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Abstract

An existing experimental facility was modified to allow for the mixing enhancement
associated with axisymmetric lobed mixers to be studied in reacting flows. A vertically-
standing burner created two axisymmetric co-flowing streams of air and fuel upon
which mixing enhancement could be performed. A turbulent, diffusive, momentum-
driven flame burned downstream of the exit nozzle. The facility was resized and
improved significantly to increase the flow rates and assure maximum safety. A lobed
nozzle to be used with the facility was designed to study streamwise vorticity enhanced
mixing. The facility was then tested for proper functioning. The performance of the
lobed mixer was also tested, using oil flow visualization and total pressure surveys. The
flow field along the nozzle and at the trailing edge was examined, and no boundary
layer separation was found to occur. Finally, total pressure surveys were conducted
downstream of the trailing edge to provide a qualitative characterization of the flow field
from both the lobed mixer and a "baseline" non-lobed mixer. The lobed mixer was found
to introduce large-scale streamwise vortices into the flow.
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1. Introduction

1. 1. Introduction

In most combustion processes, mixing is a crucial factor. How quickly and how

thoroughly the fuel and the oxidant are mixed greatly affects critical parameters such as

combustion efficiency, heat release rate, pollutant formation and combustor size.

One technology that has recently received considerable attention for enhancing the

mixing between co-flowing streams is the lobed mixer (cf. Figure 1.1). This type of device

has been used in recent turbofan engine configurations at the interface between the core

air and the bypass air ([15], [19]) where fast and complete mixing is required.

Using a lobed mixer increases the initial interfacial area between the two co-flowing

fluids and introduces large-scale streamwise vorticity into the flow. Both of these factors

increase the area of the interface through which the mixing occurs and enhance the

mixing process.

The objectives of the work presented in this thesis are :

* to build and test a facility which will allow the study of the mixing enhancement

associated with lobed mixers in reacting flows,

* to design a lobed mixer suitable for the study,

* to provide a preliminary characterization of the lobed mixer flowfield.



1. 2. Background

Early investigations of lobed mixers focused on the study of turbofan exhaust sections,

and the mixing between the core and the bypass air ([10], [6], [11], [20], [1]). These

studies. showed that lobed mixers can be used to enhance mixing with relatively low

total pressure loss. The lobe penetration angle, a, defined in Figure 1.1 was found to

have a strong impact on the mixing enhancement, provided the flow does not separate

from the surfaces of the lobes. The lobe penetration angle is directly related to the shed

streamwise circulation. Separation increases the pressure losses and reduces the mixing

effectiveness. Other applications of lobed mixers have also been investigated. For

instance, Presz, et al. [22] reported a significant increase in ejector pumping performance

when lobed mixers are used instead of conventional flat splitter plates.

The mixing process in lobed mixers was found to be related to :

1. the normal vorticity typical of a planar shear layer,

2. the streamwise vorticity generated by the lobed geometry,

3. the increase in the initial interfacial area between the two flows.

Indeed, while normal vorticity is inherent to mixing in a shear layer, streamwise

vorticity has been identified ([2], [22], [8]), along with the increase in interfacial area, as

the main agents which enhance mixing in lobed mixer flow. The relative importance of

the increase in initial interfacial area and the introduction of streamwise vorticity on the

mixing augmentation has been investigated by Manning [14], who found the

contribution of streamwise vorticity to increase with the velocity ratio between the two

flows. More recently, Qiu [23] identified the stretching of the mean cross-flow interface

as the main mechanism through which streamwise vorticity enhances mixing. Waitz and

Underwood [32] compared the mixing downstream of a lobed mixer to that of a flat plate

with varying amounts of heat release. They found that the lobed mixer flow was less

sensitive to the detrimental effects of heat release than the planar shear layer.

Nevertheless, most of the research on lobed mixer devices has focused largely on planar,

non-reacting flows, and the performance of axisymetric lobed mixers in reacting flows



remains to be studied. The critical issues include the influence of heat release on the

mixing performance and the impact of high strain rates on the chemical reactions taking

place at the interface between the fuel and the oxidizer.

1. 3. Objectives and approach

The purpose of the current project is to provide a means to experimentally compare the

mixing augmentation from a lobed mixer in cold and reacting flow. An experimental

facility constructed by McGrath [16] was used to test both a lobed and a non-lobed

("baseline") configuration. Experiments were conducted in cold-flow (with a co-flow of

air and of a helium-nitrogen mixture) as well as in reacting flow (by replacing the helium

by hydrogen). The velocity ratio between the air and fuel flows was also varied.

To support this effort the following tasks were completed and are discussed in this

thesis:

* The experimental facility was modified significantly to increase the flow rates and

allow the mixing enhancement associated with axisymetric lobed mixer in reacting

flows to be studied,

* A lobed mixer was designed to be used with the facility,

* Oil flow visualizations of the flow along the lobed nozzle were performed, as well as a

survey of the structure of the shear layer from both the lobed mixer and a "baseline"

non-lobed mixer. This survey employed time-averaged total pressure measurements

to outline the flow patterns downstream of the lobed mixer, in order to verify the

performance of the lobed mixer that was designed.

1. 4. Overview of the thesis

Modifications to the reacting flow facility are discussed in Chapter 2. The design of the

lobed nozzle is presented and discussed in Chapter 3. The experimental approach and



the results of the survey of the flow are then presented in Chapter 4. Finally,

recommendations for improvements and future investigations are made in Chapter 5.



FIGURE 1.1: LOBED MIXER
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2. Facility design

The first step of this study was to modify the facility to increase the flow rates and to

provide an easier, safer control system. In this chapter, the earlier characteristics of the

facility are first presented and reviewed. Then, the design changes that were investigated

are listed and discussed. Finally, the details of the changes that were implemented on

the facility are presented.

2. 1. Review of the previously existing facility

2. 1. 1. Design motivation

The ultimate objective of the project is to investigate mixing enhancement associated

with lobed mixers in axisymetric reacting flows. The experimental facility built for this

purpose has to generate a proper flowfield upon which mixing augmentation can be

performed. A vertically standing burner showed on Figure 2.1 serves this purpose,

creating two axisymetric co-flowing streams of air and fuel.

Since most of the applications which could benefit from lobed mixing technology

(turbojet afterburners, gas turbine and ramjet combustors, etc.) operate with turbulent

diffusion flames, the burner must generate a turbulent diffusion flame to reproduce the

reacting flows to be studied. As a guideline, a critical Reynolds number of 3500 is used

as the criterion for the transition to turbulent conditions. Further, in most practical

applications of lobed mixers, buoyancy forces are small compared to momentum forces.



Hence, as discussed in McGrath [16], the burner must generate a turbulent, momentum-

driven flame, to match the practical conditions as closely as possible. However, the flow

rates available in the facility were insufficient to reach such conditions. Thus the facility

had to be resized.

2. 1. 2. Features of the previously existing facility

The design of the facility was conducted by McGrath [16]. This design was used as a

basis for the present work and should be consulted for a detailed description of the

facility. An annular burner, shown in Figure 2.2 is fed by controllable flow rates of air

and of a hydrogen/nitrogen mixture.

The main features of the system are:

* the facility can be operated by a single person, from a separate room, through the use

of an extensive control panel shown in Figure 2.3. The control of the system includes

an automatic ignition system, commands controlling the air, hydrogen and nitrogen

flows.

* an efficient ventilation system rapidly evacuates burned and unburned gases from the

test cell,

* a reliable flame detection system turns off the system in case of an ignition fault, to

avoid hydrogen from spreading into the test cell,

* since the aim is to compare the results with non-reacting flow results under an array

of different conditions, the flame needs to have broad flammability limits. Hence, for

flame stability and flammability reasons, hydrogen was chosen as a fuel. In addition,

a specified amount of nitrogen can be mixed with the hydrogen before the mixture

enters the burner. Using nitrogen as a diluent allows the rate of heat release in the

mixing layer to be varied,

* an annular, vertically-standing burner, shown in Figure 2.4, was built. This burner

was designed to create a turbulent momentum-driven diffusion flame between two

co-flowing streams of air and fuel. It allows the operator to vary the vorticity in the

mixing process by changing the shape of the nozzle (lobed or non-lobed). The



operator can also control the level of turbulence of the flow exiting the burner by

adding or removing turbulence-controlling screens inside the burner,

* appropriate operating procedures have been elaborated to insure maximum safety

during each run.

* The diameter of the "baseline" core nozzle was chosen to be 1" The outer diameter

(diameter of the co-flow exit nozzle) is 5.5". This choice of diameters resulted from a

trade-off between the size of the shear layer (reducing the diameter would reduce the

size of the structures to be measured, causing potential resolution problems) and the

capacity of the gas supply (increasing the diameter would require higher flow rates

for the same exit velocity). Also, to avoid separation problems, the cross-sectional area

of both the core and the co-flow decrease axially along the nozzle, creating a favorable

pressure gradient (see section 3. 2. 1 for more details).

* The hydrogen and nitrogen are stored in compressed gas bottles. The air is supplied

through a laboratory-wide oil-free compressed air line, which can deliver a maximum

of 0.75 Ibs/s of air at 100 psi.

