Still, many graph-level optimizations, sucls@seduling BML95, BML96, BSL96,
ZTBO00, SGB0G and buffer managemenA[LP97, MB0O1, GGD02 MB04, GBS09, have been
pioneered in the context of prototyping environments. Ohthe most long-running efforts is
Ptolemy, a rich heterogeneous modeling environment thapats diverse models of computa-
tion, including the dataflow models described previouslwah as continuous- and discrete-event
systems BHLM91, EJLT03]. Other academic environments include GabrlgiG+89],Grape-

Il [LEAP9Y, and El Greco BV00], while commercial environments include MATLAB/Simulink
(from The MathWorks, Inc.), Cocentric System Studio (frogm@osis, Inc.), and System Canvas
(from Angeles Design SystemBICRO01]).

The notion of streams has also permeated several progragipanadigms over the past half-
century. Dataflow languages such as LuddM/77], Id [AGP78 Nik91], and VAL [AD79] aim
to eliminate traditional control flow in favor of a schedutéat is driven only by data depen-
dences. To expose these dependences, each variable rsedssidy once, and each statement is
devoid of non-local side effects. These properties ovestegaming in two ways. First, the pro-
ducer/consumer relationships exposed by dataflow areagimailthose in a stream graph, except
at a much finer level of granularity. Second, to preserve thglesassignment property within
loops, these languages us@aextkeyword to indicate the value of a variable in the succeeding
iteration. This construct can be viewed as a regular da&astrof values flowing through the
loop. Subsequent dataflow languages include SM&IA85] (“streams and iteration in a single
assignment language”) and pNAO1]. More details on dataflow languages are available in review
articles Ste97 JHMO04.

Functional languages also have notions of streams, for pbeamms part of the lazy evaluation
of lists [HM76]. It bears noting that there seems to be no fundamentaréifte between a “func-
tional language” and a “dataflow language”. The terminologiicates mainly a difference of
community, as dataflow languages were mapped to dataflowineschn addition, dataflow lan-
guages may be more inclined toward an imperative syrdidi04]. We do not survey functional
languages further in their own right.

Another class of languages is synchronous languages, wkfehthe abstraction of respond-
ing instantly (in synchrony) with their environmertd§l9g. Interpreted as a stream graph, a
synchronous program can be thought of as a circuit, wheresatk state machines and edges
are wires that carry a single value; in some languages, nodgsspecify the logical times at
which values are present on the wires. Synchronous progiagest the class of reactive systems,
such as control circuits, embedded devices, and commigmncatotocols, where the computa-
tion is akin to a complex automaton that continually resgotadreal-time events. Compared to
stream programs, which have regular, computation-inkensiocessing, synchronous programs
process irregular events and demand complex control flow. dgachronous languages include
Signal [GBBG84, LUSTRE [CPHP87HCRP91, Esterel BG92), Argos [MR01], and Lucid Syn-
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chrone CP95 CHPO7. These languages offer determinism and safety propegmsring their
adoption in industry; Esterel Technologies offers SCADE&s@d on LUSTRE) as well as Esterel
Studio.

There have also been general-purpose languages withitgilipport for streams, including
Occam [nm8§ and Erlang AVW93, Arm07]. Occam is an imperative procedural language that is
based on communicating sequential processes; it was alligueveloped for the INMOS trans-
puter, an early multiprocessor. Erlang is a functional teagg that is based on the actors model;
originally developed by Ericsson for distributed applioas, it supports very lightweight processes
and has found broad application in industry.

Shortcomings of previous languagesit should be evident that previous languages have pro-
vided many variations on streams, including many elegadtganeral ways of expressing the
functional essence of streaming computations. Howeveretremains a critical disconnect in the
design flow for streaming systems: while prototyping enwnents provide rich, high-level analy-
sis and optimization of stream grapl&ML95, BML96, BSL96 ALP97, ZTB0O, MB0O1, GGDO02
MBO04, GBS05 SGBO04, these optimizations have not been automated in any pmagrag lan-
guage environment and thus remain out-of-reach for the magbrity of developers. The root
of the disconnect is the model of computation: previous laggs have opted for the flexibility
of process networks or communication sequential process®r than embracing the restrictive
yet widely-applicable model of synchronous dataflow. Byuiiog attention on a very common
case — an unchanging stream graph with fixed communicaties frasynchronous dataflow is the
only model of computation that exposes the information eded perform static scheduling and
optimization.

Herein lies a unique opportunity to create a language thabvses the inherent regularity in
stream programs, and to exploit that regularity to perfoe@mloptimizations. This is the opportu-
nity that we pursue in the Streamlt project.

1.4 The Streamlt Project

Streamlt is a language and compiler for high-performan@saet programs. The principal goals
of the Streamlt project are three-fold:

1. To expose and exploit the inherent parallelism in streezgrams on multicore architectures.
2. To automate domain-specific optimizations known to stiag application specialists.

3. To improve programmer productivity in the streaming doma

While the first two goals are related to performance improsets, the third relates to improv-
ing programmability. We contend that these goals are nobnilict, as high-level programming
models contain more information and can be easier to optimizile also being easier to use.
However, many languages are designed only from the stantdpbprogrammability, and often
make needless sacrifices in terms of analyzability. Congp@r@revious efforts, the key leverage
of the Streamlt project is @mpiler-conscious language desidyat maximizes both analyzability
and programmability.
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Streamlt is a large systems project, incorporating over&ipfe (up to 12 at a given time).
The group has made several contributions to the goals bigfleld above. In exploiting par-
allelism, Michael Gordon led the development of the firstayah algorithm that exploits the
task, data, and pipeline parallelism in stream progra@BA06]. On the 16-core Raw archi-
tecture, it achieves an 11x mean speedup for our benchméek #us is a 1.8x improvement
over our previous approaclTK™02, Gor03, the performance of which had been modeled by
Jeremy Wong\\Von04. Also on the Raw machine, Jiawen Chen led the developmeaflekible
graphics rendering pipeline in Streamlt, demonstratirag ghreconfigurable pipeline can achieve
up to twice the throughput of a static on€@GTt05, Che03. Moving beyond Raw, Janis Ser-
mulins ported Streamlt to multicores and clusters of watkghs, and also led the development
of cache optimizations that offer a 3.5x improvement ovesptimized Streamlt on embedded
processors§TRAOS Ser0j. David Zhang and Qiuyuan Li led the development of a lighghe
streaming execution layer that achieves over 88% utibrgignoring SIMD potential) on the Cell
processorZLRAO08, Zha07. Michal Karczmarek led the development of phased scheduthe
first hierarchical scheduler for cyclo-static dataflow thkso enables a flexible tradeoff between
latency, code size and buffer siz€TA03, Kar02Z. Phil Sung and Weng-Fai Wong explored the
execution of Streamlt on graphics processors.

In the area of domain-specific optimizations, Andrew Lambomated the optimization of
linear nodes, performing coarse-grained algebraic sfiroglion or automatic conversion to the
frequency domainlTA03, Lam03. These inter-node optimizations eliminate 87% of the float
ing point operations from code written in a modular styletij Bigrawal generalized the analysis
to handle linear computations with state, performing oations such as algebraic simplifica-
tion, removal of redundant states, and reducing the nunfgearametersATAO05, Agr04]. | led
the development of domain-specific optimizations for coesped data formats, allowing certain
computations to operate in place on the compressed datawitequiring decompression and
re-compressionTHAOQ7]. This transformation accelerates lossless video edijpeyations by a
median of 15x.

In the area of programmability, | led the definition of theeaimlIt language, incorporating
the first notions of structured streams as well as languagpostifor hierarchical data reorder-
ing [TKAO2, TKG'02, AGK™05]. With Michal Karczmarek and Janis Sermulins, | led the dleve
opment of teleport messaging, a new language construct#eastthe flow of data in the stream
to provide a deterministic and meaningful timeframe forivdlng events between decoupled
nodes TKS*05]. Kimberly Kuo developed an Eclipse development environtrend debug-
ger for Streamlt and, with Rodric Rabbah, demonstrated orgadt programming outcomes in a
user study KRAO5, Kuo04. Juan Reyes also developed a graphical editor for Strefdgeit04.
Matthew Drake evaluated Streamlt’s suitability for videmdecs by implementing an MPEG-2
encoder and decodavIDH 06, Dra0g. Basier Aziz evaluated Streamlt by implementing image-
based motion estimation, including the RANSAC algorithazip7]. | also led the development
of dynamic analysis tools to ease the translation of legacp@ into a streaming representa-
tion [TCAOQ7].

The Streamlt benchmark suite consists of 67 programs af34non-comment, non-blank)
lines of code. | provide the first rigorous characterizabbthe benchmarks as part of this disserta-
tion. In addition to MPEG-2 and image-based motion estiomatihe suite includes a ground mov-
ing target indicator (GMT]), a feature-aided tracker (FASynthetic aperture radar (SAR), a radar
array front-end, part of the 3GPP physical layer, a vocod#r speech transformation, a subset
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of an MP3 decoder, a subset of MPEG-4 decoder, a JPEG enaudieleaoder, a GSM decoder,
an FM software radio, DES and serpent encryption, matrixtiplidation, graphics shaders and
rendering algorithms, and various DCTs, FFTs, filterbaaks| sorting algorithms. The Streamit
benchmark suite has been used by outside researdiBt@8]. Some programs are currently
restricted for internal use.

Contributors to the benchmark suite include Sitij Agravgdsier Aziz, Matt Brown, Jiawen
Chen, Matthew Drake, Shirley Fung, Michael Gordon, Hankffahn, Ola Johnsson, Michal
Karczmarek, Andrew Lamb, Chris Leger, David Maze, Ali Méllani Narayanan, Rodric Rab-
bah, Satish Ramaswamy, Janis Sermulins, Magnus Stenem@aliSuh, Zain ul-Abdin, Amy
Williams, Jeremy Wong, and myself. Individual contriburtsoare detailed in Tab2-10

While this section was not intended to serve as the ackngniedts, it would be incomplete
without noting the deep involvement, guidance, and supemiof Rodric Rabbah and Saman
Amarasinghe throughout many of the efforts listed abovee $treamlt infrastructure was also
made possible by the tenacious and tireless efforts of Dideize, Jasper Lin, and Allyn Dimock.
Additional contributors that were not mentioned previguskclude Kunal Agrawal (who devel-
oped bit-level analyses), Steve Hall (who automated cossgitdomain transformations), and
Ceryen Tan (who is improving the multicore backend).

The Streamlt compiler (targeting shared-memory multispctisters of workstations, and the
MIT Raw machine) is publicly availableStrg and has logged over 850 unique, registered down-
loads from 300 institutions (as of December, 2008). Re$eascat other universities have used
Streamlt as a basis for their own woitkY04, Duc04 SLRBEO5 JSUA05 And07, So07.

This dissertation does not mark the culmination of the $tite@roject; please consult the
Streamlt website3trg for subsequent updates.

1.5 Contributions

My role in the Streamlt project has been very collaboratestributing ideas and implementation
support to many aspects of the project. This dissertationdes on ideas that have not been
presented previously in theses by other group members. ¥owe provide a self-contained view
of the breadth and applications of Streamlt, Chaptaliso provides a survey of others’ experience
in optimizing the language.

The specific contributions of this dissertation are as fedlo

1. Adesign rationale and experience report for the Streamlt laguage, which contains novel
constructs to simultaneously improve the programmabilityand analyzability of stream
programs (Chapter 2). Streamlt is the first language to introduce structured stseas well
as hierarchical, parameterized data reordering. We edla language via a detailed charac-
terization of our 34,000-line benchmark suite, illustngtthe impact of each language feature
as well as the lessons learned.

2. A new language construct, termed teleport messaging, thahables precise event handling
in a distributed environment (Chapter 3). Teleport messaging is a general approach that uses
the flow of data in the stream to provide a deterministic andmimggyful timeframe for deliver-
ing events between decoupled nodes. Teleport messagavgsatregular control messages to
be integrated into a synchronous dataflow program whilegpvasg static scheduling.
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3. Areview of the key results in optimizing Streamlt, spanningparallelization and domain-
specific optimization (Chapter 4) This chapter validates key concepts of the Streamit lan-
guage by highlighting the gains in performance and prograhiity that have been achieved,
including the work of others in the Streamlt group. We focasatomatic parallelization (pro-
viding an 11x mean speedup on a 16-core machine), domadaifispeptimization of linear
computations (providing a 5.5x average speedup on a ur@psoc), and cache optimizations
(providing a 3.5x average speedup on an embedded processor)

4. The first translation of stream programs into the lossless-empressed domain (Chapter 5)
This domain-specific optimization allows stream programeperate directly on compressed
data formats, rather than requiring conversion to an uncessed format prior to process-
ing. While previous researchers have focused on compraks®edin techniques for lossy data
formats, there are few techniques that apply to losslessdts. We focus on applications in
video editing, where our technique supports color adjustmadeo compositing, and other
operations directly on the Apple Animation format (a vatie@hLZ77). Speedups are roughly
proportional to the compression factor, with a median of 46& a maximum of 471x.

5. The first dynamic analysis tool that detects and exploits likly coarse-grained parallelism
in C programs (Chapter 6). To assist programmers in migrating legacy C code into arstrea
ing representation, this tool generates a stream graplctdepdynamic communication be-
tween programmer-annotated sections of code. The toollsarganerate a parallel version
of the program based on the memory dependences observed taining runs. In our ex-
perience with six case studies, the extracted stream graole useful and the parallelized
versions offer a 2.78x speedup on a 4-core machine.

Related work and future work are presented on a per-chapses.d/Ne conclude in Chapter 7.
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Chapter 2

The Streamlit Language

This chapter provides an overview and experience reporhemasics of the Streamlt language.
An advanced feature, teleport messaging, is reserved fapt€h3. For more details on the
Streamlt language, please consult the Streamlt languaggfisption Strd or the Streamlt cook-
book [Strh. A case study on MPEG-2 also provides excellent exampléssofanguage’s capabil-
ities [MDH*08).

2.1 Model of Computation

The model of computation in Streamit is rooted in (but notiegjent to) synchronous dataflovj187].
As described in Chapter 1, synchronous dataflow representsgaam as a graph of independent
nodes, omctors that communicate over FIFO data channels. Each actor hatoanc execution
step that is called repeatedly by the runtime system. Theakpgct of synchronous dataflow, as
opposed to other models of computation, is that the numh&gros produced and consumed by an
actor on each execution is fixed and known at compile-times @&thows the compiler to perform
static scheduling and optimization of the stream graph.
Streamlt differs from synchronous dataflow in five respects:

1. Multiple execution steps. Certain pre-defined actors have more than one executionteep
steps are called repeatedly, in a cyclic fashion, by themensystem. This execution model
mirrors cyclo-static dataflonHELP95 PPL9]. The actors that follow this model asplitters
andjoiners, which scatter and gather data across multiple streamsilé\Wie language once
supported multiple execution steps for user-programmadtiers as well, the benefits did not
merit the corresponding confusion experienced by prograram

2. Dynamic rates. The input and output rates of actors may optionally be dedltw be dynamic.
A dynamic rate indicates that the actor will produce or conswan unpredictable number of
data items that is known only at runtime. Dynamic rates actatied as a range (min, max, and
a hint at the average), with any or all of the elements desgghas “unknown”. While most
of our optimizations in Streamlt have focused on groupsatstate actors, we have runtime
support for dynamic rates (as demanded by applicationsauiPEG-2 MDH*06)).

3. Teleport messagingOur support for irregular, out-of-band control messagailtsfoutside of
the traditional synchronous dataflow model. However, itsdnet impede static scheduling.
See ChapteB for details.
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4. Peeking. Streamit allows actors to “peek” at data items on their infppes, reading a value
without dequeuing it from the channel. Peeking is imporfantexpressing sliding window
computations. To support peeking, two stages of schedaliagequired: an initialization
schedule that grows buffers until they accumulate a thidsimamber of peeked items, and a
steady-state schedule that preserves the size of thedaffer time. While peeking can be rep-
resented as edge-wise “delays” in the original nomenaatfisynchronous dataflovi.M87],
most of the scheduling and optimization research on symdu® dataflow does not consider
the implications of these delays.

5. Communication during initialization. Streamlt allows actors to input and output a known
number of data items during their initialization (as partrepreworkfunction). This commu-
nication is also incorporated into the initialization sdbke.

With the basic computational model in hand, the rest of thitien describes how Streamit
specifies the computation within actors as well as the cdivitgaof the stream graph.

2.2 Filters

The basic programmable unit in Streamlt is callefitar. It represents a user-defined actor with
a single input channel and single output channel. Each filsra private and independent ad-
dress space; all communication between filters is via thetiapd output channels (and teleport
messaging). Filters are also granted read-only accesshalgtonstants.

An example filter appears in Figu1l It performs an FIR filter, which is parameterized
by a lengthN. Each filter has two stages of execution: initialization atelady state. During
initialization, the parameters to a filter are resolved tastants and thenit function is called.

In the case of FIR, the init function initializes an array aéights, which is maintained as state
within the filter. During steady state execution, thierk function is called repeatedly. Inside of
work, filters canpushitems to the output channgdppitems from the input channel, peekat a
given position on the input channel. Filters requiring&iént behavior on their first execution can
declare greworkfunction, which is called once betweamnt andwork.

The work and prework functions declare how many items thdy push and pop, and the
maximum number of items they might peek, as part of theiratations. To benefit from static
scheduling, these expressions must be resolvable to esstcompile time (dynamic rates are
declared using a different synta$tfd). While a static analysis can infer the input and output
rates in most cases, in general the problem is undecidabig. ekperience has been that rate
declarations provide valuable documentation on the behaWithe filter. In cases where the rates
can be inferred, the declarations can be checked by the teampi

The Streamlt version of the FIR filter is easy to parallelind aptimize. Because there is no
mutable state within the filter (that is, thesightsarray is modified only during initialization), the
compiler can exploit data parallelism and instantiate n@opies of the FIR filter, each operating
on different sections of the input tape. Also, due to a lackahters in the language, values can
easily be traced through arrays from their initializatiortheir use. This allows the compiler to
infer that the FIR filter computes a linear function, subjectggressive optimizatiorL.TA03].
Also, using a transformation called scalar replacem8mHAQ0S, the weightsarray can be elimi-
nated completely by unrolling loops and propagating caristtom the init function to the work
function.
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void init_FIR(float* weights, int N) {

int i;
float->float filter FIR(int N) {
float[N] weights; for (i=0; i<N; i++) {
weights[i] = calc_weight(i, N);
init { }
for (int i=0; i<N; i++) { }
weights[i] = calcWeight(i, N);
} void do_FIR(float* weights, int N,
} intx src, intx dest,
int* srcIndex, intx destIndex,
work push 1 pop 1 peek N { int srcBufferSize, int destBufferSize) {
float sum = 0;
for (int i=0; i<N; i++) { float sum = 0.0;
sum += weights[i] * peek(1i); for (int 1 = 0; i < N; i++) {
} sum += weights[i] *
push(sum); src[(xsrcIndex + i) % srcBufferSize];
pop(); }
} dest[*destIndex] = sum;
} *srcIndex = (xsrcIndex + 1) % srcBufferSize;
*destIndex = (xdestIndex + 1) % destBufferSize;
}
Figure 2-1: FIR filter in Streamit. Figure 2-2: FIR filter in C.

A traditional C implementation of an FIR filter (shown in Fig2-2) resists parallelization
and optimization. The sliding-window nature of the FIR cartgtion results in a circular buffer,
where elements are addressed using a modulo operation. IMogerations are very difficult to
analyze in a compiler; rather than recognizing the undeglyilFO queue, conservative compilers
will regard each read and write as falling anywhere in anyarfdie problems are confounded by
the presence of pointers. To parallelize calls to do_FIRymiters would need to prove that the
weightsandsrc arrays did not overlap witldest srcindex or destindex Similar analysis would
be needed to track the values weéightsfrom their initialization to their use (in two different
procedures). Such precise alias analyses are usually deganh. Worse still, it might not even
be legal to caldo_FIRin parallel, depending on the buffer sizes chosen by therpromer. The
underlying cause of all these obstacles is that the progerhas over-specified the computation,
imposing a scheduling and buffer management policy thagtebdecided by the compiler.

Despite its simplicity, this example illustrates the pdi@irof improving both the programma-
bility and analyzability of stream programs via a domaiefic language design. In addition to
exposing the right information to the compiler, the Strelaversion is also shorter and easier to
maintain, representing a win/win situation for both man arathine.

2.3 Stream Graphs

One of the new and experimental ideas in Streamlt is to eafastructuredprogramming model
when building stream graphs. Rather than allowing programrto connect filters into arbitrary
graphs, the language provides three hierarchical prigstior building larger graphs out of smaller
ones. As illustrated in Figur2-3, these structures are a pipeline, a splitjoin, and a feddiba.
Like a filter, each stream structure has a single input cHaamtkesingle output channel, allowing
them to be composed and interchanged freely. We collegtreéér to filters and stream structures
asstreams
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Figure 2-3: Hierarchical stream structures in Streamit.

float -> float pipeline Main() { @
add Source(); // code for Source not shown
add FIR(); FIR

add Output(); // code for Output not shown
} Output

Figure 2-4: Example pipeline with FIR filter.

The pipeline structure represents a serial compositiotreams, with the output of one stream
flowing to the input of the next. Figur2-4 illustrates the syntax for pipelines; tlagld keyword
indicates that a new stream should be instantiated and dpgéa the current pipeline. A splitjoin
represents a set of parallel and independent streasmditier distributes data from the input chan-
nel to the parallel components, whilgaaner interleaves the streams’ results onto the output chan-
nel. In this case, each call tmldspecifies a separate parallel stream (see Fgif)e The language
provides a fixed set of pre-defined splitters and joinerspepassing duplication and round-robin
behavior (detailed in the next section). Finally, the fesxkboop structure provides a way to induce
cycles in the stream graph.

The motivations for introducing structured dataflow in a&atm language are analogous to
those for introducing structured control flow in an imperatianguage. While there was once a
debate Dij68] between unstructured control flow (using GOTO statemeantsl) structured con-
trol flow (using if/then/else and for loops), in the end staned control flow came to dominate
because it allows the programmer to reason locally. Ratiaar being lost in a sea of “spaghetti
code”, programmers can recognize common patterns becaeidanguage enforces a canonical
and hierarchical expression of the control. While skeptiose argued that certain patterns would
be more naturally expressed using GOTO statements, overthiere emerged structured idioms
that were equally recognizable. For example, while a statehine can be written using a GOTO
statement for each state transition, it can also be writtemndispatch loop. Structured control flow
also benefited compilers, because non-sensical controlgitaphs could be ruled out in favor of
the common case. The field of loop optimizations would hawmlreuch more difficult to develop
if researchers had to cope with the full complexity of an wrdtuired programming model.
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void->void pipeline FMRadio(int N, float lo, float hi) {
add AtoD();

add FMDemod();
add splitjoin {
split duplicate;
for (int i=0; i<N; i++) {

FMDemod

Duplicate

add pipeline {
add LowPassFilter(lo + i*(hi - [0)/N); (LowPass, | [LowPass,] [LowPass,]
! ! I
add HighPassFilter(lo + i*(hi - l0)/N); (HighPass,| [HighPass,] [(HighPass;]

}

join roundrobin;

RoundRobin

add Adder();
add Speaker();

}

Figure 2-5: Example of a software radio with equalizer. Bhsta natural correspondence between
the structure of the code and the structure of the graph. drctide, stream structures can be
lexically nested to provide a concise description of theiappon.

We believe that imposing structure on a stream graph cam sifieilar benefits. From the
programmer’s perspective, structured streams offer dptilsed and readable way to describe,
parameterize, and compose stream graphs. For exampleeRdgushows the Streamlt code
corresponding to a software radio program. There are thniegs to notice about the figure.
First, there is a natural correspondence between the steuct the code and the structure of the
stream graph. Rather than reasoning about an ad-hoc sedle$ aod edges, the programmer can
visualize the graph while reading the code. Second, thehgdapcription is parameterized. The
number of parallel streams in the equalizer is dictated bgrarpetemlN. Thus, the programmer
can easily describe a broad family of stream graphs; the demgvaluates the values of the
parameters to spatially unroll the actual stream structirgally, imposing a single-input, single-
output discipline on stream programs enables modularitycampositionality. The LowPassFilter
and HighPassFilter can be drawn from a common library, withmowing the details of their
internal representations.

Enforcing structure in the language can also benefit the demBather than dealing with the
complexity of full graphs, the compiler can focus on a few @iencases. This property helped
us to formulate phased schedulin€ar02 KTAO3], linear optimizationsI[TA03, Lam03 Agr04,
ATAO05], and mapping to the compressed domaiHAO07].

We give more details on our experience with structure iniSe@.5.

2.4 Data Reordering

Another novelty of the Streamlt language is the provisiofiefible, composable, and parameter-
ized language primitives for scattering, gathering, armdering data. These primitives take the
form of pre-defined splitter and joiner nodes, which appedoth splitjoins and feedbackloops.
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Figure 2-6: Matrix transpose in Streamit.

There are two types of splitters. The first splithuplicate copies each input item to all of the
output channels. The second splitteyndrobin is parameterized with a set of weights,. . . w,,,
wheren is the number of output channels. It sends the firstnput items to the first stream, the
nextw, items to the second stream, and so on, repeating in a cyshadia. If all of the outputs
have the same weight, the splitter can be written asundrobin(w) similarly, if all the outputs
have weight 1, the programmer can write simpyndrobin Roundrobin is also the only type of
joiner available.

By composing these simple primitives — roundrobin spltteoundrobin joiners, and duplicate
splitters — a large number of data distribution and reorgdgpatterns can be elegantly expressed.
For example, Figur@-6 illustrates Streamlt code for a matrix transpose. The eximd needed
can be expressed by a single splitjoin. The splitjoin hasmaptye stream (called aldentity) for
every column in the matrix; a roundrobin(1) splitter moves tolumns into the splitjoin, while a
roundrobin(M) joiner moves the rows to the output channel.

Another example is bit-reversed ordering. As illustratedrigure2-7, a k-digit bit-reversed
ordering is a permutation in which the element at indéwheren has binary digit$,b; . . . b;) is
reordered to appear at ind&x,_, ... by. For example, in a 3-digit bit reversal, the item at index
one (001) is reordered to index four (100). In a traditioaaljuage such as C, the code to perform
bit-reversal is very complex; see Figite8 for a standard algorithmPFTV93. Given the doubly-
nested loops, conditionals, shift expressions, and swapatipns, it is unlikely that any compiler
will arrive at a sensical representation for the logicardesing performed by this computation. It
is equally difficult for humans to comprehend the code.

However, the Streamlt version (Figu2e9) of bit reversal is far simplér It represents bit re-
versal as a recursive reordering. In the base case, thembrévo elements and no reordering

Isatish Ramaswamy in our group discovered this representatibit-reversal.
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=1
for (i=1; i<n; i+=2) {

00001111 if > i) {
00110011 SWAP(data(j], datali]);
01010101 SWAP(datalj+1], data[i+1]);
}
m=nn;
while (m>=2 && j>m) {
00001111 j-=n;
00110011 m >>=1;
01010101 }
jH=m;
}
Figure 2-7: Data movement in a 3- Figure 2-8: Bit-reversed ordering in an im-
digit bit-reversed ordering. perative language.

complex->complex pipeline BitReverse (int N) {
if (N==2) {
add Identity<complex>;
}else {
add splitjoin {
split roundrobin(1);
add BitReverse(N/2);
add BitReverse(N/2);
join roundrobin(N/2);

133

Figure 2-9: Bit-reversed ordering in Streamit.

is needed (a 1-digit bit reversal is the identity operatioBtherwise, the reordering consists of
separating elements into two groups based on the lowest-bitlof the input position, reorder-
ing both groups independently, and then joining the growgsed on the highest-order bit of the
output position. This pattern can be expressed with a raofl) splitter, a recursive call to
BitReverse(N/2), and a roundrobin(N/2) joiner. The intntis: bit reversal is equivalent to a tree
of fine-grained splitting and coarse-grained joining. Agirigal depiction of this tree appears in
Figure2-9.

Why bother to represent distribution and reordering opamatin an elegant and analyzable
way? The reason is that stream programming centers on datennent, and preserving infor-
mation about exactly where each data item is going enabtesdmpiler to perform more ag-
gressive optimizations. For example, standardized s@itand joiners have enabled us to map
reordering operations to a programmable on-chip netw&kK*02] and have enabled certain
domain-specific optimizationdTAO3, ATAO05, THAQ7]. Other researchers have also leveraged
this representation to automatically generate vector pt&tion instructionsjlY04] and to facili-
tate program sketchinds)LRBEOS.
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While the reordering primitives we have defined are quiteresgive, it should be noted that
they are not complete. Because splitters always distrithvgtie first input item to the first output
channel (and likewise with joiners), it is impossible to Begs a general permutation in which
the first item is reordered to a different position of the atne However, this behavior can be
emulated by introducing simple computational nodes, swsch filter that decimates some of its
inputs. Of course, it could also be rectified by adding prograng language support for adjusting
the order of items output. To our knowledge, the only benakrimaour suite that could leverage
such a primitive is synthetic aperture radar (SAR), in wHimlr matrix quadrants are re-shuffled
in preparation for an FFT. We have not found this functidydb be broadly needed.

2.5 Experience Report

Over the past eight years, we have gained considerableierperin developing applications in
Streamlt. We reflect on this experience first via a quantiganalysis of our benchmark suite, and
then via qualitative impressions from Streamlt programsmer

An overview of the Streamlt benchmark suite appears in T2H6 At the time of this writ-
ing, the suite consists of 67 programs, including 29 raalspplications, 4 graphics rendering
pipelines, 19 libraries and kernels, 8 sorting routinesl, amoy examples. Benchmarks range in
size from 21 lines (Fibonacci) to over 4,000 lines (MPEG2oeler), with a total of 33,800 non-
comment, non-blank lines in the sufiteDver 20 people contributed to the suite, including 6 from
outside our group; median-pulse compression doppler nadardeveloped at Halmstad Univer-
sity [JSUAQY, TDE was developed at the Information Sciences Insittamef-FT and bitonic sort
were developed at UC BerkeledY04], and the graphics pipelines were implemented primarily
by the graphics group at MITJGT+05]. OFDM was adapted from an internal performance test of
SpectrumwareTB96], while Vocoder was implemented with support from Sen8#f8(. Other
benchmarks were often adapted from a reference implen@mtatC, Java, or MATLAB.

Graphical depictions of the stream graphs for each bendhozar be found in AppendiB,
while the complete source code for a small benchmark (Chéooeder) can be found in Ap-
pendixA. A subset of the benchmarks have also been prepared foccpaldase on the Streamit
website Btrg. At the time of this writing, some of the larger benchmarkdPEG2, GMTI, Mo-
saic, FAT, HDTV) are not fully supported by the compiler. Haxer, their functional correctness
has been verified in the Java runtime for the Streamlt languag

It is important to recognize that most of the benchmarks arampeterized, and we study only
one assignment of those parameters in our quantitative@vah. Table2-11 details the param-
eterization of the StreamlIt benchmarks (in addition to dahiag statistics, which are discussed
later). In two-thirds (44) of the benchmarks, the paransesdfect the structure of the stream
graph, often by influencing the length of pipelines, the widf splitjoins, the depth of recursion
hierarchies, or the absence or presence of given filters.s@aime number of benchmarks contain
parameters that affect the 1/O rates of filters (e.g., thgtleof an FIR filter), but do not necessarily
affect the structure of the graph. Changes to the 1/O rasesialply changes to the schedule and
possibly the balance of work across filters. In selectingieslifor these parameters, our primary
goal was to faithfully represent a real-life applicationtbé algorithm. In some cases we also
decreased the sizes of the parameters (e.g., sorting l@miemat a time) to improve the com-

2Counting commented lines (8,000) and blank lines (7,30@)benchmark suite comes to 49,300 lines.
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Benchmark Description Author Libraries Used Lines of
| Code' |
Realistic apps (29):
MPEG2 encoder MPEG2 video encoder (Drake, 2006) Matthew Drake DCT2D, IDCT2D 4041
MPEG2 decoder MPEG?2 vivdeo decoder (Drake, 2006) Matthew Drake IDCT2D 3961
GMTI Ground moving target indicator Sitij Agrawal -- 2707
Mosaic Mosaic imaging with RANSAC algorithm (Aziz, 2007) Basier Aziz FFT 2367
MP3 subset MP3 decoder (excluding parsing + huffman coding) Michal Karczmarek - 1209
MPD Median pulse compression doppler radar (Johnsson et al., 2005) Johnsson et al.” FFT 1027
JPEG decoder JPEG decoder Matthew Drake IDCT2D 1021
JPEG transcoder JPEG transcoder (decode, then re-encode at higher compression) Matthew Drake DCT2D, IDCT2D 978
FAT Feature-aided tracker® Ali Meli FFT 865
HDTV HDTV encoder/decoder’ Andrew Lamb - 845
H264 subset 16x16 intra-prediction stage of H264 encoding Shirley Fung - 788
SAR Synthetic aperture radar Rodric Rabbah - 698
GSM GSM decoder Jeremy Wong -- 691
802.11a 802.11a transmitter Sitij Agrawal FFT 690
DES DES encryption Rodric Rabbah - 567
Serpent Serpent encryption Rodric Rabbah - 550
Vocoder Phase vocoder, offers independent control over pitch and speed (Seneff, 1980) Chris Leger -- 513
3GPP 3GPP radio access protocol - physical layer Ali Meli -- 387
Radar (coarse) Radar array front end (coarse-grained filters, equivalent functionality) multiple -- 203
Radar (fine) Radar array front end (fine-grained filters, equivalent functionality) multiple -- 201
Audiobeam Audio beamformer, steers channels into a single beam Rodric Rabbah -- 167
FHR (feedback loop) Frequency hopping radio (using feedback loop for hop signal) Rodric Rabbah FFT 161
OFDM Orthogonal frequency division multiplexer (Tennenhouse and Bose, 1996) Michael Gordon -- 148
ChannelVocoder Channel voice coder Andrew Lamb - 135
Filterbank Filter bank for multi-rate signal processing Andrew Lamb -- 134
TargetDetect Target detection using matched filters and threshold Andrew Lamb - 127
FMRadio FM radio with equalizer multiple - 121
FHR (teleport messaging) Frequency hopping radio (using teleport messaging for hop signal) Rodric Rabbah FFT 110
DToA Audio post-processing and 1-bit D/A converter Andrew Lamb Oversampler 100
Graphics Pipelines (4):
GP - reference version General-purpose rendering pipeline: 6 vertex shaders, 15 pixel pipes” Jiawen Chen -- 641
GP - phong shading Phong shading rendering pipeline: 1 vertex shader, 12 two-part pixel pipelines Jiawen Chen - 649
GP - shadow volumes Shadow volumes rendering pipeline: 1 vertex shader, 20 rasterizers Jiawen Chen -- 460
GP - particle system Particle system pipeline: 9 vertex shaders, 12 pixel pipelines, split triangle setup Jiawen Chen - 631
Libraries / Kernels (19):
Cholesky NxN cholesky decomposition Ali Meli - 85
CRC CRC encoder using 32-bit generator polynomial Jeremy Wong -- 131
DCT (float) N-point, one-dimensional DCT (floating point) Ali Meli -- 105
DCT2D (NxM, float) NxM DCT (floating point) Ali Meli - 115
DCT2D (NxN, int, reference) |NxN DCT (IEEE-compliant integral transform, reference version) Matthew Drake - 59
IDCT (float) N-point, one-dimensional IDCT (floating point) Ali Meli -- 105
IDCT2D (NxM, float) NxM IDCT (floating point) Ali Meli - 115
IDCT2D (NxN, int, reference) |NxN IDCT (IEEE-compliant integral transform, reference version) Matthew Drake - 60
IDCT2D (8x8, int, coarse) 8x8 IDCT (IEEE-compliant integral transform, optimized version, coarse-grained) Matthew Drake -- 139
IDCT2D (8x8, int, fine) 8x8 IDCT (IEEE-compliant integral transform, optimized version, fine-grained) Matthew Drake -- 146
FFT (coarse - default) N-point FFT (coarse-grained) Michal Karczmarek - 116
FFT (medium) N-point FFT (medium-grained butterfly, no bit-reverse) multiple - 53
FFT (fine 1) N-point FFT (fine-grained butterfly, coarse-grained bit-reverse) Mani Narayanan -- 139
FFT (fine 2) N-point FFT (fine-grained butterfly, fine-grained bit-reverse Satish Ramaswamy | -- 90
MatrixMult (fine) Fine-grained matrix multiply Michal Karczmarek - 79
MatrixMult (coarse) Blocked matrix multiply Michal Karczmarek -- 120
Oversampler 16x oversampler (found in many CD players) Andrew Lamb - 69
RateConvert Audio down-sampler, converts rate by 2/3 Andrew Lamb - 58
TDE Time-delay equalization (convolution in frequency domain) Jinwoo Suh FFT 102
Sorting Examples (8):
BitonicSort (coarse) Bitonic sort (coarse-grained) Chris Leger - 73
BitonicSort (fine, iterative) Bitonic sort (fine-grained, iterative) Mani Narayanan -- 121
BitonicSort (fine, recursive)  [Bitonic sort (fine-grained, recursive) Mani Narayanan - 80
BubbleSort Bubble sort Chris Leger - 61
ComparisonCounting Compares each element to every other to determine n'th output Chris Leger -- 67
InsertionSort Insertion sort Chris Leger - 61
MergeSort Merge sort Bill Thies - 66
RadixSort Radix sort Chris Leger -- 52
Toy Examples (7):
Autocor Produce auto-correlation series Bill Thies - 29
Fib Fibonacci number generator David Maze - 21
Lattice Ten-stage lattice filter Ali Meli - 58
RayTracer1 Raytracer (ported from Intel) Janis Sermulins -- 407
RayTracer2 Raytracer (rudimentary skeleton) Amy Williams -- 154
SampleTrellis Trellis encoder/decoder system, decodes blocks of 8 bytes Andrew Lamb -- 162
VectAdd Vector-vector addition unknown - 31

" Only non-comment, non-blank lines of code are counted. Line counts do not include libraries used.
2 The authors of MPD are Ola Johnsson, Magnus Stenemo, and Zain ul-Abdin.

3 Some helper functions in FAT, HDTV, and SampleTrellis remain untranslated from the Java-based Streamlt syntax.

* The graphics pipelines are described in more detail in Chen et al., 2005.

