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Abstract

An experiment with a simulated macroeconomic system demonstrates that the

decision-making processes of agents can produce deterministic chaos. Subjects managed

capital investment in a simple multiplier-accelerator economy. Performance, however, was

systematically suboptimal. A model of the subjects' decision rule is proposed and related to

prior studies of dynamic decision making. Econometric estimates show the model is an

excellent representation of the actual decisions. The estimated rules are then simulated to

evaluate the stability of the subjects' decision processes. While the majority of the estimated

rules are stable, approximately 40% yield a variety of dynamics including limit cycles, period

multiples, and chaos. Analysis of the parameter space reveals a complex bifurcation

structure. Implications for models of human systems and experimental studies of economic

dynamics are explored.
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1. Introduction: coupling nonlinear dynamics and experimental economics

Recent work in the physical sciences has shown deterministic chaos to be a common

mode of behavior in dynamic systems, thus stimulating the search for chaos and other highly

nonlinear phenomena in human systems. Indeed, there has been a near explosion of models

and empirical studies which seek to show the relevance of nonlinear dynamics and chaos in

social and economic settings. Several journals have devoted special issues to chaos and

models of nonlinear, disequilibrium dynamics in human systems.^ This robust literature can

be divided roughly into (1) theoretical models of nonlinear dynamics, and (2) empirical

studies which seek evidence of chaos in economic data.

Theoretical studies include the work of Day (1982), Dana and Malgrange (1984),

Grandmont (1985), Rasmussen and Mosekilde (1988), Stutzer (1980), and many others (see

note 1). A survey of these studies suggests the following generalizations. First, many

standard models, both micro- and macroeconomic, when modified to include realistic

nonlinearities, can be shown to contain regimes of chaos and other nonlinear phenomena such

as mode-locking, period multiples, and quasiperiodicity. Benhabib and Day's (1981) studies

of such simple models lead them to "expect the possibility of erratic [chaotic] behavior for a

wide variety of dynamic economic models involving rational decision-making with feedback."

Subsequent work has borne out this conjecture - the possibility of chaos does not seem to

depend on particular behavioral assumptions but on more fundamental properties. However,

most models of nonlinear dynamics have been purely theoretical, and have not involved

econometric estimation of the parameters. The few exceptions have found the estimated

parameters lie well outside the chaotic regime, e.g. Candela and Gardini (1986) and Dana and

Malgrange (1984). As Day and Shafer (1985, 293) note,

"Whether or not we can construct empirical models that offer convincing explanation of real world

macro activity [in terms of deterministic chaos] is an open question: most economists would probably

agree that we are as yet quite far from a definitive answer to it. What we know now. ..is that among

the empirical phenomena that we can hope to explain. ..are stochasticlike fluctuations in economic data.

Moreover, we need not expect that exotic assumptions or bizarre model structures will be required"

(emphasis in original).
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The relative simplicity and theoretical focus of the models is entirely appropriate to the

early exploration of new concepts and analytical tools. However, the theoretical work to date

leaves unanswered questions about the relevance of these models. Can chaos arise from the

behavior of actual agents? Do the chaotic regimes in the models lie in the realistic region of

parameter space, or are they mathematical curiosities unrealized in actual economic systems?

The empirical literature has sought to answer these questions by searching for

evidence of chaos in economic data. This literature is notable for the clever adaptation of

techniques originally applied in physical settings, such as the Takens (1985) method for

recovering low-dimensional attractors from a single time series, the Wolf, Swift, Swinney,

and Vastano (1985) technique for estimation of Lyapunov exponents from experimental time

series, and the Grassberger-Procaccia (1983) correlation dimension. The results are

tantalizingly suggestive but inconclusive. Brock (1986) demonstrates a method to test the

hypothesis of chaos in economic data against explicit alternative hypotheses, but finds "that

there is not enough information available in U.S. real GNP, real gross private domestic

investment, and Wolfer's sunspot series. ..to reject the null hypothesis that.. .[these series

were] generated by an AR(2) process." Chen (1988) and Bamett and Chen (1988),

however, find evidence of low dimensional strange attractors in some but not all measures of

U.S. monetary aggregates. Their conclusions are tempered, however, by uncertainties such

as the sensitivity of the methods used to the number of data points, the number of points per

orbit, the (unknown) magnitude and statistical character of process noise, and the (unknown)

magnitude and character of measurement error [Ramsey and Yuan (1987)]. Brock (1986,

192) concludes "It is not enough when you are working with short data sets to report low

dimension and positive Lyapunov exponents to make the case for deterministic chaos in your

data" (emphasis in original). Ramsey, Sayers, and Rothman (1988) have identified

significant biases in calculations of correlation dimension caused by small sample size and

conclude "that while there is abundant evidence for the presence of nonlinear stochastic

processes, there is virtually no evidence at the moment for the presence of simple chaotic
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attractors of the type that have been discovered in the physical sciences."