* The flow rates can be varied as follows :

Hydrogen flow : 0 to 30 SLPM (Standard Liter per Minute)

Nitrogen flow : 0 to 30 SLPM

Air flow : 0 to 50 SCFM (Standard Cubic Feet per Minute), i.e. 0 to 1415 SLPM.

Provided that the air flow exit area is A3 = 1.48 x 10 - 2 m2 and the fuel exit area is

A3 = 5.07 x 104 m 2 , this corresponds to a range of air to fuel velocity ratio from

approximately 0.3 to 3.

Furthermore, in order to have a turbulent momentum-driven flame in all cases (as

discussed in McGrath's thesis [16], pp. 26, 27 and 30), the exit velocities have to be

higher than 4 m.s-1 (cf. Figure 2.12 in McGrath [16]). Yet, the flow rates available yield

exit velocities of the order of 1 m.s-1. Hence, the facility required resizing.



2. 2. Resizing of the facility

To provide an effective range of velocity ratios from 0.3 to 3 while exceeding 4 m.s-1 in

all configurations, the exit velocities of each flow have to cover a range of approximately

4 to 12 m.s-1. For both the fuel and the air flows, the design velocity was v3c = 15 m.s-1 to

provide an operating margin. Since the flow rates of air and fuel must be sufficient to

reach 15 m.s-', the requirements for the air and fuel lines were changed. These changes

are discussed in the following section.

2. 2. 1. Flow rates

The flow rates needed to reach the required exit flow velocities are the main parameters

that set the size of the flow-controlling apparatus (such as flowmeters, 2-way solenoid

valves, etc.) which have to be installed in the lines. The flow rates are therefore crucial to

the sizing of the facility. This section details the calculation of the required flow rates for

both the fuel and the air lines.

2. 2. 1. a. Fuel lines

Assuming that all gases behave like ideal gases, the molar volumes of the two gases are

equal since they are under the same conditions (same pressure and temperature). Hence,

the volume fractions in the mixture are equal to the molar fractions. Therefore, the

density of the mixture of H2 and N2 is :

Ptota = X PH + Y'. PN2  (2.1)

where x and y are the molar fractions of H2 and N2. It is assumed that all gases are

incompressible.

The cross-sectional area of the tubing is the same everywhere in the fuel lines

(Atotai=AH2=AN2=A). Therefore, by conservation of the mass flow for each species:

~total = P totalAtotal = (x.pH2 + Y P N2 )Avtotai = 2 H+ rhN2 (2.2)

i.e.



rH2 = XVtota nlH 2A (2.3)

and

hN2 = YVtotalPN2A (2.4)

In terms of volumetric flow rates, this gives :

VH2 mH = xAvtotal = xVtotal (2.5.a)
PH2

VN2 = YVto (2.5.b)

For v 3, =15m.s- 1 and A3 = Dcore2= 5.067 x 10-4 m2 one gets:
4

Vtotal = AtVtottotal = A 3cv 3c = 7.6 x 10 - 3 m 3 .s - 1  (2.6)

Since the heat radiated from the flame should not increase the temperature in the test cell

over 1200 F, and since the Reynolds number should always be over 3500, McGrath [16]

determined that the upper limit in terms of hydrogen fraction in the mixture is :

x < 0.86 (i.e. y > 0.14)

Increasing the mass fraction of hydrogen over 0.86 would yield unacceptable Reynolds

number and cell temperature.

Using these values the maximum flow rate needed can be calculated :

* for H2 : VH2 = Xmaxt = 6.51.s-1 = 392SLPM

* for N 2 : in consideration of the value of the maximum H2 flow rate, the N2 line

was sized to provide up to 300 SLPM.

Most of the equipment installed on the fuel lines was not appropriate for such flow rates,

and had to be changed. Namely, the pressure regulators, solenoid valves, check valves,

flowmeters, manual closing valves, particle filters were changed. The features of the new

equipment are presented in Appendix A.



2. 2. 1. b. Air line

For the air line :

A3 = (D2 - Dre)= 1.48 x 10-2 m2 (2.7)

where Do and Dco designate respectively the diameter of the co-flow cylinder and the

core flow cylinder.

And since v3 = 15 m. s-1, this yields :

V3 = A3v3 = 2.22 x 10-1 m3.s- 1 = 1.3 x 104 SLPM = 470SCFM

Once again, some of the air-controlling equipment installed in the facility was not

appropriate. For the air line, the flowmeter was changed. The features of the new

flowmeter are detailed in Appendix A.

2. 2. 2. Pressure losses

The pressure losses across the fuel lines (hydrogen and nitrogen) were estimated, to

determine the pressure level required to drive the desired flow rate through the lines. At

the exit of the regulators (which control the flow exiting the bottles), 2-way solenoid

valves rated to 200 psi are used, and it is therefore not advisable to exceed pressure levels

higher than approximately 200 psi.

The pressure losses occurring through the lines can be written as the sum of the losses

due to the friction along the tubes and the losses occurring through each flow-controlling

device (flowmeters, valves, junctions, filters, ...) :

AP = APubing + AP (2.8)

where each integer i refers to a flow-controlling device.

Equation (2.8) can be detailed [7] :

AP = -f-p-+ - K, 2 (2.9)
D 2 2 '



where f is the friction coefficient of the inner walls of the tubing, D is the diameter of the

tubing, and Ki are the loss coefficients for each flow-controlling device and each change

in the inner geometry of the tubing (contractions, T-intersections, elbows, etc.).

In addition:

v = - - (2.10)
A D 2

Hence, for a given tube diameter, the pressure losses scale like 2 2 . Determining the

pressure losses for a given exit velocity will indicate whether using the same installation

with roughly 10 times higher flow rates (as is intended) is possible.

The dynamic pressure at the exit of the burner was measured using a pitot tube linked to

a pressure transducer. The uncertainty of this measure is of the order of 0.5 Pa (taking

into account the reading uncertainty). The upstream pressure was read on the gas

regulator, at the exit from the compressed bottle (the uncertainty of this second measure

is roughly 10 psi, taking into account the reliability of the indication and the reading

uncertainty).

The exit velocity was calculated using the dynamic pressure in the exit free jet :

VZ3 = !_ (2.11)

The results are shown on Table 2.1.

Total Pressure (in Pa)
@ exit of N2 regulator

(8.3 ± 0.7)x105  (15.9 ± 0.7) x105

Dynamic Pressure (in Pa) 11 ± 5 37 ± 5
in the exit free jet

Exit Velocity (in m.s-1) 4 1 8 1

TABLE 2.1 : PRESSURE LEVELS AND BURNER EXIT VELOCITY FOR 1/4" LINES

These results show that reaching the required exit velocities (= 15 m.s-1) would require

increasing the pressure at the exit from the regulators to unacceptable levels (much



higher than 200 psi). Therefore, the lines could not be used as they were. Thus, the

tubing was upgraded to " outer diameter (instead of 1'4") and the flow-controlling

devices were changed to "-section higher capacity apparatus (cf. Appendix A for

details).

Equations (2.9) and (2.10) show that, for a given flow rate, the pressure losses decrease

like the diameter of the duct squared. Hence, doubling the diameter should decrease the

pressures losses sufficiently to reach exit velocities of the order of 15 m.s-1 without an

upstream pressure in excess of 200 psi.

2. 2. 3. Minimum time span for testing

The increase in the flow rates also raises the problem of the capacity of the compressed

gas bottles used as nitrogen and hydrogen tanks. Because of the high flow rates, those

bottles will rapidly discharge, and one has to make sure that the time available for each

run before the bottles are empty is sufficient.

The volume and pressure of each bottle is :

VbottL = 3.7 x 10 - 2 
m

3 and Pbottl, 2500 psi = 170 atm

Therefore, the volume occupied by the gas in the bottle under standard conditions can be

estimated as follows :

Pbottle v 
3

std Pstd bottle = 6.3m (2.12)
Pstd

The characteristic time for the complete discharge of a bottle is :

S= std (2.13)

And the highest flow rate reached for bottle-stored gases will determine the limiting test

time available. The maximum flow rate is VH2 = 400 SLPM, which gives:

Z = =_ 15 minutes
VH2



This time is sufficient to allow multiple measurements of the flame and should be

adequate for the expected testing procedures (e.g. cross-plane surveys of the flow using

laser diagnostics).

2. 2. 4. Safety

The use of hydrogen gas in the facility raises numerous safety issues. The most

significant hazards associated with the use of hydrogen are :

* H2 gas undetectability,

* quasi-undetectability of a clean H2-Air flame,

* wide flammability limits (the H2-Air mixture is flammable for H2 composition from

4% to 75% in volume). H2 build up in the test cell must be prevented,

* ignition of H2-Air mixture at very low energy input (0.02 mJ at 1 atm, i.e. 1/10 of what

is required for a gasoline flame mixture). Hence, any potential sparks must be

avoided in the wiring,

* low viscosity and molecular weight of H2. The system will therefore be susceptible to

leakage problems.

To minimize the danger for the operator, the control of the whole system can be

accomplished from a separate room. Ignition, control of the flow rates, purges, regular

and emergency stops do not require the operator to get exposed to hydrogen. Moreover,

a complete purge of the hydrogen line including the regulator can be performed prior to

any hydrogen bottle change, to avoid unnecessarily exposing the operator.