Table 2-10: Overview of the Streamlt benchmark suite.
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Benchmark Parameters and default values Parameterized: Dynamic Filter Execs per Steady State’
Graph | /O Rates | Rate Filters® Min Mode Mode
Realistic apps (29): Freq.
MPEG2 encoder image size (320x240) v v 7 1 960 17%
MPEG2 decoder® image size (320x240) v v 1 1 990 19%
GMTI over 50 parameters v v - 1 1 56%
Mosaic frame size (320x240) v v 5 2 2 27%
MP3 subset - - 1 18 52%
MPD FFT size (32); rows (104); cols (32) v v - 1 416 25%
JPEG decoder image size (640x480) v 2 1 4800 72%
JPEG transcoder image size (640x480) 2 1 1 85%
FAT 15 parameters, mostly matrix dimensions v v - 1 1 24%
HDTV trellis encoders (12); interleave depth (5) v - 20 1380 38%
H264 subset image size (352x288) v - 17 396 26%
SAR over 30 parameters v - 1 1 95%
GSM - - 1 1 65%
802.11a - - 1 1 14%
DES number of rounds (16) v - 1 1 62%
Serpent number of rounds (32); length of text (128) v v - 1 1 40%
Vocoder pitch & speed adjustments, window sizes v v - 1 1 88%
3GPP matrix dimensions Q, W, N, K (2, 2, 4, 8) v v - 1 9 48%
Radar (coarse) channels (12); beams (4); decimation rates; window sizes v v - 1 1 38%
Radar (fine) channels (12); beams (4); decimation rates; window sizes v v - 1 1 49%
Audiobeam channels (15) v v - 1 1 94%
FHR (feedback loop) window size (256) v v - 1 1 26%
OFDM decimation rates (825, 5); window size (20); demod rate (5) v - 1 1 57%
ChannelVocoder number of filters (16); pitch window (100); decimation (50) v v - 1 50 66%
Filterbank bands (8); window size (128) v v - 1 8 64%
TargetDetect window size (300) v - 1 1 90%
FM Radio bands (7); window size (128); decimation (4) v v - 1 1 97%
FHR (teleport messaging) window size (256) v v - 1 1 23%
DToA window size (256) v - 1 16 43%
Graphics Pipelines (4):
GP - reference version - 15 1 2 85%
GP - phong shading - 12 1 1 94%
GP - shadow volumes - 20 1 1 93%
GP - particle system - 12 1 36 70%
Libraries | Kernels (19):
Cholesky matrix size (16x16) v v - 1 1 70%
CRC - - 1 1 98%
DCT (float) window size (16) v v - 1 1 79%
DCT2D (NxM, float) window size (4x4) v v - 1 1 84%
DCT2D (NxN, int, reference) [window size (8x8) v v - 1 1 80%
IDCT (float) window size (16) v v - 1 1 85%
IDCT2D (NxM, float) window size (4x4) v v - 1 1 83%
IDCT2D (NxN, int, reference) |window size (8x8) v v - 1 1 80%
IDCT2D (8x8, int, coarse) - - 1 64 50%
IDCT2D (8x8, int, fine) - - 1 1 89%
FFT (coarse - default) window size (64) v v - 1 1 23%
FFT (medium) window size (64) v - 32 32 92%
FFT (fine 1) window size (64) v v - 1 1 99%
FFT (fine 2) window size (64) v - 1 1 98%
MatrixMult (fine) matrix dimensions NxM, MxP (12x12, 9x12) v v - 9 108 30%
MatrixMult (coarse) matrix dimensions NxM, MxP (12x12, 9x12); block cuts (4) v v - 9 12 31%
Oversampler window size (64) v - 1 1 20%
RateConvert expansion and contraction rates (2, 3); window size (300) v - 2 2 40%
TDE number of samples (36); FFT size is next power of two v v - 1 15 24%
Sorting Examples (8): -
BitonicSort (coarse) number of values to sort (16) v v - 1 1 67%
BitonicSort (fine, iterative) number of values to sort (16) v - 1 1 100%
BitonicSort (fine, recursive)  [number of values to sort (16) v - 1 1 95%
BubbleSort number of values to sort (16) v - 1 1 100%
ComparisonCounting number of values to sort (16) v v - 1 1 85%
InsertionSort number of values to sort (16) v v - 1 1 67%
MergeSort number of values to sort (16) v v - 1 1 88%
RadixSort number of values to sort (16) v v - 1 1 85%
Toy E. ples (7): -
Autocor length of vector (32); length of autocor series (8) v v - 1 1 80%
Fib - - 1 1 100%
Lattice number of stages (10) v - 1 1 100%
RayTracer1 no parameters, though data read from file - 1 1 100%
RayTracer2 implicitly parameterized by scene (simple circle) v - 1 1 100%
SampleTrellis frame size (5) v - 1 40 46%
VectAdd - - 1 1 100%

" Statistics represent properties of complete programs, in which libraries have been inlined into caller.
! Dynamic rate filters are replaced with push 1, pop 1 filters for calculation of the steady state schedule. Splitters and joiners are not included in the counts.
2 Figures represent the number of runtime instances of dynamic-rate filters. Number of corresponding static filter types are provided in the text.

® Due to the large size of the MPEG2 application, splitjoins replicating a single filter were automatically collapsed by the compiler prior to gathering statistics.

Table 2-11: Parameterization and scheduling statisticSti@amIt benchmarks.
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TOTAL FILTERS PEEKING FILTERS STATEFUL FILTERS' OTHER CONSTRUCTS
Benchmark Types| Instances | Instances | Types | Instances Max Types | Instances Max Splitjoins | Feedback | Workin

(non-Iden.) | (Identity) Work? Work? Loops F. Loop?
Realistic apps (29):
MPEG?2 encoder’ 35 113 30 - - - 9 11 N/A 15 - -
MPEG2 decoder’ 25 49 13 - - - 7 10 N/A 8 - -
GMTI 95 1111 1757 - - - - - - 764 - -
Mosaic 62 176 17 2 2 N/A 7 7 N/A 20 1 N/A
MP3 subset 10 98 36 2 4 8.6% - - - 23 - -
MPD 42 110 33 1 11 1.9% 5 7 2.0% 11 - -
JPEG decoder 17 66 13 1 3 0.00% - - - 11 - -
JPEG transcoder 12 126 8 2 6 0.00% - - - 20 - -
FAT 27 143 4 - - - - - - 5 -
HDTV 20 94 - 12 <0.01% 4 38 N/A 28 - -
H264 subset 28 33 20 - - - - - - 16 1 97%
SAR 22 42 - - - - - - - 1 - -
GSM 17 40 3 1 1 4.7% 3 3 42.4% 6 1 25%
802.11a 28 61 35 1 2 7.6% - - - 18 - -
DES 21 117 16 - - - - - 32 - -
Serpent 13 135 33 - - - - - - 33 - -
Vocoder 30 96 4 4 32 8.0% 3 45 0.3% 8 - -
3GPP 13 60 72 1 8 0.1% - - - 41 - -
Radar (coarse) 6 73 - - - - - - - 2 - -
Radar (fine) 6 49 - - - - 1 28 3.9% 2 - -
Audiobeam 3 18 - 1 15 4.4% - - - 1 - -
FHR (feedback loop) 9 26 1 - - - 1 1 5.1% 1 1 80%
OFDM 6 14 - 1 4 0.1% 1 4 12.2% 1 - -
ChannelVocoder 5 53 - 3 34 5.2% - - - 1 - -
Filterbank 9 67 - 2 32 3.1% - - 9 - -
TargetDetect 7 10 - 4 4 25% - - - 1 - -
FM Radio 7 29 - 2 14 7.6% - - - 7 - -
FHR (teleport messaging) 7 23 3 - - - 1 1 4.2% 1 - -
DToA 7 14 - 1 5 67% - - - - 1 0.7%
Graphics Pipelines (4):
GP - reference version 6 54 - - - - 1 15 N/A 2 - -
GP - phong shading 7 52 - - - - 1 12 N/A 1 - -
GP - shadow volumes 5 44 - - - - 1 20 N/A 1 - -
GP - particle system 7 37 - - - - 1 12 N/A 2 - -
Libraries | Kernels (19):
Cholesky 5 35 15 - - - - - - 15 - -
CRC 4 48 2 - - - - - - - 1 99%
DCT (float) 6 31 7 - - - - - - 14 - -
DCT2D (NxM, float) 6 42 8 - - - - - - 18 - -
DCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -
IDCT (float) 6 48 7 - - - - - - 21 - -
IDCT2D (NxM, float) 6 50 8 - - - - - - 26 - -
IDCT2D (NxN, int, reference) 3 20 - - - - - - - 2 - -
IDCT2D (8x8, int, coarse) 2 4 - - - - - - - - - -
IDCT2D (8x8, int, fine) 2 18 - - - - - - - 2 - -
FFT (coarse - default) 4 13 - - - - - - - - - -
FFT (medium) 5 20 6 - - - - - - 12 - -
FFT (fine 1) 4 195 - - - - - - - 44 - -
FFT (fine 2) 4 99 64 - - - - - - 96 - -
MatrixMult (fine) 4 14 30 - - - - - - 5 - -
MatrixMult (coarse) 4 4 25 - - - - - - 7 - -
Oversampler 5 10 - 1 4 52.7% - - - - -
RateConvert 5 5 - 1 1 97.6% - - - - - -
TDE 7 29 - - - - - - - - - -
Sorting Examples (8):
BitonicSort (coarse) 4 6 - - - - - - - - - -
BitonicSort (fine, iterative) 3 82 - - - - - - - 44 - -
BitonicSort (fine, recursive) 3 62 16 - - - - - - 37 - -
BubbleSort 3 18 - 1 16 5.9% 1 16 5.9% - - -
ComparisonCounting 4 19 1 - - - - - - 1 - -
InsertionSort 3 6 - - - - - - - - - -
MergeSort 3 17 - - - - - - - 7 - -
RadixSort 3 13 - - - - - - - - - -
Toy E: ples (7):
Autocor 3 10 - - - - - - - 1 - -
Fib 2 2 1 1 1 45.5% - - - - 1 73%
Lattice 4 18 10 - - - - - - 9 - -
RayTracer1 4 4 - - - - - - - - - -
RayTracer2 5 5 - - - - - - - - - -
SampleTrellis 14 12 1 1 1 N/A 2 2 N/A 1 - -
VectAdd 3 4 - - - - - - - 1 - -

" Statistics represent properties of complete programs, in which libraries have been inlined into caller.
" Source and sink nodes that generate synthetic input, check program output, or perform file I/O are not counted as stateful.

2 Work is given as an estimated fraction of the overall program, as calculated by a static analysis. Actual runtimes may differ by 2x or more. Work estimates are not
available (N/A) for programs containing dynamic rates (MPEG2, Mosaic, Graphics pipelines) or external Java routines (HDTV, SampleTrellis).
% Due to the large size of the MPEG2 applications, splitjoins replicating a single filter were automatically collapsed by the compiler prior to gathering statistics.

Table 2-12: Properties of filters and other constructs ie&étt benchmarks.
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int->int filter DifferenceEncoder_Stateless {

int->int filter DifferenceEncoder_Stateful {

prework push 1 peek 1 { int state = 0:

push(peek(0));

} work pop 1 push 1 {

push(peek(0)-state);

work pop 1 peek 2 push 1 { state = pop();

push(peek (1) -peek(0));
pop();

}

Figure 2-13: Stateless version of a differ- Figure 2-14: Stateful version of a difference
ence encoder, using peeking and prework.  encoder, using internal state.

prehensibility of the stream graph. For benchmarking psegoresearchers may wish to scale up
the parameters to yield larger graphs, or to vary the ratiovéen parameters to obtain graphs of
varying shapes and work distributions.

More detailed properties of the filters and streams withicheaenchmark are given in Ta-
ble 2-12 In terms of size, benchmarks declare (on average) 11 fijperstand instantiate them 63
times in the stream graph. GMTI contains the most filtersh @8 static types and 1,111 dynamic
instances; it also contains 1,757 instances of the Idefiitity, to assist with data reordering.

We organize further discussion of the benchmark suite doogito the key outcomes of our
survey. We use the term “stateful” to refer to filters thaametmutable state from one execution
to the next; filters containing only read-only state aresifae] as “stateless”. Stateless filters are
amenable to data parallelism, as they can be replicated amper of times to work on different
parts of the input stream. However, stateful filters mustwein a serial fashion, as there is a
dependence from one iteration to the next. While separatefst filters can be run in a task-
parallel or pipeline-parallel mode, the serial nature aheiadividual filter represents an eventual
bottleneck to the parallel computation.

1. Peeking is widely used for a variety of sliding window compudtions. Without peeking,
such computations would often introduce a stateful bottleeck in the program. Twenty
two benchmarks — and more than half of the realistic apptinat— contain at least one filter
that peeks. (That is, these filters declare a peek rate léngertheir pop rate, examining
some items that are not dequeued from the input channelaitdiler execution. We do not
count filters that merely call the peek primitive, as thoeens may be popped during the same
execution.) Benchmarks contain up to 4 filter types that peegrograms with any peeking,
an average of 10 peeking filters are instantiated.

While peeking is used for many purposes, there are a few conpatberns. The most common
is that of an FIR filter, where a filter peeks at N items, popsitara from the input, and pushes
a weighted sum to the output. FIR filters account for slighgss than half (15 out of 35) of the

peeking filter declarations. They are responsible for athefpeeking in 7 benchmarks (3GPP,
OFDM, Filterbank, TargetDetect, DtoA, Oversampler, Rate&rt) and some of the peeking
in 3 others (Vocoder, ChannelVocoder, FMRadio).
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A second pattern of peeking is when a filter peeks at exacttyitam beyond its pop win-
dow. An example of this filter is a difference encoder, as useithe JPEG transcoder and
Vocoder benchmarks. On its first execution, this filter'sppiis the same as its first input; on
subsequent executions, it is the difference between nergithinputs. As illustrated in Fig-
ure2-13 a difference encoder can be written as a stateless filteg ygeking (and prework,
as described later). Otherwise, the filter is forced to na@mninternal state, as illustrated in
Figure2-14. Across our benchmark suite, this pattern accounts for rtinane one quarter (10
out of 35) of the peeking filter declarations. It accountsdibiof the peeking in 4 benchmarks
(Mosaic, JPEG decode, JPEG transcode, HDTV, BubbleSodt)lsame of the peeking in 2
others (Mocoder, FMRadio). It should be noted that the djargerformed on the two items
is sometimes non-linear; for example, Mosaic determinesctirrelation between successive
frames; FMRadio performs an FM demodulation and HDTV penfoan XOR.

The remaining peeking filters (10 out of 35) perform variolidisg-window functions. For
example, MP3 reorders and adds data across large (>100D stetimg windows; 802.11
and SampleTrellis do short (3-7 item) bit-wise operationpart of an error-correcting code;
Vocoder and Audiobeam use peeking to skip N items (by defadd), analogous to an in-
verse delay; ChannelVocoder performs a sliding autocatiocel and threshold across N items
(by default 100).

Without peeking, the filters described above would have tovbgen in a stateful manner,
as the locations peeked would be converted to internalsstdténe filter. This inhibits par-
allelization, as there is a dependence between succeds@reefiecutions. To estimate the
resulting performance impact, Takitel2 lists the approximate amount of work in the most
computationally-heavy peeking filter in each benchmark.Hobenchmarks, this work repre-
sents a significant fraction of the program load (minimun¥@.tnedian 8%, maximum 97.6%)
and would represent a new bottleneck in a parallel compmurtafror 8 benchmarks, the state
that would be introduced by peeking is dwarfed by state dirgmesent for other reasons. For
the remaining 3 benchmarks, the peeking filters represeagkgible (0.1%) fraction of work.

. Prework functions are useful for expressing startup conditons, and for eliminating asso-
ciated state.The prework function allows a filter to have different belwaon its first invoca-
tion. This capability is utilized by 15 benchmarks, in 20tutist filter declarations (results not
shown in table).

The most common use of prework is for implementing a delaytherfirst execution, the filter
pushes N placeholder items, while on subsequent executiants like an Identity filter. A
delay is used in 8 benchmarks (MPD, HDTV, Vocoder, 3GPPefilink, DToA, Lattice, and
SampleTrellis). Without prework, the delayed items wowded to be buffered internally to the
filter, introducing state into the computation.

Other benchmarks use prework for miscellaneous startughvons. As mentioned previously,
the difference encoder in FiguBel3relies on prework (used in JPEG transcoder and Vocoder),
as does the analogous difference decoder (used in JPEGettecdtie MPEG2 encoder and
decoder use prework in filters relating to picture reordgnmhile GSM and CRC use prework
for functions analogous to delays. Prework is also useditielization in MPD, HDTV, and
802.11.
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3. Stateful filters are less common than we expected, though amonetheless required for
complete expression of many algorithms. Further state codlbe eliminated via new lan-
guage constructs, compiler analyses, or programmer inteentions.

After effective use of peeking and prework primitives, omader (17 out of 67) of the bench-
marks still contain one or more filters with mutable state.efEhare 49 stateful filter types
in the Streamlt benchmark suite, representing approxim&® of the total filters. While
other researchers have noted that stream programs are righa parallelism{RD*03], we
nonetheless expected to see a greater proportion of filtatgdtained mutable state between
execution steps. The heaviest stateful filter in each beaghmanges from 0.3% to 42.4%
(median 4.7%) of the overall work, representing an everiiatlleneck to parallelization.

Of the stateful filters, at least 22 (about 45%) represenddomental feedback loops that are
an intrinsic part of the underlying algorithm. Filters ingltategory include the bit-alignment
stage of MPEG encoding, which performs data-dependentiepdathe current position; ref-
erence frame encoding in MPEG encoder, which sometimesssioformation about a previ-
ous frame; the parser in MPEG decoder, which suspends atmdagdts current control flow
position in order to maintain a constant output rate; theiomgprediction, motion vector de-
code, and picture reordering stages of MPEG decoder, winictam data-dependent updates
of various buffers; the pre-coding and Ungerboeck encosliages of HDTV, which are simple
feedback loops; the Ungerboeck decoding stage of HDTV (aatbgously in SampleTrellis)
which mutates a persistent lookup table; multiple feeddaoks in GSM; an accumulator,
adaptive filter, and feedback loop in Vocoder; incrementege correction in OFDM; and
persistent screen buffers in the graphics pipelines.

The remaining filters classified as stateful may be amenaldelditional analyses that either
eliminate the state, or allow restricted parallelism evethie presence of state. The largest
category of such filters are those in which the state varsahte modified only by message
handlers (messaging is described in the next chapter). Mghstuch messages represent a
genuine feedback loop depends on whether the filter senidengnéssage is data-dependent on
the outcome of the filter receiving the message. Even if abfaeklloop does exist, it may be
possible to exploit bounded parallelism due to the intardglay in that loop, or speculative
parallelism due to the infrequent arrival of most telepoessages. In our benchmarks, there
are 16 filters in which the state is mutated only by messageélees) they originate from MPEG
encoder, MPEG decoder, Mosaic, and both versions of FHReTdre also 4 additional filters
(drawn from MPEG encoder, MPEG decoder, and Mosaic) in witieesage handlers account
for some, but not all, of the state.

A second category of state which could potentially be rerdasehat of induction variables.
Several filters keep track of how many times they have beevkeuw, in order to perform a
special action every N iterations. For example, MPEG encodants the frame number in
assigning the picture type; MPD and Radar (fine grained eeysiount the position within
a logical vector while performing FIR filtering; and Sampilellis includes a noise source
that flips a bit every N items. Other filters keep track of a ¢adjitwo-dimensional position,
incrementing a column counter on every iteration and ordyamenting the row counter when
a column is complete. Filters in this category include mogstimation from MPEG encoder,
and two filters from MPD. Other filters in MPD contain more cdexginduction variables; an
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accumulator is reset when a different counter wraps-arooizéro. Taken together, there are
a total of 9 filters that could become stateless if all indurctrariables could be converted to a
closed form.

There are two approaches for eliminating induction vadalitom filter state. The first ap-
proach is to recognize them automatically in the compilehilévthis is straightforward for
simple counters, it may prove difficult for nested countéragcking both row and column) or
co-induction variables (periodically reseting one vaedtased on the value of another). The
second approach is to provide a new language primitive ttanaatically returns the current
iteration number of a given filter. This information can éabe maintained by the runtime sys-
tem without inhibiting parallelization; shifting the bued from the programmer to the compiler
would improve both programmability and performance.

The third and final category of state that could potentialydmoved is that which results from
writing a logically coarse-grained filter at a fine level ogularity. This can result in a filter in
which state variables are reset every N executions, canelpg to one coarse-grained execu-
tion boundaries. Such filters can be re-written in a stadete@nner by moving state variables
to local variables in the work function, and scaling up theation of the work function to
represent N fine-grained iterations. Such coarsening weluttnate the state in bubble sort,
which is reset at boundaries between data sets, as well as@aoperiodic filter (LMaxCalc)

in MPD. It would also eliminate many of the induction variebldescribed previously, as they
are also periodic. This approach provides a practical moldor eliminating state, and was
employed in translating Radar from the original fine-grdimersion to a coarse-grained alter-
native (both of which appear in our benchmark suite). Thevbeeks of this transformation
are the effort required from the programmer and also theeasad size of the resulting filter.
Coarse-grained filters often incur a larger code footpankpnger compile time, and a less
natural mapping to fine-grained architectures such as FP®Wsile the Streamlt language
aims to be agnostic with respect to the granularity of filtearsome cases the tradeoff between
writing stateless filters and writing fine-grained filtersynmeeed to be iteratively explored to
achieve the best performance.

. Feedback loops are uncommon in our benchmarks, but represérsignificant bottlenecks
when present.While our discussion thus far has focused on stateful filsrgen benchmarks
also contain explicit feedback loops in the graph structboair of these loops (Fib, FHR feed-
back, H264 subset, CRC) represent significant bottlenecksutallelization, with workloads
ranging from 73% to 99% of the overall execution. The loop BI\Gis shadowed by a stateful
filter; the loop in DToA represents only 0.7% of the runtimagahe loop in Mosaic, while
likely a bottleneck, is difficult to quantify due to dynamiates. Unlike some of the stateful
filters, these feedback loops are all intrinsic to the athaniand are not subject to automatic
removal. However, feedback loops can nonetheless affqudrtymities for parallelism due to
the delay in the loop — that is, if items are enqueued alongdbdback path at the start of
execution, then they can be processed in parallel. Furtfaysis of these delays is needed to
assess the potential parallelism of feedback loops in ouchreark suite.

. Splitjoins and Identity filters are very common in the benchmarks. These two language
constructs found broad application across our benchmaidx plitjoins appear in over three
guarters (53 out of 67) of the benchmarks, with a median ofs&imtiations per benchmark.
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Benchmark

Sender(s)

Receiver(s)

Direction

Latency

Purpose

MPEG2 encoder

1

2

Upstream

0

Send back reference frame to forward and backward motion predictors

Downstream

Send picture number and picture type to processing filters

Downstream

Broadcast common parameter to adjacent filters, across splitters/joiners

MPEG2 decoder

Downstream

Send video parameters from file parser to decoding stages

Mosaic

Upstream and Downstream

Indicate if RANSAC algorithm should continue to iterate

Downstream Broadcast common result (number of inliers) to pipeline of filters

Downstream Send result across joiner, with different type than data stream

FHR (teleport messaging)

I PN [N N (N N N
N N PR XY BN ENF ES
o|o|o|o|o|o|o

Upstream Indicate detection of signal to switch frontend to given frequency

Table 2-15: Use of teleport messaging in Streamlt benchsnark

Roundrobin splitters accounted for 65% of the instantrejavhile the other splitters are of
duplicate type. (All joiners are of roundrobin type.) ldénfilters were used in half (33 of
67) of the benchmarks, with a median of 13 instantiationshgeichmark. Identity filters are
recognized by the compiler as a pass-through operatioowiald) it to map communication
instructions directly to a network fabric.

. Teleport messaging and dynamic rates are uncommon in the behmarks, but provide
critical functionality when utilized. These language features were not fully specified until
years after the initial release of the compiler, which cdities to their smaller representation
in the benchmark suite.

As detailed in Table-15, teleport messages are utilized by four of the benchmarlHGR
encoder, MPEG2 decoder, Mosaic, and FHR). There are a tb&lagical messages, often
between multiple senders or multiple receivers. Both @pstrand downstream messages are
utilized; all messages are sent with a latency of zero. Wheiltively few of the benchmarks
use teleport messaging, the functionality provided ismsse As described in the next chapter
for the case of FHR, and elsewhere for MPEG2404 and Mosaic Azi07], messaging greatly
simplifies and improves the expression of these algoritimasstreaming context.

Similarly, as illustrated in Tabl2-11, dynamic rates are utilized by only 9 benchmarks, but are
absolutely necessary to express these benchmarks in Str@draugh there are a total of 76
dynamic-rate filters instantiated across the benchmarksegtinstantiations correspond to only
14 filter types that perform a set of related functions. InGR&Ed MPEG2, dynamic-rate filters
are needed to parse and also create both the BMP and MPEGt$orMBEG2 encoder also
requires a dynamic-rate filter to reorder pictures (putnfyfames in the appropriate place).
All of these filters have unbounded push, pop, and peek rdtesgh in JPEG and MPEG2
decoder there is a minimum rate specified.

In Mosaic, dynamic rates are used to implement a feedbagk(indhe RANSAC algorithm)
that iterates an unpredictable number of times; the sigretbip iteration is driven by a teleport
message. The entry to the loop pops either 0 or 1 items, wiglexit from the loop pushes
either zero or one items. Mosaic also contains three pasiped filters, in which the input and
output rates are governed by the number of points of intaesietermined by the algorithm.
The count is established via a teleport message, thus fikeoput and output rates prior to a
given iteration.

In the graphics pipelines, the only dynamic-rate filterstheerasterizers, which expand each
triangle into an unknown number of pixels.
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7. Neighboring filters often have matched I/O rates.Many of the advanced scheduling strate-
gies for synchronous dataflow graphs have the highest payah the input and output rates
of neighboring filters are mismatched. For example, the G-bBenchmark (shown in Fig-
ure2-16) is used in many studiedMBL94, BML95, TZB99, BB00O, CBL01, MB04, KSBO0€;
it converts compact disk auto (sampled at 44.1 khz) to digitdio tape (sampled at 48 khz).
Performing this conversion in stages improves efficieMdBL94]. However, neighboring fil-
ters have different communication rates which share no comfactors, resulting in a large
steady-state schedule.

In our benchmark suite, mismatched communication rateges &1 CD-DAT are rare. The
common case is that the entire benchmark is operating oniealdgame of data which is
passed through the entire application. Sometimes therdiffeeence in the input and output
rates for filters that operate at different levels of grarityafor example, processing one frame
at a time, one macroblock at a time, or one pixel at a time. NHewé¢hese rates have a small
common multiple (i.e., the frame size) and can be accomneddaithout growing the steady
state schedule. The JPEG transcoder provides an examplisofFigure2-17 illustrates part
of the stream graph that operates on a single 8x8 macroblock.

To provide a quantitative assessment of the number of métctes in our benchmark suite,
Table2-11summarizes the key properties of the steady state scheelived for each program.
We consider the minimal steady state schedule, which egseaich filter the minimum number
of times so as to consume all of the items produced by otherdiih the graph. We count the
number of times that each filter executes in this schedulehwie refer to as thenultiplicity
for the filter. The table illustrates, for each benchmarle, thinimum multiplicity, the mode
multiplicity, and the percentage of filters that have the soualtiplicity (the mode frequency).

The most striking result from the table is that 90% (60 out Bf 6f the benchmarks have a
minimum filter multiplicity of 1. That is, there exists at aone filter in the program that
executes only once in the steady state schedule. This fdfaresd the logical frame size for the
execution; all other filters are simply scaled up to satikfy input or output requirements of
the filter.

The second highlight from the table is that, on average, 66&eofilters in a program share
the same multiplicity. For over two-thirds of the benchnsaf6 out of 67), the most common
multiplicity is 1; in these benchmarks, an average of 75%neffilters also have a multiplicity
of 1. The mode multiplicity can grow higher than 1 in cases mehane filter operates at a
coarse granularity (e.g., a frame), but the majority offiteperate at a fine granularity (e.g., a
pixel). In these benchmarks, 46% of the filters still shasesame multiplicity.

The prevalance of matched rates in our benchmark suiteedsto lunexpected results in some
of our papers. For example, in our work on phased scheduliegjeveloped a new schedul-
ing algorithm that reduces the buffer requirements needexécute a synchronous dataflow
graph KTAO3]. The space saved on CD-DAT is over 14x. However, the medigimgs across
our benchmark suite at the time (a subset of the suite preddre) is less than 1.2x. The
reason is that the potential savings on most benchmarks xtresresly small due to matched
input and output rates; simply executing each node oncedafteén give the minimal possible
buffering. This result emphasizes the importance of ogiimgi the common case in realistic
programs, rather than restricting attention to small exasp
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Figure 2-16: The CD-DAT benchmarkB04] exhibits unusually mis-matched I/O rates. Nodes
are annotated with the number of items pushed and poppedgaiteon, as well as their execution

multiplicity in the steady state. Since neighboring filtpreduce different numbers of items, each
filter has a large multiplicity in the steady state. This dadsaclever scheduling strategies to avoid

extremely large buffer sizes.
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Figure 2-17: This excerpt from the JPEG transcoder illtstrenatched I/O rates, as found in many
benchmarks. The graph is transforming pixels from an 8x8atdock. Nodes are annotated with
the number of items pushed and popped per execution, assibkis execution multiplicity in the
steady state. Since neighboring filters often produce theesaumber of items on each execution,
all filters except for Identity and Adder execute exactly @mntthe steady state. This offers less
flexibility to optimize the schedule, and affords less bdrfesim doing so.
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(a) Unstructured (b) Structured

Figure 2-18: Example of refactoring a stream graph to fit acstired programming model. Both
graphs achieve equivalent communication between filters.

In addition to our observations about the benchmark cherigtits, we also offer some lessons

learned from developers’ experiences in implementingastrerograms. As noted in Tahke10,
the Streamlt benchmarks were developed by 22 differentlpgalbbut one of them were students,
and half of them were undergraduates or M.Eng students atAlThe developers were newcom-
ers to the Streamlt language, we expect that their experiencild reflect that of a broader user
population; their coding style was not influenced by thenhtd the original language designers.
We summarize their experience as follows:

1. Structured streams are a useful and tractable means of writig programs. However, they

are occasionally unnatural and, in rare cases, insufficient Overall, we found structured
streams — the hierarchical composition of pipelines, jgphis, and feedbackloops — to be a
good match for the applications in our benchmark suite. @#hié developer sometimes had to
refactor an unstructured block diagram into structuredmmments, the result was nonetheless
a viable way to represent the application.

One shortcoming of structure is that it can force progransmb@multiplex and demultiplex
conceptually-distinct data streams into a single chanitet. underlying cause of this hazard is
illustrated in Figure2-18 Because filters C and D are running in parallel, their inprgasns
must converge at a common splitter under a structured pmogiag model. However, this
implies that the auxiliary communication from A to D mustafsass through the splitter, in a
manner that is interleaved with the output of B. An extratgph (at the top of Figur®-18b)

is needed to perform this interleaving. A more realisticregle of the same hazard is shown
in Figure2-19 which corresponds to our 3GPP benchmark.

Needless to say, this pattern of multiplexing and demwkipplg adds considerable complexity
to the development process. It requires the programmer fataa an unwritten contract
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Figure 2-19: Stream graph of a 3GPP Radio Access Protocol
application. Shaded filters indicate ldentity nodes that ar
used to bypass data items around intermediate filters. They
are also used in splitjoins for data duplication and reonder
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Figure 2-20: A communication pattern unsuitable for stuuetl streams. This pattern can arise
in video compression, where each block informs its neighlodits motion prediction before the
next processing step.

regarding the logical interleaving of data streams on edulsipal channel. Moreover, the
addition of a new communication edge in the stream graph @ayire modification to many
intermediate stages.

While there is no perfect solution to this problem, we haveestimes embraced two imperfect
workarounds. First, the data items in the multiplexed stieaan be changed from a primitive
type to a structure type, allowing each logical stream toyc#is own name. This approach
would benefit from a new kind of splitter and joiner which augtdically packages and un-
packages structures from adjoining data channels. Thandeaqaproach is to employ teleport
messaging; as described in the next chapter, it allows{poipbint communication and avoids
interleaving stream data. However, since it is designedrfegular control messages, it does
not expose information about the steady-state dataflowetodmpiler.

In practice, we have chosen to tolerate the occasional axitpbf stream multiplexing rather
than to fall back on an unstructured programming model. Heweat may be valuable to
consider a natural syntax for unstructured componentseftiream graph — the analog of
break and continue statements (or even a rare GOTO stafeimstructured control flow. It is
important to note, however, that there is no overhead inited by adding splitters and joiners
to the stream graph; the StreamlIt compiler analyzes the aonmation (via an analysis known
assynchronization removgato recover the original unstructured communication.

Finally, there are rare cases in which the structured prestin Streamlt have been inade-
guate for representing a streaming communication pattggure2-20illustrates an example
from video compression, where each parallel filter perfoamaotion prediction for a fixed
area of the screen. Between successive frames, each filsgesdts prediction with its neigh-
bors on either side. While this could be represented withedldack loop around the entire
computation, there would be complicated interleaving imed. This case reflects a broader
shortcoming, discussed in Sectidry, that Streamlt is not designed for multidimensional data
processing.

2. Programmers can accidentally introduce unnecessary mutdb state in filters. Filters that
have no mutable state are attractive because they can be eudata-parallel fashion. Un-
fortunately, the performance cost of introducing stateasexposed in the current Streamlt
language. Thus, we found that several programmers, whed fatth two alternative im-
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void->int filter SquareWave() {

void->int filter SquareWave() { int x = 0;
work push 2 {
push(0); work push 1 {
push(1); push(x);
} x =1 - x;
b b
}
(a) Stateless (b) Stateful

Figure 2-21: Programmers can accidentally introduce wessary filter state when writing pro-
grams. In this example, the intended output is a square veawi#ting alternate values of 0 and
1. Both implementations shown are functionally equivaledbwever, the stateless version (a)
appears data-parallel to the compiler, while the statedtdion (b) appears sequential.

plementations of an algorithm, would sometimes choose tigetloat includes mutable state.
Figure2-21gives a pedantic example of this problem, while Figi¥22illustrates a realistic
case from MPD. Prior to conducting our performance evabmsti we examined all stateful
filters in the benchmarks and rewrote them as statelessfilteen it was natural to do so. In
future stream languages, it may be desirable to requiretaa e modifier on stateful filters,
such as atatefulkeyword in their declaration, to force programmers to bentmant of any
added state and to avoid it when possible.

3. Multi-phase filters confuse programmers and are not necessg At one pointin the Streamit
project, we embraced the cyclo-static dataflow moB&LP95 PPL9] for all filters. Under
this model, the programmer can define multiple work functithrat are executed under a speci-
fied pattern. By dividing execution into more fine-grainedsycyclo-static dataflow can offer
lower latency than synchronous dataflow, and can also aveadIdck in tightly constrained
loops.

However, our experience is that having the option of mudtigkecution steps is confusing to
beginning Streamlt programmers. There is a tendency tgorgemultiple execution steps as
belonging to multiple distinct filters. It is also difficulb texplain to a non-expert why one
method should be designated as an execution step, ratmesigtaaplain subroutine call.

Multiple execution steps did prove to be important to the aetics of splitters and joiners,
which would have an unreasonably large granularity if theyexforced to transfer a full cycle
of data at a single time. However, because Streamlt reli@sfew built-in primitives for split-
ting and joining, the subtlety of this execution semantmsld be hidden from the programmer.
Apart from splitters and joiners, we did not encounter argnseios (in our limited benchmark
suite) that demanded multiple execution steps in filters.

Thus, after making a significant investment to support tHhg&nerality of cyclo-static dataflow
in the StreamlIt compiler, we eventually changed course antbved the capability from the
language.

4. Input and output rates can typically be inferred from the code inside a filter. However,
it is still worthwhile for the programmer to declare them. We were surprised how many
Streamlt benchmarks contained completely static contralifhside the body of filters. That s,
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float->float filter
CFARDelayToLMax_Stateful(int rows) {
float[rows] guardNoise;
float[rows] thresh;
float[rows] sumDb;
float[rows] guardDb;
int popPos = 0;
int pushPos = 1;

float->float splitjoin
CFARDelayTolLMax_Stateless(int rows) {

split roundrobin;

add Delay(rows-1);

add Delay(rows-1);

add Identity<float>();

add Delay(rows-1);

add Delay(rows-1);

join roundrobin;

work pop 5 push 5 {
guardNoise[popPos] = pop();
push(guardNoise[pushPos]);
thresh[popPos] = pop();
push(thresh[pushPos]);
push(pop());
sumDb[popPos] = pop();
push (sumDb[pushPos]);
guardDb[popPos] = pop();
push(guardDb[pushPos]);

}

float->float filter Delay(int N) {
prework push N {
for (int i=0; i<N; i++) {
push(0.0);
}

popPos++;
pushPos++;

}

work push 1 pop 1 {

push(pop()); if(popPos >= rows) {

} popPos = 0;

} }

if(pushPos >= rows) {

pushPos = 0;

}

b
}
(a) Stateless (b) Stateful

Figure 2-22: A second example, drawn from MPD, in which aed¢sts computation was written in
a stateful style in the original implementation. The oraiwersion (b) performs a complex delay
and reordering of interleaved vectors on the input streant ,agppears stateful to the compiler. It
can be rewritten as a stateless construct (a), which segattad logical streams using a splitjoin
and applies a stateless delay to each one.

the path of control taken through tiverk function is often independent of the data values input
to the filter. Exceptions to this pattern include sortingoaitnms, compression algorithms, and
parsing algorithms (e.g., the MPEG-2 bitstream parser).

When the control flow is static, it is often feasible for thergumler to infer the number of
items pushed and popped via a static analysis. Such an enabystd save the programmer the
trouble of annotating each work function with its input andput rates.

However, we did find that it is valuable for programmers toaate the input and output
rates even when they can be inferred. As is commonly the cédbeype declarations, these
annotations provided documentation to other users reggtte intended behavior of the filter,
making it easier to understand and maintain. They also geava level of redundancy, so that,
when possible, the compiler could check the consistenayd®t the declared rates and the
actual implementation.
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2.6 Related Work

As described in Chapter 1 and elsewhe3teP1, there is a long history of programming language
support for streams in the dataflow, functional, and synobws language domains. Here we
compare to Streamlt’'s more immediate contemporaries.