The prevalence of chaos in the models but low power of aggregate statistical tests

motivates a complementary approach based on laboratory experiments with simulated eco-

nomic systems. The pioneering work of Smith (1982, 1986), Plott (1986), and others has

demonstrated that many economic theories can be successfully tested in the laboratory. This

paper applies these techniques to the investigation of chaos in economic systems. I report

the results of an experiment with a simulated macroeconomic system, specifically a multi-

plier-accelerator model. In the experiment, subjects play the role of managers of the capital-

producing sector of an economy. Each time period they must make a capital investment

decision. The task of the agents is to manage a complex dynamic system in disequilibrium, a

system with time lags, multiple feedbacks, and nonlinearities. I show that the behavior of the

subjects is systematically suboptimal, suggesting the use of a common heuristic for decision

making. A model of the subjects' decision rule is proposed. The model is well grounded in

the literature of economics, psychology, and behavioral decision theory. Econometric

estimation shows the decision rule explains the agents' behavior well. Next the estimated

decision rules are simulated, and it is shown that approximately 40% of the agents produce

unstable behavior, including chaos. The parameter space of the system is mapped and shown

to contain a complex bifurcation structure. Thus experimental evidence is adduced that the

actual decision processes of agents in a common economic context can produce chaos.

Limitations of the method, implications, and suggestions for future research are discussed.

2. The Model

The experiment is based on a simple model of the capital investment accelerator and

is fully described in Sterman (1988a). The model creates a two-sector economy with a

capital producing and goods producing sector. The focus is the capital investment accelerator.

Goodwin (1951, 4) notes that the traditional acceleration principle assumes

...that actual, realized capital stock is maintained at the desired relation with output. We know in

reality that it is seldom so, there being now too much and now too little capital stock. For this there

are two good reasons. The rate of investment is limited by the capacity of the investment goods
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industry.... At the other extreme there is an even more inescapable and effective limit. Machines, once

made, cannot be unmade, so that negative investment is limited to attrition from wear.. ..Therefore

capital stock cannot be increased fast enough in the upswing, nor decreased fast enough in the

downswing, so that at one time we have shortages and rationing of orders and at the other excess

capacity with idle plants and machines.

A single factor of production (capital plant and equipment) is considered. The model includes,

however, an explicit representation of the capital acquisition delay (construction lag) and the

capacity of the investment goods sector. As a result, orders for and acquisition of capital are

not necessarily equal, and at any moment there will typically be a supply line of capital under

construction. For simplicity, the demand for capital of the goods-producing sector is

exogenous, and there is no representation of the consumption multiplier.

The model allows for variable utilization of the capital stock. Thus production P is the

lesser of desired production P* or production capacity C. Capacity is proportional to the

capital stock, with capital/output ratio k:

Pt = MIN(P*„Ct) (1)

Ct = Kt/K. (2)

The capital stock of the capital sector is augmented by acquisitions A and diminished by

depreciation D. The average lifetime of capital is given by x:

Kt^l =Kj + (Aj-Dj) (3)

Dt = Kt/T. (4)

The acquisition of capital by both the capital and goods sectors (A and AG) depends on the

supply line of unfilled orders each has accumulated (the backlogs B and BG) and the fraction

of the backlog delivered that period
(J)

(the suffix 'G' denotes a variable of the goods-

producing sector):

A, = Bf4)t (4)

AGt = BGt•(^, (5)

<l>t = Pt/P*t (7)

P*t = Bi +BGt. (8)

Each period both the capital and goods sectors acquire the full supply line of unfilled orders
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unless the capital sector is unable to produce the required amount. If capacity is insufficient

so that P*>C, <t)<l and shipments to each sector fall in proportion to the shortfall. Note that

the formulation for
<J)
implies that A+AG=P at all times, ensuring that output is conserved.

The explicit representation of the construction supply line and the constraint on production

mean that the lag in acquiring capital may be variable. It is easily shown that the average

capital acquisition lag A=l/()). Normally, <\>=\ and A=l period. If capacity is inadequate,

however, <\> falls and A lengthens as the backlogs of unfilled orders grow relative to output.^

The supply lines of unfilled orders for each sector B and BG are augmented by orders

for capital placed by each sector and emptied when those orders are delivered:

Bui =Bt + (Ot-Ai) (8)

BGt+i - BGt + (OGfAGt). (10)

Orders placed by the goods sector are an exogenous input to which the subjects of the

experiment must respond by ordering an appropriate amount of capital for their own use:

OGt = exogenous (11)

Oj = determined by subject. (12)

Equations (1)-(12) thus define a third-order nonlinear difference equation system.

The system has the interesting property that the nonlinear capacity utilization function of eq.

(1) divides the system into two distinct regimes, (^=\ and (}><1. Furthermore, the equilibrium

point P* = C lies exactly at the boundary. Considering each region in turn reveals interesting

properties of the open loop system. When P*=P<C, 0=1, and the system is linear:

Kl+1

Bui

BGt.i

Bt

BGi

1

1

OG, (13)

Excess capacity implies each sector receives the quantity ordered after one period. Note that

the system in this regime is always stable. The capital stock is controllable via orders O (it

depreciates with lifetime T towards an equilibrium of T-0). BG is not controllable - when



D-3976

there is excess capacity, the goods-producing and capital-producing sectors are decoupled.

When capacity is inadequate, however, P*>P=C, (})<1, and the system is nonlinear.