Improvements were also made on the safety features of the facility. These improvements

are discussed in the next section.



2. 3. Changes implemented on the facility

This section presents the changes that were implemented on the facility, as well as the

corresponding operating procedures. Most of these changes were made on already

existing features, but some new features were also installed.

2. 3. 1. Modified features

As previously mentioned, the hydrogen and nitrogen lines were upgraded to " tubing.

When necessary, flow-controlling devices were also upgraded (cf. Appendix A for the

features of the new equipment).

Some of the features of the control box have been improved :

* The display of the nitrogen-feed and air-feed functions was changed to clearly show

its status (cf. Figure 2.3). For each gas, a separate button corresponds to each of the

ON or OFF positions. In addition, the air-feed and nitrogen-feed are now being reset

whenever the system is shut down (previously, if the air-feed or the nitrogen-feed

were operating during shut-down, they would restart as soon as the system is

restarted).

* A "hydrogen regulator purge" function has been implemented. Before any hydrogen

bottle change, the operator can purge the hydrogen regulator by pressing a button on

the control panel. This procedure also purges the hydrogen relief lines, since the

excess gas is evacuated through the relief valves.

* The possibility of running cold-flow tests has also been implemented. Previously, the

system did not allow the experiments with non-reacting gases (using helium instead

of hydrogen), since it would shut down if no flame was detected ("ignition fault"

sequence). An aircraft safety switch has been implemented (inside the control box to

avoid unintentionally switching to ON during a run involving hydrogen) to disable

the ignition fault sequence (this switch is labeled "controller bypass"). Hence, the

system can now be run without a positive response of the flame detector. Also,

another switch has been installed on the ignition power supply, to disconnect the

ignition system, since it is not used during cold flow testing.



Finally, a pressure gage was installed in the fuel line, just before the flash arrestor (i.e.

about 3 feet before the inlet of the burner), to verify the existence of a flow through

the lines during purges. This assures the operator that the purge is taking place.

2. 3. 2. New operating procedures

The potential danger associated with the cold-flow testing function calls for strict

operating procedures. Leaving the cold-flow switch ON when going back to hydrogen

runs would indeed mean that in case of an ignition fault, the system would pump

unburned hydrogen into the test cell without detecting it. This section lists the steps to

follow whenever running cold-flow experiments (the control panel is shown on Figure

2.3).

1. If running, stop the system (by pressing the "stop" button),

2. Close the hydrogen bottle and replace it by helium if necessary (purge the hydrogen

regulator following the procedure described by McGrath [16]),

3. Turn the switch on the back of the ignition system power supply to the "ignition

OFF" position,

4. Turn the "ignition fault bypass" switch (inside the control box) to the ON position,

5. Hit the "purge" button,

6. Hit the "start" button,

7. Run the experiment,

8. Hit the "stop" button when done,

9. Switch the "ignition fault bypass" back to OFF,

10.Switch the ignition power supply back to ON,

11.Reinstall and reopen the hydrogen bottle.

A more general "check list" covering the standard procedures is presented in McGrath

[16]. It should be reviewed whenever starting the facility to insure maximum safety.
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3. Lobed nozzle design

The design of the lobed mixer nozzle used for the study of the mixing enhancement

associated with lobed mixers in reacting flow is discussed in this chapter. First, as a

guideline, the essential processes responsible for the mixing enhancement associated

with lobed mixers are introduced. Second, the important factors that determine the

design are discussed. These include fluid dynamic issues (e.g. production of streamwise

vorticity and boundary layer blockage) and structural issues (thermal stresses). At last,

the final design choices are described and justified using the results of the analysis that

has been developed.

3. 1. Theoretical background

This section discusses the role of the different components of vorticity (streamwise and

normal) on the mixing process in a shear layer. In particular, the geometric and flow

parameters that are important to the mixing in a lobed mixer are pointed out. This

analysis will allow a better understanding of the mixing in a shear layer and will be used

as a guideline for the choice of the lobed mixer design parameters.

3. 1. 1. Vorticity in a shear layer

In a two-dimensional shear layer (e.g. for a splitter plate geometry), the flow is

dominated by normal (spanwise) vorticity [5]. The velocity differential between the two

flows results in a Kelvin-Helmholtz instability, which occurs downstream of the trailing



edge. For axisymetric shear layers, these spanwise vortices take the form of a "ring"

vortex roll similar to the one shown for a lobed mixer in Figure 3.1. While these

structures provide the basic mechanism for mixing, the introduction of streamwise

vorticity into the flow can be used to augment mixing.

Investigating the physics of the production of streamwise vorticity, Werle, et al. [33]

found that the vortex formation was an inviscid process. The transverse penetration of

the lobes into the flow causes the pressure to vary along the lobes in the spanwise

direction. Due to this non-uniform loading, streamwise vorticity is shed from the trailing

edge (similarly to the generation of streamwise vorticity by a wing of finite span), as

shown on Figure 3.2.

In the case of a co-flow of two fluids with different velocities, the shear layer

downstream of the trailing edge will consist of streamwise vorticity associated with the

transverse dimension of the mixer (lobe penetration) and spanwise vorticity due to the

velocity differential between the two flows [2], [8].

3. 1. 2. Lobed mixer enhancement

Lobed mixers increase the mixing rate by introducing streamwise vorticity into the flow.

These relatively large-scale streamwise vortices entrain additional fluid into the mixing

layer. Thus, the interface between the two streams is augmented by increasing the

strength of the shed circulation associated with the streamwise vorticity, as shown in

numerical results by Elliot [8], [9]. Thus, the interface between the fluids is stretched and

the interfacial area is increased.

Furthermore, lobed mixers also increase the length of the trailing edge, which also

accounts for the overall increase in interfacial area. Manning [14] compared the relative

importance of this area increase with the importance of the introduction of streamwise

vorticity into the flow. He experimentally determined through the comparison between

three different mixer geometries that the fraction of mixing augmentation due to the

streamwise vorticity (as opposed to the fraction due to the extended trailing edge length)

increases from 37% to 64% as the velocity ratio between the two streams increases from

1.0 to 2.0. The three geometries he studied were a flat "splitter" plate (as a "baseline" for



comparison), a convoluted plate (which convolutes the shear layer in the same way as

the lobed mixer but introduces no streamwise vorticity) and a lobed mixer.

These results were confirmed by experiments on axisymetric lobed mixers by Samimy, et

al. [4]. In addition, the fraction of mixing enhancement due to streamwise vorticity was

also found by Samimy to increase with downstream distance.

The spanwise vorticity is set by the velocity difference between the two streams. The

spanwise circulation scales approximately (Barber, [2]) as :

r-1
rs -1 (3.1)

S r+1

where r is the velocity ratio between the two flows.

The streamwise circulation, evaluated on a path encircling half a lobe in the plane of the

trailing edge, scales approximately (Barber, [2]) as :

Fst = UmeanH tana, (3.2)

where a is the lobe ramp angle (i.e. the angle between the lobes and the free stream

velocity) and His the lobe height. Therefore, Hand Umen being fixed, one can write :

s, oc tan a (3.3)

The most important parameters influencing the mixing in a lobed mixer are the lobe

penetration (ramp angle) and the velocity ratio between the two co-flowing streams.

3. 2. Preliminary design considerations

The design of the mixer nozzle will now be discussed. Since this design uses extensively

the overall design performed by McGrath [16], the most important results of the earlier

design are reviewed. These include most notably the shape of the burner, the variations

of the cross-sectional area along the burner, the pressure gradient across the nozzle in

both the core and the co-flow, and the geometry of the non-lobed nozzle.

Once these preliminary remarks are made, the details of the lobed mixer are discussed.

The design is based on recommendations made by McGrath, as well as on geometric



features used in recent lobed mixer designs (Waitz and Underwood [32], Samimy, et al.

[4]). The preliminary design choices included:

* the choice of a 6-lobe mixer, which was a trade-off between the amount of streamwise

vorticity introduced into the flow and the scale of the structures in the shear layer

(more lobes would mean smaller lobes and thus smaller structures, which might

create resolution problems for the measurements to be taken in the shear layer

downstream of the mixer),

* ramp angles were chosen between 100 and 300 (to introduce as much streamwise

vorticity as possible into the flow without creating separation problems),

* the core flow cross-sectional exit area was chosen to match as closely as possible the

value for the non-lobed mixer, to yield the same range of velocity ratios in both lobed

and non-lobed mixers,

* the metal was chosen to be stainless steel 316 mainly because of its heat resistance and

mechanical strength.

3. 2. 1. a. Fuel composition

The composition of the hydrogen-nitrogen mixture used as the fuel is an important

parameter for the design, since it influences directly the viscosity and the density of the

core flow. Hence, parameters such as the Reynolds number, the boundary layer

thickness or the heat transfer to the nozzle, among others, depend upon the composition

of the mixture.

The composition chosen as a baseline for performing the design trades must yield

conservative estimates for each design constraint. Thus, the composition which yields

the thickest boundary layer and the one that yields the highest heat transfer to the metal

of the nozzle (for thermal stress considerations) must be determined.

In the following sections, the design analysis are conducted using an "equivalent fuel".