The Brook language is architecture-independent and fecosedata parallelismBFH"04].
Stream kernels are required to be stateless, though thepedsal support for reducing streams
to a single value. Sliding windows are supported via steneihich indicate how data elements
should be replicated across multiple processing instaWgbfie Streamlt supports a single stream
graph operating a conceptually infinite stream, Brook sugpuoultiple graphs, embedded ina C
program, that operate on finite-length streams. An indepeincomparison of the two languages
by Mattson and LethinNILO3] aptly summarizes the philosophical difference, in that&mnlit
was designed by compiler writers (it is “clean but more cansed”) while Brook was driven by
application developers and architects, and is “rough butregpressive”.

Brook is one of several stream-oriented languages thatestaut of the graphics commu-
nity. Cg exploits pipeline parallelism and data paraltelighough the programmer must write
algorithms to exactly match the two pipeline stages of a lgpprocessorNIGAKO3]. The
sH language, subsequently commercialized by RapidMindmbedded within C++ as a set of
macros MQP02 MTP+04]. Like Streamlt, sH specializes stream kernels to theirstamt ar-
guments, and fuses pipelined kernels in order to increase dhanularity. Unlike Streamlt, sH
performs these optimizations dynamically in a Just-Ingi(dIT) compiler, offering increased
flexibility. However, Streamilt offers increased express®ss in that 1) Streamlt can express ar-
bitrary stream graphs, while sH appears to be limited tolpps, and 2) Streamlt can express
kernels with state, while sH kernels must be stateless. l&@ter [TPO0G also employs a Just-
In-Time strategy to target GPUs from C#; the system derieallelism from data-parallel array
types rather than explicit stream kernels.

StreamC/KernelC preceded Brook and operates at a lowdrdéabstraction; kernels writ-
ten in KernelC are stitched together in StreamC and mapp#tketdata-parallel Imagine proces-
sor [KRD*03]. SPUR adopts a similar decomposition between “microcadefam kernels and
skeleton programs to expose data paralleliZir§L05].

Streamlt is not the first language to incorporate the notioa sliding window. In the Warp
project, the AL languageTljse89 had a window operation for use with arrays, and Printz'gtisil
flow graphs” included nodes that performed a sliding windBwJ1]. The ECOS graphs language
allows actors to specify how many items are read but not corsHMWZ92]; the Signal lan-
guage allows access to the window of values that a variablenasd in the pastdBBG84; and
the SA-C language contains a two-dimensional windowingatpen [DBH*01]. However, to the
best of our knowledge, we are the first to demonstrate thiéyutil sliding windows in improving
parallelism and programmability across a large benchmait&.s

To summarize the differences to other stream languagesai8tt places more emphasis on ex-
posing task and pipeline parallelism (all the language®sgpulata parallelism). By adopting the
synchronous dataflow model of execution, Streamlit focusesell-structured and long-running
programs that can be aggressively optimized. We are nokagiatructured streams or hierarchi-
cal mechanisms for data reordering in other stream languaggidle CHRT03] is also a recent
stream language that was influenced by Streamit.
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2.7 Future Work

There are many directions in which to expand and refine thea8tit language. Based on his
study of MPEG-2 in Streamlt, Matthew Drake makes a sound frasadding support for pro-
grammable splitters and joiners, re-initialization ofestms, draining of streams, and dispatch
splitjoins [Dra0g. He also discusses extensions to teleport messagingiloesa the next chap-
ter. We endorse his recommendations and also highlighbttening research directions:

1. Dynamic changes to stream structure A long-time goal of the Streamlt group has been to de-
fine and implement support for dynamic changes to the streaphgFor example, an adaptive
channel decoder may decide to add or remove filtering stageB|R filter may dynamically
scale the size of the window it considers; a network routey atl or remove streams to rep-
resent new logical flows; or an AMPS cellular base station m@y and remove streams to
support new clients.

There are several challenges and opportunities in supgoadiynamic stream graphs. As de-
scribed in the next chapter, our basic model for runtime tedem is to re-evaluate the initial-
ization code for stream structures by sending a teleporsagesto that stream. The difficulty
comes in timing the re-initialization, migrating filter s#¢aand buffered data items to the new
graph, and maintaining as much static information as ptesatiout the possible configurations
of graphs that will be adopted at runtime. Many of these issuise not from dynamism, but
from incorporating a notion of finite streams into the langgiaas the current language views
all streams are conceptually infinite, it does not have td @éh boundary conditions or ter-
mination procedures, both of which are prerequisites foragyic reconfiguration. While we
have developed extensive internal notes and proposalsi\godge support for dynamism, we
omit them from this dissertation because we have yet to reankensus on many aspects of
the design.

As an intermediate step towards supporting a fully-recaméigle stream graph, it would also
be interesting to introduce primitives that allow prograemmto indicate which parts of code
should be evaluated at compile time, versus being evalwtiedd time or runtime. The cur-
rent Streamlt compiler requires the structure and comnatioic rates in the stream graph to
be evaluated at compile time, though the Streamlt languaglel @lso be interpreted as bind-
ing these values at load time (during program initializatioWwhile compile-time evaluation
improves optimization opportunities, it is not always p&sible by the application. For ex-
ample, if an external file is used to drive the structure oapueaters of the stream graph, then
compile-time evaluation is safe if that file is fixed acrodsaecutions (e.g., a simulator for a
specific processor architecture) but unsafe if it may vaosynflone execution to the next (e.qg.,
a scene description for a rendering engine). We envisidretBanple type modifier, such as a
“dynamic” keyword, could be used to distinguish these ca$hs type system would guaran-
tee that everything that depends on dynamic data is alsamectlynamic. This would allow
the compiler to maximally evaluate other sections of theastr graph at compile time.
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2. Multidimensional data. The current version of Streamlt is a natural fit for handlinge-o
dimensional sequences of data, but falls short in exposiaglependences and flexibility in-
herent in manipulating multi-dimensional data. When hengddequences of multidimensional
data (such as video frames), the programmer is currentlyMig two alternatives. One op-
tion is to take a coarse-grained approach in which filters @l pop entire arrays at a time.
However, this results in nested loops within filter code uadg the problem to a traditional
loop analysis without gaining any leverage from the stregndiomain. The second option is to
take a fine-grained approach, in which individual arrayssaiti up into columns or blocks and
distributed over many filters. However, this mapping forttesprogrammer to specify a fixed
decomposition of the data in the array (row-major, columagem blocked, etc.) and makes it
more difficult for the compiler to infer the underlying depiemces and adjust the schedule as
needed.

One possibility for handling multidimensional data coukltb add iterators that apply a filter
(or entire stream graph) to all of the elements of an arraye Blook languageBFH"04]
adopts a similar approach in a construct terrahcils However, stencils generally operate
on a single array at a time and are not integrated into a lstgesm graph. An opportunity for
future work would be to create a unified environment for pssgey sequences of arrays and
data items within arrays, including compiler-friendly lthge” operators that decompose arrays
into data streams and assemble data streams into arrayearBleshallenges arise in the spec-
ification of boundary conditions on the sides of an array,déeendences and reuse between
different parts of an array, and the possibility for carrgtdte across separate arrays. Many
of these issues are again rooted in Streamlt’s ties to antaBtream abstraction. Integrated
support for finite streams will be needed to effectively Hamdultidimensional data.

3. External interfaces. In practice, it is important for any domain-specific langeiéghave well-
defined interfaces for interacting with languages and systifat fall outside of the domain.
In the case of streaming, this encompasses interfaces foeduling stream graphs within
general purpose languages, as well as for embedding genem@se computations within
stream graphs. While we have developed an internal, adrtexdace for interfacing between
Streamlt and C, there are interesting research questioigoiously defining the semantics of
such hybrid computational models.

For example, one characteristic of synchronous dataflohaisdata streams are virtually infi-
nite; however, from a general-purpose language, streacangputations can also be gainfully
applied to large arrays. Thus, it will be valuable to deveiopnal notions of draining the
stream graph, and perhaps mechanisms to maintain the ttas¢ream graph from one instan-
tiation to another.

There are also interesting questions that relate to the memodel of hybrid systems. Syn-
chronous dataflow represents a fully distributed model witlaccess to shared state; however,
other general-purpose programming models often embrabaradmemory abstraction. As
described in the next chapter, one approach to unifyingetlaéstractions could be to allow
streaming updates to shared memory so long as they are cdmdcording to a determinis-
tic static schedule.
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2.8 Chapter Summary

This chapter describes the design rationale and expedeyai@eed from the Streamlt language,
one of the first programming languages that exposes andiextile inherent regularity of stream
programs. Streamilt is rooted in the synchronous dataflowetedth added support for multiple
execution steps, dynamic communication rates, telepossagng, peeking, and communication
during initialization. Key novelties of the language are thotion of structured streams — akin
to structured control flow in an imperative language — as aglhierarchical and parameterized
splitjoins for data reordering. The design of the basic cotatonal node in Streamlt, the filter,
also exposes inherent parallelism that is masked by pamgeripulation and modulo operations
in a traditional C implementation.

The development of a large-scale benchmark suite in Sttdathto several insights and sur-
prises. Language support for sliding windows and commtioicaluring the initialization stage
enabled many filters to be written in a stateless manner, sexggarallelism that would have
been masked without these features. We were surprised oWiters contained mutable state;
this suggests that many programs can leverage data p@rallebther than relying on task and
pipeline parallelism, to achieve parallel performancer Benchmarks often contain matched in-
put and output rates, where filters need to execute only a siwnaber of times before satisfying
the steady-state data requirements of their neighbors.prbperty reduces the space of scheduling
alternatives as well as the benefit derived (e.g., in buffacs) from complex filter interleavings.

Continuous feedback from Streamlt developers also provadeluable critique of the Streamlt
language. While structured streams were a natural way t@sept common programs, in some
cases the programmer needed to refactor an unstructuesdrsgraph into a more complex struc-
tured representation. An optional mechanism for infrequestructured communication may be
valuable in future languages. Programmers were also pmaecidentally introduce mutable fil-
ter state, impeding parallelization. Future languagesiishexpose this performance cost to the
programmer so that they avoid unnecessary serializatieanfodhd that multi-phase filters (as in
cyclo-static dataflow) are likely to confuse programmerd are not necessary to express compu-
tations in our benchmark suite. Finally, while the input andput rates of most filters could be
inferred, it was still worthwhile to declare them from a sadte engineering standpoint.

There is rich potential for future work in stream languagesiuding support for dynamically
changing the stream structure, support for multidimeraidata, and support for external inter-
faces.
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Chapter 3

Teleport Messaging

In this chapter, we develop a new language construct to asdnmee of the pitfalls of parallel pro-
gramming: precise handling of events across parallel coraps. The construct, terméeleport
messaginguses data dependences between components to provide aboamtion of time in a
parallel system. We leverage the static properties of symtdus dataflow to compute a stream
dependence functiosDEP, that compactly describes the ordering constraints betwaetor exe-
cutions.

Teleport messaging utilizeoEPto provide powerful and precise event handling. For example
an actorA can specify that an event should be processed by a downsaetmm?B as soon as
B sees the “effects” of the current execution4f We argue that teleport messaging improves
readability and robustness over existing practices. We imaplemented messaging as part of the
Streamlt compiler, with a backend for a cluster of workstasi. As teleport messaging exposes
optimization opportunities to the compiler, it also resuit a 49% performance improvement for
a software radio benchmark.

3.1 Introduction

One difficult aspect of stream programming, from both a peréimce and programmability stand-
point, is reconciling regular streaming dataflow with imég control messages. While the high-
bandwidth flow of data is very predictable, realistic apgiions also include unpredictable, low-
bandwidth control messages for adjusting system parasgtey., filtering coefficients, frame size,
compression ratio, network protocol, etc.). Control mgesaoften have strict timing constraints
that are difficult to reason about on parallel systems.

For example, consider a frequency hopping radio (FHR), viigrors how CDMA-based cell
phone technology works. In FHR, a transmitter and a recsiwédch between a set of known radio
frequencies, and they do so in synchrony with respect toeasttooundary. That is, a receiver
must switch its frequency at an exact point in the streamn@sated by the transmitter) in order
to follow the incoming signal. Such a receiver is challeggimimplement in a distributed environ-
ment because different processors might be responsibtédaradio frontend and the frequency
hop detection. When a hop is detected, the detector mustessemessage to the frontend that is
timed precisely with respect to the data stream, even thtugltwo components are running on
different processors with independent clocks.

Other instances of control messaging have a similar flavaorponent in a communications
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frontend might detect an invalid checksum for a packet, @nd & precisely-timed message down-
stream to invalidate the effects of what has been proce€3eda downstream component might
detect a high signal-to-noise ratio and send a message footitend to increase the amplifica-

tion. In an adaptive beamformer, a set of filtering coeffitsaa periodically updated to focus the

amplification in the direction of a moving target. Additidrxamples include: periodic channel

characterization; initiating a handoff (e.g., to a new ragtprotocol); marking the end of a large

data segment; and responding to user inputs, environnmgirtalli, or runtime exceptions.

There are two common implementation strategies for contesdsages using today’s languages
and compilers. First, the message can be embedded in théoaigiwidth data flow, perhaps as
an extra field in a data structure. Application componeneckHfor the presence of messages
on every iteration, processing any that are found. Thisreeheffers precise timing across dis-
tributed components, as the control message has a welledgfiosition with respect to the other
data. However, the timing is inflexible: it is impossible foe sender to synchronize the message
delivery with a data item that has already been sent, or td sessages upstream, against the
flow of data. This approach also adds runtime overhead, asohtse data sent are placeholders
to indicate the absence of an infrequent control message.sifeam graph may also grow more
complex as dedicated channels are added to handle onlytorgssages.

A second implementation strategy is to perform control ragsgy “out-of-band”, via a new
low-bandwidth connection or a remote procedure call. Wthile avoids the complexity of em-
bedding messages in a high-bandwidth data stream, it fadl 81 terms of timing guarantees. In
a distributed environment, each processor has its own @adkis making independent progress
on its part of the application. The only common notion of tibetween processors is the data
stream itself. Though extra synchronization can be impts&dep processors in check, such syn-
chronization is costly and can needlessly suppress pisaileFor example, if the compiler un-
derstands the latency of messages between pipelined cemigothen it can derive the maximal
buffering between those components that nonethelessatssie message delivery constraints.
This buffering enables aggressive execution reorderiagieised synchronization, and amortized
communication overhead. However, with opaque messag@edinthe runtime must eliminate
buffering to maintain a consistent view for all possibleesttile of messages, eliminating the opti-
mization potential.

This chapter presents a new language construct and suppootnpiler analysis that allows the
programmer to declaratively specify control messageané&dr‘teleport messaging”, this feature
offers the simplicity of a method call while maintaining theecision of embedding messages in
the data stream. The idea is to treat control messages aymchesnous method call with no
return value. When the sender calls the method, it has tharges of embedding a placeholder
in the sender’s output stream. The method is invoked in tbeiver when the receiver would
have processed the placeholder. We generalize this cotwatibw variable latency, in which
messages are received at an offset from the placeholdelsiBg a negative latency, messages can
be retroactively attached to data that was previously edhitom a node. We extend this concept
further to enable messages to travel opposite the flow of, dawed relative to data that will
later be received by the message sender. By exposing thértring constraints to the compiler,
messages can be delivered using whatever mechanism igajppedor a given architecture. The
declarative mechanism also enables the compiler to saéeiyedwhatever buffering is needed and
to parallelize and reorder application components so lengessages are delivered on time.

Our formulation of teleport messaging relies on the statput and output rates inherent in
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the synchronous dataflow mod&MNI87]. Because the rates are statically known, we can compute
the dependences between actors and automatically caouten a message should be delivered.
We develop a stream dependence functg&mgP, that provides an exact, complete, and compact
representation of this dependence information; wearser to specify the semantics of teleport
messaging.

Teleport messaging is supported in some parts of the Stteamlpiler. The implementation
computessDEP information and automatically targets a cluster of workistes. Based on a case
study of a frequency hopping radio, we demonstrate a 49%pedance improvement of teleport
messaging relative to an explicit feedback loop.

lllustrating Example

Figure 3-1 illustrates a Streamlt version of an FIR (Finite Impulse fRese) filter. A common
component of digital signal processing applications, Fiers represent sliding window compu-
tations in which a set of coefficients is convolved with thpuhdata. This FIR implementation
is very fine-grained; as depicted in FiguB€l, the stream graph consists of a single pipeline with
aSource, aPrinter, and 64Multiply stages — each of which contains a single coefficient (or
weigh) of the FIR filter. EacitMultiply actor inputs @acket consisting of an input item and a
partial sum; the actor increments the sum by the product afight and thepreviousinput to the
actor. Delaying the inputs by one step ensures that each adtls a different input to the sum.
While we typically advocate a more coarse-grained impleatem of FIR filters, this formulation
provides a simple illustration of our analysis.

The problem addressed in this chapter is as follows. Suppaséhe actors in FIR are running
in parallel and theSource detects that the weights should be adjusted (e.g., to sweteurrent
operating conditions). Further, to guarantee stabiligrg output from the system must be ob-
tained using either the old weights or the new ones, but natéune of the two. This constraint
precludes updating all of the weights at the same instartheapartial sums within the pipeline
would retain evidence of the old weights. Rather, the waighnist be changed one actor at a time,
mirroring the flow of data through the pipeline. What is a dengnd efficient way to implement
this behavior?

One way to implement this functionality is by manually taggieach data item with a flag,
indicating whether or not it marks the transition to a newadeteights. If it does, then the new set
of weights is included with the item itself. While this s&gy (shown in Figure8-2 and3-5) is
functional, it complicates theacket structure with two additional fields —reewWeights flag and
aweights array — the latter of which is meaningful only wheawWeights is true. This scheme
muddles steady-state dataflow with event handling by checttie flag on every invocation of
Multiply (line 41 of Figure3-2). It is also very inefficient in Streamlt because arrays asspd
by value; though it might be possible to compress daatket when theweights field is unused,
this would require an aggressive compiler analysis and @valslo jeopardize other optimizations
by introducing an unanalyzable communication rate in theast graph.

This chapter proposes an alternate solution: teleportagess. The idea behind teleport mes-
saging is for theSource to change the weights via an asynchronous method call, whetieod
invocations in the target actors are timed relative to the @bdata in the stream. As shown in Fig-
ure3-3, theMultiply actor declares a message handler that adjusts its own wkigdg 40-42).
TheSource actor calls this handler througtpartal (line 25), which provides a clean interface for
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struct Packet<N> {
* boolean newweights;
float[N] weights;

1
2
3
4 float sum;
5 float val;
6 } 1 struct Packet {
7 2 float sum;
8 void->void pipeline FIR { 3 float val;
9 int N = 64; 4 )
10 5
11 add source(N); 6 void->void pipeline FIR {
12 for (int i=0; i<N; i++) 7 int N = 64;
13 add multiply(i, N); 8 * portal<multiply> teleport;
1 struct Packet { 14 add printer(Q); 9
2 float sum; 15 3 10 * add source(N, teleport);
3 float val; 16 11 for (int i=0; i<N; i++)
4 } 17 void->Packet<N> filter Source(int N) { 12 * add multiply(i, N) to teleport;
5 18 work push 1 { 13 add Printer(Q);
6 void->void pipeline FIR { 19 Packet p; 14 }
7 int N = 64; 20 p.sum = 0; 15
8 21 p.val = readNewbata(); 16 void->Packet filter
9 add source(N); 22 17 Source(int N, portal<multiply> teleport) {
10 for (int i=0; i<N; i++) 23 * if (newConditions()) { 18 work push 1 {
11 add Multiply(i); 24 * p.newweights = true; 19 Packet p;
12 add Printer(Q); 25 * p.weights = calcweightsQ; 20 p.sum = 0;
13 3} 26 * } else { 21 p.val = readNewbata();
14 27 * p.newweights = false; 22 push(p);
15 void->Packet filter Source(int N) { 28 * } 23
16 work push 1 { 29 24 * if (newConditions())
17 packet p; 30 push(p); 25 * teleport.setweights(calcweights());
18 p.sum = 0; 31 } 26 %}
19 p.val = readNewbata(); 32 3 27 3
20 push(p); 33 28
21 } 34 Packet<N>-> 29 Packet->Packet filter Multiply(int i, int N) {
22 } 35 packet<N> filter Multiply(int i, int N) { 30 float W = initweight(i, N);
23 36 float W = initweight(i, N); 31 Packet Tast;
24 packet->Packet filter multiply(int i, 37 Packet<N> last; 32
25 int N) { 38 33 work pop 1 push 1 {
26 float w = initweight(i, N); 39 work pop 1 push 1 { 34 Packet in = pop(Q);
27 Packet last; 40 Packet<N> in = pop(Q); 35 last.sum = in.sum + Tast.val * w;
28 41 * if (in.newweights) { 36 push(last);
29 work pop 1 push 1 { 42 * W = in.weights[i]; 37 last = in;
30 pPacket in = pop(Q); 43 * 3 38 3
31 last.sum = in.sum + last.val * w; 44 last.sum = in.sum + last.val * w; 39
32 push(last); 45 push(last); 40 * handler setweights(float[N] weights) {
33 last = 1in; 46 last = 1in; 41 * W = weights[i]
34 } 47 } 42 %}
35 % 48 } 43}
36 49 44
37 pPacket->void filter Printer { 50 Packet<N>->void filter Printer { 45 pPacket->void filter Printer {
38 work pop 1 { print(pop(Q.sum); } 51 work pop 1 { print(pop(Q).sum); } 46 work pop 1 { print(pop(Q).sum); }
39 % 52} 47 3
Figure 3.1: FIR code. Figure 3.2: FIR code with manual Figure 3.3: FIR code with tele-
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Figure 3.4: Figure 3.5: Execution snapshots illustrat-
FIR stream ing manual embedding of control messages in
graph. FIR. Channels are annotated with data items

present on one possible execution; items are
numbered in order of production. (a) Source
initiates change of weights, (b) weights are
attached to data item #5 and embedded in
stream, (c)-(e), actors check each input item,
adjusting their own weight when they find a
tagged item.
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the arrival of affected items.



messaging (see Secti@3). As depicted in Figur@-6, teleport messaging gives the same result
as the manual version, but without corrupting the data &iras or control flow used in the steady-
state. It also exposes the true information flow, allowing tompiler to deliver the message in
the most efficient way for a given architecture. Finallyepart messaging offers powerful control
over timing and latency beyond what is utilized in this exsénp

The rest of this chapter is devoted to making the above netimore general and more precise.
In particular, it is natural to use teleport messaging talseessages upstream — against the flow
of data — which is hard to achieve manually. We start by desagia stream dependence function
which provides a common timeframe for pairs of dependemtradh the stream graph.

3.2 Stream Dependence Function

This section defines a stream dependence funcipap, that describes how one actor depends
on the execution of another actor in the stream granePis meaningful only for pairs of actors
that are connected by a directed path in the stream graphay\at theupstreamactor is at the
start of the path, while thdownstreanactor is at the end. Dependences between parallel actors
(e.g., parallel branches of a splitjoin) currently fall side the scope of this model but could be
addressed in future work (see Secti&f).

An execution¢ of a dataflow graph is an ordered sequence of actor firingsh Eacg rep-
resents the execution of a single phase of the actor. ¢lzétdenote theith actor appearing in
executiong, and let|¢ A A| denote the number of times that actbiappears iny. An execution
is legal if the dataflow requirements are respected; thébisall i, the sequential firing of actors
¢[0] throughg¢|i — 1] leaves enough items on the communication channelg[ipto fire its next
phase atomically. Leb denote the set of legal executions. Note that whiie an infinite set, each
¢ € ®is afinite sequence.

Informally, SDEP4._p(n) represents the minimum number of times that actonust execute
to make it possible for actaB to executen times. This dependence is meaningful onlyifis
upstream ofB3; otherwise, SDEPassumes a value of zero. Because the I/O rates of each agetor ar
known at compile timeSDEPIs a static mapping.

A formal definition ofsDeEPusing the notations introduced above is as follows:

Definition 1. (SDEP)
SDEP4_p(n) = min |[¢p A Al
ped,
|pAB|=n

This equation reads: over all legal executions in whiglires n times, SDEP4._g(n) is the
minimum number of times that fires. Figure3-8illustrates an example &fDEPfor the stream
graph in Figure3-7.

Calculating SDEP

It is straightforward to calculateDeP,. p(n) via a fine-grained simulation of the stream graph.
Our approach is to construct an executipthat provides the minimum value ¢b A A| that is
selected in Definitiorl. We constructy by simulating the stream graph’s execution opuall
schedulewith respect to actoB.
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Figure 3-7: Example stream graph. Nodes are annotated kathlfO rates. For example, node
C consumes 3 items and produces 2 items on each executiore Al@la round-robin splitter
that produces one item on its left channel during the firssphand one item on its right channel
during the second phase (similarly for Node E).
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Count executions of A in schedule;
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Count executions of B in schedule;
compute SDEP B<E at each firing of E
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Figure 3-8: Exampl&DEPcalculation for stream graph in FiguBe7. The stream graphs illustrate
a steady state cycle of a “pull schedule”; execution prosdeum left to right, and channels are
annotated with the number of items present. The secondibtethe actors that fire in a pull
schedule for2. The third line counts the number of times thléxecutes in the pull schedule, and
the fourth line illustrates the computation 8DEP,. (n): the number of times thal executes
before thenth execution ofE. The last two lines illustrate the computationSIDEP;. .
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/I Returns a pull schedule for executions o
pullSchedulg X, n) {
¢ ={}
for i=1ton {
/I execute predecessors®funtil X can execute
for all input channels; of X
while X needs more items an in order to fire
/I extend schedule (denotes concatenation)
¢ = ¢ o pullSchedulgsourcgc;), 1)
/l add X to schedule
$=¢0 X
/[ update number of items on 1/0O channelsXof
simulateExecution( X)

}

returng

}
Figure 3-9: Pull scheduling algorithm.

Pull scheduling is defined in Figu@9. Intuitively, a pull schedule foX is one that executes
other nodes as few times as possible for each firingof This is achieved by calculating the
demand for data items on the input channelXofind then propagating the demand back through
the stream graph via pull scheduling of the actors connected. Pull scheduling results in a
fine-grained interleaving of actor firings. Some stream lysagdmit multiple pull schedules, as
actors might be connected to multiple inputs that can bedsdbd in any order; however, the set
of actor executions remains constant even as the order ebamge following theorem allows us
to use a pull schedule to calculate $®ePfunction.

Theorem 1.
SDEP4.p(n) = |pullSchedule(B,n) A A

Proof. By construction,pullSchedule(B, n) executes each node in the graph as few times as
possible forB to fire n times. Thus, there is no execution containingxecutions of where A
executes fewer times. The theorem follows from the definitbsDEP. O

Some examplesDEP calculations appear in Figu®8. The results are summarized in the
following table.

| n | SDEP4_g(n) | SDEPs_g(n) |

1 5 0
2 5 2
3 5 2
4 6 3

Note thatsDeP is non-linear due to mis-matching I/O rates in the streanplyraHowever, for
longer execution traces, there is a pattern in the margiralty of SDEP (i.e., in SDER(n) —
SDER(n — 1)); this quantity follows a cyclic pattern and has the samépl@ity as the steady state

63



of the stream graph. A steady st&ec ® is an execution that does not change the buffering in
the channels — that is, the number of items on each chaneelth& execution is the same as it
was before the execution. Calculating a steady state iswnelérstoodlLlM87]. The execution
simulated in Figure3-8 is a steady state, and in this particular example, additien@ies of the
pull schedule repeat the pattern given in the figure. ThisTaéaatsDeEPalso grows in the same
pattern, and we can calculs&®Er,._(n) for n > 4 as follows:

SDEPs_g(n) = p(n) x |S A A| + (1)
SDEP4.g(n — p(n) * |S A EJ)
p(n) = |52 (2)

whereS is a steady state andn) represents the number of steady states thiahs completed by
iterationn. The first term of Equation 1 gives the total number of times thhas fired in previous
steady states, while the second term counts firing$ iof the current steady state.

While Equation 1 works for actord and F, it fails for certain corner cases in stream graphs.
For example, fosDEP4._(3) it detects exactly 3 steady state executigr8) = 3) and concludes
that each requiregexecutions ofd (|S A A| = 6). However, as shown in Figu®8, the last firing
of C' requires onlys executions ofA. C'is unusual in that it finishes its steady state before the
upstream actod.

To handle the general case, we need to change the base casennys. First, we include the
initialization schedul&, which fires prework functions and fills buffers needed bykpegfilters;
SDEPduring initialization is different thasDEPIn the steady state. Second, to solve the problem
above, we simulatevo executions of the steady state (rather than one) for thedzsseofSDEP,

SDERy_x(n) = (3)
|pullSchedule(X,n) AY| ifn<|ZAX|+2x|SAX]

q(n) *|SAY|+ otherwise
SDEPy._x(n —¢q(n) * |S A X])

q(n) = |"rxg ) — 1 (4)

In this formulation, the last complete steady state is cedias part of the “current” iteration rather

than a “completed” iteration. For example, Equation 3 eatd8SDEP,. (3) usingq(3) = 2,

yielding SDEP4. (3) = 2 % 6 + SDEP4. (3 — 2 % 1) = 17 as desired. Moreover, in complex

case$, the last steady state adds important context to the SDB®pofor a given execution.
Thus, to calculatsDER,._x(n), it is not necessary to simulate a pull schedulerfaterations

of X as described in Figur8-9. Instead, one can simulaté A X| + 2 % |S A X| iterations as

a pre-processing step and answer all futsip&P queries in constant time, using Equation 3. In

addition, the pull schedule foX can be reused to calculas®EePfrom X to any other actor (e.g.,

SDEPRy _x in addition toSDEPy._x).

!Note that for any two actor& andY’, SDEPy._x (0) = 0.
2For example, if within each steady state, the first firingkofloes not depend on the first firing Bt and the last
firing of X does not depend on the last firing¥of
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However, note that the pull schedule & cannot be used to calculateDEP from any actor
other thanX (e.g.,SDERy.y). The guarantee provided hyullSchedule(X, n) is only with
respect to the base actdr. For other pairs of actors in the graph, one actor might execwore
than necessary for executions of the other. For example, consider what happens calculates
SDEP4. 5 Using the schedule in Figui®8 (which is a pull schedule foF). In the schedule,
A executes 5 times before the first firing Bf so one would conclude th&DEP4._ (1) = 5.
However, this is incorrect; sindé could have fired after only 2 executions4fthe correct value is
SDEPs. (1) = 2. Thus, to calculateDER,._x, itis essential to calculaggullSchedule( X, |S A
X|), that is, a steady state cycle of a pull schedule with regpekt

It is also possible to calculaDEP using a compositional approach. For exampleEP,._ ¢
from Figure3-8 can be expressed as follows:

SDEP4._p(SDEPg._g(n))

That is, to determine the minimum number of times tAatust execute to enable executions

of £, first calculate the minimum number of times eachAl successors in the stream graph
must execute fon executions of. Then A must execute enough to enable all of these children
to complete the given number of executions, which translaiéhemax operation shown above.
Our implementation exploits this compositional propedyetbulatesDePin a hierarchical manner,
rather than simulating a pull schedule.

3.3 Semantics of Messaging

Teleport messaging is a language construct that makes useeE®fto achieve precise timing of
control messages. Teleport messaging represents oatrofdbmmunication between two actors,
distinct from the high-bandwidth dataflow in the stream tralglessages are currently supported
between any pair of actors with a meaning$alEp relationship, i.e., wherever there is a directed
path in the stream graph from one actor to the other. We sagti@vnstreanmessage travels in
the same direction as the steady-state data flow, wheragsstieammessage travels against it.

Syntax

In order for actor of typed to send a message to actor of tyBethe following steps need to be
taken:

e B declares a message handler that is invoked when a messags.dfor example:

handler increaseGain(float amount) {
this.gain += amount;

}

Message handlers are akin to normal functions, exceptitegitannot access the input/output
channels and they do not return values.

For another example, see line 40 of FigGr8.
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e A parent stream containing instancesAfand B declares a variable of typgortal<B>
that can forward messages to one or more actors of B/p€he parent adds an instance of
B to the portal and passes the portal to an instancéddiring initialization.

For example, see lines 8, 10 and 12 of Figd+&

e To send a messagd,invokes the handler method on the portal from within its dyestate
work function. The handler invocation includes a latecgpecifying when the message
should be delivered; if no latency is specified, then a defaténcy of O is used. The
following illustrates an example.

work pop 1 {
float val = pop();
if (val < THRESHOLD) {
portalToB.increaseGain(0.1) @ 2;
}
}

This code sends aincreaseGain message tportalToB with latency 2.
For another example, see line 25 of FigBr8.

Informal Semantics

The most interesting aspect of teleport messaging is tharstées for the message latency. Because
there are many legal orderings of actor executions, thees dot exist a notion of “global time”
in a stream graph. The only common frame of reference beteecurrently executing actors is
the series of data items that is passed between them.

Intuitively, the message semantics can be thought of ingerhattaching tags to data items.
If A sends a message to downstream aBtovith a latencyk, then this could be implemented by
tagging the items thad outputsk iterations later. These tags propagate through the streajphyg
whenever an actor inputs an item that is tagged, all of itssgbent outputs are tagged. Then, the
message handler @ is invoked immediately before the first invocation®fthat inputs a tagged
item. In this sense, the message has the semantics of trigvelith the data” through the stream
graph, even though it is not necessarily implemented this wa

The intuition for upstream messages is similar. Considat this sending a message with
latencyk to upstream actorl in the stream graph. This means thhwill receive the message
immediately after its last invocation that produces an itdfacting the output of3’s kth firing,
counting the current firing as 0. As before, we can also thirtkis in terms ofA tagging items
and B observing the tags. In this case, the latency constrairstthef3 must input a tagged item
before it finishes: additional executions. The message is delivered immdgiafter the latest
firing in A during which tagging could start without violating this ctraint.

Formal Semantics

The sDEP function captures the data dependences in the graph andigsoa natural means of
defining a rendezvous point between two actors. The follgwdiefinition leveragesbEPto give
a precise meaning to message timing.

66



Definition 2. (Message delivery) Consider thétsends a message to receivewith latencyk.
There are two casés

1. If R is downstream of, then the message handler is invokedlinmmediately before its
mth execution, where: is determined as follows:

m = min m’ s.t. SDEPs_g(m’) > n+k

2. If R is upstream of5, then the message handler is invokeddnmmediately after itsnth
execution, wheren is determined as follows:

m = SDEPg._g(n + k)

The first case reads differently than the second case betteseEPfunction is neither injec-
tive nor surjective. That is, for given valueswofandk, there may exist either zero, one, or many
values ofm for whichSDEPs._g(m) = n+k. This property is illustrated by example in Figug.

If there does not exist am for which SDEPs._g(m) = n + k, then the message is delivered at
the smallest value of: for which SDEPs._r(m) > n + k. Similarly, if there exist multiple values

of m for which SDEPs._g(m) = n + k, then the message is delivered before the first satisfying
iteration. The formula for upstream message delivery isensimple, because ttrspEP function
directly provides the unique, latest iteration of the ugaitn actor that affected iteration+ k& of

the downstream actor.

As an example of message timing, consider the FIR code ir&&;8. On line 25, theSource
sends a message to tMeltiply actors with latency zero. Consider that, as illustratedigs F
ure 3-6, a message is sent during the fifth executioSairce (n = 5). Because eadultiply
is downstream o$ource, we can calculate the delivery time as follows:

m = minm’ s.t. SDEPsoypce—Multiply (M) > 1+ k
m = minm’ s.t. SDEPSO“TCQF]\/[ultiply(m/) >5
m=minm’ st.m' > 5
m=>5

To calculateSDEPs oy ce— multiply, OSErve thasource produces one item per iteration, while each
Multiply produces one item and consumes one item. Thu§dhece must firem times before
any giverMultiply can executen times, anBDEPsyce—amuitiply (M) = m. Substituting into the
above equation yields: = 5. That is, the message is delivered to eMahtiply immediately
before its fifth execution. This is illustrated in Figurg<(c) and3-6(d) for the first and second

Multiply in the pipeline, respectively. The message arrives imnelgibefore the fifth data item
(which corresponds to the fifth execution).

Constraints on the Schedule

It is important to recognize that messaging can place cainssron the execution schedule. The
different categories of constraints are illustrated inufgg3-10. A negative-latency downstream

3In a feedback path, both cases might apply. In this eventsserae the message is being sent upstream.
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Latency <0 Latency =2 0
Message buffering and latency
travels illegal in schedule must
upstream not be too large
Message buffering and latency
travels in schedule must no constraint
downstream not be too small

Figure 3-10: Scheduling constraints imposed by messages.

message has the effect of synchronizing the arrival of th&esage with some data that was previ-
ously output by the sender (e.g., for the checksum exampigiomed in the introduction). The
latency requires the downstream receiver not to executata@head (i.e., too close to the sender),
or else it might process the data before the message arfiesiranslates to a constraint on the
minimum allowable latency between the sender and recetersin the schedule for the pro-
gram. Intuitively, it also constrains the buffering of datiae data buffers must not grow too small,
as otherwise the receiver would be too far ahead.

Similarly, a non-negative-latency upstream message glagonstraint on the maximum al-
lowable latency between the sender and receiver. This timepstream actor must be throttled
so that it does not get too far ahead before the messagesarintiitively, the amount of data
buffered between the actors must not grow too large.

For upstream messages with negative latency, there alwaéststerations of the sender during
which any messages sent are impossible to deliver. Consrdieeration of the sender that is the
first to depend on data propagating from tlike execution of the receiver. A negative-latency mes-
sage would be delivered immediately aftepraviousiteration of the receiver, but since iteration
n has already fired, the message is impossible to deliver. €sely, a downstream message with
positive or zero latency imposes no constraint on the sdaeds the sender has not yet produced
the data that is synchronized with the message.

Unsatisfiable Constraints

Messaging constraints can be unsatisfiable — that is, asguanessage is sent on every iteration
of the sender’s work function, there does not exist a scleethdt delivers all of the messages
within the desired latency range. Such constraints shagdlrin a compile-time error.

Figure 3-11illustrates an example of unsatisfiable constraints. Thagrh messaging con-
straint is feasible in isolation, the set of constraintsetbgr is unsatisfiable. The unsatisfiability
is caused by conflicting demands on the buffering betweendBGrnThe message from B to C
constrains this buffer to contain at least 10 items, whigerttessage from D to A constrains it to
be empty.

It should be noted that downstream messages with negaterechaare always unsatisfiable at
the beginning of execution, because no buffering has baableshed in the data channels. Any
messages sent during this period are suspended and ressrttraas the graph is initialized with
buffers that satisfy the message constraints.