Linearizing the system around the operating point (K, B, BG) and defining P* = B-i-BG and

^= (K/K)/P* yields

l-i.-L
T kP*

B

kP*

BG

kP*

<t> =^
P*

p*

P*

P*

p*

Kt
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seminal work of Smith (1982) and Plott (1986). The experimental protocol used here is

described in Sterman and Meadows (1985) and Sterman (1987, 1988a). A continuous time

version of the model is developed and analyzed in Sterman (1985). For the experiment it has

been converted to discrete time. Simulation and formal analysis confirm that the conversion

to discrete time does not alter the essential dynamics of the system [Rasmussen, Mosekilde

and Sterman (1985), Sterman (1988b)]. The experiment is implemented on IBM PC-type

microcomputers. A 'game board' is displayed on the screen and provides the subjects with

perfect information. Color graphics and animation highlight the flows of orders, production,

and shipments to increase the transparency of the structure (figure 1).^ No overt time

pressure was imposed. The parameters (k=1 and x=10) were chosen to minimize the

computational burden imposed on the subjects, while remaining close to the original values.

The subject population (N=49) consisted of MIT undergraduate, master's and doctoral

students in management and engineering, many with extensive exposure to economics and

control theory; scientists and economists from various institutions in the US, Europe, and the

Soviet Union; and business executives experienced in capital investment decisions including

several corporate presidents and CEOs.

Subjects are responsible for only one decision - how much capital to order. The goal

of the subjects in making these decisions is to minimize total costs. The cost function or

score S is defined as the average absolute deviation between desired production P* and

production capacity C over the T i>eriods of the experiment:

T

S-(})S|P*t-Cj. (16)

t=0

The cost function indicates how well subjects balance demand and supply. Subjects are

penalized equally for both excess demand and excess supply. Absolute value rather than

quadratic or asymmetric costs provide an incentive to reach equilibrium while minimizing the

complexity of the subjects' decision-making task. A caveat: monetary rewards were not
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used, in violation of Smith's (1982) protocol for experimental microeconomics. While many

economists argue that significant performance-based rewards are necessary to establish

external validity, a number of experiments in preference reversal [Grether and Plott (1979),

Slovic and Lichtenstein (1983)] suggest performance is not materially affected by reward

levels. Similar experiments have found weak or even negative effects of incentives on

performance, though the further study is needed [Hogarth and Reder (1987)]. Other

experiments in dynamic decision making suggest the results are robust with respect to

significant variations in the experimental environment. Sterman (1988c) describes an

experiment with a simulated production-distribution system in which financial rewards were

used. Like the model here, the experimental system contained multiple feedbacks,

nonlinearities, and time lags. Yet despite large differences in the experimental cover story,

information set, incentives, time pressure, and complexity of the underlying system, the

results strongly reinforce those of the present experiment and support the same decision rule

tested here, suggesting the relative insensitivity of the subjects to incentives and the

dynamic structure of the system. Other studies of dynamic decision making which generally

support the results here include Brehmer (1987) and MacKinnnon and Wearing (1985).

4. Results

The trials reported below were run for 36 periods. All were initialized in equilibrium

with orders of 450 units each period from the goods sector and capital stock of 500 units.

Depreciation is therefore 50 units per period, requiring the capital sector to order 50 units

each period to compensate. By eq. (8) desired production then equals 450 -f- 50, exactly equal

to capacity, and yielding an initial cost of zero. Orders for capital from the goods sector OG,

the only exogenous input to the system, remain constant at 450 for the first two periods. In

the third period OG rises from 450 to 500, and remains at 500 thereafter (figure 2). The step

input is not announced to the subjects in advance.

Several trials representative of the sample are plotted in figure 3; table 1 summarizes

the sample. Trial 16 is typical. The subject reacts aggressively to the increase in demand by
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ordering 150 units in period 2. The increase in orders further boosts desired production,

leading the subject to order still more. Because capacity is inadequate to meet the higher

level of demand, unfilled orders accumulate in the backlog, boosting desired production to a

peak of 1590 units in period 6. The fraction of demand satisfied ({) drops to as low as 52%,

slowing the growth of capacity and frustrating the subject's attempt to satisfy demand. Faced

with high and rising demand, the subject's orders reach 500 in the fifth period. Between

periods 7 and 8 capacity overtakes demand. Desired production falls precipitously as the

unfilled orders are finally produced and delivered. A huge margin of excess capacity opens up.

The subject slashes orders after period 5, but too late. Orders placed previously continue to

arrive, boosting capacity to a peak of over 1600 units. Orders drop to zero, and capacity then

declines through discards for the next 12 periods. Significantly, the subject allows capacity to

undershoot its equilibrium value, initiating a second cycle of similar amplitude and duration.

The other trials are much the same. While specifics vary the pattern of behavior is

remarkably similar. As shown in table 1, the vast majority of subjects generated significant

oscillations. Only 4 subjects (8%) achieved equilibrium before the end of the trial.