The assumption that both hydrogen and nitrogen behave like ideal gases is made. Under

this assumption, the equivalent density and viscosity of the mixture (designated as

"fuel" from now on) are:



Pfuel = x. PH + Y- PN2 (

,elf = X.4H 2 2+ Y',N, (3.5)

where x and y are the mass fractions of H2 and N 2 in the mixture. Using this assumption,

the design fuel composition is determined and used for the calculation of the design

constraints.

3. 2. 1. b. Geometry of the "baseline" configuration

Most of the dimensions of the burner were chosen by McGrath [16], and were not

modified. In particular, the "baseline" (non-lobed) core nozzle was kept as it was (a

vertical section of the burner is shown on Figure 2.4). The dimensions of this nozzle are

shown on Figure 3.3. The dimensions of the co-flow nozzle are given on Figure 3.4.

The lobed and the non-lobed nozzles were tested under the same upstream conditions to

compare the downstream flow patterns shed by each geometry. Therefore, those two

geometries were chosen to be as similar as possible, but for the presence or absence of

lobes.

The co-flow and the "baseline" (non-lobed) nozzle have been designed to apply a

favorable pressure gradient upon the flow, in order to avoid flow separation. Thus, the

inner diameter of each section of the burner (co-flow and core-flow) decreases towards

the exit of the nozzles :

IA = 1.95 x 10.3 m2  A1 =3.7210
for the core flow Ac 5.07 x 10 m 2

' and for the co flow, A = 3.72 x 102 m2

A = 5.07 x 10 M A= 1.48 x 10- 2 m 2

Using Bernouilli's equation, one can calculate the corresponding pressure gradient. For

the co-flow :

P3  3
2  P 1

2
P3 + V3 + 9z3 1 + '1 + gz1" (3.6)
Pair 2 Pair 2

Conservation of the mass yields :

p3v3A3 = p 1 1A 1 , (3.7)

(3.4)



Assuming the gases are incompressible (which is a valid approximation since the

maximum Mach number reached in the burner is of the order of M = 0.04), equation (3.7)

gives:

v3A3 = v1A 1 . (3.8)

Substituting in equation (3.6) yields :

AP = pi r  1 gz . (3.9)

Similar equations can be written for the core flow :

AP1 = Pfuel 1- 2 - gAz . (3.10)
2 A 3 )

The results are :

P3 - P1 _ -1.13 x 10-3  and P3c - P, = -2.47 x 10-4 .
P1  PC

Using this "baseline geometry", a first design of lobed nozzle was chosen. The geometry

was then modified step by step to meet all the design requirements. The final design is

presented in Section 3. 5.

3. 3. Flowfield constraints

The first concern in the design process is to ensure that the lobed nozzle to be fabricated

produces the required flow pattern. This section details the analytical methods employed

to insure that the designed lobed nozzle generated the required flow patterns.

3. 3. 1. Introduction of streamwise vorticity into the flow

The analysis presented in Section 3.1 shows that increasing the ramp angle increases the

production of streamwise vorticity. The upper limit of the ramp angle is given by the

occurrence of flow separation along the lobes. According to Tew [27], ramp angles up to



30' are acceptable in most cases. Angles between 150 to 250 are commonly used ([4],

[32]). For the present lobed mixer, the ramp angle will also be chosen within this range to

avoid separation problems.

In addition, the introduction of streamwise vorticity into the flow is particularly

important within the region where the flow leaves the nozzle at an angle equal to the

lobe ramp angle (the angle between the lobes and the free stream velocity, see Section 3.

1). Hence, to maximize the amount of streamwise vorticity introduced into the flow, one

has to maximize the amount of fluid going through the troughs of the lobes, as

discussed in the next section.

3. 3. 2. Boundary layer blockage

For lobed mixer geometries, it has been observed [12] that the boundary layers are

pushed to the troughs of the lobes, as shown in Figure 3.5. As the boundary layer

thickness increases, low momentum fluid fills the lobes. As indicated in Figure 3.5, this

boundary layer blockage reduces the effective ramp angle and lobe height, reducing the

amount of streamwise vorticity introduced in the flow, as a consequence of eqn. (3.2).

Krasnodebski, et al. [13] have shown that if the boundary layers occupy more than

approximately 20% of the lobes cross-sectional area (based on the displacement

thickness), the reduction of the amount of streamwise vorticity introduced into the flow

is significant.

In the present section, the displacement thickness is determined for each flow (fuel and

air), in order to estimate the boundary layer blockage in the lobes.

3. 3. 2. a. Determination of the design fuel composition

To determine the dependence of the boundary layer thickness upon the composition of

the fluid, one can use Michel's relationship [17], which gives the displacement thickness

as a function of the distance from the leading edge in the case of an incompressible

turbulent boundary layer over a flat plate (Michel's relationship was preferred to a

Blasius flow since it is valid for a larger range of flow configurations). Assuming that the



boundary layer inside the cylindrical burner grows at the same rate as for a flat plate

with no pressure gradient, one can write:

8 = 0.02208z Re Z-  , (3.11)

i.e.

S= 0.02208z(x .P H +Y P N, v(3.12)X. H2 + y9N 2  (3.12)

Since x + y = 1, equation (3.12) gives:

S x (p 2  2 +PN 2)VZ

5 = 0.02208z ( - .N )+ N, (3.13)

Under standard conditions, the density and viscosity of H2 and N2 are

PH2 = 8.38 x 10- 2 kg.m-  p N 2 = 1165 kg.m - 3

rH 2 = 8.87 x 10- kg. m-.s-1' N2 = 1.76 x 10- 5 kg.m-l.s - 1

The maximum of the displacement thickness over the range x < 0.86 (cf. Section 2.2.1.a)

can thus be calculated. One finds from equation (3.13) that:

68 = 6max for x = 0.86 .

Therefore, the boundary layer was conservatively estimated assuming the fuel stream

contains 86% of H 2 and 14% of N2.

3. 3. 2. b. Pressure gradient along the nozzle

To isolate the effect of the lobes on the flow from the effect of other differences between

the two geometries, the lobed nozzle was designed to match as closely as possible the

non-lobed nozzle for the conditions which do not depend upon the presence of the lobes.

Thus, the cross-sectional area of the lobed nozzle was designed to match the pressure

gradient with the gradient obtained in the case of the non-lobed nozzle. The calculation

of the pressure gradients for the lobed nozzle is similar to the one that has been

conducted in Section 3.2.1.b for the non-lobed nozzle. For the lobed nozzle, the flow



conditions along the nozzles in each stream (air and fuel) can be divided into 3 sections,

depending on the pressure gradient applied upon the flow in each case. These sections

are limited by the cross-sections indicated in Figure 2.4.

Using Bemouilli's equation for the present geometry yields :

P2 P1 = -8.48 x 10 4  - P, = -1.78 x 10
Pp and P, -c

P3 - P2 _ -2.86 x 10-4 n 3 2 = -6.91 x 10-

P2  P2C

As mentioned previously, these pressure gradients are favorable and will therefore

reduce the thickness of the boundary layer and reduce the risks of separation for both

the core and the co flow. The overall pressure gradients across the lobed nozzle are the

same as those for the non-lobed nozzle.

3. 3. 2. c. Displacement thickness

This section outlines the method, described in Schlichting [24] (pp. 673-686), which was

used to determine the boundary layer thickness at the exit of the nozzle. The analysis

presented hereafter was applied to calculate the growth of the boundary layer from

section 1 and Ic to sections 2 and 2c (cf. Figure 2.4). The calculation was iterated for each

step of the design, until the chosen geometry yielded an acceptable value for the

boundary layer blockage. Because of the lobes, the boundary layer growth across the

lobed part of the nozzle can not be determined by this method, and was estimated using

empirical results by Krasnodebski [12].

To describe the behaviour of a boundary layer, it is necessary to know its thickness and

to have an indication of the velocity distribution. The boundary layer thickness is

commonly characterized by the displacement thickness (68(z)), the momentum

thickness ( 2(z)) and the energy thickness (8 3 (z)), where z designates the axial

coordinate along the cylinder separating the core flow and the co flow.

These quantities can be non-dimensionalized by introducing appropriate Reynolds

numbers:



R2 = and R = 3  (3.14.a, b)
v v

The velocity profile depends on the external pressure gradient, and can be characterized

by a number of shape factors. Traditionally, the following dimensionless factors are used :

H12 = i H 23 =2 and H32 =3 (3.15.a, b, c)
2 3 62

Measurements indicate that turbulent velocity profiles can be described approximately

by a one-parameter family of curves. Based on that observation, Truckenbrodt [30]

introduced a modified shape factor H :

(H23 dH2(H = exp - (3.16)

According to Wieghardt [34], H12 and H23 can be related through the equation (3.17) :

H1 2 = H 32  (3.17)
3H 32 -4

Combining equation (3.16) and equation (3.17) yields :

H = 0.5442H23 H23  (3.18)
H23 -0.5049) (3.18)

Therefore, once H and R3 are determined, one can find the values of Hi2, H23, 6 and 8',

fully characterizing the behaviour of the boundary layer.

Truckenbrodt [29], [30] worked out an approximate method to determine both H and R3

by integrating the equations of the turbulent boundary layer. This method is valid for

two-dimensional as well as axially symmetric flows and yields :

E3 (zl) + U3+2bdz

R3 (Z , (3.19)



with

E (zx)=v'{[U(z)] 2 R3 (z1 ) , (3.20)

where v' = 80v and b=0.152.