68



110

]

Figure 3-11: Example of unsatisfiable message constrdtatsh node is annotated with its input
and output rate. Messages are shown by dotted arrows, dramrsender to receiver with a given
latency. The constraints are satisfiable in isolation, Imgatisfiable in combination.

Finding a Schedule

To schedule a stream graph in the presence of messagingaintssta simple greedy algorithm
can be used. As shown in Figusel2 this constrained schedulinglgorithm is a variation on pull
scheduling. Like pull scheduling, constrained schedudilsg derives a fine-grained schedule with
minimal latency. To incorporate the presence of messagsti@onts, two extensions are made.
First, before firing an actor, the algorithm ensures that tihing will not cause the actor to miss
any messages that were intended for it prior to the givenugat This is done by considering all
message senders that target the given actor, and recyrsobedduling them until they complete all
executions that may send messages with receipt at the ttimen Second, at the beginning of the
procedure, there is a check for an infinite loop (whereby threenit actor is also being scheduled
higher on the call stack). This indicates a case of unsdilsfizonstraints, as an actor’'s execution
depends on itself.

This algorithm is guaranteed to find a valid schedule if onetexA filter is fired if and only
if that firing is needed to satisfy a data or message depepdédhthis fine-grained execution is
still too coarse-grained to satisfy message constraings) there is a cyclic dependence and the
constraints are unsatisfiable.

While the algorithm presented derives a single sequencét@f éixecutions, in practice it is
desirable to separate that sequence into two parts: aalizétion schedule (executed once) and a
steady-state schedule (executed repeatedly). This cachimvad by using a standard algorithm to
detect a periodicity in the constrained schedule; any tepgaattern of filter firings that preserves
the number of items on each data channel is a valid steady Stia¢ initialization schedule consists
of whatever is leftover before the first steady-state exeout

In practice, it is also worthwhile to compress the schedefete generating code. Such com-
pression can be achieved easily once the full initializatichedule and steady-state multiplicities
have been derived via the above technique. Following liaéison, a compressed schedule con-
siders filters in order from top to bottom and executes eatdr fils long as possible, until either
1) the filter runs out of input items, 2) further execution Wgbuiolate a message constraint, or 3)
the filter meets its steady-state execution multiplicithisTstrategy is valid because it is already
known that there exists a sequence of filer firings with thegmultiplicities (and with the given
starting configuration) that satisfies the constraints.sTéxecution will be able to make forward
progress until all filters have completed their steady state
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/I Returns a modified pull schedule for 1 executiotXohever
/I firing a node that would further violate a message constraint
constrainedSchedul€X) {
/I check for infinite loop, which indicates unsatisfiable coaists
if call stack contains call toonstrainedScheduléX) then
report that message constraints are unsatisfiable

¢ ={}
Il execute predecessors ®f based on data dependences
for all input channels; of X
while X needs more items af in order to fire
/I extend schedule (denotes concatenation)
¢ = ¢ o constrainedSchedulésourced;))

/I execute predecessors.®f based on message dependences
for all filters F" that might, on a future execution, send a
message tX for delivery prior to next firing ofX
¢ = ¢ o constrainedSchedul€r)

/[ add X to schedule

p=¢ o0 X

/I update number of items on I/O channelsof
simulateExecution( X)

returng

Figure 3-12: Constrained scheduling algorithm.

Despite its simplicity, we have yet to evaluate this schieduhlgorithm in the StreamlIt com-
piler. As described in SectioB.4, our compiler targets a parallel machine in which each sende
and receiver executes in its own thread and waits for passilglssages at appropriate iterations.
This approach does not depend on producing a serial ordefithg actors at compile time.

3.4 Case Study

To illustrate the pros and cons of teleport messaging, wéemented a spread-spectrum frequency
hopping radio frontendHP0Z as shown in Figur&-13 (Matthew Drake also describes the im-
plications of messaging in a case study of MPEGVIDH'06, Dra0§g.) A frequency hopping
radio is one in which the receiver switches between a set@ivkrfrequencies whenever it detects
certain tones from the transmitter. The frequency hoppéng good match for control messages
because the hopping interval is dynamic (based on data isttbam); it spans a large section of
the stream graph (there is a Fast Fourier Transform (FFT) iftchild actors, not shown, between
the demodulator and the hop detector); and it requiresgeanessage delivery. The delivery must
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Figure 3-13: Stream graph of frequency hopping radio wildpert messaging. A portal delivers
point-to-point latency-constrained messages from theatlets to the RFtolF stage.

be precise both to meet real-time requirements (as thentites will leave the current frequency
soon), and to ensure that the message falls at a logical fommedary; if the frequency change
is out of sync with the FFT, then the FFT will muddle the speactof the old and new frequency
bands.

A Streamilt version of the radio frontend with teleport messg appears in Figurg-14. The
FregHoppingRadio pipeline creates a portal and adds thelREttor as a receiver (lines 45 and
48 respectively). The portal is passed to the CheckFregltageswhere four parallel detectors
send messages into the portal if they detect a hop in thedrexyuthey are monitoring (lines 32-
35). The messages are sent with a latency of 6 to ensure a/timaekition. To make sense of
the latency, note tha&DEPg 1+ p(n) = 512 x n for each of the detector actofs. This comes
about because the FFT stage consumes and produces 512 iacts detector fires once per set
of outputs from the FFT, but RFtolF fires 512 times to fill theTHRput. Because of thisSDEP
relationship, messages sent from the detectors to RFtelguaranteed to arrive only at iterations
that are a multiple of 512. This satisfies the design critetiat a given FFT stage will not operate
on data that were demodulated at two separate frequencies.

Another version of the frequency hopping radio appearsgni€is3-15and3-16. This version
is functionally equivalent to the first, except that the cohiessages are implemented manually
by embedding them in the data stream and introducing a fe&kdbap. Because the number of
items transfered around the loop must be constant from eregiibn to the next, a data item is sent
whether or not there is a message as part of the algorithmRFhaF filter checks the values from
the loop on every iteration; if the value is non-zero, it esaied as a message (the new frequency),

4Though the FFT is 256-way, the real and imaginary parts aeel@aved on the tape, leading to an 1/O rate of 512.
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1 float->float filter RFtoIF(int N, float START_FREQ) {
2 float[N] weights;
3 int size, count;
4
5 init { setFrequency(START_FREQ); }
6
7 work pop 1 push 1 {
8 push(pop() * weights[count++]);
9 count = count % size;
10 } N
11
12 handler setFrequency(float freq) {
13 count = 0;
14 size = (int) (N * START_FREQ / freq);
15 for (int i = 0; i < size; i++)
16 weights[i] = sin(i * pi / size);
17
18 }
19
20 float->float splitjoin CheckFreqHop(int N,
21 float START_FREQ,
22 portal<RFtoIF> port) {
23 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
24 for (int i=1; i<=7; i++) {
25 if Gi==1 || i==4 || i==7) {
26 add 1dentity<float>;
27 } else {
28 add float->float filter { // detector filter
29 work pop 1 push 1 {
30 float val = popQ);
31 push(val);
32 if (val > Constants.HOP_THRESHOLD)
33 port.setFrequency (START_FREQ +
34 i/7*Constants.BANDWIDTH) @ 6;
35 }
36 }
37 }
38 }
39 join roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);
40
41
42 void->void pipeline FreqHoppingRadio {
43 int N = 256;
44 float START_FREQ = 2402000000;
45 portal <RFtoIF> port;
46 [ J

47 add AtoD(N);

48 add RFtoIF(N, START_FREQ) to port;

49 add FFT(N);

50 add Magnitude(Q);

51 add checkFreqHop(N, START_FREQ, port);
52 add output()

Figure 3-14: Frequency hopping radio with teleport mesgagArrows depict the path of mes-
sages from the sender to the receiver, via a portal declarg itop-level stream.

while a value of zero is ignored (no message). The I/O rate@RFtolF filter has been scaled up
to ensure that the messaging information is received atwalteof 512 iterations (as in the version
with portals). To achieve the desired messaging latencyfadrées,6 x 256 = 1536 items are
enqueued on the feedback path prior to execution.

Discussion

Teleport messaging offers several benefits compared to aahanplementation of equivalent
functionality. While embedding messages in the data stisaqually precise, it involves several
tedious and error-prone changes, not only to the streanimdmaipalso to the steady-state execution
code within the actors. In particular, the manual derivatid the loop delay, adjustment of the
actor I/O rates, and implicit interleaving of data itemshwabntrol messages has a negative impact
on the readability and maintainability of the code. Teleémoessaging provides the same level of
precision, but with the simplicity of a method call.

Teleport messaging also has advantages from a compiletpsian. By separating the data-
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Figure 3-15: Stream graph of frequency hopping radio withticd messages implemented man-
ually. A feedback loop connects the detectors with the RFsbhge, and an item is sent on every
invocation to indicate whether or not a message is presématlatency and periodicity of message
delivery are governed by the data rates and the number of ibenthe feedback path.

intensive code from the control-oriented code, the comnase ©f steady-state execution is not
sacrificed for the uncommon case of message processinge @hemo “dummy items” serving
as placeholders in the static-rate channels. In additiprexposing the message latency as part
of the language, the compiler can infer the true dependdret@geen actor firings and reorder the
execution so long as the message constraints are respddtecactual message delivery can be
implemented in the most efficient way for a given architegtur

A final benefit of teleport messaging is the clean interfacevipied by the portals. Since a
portal can have multiple receivers, it is straightforwasdsend a message that is delivered syn-
chronously to two actors in parallel streams. For exampesider a vocoder (an encoder for
voice signals) that is separately manipulating the mageitand phase components of a signal. If
something triggers an adjustment to the speech transfamm@t.g., the speaker requests a change
of pitch) then the mask needs to be updated at the same timé/ecto data in both parallel
streams. A portal that contains both components seamlpssiydes this functionality. Finally,
portals are useful as an external programming interfacepatication can export a portal based
on an interface type without exposing the underlying actgplementation.
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1 float->float filter RFtoIF(int N, float START_FREQ) {
2 float[N] weights;

3 int size, count;

4

5 init { setFrequency(START_FREQ); }

6

7 * work pop 3*N push 2*N {

8 = // manual loop to 2*N. Factor of N because messages
9 * // for given time slice come in groups of N; factor
10 * // of 2 for data-rate conversion of Magnitude filter
11 = for (int i=0; i<2*N; i++) {
12 = push(pop() * weights[count++]);
13 * count = count % size;
14 = }
15 * // manually check for messages;
16 = // special value of 0 encodes no message
17 for (int i=0; i<N; i++) {
18 * float fregHop = pop(Q);
19 * if (freqHop!=0)
20 * setFrequency (freqHop) ;
21 % }
22 % }
23
24 handler setfFrequency(float freq) {
25 count = 0;
26 size = (int) (N * START_FREQ / freq);
27 for (int i = 0; i < size; i++)
28 weights[i] = sin(i * pi / size);
29

30}

31

32 float->float splitjoin CheckFregHop(int N,

33 float START_FREQ) {
34 split roundrobin(N/4-2, 1, 1, N/2, 1, 1, N/4-2);

35 for (int i=1; i<=7; i++) {

36 if (i==1 || i==4 || i==7) {

37 add float->float filter {

38 * work pop 1 push 2 {

39 push(pop());
40 * push(0);
41 }
42 }
43 } else {
44 add float->float filter { // detector filter
45 * work pop 1 push 2 {
46 float val = popQ;
47 push(val);
48 * if (val > Constants.HOP_THRESHOLD) {
49 * push(START_FREQ + 1/7*Constants.BANDWIDTH);
50 * } else {

51 * push(0);

52 *

53 }

54 }

55 }

56 }

57 * join roundrobin(2*(N/4-2), 2, 2, 2*¥(N/2), 2, 2, 2*(N/4-2));
58 }

59
60 void->void pipeline FreqHoppingRadio {
61 int N = ;
62 float START_FREQ = 2402000000;
63
64 add AtoD(N);
65 * add float->float feedbackloop {
66 * // adjust joiner rates to match data rates in loop
67 * join roundrobin(2*N,N);
68 * body pipeline {
69 * add RFtoIF(N, START_FREQ);

70 * add FFT(N);

71 * add Magnitude(Q);

72 % add checkFregqHop(N, START_FREQ);

73 *

74 * split roundrobin();

75 % // number of items on loop path = latency * N

76 * for (int i=0; i<6*N; i++)

77 * enqueue(0);

78 * }

79 add output(Q

80 }

Figure 3-16: Frequency hopping radio with manual feedbaok lfor event handling. Lines that
differ from Figure3-14are marked with an asterisk.
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One aspect of teleport messaging might be considered unuseagranularity of message
delivery can be affected by changes in granularity elseevirethe stream graph. This is evident
in the frequency hopping radio, as the 1/O rate of 512 on thE iA#plies that the RFTolF stage
will receive messages from CheckFreqHop at most once eviyitérations. (If the FFT were
coarsened to 1024-way, the granularity of messages in BRToluld increase accordingly.) In
this case the behavior is desirable, as messages shouldteotipt frame boundaries. It seems
that in many cases, the 1/O rates are meaningful aspectsgrbgram and their influence on
message granularity is appropriate. Nonetheless, thidowah influence might come as a surprise
to programmers. If the FFT granularity is scaled up for aetléht reason (e.g., caching behavior),
the effects on message granularity might be unwanted.

This suggests that it might be worthwhile, in future workirteestigate additional mechanisms
for programmers to specify the messaging contract indegpghdof the declared 1/O rates. For
example, a parent stream could override the I/O rates of ld &b the sake of a givelsDEP
calculation. The scheduler would deliver messages acogidithe parent’s expectation 8bEP,
or report an error if such delivery is incompatible with tletual 1/0 rates.

Experimental Evaluation

We have implemented teleport messaging in the Streamlt denpfrastructure, with a backend
that targets a cluster of workstations. A Streamlt progragompiled to a set of parallel threads;
if two threads are allocated to different machines, they roomicate via dedicated TCP/IP con-
nections. Messages are supported via auxiliary commuoicelhannels that transmit two kinds of
signals from senders to receivers: 1) the contents of a@anissage, or 2) @editthat indicates
the receiver can execute some number of iterations bef@ekolg for a message again.

Each actor alternates between normal execution and clefikithe exchange of credits. This
serves to throttle the message receiver in accordance lvatbanstraints (Sectidh3), as an actor
will block waiting for credits until the sender has reachedieen point in its execution. The
compiler calculates theDepinformation and schedules the exchange of credits to mailectsat
the timing constraints are respected. When a message jstsetdgged with the iteration number
during which the receiver should process it; this is alscudated usingsDEPIn the compiler.

We chose a cluster-based evaluation for two reasons. Fiesty streaming applications run
on the server side (e.g., cell phone base stations, radaegsimg, HDTV editing) and require
large computational resources. Second, clusters provgimple abstraction for distributed and
parallel computing — multiple program counters, and distted memories — which is at the heart
of emerging multicore architectures for embedded, deslang server computing.

The teleport implementation of the frequency hopping radés compiled into 29 threads
whereas the alternate version using a feedback loop res@8threads. Each thread corresponds
to a single actor (there are more threads than appear inds8tt3 and 3-15 because the FFT
stage is a pipeline composed of several actors). The thregupimg is done using a dynamic
programming algorithm that aims to reduce the overall bo#tk, thereby maximizing throughput
(outputs per unit time). Threads are assigned to one ofesixXi®0Mhz Pentium Il workstations,
each with a 256Kb cache. The machines are interconnecteg aiilly switched 100Mb network.

Figure 3-17 shows the measured throughpytaxis) for various cluster sizes. Note that due
to the limited parallelism in the two implementations of fhequency hopper, cluster configura-
tions with more than five workstations lead to negligiblefpenance gains. From the data, we
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Figure 3-17: Parallel performance of teleport messagimgraanual event handling.

can observe that teleport messaging achieves a maximaigiwat that is 49% better than its
counterpart. We attribute this speedup primarily to redusmmmunication overhead. A detailed
analysis of the results indicates that teleport messagithgaes the number of items communicated
by 35%. While the feedback loop version sends a messagehpliaes on every iteration, teleport
messaging uses credits to allow the receiver to executead@egations at a time without checking
for messages. The amount of communications savings idelichy the message latency, as larger
latencies allow for a less frequent exchange of credits.

3.5 Related Work

The work most closely related to teleport messaging conues fhe fields of heterogeneous mod-
eling, program slicing, and domain-specific languages.

As part of the Ptolemy projectEJLT03], Lee et al. have developed hybrid models that
incorporate dynamic dataflow (in which the 1/O rates of axtare fully dynamic). Boolean
dataflow HL97] is a compromise between these two extremes; it computesampéerized sched-
ule of the graph at compile time, and substitutes runtimelitmms to decide which paths are taken.
The performance is nearly that of synchronous dataflow vkeiggping some flexibility of dynamic
dataflow.

Teleport messaging shares the motivation of boolean datdflat is different in its approach.
We believe that control messages represent a distinct alib@leaved class of dynamic communi-
cation in which a parameter is “pushed” into the receivingam an asynchronous way. Because
the message handlers do not access the I/O channels of #ieimgcactor, their irregular invo-
cations do not interfere with a given static schedule. but¢he schedule is constrained only by
the latency of control messages; if a message does not shawthe allotted window, then the
receiving actor can go ahead with its high-bandwidth scleedthis is the distinction in the com-
putational model. In addition, the static/dynamic intéigma offered by our system is integrated
with language features that support the model.

Program slicing identifies the set of statements in a proghaha given statement might de-
pend on. There is a rich history of work in program slicinge 3ép [Tip95] for a comprehensive
review. Many program slicing techniques rely on the Progiependence Graph as described by
Horwitz et al. HRB8§]. Program slicing has been applied for debugging, testmgl, program
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analysis. In many respectshEPanalysis can be thought of as a slicing technique for symzus
dataflow graphs. Because the input domain is restricted drtiqolar, because of the absence
of control flow and recursion), theDEP calculation can make stronger guarantees than slicing
analyses for general procedural language€Pis decidable, exact, and admits a compact repre-
sentation in terms of the steady state schedule.

Pugh and Rosser present an iteration-based slicing digofRR97 to identify the dynamic
instances of statements (in terms of their loop iteratibaj effect a given value. This bears some
similarity to stream dependence analysissagpPs. z(n) represents the last iteration of actér
that affected theith iteration of actorB. However, PR97 focuses on the problem of computing
the transitive closure of dependences in loops, in whichesidenations do not depend on others.
We are not interested in this question, as we assume thattall mvocations depend on their
previous invocationssDEP addresses the question of finding only the most recent itioocthat
is relevant. Moreover, our motivation differs from the slig community, as we applgDEP to
enrich the semantics of language features. To the best okmwledge, slicing has not been
applied in this way before.

3.6 Future Work

There are some limitations in the current study that arddegtounds for future research. First,
our formulation ofsbeprequires a directed path in the stream graph between thesaotques-
tion. We are generalizingDEPt0 actors that run in parallel by leveraging their data delpaces
with common predecessors (upstream) or successors (deamgt Second, in the current model
only actors can send and receive messages. We are extehdinga® a hierarchical model where
stream containers (such as pipelines) can also receivéseaed dispatch them precisely to other
streams. This capability is critical for enabling dynamigdifications to the stream graph, as mes-
sages will indicate to stream containers that they shouiditi@lize their part of the stream graph.
Finally, our approach relies on the static communicatides@resent in synchronous dataflow. It
is interesting to consider teleport messaging in a more mymeaontext; for example, downstream
non-negative latency messages could be supported by embenéssages in data items, while
other messages might require speculative delivery or neatlifiming contracts.

Our basic approach to all of the above questions is to refismE®in terms of a more general
and intuitive concept called@nonical scheduleThe abstraction presented to the programmer is
that filters donotexecute in parallel, but rather in a predefined order callectcanonical schedule.
A pull schedule will serve as the basis of the canonical sglgedhough the canonical schedule
will also impose a strict ordering on parallel branches oplijsin (e.g., always executing from
left to right). Given this abstraction, teleport messagé$ Vatency zero can be considered to
be delivered immediately to the receiver. Messages serteaationn with latencyk are simply
equivalent to messages sent on iteratich k£ with latency0. This model becomes powerful when
stream containers are also incorporated in the canonibaldsie; for example, a pipeline could
be considered to execute whenever one of its children eggcat, for “atomic” pipelines, when
all of its children have executed. This provides a precisetiame for delivering re-initialization
events, as well as for flexible forwarding and delegation essages throughout multiple layers of
the stream hierarchy. Of course, just like teleport messpgine key benefit of the approach is that
the canonical schedule is not actually implemented at maitrather, the compiler analyzes the
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dependences inherent in the messages and orchestratafiel paecution that is indistinguishable
from the canonical schedule with respect to message dgliver

Another interesting direction is to leverage the timingpaudies of teleport messaging to ex-
change information other than control messages. For exampile Streamlt currently prohibits
filters from writing to a global address space, this decisias motivated by the desire to elimi-
nate problematic dependences and aliasing relationsbipsebn parallel components. If all reads
and writes to shared memory were made via teleport messagesnted scalar variables, the
compiler could again understand the exact dependencesrenestrate a parallel execution that
respects them. Interestingly, such an execution would ireisheterministic even though paral-
lel components are writing to shared memory; this detesnincomes because the steady-state
dataflow provides a canonical ordering for their memory ases. The compiler could convert
shared-memory locations to queues, thereby decouplingrdgress of communicating filters. In
addition to this application, Matthew Drake proposes a celimg scenario in which messages are
used to simultaneously switch the routing behavior at op@esds of a splitjoin while maintaining
analyzability by the compilejra0q.

3.7 Chapter Summary

This chapter makes two contributions. First, it introdugdsport messaging: a powerful language
construct enabling precise message delivery between raddeslistributed stream program. In
comparison with other methods to implement messaging ifumeality in a synchronous dataflow
model, teleport messaging is arguably more readable, nodmest, and easier to maintain. In
addition, our implementation of teleport messaging in tive&nlt compiler results in a 49%
performance improvement for a frequency hopping radio ingon a cluster of workstations.
Like several other declarative language constructs, eelepessaging improves performance by
exposing the true dependences to the compiler and allowingptimize the communication.

Second, this chapter formulatesepr, a natural and useful dependence representation for the
streaming domain. While we app8DEPto a new language construct, we envision other applica-
tions as well. For examplesDEP could be used in a debugger to identify which iterations @& on
actor are affecting a given iteration of another. In a sofealdased speculation systeRFrf034,
SDEP could be applied to trace the effects of a failed predictiod # roll back the appropriate
actor executions. Analogous to representations such andepce levelsAK82], direction vec-
tors Wol82], and dependence polyhedi&88] for scientific programssDEPprovides dependence
information that could be used to test or verify programdfarmations. AlsosDEPoffers a new
method for measuring latency in a stream graph.

Our work can be viewed as integrating dynamic behavior irgtatic dataflow language. Our
insight is that there is a class of control messages thatamtjlyst parameters in the target actor;
they do not otherwise affect the input or output channelshupelivery. This model enables a
hybrid scheduling scheme in which the steady-state datafcexactly orchestrated at compile
time, but there are windows in which a message could adjusitamal field of an actor between
its execution steps. We consider this to be a promising avémcreating a unified development
environment that captures all aspects of stream applicagoelopment without sacrificing either
performance or programmability.
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Chapter 4

Optimizing Stream Programs

This chapter validates the premise that stream programemagles new and powerful optimiza-
tions that are outside the reach of a traditional compiler. d® so, we summarize three opti-
mization projects conducted in collaboration with manyeoghin the Streamlt group. Unlike the
other chapters in this thesis, the primary description ohes these projects appears in a different
thesis Lam03 Agr04, Ser0j or paper GTAO6].

The key results are as follows:

1. Parallelization. We demonstrate an end-to-end stream compiler that attalust multicore
performance in the face of varying application charactiees As benchmarks exhibit different
amounts of task, data, and pipeline parallelism, we explbitypes of parallelism in a uni-
fied manner in order to achieve this generality. Our compilgrich maps from the Streamlt
language to the 16-core Raw architecture, attains an 11x s@eedup and an 18x maximum
speedup over a single-core baseline.

2. Optimizing Linear Computations. We demonstrate that several algorithmic transformations
traditionally hand-tuned by DSP experts, can be completatpmated by the compiler. We
focus on linear filters, where each output is an affine contlwnaf the inputs. We present
several optimizations of linear filters, including algabrsimplification of adjacent filters and
automatic translation to the frequency domain. Thesefwamations offer an average speedup
of 5.5x and a maximum speedup of 8.0x over unoptimized Stits@ma Pentium 4.

3. Cache Optimizations We formulate a set of cache aware optimizations that autioatly
improve instruction and data locality. We highlight two he@ues: 1) cache aware fusion,
which combines adjacent filters while respecting instarctache constraints, and 2) cache
aware scaling, which improves instruction locality whiégspecting data cache constraints. Our
implementation of cache aware optimizations in the Stréaorhpiler yields a 3.49x average
speedup and an 88x maximum speedup over unoptimized Streand StrongARM 1110
processor.

These projects are described in more detail in each of thenfimlg sections.
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Figure 4-1: Types of parallelism in stream programs. Tagklfeism exists between filters in a
common splitjoin; pipeline parallelism exists betweerefdtin a producer/consumer relationship;
and data parallelism exists between separate instancestatietess filter.

4.1 Parallelization

Despite the abundance of parallelism in stream progransninetheless a challenging problem
to obtain an efficient mapping to a multicore architecturtie®the gains from parallel execution
can be overshadowed by the costs of communication and symization. In addition, not all par-
allelism has equal benefits, as there is sometimes a cgathlthat can only be reduced by running
certain actors in parallel. Due to these concerns, it iscatito leverage the right combination of
task, data, and pipeline parallelism while avoiding thedndz associated with each.

Task parallelism refers to pairs of actors that are on difieparallel branches of the original
stream graph, as written by the programmer. That is, theubutpeach actor never reaches the
input of the other (see Figurkel). In stream programs, task parallelism reflects logicahipelism
in the underlying algorithm. It is easy to exploit by mappeagh task to an independent processor
and splitting or joining the data stream at the endpointse R&zards associated with task paral-
lelism are the communication and synchronization assediatth the splits and joins. Also, as the
granularity of task parallelism depends on the applicatgmd the programmer), it is not sufficient
as the only source of parallelism.

Data parallelism refers to any actor that has no dependdretegeen one execution and the
next. Such “stateless” actdreffer unlimited data parallelism, as different instancéshe actor
can be spread across any number of computation units. Howelide data parallelism is well-
suited to vector machines, on coarse-grained multicoreitactures it can introduce excessive
communication overhead. Previous data-parallel streguanichitectures have focused on design-
ing a special memory hierarchy to support this communicafikRD*03]. However, data par-
allelism has the hazard of increasing buffering and lateaoy the limitation of being unable to
parallelize actors with state.

1A stateless actor may still have read-only state.

80



Pipeline parallelism applies to chains of producers andemers that are directly connected in
the stream graph. In our previous woBTK*02], we exploited pipeline parallelism by mapping
clusters of producers and consumers to different cores aimg) @n on-chip network for direct
communication between actors. Compared to data paratletisis approach offers reduced la-
tency, reduced buffering, and good locality. It does nabidtice any extraneous communication,
and it provides the ability to execute any pair of statefubesin parallel. However, this form of
pipelining introduces extra synchronization, as prodsieed consumers must stay tightly coupled
in their execution. In addition, effective load balancisgritical, as the throughput of the stream
graph is equal to the minimum throughput across all of thegssors.

In this section, we describe a robust compiler system thvatr#ges the right combination of
task, data, and pipeline parallelism to achieve good narkiperformance across a wide range of
input programs. Because no single type of parallelism isréepefit for all situations, a unified
approach is needed to obtain consistent results. Usingu8iteas our input and targeting the
16-core Raw architecture, our compiler demonstrates a s@eedup of 11.2x over a single-core
baseline. This also represents a 1.84x improvement ovesra@inal approachGTK+02].

Parallelization Algorithm

We illustrate our technique by way of an example: we discussto map a simplified version of
our FilterBank benchmark (see Figute2a) to a four-core machine. The complete details of our
algorithm are available elsewhei®@TA0]].

Previous Practice: Fine-Grained Data Parallelism Perhaps the most common approach to
parallelization is to identify loops that can be run in a gadmallel (DOALL) style. Such loops can
be annotated by the programmer using OpenMP; they are asmdst common parallelization
target of production compilers. For example, the Intel C @en includes an optional flag to
detect and parallelize data-parallel loops. In the casdtefBank, this may seem like a promising
approach, as all the filters are stateless and the implicgidsurrounding them can be run in a
data-parallel manner. Figude2b illustrates such a mapping.

Unfortunately, on a coarse-grained multicore architegtitris hardly profitable to parallelize
each individual filter due to the communication and synclzation overheads incurred. When we
target the 16-core Raw architecture, this approach offelis @ 1.4x mean speedup over a single
core. This represents an upper bound on the speedups hltausng standard techniques. In
practice, for reasons explained in Sectibg a production C compiler would achieve even smaller
speedups due to the inherent difficulties of proving thadrliare data-parallel.

First Innovation: Coarse-Grained Data Parallelism The overheads of fine-grained data par-
allelism can be drastically reduced by performing two nasaatsformations. First, the granularity
of the stream graph is coarsened via fiftesion a transformation in which two neighboring filters
are statically scheduled and inlined into a single fil8TK*02, STRA0S. We fuse neighboring
stateless filters as much as possible so long as the resfillgngemains stateless, ensuring that it
is still amenable to data parallelism.

Second, we data-parallelize the coarsened filters, butntiie amount necessary to comple-
ment existing task parallelism in the stream graph. Thdbisfilters that are already embedded
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Figure 4-2: Mapping a simplified version of the FilterBankblemark for execution on four cores.
The original stream graph is shown in (a), while a convertionapping is shown in (b). Our
technique coarsens the graph and introduces the minimallgdeam needed, as shown in (c).

in a splitjoin, we parallelize each filter so that the totalitgpn width covers all of the cores,
rather than data-parallelizing each branch of the sphitjoicover all of the cores. By reducing the
width of the scatter and gather stages, we reduce the corsatior and synchronization overhead
incurred by data parallelism.

Figure4-2c shows an example of our transformations on the FilterBamcbmark. The coars-
ening stage fuses all of the pipelines together with the gimwe of the BandStop filter, which is
not fused because it performs peeking on its input channetr@unication with peeking repre-
sents a case where some data items are reused between isedo@sgs of a filter, which would
translate to internal state if the buffer were to be inlinet ia fused filter. Following coarsening,
the parallelization stage replicates the Adder filter axmlsfour of the target cores. However,
the other filters are split only two ways, due to the presefficask parallelism between alternate
branches of the splitjoin. Applying this strategy across leenchmark suite offers a speedup of
9.9x relative to a single core.

These transformations are out-of-reach of traditionalgiters. In an imperative language, the
analog of graph coarsening is to selectively fuse loopssg & no new loop-carried dependences
are introduced. The analog of task-conscious data pasatie$ to analyze the entire program for
other threads that might be running concurrently, and t@thice only as much parallelism as is
needed to complement the other threads. We rely on the pirepef the stream programming
model to make these transformations tractable.

Second Innovation: Coarse-Grained Software Pipelining While coarse-grained data paral-
lelism is effective for parallelizing stateless compudas, it does nothing to help with compu-
tations that retain state, either within filters or withire@dackloops. For example, the Vocoder
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Figure 4-3: Simplified subset of the Vocoder benchmark. Saite annotated with the amount of
work that they perform per steady state.

benchmark (simplified subset shown in Figde8) contains a significant fraction of stateful filters.
While two of the filters can be data-parallelized, there rentege gaps in the execution schedule
(see Figuret-4).

To run stateful computations in parallel with each other,exploit pipeline parallelism. We
take the concept of software pipelining, well-understaothie context of instruction scheduling,
and apply it in the context of an entire stream graph. Astilated in Figure4-5, this technique
involves unrolling the execution of the graph into two st&gde the first stage, a prologue schedule
establishes buffering in the data channels. Then, in tregtstate, the filters are decoupled and
can execute in any order, writing intermediate results ¢oltiffers. Compared to exploiting only
coarse-grained data parallelism, this technique offegelgains for our stateful benchmarks (1.7x
for Vocoder, 1.9x for Radar). Together with coarse-graidath parallelism, it offers an 11.2x
speedup over a single core across our benchmark suite.

Coarse-grained software pipelining is also beyond thehr@fdraditional compilers. Rather
than pipelining individual instructions, it represents thipelining of entire procedures. This in-
volves reordering large pieces of the program. The streagramming model makes such a
transformation feasible by exposing the stable flows of Hateveen long-running actors.

Experimental Evaluation

We target the Raw microprocessA@iM t02, WTS"97], a tiled array of 16 cores with a pro-
grammable mesh interconnect. Though Raw has been implethensilicon, we generate results
with the btl simulator, augmented with 16 streaming DRAM trolters (providing enough band-
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Figure 4-5: Simplified vocoder mapped with coarse-graingtivare pipelining. By unrolling
multiple executions of the stream graph (left), statefudemcan run in parallel with other nodes
during the steady state. An execution trace (right) regul@ units per steady state, an improve-

ment over plain data parallelism.
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Figure 4-6: Parallelization results on the 16-core Raw @ssot.

width to saturate both directions of a Raw port). In this ogunfation, one can obtain higher
throughput in streaming data from the off-chip memory thamfa core’s local data cache. Thus,
our implementation elects to buffer all streaming datacbifs. However, when targeting an archi-
tecture with more modest off-chip memory bandwidth, theatn buffers could reside completely
in on-chip memory.

A summary of our results appears in Figyré. We show the speedup offered by the three
technigues mentioned: fine-grained data parallelism, tbeigus standard; coarse-grained data
parallelism, which also leverages the existing task paliath in the stream graph; and coarse-
grained software pipelining, which runs as a post-pass &wsesgrained data parallelism. Our
baseline is Streamlt executing on a single core, which @dhse of Raw) has been shown to
outperform hand-written C implementations on a single ¢diteM *04]. While coarse-grained
data parallelism performs well (attaining a mean speeduh®{), the most robust performance
comes by adding coarse-grained software pipelining (wattdins a mean speedup of 11.2x). As
expected, software pipelining mostly benefits the statednichmarks, Vocoder and Radar. There
is a super-linear speedup in Radar because reorderingtiopsrare moved from the compute core
to the network.

1The benchmarks used here were sometimes parameterize@dtff than the ones described in Chagtebetails
on the benchmark configurations are available elsewl&FAD6)].
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4.2 Optimizing Linear Computations

The design flow for digital signal processing applicatiopgi¢ally contains three steps. First,
application designers specify a block diagram of the comjput, drawing on rich software li-
braries to prototype its behavior in an environment such A3IM\B. Once the the functionality
has been fixed, the second step is performed by digital spoakssing (DSP) experts, who in-
spect the global structure of application and perform mamgain-specific optimizations to reduce
the overall processing requirements while preserving #schinput/output relationship. Finally,
once the mathematical algorithms have been determinedisase engineer implements those
algorithms in a low-level language such as C to obtain the fireduct.

In order to reduce the cost of this development process, gtlerm goal of the computer
science community has been to generate efficient and dégéogade from a high-level, functional
specification of the program. In order to achieve this gde, @éxpertise of DSP experts must be
encapsulated into the tool. While library generators suslspiral PMJt05], FFTW [FJ03,
and ATLAS |[WPDO01, DDE*05] can automatically derive and optimize specific classes 8PD
kernels, programmers must integrate these libraries me@ tlevelopment process rather than
having the compiler automatically recognize and transftiveoriginal code. Our goal is to invent
and adapt domain-specific optimizations in the context efStreamlt language, so as to provide
a unified development environment that can express theumndtionality of the application while
automatically applying deep optimizations to the specifidecsections where they apply.

Our focus in the current work is the optimizationlofear computations, which are the most
common target of DSP experts. Linear filters are those inhvbach output is an affine combina-
tion of the inputs. Examples include finite impulse respqiR$R) filters, compressors, expanders
and signal processing transforms such as the discretedrdamnsform (DFT) and discrete cosine
transformation (DCT). We also describe the optimizatiotiredar statespace filters, a generaliza-
tion of linear filters that maintain internal states. In ahn statespace filter, each each output is an
affine combination of the states and the inputs, and eaoh istatso updated in an affine fashion.
An infinite impulse response (IIR) filter is an example of a&hn statespace filter.

Figure4-7illustrates an example of linear optimizations as appleeolir software radio bench-
mark. The radio contains an equalizer, which was specifiethéylesigner in a simple but ineffi-
cient manner. Each frequency band is processed in a sepasath of a splitjoin, and each branch
contains a successive high-pass and low-pass filter to gidna band-pass functionality. While
this representation of the algorithm allows it to be easigerstood and maintained, it performs
many redundant computations. In practice, because aleofdmponents of the equalizer are lin-
ear, they can be collapsed into a single filter that perfomngeiwer computations. Furthermore,
as that filter is performing a sliding window computationgatn be converted into the frequency
domain to reduce the asymptotic processing requiremestts@(n?) to O(n logn). Both of these
transformations require deep inter-procedural analysisaae far beyond the reach of traditional
compilers. However, using a stream programming model, wea@bustly automate both steps of
the optimization process.

In the rest of this section, we provide an overview of ourdineptimization techniques. We de-
scribe how to extract a linear representation from the co@deStreamlt filter, how to algebraically
simplify adjacent linear filters, and how to translate linékers into the frequency domain. We
also describe optimizations for linear statespace filiacdding removal of redundant states and
reduction of the number of parameters. We give a procedurésfi@rmining which optimizations
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Figure 4-7: Example optimization of linear filters. Our sadte FM radio benchmark contains an
equalizer in which all filters are linear. These filters caralgebraically simplified into a single
filter and then translated into the frequency domain.

to apply to a given program, and we evaluate the optimizatiarthe Streamlt compiler. The
average speedup obtained is 4.5x, with a maximum of 8.0x.

Extracting a Linear Representation

Rather than directly manipulating the code inside a filtertgk function, our linear optimiza-
tions rely on an abstract representation in which linearflare represented by a set of matrices.
Figure 4-8 gives an example of this representation for an IIR filter. Bieamlt compiler au-
tomatically extracts this representation using a symbmfiecution of the filter's work function.
The basic idea is to execute a complete invocation of thetimmqust like a normal interpreter,
except that instead of assigning values to the states and itgms, these quantities are left as
free variables and tracked throughout the execution. lfritexpreter encounters any branches or
conditionals that depend on free variables, then the aisalysborted and the node is deemed
non-linear. Otherwise, when execution completes, a syimbgpression has been established for
every state variable and every value pushed to the outpet t@@ll of these expressions are an
affine function of the free variables, then linear analysis Bucceeded and the linear representa-
tion is built. A more precise description of this analysiluding support for innocuous branches
that do not affect the linear representation, is descritsshdere [TAO3].