5. Proposed decision rule and estimation results

The qualitative similarity of the results suggests the subjects, though not behav-

ing optimally, used heuristics with common features. The decision rule proposed here was

used in the original simulation model upon which the experiment is based [Sterman (1985)]

and is a variant of rules long used in models of corporate and economic systems [Samuelson

(1939), Metzler (1941), Holt et al. (1960), Forrester (1961), Low (1980)]. The rule

determines orders for capital O as a function of information locally available to an individual

firm. Such information includes the current desired rate of production P*, current production

capacity C, the rate of capital discards D, the supply line SL of orders for capacity which the

firm has placed but not yet received, and the capital acquisition lag A:

Ot=/(P*t,Ct,Dt, SLt.At). (17)

Specifically, capital orders O are given by replacement of discards modified by an adjustment
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for the adequacy of the capital stock AC and an adjustment for the adequacy of the supply line

ASL. Accounting for the nonnegativity constraint on gross investment and allowing for an

additive disturbance E yields:

Ot = MAX(0, Dt + ACt + ASLt + Et). (18)

Each of the three terms represents a separate motivation for investment. To maintain the

existing capital stock at its current value, the firm must order enough to replace discards. The

firm is assumed to adjust orders above or below discards in response to two additional

pressures. The adjustment for capital AC represents the response to discrepancies between

the desired and actual capital stock. The adjustment for supply line ASL represents the

response to the quantity of capital in the supply line, that is, capital which has been ordered

but not yet received.

The adjustment for capital is assumed to be proportional to the gap between desired

capital stock DK and the actual stock. Desired capital is determined from the desired rate of

production P* and the capital/output ratio k:

ACt = aK(DKt - Kt

)

(19)

DKt=KP*t (20)

The adjustment for capital creates a straightforward negative feedback loop. When desired

production exceeds capacity orders for capital will rise above discards until the gap is closed.

An excess of capital similarly causes orders to fall below replacement until the capital stock

falls to meet the desired level. Note, however, that due to the capital acquisition lag this

negative loop contains a significant phase lag element, introducing the possibility of

oscillatory behavior. The aggressiveness of the firm's response is determined by the

adjustment parameter a^^.

The adjustment for the supply line is formulated analogously. Orders are adjusted in

proportion to the discrepancy between the desired supply line DSL and the actual supply line:

ASLt = asL(DSLt - SLt ). (21)

In general the supply line of unfilled orders may include several stages of the capital
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acquisition process such as orders in planning, orders in the backlog of the supplier, and

orders under construction. In the experiment these are aggregated into the backlog of unfilled

orders B, thus SL=B. The desired supply line is given by

DSLt = Dt -At- (22)

To ensure an appropriate rate of capital acquisition a firm must maintain a supply line propor-

tional to the capital acquisition delay. If the acquisition delay rises, firms must plan for and

order new capital farther ahead, increasing the desired supply line. The desired supply line is

based on the capital discard rate - a quantity readily anticipated and subject to little uncer-

tainty. To illustrate the logic of the supply line adjustment, imagine an increase in desired

capital. Orders will rise due to the gap between desired and actual capital stock. The supply

line will fill. If orders in the supply line were ignored (OgL =0), the firm would place orders

through the capital stock adjustment, promptly forget that these units had been ordered, and

order them again. The supply line adjustment creates a second negative feedback loop which

reduces orders for new capacity if the firm finds itself overcommitted to projects in the con-

struction pipeline, and boosts orders if there are too few. It also compensates for changes in

the construction delay, helping ensure the firm receives the capital it requires to meet desired

production. OgL reflects the firm's or subject's sensitivity to the supply line.

The decision rule in equations (18-22) is intendedly quite simple. Orders are deter-

mined on the basis of information locally available to the firm itself. Information an individual

firm is unlikely or unable to have, such as the value of the equilibrium capital stock or the cost

minimizing solution to the nonlinear optimal control problem, is not used. The firm's forecast-

ing process is rather simple: capacity is built to meet current demand. The rule includes

appropriate nonlinearity to ensure robust results: orders remain nonnegative even if there is a

large surplus of capital. The rule also expresses the corrections to the order rate as linear

functions of the discrepancies between desired and actual quantities. Undoubtedly the order-

ing rules of firms are more complex, and other work such as Senge (1980) considers various

subtleties. One can think of the linear part of the rule as the first term of the Taylor series
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expansion of the more complex underlying investment rule. A large literature in psychology

documents the ability of linear decision rules to provide excellent models of decision-making,

even when interactions are known to exist [Dawes (1982), Camerer (1981)].

It is useful to interpret the rule in terms of the cognitive processes of the agents. The

ordering rule can be interpreted as an example of the anchoring and adjustment heuristic

[Tversky and Kahnemen (1974)]. In anchoring and adjustment, a subject attempting to

determine an unknown quantity first anchors on a known reference point and then adjusts for

the effects of other cues which may be less salient or whose effects are obscure. For

example, a firm may estimate next year's sales by anchoring on current sales and adjusting

for factors such as macroeconomic expectations, anticipated competitor pricing, etc. Studies

have shown anchoring and adjustment to be a widespread heuristic. Indeed, anchoring is so

common that many people use it inappropriately. Numerous studies have documented

situations in which the adjustments are insufficient or in which judgments are inadvertently

anchored to meaningless cues [Hogarth (1987)]. In the experimental context, the capital

discard rate forms an easily anticipated and interpreted point of departure for the

determination of orders. Replacement of discards will keep the capital stock of the firm

constant at its current level (assuming the capital acquisition delay remains constant).