The external free-stream velocity U(z) is found from the potential theory, and the

variation of R3 between two cross sections can be calculated.

Transforming the boundary layer equations, Truckenbrodt shows that H(z) can be

written as follows:

H(z) = U(z)G(z). [N(z)] , (3.21)

with

G(z)= G(z) + f u 2(l+b)dz (3.22)

z 1

and

N(z) = N(z1) + c U2 (1+b)+c Gc-ldz , (3.23)

where n=3+2b and c=4.0. The initial values are:

G(z)= v 'H(z) [U(z)]1+2b [R3 (Z1 )]1+b

N(z1) = [U(z) G(zl) 
(3.24.a, b)

I H(zl) I

Once the values of R3 and H are known for the cross-sections 1 and Ic of the axisymetric

burner, one will be able to deduce the values for the sections 2 and 2c. The free-stream

velocity was assumed to vary linearly across the nozzle, since the cross-sectional areas

decrease linearly: U(z) M z.

For the calculation of H and R3 in the sections 1 and ic, the assumption that the

turbulent boundary layer starts at z=0 (inlet of the burner) without a laminar inlet



portion is made. This is a valid assumption since the flow exiting the tubing is turbulent.

With the assumption that U(z) c z, equations (3.19) to (3.24) yield (Schlichting, [24]):

R3(z)= ,b) (3.25)

and

H(zl)= (-i =const , (3.26)

with p = 0.0127 ; r = 1+(3+2b) and s = 1+2(1+b).

Now that H(z=zl), H(z=zlc), R3(z=Z1) and R3(z=zlc) are known, the boundary layer

thickness can be calculated for the sections 2 and 2c.

The lobed geometry causes the boundary layer between sections 2 and 3 (and 2c - 3c) to

grow even though a favorable external pressure gradient is applied on the flow.

According to Krasnodebski [12], considering that the momentum thickness increases by

a factor 3 is a conservative estimate of the boundary layer growth across the lobes. The

results are outlined in Table 3.1. Detailed results including the values of R3, H, H 12, and

H23 are given in Appendix B.

Co Flow (Air) Core Flow (H2 + N2)

Section 1 Section 2 Section 3 Section 1c Section 2c Section 3c

Cross-sectional 1.67x10-2  3.72x10-2  1.48x10-2  1.95x10-3  5.91x10-4  5.07x10-4

area (m2)
Velocity 5.97 13.30 15.00 3.90 12.86 15.00
(m.s-1)

z 0.525 0.706 0.728 0.525 0.706 0.728
(height, in m)
Displacement 1.68x10-3  2.85x10-4  8.55x10-3  2.05x10-3  2.19x10-4  6.57x10 4

thickness (m)

TABLE 3.1 : BOUNDARY LAYER GROWTH ACROSS THE NOZZLE

Using this estimate for the displacement thickness, one can determine the boundary

layer blockage at the exit section of the lobed mixer. The boundary layers are pushed to



the lobe troughs. Based on the final geometry (cf. Section 3. 5) , in which the lobes are

0.67" long and 0.17" wide, the conservative results shown in Table 3.1 indicate,

according to Krasnodebski [12], that the boundary layers occupy less than 5% of the

cross-sectional area of the lobes. This value is thus well within the acceptable limit,

which is roughly 20%.

3. 3. 3. Flame holding

The trailing edge of the lobed mixer must be thick enough to allow the flame to stabilize.

On the other hand, the trailing edge should be as thin as possible to minimize the effect

of the wake on the shear layer.

Becker and Liang [3] stabilized a hydrogen-air flame on a 0.030" trailing edge thickness

for a flow velocity of 82 m.s-1. Waitz and Underwood [32] stabilized a hydrogen-air flame

on a 0.040" trailing edge thickness for flow velocities of approximately 85 m.s-1.

Since the maximum flow velocity reached in the present facility is v3 = 15 m.s-1, the

trailing edge thickness of the lobed mixer to be designed could be chosen to be as small

as 0.010". Nevertheless, due to mechanical and fabrication constraints, the nozzle trailing

edge thickness was chosen to be 0.020". Since the chosen lobe height is H = 0.67", this

gives:

= 3.0 x 10-2

3. 4. Structural constraints : thermal stresses

Another design concern is the impact of the thermal stresses on the lobed nozzle. The

stresses were estimated and compared to the elastic limit of the material (stainless steel

316, cf. Section 3. 2).

The first step of the calculation was to determine the temperature profile in the metal.

Then, using this temperature profile, the thermal stresses were estimated to provide a

conservative estimate for the maximum stress reached within the lobes.



Due to the temperature rise, each wall of the lobes will expand radially and axially. In

the axial direction, the material is not constrained and can therefore expand freely.

Hence, no thermal stresses will build up axially. In the radial direction, the inside half of

each wall will tend to expand towards the inside of the nozzle, while the outside half of

the wall will tend to expand towards the outside (cf. Figure 3.6). This will create internal

stresses within the lobe walls. Thus, the analysis was conducted for the lobe walls.

Throughout the analysis conservative assumptions are made. The main assumptions are:

* the lobe walls were considered as flat plates since they are planar and their thickness

is small compared to their radial and axial dimensions,

* the thickness of the lobes was taken to be constant and equal to the trailing edge

thickness. This assumption is conservative since the actual thickness increases away

from the trailing edge. Hence, heat will be carried out more efficiently away from the

critical zone which is the trailing edge thickness, and the increased thickness will

increase the resistance of the nozzle,

* once the temperature gradient across the nozzle was estimated, the temperature

profile in the metal was assumed to be linear. This assumption is conservative since

the actual profile is convex (cf. Section 3.4.1.a). Therefore, the temperature in each

point of the lobes is conservatively estimated, as shown on Figure 3.9.

3. 4. 1. a. Temperature profile in the metal

The heat transfer to a flat plate can be modeled as shown on Figure 3.7. For this

situation, the Biot number is [18] :

2hE
Bi = -E, (3.27)

kme

with

h(z)= kfluid z , (3.28)
z

where kflud is the thermal conductivity of the fluid on each side, Nuz is the Nusselt

number based upon z and E is half the trailing edge thickness.



Nu, can be estimated for a turbulent boundary layer using empirical correlations [29].

The Biot number is higher in the fuel than in the air. The maximum Biot number over the

range of fuel compositions is reached for a fluid composed of 50% N2 - 50% H2.

Assuming that the thickness of the metal is constant and equal to the trailing edge

thickness (2e = 0.02", where e is equal to the half thickness of the lobes), one finds that:

Bimax = Biair 2.2x10-3 << 1/4

Hence, as stated by Taine [25], the characteristic time of the conduction through the

metal is much smaller than the characteristic time of the convection across the metal-

fluid interface. This means that one can consider the temperature to be constant across

the thickness of the metal, and no significant thermal stress will build across the

thickness of the lobes.

In addition, since the flame is holding along the entire trailing edge of the mixer, one can

consider the temperature profile to be quasi one-dimensional:

T = T(z). (3.29)

The present configuration is similar to the classic problem of a one-dimensional fin [18].

Nevertheless, the fluid is here different for each side of the lobe wall, and the boundary

conditions at the edges differ slightly from those of a classical fin calculation.

Since the lobe receives heat through its trailing edge and dissipates heat through its side

surfaces, a conservative estimate of the temperature rise in the metal is to consider that

both sides of the lobes are immerged in the same fluid yielding the lowest heat transfer

coefficient.

At the trailing edge of the lobe, in the recirculation zone, the velocity of the fluid is small.

Thus, the heat transfer to the lobe occurs by natural convection. Fischenden and

Saunders (in [29]) found that in the case of a flat plate heated by natural convection from

its upper surface:

NuE = 0.14 x Rap , (3.30)



and:

0.14k
hnatural= .Ra (3.31)

The maximum possible hatra was determined by varying the nature and composition of

the gas surrounding the trailing edge within the range determined for the present

facility.

Assuming the heat transfer through the trailing edge occurs by forced convection, one

can write :

hforced =0.0288k Re Pr . (3.32)

By varying the composition of the gas used in eqn. (3.32), one finds that forced

convection yields a higher heat transfer coefficient than natural convection in all the

possible configurations :

hforced > hnatural.

Therefore, assuming that the heat transfer through the trailing edge occurs by forced

convection in the same gas as for the sides of the lobe is conservative, and this

assumption was made.

The fin equation can-now be used to describe the heat transfer along the lobe, but with

different boundary conditions at the edges. It is assumed that the metal temperature in

section 1 of the burner is constant and equal to 300 K. This is equivalent to assuming that

the lower part of the nozzle is a heat sink.

The temperature of the gas is assumed to be 300 K everywhere but in the wake. In the

wake, the adiabatic flame temperature of a hydrogen-air flame is assumed :

Tex (z < H) = 300 K
Tex,t(z = H)= 2400 K

This external temperature field takes into account the fact that the radiation from a

hydrogen-air flame is minor (= 30 %).