Of course, it would also be possible for programmers to $pélae linear representation di-
rectly rather than relying on the compiler to extract it froime code. If programmers prefer this
approach, then they could develop a generic linear filtetieg@nlt and call it as a library. How-
ever, we believe that it is valuable to support automatiogedion of optimization targets, as
otherwise the programmer needs to be knowledgeable of patential optimization and annotate
the code accordingly.
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Figure 4-9: Algebraic simplification of adjacent lineardi. For simplicity, we omit filter states
from this diagram.

Algebraic Simplification of Adjacent Linear Filters

If neighboring filters in the stream graph both perform adineomputation, then that section of the
stream graph can be collapsed into a single linear filter.Mbst simple case of this transformation
is illustrated in Figured-9, where two stateless filters are communicating in a pipel@igen the
computation matrix for each filter, the output of the entiigetine can be represented as a matrix
product. Because each of the matrices is known at compile, tihe matrix product can also be
evaluated at compile time. This offers the potential fogéaperformance gains. For example, if
both matrices are square (representing filters that readaime number of items as they write)
and there is no peeking involved, then the output matrix bélthe same size as each of the
input matrices, reducing the computation by a factor of twarger gains are possible if the
communication rate between the filters is larger than théh@®nd-to-end pipeline. Conversely,
if the communication rate between the filters is lower thandtierall pipeline, it is possible for
this transformation to to increase the computation requamgs; as described later, this hazard
is avoided by our automatic selection algorithm. In our expental evaluation, combining filers
wherever possible (even when detrimental) leads to a 2 drage performance improvement, with
a maximum improvement of 5.0x.

We have extended the simple idea of algebraic simplificatidrandle the general case, hiding
many complexities from the useATAO5]. To perform the matrix multiplication in Figuré-9,
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Figure 4-10: Example simplification of an IIR filter and a deator. The original pair of filters
requires 6 FLOPs per output, while the combined versioniregonly 4 FLOPSs per output.

the output rate of the first filter must match the input ratehef$econd filter. In cases where this
is not true in the program, the analysis expands each lirgaesentation to encompass multi-
ple executions of the original filter. In addition to collaps pipelines, we have also developed
complete combination rules to handle the other Streamifuage constructs: splitjoins and feed-
backloops. Splitjoins introduce complexity due to the deoing in the splitters and joiners, as well
as implicit buffering that may be involved due to mis-math® rates along alternate branches.
Feedbackloops introduce complexity because of the inigals enqueued on the backward path
of the feedback loop; in addition, the periodicity of theienfeedbackloop may be coarser than
the periodicity of its components, requiring further exgian and analysis by the compiler. The
presence of sliding window operations (or peeking) alssaddnplexity to all of the combination
rules; in our general formulation, the peeked data itemsangerted into states in the filter.

By automating the combination of linear filters, we allow flregrammer to maintain a natural
expression of the algorithm. FigudelOillustrates an example combination of an IIR filter with a
decimator, reducing the total number of operations by 25%s dptimization opportunity is not
obvious to non-experts due to the state retained by the ii.filAlso, even when the programmer
understands that linear combination is possible, it maytvagtable to manage of all of the details
and to maintain the code following the transformation. Téffect is especially important in the
context of software libraries, where the final applicatioayntontain filters that were authored
by many different developers. The compiler can perform &nialysis across module boundaries,
synthesizing an efficient implementation while presenangodular development style.

Optimization of a Single Linear Filter

In addition to optimizing groups of linear filters, it is pdse to improve the execution of a single
linear filter at a time. Stateless filters can be mapped ireddgquency domain, while stateful
filters are subject to state removal and parameter reduclibese transformations are generally
applied after algebraic simplification.

Mapping into the Frequency Domain Filters that perform a sliding window computation, such
as FIR filters, are equivalent to a convolution of the filteefficients with the input tape. This
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means that they are amenable to a classic transformationgle grocessing, whereby the com-
putation is mapped from the time domain into the frequenceyiaa. As illustrated in Figuré-11,
this consists of wrapping the filter in an FFT and inverse R changing the convolution into
a vector-vector multiply. Asymptotically, this reduce® ttomputation requirements frof(n?)

to O(nlogn), wheren is the size of FFT (which can be set by the compiler). In oureexp
ments, translating each filter into the frequency domaierievhen detrimental) leads to an aver-
age speedup of 3.8x and a maximum speedup of 8.0x.

While this transformation is well-understood and can alsabne by hand, there are benefits
to automating it in the compiler. The size of the FFT can bematically selected and complex
startup conditions can be handled automatically. Alsorettaee cases where it is not profitable
to translate to the frequency domain (for example, if thekpeimdow is too small, or if the filter
decimates items in addition to peeking), or where convarg@rofitable only following linear
combination. By coupling the translation algorithm withraptimization selection algorithm
(described later), the programmer does not need to worrytatloen to apply the transformation.

Removing States Linear statespace filters maintain and update a set of eltstates on each
time step. However, especially following combination wattijacent nodes, it is possible that some
of these states could be redundant; that is, their valuds daufully derived from other states in
the filter. It is beneficial to remove any redundant statet) flr memory savings and to eliminate
redundant computations that update the states.

We have adapted a simple algorithm that guarantees tofigentil remove all of the redundant
states in a filterfMay73. While this algorithm was previously known by the signabpessing
community, to our knowledge this is its first application m@ptimizing compiler. The algorithm
works by constructing augmented matrices from the filtezjsresentation (Figuré-8), and by
reducing these matrices to a special row-echelon form.

An example of state removal appears in Figdfg#2 The analysis detects that the two states
x1 andx2 are always scaled proportionately, so they can be combmediisingle stat&. This
reduced the computational requirements of the filter fronb @Fs per execution to 5 FLOPs per
execution.
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Figure 4-12: Example of state removal and parameter remtucti

Reducing the Number of Parameters After removing as many states as possible, additional
computations can be eliminated by transforming the filtenear representation into one with
fewer non-zero, non-one entries (termed parameters). &zafficient that is converted to a zero
serves to eliminate a multiplication and addition operager execution of the filter, while each
coefficient that is converted to a one serves to eliminate lphcation.

We automated parameter reduction by starting with a knogmesprocessing techniquaB71]
and reformulating it in the context of Streamlt. As with thiate removal algorithm, the number
of parameters in a linear statespace filter can be reduced assystematic sequence of matrix
operations. However, compared to state removal, thereoaset guarantees on the optimality of
the final systemATAO05].

An example of parameter reduction is illustrated in FigdhE2 Following the transformation,
the state variable assumes a value that is twice as large as the original (at iy goint of
execution). However, this change does not affect the owtptlte filter, as the other coefficients
are compensated accordingly. The transformation enabtesaefficients two change to a value
of 1, thereby eliminating two multiplication operationsdareducing the total cost to 4 FLOPs per
execution.

Optimization Selection

As mentioned previously, many of the described transfaonathave the potential to decrease the
performance of the program. Linear combination can blaaptiocessing requirements depending
on the communication rates of the filters, and translatiothéofrequency domain can introduce
overhead for filters with high pop rates or low peek ratestelad of applying the transformations
blindly, they should be guided by a selection algorithm thatches the behavior of DSP experts.
We have developed a general and robust optimization setegljorithm that considers a large
space of candidate transformations. To prevent an expiaherplosion of candidate transforma-
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tions on different parts of the stream graph, the algoritewetages overlapping sub-problems and
uses dynamic programming to arrive at an efficient solution.

The algorithm works by estimating the minimum cost for egahcsure (filter, pipeline, splitjoin,
and feedbackloop) in the stream graph. The minimum cosesepits the best of three configu-
rations: 1) collapsed and implemented in the time domaircolapsed and implemented in the
frequency domain, and 3) uncollapsed and implemented asrarbiical unit. (This algorithm
does not consider state removal and parameter reductioch wiere invented subsequently.) The
cost functions for the collapsed cases are guided by préééztback, performed once during the
development of the compiler. For the uncollapsed case astacthe sum of each child’s minimum
cost.

A key aspect of the algorithm is that it considers many pdsdibundaries for the structures
in the stream graph. For example, while the programmer nfighie constructed the graph as
a specific hierarchy of pipelines, the compiler flattens treanchy into a single pipeline and
then considers linear optimizations for each contiguogsorewithin that pipeline. A similar
decomposition applies to splitjoins, where any number ¢d@ht branches and any contiguous
sequence of streams in those branches is considered fsfdraration. In this sense, the algorithm
determines not only the best transformations to apply, Isatthe best way to refactor the stream
graph into a form that is amenable to optimization.

An example of optimization selection for the Radar benclkisshown in Figurél-13. Radaf
contains many linear filters. However, performing maxinia¢&r combination results in a 3.2x
slowdown, and translating to the frequency domain worsemBpnance by an additional 12x.
The problem with linear combination is due to a vector-veataltiply filter named “Beamform”
at the top of a pipeline construct. The Beamform filter pushé&ems, but pops and peeks 24;
thus, when the replacement algorithms combine it with a dibseam FIR filter, much of its work
is duplicated. Moreover, the frequency replacement opsuaifiers from the large pop rates in
the application (as high as 128 for some filters). The optmin selection algorithm avoids
combining BeamForm with its successor, and avoids theyc@stjuency translation. Applying
only selective transformations causes 55% of the FLOPs telib@nated. However, the final
speedup is only 5%, mostly due to unrelated data and coddssizes that could be addressed
independently (each filter is very coarse-grained).

Experimental Evaluation

We have implemented linear optimizations in the Streamihgier. Here we present results
for stateless linear nodes, though we have also shown tiesrlistatespace analysis offers im-
proved generalityATAO05]. For more detailed results, stream graphs, and source ptasse visit
http://cag.lcs.mit.edu/linear/ or see the accompanyiegithLam03.

We evaluate linear optimizations on a uniprocessor. Ousoreanent platform is a Dual Intel
Pentium 4 Xeon system with 2GB of memory running GNU/Linuxa nieasure the number of
floating point operations, we use an instruction counting@ywoRIO BDB99] client.

Figure4-14indicates the number of floating point operations (FLOPs)aeed from the pro-
gram. The removal of FLOPs represents fundamental computsévings that is independent of
the streaming runtime system and other (FLOPs-preseraptinizations in the compiler. We

2This version of the Radar benchmark is different from the s in the parallelization section. It is rewritten to
be extremely coarse-grained, eliminating the internaésiad exposing the linear relationships.
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Figure 4-13: Optimization selection for the Radar benctlkmBerforming maximal linear combi-
nation and translation to the frequency domain resultsangelslowdown. The selection procedure
avoids this hazard by blocking the vertical combinationhaf BeamForm filter and by preventing
translation to the frequency domain.
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Figure 4-14: Elimination of floating point operations by nraal linear replacement, maximal
frequency replacement, and automatic optimization select
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Figure 4-15: Execution speedup for maximal linear replaa@ymaximal frequency replacement,
and automatic optimization selectfon

evaluate three strategies: maximal combination of linemles, maximal translation to the fre-
guency domain (following maximal combination), and auttimaptimization selection. The au-
tomatic selection routing removes an average of 87% of tHeFd_from our benchmarks, with a
maximum of 96% (Vocoder). The automatic selection optiomiglates more FLOPS than either
of the other options for TargetDetect, FMRadio, Radar, ancbder. Automatic selection always
performs at least as well as the other two options.

1The benchmarks used here were sometimes parameterize@dtff than the ones described in Chagtebetails
on the benchmark configurations are available elsewhemm(3.
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Execution speedups are shown in Figdis#5 With automatic selection, our benchmarks speed
up an average factor of 5.5x and by a factor of 8.0x in the keess ¢FilterBank). While the graph
suggests that frequency replacement almost always pesfoetter than linear replacement, this is
not strictly the case; in FMRadio, Radar, and Vocoder, theraatic selection algorithm obtains its
speedup by using linear replacement instead of frequeptgaement for part of the stream graph.
However, linear replacement does reduce performance By FrgetDetect, and DToA despite
reducing the number of FLOPS. We believe that this is duedffiagiencies in our implementation
of the matrix multiplication routine, as well as auxiliarffexts on the runtime overhead in the
Streamlt library.

While these results represent radical improvements velati most compiler optimizations,
we emphasize that the same transformations would likelyolpe ¢y hand in a production system.
Our contribution is to enable a modular programming envitent by automatically performing
the transformations from a high-level description.

4.3 Cache Optimizations

An important part of achieving high performance is to maziethe utilization of the cache. This

is especially important on embedded processors, whichm ¢diek an L2 cache. In tandem with

this need for high cache utilization, there is also a unigpootunity in the streaming domain

to reorder filter executions so as to improve the cache behaviemory accesses are extremely
regular due to the explicit producer-consumer relatigpsbietween filters, allowing the compiler
to anticipate and optimize the cache usage.

We have developed a set of cache optimizations that simedtasly consider data and instruc-
tion locality while scheduling stream programs. An ovew i@ our optimizations are illustrated
in Figure4-16. In scheduling a pipeline of filters, the executions can berieaved in any order so
long as data is produced before it is consumed. In the basadinfiguration, there is a fine-grained
interleaving of filters; each filter fires once per executibthe outer loop. While this results in a
very small data working set (data is consumed immediatelgviing its production), the instruc-
tion working set is large because all filters are accessedémtly. The opposite of this scheduling
strategy, termed “full scaling”, wraps each filter in its oWaop, buffering all of the data before
the next filter executes. While this shrinks the instructianking set size (since only one actor is
accessed at a time), the data working set could grow verg dug to the buffering between actors.

Our optimized scheduling strategy, illustrated on thetriglhFigure4-16, can be considered
as a tradeoff between these two extremes. First, we empleyiastic calledcache aware fusion
that fuses executions of the inner loop as much as possiltk®uti overflowing the instruction
cache. In this case, filters A and B can be fused, but filter Ganesnseparate. Then, we employ
a technique calledache aware scalinthat sets the inner loop bounds as high as possible without
overflowing the data cache. In this case, a bound of 64 ensuséshe communication between
B and C stays within the cache. This technique offers joirgromement of instruction and data
locality without risking the penalty of cache overflow.

In the rest of this section, we provide more details on cagreafusion, cache aware scaling,
and present an experimental evaluation. Our full reporthas $ubject contains further details,
including optimized buffer management strateg®@E§RA05 Ser03.
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—— Baseline Full Scaling Cache Opt

A fori=1toN | fori=1toN fori=1to N/64
g A(); A(); forj=1to 64
B B(); fori=1toN A();
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(o] end fori=1toN end
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Set Size B C B
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Figure 4-16: Overview of cache optimizations. While exemutcaling can improve instruction

locality relative to the baseline, it loses the benefits téifilusion and has the hazard of overflowing
the data cache. Our cache optimizations fuse filters as mugossible without exceeding the
instruction cache, then scale as much as possible withaeeeing the data cache.

Cache Aware Fusion

As mentioned previously, filter fusion is a transformatinmhich two filters are tightly scheduled

and inlined into the same filter. Fusion offers many benefitduding reduced method call over-

head and improved producer-consumer locality. It alsonaltraditional compiler optimizations

to span across filter boundaries; in particular, resultswiese previously buffered in memory can
now be allocated to registers in an optimization known akascaplacement. For our benchmark
suite, fusing all of the filters in the program improves parfance by an average of 1.3x on an
embedded processor.

However, the hazard of excessive fusion is that the combim&duction and data footprint
of the filters will overflow the caches, thereby hamperingiquenance. The scalar replacement
optimization also benefits from aggressive loop unrollingich causes code bloat and increases
the risk of cache overflow. To address this hazard, our casheesusion algorithm greedily fuses
neighboring filters so long as the instruction and data wuaylsiets fit within the respective caches.
In addition, a fraction of the data cache is reserved fortimmal output items. Compared to a full
fusion strategy, cache aware fusion improves performag@ntadditional 1.4x on an embedded
processor.

Cache Aware Scaling

It is advantageous to execute a filter multiple times at obheeause the first execution will incur
cache misses that can be amortized over subsequent execWe user the terscalingto refer to

the process of increasing a filter's execution multipliciyhile scaling can improve performance
by amortizing cold misses of the filter’s instructions anatet excessive scaling will worsen per-
formance because the filter’s input and output buffers widrgually overflow the cache. This
effect is illustrated empirically in Figuré-17. To achieve the highest performance, the compiler
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Figure 4-17: Effect of execution scaling on performance dstate scaling improves performance
by improving the locality of instructions and local filtertdaHowever, excessive scaling worsens
performance as the input and output buffers overflow theesach

needs to select an intermediate scaling factor that repiesetradeoff between the filter’'s static
footprint (instructions and local data) and its dynamictfomt (input and output items).

We have developed a cache aware scaling heuristic thaeistig# in addressing this problem.
The heuristic scales the execution of every filter in the yriap the same amount. The scaling
factor is set as high as possible so long as 90% of the filtergichoth their static and dynamic
footprints in the cache. This means that 10% of the filters magrflow the cache with their
dynamic data, but these overflows are compensated by imghreuse of static data in other filters.
In the case of FFT (characterized in Figdrd 7, the heuristic arrives at a scaling factor of 5, which
yields performance that is within 5% of the optimum. For oenthmark suite, cache aware
scaling gives a further improvement of 1.9x over cache aesien alone.

Experimental Evaluation

We implemented cache aware fusion and cache aware scalihg BtreamlIt compiler, and eval-
uate its performance on three different architectures: 2aMBliz StrongARM 1110, a 600 MHz
Pentium 3 and a 1.3 GHz Itanium 2. The StrongARM results refledormance for an embedded
target; it has a 16 Kb L1 instruction cache, an 8 Kb L1 data eaahd no L2 cache. The Stron-
gARM also has a separate 512-byte minicache (not targetedibgptimizations). The Pentium 3
and Itanium 2 reflect desktop performance; they have a 16 Kindttuction cache, 16 Kb L1 data
cache, and 256 Kb shared L2 cache.

In addition to cache optimizations, we enable aggressive lorolling (by a factor of 128) to
facilitate scalar replacement. The Streamlt compiler otgtp functionally equivalent C program
that is compiled withgcc (v3.4, -O3) for the StrongARM and for the Pentium 3 and watit
(v7.0, -O3) for the Itanium 2.
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Figure 4-18: Performance of cache optimizations on then§#&&M processor (CAF stands for
cache aware fusioh)

The performance of our techniques on the StrongARM procéssitustrated in Figuret-18.
The graph illustrates the performance of full fusion, caathvare fusion, and cache aware fusion
with cache aware scaling. Performance is normalized totimgqed Streamlt, in which no actors
are fused (but there is still unrolling by 128). On average, @ache optimizations offer a 3.49x
speedup over the baseline and a 2.62x average speedup bvesiion. Cache optimizations
always perform better than the baseline, and they perfottertidan full fusion in all cases except
for 3gpp, where they yield a 45% slowdown. This slowdown is due to eoretive code size
estimation: the compiler predicts that the fused versioBgup will not fit into the instruction
cache, thereby preventing fusion. However, due to optitimaa by gcc, the final code size is
smaller than expected and does fit within the cache. Whillk swxcuracies could be improved by
adding feedback between the outputot and our code estimation, each fusion possibility would
need to be evaluated separately as the fusion boundarysatiedmpact of low-level optimizations
(and thus the final code size).

The speedups offered by cache optimizations over a fulbfustrategy are more modest for
the desktop processors: 1.34x average speedup on Pentinoh éssentially zero speedup (6%
by the arithmetic mean, -8% by the geometric mean) on Itardyfigure4-19. Performance on

1The benchmarks used here were sometimes parameterize@dtff than the ones described in Chagtebetails
on the benchmark configurations are available elsewl8sp.
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Figure 4-19: Summary of cache optimizations on the StrongARentium 3 and Itanium 2 pro-
cessors (CAF stands for cache aware fusion).

any architecture is a tradeoff between two factors: 1) theebeof data and instruction locality,
and 2) the benefit of fusion, which reduces memory accessesodmproved register allocation
across actor boundaries. Compared to the StrongARM, theuRe8 and Itanium 2 offer an L2
cache (as well as a larger L1 data cache), thereby lessdr@ngpact of locality-enhancing cache
optimizations. However, the fusion benefit remains a sigaifi factor; for example, using Intel
VTune on the Pentium 3, we measured that full fusion offer8% Beduction in memory accesses
over the cache-optimized version. This effect may be proned on the Itanium 2 due to the larger
number of registers on that architecture (128 general, 1i28ifig point). While fusion benefits
are also present on the StrongARM, cache optimizations are important on that processor due
to the large penalty for cache misses.

In summary, cache optimizations prove to be a valuable &ssle¢ compiler, especially when
targeting embedded processors. Via simple schedulingdtiesy they improve performance by
3.49x. These gains are out of the reach of compilers forttaamdil languages such as C, in which it
is intractable to infer the buffers between filters and taxgoo shrink them to match the schedule.
The stream programming model exposes the information wetd&ansform the program and
attain the desired performance.

4.4 Related Work

Parallelization Printz also compiles synchronous dataflow graphs (incydupport for sliding
window operations and stateful filters) to the distributedmory Warp machineri91]. In order
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to support applications with hard real-time constraingsirhnimizes the latency of a single steady
state rather than maximizing the overall throughput. Baihrse-grained data parallelism and
coarse-grained software pipelining have the potentiahtoeiase the latency of the program, and
thus fall outside the scope of his model. Also, Printz dodsattempt to minimize communication
when assigning tasks to processors; data-parallel aate@saigned to processors in any topolog-
ical order and are always spread across as many procesgmwssaisle. As he acknowledges, this
sometimes introduces unnecessary communicaRaf71, p.155]. Our technique exploits only as
much data parallelism as is needed to complement existakgprallelism in the program. It also
matches producers and consumers prior to data parallehizay fusing stateless actors as much
as possible. Still, it is difficult to compare our techniqu@®ctly because they focus on different
things. Our focus is on stateless actors with limitless geatallelism, while Printz focuses on
actors with a fixed amount of internal data parallelism. H®dlas built-in support for systolic
computations (pipelines of balanced filters) which we domotel explicitly.

The AssiGNparallel program generator also maps coarse-grainedarsgesgphs to Warp]'H91].
However, it relies solely on task and pipeline parallelighe stream graph is partitioned into
contiguous groups for execution on the processors. Whilgmeeiously adopted a similar ap-
proach GTK*02], it proved difficult to balance the load and to utilize alltbe processors without
exploiting data parallelism. The approach described ia thiapter offers a 1.84x improvement
over our previous work.

Liao et al. map Brook to multicore processors by leveragmegfine partitioning modeLIDWLO06].
While affine partitioning is a powerful technique for parderezed loop-based programs, in Streamit
we simplify the problem by fully resolving the program stiwre at compile time. This allows us to
schedule a single steady state using flexible, non-affifeitgues (e.g., simulated annealing) and
to repeat the found schedule for an indefinite period at metiGummaraju and Rosenblum map
stream programs to a general-purpose hyperthreaded pandés05. Such techniques could be
integrated with our spatial partitioning to optimize pere performance. Gu et al. expose data
and pipeline parallelism in a Java-like language and usevgiter analysis to efficiently extract
coarse-grained filter boundarie®BHAQ5]. Ottoni et al. also extract decoupled threads from se-
guential code, using hardware-based software pipelimrdjdtribute the resulting threads across
cores PRSA0]. By embedding pipeline-parallel filters in the programmimodel, we focus on
the mapping step.

Previous work in scheduling computation graphs to par#dlieglets has focused on partition-
ing and scheduling techniques that exploit task and pipgdarallelism EM87, MSK87, PL95
PBL95 KA99]. Application of loop-conscious transformations to ceagsained dataflow graphs
has been investigated. Unrolling (or “unfolding” in thisrdain) is employed for synchronous
dataflow (SDF) graphs to reduce the initiation interval betytdo not evaluate mappings to actual
architecturesPM91, CS97. Software pipelining techniques have been applied to SEdplis
onto various embedded and DSP targ86&99 CV02], but has required programmer knowledge
of both the application and the architecture. To our knog#&edone of these systems automati-
cally exploit the combination of task, data, and pipelineafialism. Furthermore, these systems
do not provide a robust end-to-end path for applicationlization from a high-level, portable
programming language.
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Optimizing Linear Computations Several other groups have developed automated frameworks
for optimizing linear signal processing kernels. SPIRAR system that generates libraries for sig-
nal processing algorithm®MJt05]. Using a feedback-directed search process, DSP transform
are optimized for the underlying architecture. The inpuigiaage to SPIRAL is SPLXJJP01
Xio01], which provides a parameterizable way of expressing matmputations. Given a matrix
representation in SPL, SPIRAL generates formulas thaespond to different factorizations of
the matrix. It searches for the most efficient formula usiegesal techniques, including dynamic
programming and stochastic evolutionary search.

We consider our work to be complementary to SPIRAL. WhileF5RL starts with a matrix
representation in SPL, we start with general Streamlt codewse linear dataflow analysis to
extract a matrix representation where possible. Our limeanbination rules are distinct from
the factorizations of SPIRAL, due to Streamlt’s support $bding windows. We also support
optimizations on linear statespace filters, which are notlel in SPIRAL. In the future, SPIRAL
could be integrated with Streamlt to optimize a matrix faiztation for a given architecture.

The FFTW systemHJ0Y generates platform-optimized FFT libraries using a dyicaono-
gramming algorithm and profile feedback to match the reeasFT formulation to a given mem-
ory hierarchy. ATLAS WPDO01, DDE"05] produces platform-specific linear algebra routines by
searching over blocking strategies and other paramet@as®y [DDE'05, 1YV04] applies a
similar approach to sparse matrices. Streamit is again ngntary to these packages: it allows
programmers to interface with them using general usel-mge. It also supports linear statespace
filters.

A variety of tools have been developed for specifying andviteg DSP algorithmsQN9Z].
The SMART project aims to develop an algebraic theory of @&igmocessing, providing a uni-
fied framework for deriving, explaining, and classifyingtaransform algorithmsqMO03. ADE
(A Design Environment) provides a predefined set of comgessignal transforms, as well as a
rule-based system that searches for improved algorithing egtensible rewriting rule<Jov89.
Janssen et al. automatically derive low-cost hardwareemphtations of signal flow graphs us-
ing algebraic transformations and hill-climbing seard®@f194. Our work shares the vision of
automatically deriving optimized algorithms from a highvél description, though we start from a
general-purpose, imperative stream language rather thaatteematical formalism.

Karr [Kar76 and Cousot and Halbwach€H78 describe general methods for detecting linear
relationships among program variables. Karr maintainsfiimearepresentation (similar to ours)
for each program variable, while Cousot and Halbwachs usalydedral model in which each
dimension corresponds to a program variable. For geneogirams, the analyses described by
these authors is more general than ours. In fact, the nowtlbyr linear dataflow analysis is in
its specialization for the streaming domain. Rather thaoking general relationships, we only
track relationships to items on the input tape. This resbme—in combination with the atomic,
fine-grained nature of filter work functions—makes it fedesito symbolically execute all loops,
thereby obtaining more precise linearity information.

Potkonjak and Rabaey describe optimized hardware systf@dinear and “feedback linear”
computationsPROQ. Linear state space systems correspond to “constant &e&dimear com-
putations” in the authors’ terminology. For linear and Andéeedback systems, their technique
offers 1) a maximally fast implementation under latencystaints, 2) an arbitrarily fast imple-
mentation, and 3) an implementation reducing the numberithfraetic operations. In reducing
arithmetic operations, they perform common subexpresdiomnation (CSE) in a manner that re-
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sembles our state removal optimization. However, the ggistate removal transformation cannot
be achieved by CSE alone (or by the Potkonjak and Rabaeyitalgdr We are unaware of any
sequence of traditional compiler optimizations that aokéethe same effect as state removal (and
likewise for parameter reduction).

Also note that the “linear data flow analysis” of RydRyja99 is completely unrelated to our
work; it aims to do program analysis in linear time.

Cache Optimizations There is a large body of literature on scheduling synchreraataflow
(SDF) graphs to optimize various metriddMIL96, BML99]. The work most closely related to
ours is a recent study by KohlKph04 on cache aware scheduling of SDF graphs, implemented
as part of the Ptolemy framework for simulating heterogesemmbedded systenisde03. Kohli
develops a Cache Aware Scheduling (CAS) heuristic for anegladdd target with a software-
managed scratchpad instruction cache. His algorithm dyegetides how many times to execute
a given actor based on estimates of the data cache and irstraache penalties associated with
switching to the next actor. In contrast, our algorithm ¢dess the buffering requirements of all
filters in a given container and increases the multipliciyiang as 90% of buffers are contained
within the data cache. The evaluation is limited to one @ifiipeline and an assortment of random
SDF graphs. An empirical comparison of our heuristics onraroon architectural target would
be an interesting direction for future work.

It is recognized that there is a tradeoff between code sidébafier size when determining an
SDF schedule. Most techniques to date have focused on ésapgiearance schedules” in which
each filter appears at only one position in the loop nest damtte schedule. Such schedules guar-
antee minimal code size and facilitate the inlining of féteThere are a number of approaches to
minimizing the buffer requirements for single-appearasweedules (see Bhattachary{aML99]
for a review). While it has been shown that obtaining the madimemory requirements for gen-
eral graphs is NP-completBML97], there are two complimentary heuristics, APGAN (Pairwise
Grouping of Adjacent Nodes) and RPMC (Recursive Partitigrity Minimum Cuts), that have
been shown to be effective when applied togetBMIL97]. Buffer mergingMB99, MBO04] rep-
resents another technique for decreasing buffer sizeshvdoiuld be integrated with our approach
in the future.

Govindarajan et al. develop a linear programming framevarketermining the “rate-optimal
schedule” with the minimal memory requireme@GD94. A rate-optimal schedule is one that
takes advantage of parallel resources to execute the grpbhw maximal throughput. However,
the technique is specific to rate-optimal schedules and esultrin a code size explosion, as the
same node is potentially executed in many different coatext

The work described above is related to ours in that miningifanffer requirements can also
improve caching behavior. However, our goal is differenthat we aim to improve spatial and
temporal locality instead of simply decreasing the sizehef live data set. In fact, our scaling
transformation actuallincreasegshe size of the data buffers, leading to higher performacoaesa
our benchmark suite. Our transformations also take intowucthe size of the instruction and
data caches to select an appropriate scaling and pamigjéar the stream graph.

Proebsting and WattersoP\W9qg give a fusion algorithm that interleaves the control flow
graphs of adjacent filters. Their algorithm supports syoebusput andget operations (analo-
gous topush andpop), but would have to be extended to deal with peeking.
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4.5 Future Work

Our current parallelization algorithm does not supportftiiegenerality of the Streamlt language;
it omits support for teleport messages and dynamic ratessdgng may constrain the latency of
certain parts of the stream graph, preventing the compiben xploiting data parallelism. Also,
static rates are important for estimating the work perfatrbg pipeline-parallel filters. In the
software pipelining stage, static load balancing wouldiffecdlt in the presence of dynamic rates.
Incorporating these language features into the paradiidiz process is fertile grounds for future
research.

While our implementation targets Raw, the techniques dgesl should be applicable to other
multicore architectures. As Raw has a relatively high comication bandwidth, coarsening the
granularity of data parallelism may benefit other multiscggen more. In porting this transforma-
tion to a new architecture, one may need to adjust the thieéslmonputation-to-communication
ratio that justifies data parallelism. As for coarse-grdiseftware pipelining, the scheduling free-
dom afforded should benefit many multicore systems. Oneldlromsider the most efficient loca-
tion for intermediate buffers (local memory, shared memblyOs, etc.) as well as the best mech-
anism for shuffling data (DMA, on-chip network, etc.). Thesizaalgorithms for coarsening gran-
ularity, introducing data parallelism, and software pipielg are largely architecture-independent.
At the time of this writing, others in the Streamlt group a@tmg the algorithm to target the
Tilera TILE64 chip, the Cell processor, commodity multiesyrand a cluster of workstations.

A limitation of the linear optimizations is that they curtBndo not support linear filters that
send or receive teleport messages. This scenario is méahlpggause messages are often sent
to adjust filtering coefficients in linear nodes. Supportmgssages in tandem with linear opti-
mizations represents an interesting research opportufityessages update the state of a linear
filter, than those state updates should be propagated thraug combined or optimized nodes.
Alternately, it may be simpler to maintain two versions o fiiter at runtime: one which is op-
timized (and potentially combined with other filters), anteavhich is unoptimized (and stands
alone). The runtime system could speculatively executeptienized node until messages demand
a temporary switch to the unoptimized node.

Our experience with linear optimizations also revealed@wootunity to develop an interesting
and useful optimization which we tergdecimation propagationOur current analysis will auto-
matically propagate any decimation of the output throughlitear portions of the stream graph,
eliminating any computations that do not affect the finapotit However, it would be possible to
generalize and extend this analysis to handle non-lingardihs well. By performing a dependence
analysis within each filter, one can trace which input itemesdiecimated due to decimations on
the output. Comparable to an inter-procedural version atidede elimination, this optimization
could prune unnecessary operations far more effectively traditional compilers.

The cache aware scaling heuristic applies the same scalatgrfto all parts of the stream
graph. We have been working (with Fabrice Rastello) on gdizéng this approach to use different
scaling factors for different sections of the stream grdjhs approach has the potential to strike a
more flexible tradeoff between the static data footprintueddynamic data footprint in the cache.

Finally, a broad limitation of the current Streamlt compikethat it performs all of its optimiza-
tions at compile time. To embed streaming concepts in a geéperpose programming language,
it will likely be desirable to provide API support for constting and initializing the stream graph
at runtime. In this context, all of the optimizations deked should be migrated to a Just-In-Time
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(JIT) compiler, where they can be invoked once at the stasteddy-state execution. As part of
this change, it will be important to evaluate and improvedkecution time of all of the compiler
analyses.

4.6 Chapter Summary

This chapter presents three aggressive transformatiahstihze the abundant parallelism and reg-
ular communication patterns of stream programs to achiet@aatic performance improvements
that are beyond the reach of traditional compilers.

In parallelizing stream programs, we leverage the tasla, daid pipeline parallelism that is ex-
posed in the programming model to attain robust performanaemulticore architecture. The key
aspect of our work is in exploiting parallelism at a coarselef granularity. To bolster the benefits
of data parallelism on a multicore architecture, we buildree-grained data-parallel units that are
duplicated as few times as needed. And to leverage the beokfiipeline parallelism, we employ
software pipelining techniques—traditionally appliedtla¢ instruction level—to coarse-grained
filters in the program. The combination of these techniquseses an 11.2x mean speedup on
the 16-core Raw machine.

In optimizing linear computations, we demonstrate how theagiler can mirror the actions
of a DSP expert in performing algorithmic transformatiomstbe stream graph. We automati-
cally extract a linear representation from the code in arslt@ork function, and manipulate that
representation to perform algebraic simplification of adja filters, translation of filters into the
frequency domain, removal of redundant states, and remuofi the number of parameters. We
develop an optimization selection algorithm that uses dyogrogramming to choose the most
profitable transformations out of a large array of posgsibsi The combination of these tech-
niques eliminates an average of 87% of the FLOPs and offeeva@rage speedup of 5.5x across
our benchmark suite.

In performing cache optimizations, we derive a schedule ltdr fexecutions that improves
the instruction and data locality. In order to gain the béseff fusing nodes together without
the hazard of exceeding the instruction cache, a cache dusom algorithm fuses only so long
as the cache limit is respected. And to amortize the cost lof maisses upon loading a filter’'s
instructions and data into the cache, a cache aware scdfipgtam repeatedly executes each
filter many times — but only so long as the resulting commuioocebuffers are unlikely to exceed
the cache. The combination of these techniques is espeassiful in the context of embedded
processors; we achieve a 3.49x average improvement ovptiomped Streamlt on a StrongARM
1100 processor.

There were many aspects of the stream programming modeétizdtied the optimizations
described in this chapter. The properties of the synchredataflow model —that is, the separation
of filters into independent units with atomic execution stapd known communication rates —was
essential for almost all of the analyses described. In maigithe Streamlt construct of peeking
was uniformly useful for facilitating analysis of slidingmdow operations.

Structured streams also found some applications withirctmepiler, though fewer than we
had originally anticipated. The presence of structure veaemtial for formulating the optimiza-
tion selection algorithm for linear filters; without the tegr structure, there would have been
no prescription for finding overlapping subproblems in ttream graph. We believe that struc-
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ture also simplified the development and presentation ofitiear optimizations, as they only
have to handle a fixed number of cases rather than dealinghdgtfull generality of an arbitrary
stream graph. The splitjoin construct also facilitated die¢ection of task-parallel components
during the introduction of data parallelism. Though we dad discuss it here, the single-input,
single-output property of structured streams was intetgréthe development of phased schedul-
ing [KTAO3, Kar0Z. Finally, though the Streamit compiler completely unsdthe stream graph,
structure may prove useful in facilitating a parameterigexph representation in future work.
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Chapter 5

Translating Stream Programs into the
Compressed Domain

This chapter presents a new domain-specific optimizatiostteam programs: translation to the
compressed domain. This transformation allows prograropé¢oate directly on compressed data,
accelerating common video editing operations by a medidbwef Unlike the optimization of lin-
ear nodes in Streamlt, this represents a domain-specifimization that was previously unknown
(it was not performed even by experts). We define the transftion in general terms and also
evaluate it experimentally in the context of Streamit.

5.1 Introduction

Stream programs often operate on huge volumes of data. Bor@®, each frame of a digital film
requires approximately 2 megabytes, implying that a felfijted 90-minute video demands about
300 gigabytes of data for the imagery alomM05]. Industrial Light and Magic reports that, in
2003, their processing pipeline output 13.7 million franaesl their internal network processed
9 petabytes of dateBen]. The U.S. Geological Survey had archived over 13 millicaies of
photographic data by the end of 2004, and estimates thatrs iseaeeded to digitize 8.6 million
additional images).S04. In all of these situations, the data is highly compressedetiuce
storage costs. At the same time, extensive post-processoften required for adding captions,
watermarking, resizing, compositing, adjusting colomnerting formats, and so on. As such
processing logically operates on the uncompressed fothwatisual practice is to decompress and
re-compress the data whenever it needs to be modified.