Adjustments are then made in response to the adequacy of the capital stock and supply line.

No assumption is made that these adjustments are in any way optimal or that firms actually

calculate the order rate as given in the equations. Rather, pressures arising from the factory

floor, from the backlog of unfilled orders and disgruntled customers, and from corrmiitments to

projects in the construction pipeline cause the firm to adjust its investment rate above or

below the level which would maintain the status quo. For agents in the experiment the

interpretation is parallel: replacing discards to maintain the status quo is a natural anchor.

Adjustments based on the adequacy of the capital stock and supply line are then made.

Again, there is no presumption that subjects explicitly calculate the adjustments using the

formulae in the equations [see e.g. Einhom, Kleinmuntz, and Kleinmuntz (1979)].
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The adjustment parameters a^ and a^^ reflect the firm's or subject's response to

disequilibrium: large values indicate an aggressive effort to bring capacity and the supply line

in line with their desired levels; small values indicate a higher tolerance for, or negligence of,

discrepancies between desired and actual stocks. For both the real firm and the subjects, the

hypothesis that decisions are made via a heuristic such as the proposed rule is motivated by

the observation that the complexity of determining the optimal rate of investment overwhelms

the abilities of the managers and the time available to make decisions [Simon (1982)].

To test the rule only the two adjustment parameters a^ and Osl need be estimated.

All other data required to determine orders are presented directly to the subjects. Maximum

likelihood estimates of the parameters for each trial were found by grid search of the

parameter space, subject to the constraints a^, CgL ^ 0- Assuming the errors e are Gaussian

white noise then the maximum likelihood estimates of such nonlinear functions are given by

the parameters which minimize the sum of squared errors. Such estimates are consistent and

asymptotically efficient, and the usual measures of significance such as the t-test are

asymptotically valid [Judge et al. (1980)].

Estimates for 49 trials together with t-statistics are given in table 2. The model's

ability to explain the ordering decisions of the subjects is excellent. R2 varies between 33%

and 99+%, with an overall R^ for the pooled sample of 85%.'* All but two of the estimates of

a^ are highly significant. The supply line adjustment parameter is significant in 22 trials, and

not significantly different from zero in 27. Of course, zero is a legitimate value for Qsl, and

the estimate of a^L for 23 subjects is zero. The estimates of a^L range from to 4.4 while the

mean 95% confidence band for the zero estimates is .17, less than 4% of the range of a^L,

indicating that the 23 zero estimates of ttjL are quite tight.

6. Simulation of the estimated decision rules

The estimation results indicate that the model is a good representation of the sub-

jects' decision-making. Sterman (1988a) analyzes the estimated parameters and identifies

several 'misperceptions of feedback' which are responsible for the subjects' poor performance.
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One of these is the tendency for subjects to give insufficient attention to the supply line, as

indicated by the large number of small estimates for a^L- By ignoring the supply line subjects

continue ordering even after the construction pipeline contains sufficient units to correct any

stock discrepancy. Such overordering is a major source of instability in the closed loop sys-

tem. The present concern, however, is the relationship between the estimated parameters

and the regimes of behavior in the model. Even though the subjects do not behave optimally

in disequilibrium, one might expect that their decision rules would ultimately return the sys-

tem to a low cost equilibrium. Simulation of the estimated rules shows this is not the case.

The rightmost column of Table 2 indicates the mode of behavior produced by

simulation of the decision rule with the estimated parameters. The parameters estimated for

thirty subjects (61%) are stable. Most of these produce overdamped behavior of the capital

stock in response to the step input. Seven parameter sets produce limit cycles of period 1

and one produces period 5. The parameters which characterize eleven subjects (22%)

produce chaos. Inspection of table 2 shows that the subjects whose parameters are stable

performed best in the task while those whose parameters produce periodic behavior or chaos

generally had the highest costs. 1-way ANOVA confirmed the relationship: the costs

achieved by the subjects strongly depend on the mode produced by simulation of the

estimated decision rule (p<.01 when the modes were coded as stable, periodic, or chaotic).

Figure 4 shows time domain and phase portraits for simulations of several sets of

estimated parameters. In all cases the orbits are roughly egg-shaped, with clockwise flow.

To explicate the dynamics, consider figure 4a, showing the period 1 limit cycle produced by

the parameters of subject 18 (.62, .43; R^ = .86). In equilibrium desired production must equal

capacity; the locus of such points is given by the 45° line. Below the line there is excess

capacity and the system is linear and stable; above it there is insufficient capacity and the

system is highly nonlinear and unstable. Given the steady input of orders from the goods

sector of 500 units, the equilibrium point for the system as a whole lies at (555.55, 555.55).

At t=l capacity is insufficient. Shipments lag new orders, so the backlogs of the goods sector
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and capital sector grow. Rising desired production induces additional orders from the capital

sector, causing rapid increase in desired production. Capacity, held down by the inability of

the capital sector itself to fill all orders and the consequent rationing of output, lags behind.