The situation is now represented by the following system (corresponding to the model

shown on Figure 3.8), consisting of the fin equation and of particular boundary

conditions:

d2T(z) 2h

dz 2  (T(z) - Te(z)) = 0, (3.33)

T(z = 0) = T = 300 K
dT (3.34)

-k dT(z = H) = h[T(H)- Text(H)] (3.34)
dz

The resolution of this system gives the temperature profile in the metal :

T(z)- To = A.(emz - e-mz) , (3.35)

2400 - Towith A =

(e -mH mH m -+ (e mH)

and m= .

The nature of the gas (air or fuel ) and the composition (H2 and N2 proportions for the

fuel) used in the calculation were then varied to obtain the highest possible temperature

rise. This will give the maximum thermal stresses.

A fuel composed of 64% of hydrogen and 36% of nitrogen was found to cause the

maximum temperature rise (cf. Appendix C), and the calculation of the thermal stresses

was conducted assuming this gas composition. The results are shown on Figure 3.9. The

maximum temperature in the metal is reached at the trailing edge :

Tmax = T(z=H) = 349 K.

The assumption that the temperature varies linearly with z is made for the calculation of

the thermal stresses.

3. 4. 1. b. Maximum thermal stress

Timoshenko [28] (pp. 207-209) gives an estimate for the thermal stresses which build up

for a flat plate on which a non-constant temperature profile T(z) is applied while held at



the edges. The stress which builds up in the plane of the plate, perpendicularly to the

direction along which the temperature varies is :

(3.36)
H H

o,(z) = -aET(z) + c ET(4)dt+ 2H3 faE. T(4)d4
0 0

This is a conservative estimate, since the edges of the lobe walls expand some in a

practical situation. One finds that the maximum stress is reached at the trailing edge.

The result was then compared to the elastic limit of the material (cf. Table 3.2) :

Maiu srs
Maximum stress

(in psi)

2.36x104

Elastic limit of the material (Stainless 316)
(in psi)

6.0x104

TABLE 3.2: MAXIMUM THERMAL STRESS WITHIN THE LOBED MIXER

This estimate is conservative, but shows that the final design choices meet the structural

requirements.

3. 5. Lobed mixer geometry

The final geometry is shown on Figures 3.10, 3.11 and 3.12. Both the lobed and the non-

lobed geometries are presented in Figure 3.13.

The values of the main geometrical parameters were chosen as follows :

* variations of the cross-sectional areas across the nozzle are indicated in Table 3.1,

ramp angle for the core flow is (cf. Figure 3.10) :

ramp angle for the co flow :

* trailing edge thickness :

acore =_ 21,

ao =_ 190 ,

E = 0.020 inches.

I -



FIGURE 3.1 : SPANWISE VORTICITY ABOUT A LOBED MIXER

FIGURE 3.2: FORMATION OF STREAMWISE VORTICITY IN A LOBED MIXER

(ADAPTED FROM [21])
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FIGURE 3.5: BOUNDARY LAYER BLOCKAGE IN A LOBED MIXER

Expansion of the external part
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FIGURE 3.6: THERMAL EXPANSION OF THE LOBE WALLS
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FIGURE 3.7: HEAT TRANSFER TO A LOBE WALL, PRACTICAL SITUATION
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FIGURE 3.11 : LOBED MIXER, UPPER VIEW

FIGURE 3.12: LOBED MIXER, CROSS SECTIONS

R=0.92"

t
30.00

R=0.60"



FIGURE 3.13: LOBED AND NON-LOBED MIXERS
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4. Experimental approach and
results

This section presents and discusses the experiments that were conducted. Initially, the

facility was tested for proper functioning, notably to insure maximum safety for the

operator. Then, the effective operating range of the facility was investigated. In addition,

the flow was visualized using oil flow techniques, to examine the flow field along the

lobe walls. Finally, total pressure surveys of the flow fields from both the lobed and the

non-lobed mixers were collected to provide a preliminary characterization of the flow

field downstream of the lobed mixer.

4. 1. Experimental approach

The experiments that were conducted had three main objectives :

* to test and evaluate the facility to verify the effective features as well as the level of

safety.

* The nozzles were tested under extreme conditions to verify their heat resistance, and

to detect any major problems in the flow fields downstream of the two mixer

geometries. The flow along the nozzles was visualized using oil flow, and the

thickness of the boundary layers was measured at the trailing edge using total

pressure measurements,



* the main features of the flow field downstream of the lobe mixer and the "baseline"

mixer were quantitatively outlined using total pressure surveys.

4. 1. 1. Evaluation of the facility

To evaluate the facility, reacting flow conditions have been tested as well as cold flow

conditions. The features tested include :

* the control of the gas supplies. All the commands were performed, and the reactions

of the system were observed : the time response of the flowmeters, the ability of the

flowmeters to maintain a given flow rate and the sensitivity of the indication of the

flowmeters to the pressure at the exit of the bottles

* the safety system. The ignition system was tested, and a hydrogen regulator purge

was performed. All the purge sequences were thoroughly checked.

* the effective range of flow rates. This was performed for cold flows by measuring the

dynamic pressure obtained at the exit of the burner using an alcohol manometer. The

velocities were then determined using eqn (2.11). The density of the alcohol was :

alc = 830 kg.m -

For reacting flows, the flammability limits of the fuel were tested by varying the

composition of the mixture and the flow conditions. The results are presented in

Section 4. 2. 1.

* the ergonomy of the installation. In particular, the changes of nozzle and bottles were

performed to look for possible improvements to the handling of the facility,

* the resistance of both mixer geometries to thermal stresses, as well as their main flow

features. Reacting flow runs were performed, and the flow rates were varied over the

full range specified in Chapter 2. The shape of the mixers was verified after each run

to detect any deformations, which would indicate that the nozzles have failed. The

flame was visible due to the impurities present in the air line. Therefore, the structure

of the flow field was examined visually for both the lobed and the non-lobed

geometries.



4. 1. 2. Examination of the flow along the nozzle

To assess the performance of the lobed mixer, the flow field across the nozzle has to be

examined. The main issue is to check the flow for any separation and to measure the

actual boundary layer blockage to verify the turning of the flow obtained from the lobed

mixer (i.e. the effective ramp angle showed on Figure 3.5). This goal was achieved by

visualizing the flow in the troughs using oil flow visualization and by surveying the

total pressure field at the trailing edge along a radius to estimate the thickness of the

boundary layers.

Visualization of the flow of fluorescent oil along the walls of the mixer was conducted.

The oil was colored by adding a fluorescent dry temp powder paint to it. The mixture

was then applied on the wall, and the mixer was used under the desired flow conditions,

which spread the oil along stream lines. The results of this visualization are presented in

Section 4. 2. 2.

The total pressure surveys were conducted along a radial line at 0.02" downstream of the

trailing edge. A Kiel probe was used to measure the total pressure. The internal diameter

of the probe was 0.02". It was connected to the data acquisition system described in

Section 4.1.3.b, with the only difference that the increment was chosen to be 0.02", in

order to get a better resolution at the trailing edge. The results of these measures are

presented in Section 4. 2. 2.

4. 1. 3. Survey of the flow field

4. 1. 3. a. Experimental approach

Once the examination of the flow along the nozzles was completed, the flow field from

both the lobed and the non-lobed mixer was investigated. Total pressure measurements

were implemented as a preliminary quantitative investigation. These time-averaged total

pressure measurements provided information on the overall structure of the shear layer,

through the variations of the time-averaged dynamic pressure across a horizontal cross-

section. These variations are related through eqn (2.11) to the velocity of the flow as well

as to the density of the mixture at the point of measurement.



In order to increase the contrast of the surveys and to reproduce the conditions that

would be encountered in an hydrogen/air flow, a mixture of 60% helium and 40%

nitrogen was used for the core flow in association with the air co-flow. Since no

independent measure of the density of the gas was taken, no quantitative measure of the

mixing rates was possible through those surveys. Besides, because of the turning

imposed upon the flow by the lobed mixer (appoximately ± 200), the indication of the

pitot probe (which is fully accurate up to approximately ± 150) could only be used for

qualitative observations.

Nevertheless, these surveys allowed for the structure of the shear layer to be examined

in different flow conditions, as discussed in Section 4. 2. 3.

4. 1. 3. b. Experimental apparatus

The facility used and the non-lobed mixer are described in Chapter 2. The lobed mixer is

presented in Chapter 3. The pressure was measured using a pitot probe which

specifications are:

* Internal diameter : 0.02",

* External diameter: 0.065".

The pitot probe was linked to a pressure transducer, which had the following

specifications :

* Range: ± 1 inch of water (± 255 Pa)

* Output: ±10 V

* Neutral point (Pdyn = 0 Pa) : Vout = 5.45 V

* Calibration curve : Pdyn = 57.534872xVout - 316.08659 Pa

The pitot probe was mounted on stepping motors to allow for a survey of a cross-section

of the flow. Those motors were controlled by a PC-compatible computer through a

Velmex NF90 controller connected to the serial port of the computer.

Data acquisition was performed using a A/D box connected to the data acquisition

board of the computer. The software allowed the user to choose the number of steps in



each direction, the size of the increment in each direction, the number of measures to

take in each point, and the waiting time between each step of the motors and the

following data acquisition.

The following values were used :

* The time response of the data acquisition line was found to be approximately 3.5

seconds. Thus, to separate the measurements in two adjacent points, the waiting time

before each measurement was chosen to be 4 s.