In order to accelerate the process of editing compresseaqd destearchers have identified spe-
cific transformations that can be mapped into the compredsethin — that is, they can operate
directly on the compressed data format rather than on theropressed formatdha95 Smios
MIP99, WSAO0Z. In addition to avoiding the cost of the decompression aidampression, such
techniques greatly reduce the total volume of data prodefisereby offering large savings in both
execution time and memory footprint. However, existinditéques for operating directly on com-
pressed data are largely limited to lossy compression firswech as JPEGSE96hH SS96aSR96
SS98 DAO1, MMO02, FJ03 and MPEG AS98 Vas98 DRB00, NKH00, WSAO0Z. While these
formats are used pervasively in the distribution of image @deo content, they are rarely used
during the production of such content. Instead, profesdiartists and filmmakers rely on lossless
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compression formats (BMP, PNG, Apple Animation) to avoidwaulating artifacts during the
editing process. Given the computational intensity of @ssfonal video editing, there is a large
demand for new techniques that could accelerate operaiintossless formats.

In this chapter, we present a technique for translatin@sirprograms to operate directly on
losslessly-compressed data. We consider compressioratertimat are based on LZ77, a com-
pression algorithm that is utilized by ZIP and fully encadpses common formats such as Apple
Animation, Microsoft RLE, and Targa. The transformatiomisst efficient when each element of
a stream is transformed in a uniform way (e.g., adjustingbtightness of each pixel). However,
it also applies to cases in which multiple items are proakasence (e.g., averaging pixels) or in
which multiple streams are split or combined (e.g., contpusirames).

The key idea behind our technique can be understood in siteptes. In LZ77, compression
is achieved by indicating that a given part of the data streaarepeat of a previous part of the
stream. If a program is transforming each element of thasti@ the same way, then any repeti-
tions in the input will necessarily be present in the outpuvall. Thus, while new data sequences
need to be processed as usual, any repeats of those seqdemogseed to be transformed again.
Rather,the repetitions in the input stream can be directly copiedhi® output streamthereby
referencing the previously-computed values. This presetfaie compression in the stream while
avoiding the cost of decompression, re-compression, amgbabng on the uncompressed data.

In this work, we extend this simple idea to encompass a bréegb ©f programs that can
be expressed in Streamlt. We have implemented a subset geaeral technique in the Streamit
compiler. The end result is a fully-automatic system in \iahilee user writes programs that operate
on uncompressed data, and our compiler emits an optimizagrgmn that operates directly on
compressed data. Our compiler generates plugins for twalpopideo editing tools (MEncoder
and Blender), allowing the optimized transformations tabed as part of a standard video editing
process.

Using a suite of 12 videos (screencasts, animations, anét dotage) in Apple Animation
format, our transformation offers a speedup roughly propoal to the compression factor. For
transformations that adjust a single video (brightnessirast, color inversion), speedups range
from 2.5x to 471x, with a median of 17x. For transformatidmattcombine two videos (overlays
and mattes), speedups range from 1.1x to 32x, with a mediéréaf We believe this is the first
demonstration of compressed-domain techniques for slgleompressed video content.

In the general case, compressed processing techniquesaadyta partially decompress the
input data to support the behavior of certain programs. Hvea decompression is performed,
the output may benefit from an additional re-compressiop gtaew redundancy is introduced
during the processing (for example, increasing image bmggs can whiteout parts of the image).
This effect turns out to be minor in the case of our experimeRor pixel transformations, output
sizes are within 0.1% of input sizes and often (more than thalftime) are within 5% of a full
re-compression. For video compositing, output files mairassizable compression ratio of 8.8x
(median) while full re-compression results in a ratio of I8 edian).

In the remainder of the chapter, we give an overview of LZ7mpression before describing
our technique and its compatibility with popular file formatWe then present an experimental
evaluation before closing with related work and a chapterrsary.
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Figure 5-1: Example of LZ77 decompression.

LZ77 Compression

Our technique supports compressed data formats that aeel lo&sLZ77. LZ77 is a lossless,
dictionary-based compression algorithm that is asymgadyi optimal WZ94]. LZ77 forms the
basis for many popular compression formats, including GIBIP and PNG, and also serves as a
generalization of simpler encodings such as Apple Aninmatidicrosoft RLE, and Targa.

The basic idea behind LZ77 is to utilize a sliding window ofestly encoded values as the
dictionary for the compression algorithm. In the comprdssata stream, there are two types of
tokens:valuesandrepeats A value indicates a token that should be copied directih&dutput
of the decoded stream. A rep€dt c) contains two parts: a distandeand a count. It indicates
that the decoder should start at offdétom the end of the decoded stream and copy a sequence of
c values to the output. It is important to note that the couny maeed the distance, in which case
some of the values produced by a repeat operation are algsddmpthat operation. For example,
a value A followed by a repedi, 3) results in an output of “A A A’. An additional example is
given in Figureb-1.

5.2 Mapping into the Compressed Domain

Our technique allows any cyclo-static dataflow program terafe directly on LZ77-compressed
data. Rather than modifying the code within the actors, mnsformation treats actors as black
boxes and wraps them in a new execution layer. The transfamattempts to preserve as much
compression as possible without ever performing an expdetompression step. While there exist
cases in which the output data will not be as compressed ashpmaunder certain conditions the
output is guaranteed to be fully compressed (relative t@tmepression of the input). We quantify
this issue later.
To describe the mapping into the compressed domain, wedsmsach Streamlt construct in

turn. An alternate formulation of our technique, in termsnfoperational semantics, is available
in a technical reportTHAQ7].
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Execute a filter in the compressed domain, given that it coesu
items and produces: items on each execution.
EXECUTE-COMPRESSEDBFILTER (int n, intm) {
while true {
[* pass-uncompressed */
if inputendswith n valuesthen
executeone call to uncompressed filter

[* pass-compressed */

else ifinputendswith (d, ¢) and d%n = 0 and ¢ > n then
replace (d, ¢) with (d, ¢%n) on input
push (m d/n,m (c — c%n)/n) to output

else
let (d, ¢) = last repeat on input

[* coarsen-repeat */
let L = LCM(d,n)
if d < L < cthen
replace(d, ¢) with (¢ — (L — d)), (d, L — d) on input

[* expand */
else ifc > 0 then
decode(d, ¢) into (d,c — 1),V on input

[* prune */
else/*c=0%*
remove (d, ¢) from input
}
}

Figure 5-2: Translation of filters into the compressed domaiVe use% to denote a modulo
operation.

Filters

The procedure for translating a filter into the compresseadaio is given in Figuré-2, and an
example appears in Figuted. The behavior of the compressed-domain filter can be coreside
two pieces. The first piece consists of the simple case (atedgass-uncompressea the code)
in which the upcoming inputs to the filter are uncompresséalga In this case, the original filter
is called with those inputs, transformingnput items ton output items. The rest of the code deals
with repeat tokens, attempting to translate them acrosfltiewith the minimum decompression
needed.

Thekey idea behind our techniqueis encapsulated in thEass-compresseadise in Figur®-2.
This case specifies how to translate a repeat token dirgcthy & filter’'s input tape to a filter's
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char->char filter HyphenatePairs { g g g g‘g Ch2;Tﬁ';i":é?gg?ri]?s"'sr?nspose2X5 { ol
work pop 2 push 3 D)
pusph(?;).p t add Identity<char>(); (oMol
input = push(pop(): == output add Identity<char>(); [oHo]
push(pop()); } join roundrobin(1,1); [o}o]
b} [oHo]
(a) Example filter (b) Example splitjoin

Figure 5-3: Example filter, splitter, and joiner in StreanTlhe splitter and joiner combine to form
a Transpose. Translation to the compressed domain igdtestin Figure$-4 and5-8.

Compressed-Exec

input == (HyphenatePairs) == output
input == Exec(HyphenatePairs) == output (130 @4 L A |
{1,3) O 24) | L [pass-uncompressed]
OOOOLALALA | 3) O] (3, ) L A~ [pass-compressed]
OOOOLALA | LA~ 2,2) (1 1) O|@B6yLA~ [coarsen-repeat]
OOOOLA | LA~LA~ (2,2 (1,00 0 O | (36) L A~ [expand]
OOOO | LA~LA~LA~ (22) (1,0) | OO~ (36) L A~ [pass-uncompressed]
OO | OO~LA~LA~LA~ (22) | OO~ (36) L A~ [prune]
| OO~OO~LA~LA~LA~ | (3,6 OO~ (3,6) L A~ [pass-compressed]
(a) Normal execution (b) Compressed-domain execution

Figure 5-4: Example execution of a filter in the uncompressedl compressed domains. See
Figure5-3(a) for the source filter.

output tape without invoking the filter’'s computation. Thianslation is possible whenever the
repeat distancd is a multiple of the filter's input rate.. In other words, the repeat is aligned
with the execution boundaries of the actor, so invoking ttterawould produce the same results
as before. In transferring the repeat token to the outpud, tapo adjustments are made: 1) the
distance and count are scaled by a factongh: to reflect possible differences between the output
(m) and input () rates of the actor, and 2) if the count is not an even mulbptbe input rate, then
some leftover itemsc{ion, where% represents the modulo operation) are left on the input tape.

In cases where the repeat distance does not match the grgnafathe actor, the distance
can sometimes be adjusted to allow compressed-domaingsiaoge Thecoarsen-repealogic in
Figure5-2 represents such an adjustment. Consider that a filter inpatstems at a time, but
encounters a long repeat with distance three and count 10t i3, the input stream contains a
regular pattern of values with periodicity three. Thouglmsecutive executions of the filter are
aligned at different offsets in this pattern, every thirtefilexecution (spanning six values) falls at
the same alignment. In general, a repeat with distarzan be exploited by a filter with input rate
n by expanding the distance to LGNl n). In order to perform this expansion, the count must be
greater than the distance, as otherwise the repeat reésreidt data that may have no periodicity.
Also, the stream needs to be padded with LEM values before the coarsened repeat can begin;
this padding takes the form of a shorter repeat using thenaligistance.
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A second way to adjust a repeat token for compressed-domagesgsing is by changing its
count rather than its distance (casgandn Figure5-2). This case applies if a repeat has a count
less tham, if it is unaligned with the boundaries of an actor’s exeantior if its distance is not
a multiple ofn (and cannot be coarsened appropriately). The expand legimdes a single value
from a repeat token, thereby decreasing its count by onegt®f the repeat may become aligned
later. If the count of a repeat reaches zero, it is eliminatede prunecase.

Note that theexpandogic requires partial decompression of the data streanorder to per-
form this decompression, it may be necessary to maintain@hiary data structure—separate from
the filter’s input stream—that holds a complete window ofahepressed data. This auxiliary struc-
ture is needed because the sliding-window dictionary of T.Avakes it difficult to decode one
element without decoding others. However, even if the stresafully decompressed in parallel
with the main computation, our technique retains many btnleéicause the filters still operate on
the compressed stream; the volume of data processed isesdared the cost of re-compression
is averted. For general algorithms such as gzip, compmessio be up to 10x slower than decom-
pression ZSAMNBY0(.

Splitters

Duplicate splitters are trivial to transform to the comgexs domain, as all input tokens (both
values and repeats) are copied directly to the output sge&or roundrobin splitters, the central
concern is that a repeat token can only be transferred toem giutput tape if the items referenced
are also on that tape. If the items referenced by the repkeai twere distributed to another tape,
then the repeat must be decompressed.

The rest of this section focuses on roundrobin splitterssifigplify the presentation, we con-
sider a splitter with only two output streams, distributimg andm, items to each respective
stream. This case captures all of the fundamental ideasngixin to additional streams is straight-
forward. In addition, we use the following notations:

e Splitters adopt a fine-grained cyclo-static execution rhoidewhich each execution step
transfers only one item from an input tape to an output tajt 8, a roundrobifmn, m.)
splitter hasn; + m, distinct execution steps. We refer to every groupraf+ m, steps as
anexecution cycle

e The pseudocode for our algorithm assumes, without lossragdity, that the next execution
step of the splitter will write to the first output stream (ouitl).

e We useposto denote the number of items (in terms of the uncompressetih) that have
already been written to the current output stream (outpuatif)e current execution cycle.
For brevity, the pseudocode does not maintain the valy®gfthough it is straightforward
to do so.

The procedure for executing a roundrobin splitter in the paeased domain appears in Fig-
ure5-5, while an example appears in Figlse8. As mentioned previously, a repeat token can be
transferred to an output tape so long as the items referaisedppear on that tape. However, the
repeat may need to be fragmented (into several repeats s$erleount), depending on the repeat
distance. There are two cases to consider.
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Execute a roundrobin splitter in the compressed domairgrgttaat it outputs
m, items to outputl aneh, items to output2 on each execution cycle.
EXECUTE-COMPRESSEBSPLITTER (int mq, int my) {
while true {
[* pass-uncompressed */
if inputendswith valuethen
transfer value from input to outputl

else
let (d, ¢) = end of input
let offset =d%(my + my)

[* pass-compressed-long */

if offset= 0 then
let (L, Ly) = SPLIT-TO-BOTH-STREAMS(c)
pop (d, c¢) from input
push (dm,/(my + ms), L1) to outputl
push (dmsy/(my + ms), Lo) to output2

[* pass-compressed-short */
else if SPLIT-TO-ONE-STREAM(d, ¢) > 0 then
let offset’ =if offset < pos then offsetelseoffset— m.
let L = SPLIT-TO-ONE-STREAM(d, ¢)
replace(d, ¢) with (d,c — L) on input
push (m, floor(d/(m, + ms)) + offset’, L) to outputl

[* expand */
else/* SPLIT-TO-ONE-STREAM(d,c) =0 */
decode(d, ¢) into (d,c — 1),V on input

[* prune */
if inputendswith (d, 0) then
pop (d, 0) from input

Figure 5-5: Translation of splitters into the compressechaio.

The first case, calledass-compressed-lomg Figure5-5, distributes an entire repeat token to
both output tapes without any fragmentation. This is onlggildle when the repeat can be cleanly
separated into two independent sequences, one offset; land the next offset byn,. In other
words, the repeat distance must be a multiple:of-m.. In this case, the repeat token is moved to
the output streams. The repeat distance is scaled down thtiegt weight of each stream, and the
count is divided according to the current position of thetsgl (a simple but tedious calculation
implemented by BLIT-TO-BOTH-STREAMS in Figure5-6).

113



Given thatc items are available on input stream of a splitter, returns th
number of items that can be written to each output streamrédfee
input is exhausted. Assumes that the splitter is currentlfing to the
first output stream, to which pos items have previously bedtewin the
current execution cycle.
SPLIT-TO-BOTH-STREAMS (int ¢) returns (int, int) {

/I the number of complete splitter cycles, and the leftover

let total_cycles= floor(c/(m; + my))

let total_leftover= c¢%(m; + my)

/Il the last partial cycle may end in three regions:
if total_leftover< m; — posthen
/I 1. in writing to the first output stream
L, = total_leftover
L2 = 0
else iftotal_leftover< m; — pos+ ms then
/l 2. in subsequent writing to the second output stream
Li = m; — pos
L, = total_leftover— m; — pos
else
// 3. in wrap-around writing to the first output stream
L, = total_leftover— my
L2 = My

return (m, * total_cyclest L, ms  total_cyclest+ L)

}

Figure 5-6: The 8LIT-TO-BOTH-STREAMS function is called during compressed splitter execu-
tion. In the case where an input token can be split across daatfbut streams, it calculates the
maximum numbers of items that can be written to the outputsréehe input is exhausted.

The second case, callpdss-compressed-shod when the repeat distance is mis-aligned with
the splitter’s execution cycle, and thus the repeat (if ibrgy enough) eventually references items
that are distributed to a different output tape. Nonetl®lesrt of the repeat may be eligible
to pass through, so long as the items referenced refer toutinent output tape. This judgment
is performed by 8LIT-TO-ONE-STREAM (Figure5-7) by comparing the repeat distance to the
current position in the output stream. If one or more of theeeged values are in range, the valid
segment of the repeat (of lenggistual_repedtis moved to the output tape. As before, the repeat
distance needs to be scaled according to the weights of litieis@and an extra offset is needed if
the repeat distance wraps around to reference the end ofiagseycle.

If neither of the above transfers apply, then the input streaeds to be partially decompressed
(according to thexpandcase) because the current repeat token references itemasltha sent to
the wrong output tape. Th&unecase is also needed to clear empty repeats generaegpbnd

As future work, it would also be desirable to derive an analbghe coarsen-repeatogic
(Figure5-2) to preserve even more compression across a splitter. Thiéon is that, by increas-
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Given a repeat token with distandeand countc that is input to a splitter,
and that is not possible to divide across both output streaitise splitter,
returns the maximum count of a repeat token that could sékelgmitted
to the current output stream of the splitter.
SPLIT-TO-ONE-STREAM (int d, int ¢) returns int {
let offset= d%(m; + ms)
if offset< posthen
Il repeat for remainder of this execution cycle
return min(c, m; — pos
else ifoffset> my + posthen
Il repeat until referenced data goes out of range
return min(c, offset— (ms + pos)
else
/Il referenced data is on the other output stream
return 0

}

Figure 5-7: The BLIT-To-ONE-STREAM function is called during compressed splitter execu-
tion. In the case where an input token cannot be split acrosdutput streams, it calculates the
maximum number of items that can be passed to a single outpans.

in = RR(5,5) () RR(1,1) = out input = RR(5,5) { }RR(1,1) = output prune rules
T ay o not shown
00000X0000+_______» (1.4)o0x{(1,3) 0 > :
00000 [pass-uncomp] i x(1,3)0
X0000 (1,4) 0 x{1,3)y > { [pass-uncomp] (4y0

00000 0 [pass-comp-short]

X0000 14 ox (1,30 [pass-uncomp] x(1.3)
00000 ’ [pass-uncomp] i *&» oo
X000 (1.4 o"ﬁ’ x{1,3)
o000 ’ [pass-uncomp] ; [pass-comp-long] a1
fast X000 < 4)»-1:0» ":’x>*(2,6) 0o
forward u:i»oooooooo X <1’i> ©  [pass-comp] [pass-uncomp] 1,1
0 e X (26)00
+<____>»X00000000 x{1,3) 0 [pass-comp-short]
+——»»0X00000000 S continued_ { ~———>(21)x(26)00
(a) Normal execution (b) Compressed-domain execution of splitter (left) and joiner (right)

Figure 5-8: Example execution of splitters and joiners sn¢cbmpressed domain. As illustrated by
the input/output pairs in Figurg-3(b), the example performs a transpose of a 2x5 matrix. When
the matrix is linearized as shown here, the input streanets@s the elements row-wise while the
output stream traverses column-wise. Due to redundanéyeimatrix, this reordering can be done
largely in the compressed domain.

ing certain repeat distances, the splitter’s output tapasecome more independent (referencing
themselves rather than each other). This would enable aressgd rule to fire in place of an
expansion step.
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Execute a roundrobin joiner in the compressed domain, divatit inputs
n, items from inputl and, items from input2 on each execution cycle.
EXECUTE-COMPRESSEBJOINER (int ny, int ny) {
while true {
[* pass-uncompressed */
if inputlendswith valuethen
transfer value from inputl to output

[* pass-compressed-long */
else ifinputlendswith (dy, ¢;) and d;%n; = 0
and input2endswith (ds, co) and dy%mns = 0
and dl/nl = dg/ng then
let (L, Ly) = JOIN-FROM-BOTH-STREAMS(c1, ¢3)
replace (d;, ¢;) with (d;, c; — L;) on inputl
replace (d;, co) with (dy, co — Lo) on input2
push (d;(ny + ny)/n1, L1 + L) to output

[* pass-compressed-short */
else/* inputl endswith(d, ¢) andc > 0 */
let offset =if d%n; < posthen poselsed%mn, + ng
let L = Join-From-One-Streani( c))
replace (d, ¢) with (d,c — L) on inputl
push ((n, + ns) floor(d/n,) + offset L) to output

[* prune */

if inputlendswith (d, 0) then
pop (d, 0) from inputl

if input2endswith (d, 0) then
pop (d, 0) from input2

Figure 5-9: Translation of joiners into the compressed doma

Joiners

The procedure for executing a joiner in the compressed doaggpears in Figurg-9, while an
example appears in Figue8. Analogously to splitters, we consider a roundrobin joingih

only two input streams, collecting; andn, items from each respective stream. We also use the
following notations:

e Joiners adopt a fine-grained cyclo-static execution maaelhich each execution step trans-
fers only one item from an input tape to an output tape. That isundrobiiin,, ny) joiner
hasn, + n, distinct execution steps. We refer to every group 0¥ n, steps as aaxecution
cycle

116



Given thatc; and ¢, compressed items are available on the first and
second input streams of a joiner, returns the number of itdratscan be
read from each input before one of them is exhausted. Assinaiethe
joiner is currently reading from the first input stream, fromhich pos
items have previously been consumed in the current execcitide.
JOIN-FROM-BOTH-STREAMS (int ¢y, int ¢;) returns (int, int) {

/l the number of complete joiner cycles, and the leftovers

let total_cycles= floor(c/(ny + ns))

let leftover, = ¢; — total_cyclest n,

let leftover, = ¢, — total_cycles n,

/I the last partial cycle may end in three regions:
if leftover, < n; — posthen
// 1. in reading from the first input stream
L, = leftover
L2 - 0
else ifleftover < n, then
/Il 2. in subsequent reading from the second input stream
Ly = ny — pos
L, = leftover,
else
/I 3. in wrap-around reading from the first input stream
L, = leftoven
L2 = N9

return (n; * total_cyclest+ L, ny * total_cyclest L)

}

Figure 5-10: The JIN-FROM-BOTH-STREAMS function is called during compressed joiner ex-
ecution. In the case where the input tokens to the joiner lcavepatible repeat distances, it
calculates the maximum repeat lengths that can be passeel ¢aitput.

e The pseudocode in Figufg9 assumes, without loss of generality, that the next exegutio
step of the joiner will read from the first input stream (input

e We useposto denote the number of items (in terms of the uncompressetith) that have
already been read from the current input stream (inputl)ercurrent execution cycle. For
brevity, the pseudocode does not maintain the valymagfthough it is straightforward to do
So.

There are two ways to pass repeat tokens through a joindre linput streams contain com-
patible repeat tokens, then they can be combined into a lepeat that spans multiple execution
cycles; otherwise, a shorter repeat is extracted from oméyad the streams.

The first and most powerful way to execute joiners in the casged domain is to combine
repeat tokens from both input streams (cpass-compressed-long Figure5-9). For this to be
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Given a repeat token with distaneeand countc on the current input
stream of a joiner, and that cannot be combined with a toketherother
input of the joiner, returns the maximum count of a repea¢takat could
safely be emitted to the output stream.
JOIN-FROM-ONE-STREAM (int d, int ¢) returns int {
let offset= d%n,
if offset< posthen
Il repeat for remainder of this execution cycle
return min(c,n; — pos
else
I/ repeat until referenced data goes out of range
return min(c, offset— pos

}

Figure 5-11: The JIN-FROM-ONE-STREAM function is called during compressed joiner exe-
cution. In the case where the input tokens to the joiner hagempatible repeat distances, it
calculates the maximum length of the current token that negyassable to the output.

possible, both repeat distances must be the same multipheinfrespective joiner weight:{ or

ns); the combined token has a repeat distance that is a muitiple+n,. The DIN-FROM-BOTH-
STREAMS routine (detailed in Figur&-10) calculates the maximum repeat length depending on
the current position of the joiner and the repeat lengthb®irputs.

The second mode of compressed joiner execupasg-compressed-shamtFigure5-9) inputs
only a single repeat token, extracting the maximum lengah¢hn safely move to the output. The
JOIN-FROM-ONE-STREAM routine (detailed in Figuré-11) determines how much of the repeat
can be moved to the output before the data referenced woudddrayinated from a different input
stream.

As in the case of splitters, further compression gains assipte by adding rules to coarsen
the repeat distance or shift the distance to align with osbreams. We leave this for future work.

5.3 Supported File Formats

As LZ77 refers to a compression algorithm rather than a cetaglompression format, there are
additional factors to consider in mapping computationsei@-world image and video codecs.
Some codecs are a subset of LZ77, utilizing only run-lengitoding or a fixed window size;
these are supported very efficiently by our technique. Gtaer a superset of LZ77, incorporating
additional techniques such as delta coding or Huffman gpdimese may incur additional pro-
cessing overhead. In the following sections, we describegthactical considerations involved in
targeting various compression formats with our technige@:mats are ordered by approximate
goodness of the achievable mapping.

High-Efficiency Mappings

All of the formats in this category can be considered to besstgoof LZ77.
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1. Apple Animation. The Apple Animation codec (which forms the basis for our expen-
tal evaluation) is supported as part of the Quicktime MOVtaorer format. It serves as an
industry standard for exchanging computer animations agitatlvideo content before they
are rendered to lossy formats for final distributidxdp06, p. 106]HMGO04, p. 284] |LS02
p. 367][Pog03 p. 280].

The Animation codec represents a restricted form of LZ7 7hictvrepeat distances are limited
to two values: a full frame or a single pixel. A repeat acragasies indicates that a stretch of
pixels did not change from one frame to the next, while a repeiss pixels indicates that a
stretch of pixels has the same color within a frame.

2. Flic Video. Flic Video files (FLI/FLC) were originally produced by Autedk Animator and
are still supported by many animation packages today. Tdwmnpression of frame data is
almost identical to Apple Animation.

3. Microsoft RLE. Microsoft RLE compression can appear in both BMP images avidaf-
imations. Apart from bit-depth and formatting details, ¢epabilities are identical to Apple
Animation; it can perform run-length encoding within a freand can skip over pixels to
exploit inter-frame redundancy.

4. Targa. The Truevision Targa (TGA) format is a simple image formattis widely used to
render frame sequences in the computer animation and uidlerstries. The format includes
an optional RLE compression stage, making it a good targeduotechnique.

5. PXY. The pxy format is a research-based image format designhegmost efficient transpose
and rotation of black-and-white imaged{o93. It consists of the series ¢f, y) coordinates at
which the image changes color during a horizontal scan. &sriformation can be converted
to a run-length encoding, it can also be targeted by our tgalen

Medium-Efficiency Mappings

While the formats in this category utilize an encoding tlsatdompatible with LZ77, they incur
extra overhead because the data is reorganized prior tmthpression stage.

1. Planar RGB. The Planar RGB video format is supported by Apple Quicktiresfilt utilizes
run-length encoding for pixels within a frame, with partsaipport for expressing inter-frame
repeats (only the end of lines can be skipped). The red, gesahblue planes are encoded
separately in order to increase compression. For usefdramstions that need to process red,
green, and blue values together, this introduces addltadiggmment overhead when applying
our technique.

2. OpenEXR. OpenEXR is an emerging image format (backed by Industrightand Magic)
for use in digital film. It offers several compression opspmcluding run-length encoding,
zip, and wavelet-based compression. However, in rundeegtoding mode, the low and high
bytes of the pixels are separated and encoded as separdengtim sequences; this enables
pixels with variations in the low bytes to nonetheless beriefim compression of the high
bytes. As most user transformations would utilize the ertit-width of the pixel, our tech-
nique suffers additional alignment overhead in procesfiage files.
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Low-Efficiency Mappings

The formats in this category are supersets of LZ77. Whilgechnique could offer some gains in
exploiting the LZ77 compression, it would have to undo angpeession sitting on top of LZ77
and offers limited benefit for filters (as in PNG) applied umgath LZ77.

1. DEFLATE. DEFLATE is a general-purpose algorithm that provides athefcompression for
popular formats such as ZIP and GZIP. The algorithm conefsisull LZ77 encoder followed
by Huffman coding, which resizes the symbols in the streamatch their usage frequencies.
In targeting ZIP or GZIP with our transformations, we wouldtfihave to undo the Huffman
coding (unless the application simply reordered data, irclwbase the coding could remain
intact). Though Huffman decoding is a lightweight looku@aggion, it would also increase the
memory footprint. In addition, as DEFLATE’s LZ77 algorithoperates on individual bytes,
there may be an exaggerated alignment cost if the applicaperates on a larger word size.

2. TSCC. The TechSmith Screen Capture Codec is very similar to Maftd2LE, except that
the final output is further compressed using DEFLATE. Thuy, @verheads incurred by our
technique on DEFLATE also extend to TSCC.

3. PNG. The PNG image format also relies on DEFLATE to compress tRelpiin the image.
However, before running DEFLATE, the pixels are usuallyfiid with a delta encoding; each
pixel is replaced with the difference between its value amulealicted value, where the pre-
diction is a linear combination of neighboring pixels. Whgrogram segments that compute
a linear function L[TAO3] could perhaps be mapped to this compressed format, ouerdurr
technique only applies if the delta encoding is turned ofetin this scenario, there is a large
amount of overhead due to the Huffman coding in DEFLATE.

5.4 Experimental Evaluation

As an initial demonstration of the potential benefits of miagpnto the compressed domain, we
implemented a core subset of our transformations as pahteoStreamlIt compiler. Our current
implementation supports two computational patterns: dandforming each individual element
of a stream (via a pop-1, push-1 filter), and 2) combining tleenents of two streams (via a
roundrobin(1,1) joiner and a pop-2, push-1 filter). The pangcan contain any number of filters
that perform arbitrary computations, so long as the I/Osrabatch these patterns. While we
look forward to performing a broader implementation in fetwork, these two building blocks
are sufficient to express a number of useful programs andaracterize the performance of the
technique.

Our evaluation focuses on applications in digital vidediadi Given Streamlt source code that
operates on pixels from each frame of a video, the Streamipder maps the computation into the
compressed domain and emits executable plugins for twolaopideo editing tools, MEncoder
and Blender. The plugins are written for the Apple Animatiormat (see SectioB.3).

Our benchmarks fall into two categories: 1) pixel transfations, such as brightness, contrast,
and color inversion, which adjust pixels within a singleedd and 2) video compositing, in which
one video is combined with another as an overlay or mask.
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COMPRESSION

VIDEO DESCRIPTION SOURCE DIMENSIONS [FRAMES |SIZE (MB) [FACTOR

< screencast-demo Online demo of an authentication generator Software website 691 x 518 10621 38 404.8
c § screencast-ppt Powerpoint presentation screencast Self-made 691 x 518 13200 26 7221
% S |logo-head Animated logo of a small rotating head Digital Juice 691 x 518 10800 330 46.8
- logo-globe Animated logo of a small rotating globe Digital Juice 691 x 518 10800 219 70.7
§ $ [anim-scenet Rendered indoor scene Elephant's Dream 720 x 480 1616 10 213.8
a & |anim-scene2 Rendered outdoor scene Elephant's Dream 720 x 480 1616 65 34.2
g E anim-character1 Rendered toy character Elephant's Dream 720 x 480 1600 161 13.7
O <« |anim-character2 Rendered human characters Elephant's Dream 720 x 480 1600 108 20.6
_ § [digvid-background1 [Full-screen background with lateral animation Digital Juice 720 x 576 300 441 1.1
£ '@ [digvid-background2 |Full-screen background with spiral animation Digital Juice 720 x 576 300 476 1.0
g’ % digvid-matte-frame  [Animated matte for creating new frame overlays Digital Juice 720 x 576 300 106 4.7

 |digvid-matte-third Animated matte for creating new lower-third overlays  |Digital Juice 720 x 576 300 51 9.7

Table 5-12: Characteristics of the video workloads.

The main results of our evaluation are:

e Operating directly on compressed data offers a speeduippgoportional to the com-
pression factor in the resulting video.

e For pixel transformations, speedups range from 2.5x to Awftk a median of 17x. Output
sizes are within 0.1% of input sizes and about 5% larger (emdhan a full re-compression.

e For video compositing, speedups range from 1.1x to 32x, withedian of 6.6x. Output
files retain a sizable compression ratio (1.0x to 44x) andboait 52% larger (median) than
a full re-compression.

The following sections provide more details on our videokimads, the evaluation of pixel trans-
formations, and the evaluation of video compositing.

Video Workloads

Our evaluation utilizes a suite of 12 video workloads that described in Tabl&-12 some of

the videos are also pictured in Figusel6. The suite represents three common usage scenarios for

lossless video formats: Internet screencasts, computaasion, and digital television production.
While videos in each area are often rendered to a lossy fdonfihal distribution, lossless codecs
are preferred during the editing process to avoid accumnglaiompression artifacts. All of our
source videos are in the Apple Animation format (descrilme8ection5.3), which is widely used
by video editing professional&\flo06, p. 106] HMGO4, p. 284] LS02 p. 367] [Pog03 p. 280].
The Apple Animation format is also popular for capturingeadrom the screen or camera, as the
encoder is relatively fast.
Our suite of videos is assembled from a variety of realistid mdustry-standard sources. The
first screencast is an online demo of an authentication georefor rails Aut]; the second is a
PowerPoint presentation (including animations), captuiseng Camtasia Studio. As Internet con-
tent is often watermarked with a logo or advertisement, vauote two animated logos in the
“Internet video” category. These logos are taken from Rigltuice Pig06], a standard source for
professional animations, and rendered to Apple Animatowmét using their software. The ani-
mated logos are rendered full-frame (with the logo in thenegrbecause compositing operations
in our testbed (Blender) are done on equal-sized videos.
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The computer animation clips are derived from Elephantsdnr, a short film with entirely
open-source contenE(e]; our videos are rendered from source using Blender. Binidé digital
television content is also taken from a Digital Juice liprfDig06]. The backgrounds represent
high-resolution, rotating backdrops as might appear inrtreduction to a program. The mattes
are black-and-white animations that can be used to symthassmaller overlay (such as a frame
or a “lower third”, often used for text) from a full animateddkground (see Figure-16b for an
example).

The videos exhibit a wide range of compression factors. Theescasts have very high com-
pression£400x-700x) because only a small part of the screen (e.g. useyoenu, or PowerPoint
bullet) is changing on any given frame; the Apple Animatiomfiat compresses the inter-frame
redundancy. The compression forim-scenel is also in excess of 200x because motion is lim-
ited to a small animated character. The animated logos aredakt most compressed $0-70x),
influenced largely by the constant blank region outsidedige.| The computer animation content
(~10-30x compression) has a high level of detail but beneftimfboth inter-frame and intra-
frame redundancy, as some rendered regions have constantext are the digital video mattes
(~5-10x compression), which have fine-grained motion in someti@ns. Finally, the digital video
backgrounds offer almost no compression gains (1.0-1.ageuApple Animation, as they have
pervasive motion and detail across the entire frame.

The Apple Animation format supports various bit depths. &lbur source videos use 32 bits
per pixel, allocating a single byte for each of the red, grééune, and alpha channels.

Pixel Transformations

The pixel transformations adjust the color of each pixel ian&§orm way. We evaluated three
transformations:

e Brightness adjustment, which increases each RGB value bjua of 20 (saturating at 255).

e Contrast adjustment, which moves each RGB value away frencehter (128) by a factor
of 1.2 (saturating at 0 and 255).

e Color inversion, which subtracts each RGB value from 25&f{usor improving the read-
ability of screencasts or for reversing the effect of videmites).

We implemented each transformation as a single Streandt flitat transforms one pixel to
another. Because the filter has a pop rate of one, it does ciatamy alignment overhead.

Setup The pixel transformations were compiled into plugins for M&der, a popular command-
line tool (bundled with MPlayer) for video decoding, enaugli and filtering. MEncoder relies

on the FFMPEG library to decode the Apple Animation formatF&MPEG lacked an encoder
for this format, the authors implemented one. Additionadly MEncoder lacks an interface for
toggling only brightness or contrast, the baseline confiion was implemented by the authors.

The baseline configuration performs decompression, pixesformations, then re-compression.

Because the main video frame is updated incrementally byéleeder, the pixel transformations
are unable to modify the frame in place (otherwise pixels@né across frames would be trans-
formed multiple times). Thus, the baseline transformatioites to a separate location in mem-
ory. The optimized configuration performs pixel transfotimas directly on the compressed data,
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OUTPUT SIZE / INPUT SIZE OUPUT SIZE / INPUT SIZE
SPEEDUP (Compute on Compressed Data) | (Uncompress, Compute, Re-Compress)
VIDEO Brightness| Contrast | Inverse | Brightness| Contrast | Inverse | Brightness Contrast Inverse

= screencast-demo 137.8x 242.3x| 154.7x 1.00 1.00 1.00 0.90 0.90 1.00
£ § screencast-ppt 201.1x 470.6x| 185.1x 1.00 1.00 1.00 0.75 0.74 1.00
g g [logo-head 27.0x 29.2x 25.2x 1.00 1.00 1.00 0.87 0.86 1.00
- logo-globe 35.7x 46.4x 36.6x 1.00 1.00 1.00 1.00 0.64 1.00
§ S [anim-scenet 66.4x 124.3x 58.5x 1.00 0.98 1.00 0.99 0.92 1.00
3 % |anim-scene2 19.3x 27.9x 20.5x 1.00 1.00 1.00 0.99 0.85 1.00
g g anim-character1 11.5x 12.2x 11.2x 1.00 1.00 1.00 0.96 0.90 1.00
O <« |anim-character2 15.6x 15.3x 14.8x 1.00 1.00 1.00 0.95 0.88 1.00
_ 5 [digvid-background1 4.6x 2.6x 4.6x 1.00 1.00 1.00 1.00 0.88 1.00
£ 78 |digvid-background2 4.1x 2.5x 4.7x 1.00 1.00 1.00 0.92 0.91 1.00
g’% digvid-matte-frame 6.3x 5.3x 6.5x 1.00 1.00 1.00 0.98 0.64 1.00
 |digvid-matte-third 7.5x 6.9x 8.9x 1.00 1.00 1.00 0.83 0.35 1.00

Table 5-13: Results for pixel transformations.

avoiding data expansion implied by decompression and pielfiiame buffers, before copying the
data to the output file.

Our evaluation platform is a dual-processor Intel Xeon @12z) with 2 GB of RAM. As
all of our applications are single-threaded, the secondga%or is not utilized. For the timing
measurements, we execute each program five times and repaniedian user time.

Results Detailed results for the pixel transformations appear ibld&-13 Figure5-14illus-
trates the speedups, which range from 2.5x to 471x. Asilited in Figureb-15, the speedups are
closely correlated with the compression factor in the oagvideo. For the highly-compressed
screencasts anghim-scenel, speedups range from 58x to 471x. For the medium-compiessio
computer animations (including the animated logos), sppgdange from 11x to 46x. And for the
low-compression digital television content, speedupgednom 2.5x to 8.9x.