As capital stock grows, however, new orders placed by the capital sector slow, and the

backlog is shipped at an increasing pace. Desired production peaks at t=6. Capacity now

grows rapidly as the capital sector is increasingly able to fill orders. Between t=7 and t=8

capacity overtakes desired production, which falls rapidly since capacity is now large enough

to deliver the entire supply line in one period. As desired production plummets, capacity

reaches its peak and capital sector orders to fall to zero (t=9). Desired production is then

sustained only by the exogenous demand of the goods sector (500 units/period). Deprecia-

tion causes capital stock to decline slowly, until at t=15 capital stock has fallen to a level low

enough to cause the capital sector to place new orders. However, these new orders cause

desired production to rise, and by the next period capacity is once again insufficient to satisfy

demand, initiating the next cycle. The dynamics are the same for the period multiples and

chaotic solutions, except that the trajectory does not close after one orbit.

The trajectories of chaotic systems are sensitive to initial conditions. The routes of

nearby points through phase space diverge exponentially until the initial difference in the

positions balloons out to fill the entire attractor. The time average rate of exponential

divergence of neighboring points is given by the largest Lyapunov exponent L+ [Wolf et al.

(1985)] which may be defined as

L^=lim|log2|xI (23)

where the separation vector x connects neighboring points in phase space. A positive

exponent means nearby points diverge and indicates chaos; a negative exponent denotes

convergence of nearby points. Because the Lyapunov exponents describe the long-term

average behavior of nearby trajectories, any finite segment of the behavior may diverge from
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that average, including temporary reversals of sign. Nevertheless, a rough estimate of L+ is

given by the slope of

L^(t)t=log2|x| (24)

over long intervals. To calculate L^(t)t for each of the estimated decision rules, production

capacity was jjerturbed by one part in a trillion in the 10,0(X)th period. The separation vector

|x| was measured in the two-dimensional space defined by production capacity and desired

production. Since desired capacity is the sum of the two backlogs, this output space reflects

all three state variables in the system. Figure 5 shows the evolution of L^(t)t for the

parameters of subject 16 after the perturbation. The phase plot for these parameters is

shown in figure 4. The average slope of L^(t)t is clearly positive, indicating the system is

chaotic. The magnitude of the Lyapunov exponent is approximately .1 bits/period. The values

of L^ for the subjects whose decision rules are chaotic range from about .01 to .1 bits/period,

with an average of about .04 bits/period.

The magnitudes of the exponents determine the rate at which information about the

state of the system, and hence the ability to predict its trajectory, is lost. The large mea-

surement errors in economic systems [Morgenstem (1963)] dictate severe limits on pre-

dictability in chaotic systems. Thus if the states of the model economy were known with the

not unrealistic measurement error of about 12% (3 bits of precision), the average Lyapunov

exponent of .04 implies the uncertainty in the trajectory would grow to fill the entire attractor

after only about 75 periods, corresponding in the experimental system to roughly 5 orbits.

Additional precision buys little in additional predictability: cutting measurement error by a

factor of two would delay the complete loss of predictability by less than 2 orbits. Of course

these calculations assume no external noise, perfect specification of the model, and perfect

estimates of the parameters, and thus represent an upper bound on the prediction horizon.

7. Mapping the parameter space

Additional effects of chaos on predictability arise due to uncertainty in the estimated
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parameters. Figure 6 locates the modes of behavior of the estimated decision rules in

parameter space. The estimated parameters are clustered in the region 0<aK<l, 0<asL^l,

with the few outside this region falling approximately along the line cxsL=aK. Consistent with

intuition, the stable decision rules are confined to the region where aj^ is small and a^L is

large, while the chaotic decision rules generally involved aggressive stock adjustment and

weak supply line adjustment. More aggressive attempts to correct the discrepancy between

the desired and actual capital stock are destabilizing: by ordering more aggressively the sub-

ject induces a larger increase in total demand, thus exacerbating disequilibrium and encour-

aging still larger orders in future periods. Conversely, more aggressive response to the

supply line is stabilizing by constraining orders as the supply line fills. More formally, a^

determines the gain of the oscillatory negative feedback loop while ajL controls the first-

order, stabilizing supply line loop. To test this hypothesis the estimated parameters were

regressed on the log of the cost function S. Costs provide a rough measure of instability since

high costs indicate large excursions from equilibrium (standard errors in parentheses, trial 1

deleted as an outlier):

ln(S) = 5.3 -I- I.TOk- l.lasL, R2=.43, F=16.8 (N=48). (25)

(.13) (.33) (.30)

The results are highly significant and confirm the overall relationship between the parameters

and stability. But is the parameter space as smooth as these results suggest?

Figure 7 maps the parameter space for 0<aK^l and 0<asL^l in steps of .005,

representing over 40,CX)0 simulations. ^ This region includes 86% of the estimated parameter

sets, clearly showing that the fluctuating steady state solutions, including the chaotic

solutions, lie in the managerially meaningful region of parameter space. The resulting

bifurcation structure is surprisingly structured. First, the boundary for the bifurcation from

fixed point to cyclic attractors appears to be a straight line, with stable solutions satisfying

asL > 2.29aK - .706, R2 = .99946 (N=42). (26)

(.0085) (.0046)
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Rasmussen, Mosekilde, and Sterman (1985) show that the transition from local stability to

instability at the equilibrium jx)int involves a Hopf bifurcation. In the region where capacity

is inadequate (<))<1) the linearized closed-loop system is oscillatory, but for small values of

a^ or large values of a^L. the eigenvalues lie inside the unit circle, producing damped

behavior and a stable fixed-point attractor. As the parameters become less stable (larger Oj^

or smaller Csl) the eigenvalues cross the unit circle and the system produces expanding

oscillations. These fluctuations are ultimately bounded by the nonlinearities, particularly the

nonnegativity constraint on orders and the flexible utilization of capacity in equation (1).