* The spatial increment was taken to be 0.04" in most cases. This value was chosen to

allow the coverage of a sufficient area without increasing the time required to

unacceptable levels. It also provided relatively good resolution, close to the best

achievable with the pitot tube.

* 1000 measurements were taken at each point to obtain time-averaged values for each

measurement.

The area surveyed is a quarter plane including the axis of the burner. In the case of the

lobed mixer, it also included one full lobe. Because of the symmetry of the geometry, the

flow field in the three other quarter planes is the same as that of the measured one.

Hence a full cross-section can be reconstituted.

4. 1. 3. c. Uncertainty

The uncertainty of the measure given by the transducer is of 1/2 count (the signal is

measured on a scale from 0 to 4096 counts : -10 volts = 0 counts and 10 volts = 4096

counts). Thus, if V,, is the input of the computer, one can write :

Nx 20
Vin = 10volts , (4.1)

4096

where N is the number of counts measured by the computer.

And using the calibration curve of the transducer :

PY, = 57.534872 x Vin - 316.08659 Pa. (4.2)

Hence, the uncertainty of the measure is :



20 1
AP = 57.534872 x - x - = 0.14 Pa.

4096 2

4. 1. 3. d. Signal-to-Noise ratio

A preliminary run was performed with no flow, to measure the variations in the signal

delivered by the data acquisition line. 100 measures were taken and statistically

analyzed. The measure was unbiased, and the standard deviation of the signal was :

a = 0.26 counts = 0.07 Pa.

For a signal of 0.67 Pa (corresponding to a velocity of 4 m.s-1 in hydrogen, i.e. the smallest

expected signal), this yields a Signal-to-Noise ratio of 10.4%. For a signal of 75 Pa (11m.s-1

in nitrogen), the Signal-to-Noise ratio is less than 0.1%.

4. 2. Results

4. 2. 1. Evaluation of the facility

The following remarks can be made concerning the operation of the facility :

* the flowmeters were found to allow a constant flow rate to be maintained with an

accuracy of + 1%. When submitted to a change in the flow rate commands, the

flowmeter time response ranged between 1 s. to 10 s. Under certain conditions, such

as a high nitrogen flow and a low hydrogen flow, the indication of flowrate became

unstable, with variations of up to 100% on the desired value. This proved to be a

problem during the evaluation of the flamability limits, since small and varying flow

rates of hydrogen were added to high nitrogen flow rates.

* instead of a blue and almost invisible flame, the observations showed particles

burning and emitting a yellow color. These particles came mostly from the air lines,

since the density of yellow spots increased with the air flow rate. Fortunately, this

problem decreased as large amounts of air were passed through the lines, which

helped to clean the system. Nevertheless, the presence of these particles might create



a problem if laser diagnostics are to be used, since some optical diagnostics (e.g.

Rayleigh Scattering) require a cleaner flame.

* as expected, the flame length was much shorter for the lobed mixer than for the non-

lobed mixer under the same flow conditions (roughly 1/3 of the length). This shows

the improved mixing associated with the use of the lobed geometry. The flow

downstream of each individual lobe spread out more rapidly, and could be visually

distinguished from the flow leaving the other lobes.

* the maximum velocities reached at the exit of the burner as well as the flow rates were

estimated using a manometer which measured the dynamic pressure. Each gas

supply was tested separately. For the hydrogen-helium lines, helium was used. The

flow rates indicated by the hydrogen flowmeter had to be corrected since helium was

being used. The corrections are discussed in Appendix D. The results are presented in

Table 4.1.

Air Nitrogen Helium

Indicated flow rate n/a 300 SLPM 750 (*) SLPM

Measured dynamic pressure 58.4 75.5 54.7
(Pa)

Measured velocity 9.92 11.39 25.82
(m.s-')

Estimated flow rate 310 SCFM 346 SLPM 785 SLPM

(') : corrected value

TABLE 4.1 : OPERATING RANGE OF THE FACILITY

Since the hydrogen is used under the same conditions (temperature and pressure) as

the helium, the hydrogen flow rates are the same as the helium flow rates, as

discussed in Section 2.2.1.a. Therefore, the velocities reached with hydrogen are the

same as those reached with helium.

With a mixture of 50% hydrogen and 50% nitrogen, the maximum velocity reached

was:

V3c = 22.8 m.s-1



With a mixture of 86% helium and 14% nitrogen, the maximum velocity reached was :

V3c = 30.0 m.s-1

For the fuel lines, the measured values were well over the design values. On the

contrary, for the air line, the flow rate obtained was lower than the expected value.

Nevertheless, the exit velocity reached in the co-flow is sufficient to test the mixers

with a core flow to co-flow velocity ratio of approximately 0.4 (instead of the desired

value of 0.3). The air flow rate is limited by the capacity of the compressed air line,

which was running at its maximum, and by the pressure losses encountered in the air

line.

the flammability range of the hydrogen-nitrogen mixture was very broad. The

flammability limit was determined by decreasing the hydrogen flow rate at constant

air and nitrogen flow rates until the flame was blown off. The flammability limit was

thus obtained as the minimum value of the hydrogen flow allowing a stable flame

and was plotted, as showed in Figure 4.1.

The flammability limit did not vary significantly with the air speed and was

approximately proportionnal to the nitrogen flowrate :

1N 2  (4.3)VH2 flamestability V2 (4.3)

Therefore, the lowest hydrogen molar fraction in the mixture providing a stable flame

is :

y 1-xx- = i.e. x = 0.25 (4.4)
5 5

This value is very close to the limit of flammability of hydrogen in the case of a

premixed flame, which is around < = 0.2.

In addition, the use of the lobed mixer did not change significantly the flammability

limits of the combustible mixture.



4. 2. 2. Examination of the flow along the lobed nozzle

4. 2. 2. a. Oil flow visualization

The use of this visualization method proved difficult to implement on the present

geometry. Because of the vertically-standing burner position, the gravity prevented the

oil from following the stream lines. No direct visualization of the stream lines was

therefore possible. Nevertheless, the behaviour of the flow in the troughs on the core

flow side of the lobes was visualized, and is shown on Figure 4.2.

This image shows a low-velocity area retaining some oil in the trough. This area could be

a separation bubble caused by the transition between the non-lobed and the lobed

section of the nozzle. Nevertheless, this phenomenon was more likely caused by pooling

of oil than by boundary layer separation. The issue was resolved by examining total

pressure surveys conducted to examine the boundary layers at the trailing edge of the

mixers.

On the co-flow side of the nozzle, the flow was also surveyed for signs of separation

using a thin thread attached to a wand. Even at low velocities, no sign of separation was

detected.

4. 2. 2. b. Total pressure measurements

Profiles of the total pressure at the trailing edge along the radial axis of a lobe are

presented in Figure 4.3, Figure 4.4 and Figure 4.5. The measures were taken for a core

flow of nitrogen at 14 m.s-1 and a co-flow of air at 10 m.s-1. From those plots, the

boundary layer thickness at the trailing edge can be estimated for the lobed mixer for the

troughs of both the core and the co-flow.



When expressed in terms of displacement thickness, these values yield thiner boundary

layers than the estimate that was given in Section 3.3 :

Lobed nozzle Non-lobed nozzle
Core flow Co-flow Core flow Co-flow

Boundary layer 8 = 4.8 x 10-3 m 6 - 1.8 x 10-3 m 6 -3.0 x 10-3m 6 2.5 x 10-3 m
thickness

Displacement 8 6.1x10 -4 m 5' = 2.5x10 -4 m 6* 4.1x10 -4 m 5 3.4x10 -4 m
thickness

TABLE 4.2: MEASURED BOUNDARY LAYER THICKNESS AT THE TRAILING EDGE

Therefore, the flow field that was measured here does not show any sign of separation.

In addition, those results show that the estimate given in Section 3.3 for the boundary

layer thickness is conservative.

Moreover, this tends to support the hypothesis that the low-velocity flow observed with

the oil flow visualization is not a separation bubble but simply the oil pooling in the lobe

trough due to gravity.

4. 2. 3. Qualitative survey of the flow field

Two different cross sections were surveyed to obtain qualitative information on the

structure of the flow field downstream of the mixers : 1" and 2" downstream of the

trailing edge. The core flow mixture was composed of 40% nitrogen and 60% helium.

Both the non-lobed and the lobed mixer were tested, under 2 different flow conditions :

v3 = 7.34m.s-1 V3C  Ree = 3.7 x 105

1. L 992m.s-1 i.e. r= - = 0.74 , which gives 1Re = 48 x
v3 = 9.92 m.s-' v Reco = 4.8 x 10s

2. 3 6.96 m. e. r = 1.53 , which givesv 6Rec. = 3.6 x 10
v3 =4.55 m.s-1 ie - Reco = 2.2 x 10

The pressure maps of the cross-sections presented in Figures 4.6 through 4.11 show the

development of streamwise vortices forming at the tip of the lobes, and growing with

the downstream distance. These mushroom-shaped structures, particularly visible on

Figure 4.6, grow rapidly and then decay. By comparing Figure 4.7 with Figure 4.6 and

Figure 4.10 with Figure 4.9, one can see that those structures decay rapidly with the



downstream distance. On Figure 4.9, the vortices forming from each wall of the lobe

seem to be separated from each other.