There are two distinct reasons for the speedups observedl, 5y avoiding the decompression
stage, computing on compressed data reduces the volumé&dhada needs to be stored, manipu-
lated, and transformed. This savings is directly relatdtdeéaompression factor and is responsible
for the upwards slope of the graph in Fig&-d 5. Second, computing on compressed data elimi-
nates the algorithmic complexity of re-compression. FerAlpple Animation format, the cost of
compressing a given frame does not increase with the cosiprefactor (if anything, it decreases
as fewer pixels need a fine-grained encoding). Thus, thdibaskevotes roughly constant runtime
to re-compressing each video, which explains the posititexcept in the graph of Figuée 15

The impact of re-compression is especially evident in tiggalitelevision examples. Despite
a compression factor of 1.0 ahigvid-background2, our technique offers a 4.7x speedup on
color inversion. Application profiling confirms that 73% difet baseline runtime is spent in the
encoder; as this stage is absent from the optimized versiaccounts forl /(1 — 0.73) = 3.7x of
the speedup. The remaining speedup in this case is due tattiaefmme buffer (and associated
memory operations) in the decompression stage of the hasginfiguration.

Another important aspect of the results is the size of thpwiftles produced. Apart from the
first frame of a vided performing pixel transformations directly on compresdath will never

In the Apple Animation format, the first frame is encoded abéf previous frame was black. Thus, adjusting the
color of black pixels in the first frame may increase the sizthe file, as it removes inter-frame redundancy.
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Figure 5-14: Speedup on pixel transformations.

increase the size of the file. This is illustrated in the medcthlumns of Tabl®-13 in which the
output sizes are mostly equal to the input sizes (up to 2 deqgitaces). The only exception is
contrast adjustment oanim-scenel, in which the output is 2% smaller than the input due to
variations in the first frame; for the same reason, some @gqesrience a 0.1% increase in size
(not visisble in the table).

Though computing on compressed data has virtually no effec¢he file size, there are some
cases in which the pixel transformation increases the ey in the video and an additional
re-compression step could compress the output even futtaerthe original input. This potential
benefit is illustrated in the last three columns of Tablé3 which track the output size of the
baseline configuration (including a re-compression stagesus the original input. For the inverse
transformation, no additional compression is possibleabse inverse is a 1-to-1 transform: two
pixels have equal values in the output file if and only if theyé equal values in the input file.
However, the brightness and contrast transformations nmegy daistinct input values to the same
output value, due to the saturating arithmetic. In suchg;abe re-compression stage can shrink
the file to as low as 0.75x (brightness) and 0.35x (contrést®riginal size. These are extreme
cases in which many pixels are close to the saturating pthiatmedian re-compression (across
brightness and contrast) is only 10%.

To achieve the minimal file size whenever possible, futurekwaeill explore integrating a
lightweight re-compression stage into the compressedegseieg technique. Because most of the
compression is already in place, it should be possible taorgthe compression ratio without
running the full encoder (e.g., run-length encoded regoamsbe extended without being rediscov-
ered).
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Figure 5-15: Speedup vs. compression factor for all transitions.

Video Compositing

In video compositing, two videos are combined using a speftifiction to derive each output pixel
from a pair of input pixels (see Figuke16). In the case of subtitling, animated logos, and computer
graphics, an alpha-under transformation is common; itlaysrone video on top of another using
the transparency information in the alpha channel. In apglgn animated matte, the videos are
combined with a multiply operation, thereby masking thepatiaccording to the brightness of
the matte. For our experiments, we generated compositeg each foreground/background pair
within a given application area, yielding a total of 12 corsipes.

In Streamlt, we implemented each compositing operation @&iadrobin(1,1) joiner (to in-
terleave the streams) followed by a filter (to combine theepwalues). The intuition of the
compressed-domain execution is that if both streams havasdme kind of repeat (inter-frame
or intra-frame), then the repeat is copied directly to thgou If they have different kinds of
repeats, or if one stream is uncompressed, then both ste@mnscompressed.

Setup The compositing operations were compiled into plugins feanB8er, a popular tool for
modeling, rendering, and post-processing 3-D animatiBtennder has logged 1.8 million down-
loads in the last yeaBle06 and was used in the production of SpidermarBRp6d. Like
MEncoder, Blender relies on the FFMPEG library for videoioggso we utilize the same Apple
Animation decoder/encoder as in the pixel transformations

As Blender already includes support for video compositiag,use its implementation as our
baseline. The compositing operations have already beestuaed for performance; the imple-
mentation of alpha-under includes multiple shortcutsplied loops, and the following comment:
“this complex optimalisation is because the 'skybuf’ carcbessed in”. We further improved the
baseline performance by patching other parts of the Bleaderce base, which were designed

125



anim-scenel + anim-character2 = video composite

(a) Computer animation composite (alpha-under)

digvid-background1l + digvid-matte-frame = video comp®sit

(b) Digital television composite (multiply)

Figure 5-16: Examples of video compositing operations.

around 3-D rendering and are more general than needed feo @diting. We removed two re-
dundant vertical flips for each frame, two redundant BGRABRGonversions, and redundant
memory allocation/deallocation for each frame.

Our optimized configuration operates in the compressed oor@aitside of the auto-generated
plugin, we patched three frame-copy operations in the Bdesdurce code to copy only the com-
pressed frame data rather than the full frame dimensions.

Results Full results for the compositing operations appear in Téblg. Figure5-18illustrates
the speedups, which range from 1.1x to 32x. As in the caseepikel transformations, the
speedups are closely correlated with the compressionrfattbe resulting videos, a relationship
depicted in Figur&-15 The highly-compressed screencasts enjoy the largest gpe€20x-32x),
the computer animations have intermediate speedups (hx~®ie the digital television content
has negligible speedups (1.1x-1.4x). Overall, the speedunpideo compositing (median = 6.6x)
are lower than the pixel transformations (median = 17x} thbecause the compression achieved
on composite videos is roughly proportional to the minimusmepression across the two input
files.

As for the pixel transformations, the composite videos poadl by the compressed process-
ing technique would sometimes benefit from an additionalaepression stage. The last three
columns in Tables-17 quantify this benefit by comparing the compression factetseved by
compressed processing and normal processing (includiagcampression step). For screencasts
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COMPRESSION FACTOR
Compute on Uncompress,
Compressed [Compute,
VIDEO COMPOSITE EFFECT SPEEDUP [Data Re-Compress |Ratio
= screencast-demo + logo-head alpha-under 20.46x 34 52 1.55
£ § screencast-demo + logo-globe alpha-under 27.96x 44 61 1.39
-g < |screencast-ppt + logo-head alpha-under 22.99x 39 54 1.38
- screencast-ppt + logo-globe alpha-under 31.88x 55 64 1.18
:a,__ S |anim-scene1 + anim-character1 alpha-under 6.72x 7.7 12 1.57
g_'ﬁ anim-scene1 + anim-character2 alpha-under 9.35x 14 19 1.39
g E anim-scene2 + anim-character1 alpha-under 4.96x 6.4 10 1.49
O < [anim-scene2 + anim-character2 alpha-under 6.45x 10 13 1.32
_ & |digvid-background1 + digvid-matte-frame _ |mul 1.23x 1.0 2.2 2.28
£ 78 |digvid-background? + digvid-matte-third mul 1.13x 1.0 5.6 5.42
E’E digvid-background?2 + digvid-matte-frame  |mul 1.38x 1.0 1.8 1.84
2 digvid-background2 + digvid-matte-third mul 1.16x 1.0 4.8 4.91
Table 5-17: Results for composite transformations.
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Figure 5-18: Speedup on composite transformations.

and computer animations, compressed processing presesigable compression factor (7.7x-
44x), though the full re-compression can further reducedikes by 1.2x to 1.6x. For digital
television, the matting operations introduce a large arhotiredundancy (black regions), thereby
enabling the re-compression stage to shrink the file by D.8x4x over the compressed processing
technique.
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Even if a composite transformation does not introduce any reelundancy in the video, the
compressed processing technique may increase file sizgatwmg a specific kind of redundancy
in the inputs. Suppose that in the first frame, both inputsl@@ black, while in the second
frame, one input is 100% black and the other is 100% whiténdfihputs are averaged, the second
frame of output will be 100% gray and can be run-length endosli¢hin the frame. However,
because the inputs have different kinds of redundancy osdbend frame (one is inter-frame, the
other is intra-frame), the technique is unable to detectrtra-frame redundancy in the output
and will instead produce N distinct pixels (all of them grayje believe that this effect is small in
practice, though we have yet to quantify its impact in relato the new redundancy introduced by
a transformation. Future work will explore alternate datactures for the compressed processing
technique that may be able to preserve this redundancy aitloVerhead.

5.5 Related Work

Several other researchers have pursued the idea of ogedatactly on compressed data formats.
The novelty of our work is two-fold: first, in its focus on ldess compression formats, and second,
in its ability to map a flexible stream program, rather thamale predefined operation, into the
compressed domain.

Most of the previous work on mapping algorithms into the coesped domain has focused on
formats such as JPEG that utilize a Discrete Cosine TramsfDICT) to achieve spatial compres-
sion [SS96h SS96aSR96 AS98 SS98 Vas98 NKH00, DRB0OO, DA01, MMO02, FJ0O3. This task
requires a different analysis, with particular attentioreg to details such as the blocked decompo-
sition of the image, quantization of DCT coefficients, zagrdering, and so-on. Because there
is also a run-length encoding stage in JPEG, our currenhigeé might find some application
there; however, it appears that techniques designed foB JRize limited application to formats
such as LZ77.

There has been some interest in performing compressedssingeon lossless encodings
of black-and-white images. Shoji presents the pxy formatperforming transpose and other
affine operations3ho93; the memory behavior of the technique was later improved/igra et
al. [MAC99]. The pxy format lists thé€z, y) coordinate pairs at which a black-and-white image
changes color during a horizontal scan. As illustrated guFe5-8, our technique can also preserve
a certain amount of compression during a transpose, thoegmay achieve lesser compression
than the pxy format due to our one-dimensional view of thadat

Researchers have also considered the problem of pattechimgaton compressed text. A
randomized algorithm has been developed for LA7T7Y8 while deterministic strategies exist for
LZ78 and LZW Nav03 NT05. These solutions are specialized to searching text; tloegpat
apply to our transformations, and our technique does ndyappheirs.

In the realm of programming languages, Swartz and SmithepteéRIVL, a Resolution Inde-
pendent Video Languag&$93. The language is used to describe a sequence of imagedransf
mations; this allows the compiler to analyze the sequendgewvaa lazy evaluation, to eliminate any
operations that do not effect the final output. Such a tectenisjcomplementary to ours and could
also be implemented using Streamlt as the source language.
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5.6 Future Work

There remain rich areas for future work in computing on caeped data. First, the compressed
processing technique can be applied far beyond the curensf In its current form, the tech-
nique could be evaluated on video operations such as tHdésocolor depth reduction, sepia
toning, saturation adjustment, and color replacementh Wiinor extensions, the technique can
support video operations such as cropping, padding, histeg, image flipping, sharpening, and
blurring. The technique may also have applications in aneztfded setting, where it could offer
power savings — for example, in processing the RAW data fowithin digital cameras. It may
even be possible to do sparse matrix operations using thaitpe; in addition to compressing
the locations of the zero elements, LZ77 would also compegsstitive patterns in the non-zero
elements.

Research is also underway to apply a similar technique ByJ&CT-based compression for-
mats. Because these formats represent a linear encodeéygrisubject to the linear optimizations
described in the previous chapter. That is, a JPEG transtguieally performs an iDCT (during
decompression), followed by the user’s transformatioliofeed by a DCT (during compression).
If the user’s transformation is also linear (e.g., coloreirsion) then all three stages can be auto-
matically collapsed, thereby eliminating the decompr@sand re-compression steps. Preliminary
experiments in this direction indicate speedups upward®xf Additional research will be needed
to support piecewise linear transformations, such as tregs adjustment with saturation at the
maximum brightness level. By extending the framework totiplé compression formats, users
will be able to write their transformations once, in a higiél language, and rely on the compiler
to map the computations to each of the compressed domains.

While we formulated our transformation in terms of a straagminodel, the techniques can
be applied within other functional and general-purposgl@ages so long as the right information
is available and certain constraints are satisfied. Thefibamation relies on a regular pattern of
data access; we use a streaming abstraction, but strudterration over arrays could also suffice.
We rely on static data rates in actors, which could also beesged as functions with a fixed
number of arguments and return values. Actors (functiongdtrbe pure, without side effects
or unresolvable dependences on potentially mutable datalewhese properties are intrinsic to
a language such as Streamilt, they also come naturally in fmostional languages and may be
adaptable to general-purpose languages in the form of aratibrary with a restricted API.

5.7 Chapter Summary

In order to accelerate operations on compressible dass;hlipter presents a general technique for
translating stream programs into the compressed domawenGi natural program that operates
on uncompressed data, our transformation outputs a protiraindirectly operates on the com-
pressed data format. We support lossless compressiontiobased on LZ77. In the general case,
the transformed program may need to partially decompresddla to perform the computation,
though this decompression is minimized throughout theggsand significant compression ratios
are preserved without resorting to an explicit re-compogsstep.

We implemented some of our transformations in the Streaamtpsler and demonstrated ex-
cellent speedups. Across a suite of 12 videos in Apple Anandbrmat, computing directly on
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compressed data offers a speedup roughly proportionaktodmpression ratio. For pixel trans-
formations (brightness, contrast, inverse) speedupserfiogn 2.5x to 471x, with a median of
17x; for video compositing operations (overlays and matpeedups range from 1.1x to 32x,
with a median of 6.6x. While previous researchers have yseca-purpose compressed process-
ing techniques to obtain speedups on lossy, DCT-based spdecare unaware of a comparable
demonstration for lossless video compression. As digitaisfiand animated features have em-
braced lossless formats for the editing process, the spsaxhtained may have practical value.
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Chapter 6

Migrating Legacy C Programs to a
Streaming Representation

This chapter stands independently of the Streamlt profeather than starting with a stream pro-
gramming language, we consider the problem of starting aidlgacy C application and migrating
the code to a streaming representation. To address thitepnotve equip the programmer with a
simple set of annotations (indicating possible filter baanes) and a dynamic analysis that tracks
all communication across those boundaries. Our analy§mitaia stream graph of the application
as well as a set of macros for (unsoundly) parallelizing tlegam and communicating the data
needed.

Our analysis is unsound because it is based on a fixed set afrdgriraces, rather than a
conservative static analysis. However, we argue that té®undness enables us to provide pro-
grammers with more information, that is ultimately morefughan can be expected from a static
analysis. We apply our methodology to six case studiesudicy MPEG-2 decoding, MP3 de-
coding, GMTI radar processing, and three SPEC benchmarksamlysis extracts a useful block
diagram for each application, facilitating a translationStreamlIt and other stream languages.
In addition, the parallelized versions run correctly (giappropriate training inputs) and offer a
2.78x mean speedup on a 4-core machine.

6.1 Introduction

While adopting a stream programming model is an attractppr@ach for improving the perfor-
mance of future applications, one of the drawbacks of rglgin a new programming model is that
it does not immediately address the vast quantities of legade that have already been written
in other languages. There are 310 billion lines of legacyedodndustry today, and 75-80% of
the typical IT budget is spent maintaining legacy systehiid(6]. While much of this code is
amenable to streaming, the process of migrating the codstteaming representation is an ardu-
ous and time-consuming process. The most important resstiat could help with the transla-
tion — such as the original author of the code, or the higldldesign documents that guided its
implementation — are often unavailable. Thus, a fresh wogner is left with the daunting task of
obtaining an in-depth understanding of all the program nesjuhe dependences between them,
and the possibilities for safely extracting parallelism.

While there have been many efforts to automatically pdiafiéegacy codes, few of them have
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focused on the pipeline parallelism that is characterdtibe streaming domain. It is even difficult
to express pipeline parallelism in a traditional programgrmodel. This is in stark contrast to task
parallelism, which is naturally supported by threads, dsasedata parallelism, which is supported
by dialects such as OpenMP. The only efforts to exploit piygeparallelism in C programs have
been very fine-grained, partitioning individual instrects across processing coré3§SA0S.
Such fine-grained communication is inefficient on commodigchines and demands new hard-
ware supportiRVVA04, ORSA0Y. While a coarse-grained partitioning is more desiralies i
difficult to achieve at compile time due to the obscured daf@eddences in C; constructs such as
pointer arithmetic, function pointers, and circular bu$féwith modulo operations) make it nearly
impossible to extract coarse-grained parallelism fronisea C programs.

In this chapter, we overcome the traditional barriers in@xpg coarse-grained pipeline par-
allelism by embracing annsoundprogram transformation. Our key insight is that, for stream
programs, the data communicated across pipeline-passdiges is stable throughout the lifetime
of the program. No matter how obfuscated the C implemenmtatjapears, the heart of the algo-
rithm is following a regular communication pattern. Foistheason, it is unnecessary to undertake
a heroic static analysis; we need only observe the commtimncpattern at the beginning of ex-
ecution, and then “safely” infer that it will remain constdhroughout the rest of execution (and
perhaps other executions).

As depicted in Figuré-1, our analysis does exactly that. We allow the programmeatorally
specify the boundaries of pipeline partitions, and then @®rd all communication across those
boundaries during a training run. The communication traegnitted as a stream graph that reflects
the high-level structure of the algorithm (aiding a posstibhnslation to Streamlt), as well as a list
of producer/consumer statements that can be used to trage mtoblematic dependences. The
programmer never needs to worry about providing a “corrgattitioning; if there is no parallelism
between the suggested partitions, it will result in cycleshie stream graph. If the programmer
is satisfied with the parallelism in the graph, he recomghesannotated program against a set of
macros that are emitted by our analysis tool. These macres gefork each partition into its own
process and to communicate the recorded locations usieg pgtween processes.

Though our transformation is grossly unsound, we argueithatquite practical within the
domain of streaming applications. Because pipeline paisih is deterministic, any incorrect
transformations incurred by our technique can be identifiadraditional testing methods, and
failed tests can be fixed by adding the corresponding inpoutdraining set. Further, the com-
munication trace provided by our analysis is useful in agdimanual parallelization of the code —
a process which, after all, is only sound insofar as the jamogner’s understanding of the system.
By improving the programmer’s understanding, we are algwaving the soundness of the current
best-practice for parallelizing legacy C applications.

We have applied our methodology to six case studies: MPE®edding, MP3 decoding,
GMTI radar processing, and three SPEC benchmarks. Our a®leffective at parallelizing the
programs, providing a mean speedup of 2.78x on a four-cafdtacture. Despite the potential
unsoundness of the tool, our transformations correctlpded ten popular videos from YouTube,
ten audio tracks from MP3.com, and the complete test inmut&SMTI and SPEC benchmarks.
At the same time, we did identify specific combinations oirtirag and testing data (for MP3) that
lead to erroneous results. Thus, it is important to maxirthizecoverage of the training set and to
apply the technique in concert with a rigorous testing fraomi.

The remainder of this chapter is organized as follows. Inied.2 we show that stream
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for (i=0; i<N; i++) {
... Il stage 1
... /] stage 2
.../l stage 3

}

Insert
Pipeline
Annotations

Original program

A 4

for (i=0; i<N; i++) {

BEGIN_PIPELINED_LOOP();

... I stage 1
PIPELINE();
.../l stage 2
PIPELINE();
... Il stage 3
END_PIPELINED_LOOP();

}

Run
Dynamic
Analysis

Annotated Program

>

Producer Statement Consumer Statement
doStage1(), line 55 > doStage2(), line 23
doStage1(), line 58 > doStage3(), line 40
doStage2(), line 75 > doStage3(), line 30
doStage2(), line 75 > doStage3(), line 35
Stream Graph Producer / Consumer Trace

#define BEGIN_PIPELINED_LOOP() // fork processes, establish pipes
#define PIPELINE() // send/receive all variables used in given partition

#define END_PIPELINED_LOOP() // terminate processes, collect data

Communication Macros

No Satisfied with

Move annotations Parallelism?

Eliminate cyclic dependences
Yes

Recompile annotated program
against communication macros

for (i=0; i<N; i++) {

if (i==0) { ... // fork into 3 processes, establish pipes }

if (process_id == 1) {
... Il stage 1

write(pipe_1_2, &result1, 4); write(pipe_1_3, &result3, 4);

} else if (process_id == 2) { \

read(pipe_1_2, &result1, 4); «__ Send and receive
... Il stage 2 pre-recorded
write(pipe_2_3, &result2, 4); 4 variables via pipes

} else if (process_id == 3) { >/

read(pipe_2_3, &result2, 4); read(pipe_1_3, &result3, 4);

.../l stage 3
}

if (i==N-1) { ... // terminate processes, collect data }

Parallel Program (Simplified)

Figure 6-1: Overview of our approach.

programs have a stable communication pattern. Commuoicatiserved at the start of execu-
tion is often preserved throughout the program lifetimeywa#i as other executions. Secti6mi3
describes our dynamic analysis tool and programmer metbggdo iteratively extract stream

parallelism from C programs. Secti@ describes the implementation of the tool using the Val-

grind infrastructure. SectioB.5is devoted to our case studies, including performanceteeant
the experience gained during parallelization. The remgisiections present related work, future
work, and a chapter summary.

6.2 Stability of Stream Programs

A dynamic analysis is most useful when the observed behayiikely to continue, both through-
out the remainder of the current execution as well as othecwgions (with other inputs). Our
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hypothesis is that stream programs exhibit very stable floixdata, enhancing the reliability of
dynamic analyses toward the point where they can be trustealitiate otherwise-unsafe program
transformations. For the purpose of our analysis, we censigorogram to betableif there is a
predictable set of memory dependences between pipeligestdhe boundaries between stages
are specified by the programmer using a simple set of anoo&gtihe boundaries used for the
experiments in this section are illustrated by the streaaplys that appear later (FiguselL0).

Stability Within a Single Execution

Our first experiment explores the stability of memory depares within a single program exe-
cution. We profiled MPEG-2 and MP3 decoding using the mostigcontent from YouTuble
and MP3.com; results appear in Figu6eg and6-3. These graphs plot the cumulative number of
unique addresses that are passed between program paréisa@xecution proceeds. The figures
show that after a few frames, the program has already peeiarcommunication for most of the
addresses it will ever send between pipeline stages.

In the case of MPEG-2, all of the address traces remain aoirefizer 50 frames, and 8 out of
10 traces remain constant after 20 frames. The videos agaadifferent rates in the beginning
due to varying parameters and frame types; for examplepvilecontains an intra-coded frame
where all other videos have a predictive-coded frame, byedlelaying the use of predictive buffers
in video 10. Video 1 communicates more addresses than tleesdbiecause it has a larger frame
size.

MP3 exhibits a similar stability property, though converge is slower for some audio tracks.
While half of the tracks exhibit their complete communioatpattern in the first 35 frames, the
remaining tracks exhibit a variable delay (up to 420 franieshaking the final jump to the com-
mon communication envelope. These jumps correspond toeelsnof two parameter structures
which are toggled only upon encountering certain framegypg@ack 10 is an outlier because it
starts with a few layer-1 frames, thus delaying the prim&yer-3) communication and resulting
in a higher overall communication footprint. The only otlfiex to contain layer-1 frames is track
9, resulting in a small address jump at iteration 17,900 i{htrated).

Itis important to note that there does exist a dynamic corapbio these applications; however,
the dynamism is contained within a single pipeline stage. dxample, in MP3, there is a Huff-
man decoding step that relies on a dynamically-allocatellup tree. Throughout the program,
the shape of the tree grows and shrinks and is manipulatelgedmetap. Using a static analysis, it
is difficult to contain the effects of such dynamic data suues; a conservative pointer or shape
analysis may conclude that the dynamism extends througheugntire program. However, us-
ing a dynamic analysis, we are able to observe the actual ffadata, ignoring the intra-node
communication and extracting the regular patterns that &dtween partitions.

Stability Across Different Executions

The communication patterns observed while decoding onet ifile can often extend to other
inputs as well. Figure$-4 and6-5 illustrate the minimum number iterations (i.e., framesjtth
need to be profiled from one file in order to enable correctlfghdecoding of the other files. In

YouTube videos were converted from Flash to MPEG-2 usingéguand vixy.net.
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Figure 6-2: Stability of streaming communi- Figure 6-3: Stability of streaming communi-
cation patterns for MPEG-2 decoding. The cation patterns for MP3 decoding. The de-
decoder was monitored while processing the coder was monitored while processing the top
top 10 short videos from YouTube. See Fig- 10 tracks from MP3.com. See Figugel(
ure6-10a for a stream graph of the application. for a stream graph of the application.

MPEG-2 Testing File MP3 Testing File
1.m2v | 2m2v | 3.m2v | 4m2v | 5.m2v | 6.m2v | 7.m2v | 8.m2v | 9.m2v | 10.m2v 1.mp3 | 2.mp3 | 3.mp3 | 4.mp3 | 5.mp3 | 6.mp3 | 7.mp3 | 8.mp3 | 9.mp3 | 10.mp3
1.m2v 3 3 3 3 3 3 3 3 3 3 1.mp3 1 1 1 1 1 1 1 1 — —
2.m2v 3 3 3 3 3 3 3 3 3 3 2.mp3 1 1 1 1 1 1 1 1 — —
Q2 | 3mav 5 5 5 5 5 5 5 5 5 5 QD | 3.mp3 1 1 1 1 1 1 1 1 — —
iC[4mv| 3 [ 3 [ 3| 3|3 [3][3]|3]3 3 i | 4mps | 1 1 1 1 1 1 1 -
g’ 5.m2v 3 3 3 3 3 3 3 3 3 3 g’ 5.mp3 1 1 1 1 1 1 1 1 — —
'c | 6m2v 3 3 3 3 3 3 3 3 3 3 'E | 6.mp3 1 1 1 1 1 1 1 1 — —
IE 7.m2v 3 3 3 3 3 3 3 3 3 3 IE 7.mp3 1 1 1 1 1 1 1 1 — —
= | 8m2v 3 3 3 3 3 3 3 3 3 3 = | 8mp3 1 1 1 1 1 1 1 1 — —
9.m2v 3 3 3 3 3 3 3 3 3 3 9.mp3 1 1 1 1 1 1 1 1 [17900| —
10m2v| 4 4 4 4 4 4 4 4 4 4 10.mp3| 5 5 5 5 5 5 5 5 5 5

Figure 6-4: Minimum number of training iter-  Figure 6-5: Minimum number of training iter-
ations (frames) needed on each video in order ations (frames) needed on each track in order
to correctly decode the other videos. to correctly decode the other tracks.

most cases, a training set of five loop iterations is suffidienfer an address trace that correctly
decodes the other inputs in their entirety. The exceptioagracks 9 and 10 of MP3 decoding,
which are the only two files containing layer-1 frames; bseathey execute code that is never
reached by the other files, training on the other files is figaht to expose the full communication
trace. In addition, track 9 is insufficient training for tkatO, as the latter contains an early CRC
error that triggers a unigue recovery procedure. As eacheasfe hazards is caused by executing
code that is untouched by the training set, the runtime systaild easily detect such cases (using
guards around untrained code) and revert to a sequentialigxe for the iterations in question.
Rigorous testing practices that incorporate code covemagfeics would also help to reduce the
risk of encountering unfamiliar code at runtime.

The ability to generalize short training runs across mldtgxecutions relies on two aspects of
our methodology. First, as described later, we require e to supply a symbolic size for each
dynamically-allocated variable; this allows MPEG-2 addrgraces to apply across different frame
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sizes. Second, we coarsen the granularity of the trace &b $teucture types and dynamically-
allocated segments as atomic units. That is, whenever desadgment of such a structure is
communicated between partitions, the rest of the strusgtucemmunicated as well (so long as
it does not conflict with a local change in the target pamitio Such coarsening increases the
tolerance to small element-wise changes as observed inilaetations of MPEG-2 and MPS3.
However, it does not trivialize the overall result, as ceaisg is only needed for a small fraction
of communicated addresses (15% for MP3 and dependent oe S&amfor MPEG-2).

While we have focused on MPEG-2 and MP3 in this section, wemessimilar stability across
our other benchmarks (GMTI, bzip2, parser, and hmmer). Asrilged in Sectio®.5, we profile
five iterations of a training file and (with minimal programmietervention) apply the trace to
correctly execute a test file.

6.3 Migration Methodology

We introduce a dynamic analysis tool that empowers the progrer in migrating legacy C ap-
plications to a streaming representation. Using this ttia, programmer follows the workflow
illustrated in Figure6-1. The first step is to identify the main loop in the applicatiarhich is
typically iterating over frames, packets, or another longning data source. The programmer
annotates the start and end of this loop, as well as the boesdzetween the desired pipeline-
parallel partitions. The tool reports the percentage otetien time spent in each pipeline stage
in order to help guide the placement of pipeline boundaries.

In our current implementation, there are some restrictmmshe placement of the partition
boundaries. All boundaries must appear within the loop htbif, rather than within a nested
loop, within nested control flow, or as part of another fuoiet(this is an artifact of using macros
to implement the parallelism). The programmer may work adotnese restrictions by performing
loop distribution or function inlining. Also, though bofter loops andvhile loops are supported,
there cannot be anyreak or continue statements within the loop; such statements implicitly
alter the control flow in all of the partitions, an effect thatdifficult to trace in our dynamic
analysis. If such statements appear in the original codeptbgrammer needs to convert them to
a series ofi f statements, which our tool will properly handle.

Once a loop has been annotated with partition boundariespribgrammer selects a set of
training inputs and runs our dynamic analysis to trace timersanication pattern. The tool outputs
a stream graph, a list of producer/consumer statementsa @etl of communication macros for
automatically running the code in parallel.

An example stream graph for GMTI radar processing appeafsgure 6-6. The graph ex-
tracted by our tool is very similar to the block diagram frdme GMTI specification, which appears
in Figure6-7. Our graph contains some additional edges that are nottéepitthe specification;
these represent communication of minor flags rather thasttey-state dataflow. Edges flow-
ing from a node back unto itself (e.g., in Setup, Beamforraed Tracker) indicate mutable state
that is retained across iterations of the main loop. Nodéisout such dependences are stateless
with respect to the main loop, and the programmer may chansgrdcute them in a data-parallel
manner (see below). Overall, the tight correspondencedmivour extracted stream graph and
the original specification demonstrates that the tool ckete¥ely capture the underlying commu-
nication patterns, assisting the programmer in understgrile opportunities and constraints for
parallelization.

136



32,768

Setup
(2%)

Time Delay Equalization (FFT)
(26%)

32,768

Time Delay Equalization (IFFT)
(26%)

/1,382,400

Beamformer
(5%)

/ 1,036,800

Pulse compression
(4%)

4,768

2,170,272

l 1,108,224 4,768

Doppler
(18%)

2,170,272

(12%)

Space-Time Adaptive Processing

1,048,

,288

Detect / estima
(2%)

te

8 07\24

Tracker
(5%)

Figure 6-6: Stream graph for GMTI, as extracted using ouk. thlmdes are annotated with their
computation requirements, and edges are labeled with tmdauof bytes transferred per steady-

state iteration.

=
—

Ti = puse =
‘me Adaptive ES uise ES Doppler
Delay & Beamform | i Com- i Filter
Equaliz’'n — pression |—\
1] T T (2a] (3] l4]
Compute
Beamform
Weights
B
L e
—X] Target
STAP 1 DZ?ergtEi}ctm " Parameter
— : Estimation L
i g @
Compute Figure courtesy of J. Lebak, R.
STAP
Weight Haney, A. Reuther, & J. Klepner,
eights W MIT Lincoln Laboratories

Figure 6-7: Stream graph for GMTI, as it appears in the GMEcsjcation Reu03.

137



for (i=0; i<N; i++) {
tage 1
BEGIN_PIPELINED_LOOP();

... Il stage 1

PIPELINE(W);

... Il stage 2 LA
PIPELINE();

.../l stage 3

END_PIPELINED_LOOP();
- - stage 3 | ¢&——
}

Figure 6-8: Programmers can specify data parallelism bgipgsn extra argument to the pipeline
annotation. In this case, the runtime system executes Wgarapies of stage 2.

Many nodes in a streaming application are suitable to datlpksm, in which multiple loop
iterations are processed in parallel by separate instariche node. Such nodes are immediately
visible in the stream graph, as they lack a carried deperd¢ine., a self-directed edge). Our tool
offers natural support for exploiting data parallelisne tiser simply provides an extra argument to
thePIPELINE annotation, specifying the number of ways that the follapstage should be repli-
cated (see Figuré-8). While this annotation does not affect the profiler outiLi incorporated
by the runtime system to implement the intended parallelism

Depending on the parallelism evident in the stream graphait be desirable to iterate the par-
allelization process by adjusting the pipeline partitiaasvell as the program itself. The partitions
can execute in a pipeline-parallel manner so long as theneacyclic dependences between them.
If there are any strongly connected components in the stggaph, they will execute sequentially;
the programmer can reduce the overhead by collapsing sutihqre into one. Alternately, the
programmer may be able to verify that certain dependencesafaly be ignored, in which case
our analysis tool will filter them out of future reports. Forenple, successive calls to malloc result
in a data dependence that was originally reported by our tamlever, this dependence (which
stems from an update of a memory allocation map) does nottprplarallelism because the calls
can safely execute in any order. Additional examples of bimiling dependences include legacy
debugging information such as timers, counters, etc. tlieat@t observable in the program output.
Sometimes, dependences can also be removed by eliminlagimguse of certain storage locations
(see Sectio®.5for details).

Once the programmer is satisfied with the parallelism in theasn graph, the code can auto-
matically be executed in a pipeline-parallel fashion ugimg communication macros emitted by
the tool. In most cases, the macros communicate items fr@npartition to another using the cor-
responding variable name (and potential offset, in the ohaerays) from the program. However,
a current limitation is in the case of dynamically-allochttata, where we have yet to automate
the discovery of variable name given the absolute addrekaésre communicated dynamically.
Thus, if the tool detects any communication of dynamicallgcated data, it alerts the user and
indicates the line of the program that is performing the camitation. The user needs to supply a
symbolic expression for the name and size of the allocatidme Only two of our six benchmarks
(MPEG-2 and bzip2) communicate dynamically-allocate@@a&tross partition boundaries.

2In some cases, nodes with carried dependences on an oyetdacstill be data-parallelized on an inner loop.
We perform such a transformation in MP3, though it is notyfalitomatic.
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6.4 Implementation

Dynamic Analysis Tool

Our tool is built on top of Valgrind, a robust framework forrymic binary instrumentatioNS07).
Our analysis interprets every instruction of the prograih @y tracing the line number in the an-
notated loop) recognizes which partition it belongs to. @halysis maintains a table that indicates,
for each memory location, the identity of the partition (ifya that last wrote to that location. On
encountering a store instruction, the analysis recordshvpartition is writing to the location.
Likewise, on every load instruction, the analysis does ¢etidbkup to determine the partition
that produced the value being consumed by the load. Eveguarproducer-consumer relation-
ship is recorded in a list that is output at the end of the @ogralong with the stream graph and
communication macros.

There are some interesting consequences of tracking depeadhformation in terms of load
and store instructions. In order to track the flow of datauliolocal variables, we disable reg-
ister allocation and other optimizations when preparirggapplication for profiling. However, as
we do not model the dataflow through the registers, the toohable to detect cases in which
loaded values are never used (and thus no dependence.eklstspattern often occurs for short
or unaligned datatypes; even writes to such variables canivie loads of neighboring bytes, as
the entire word is loaded for modification in the registersir @ol filters out such dependences
when they occur in parallel stack frames, i.e., a spurioygeddence between local variables of
two neighboring function calls. Future work could furtherprove the precision of our reported
dependences by also tracking dependences through redisténe style of ReduxXNMO03]).

As the dynamic analysis traces communication in terms oblabs memory locations, some
engineering was required to translate these addressesiableanames in the generated macros.
(While absolute addresses could also be used in the maheyswould not be robust to changes
in stack layout or in the face of re-compilation.) We accaosipthis mapping using a set of gdb
scripts$, which provide the absolute location of every global vaeas well as the relative location
of every local variable (we insert a known local variable gridt its location as a reference point).
In generating the communication code, we express evergasgds an offset from the first variable
allocated at or below the given location. In the case of dyinalty-allocated data, the mapping
from memory location to variable name is not yet automatetiraguires programmer assistance
(as described in the previous section).

Parallel Runtime System

The primary challenge in implementing pipeline parali@liss the need to buffer data between
execution stages. In the sequential version of the progaagiven producer and consumer takes
turns in accessing the shared variables used for commignicédlowever, in the parallel version,
the producer is writing a given output while the producertil$ ieading the previous one. This
demands that the producer and consumer each have a priygt@itthe communicated data, so
that they can progress independently on different itematif the original loop. Such a transfor-
mation is commonly referred to as “double-buffering”, tabuve may wish to buffer more than
two copies to reduce the synchronization between pipetagges.

30ur scripts rely on having compiled with debug information.
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| Benchmark | Description | Source | Lines of Code |
MPEG-2 MPEG-2 video decoder MediaBench [PMS97 10,000
MP3 MP3 audio decoder Fraunhofer IS Fra03h 5,000
GMTI Ground Moving Target Indicator MIT Lincoln Laboratory Reu03 | 37,000
197.parser | Grammatical parser of English language | SPECINT 2000 11,000
256.bzip2 bzip2 compression and decompression | SPECINT 2000 5,000
456.hmmer | Calibrating HMMs for biosequence analysisSPECCPU 2006 36,000

Table 6-9: Benchmark characteristics.

There are two broad approaches for establishing a bufferdset pipeline stages: either explic-
itly modify the code to do the buffering, or implicitly wrape existing code in a virtual environ-
ment that performs the buffering automatically. The firgirayach utilizes a shared address space
and modifies the code for the producer or consumer so thatitesss different locations; values
are copied from one location to the other at synchronizatmints. Unfortunately, this approach
requires a deep program analysis in order to infer all of #mables and pointer references that
need to be remapped to shift the produced or consumed dataetw bbcation. Such an analysis
seems largely intractable for a language such as C.

The second approach, and the one that we adopt, avoids theleooties of modifying the
code by simply forking the original program into multipleopesses. The memory spaces of the
processes are isolated from one another, yet the procdssestbe exact same data layout so no
pointers or instructions need to be adjusted. A standaed-process communication mechanism
(such as pipes) is used to send and buffer data from one grozesother; a producer sends its
latest value for a given location, and the consumer readsvéilae into the same location in its
private address space. At the end of the loop’s executibof #ie processes copy their modified
data (as recorded by our tool during the profiling stage) ansingle process that continues after
the loop. Our analysis also verifies that there is no overiape addresses that are sent to a given
pipeline stage; such an overlap would render the progrardeterministic and would likely lead
to incorrect outputs.