Inside the region of fluctuating steady state solutions, several features are apparent.

Note first the striations of periodic behavior which cut across the space at a somewhat

shallower angle than the stability/instability boundary. The bands are thicker near the

transition to stability and thinner away from it. Second, note the several large regions in

which the periodic solutions are very sparse.

Figure 8 magnifies the region .55<aK<.65, .50<asL^.60 by a factor of ten in each

direction. Both the chaotic regions and the bands of periodic behavior are now seen to contain

irregularly distributed islands of other periodicities. Further magnification (not shown)

reveals still more such islands. Such irregularity is characteristic of the fractal boundaries

common in the bifurcation maps of many systems.

Simple though the model is, it is capable of generating a wide array of complex

behaviors. The complexity of the parameter space shows that even small errors in estimates

of the parameters may have large qualitative effects on the mode of behavior produced by the

system. Indeed, the simulations here do not exhaust the possibilities. All the simulations

described here involved no external forcing (goods sector orders for capital were constant).

Larsen, Mosekilde, and Sterman (1988) have shown that sinusoidal forcing in goods sector

orders (mimicking the effects of the business cycle or other cyclical modes in the economy)

causes mode-locking, quasi-periodic solutions, and a devil's staircase to emerge.
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8. Discussion

It is common in the social sciences to assume that decision-making behavior and thus

the dynamics of human systems are, if not optimal, then at least stable. These results show

that formal rules which characterize actual managerial decision making can produce an

extraordinary range of disequilibrium dynamics, including chaos.

Such complexity suggests strong lessons for modelers of economic and social

dynamics. The experiment shows that the regimes of fluctuating steady-state behavior,

including chaos, lie squarely in the middle of the realistic region of parameter space. In

consequence modelers can ignore nonlinear dynamics only at their peril. Models of economic

and social dynamics should portray the processes by which disequilibrium conditions are

created and dissipated. They should not assume that the economy is in or near equilibrium at

all times nor that adjustment processes are stable. Models should be formulated so that they

are robust in extreme conditions, since it is the nonlinearities necessarily introduced by

robust formulations that crucially determine the modes of the system [see Day (1984)].

At the same time a number of questions regarding the the generalization of the results

to the real world and the practical significance of chaos must be asked. Chaos is a steady-

state phenomenon which manifests over very long time frames, but many policy-oriented

models are concerned with transient dynamics and nearly all with time horizons much shorter

than those used in the analysis of chaotic dynamics. For example the simulations here were

run for 10,000 periods or more. Over such extended time horizons the parameters of the

system cannot be considered static but will themselves evolve with learning, evolutionary

pressures, and exogenous changes in the environment. There is evidence [Sterman (1988a),

Bakken (1988)] that subjects begin to learn within just a few cycles, modifying the

parameters of their ordering function. It appears that in the present experiment learning

slowly moves the subjects away from the chaotic region towards the region of stability.

However, the existence of chaos may itself hamper learning. Even though deterministic

cause-effect relations exist in chaotic systems, it is impossible to predict the effects of small
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changes in initial conditions or parameters. Does such 'randomness' slow the discovery of

cause and effect by agents in the economy and thus hinder learning or evolution towards

efficiency? Indeed, does learning alter the parameters of decision rules so that systems

evolve towards or away from the chaotic regime? Some argue that chaos may be adaptive. In

a world whose 'fitness space' contains many local optima, a decision rule that produces chaos,

by constantly exploring new pathways, may help a system evolve faster than a stable,

incremental decision making strategy [Prigogine and Sanglier (1987), Allen (1988)].

Chaos places an upper bound on prediction, but is that bound a binding constraint in

social systems? Real social systems are bombarded by broadband noise, and it is well

known that such random shocks severely degrade predictability. Does the magnitude of

stochastic shocks swamp the uncertainty in trajectories caused by chaos? How does the

existence of chaotic regimes in a model influence its response to p)olicies, and the

predictability of that response? Particularly troubling here is the potential for fractal basin

boundaries in both initial condition and parameter space. Policy interventions often imply

changes in the parameters of a decision rule or model. How can policy analysis be conducted

if the "policy space" contains fractal basin boundaries? In such systems parameter changes

on the margin may produce unpredictable qualitative changes in behavior, as illustrated by the

fractal distribution of modes shown in figures 7-8. Therefore learning and experience may not

transfer to circumstances which differ only slightly. Learning often involves a hill-climbing

procedure of incremental movement towards a profit-maximizing peak in parameter space.

How well can agents negotiate that space when the landscape not only has many local

optima but is fractal as well? The development of principles for policy design in such systems

is a major area for future research. The practical significance of chaos and other nonlinear

phenomena in policy-oriented models of social and economic behavior remains clouded while

these questions are unanswered. Some of these questions may be resolved by further

application of the experimental techniques demonstrated here.



D-3976 21

9. Conclusions

The discovery of nonlinear phenomena such as deterministic chaos in the physical

world naturally motivates the search for similar behavior in the world of human behavior. Yet

the social scientist faces difficulties in that search which do not plague the physicist, at least

not to the same degree. Aggregate data sufficient for strong empirical tests simply do not

exist for many of the most important social systems. Social systems are not easily isolated

from the environment. The huge temporal and spatial scales of these systems, vast number

of actors, costs and ethical concerns make controlled experiments on the systems themselves

difficult at best. Finally, the laws of human behavior are not as stable as the laws of physics.

Electrons do not learn, innovate, collude, or redesign the circuits in which they flow.

Laboratory experiments appear to provide a fruitful alternative. Since experiments on

actual firms and national economies are infeasible, simulation models of these systems must

be used to explore the decision making heuristics of the agents. Such experiments create

'microworlds' in which the subjects face physical and institutional structures, information, and

incentives which mimic (albeit in a simplified fashion) those of the real world. It appears to

be possible to quantify the decision making heuristics used by agents in such experiments

and explain their performance well. Simulation then provides insight into the dynamic

properties of the experimental systems.

These results demonstrate that chaos can be produced by the decision making

processes of real people. The experiment presented subjects with a straightforward task in a

common and important economic setting. The subjects' behavior is modeled with a high

degree of accuracy by a simple decision rule consistent with empirical knowledge developed

in psychology and long used in economic models. Simulation of the rules produces chaos for a

significant minority of subjects. Chaos may well be a common mode of behavior in social and

economic systems, despite the lack of sufficient information to detect it in aggregate data.
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Notes

1 Journal of Economic Theory, 40 (1) 1986, Journal of Economic Behavior and Organization, 8

(3), September 1987; System Dynamics Review, 4, 1988, European Journal of Operational

Research, 35, 1988. See also Goodwin, Kruger, and Vercelli (1984) and Prigogine and

Sanglier (1987).

2. Conservation of output requires P = A + AG. But A + AG = B(t) + BG({) = (})(B + EG) =

(P/P*)(B + BG) = P. By Little's law, the average residence time of items in a backlog is the

ratio of the backlog to the outflow, here given by A = (B + BG)/(A + AG). By eq. 4-5, (B +

BG)/(A + AG) = (B + BG)/(B-(t) + BG<t)) = 1/<|).

3. Disks suitable for IBM PC's and compatibles, or for the Apple Macintosh, are available

from the author.

4. Note that the function 0=f(-) does not contain an estimated regression constant. Thus

the correspondence of the estimated and actual capital orders, not just their variation around

mean values, provides an important measure of the model's explanatory power. Since the

residuals e need not satisfy Zct = 0, the conventional R2 is not appropriate. The alternative

R2 = 1 - Xct^ / ZO,2 is used (Judge et al. 1980). This R2 can be interpreted as the fraction of

the variation in capital orders around zero explained by the model.

5. Each simulation was 10,000 periods long. The first 8000 were discarded in assessing the

steady state mode of behavior. 10 digit accuracy was used. A simulation was assumed to be

chaotic if the trajectory did not close after 100 orbits.
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Figure 1. Computer screen showing experimental economy, initial configuration.

The subject is about to enter new orders for capital sector.
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Figure 2. Exogenous orders of the goods sector. Each trial begins in equilibrium. In period 2

there is an unannounced step increase in new orders placed by the consumer goods sector

from 450 to 500 units. Compare against subjects' behavior shown in figure 3.
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Figure 3. Typical experimental results. N.B.: vertical scales differ.
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Table 1. Summary of experimental results.

Experiment Optimal

(Std. Dev. in parentheses)

N=48*

Costs

(units)
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Table 2. Estimated parameters and mode of behavior of simulated decision rules

Trial
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Figure 4. Simulation of estimated decision rules. Note similarity to the experimental results

(figure 3).
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Figure 5. Evolution of log2|x|, the distance between two neighboring trajectories, for

simulation with parameters of subject 16 (2.49, 2.90) after perturbation of capacity by factor of

vl210 in period 10,000. The largest Lyapunov exponent, given approximately by the average

slope, is positive, indicating that the two trajectories diverge exponentially and the system is

chaotic.
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Figure 6. Modes of behavior produced by simulation of the estimated parameters. Lower

graph magnifies area bounded by 0<aK<l, 0<asL^l.

Chaos
* Period 1

Period 5

« Stable

Chaos
* Period 1

Period 5

X Stable



D-3976 35

(Captions for figures 7 & 8; figures on following pages)

Figure 7. Map of parameter space for 0<aK^l and 0<asL^l. Simulations were performed in

steps of .005, representing 201 = 40,401 simulations.

Figure 8. Map of the region .55<aK<.65, .50<asL^-60 in increments of .0005. Magnifies

figure 7 by a linear factor of 10 in each direction. Note the islands of higher periodicities

irregularly distributed within the bands of periodic behavior.
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