6.5 Case Studies

To evaluate our approach, we applied our tool and methogdlmgix realistic programs. Three
of these are traditional stream programs (MPEG-2 decodii®3 decoding, GMTI radar pro-
cessing) while three are SPEC benchmarks (parser, bzip2ehnthat also exhibit regular flows
of data. As illustrated in Tablé-9, the size of these benchmarks ranges from 5 KLOC to 37
KLOC. Each program processes a conceptually-unboundednstof input data; our technique
adds pipeline parallelism to the toplevel loop of each agpion, which is responsible for 100%
of the steady-state runtime. (For bzip2, there are two t@bleops, one for compression and one
for decompression.)

In the rest of this section, we first describe our experiemcparallelizing the benchmarks
before presenting performance results.
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Parallelization Experience

During the parallelization process, the programmer retieavily on the stream graphs extracted
by our tool. The final graphs for each benchmark appear inrégfi+10and6-11 In the graphs,
node labels are gleaned from function names and commenkeiodde, rather than from any
domain-specific knowledge of the algorithm. Nodes are afsmtated with the amount of work
they perform, while edges are labeled with the number ofdogtanmunicated per steady-state
iteration. Nodes that were data-parallelized are anndtaith their multiplicity; for example, the
Dequantize stage in MP3 (Figuéel) is replicated twice.

As described in Sectiof.3, our tool relies on some programmer assistance to paraldiie
code. The manual steps required for each benchmark are sigethen Figure6-12and detailed
in the following sections.

MPEG-2 Decoding To obtain the stream graph for MPEG-2 (Figui€l(a), the programmer
iteratively refined the program with the help of the dynamelgsis tool. Because the desired
partition boundaries fell in distinct functions, thosedtions were inlined into the main loop. Early
return statements in these functions led to unstructuratt@dlow after inlining; the programmer
converted the control flow to if/felse blocks as required by awalysis. The tool exposed an
unintended data dependence that was inhibiting paratieksglobal variable (progressive frame)
was being re-used as a temporary variable in one module. Mgegmmer introduced a unique
temporary variable for this module, thereby restoring taefelism. In addition, the updates to
some counters in the main loop were reordered so as to plageiththe same pipeline stage that
the counters were utilized.

In generating the parallel version, our tool required twieiventions from the programmer.
First, as the pipeline boundaries spanned multiple loopspélse communication code (auto-
generated for a single loop nest) was patched to ensure #tahing send and receive instructions
executed the same number of times. Second, as describectior8&3, the programmer supplied
the name and size of dynamically-allocated variables (i ¢hse, frame buffers) that were sent
between partitions.

MP3 Decoding The extracted stream graph for MP3 decoding appears in &gafb. In the
process of placing the pipeline boundaries, the progranmtieed functions, unrolled two loops,
and distributed a loop. Four dynamically-allocated ar(@ysixed size) were changed to use static
allocation, so that our tool could manage the communicatidgomatically. As profiling indicated
that the dequantization and inverse MDCT stages were cangunost of the runtime, they were
each data-parallelized two ways.

In analyzing the parallelism of MP3, the programmer madedltteductions. First, the initial
iteration of the loop was found to exhibit many excess depeoés due to one-time initialization
of coefficient arrays; thus, the profiling and paralleliaativas postponed to the second iteration.
Second, though the tool reports a carried dependence intbese MDCT stage, the programmer
found that this dependence is on an outer loop and that itfésteadata-parallelize the stage on
an inner loop. Finally, the programmer judged the execuiiobe insensitive to the ordering of
diagnostic print statements, allowing the dependencesdast statements to be ignored for the
sake of parallelization. (With some additional effort, thrgginal ordering of print statements can
always be preserved by extracting the print function irgein pipeline stage.)
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Figure 6-10: Extracted stream graphs for MPEG-2 and MP3alrgo

As in the case of MPEG-2, the programmer also patched theaedecommunication code to
handle nested loops.

GMTI Radar Processing The Ground Moving Target Indicator (GMTI) is a radar protegs
application that extracts targets from raw radar d&au03. The stream graph extracted by our
tool (Figure6-6) is very similar to the one that appears in the GMTI specificefFigure6-7).

In analyzing GMTI, the programmer made minor changes to tiginal application. The
programmer inlined two functions, removed the applicasiagelf-timers, and scaled down an
FFT window from 4096 to 512 during the profiling phase (thail#sg communication code was
patched to transfer all 4096 elements during parallel exacu

As print statements were judged to be independent of orgletiire tool was instructed to ig-
nore the corresponding dependences. Dependences betalseio ecnemory allocation functions
(malloc/free) were also disregarded so as to allow pipedtages to manage their local memories
in parallel. The programmer verified that regions allocatétiin a stage remained private to that
stage, thus ensuring that the parallelism introduced cooiddause any memory hazards.

Our tool reported an address trace that was gradually isicrg@ver time; closer inspection
revealed that an array was being read in a sparse pattemidbaradually encompassing the entire
data space. The programmer directed the tool to patch tladigdarersion so that the entire array
was communicated at once.
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Figure 6-11: Extracted stream graphs for parser, bzip2 pcession and decompression) and
hmmer.

Parser The stream graph for 197.parser appears in Figutda. Each steady-state iteration of
the graph parses a single sentence; the benchmark runscim ibate, repeatedly parsing all of
the sentences in a file. As indicated in the graph, the cy@meddences in the benchmark are
limited to the input stage (which performs file reading anplisid the configuration of the parser)
and the output stage (which accumulates an error count)paising stage itself (which represents
most of the computation) retains no mutable state from ontesee to the next, and can thus be
replicated to operate on many sentences in parallel. In ptim@ed version, the parsing stage is
replicated four times.

During the iterative parallelization process, the progrean made three adjustments to the
program. Our tool reported a number of loop-carried depecele due to the program’s implicit
use of uninitialized memory locations; the program allesatpace for a struct and later copies the
struct (by value) before all of the elements have been li@éd. This causes our tool to report
a dependence on the previous write to the uninitializedtions, even though such writes were
modifying a different data structure that has since beealldeated. The programmer eliminated
these dependence reports by initializing all elements tonandy value at the time of allocation.

The programmer also made two adjustments to the commumictiice emitted by our tool.
One block of addresses was expanding gradually over thédivsterations of the program. Closer
inspection revealed that that sentences of increasingHemgre being passed between partitions.
The programmer patched the trace to always communicatethplete sentence buffer. Also, the
programmer observed that in the case of errors, the paseniscount needs to be communicated
to the output stage and accumulated there. As none of owirtgaor testing samples elicited
errors, our trace did not detect this dependence.

Our data-parallel version of the program may reorder thgnam’s print statements. If desired,
the print statements can be serialized by moving them toukgub stage.

Bzip2 The stream graphs for 256.bzip2 appear in Figudslb and6-11c. The benchmark
includes both a compression and decompression stage, wkiehparallelized separately.
Because bzip2 compresses blocks of fixed size, the main essipn routine is completely
data-parallel. The only cyclic dependences in the compres® at the input stage (file reading,
CRC calculation) and output stage (file writing). The prognaer replicated the compression stage
seven ways to match the four-core machine; this allows thoges to handle two compression
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1. Modifications to sequential version

II. Annotations to tool during parallelization

ITI. Patches to parallel version

MPEG-2

- inlined functions

- reordered statements

- expanded temporary variable into two
- regularized control flow

- patched communication across nested loops
- patched communication of malloc'd data

- inlined functions
- unrolled loops

- postponed parallelization to second loop iteration

MP3 | - distributed a loop - identified IMDCT as data-parallel on outer loop | - patched communication across nested loops
- converted dynamically-allocated - ignored dependences between print statements *
arrays to statically-allocated arrays
- inlined functions ignored dependences between print statements *
GMTI | - removed self-profiling functionality 2 P P . - expanded address trace to cover full array
. .. - ignored dependences between mem. allocations*
- scaled down FFT size (for training only)
197.parser - ignored dependences on uninitalized memory - expanded address trace to cover full array
P - ignored dependences between print statements * | - manually accumulated reduction variable
256.bzip2 | - reordered statements - patched communication of malloc'd data
- ignored order of incremental buffer expansion
456.hmmer - ignored dependences between calls to rand * - reset random seed in each parallel partition

- ignored dependences between mem. allocations*

Figure 6-12: Steps taken by the programmer to assist inlpbzalg each benchmark. Assistance
may be needed to expose parallelism in the original codegrify\parallelism using the tool, or to
handle special cases in the parallelized code. Steps dadatith an asterisk (*) may change the
observable behavior of the program

stages each, while one core handles a single compressgm asawell as the input and output
stages. The decompression step lacks data-parallelisaudethe boundaries of the compressed
blocks are unknown; however, it can be split into a pipelihtwvo stages.

In parallelizing bzip2, the programmer reordered somesstahts to improve the pipeline par-
titioning (the call togenerateMTFValues moved from the output stage to the compute stage).
The programmer also supplied the name and size of two dyrdlgrallocated arrays.

Hmmer In456.hmmer, a Hidden Markov Model is loaded at initialiaattime, and then a series
of random sequences are used to calibrate the model. Figlild shows the extracted stream
graph for this benchmark. The calibration is completelyaelzdrallel except for a histogram at
the end of the loop, which must be handled with pipeline peliam. In our experiments, the
programmer replicated the data-parallel stage four waysline the four-core machine.

Our tool reports three parallelism-limiting dependenaehimmer. The first is due to random
number generation: each iteration generates a new randopiesand modifies the random seed.
The programmer chose to ignore this dependence, causingutpat of our parallel version to
differ from the original version by 0.01%. Also, the prognaer made an important patch to the
parallel code: after forking from the original process,leparallel partition needs to set its random
seed to a different value. Otherwise each partition woulldfioan identical sequence of random
values, and the parallel program would sample only a fraabiothe input space as the original
program.

The second problematic dependence is due to an incremestaing of an array to fit the

1Reordering calls to malloc (or reordering calls to free) willy change the program’s behavior if one of the calls
fails.
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Benchmark | Pipeline Depths | Data-Parallel Widths | Speedup]

GMTI 9 — 3.03x
MPEG-2 7 — 2.03x
MP3 6 2,2 2.48x
197.parser 3 2.95x
256.bzip2 3,2 7 2.66Xx
456.hmmer 2 4 3.89x
GeoMean 2.78x

Table 6-13: Characteristics of the parallel stream grapits @erformance results on a 4-core
machine. Data-parallel width refers to the number of waysdata-parallel stage was replicated.

length of the input sequence. Since each parallel partdé@nexpand its own private array, this
dependence is safely ignored. Finally, as in the case of GMdpendences between memory
allocation functions were relaxed for the sake of the peliaition.

Performance Results

Following parallelization with our tool, all of the benchrka obtain the correct results on their
training and testing sets. For MPEG-2 and MP3, we train uBuegiterations of input files 1 and
10, respectively (see Secti@?). For GMTI, we only have access to a single input trace, so we
use five iterations for training and the rest (300 iteratjdostesting. For the SPEC benchmarks,
we train on five iterations of the provided training set arsi ta the provided testing set.

Our evaluation platform contains two AMD Opteron 270 duatecprocessors (for a total of
4 cores) with 1 MB L2 cache per processor and 8 GB of RAM. We meathe speedup of the
parallel version, which uses up to 4 cores, versus the @ligiaquential version, which uses 1
core. We generate one process per stage of the stream gnaptelyon the operating system to
distribute the processes across cores (we do not providgéiniemapping from threads to cores).
All speedups reflect total (wall clock) execution time.

Our performance results appear in Ta®lé3 Speedups range from 2.03x (MPEG-2) to 3.89x
(hmmer), with a geometric mean of 2.78x. While these resrksgood, there is some room for
improvement. Some benchmarks (MPEG-2, decompressioa sfdazip2) suffer from load im-
balance that is difficult to amend without rewriting partsloé program. The imperfect speedups
in other benchmarks may reflect synchronization overheatigden threads, as the operating sys-
tem would need to interleave executions in a specific rate/tind excessive blocking in any one
process. The volume of communication does not appear to igmidicant bottleneck; for exam-
ple, duplicating all communication instructions in MP3uktsin only a 1.07x slowdown. Ongoing
work will focus on improving the runtime scheduling of theopesses, as well as exploring other
inter-process communication mechanisms (e.g., usingdhaemory).

6.6 Related Work

Static Analysis

The work most closely related to ours is that of Bridges efBV/Z*07], which was developed
concurrently to our first publication of this researdC|A07]. They exploit pipeline parallelism
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using the techniques of Decoupled Software PipelinRgJA04, ORSAOS. In addition, they
employ thread-level speculation to speculatively exeoutéiple loop iterations in parallel. Both
of our systems require some assistance from the progranmparallelizing legacy applications.
Whereas we annotate spurious dependences within ourtieglannotate the original source code
with a new function modifier (called “commutative”) to indi® that successive calls to the func-
tion can be freely reordered. Such source-level annomtomattractive (e.g., for malloc/free) and
could be integrated with our approach. However, our transétions rely on a different property
of these functions, as we call them in parallel from isolatddress spaces rather than reordering
the calls in a single address space.

Once parallelism has been exposed, their compiler autoailgtplaces the pipeline boundaries
and generates a parallel runtime, whereas we rely on thegroger to place pipeline boundaries
and to provide some assistance in generating the paratkabwgsee Sectiof.3). Our approaches
arrive at equivalent decompositions of 197.parser andb2i2. However, our runtime systems
differ. Rather than forking multiple processes that comitate via pipes, they rely on a proposed
“versioned memory” systenVRR*07] that maintains multiple versions of each memory location.
This allows threads to communicate via shared memory, Wwélversion history serving as buffers
between threads. Their evaluation platform also includgsezialized hardware construct termed
the synchronization arrayRVVAO04]. In comparison, our technique runs on commodity hardware.

Dai et al. presents an algorithm for automatically pamith sequential packet-processing ap-
plications for pipeline-parallel execution on network geesors[PHLHO5]. Their static analysis
targets fine-grained instruction sequences within a simgleedure, while our dynamic analysis is
coarse-grained and inter-procedural. Du et al. descrilggstam for pipeline-parallel execution of
Java programd]FAQ5]. The programmer declares parallel regions, while the gtenautomati-
cally places pipeline boundaries and infers the commuedcaariables using an inter-procedural
static analysis. Unlike our system, the compiler does netklif the declared regions are actually
parallel.

Dynamic Analysis

The dynamic analysis most similar to ours is that of Rul efRVDB06], which also tracks pro-
ducer/consumer relationships between functions and e formation gleaned to assist the
programmer in parallelizing the program. They use bzip2 aase study and report speedups
comparable to ours. However, it appears that their systeuoines the programmer to determine
which variables should be communicated between threadsoamaddify the original program to
insert new buffers and coordinate thread synchronization.

Karkowski and Corporaal also utilize dynamic informatioruncover precise dependences for
parallelization of C program&[C97]. Their runtime system utilizes a data-parallel mappirigea
than a pipeline-parallel mapping, and they place less egiplom the programmer interface and
visualization tools.

Redux is a tool that traces instruction-level producersconer relationships for program com-
prehension and debugginilf103]. Unlike our tool, Redux tracks dataflow through registers i
addition to memory locations. (We avoid the need for suctkirey by profiling an unoptimized
binary, generated with gcc -O0, that stores all intermediatues to memory.) Because it gener-
ates a distinct graph node for every value produced, theesitiote that the visualization becomes
unwieldy and does not scale to realistic programs. We addhésissue by coarsening the program
partitions.
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A style of parallelism that is closely related to pipelinergkelism is DOACROSS paral-
lelism [PKL80, Cyt86. Rather than devoting a processor to a single pipelinees2@ACROSS
parallelism assigns a processor to execute complete leogitins, spanning all of the stages. In
order to support dependences between iterations, comatiorids inserted at pipeline bound-
aries to pass the loop-carried state between processorite DMBACROSS parallelism has been
exploited dynamically using inspector/executor modede (RauchwergeiRau9§ for a survey),
they lack the generality needed for arbitrary C programe Jdrallelism and communication pat-
terns inferred by our tool could be used to generate a DOACRSIAe mapping; such a mapping
could offer improved load balancing, at the possible expaiglegrading instruction locality and
adding communication latency to the critical path.

Giacomoni et al. describe a toolchain for pipeline-pataitegramming GMP*07], including
BDD-based compression of dependence traB®9f. Such techniques could extend our stream
graph visualization to a much finer granularity. DDgraph dyaamic analysis for Lisp that offers
a visualization of call graphs and data dependence graphbdsake of program understanding
and correctness checkinB\WWCAOQY]. It is implemented as part of a Lisp interpreter and has been
applied to an Al Blocks World program, which exhibits lesgukar streams of data than our target
applications. Malton and Pahelvan also use a dynamic asdlysilt on gdb) to identify control
flow between “pivotal functions” that are likely to aid in gi@m understandindP05. They do
not extract streams of data flow.

Program slicing is a technique that aims to identify the $girogram statements that may
influence a given statement in the program. Slicing is a regdearch area with many static and
dynamic approaches developed to date; seeTig9p] for a review. The problem that we consider
is more coarse-grained than slicing; we divide the programpartitions and ask which partitions
affect a given partition. Also, we identify a list of memonchtions that are sufficient to convey all
the information needed between partitions. Finally, weiarerested only in direct dependences
between partitions, rather than the transitive dependermgorted by slicing tools.

6.7 Future Work

There are rich opportunities for future work in enhancing fioundness and automation of our
tool. If the runtime system encounters code that was natedsiuring training, it could execute
the corresponding loop iteration in a sequential mannexh(supolicy would have fixed the only
unsoundness we observed). A static analysis could alseri¢iss programmer’s involvement, e.g.,
by automatically handling nested loops or automaticalfcplg the pipeline partitions. Many of
the optimizations implemented in Streamlt could be tadjgi¢he extracted stream graphs, as they
follow the synchronous dataflow model. It could also be séng to develop systematic testing
techniques to exhibit control flow paths that were not codeharing training.

More broadly, the observations in Sectiérb suggest that many of the memory dependences
that constrain automatic parallelizers can be safely igthavithout affecting the ultimate program
outcome. It would be interesting to build a testing tool tgblores this opportunity more deeply,
perhaps by systematically violating each individual meyrmependence in the program and re-
porting those that do not affect the program outcome. Whitdgn analysis would be very slow if
only one dependence is broken per run, perhaps an optiméstbu can be built by speculatively
“pooling” many tests into a single run, or by detecting thatrdermediate program state is correct
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without finishing the complete execution. Testing toolsldalso be useful for inferring likely
high-level properties, such as commutativity between wasghin a library. This would save the
user the trouble of indicating the potential for such redrdgto our tool.

6.8 Chapter Summary

This work represents one of the first systematic techniquestract a coarse-grained streaming
representation from C programs. Rather than extractimgsts from small instruction sequences
or inner loops, we extract pipeline stages from the outetrogdevel loop of a streaming appli-
cation, which encapsulates 100% of the steady-state rant®ur approach is applicable both to
legacy codes, in which the user has little or no knowledgeuititie structure of the program, as
well as new applications, in which programmers can utiliae annotations to easily express the
desired pipelining.

The key observation underlying our technique is that fordtyain of streaming applications,
the steady-state communication pattern is regular andestaken if the program is written in a
language such as C that resists static analysis. To expiepattern, we employ a dynamic analy-
sis to trace the memory locations communicated betweerrgmogartitions at runtime. Partition
boundaries are defined by the programmer using a simple s@hoftations; the partitions can be
iteratively refined to improve the parallelism and load bata Our tool uses the communication
trace to construct a stream graph for the application asagedl detailed list of producer-consumer
instruction pairs, both of which aid program understanding help to track down any problematic
dependences. Our dynamic analysis tool also outputs a sea@is to automatically parallelize
the program and communicate the needed data betweengrestitiVe applied our tool to six re-
alistic case studies; the parallel programs produced threcoutput and offered a mean speedup
of 2.78x on a 4-core machine.

Our technigue gains both its leverage and its liabilitiesfrthe fact that it is unsound. By
tracing the dynamic flow of data, it can detect communicagiatterns that are beyond the reach
of static analyses. However, because the analysis samplea éraction of program executions,
the observed communication may offer an incomplete piaditbe behavior of other runs. The
unsound data remains useful for program understanding has$pis programmers understand the
common-case behavior of the application. In the contextubbraatic parallelization, the un-
soundness is more problematic because untested execuatmn$ead to incorrect results when
parallelized.

This risk can be minimized by employing a rigorous qualitguaance (QA) policy, in which
the tool observes all distinct modes of execution prior tmajelization. Such QA practices are
already deeply ingrained in the industry. Given that indabktesting strategies have proven effec-
tive for eliminating a myriad of human-induced bugs, it doesseem implausible that they could
be applied to eliminate potential bugs introduced by oul. tbimlike a programmer, our analysis
can automatically fix any bugs found by including the buggyuinin its training set. Perhaps by
treating tools more like programmers — as intelligent bigawumd beings whose output must be
subjected to rigorous testing — we can overcome some of daitmal limitations of automatic
parallelization.
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Chapter 7

Conclusions

My thesis is that incorporating streaming abstractiong the programming language can simul-
taneously improve both programmability and performanceogfRmmers are unburdened from
providing low-level implementation details, while conga can perform parallelization and op-
timization tasks that were previously beyond the reach tdraation. This dissertation supports
this thesis with the following contributions:

1. We define the Streamlt language, one of the first programi@nguages to embrace syn-
chronous dataflow as a model of computation. Streamlt contadvel language constructs,
including structured streams, parameterized data reagieand teleport messaging, that im-
prove both the programmability and the analyzability oéatn programs. Teleport messaging
addresses a long-standing problem in synchronizing eaentss decoupled modules, and rep-
resents the first general framework for delivering messagbsrespect to the regular dataflow
in the stream. By providing a modular and composable syth@Streamlit language becomes
accessible to non-expert programmers. Simultaneousyatiguage preserves the rich static
properties of the streaming domain, exposing them to thegpdenfor the sake of optimization.

2. We demonstrate that it is tractable to develop largeesapplications in a stream program-
ming model. Our experience comes on two fronts. First, weriss the development of
the 34,000-line Streamlt benchmark suite, consisting felapplications (such as MPEG-2
encoding/decoding and GMTI radar processing) that werdgemrby programmers who were
previously unfamiliar with Streamlt. Our survey of thesentlemarks provides the first rig-
orous characterization of the streaming domain, as welleas insights into the utility and
usability of various language features. Second, we deekopl for migrating legacy C pro-
grams into a streaming representation. It is the first toais® a dynamic analysis to expose
coarse-grained parallelism in C programs. We show thatttiukis effective at extracting a
synchronous dataflow graph from large C applications, SpgrMPEG-2, GMTI, MP3, and
others.

3. We develop a new optimization for the streaming domaloyahg programmers to accelerate
common video editing operations by a median of 15x and a maxirof 471x. This transfor-
mation maps stream programs into the compressed domamjjadj them to operate directly
on compressed data formats rather than requiring a costlyndgression and re-compression
on either side of processing. Our technique is the first tpsugompressed-domain process-
ing of LZ77-compressed data. We apply our technique to ecatd transformations such as
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color adjustment and video compositing on the Apple Anioraformat. Performance gains
are proportional to the compression factor.

4. We review the key optimization results in the Streamljgrt enabling programmers to obtain
large speedups on many tasks. Targeting a 16-core arahigeour compiler leverages a novel
combination of task, data, and pipeline parallelism to mbaéarobust speedup of over 11x (rel-
ative to a single core). In optimizing linear computatioms; compiler mirrors the behavior of
a DSP expert, automatically combining linear nodes, tedimg} them to the frequency domain,
and selecting the most profitable series of transformatibimgear optimizations yield an aver-
age performance improvement of 5.5x, and a maximum impreweof 8.0x. Finally, we offer
a set of cache optimizations that adjusts the schedule eff &itecutions so as to improve the
data and instruction locality. It offers an average bendfg.bx when targeting an embedded
processor.

Several of the transformations that are automated in trea@iit compiler are already accessi-
ble to expert programmers. For example, the optimizatidmefr nodes is a standard part of the
DSP design flow. Cache optimizations similar to ours areimelit performed during the manual
tuning of an embedded system. Streaming applications cpatadlelized in other languages with
significant help from the programmer. However, the key béméfStreamit is that all of these
transformations become accessible to non-experts. Usstrgam programming model, the com-
piler can leverage new information to automate transfoionatthat were previously reserved for
technology wizards.

Perhaps the biggest limitation of the techniques desciibdds dissertation is that they apply
primarily to static-rate programs, in which the input antjpout rates of actors are known at compile
time. The compiler depends on static rates for load-bat@ntask- and pipeline-parallel actors;
for optimizing linear filters (which are implicitly statiate); for cache optimizations; and for
teleport messaging (though Secti®® describes how to extend messaging to handle dynamism).
Some of the techniques described do extend to dynamic liatdsding the language’s support
for hierarchical streams and parameterized data reogleamwell as the compiler’s support for
coarse-grained data parallelism, translation to the cesgad domain (with minor modifications),
and our dynamic analysis for extracting parallelism fromr@gpams.

In the long term, we envision that our optimizations of staiite graphs would have maximum
impact when those graphs are embedded in a more flexible ardilgrogramming model. By
analogy to instruction scheduling, one could consider quiingzations as focusing on the basic
block: a simple yet pervasive construct that can be stit¢bgdther to perform a broad array of
tasks. While support for complex control flow is important fienctionality, aggressive optimiza-
tion within the basic block is essential for high performan©ur benchmark suite supports the
premise that dynamic rates often occur at only a few pointiapplication; out of our 29 most
realistic applications, 24 are completely static-rate ant of those with any dynamic rates, only
3% of the user-defined filters have a dynamic rate. Thus, ttpider can focus on optimizing each
static-rate subgraph, while relying on the runtime systerarthestrate the dynamic-rate bound-
aries. In addition to supporting dynamism, we envision thhybrid programming model would
provide support for many models of computation (transasti@vent-driven programs, scientific
codes, etc.) with high-performance streaming playing amlg part. These models could likely
be embedded in a general-purpose programming languagey asieparate library and runtime
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system for each one. Integrating such models of computatiora unified authoring environment
is an interesting direction for further research.

What is the future of stream programming? Well, the goal aff@eic programming language
research is frequently misunderstood. While it would nobbgctionable to have a language like
Streamlt take over the world, this goal is rarely realistisastainable. Rather, the primary goal of
our research is to influence the direction of future langaagéere is broad precedent for such in-
fluence; for example, Bjarne Stroustrup traces the detaietution of the C++ language, tracing
the impact of many previous languages on its structure aatdife set$tr94. While many of these
languages are also well known (Fortran, C, Ada, Simulajethee also important influences from
lesser-known languages, many of which are of academicro(@PL, BCPL, ML, Clu). Given
the trend towards multicore processors, and the incregsiglence of streaming applications,
we anticipate the emergence of languages and librarieantégrated support for efficient stream
processing. Already the Streamlit system (which is opemesoand available onlineSfrg) has
been reused and extended by multiple research groupsdinglUC Berkeley NY04, SLRBEOS,
IBM Research HHBR08, HKM *08], University of Michigan KM08, HKM *08], Halmstad Uni-
versity JSUAO05 And07], Johns Hopkins UniversityQuc04, and North Carolina State Univer-
sity [S007. It is our hope that the abstractions, optimizations, as$dns learned as part of this
dissertation will serve to inform and inspire this reseaasshwell as the upcoming generation of
mainstream programming languages.
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Appendix A

Example Streamlt Program

This appendix provides a complete program listing for a §8taéamlit benchmark, ChannelVocoder.
The stream graph for this benchmark can be found in Figu®e
/**

* Author: Andrew Lamb

This is a channel vocoder as described in MIT 6.555 Lab 2.shBent features
are a filter bank, each of which contains a decimator after antipass filter.

First the signal is conditioned using a lowpass filter withtaff at 5000
Hz. Then the signal is “center clipped” which basically nmsathat very high and
very low values are removed. The sampling rate is 8000 Hz.

Then, the signal is sent both to a pitch detector and to arfittank with 200 Hz
wide windows (16 overall).

R T . T T

*

* Thus, each output is the combination of 16 band envelopaegafrom the filter

* bank and a single pitch detector value. This value is eittiex pitch if the

* sound was voiced or O if the sound was unvoiced.

**/

void—>void pipeline ChannelVocoder
int PITCH_WINDOW = 100; // the number of samples to base the pitch detection on
int DECIMATION = 50; // decimation factor
int NUM_FILTERS = 16;

add FileReadegfloat>("input.dat");

/I low pass filter to filter out high freq noise

add LowPassFiltefl, (2*pi*5000)/8000, 64);

add float—>float splitjoin {
split duplicate;
add PitchDetectoPI TCH_.WINDOW, DECIMATION);
add VocoderFilterBankNUM_FILTERS, DECIMATION);
join roundrobin (1, NUM_FILTERS);

}

add FileWriter<float>("output.dat");
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/**

* Pitch detector.

**/

float—>float pipeline PitchDetectdiint winsize int decimation {
add CenterClig);
add CorrPeakwinsize decimation;

}

/**

* The channel vocoder filterbank.
**/
float—>float splitjoin VocoderFilterBankint N, int decimation {
split duplicate;
for (int i=0; i<N; i++) {
add FilterDecimaté¢i, decimation;
}

join roundrobin ;

}
/**

* A channel of the vocoder filter bank — has a band pass filtettered at i*200
* Hz followed by a decimator with decimation rate of deciroati
**/
float—>float pipeline FilterDecimatéint i, int decimation {
add BandPassFilt€R, 400*i, 400*(i+1), 64);
add Compressddecimation;

}

/**

* This filter “center clips” the input value so that it is alwaywithin the range
* of -.75 to .75
**/
float—>float filter CenterClip {
float MIN = —0.75;
float MAX = 0.75;
work pop 1 push 1 {
float t = pop();
if (t<MIN) {
push(MIN);
} else if (t>MAX) {
push(MAX);
} else{
push(t);
}
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/**

* This filter calculates the autocorrelation of the next waes elements and then
* chooses the max peak. If the max peak is under a thresholdutmitoa zero. If
* the max peak is above the threshold, we simply output itaeval
**/
float—>float filter CorrPeakint winsize int decimation {
float THRESHOLD = 0.07;
work peek winsize push 1 pop decimation{
float[winsizg autocory // auto correlation
for (int i=0; i<winsize i++) {
float sum = 0O;
for (int j=i; j<winsize j++) {
sum += peeki)*peek();
}

autocorfi] = sumwinsize

}

/[ armed with the auto correlation, find the max peak in a reatader, we
/I would restrict our attention to the first few values of theta corr to
/I catch the initial peak due to the fundamental frequency.
float maxpeak= 0;
for (int i=0; i<winsize i++) {

if (autocorfi]>maxpeak {

maxpeak= autocorfi];

}

}

/I output the max peak if it is above the threshold.
/I otherwise output zero.
if (maxpeak> THRESHOLD {
push(maxpeals
} else {
push(0);
}

for (int i=0; i<decimation i++) {
pop();
}
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/**

* A simple adder which takes in N items and pushes out the sutheat.
**/
float—>float filter Adder(int N) {
work pop N push 1 {
float sum= 0O;
for (int i=0; i<N; i++) {
sum += pop();
}

push(sum);

}

/**

* This is a bandpass filter with the rather simple implementatof a low pass
* filter cascaded with a high pass filter. The relevant parasmetare: end of
* stopband=ws and end of passband=wp, such that=&s<=wp<=pi gain of passband and
* size of window for both filters. Note that the high pass amd joass filters
* currently use a rectangular window.
**/
float—>float pipeline BandPassFilt¢float gain float ws, float wp, int numSampleks {
add LowPassFiltefl, wp, numSamples
add HighPassFiltgigain, ws, numSamples

}

/**

* This filter compresses the signal at its input by a factor M.
* Eg it inputs M samples, and only outputs the first sample.
**/
float—>float filter Compressdint M) {
work peek M pop M push 1 {
push(pop());
for (int i=0; i<(M—1); i++) {
pop();
}
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/**

* Simple FIR high pass filter with gain=g, stopband ws(in @) and N samples.

Eg
~ H(EeNw)

< W
pi-wc pi pi+wc

* ok ok ok ok *  *  *

*

* This implementation is a FIR filter is a rectangularly winded sinc function (eg
* sin(x)/x) multiplied by é(j*pi*n)=(-1) ~n, which is the optimal FIR high pass

* filter in mean square error terms.

*

* Specifically, h[n] has N samples from n=0 to (N-1)

* such that h[n] = (-1°(n-N/2) * sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/2)).

* where cutoffFreq is pi-ws

* and the field h holds h[-n].

*/
float—>float filter HighPassFilteffloat g, float ws, int N) {
float[N] h;
/* since the impulse response is symmetric, | don’t worry wbeversing h[n]. */
init {
int OFFSET= N/2;
float cutoffFreq= pi — ws,
for (int i=0; i<N; i++) {
int idx =i + 1,
[* flip signs every other sample (done this way so that it getayadestroyed) */
int sign= ((1%2) == 0) ? 1: —1;
/I generate real part
if (idx == OFFSEY)
[* take care of div by 0 error (lim x-00 of sin(x)/x actually equals 1)*/
h[i] = sign * g * cutoffFreq/ pi;
else
h[i] = sign * g * sin(cutoffFreq* (iIdx—OFFSET) / (pi*(idx—OFFSET));
¥
}
/* implement the FIR filtering operation as the convolutiomrs */
work peek N pop 1 push 1 {
float sum = 0;
for (int i=0; i<N; i++) {
sum += h[i]*peek);
}
push(sum);
pop();
}
}
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/**

* Simple FIR low pass filter with gain=g, wc=cutoffFreq(in d@ans) and N samples.

* EQ:

* ~ H(etjw)

* \

*

* | | |

* \ ! !

* < J|lﬂ\ll
* -WC wcC

*

* This implementation is a FIR filter is a rectangularly winded sinc function (eg
* sin(x)/x), which is the optimal FIR low pass filter in mearuate error terms.

*

* Specifically, h[n] has N samples from n=0 to (N-1)

* such that h[n] = sin(cutoffFreq*pi*(n-N/2))/(pi*(n-N/3).

* and the field h holds h[-n].

*/
float—>float filter LowPassFilteffloat g, float cutoffFreq int N) {
float[N] h;
[* since the impulse response is symmetric, | don’t worry wb@versing h[n]. */
init {
int OFFSET= N/2;
for (int i=0; i<N; i++) {
int idx =i + 1;
/I generate real part
if (idx == OFFSEY)
[* take care of div by 0 error (lim x-00 of sin(x)/x actually equals 1)*/
h[i] = g * cutoffFreq/ pi;
else
h[i] = g * sin(cutoffFreq* (Idx—OFFSET)) / (pi*(idx—OFFSET);
}
}
/* Implement the FIR filtering operation as the convolutiamrs */
work peek N pop 1 push 1 {
float sum = 0O;
for (int i=0; i<N; i++) {
sum += h[i]*peeki);
}
push(sum;
pop();
}
}
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Appendix B

Graphs of Streamlt Benchmarks

This appendix contains stream graphs for the Streamlt lmeadhsuite (detailed in Tabl2-10).
As described in Tabl2-11, many of the graphs are parameterized, and we often assajhaues

to the parameters in order to facilitate visualization aochprehension of the graph. Graphs with
different sizes, shapes, and work distributions can bemddeby varying the parameters.

The stream graphs reflect the structure of the original ippogram, prior to any transforma-
tions by the compiler. In practice, the compiler canonimzdieach graph by removing redundant
synchronization points, flattening nested pipelines, aldgsing data-parallel splitjoins. With the
exception of GMTI and MPEG?2 this canonicalization is disabled to illustrate the pesgmer’s
original intent.

In the stream graphs, each filter is annotated with the fatigwnformation:

e The filter name.

e The number of itenfspushed and popped per execution of the filter.

e The estimated work (number of cycles) per execution of therfil

e Peeking filters are annotated with the number of items pegechot popped) per execution.
e Stateful filters are annotated as such.

Filters are also colored to indicate their approximate amhad work relative to other filters
in the same program. The heaviest and lightest filters in grpro are assigned fixed colors, and
intermediate filters are colored on a linear scale betweetwh:

most work

least work

Work estimates are gathered statically and may differ byr2more from actual runtime values.
Work estimates are not available in some programs due taxigrates or Java subroutines. Also,
some individual filters are marked as having “unknown” warlcases where the work estimator
is known to perform poorly (while loops, recursive funcisoetc.)

1The stream graphs for GMTI and MPEG2 are canonicalized bysinepiler, in order to reduce their size and
improve the visualization.

2Some items may contain multiple values. For example, if a daannel carries items of array type, then the
graphs illustrate the number of arrays pushed and poppegkpeution.
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Figure B-1: Stream graph for 3GPP.
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Figure B-2: Stream graph for 802.11a.
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Figure B-3: Stream graph for Audiobeam.
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Figure B-4: Stream graph for Autocor.
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Figure B-5: Stream graph for BitonicSort (coarse).
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Figure B-6: Stream graph for BitonicSort (fine, iterative).

179



Comninbins )

Croundeobin )

~ 7

o)

minont

Toundbin(t )

i

foundrobing,1L1.L1LLIL

Crontetin1 1))

Toundrobin(t 47

'.n;mammixy')
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Figure B-11: Stream graph for ComparisonCounting.
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Figure B-12: Stream graph for CRC.
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Figure B-14: Stream graph for DCT2D (NxM, float).
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Figure B-21: Stream graph for FFT (fine 2).
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Figure B-25: Stream graph for FMRadio.
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Figure B-32: Stream graph for GP - shadow-volumes.
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Figure B-34: Stream graph for H264 subset.
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Figure B-35: Stream graph for HDTV.
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Figure B-43: Stream graph for JPEG transcoder.
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Figure B-48: Stream graph for Mosaic (teleport messageshawn).
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Figure B-50: Stream graph for MPD.
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Figure B-51: Stream graph for MPEG2 decoder (teleport ngessaot shown).
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Figure B-52: Stream graph for MPEG2 encoder (teleport ngessaot shown).
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Figure B-55: Stream graph for Radar (coarse).
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Figure B-56: Stream graph for Radar (fine).
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Figure B-57: Stream graph for RadixSort.
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Figure B-58: Stream graph for RateConvert.
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Figure B-59: Stream graph for Raytracerl.
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Figure B-60: Stream graph for RayTracer2.
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Figure B-61: Stream graph for SAR.
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Figure B-62: Stream graph for SampleTrellis.
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Figure B-63: Stream graph for Serpent.
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Figure B-64: Stream graph for TDE.
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Figure B-65: Stream graph for TargetDetect.
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Figure B-66: Stream graph for VectAdd.
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Figure B-67: Stream graph for Vocoder.
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