The results also show the increased interfacial area provided by the lobed geometry. The

enhanced mixing from the lobed geometry is also visible when comparing the situations

at z=2" between the lobed and non-lobed mixers. The pressure field is more

homogeneous in the case of the lobed mixer, with less accentuated contrasts in the

pressure field across the cross-sections. This indicates that the two co-flowing streams

have mixed more in the case of the lobed mixer.

Comparing those results to the total pressure measurements conducted by Underwood

on a planar lobed mixer [36], one finds that for z=2" (corresponding to roughly 2.5 lobe

wavelength downstream of the trailing edge), the mixing seems more thorough in the

case of the axisymmetric mixer. This can be explained by the fact that due to the

axisymmetric geometry, the streamwise vortices forming from two adjacent lobes are

farther apart. Therefore, those vortices can diffuse longer before interfering and

cancelling each other. Since the enhanced mixing is provided by this diffusion of the

vorticity, the mixing rate is higher in the case of the axisymmetric mixer.
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FIGURE 4.3 : TOTAL PRESSURE ALONG THE RADIAL AXIS OF AN EXTERNAL LOBE, AT 0.02"

DOWNSTREAM OF THE TRAILING EDGE, LOBED MIXER r=1.4.

FIGURE 4.4: TOTAL PRESSURE ALONG THE RADIAL AXIS OF AN INTERNAL LOBE, AT 0.02"

DOWNSTREAM OF THE TRAILING EDGE, LOBED MIXER r=1.4.
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FIGURE 4.5 : TOTAL PRESSURE ALONG A RADIUS, AT 0.02" DOWNSTREAM OF THE TRAILING

EDGE, NON-LOBED MIXER, r=1.4.

FIGURE 4.6: DYNAMIC PRESSURE, LOBED MIXER AT Z=1" FOR r=0.74
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FIGURE 4.7: DYNAMIC PRESSURE, LOBED MIXER AT Z=2" FOR r=0.74

Pdyn/P* - non-lobed mixer, zfD=2, r=0.74
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FIGURE 4.8: DYNAMIC PRESSURE, NON-LOBED MIXER AT Z=2" FOR r=0.74
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FIGURE 4.9: DYNAMIC PRESSURE, LOBED MIXER AT Z=1" FOR r=1.53
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FIGURE 4.10: DYNAMIC PRESSURE, LOBED MIXER AT Z=2" FOR r=1.53



Pdyp/R , non-lobed mixer, z/D=2, r=1.53
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FIGURE 4.11: DYNAMIC PRESSURE, NON-LOBED MIXER AT Z=2" FOR r=1.53
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5. Conclusions and
Recommendations

The modified facility now provides an effective means of testing the performance of

axisymmetric lobed mixers, with a high level of safety and reasonable handling

ergonomy.

Nevertheless, the following improvements should be made to the facility :

* the ignition system used (described by McGrath [16]) should be equipped with a

longer arm which would retract farther away from the flame region., in order to leave

more space for future surveys of the flow,

* the compressed gas cabinet could be used to stock two hydrogen bottles linked

together by a manifold, in order to provide longer test times. The nitrogen bottle

could simply be secured outside of the gas cabinet,

The surveys that were conducted upon the flow field about the lobed mixer showed that

the design goals were reached. Namely, the boundary layer thickness and the thermal

stresses were found to be within the limits set by the design. The qualitative survey of

the flow downstream of the lobed mixer showed the mixing enhancement provided by

the lobed nozzle. In particular, the roll-up due to the streamwise vorticity was observed.



The following recommendations relate to the use of the facility to test lobed mixers :

* The first step to take could be to measure the mixing rate downstream of the lobed

mixer, using total pressure surveys. This could provide a more accurate

determination of the actual performance of the mixer.

* Diagnostics with shorter time response and higher spatial resolution could then be

implemented on both reacting and non-reacting flow fields. Among those, the use of

ionization probes should provide useful information about the behaviour of the flame

front.

* Nevertheless, the present situation seems most suitable for laser diagnostics : first, the

flow being turbulent, optical diagnostics will provide the time resolution necessary to

conduct instantaneous surveys of the flow. Second, most laser diagnostics can be used

for both the cold and the reacting flows. This should prove a major asset when

investigating the difference introduced by the heat release.
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Appendix A: New instrumentation

and hardware specifications

Two Way Direct Acting Solenoid Valve (for the V2" lines)

Description:

Specifications:

ASCO Red-Hat II, Model EF 8210 G2

Connections : 1/2" NPT female
Body material : brass
Orifice size : 5/8"
Cv flow factor : 4
Max. operating Pressure Differential : 200 psi
Electrical connections : 120 volts, AC, 60 Hz.
Explosion proof.

Mass Flow Controller (for the hydrogen and nitrogen flows)

Description:

Specifications:

Hastings Model HFC-203

Range : 0-500 SLPM for hydrogen and 0-300 SLPM for nitrogen
Connections: 1/2" Swagelok
Body material : 316 stainless steel
Control valve pressure differential : 10-50 psi
Pressure rating : 500 psi
Accuracy & linearity: ± 1%
Power : + 15 VDC @ ±50mA/-200mA
Electrical connections: 15 pin D connector.



Orifice Plate Mass Flowmeter (for the air flow)

Description:

Specifications:

Hastings Model HOP-2C

Range : 0-500 SCFM of air
Connections : 2" Male NPT
Body material : 316 stainless steel
Control valve pressure differential : psi
Pressure rating : psi
Accuracy & linearity: + 1%
Power : + 15 VDC @ ±50mA/-200mA
Electrical connections : 15 pin D connector.

Check Valve (for the " lines)

Description:

Specifications:

Particle Filter

Description :

Specifications:

Circle Seal Model 259B-4PP

Max. flow : 0-30 SCFM of air
Connections : 1/2" Female NPT
Body material : brass
Control valve pressure differential : - 20 psi @ 30 SCFM
Pressure rating : 3000 psi

Matheson Model 6134-T8FF (for nitrogen) and 6124-T8FF (hydrogen)

Max. flow : 0-400 SLPM (nitrogen) and 0-500 SLPM (hydrogen)
Connections: 1/2" Swagelok
Body material : 316 stainless steel
Purity : 100% filtration efficiency at 0.2 micron level

Pressure Regulator

Description:

Specifications:

Matheson Model 3020 /580 (for nitrogen) and 3020 /350 (hydrogen)

Max. flow : 0-2200 SLPM
Connections : 1/4" NPT Female
Body material : 316 stainless steel



Appendix B : Boundary layer growth

along the nozzle

Parameters Fuel
b 0.1520 % N2 14.0%
beta 0.0127 % H2 86.0%

viscosity N2
c 4.0000 (kg/m.s) 1.757E-05

viscosity H2
Air (kg/m.s) 8.870E-06

viscosity rho (N2)
(kg/m.s) 1.80E-05 (kg/m3) 1.165

rho (H2)
rho (kg/m3) 1.2 (kg/m3) 8.380E-02

viscosity fuel
Air Flow (m3/s) 0.2223 (kg/m.s) 1.009E-05

Fuel Flow
(m3/s) 7.600E-03

Co-Flow (Air) Core Flow (H2+N2)

Section 1 Section 2 Section 3
Section 1

core
Section 2

core
Section 3

core
Area (m2) 0.03721 0.01672 0.01482 1.947E-03 5.910E-04 5.066E-04
Speed (m/s) 5.97 13.30 15.00 3.90 12.86 15.00
(m) 0.525 0.706 0.728 0.525 0.706 0.728

R3(x) 937.5658 4.851E+02 n/a 260.2751 1.267E+02 n/a
G(x) 32.7489 6.874E+01 n/a 12.2841 4.010E+01 n7a
N(Z) 1.465E+09 1.601E+09 n/ 5.2864E+06 5.072E+07 n/a
H(x) 1.0000 4.5687E+00 n/a 1.0000 6.1107E+00 n7a

H23(x) 0.5557 0.5067 n/a 0.5557 0.5059 n/a
H12(x) 1.28 1.0277 n/a 1.2869 1.0 n/a

Momentum
thickness (m) 2.354E-03 5.473E-04 1.642E-03 2.860E-03 4.228E-04 1.268E-03
Displacement
thickness (m) 1.683E-03 2.850E-04 8.551E-04 2.046E-03 2.191E-04 6.572E-04

rho (fuel)
(kg/m3) 0.235
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Appendix C :Thermal stresses,

complete results

Velocity (in m/s) 15
Downstream dist. of
exit section (in m) 0.686

thermal conductivity
gas (in W/m/K) 1.363E-01

thermal conductivity
steel (in W/m/K) 39.37
Cross-sectional
thickness (in m) 5.08E-04
Tadiab. (in K) 2400

Lobe length (H, in m) 0.0219
Youngs modulus (steel)

(in psi) 2.80E+07
Poisson's coef. 0.27
Coef. of therm.

expansion (in 1/K) 1.73E-05

(0.02")

1.98E-01
thermal conductivity

H2 (in W/m/K)
thermal conductivity

N2 (in W/m/K) 2.67E-02

rho (H2, in kg/m3) 8.38E-02

rho(N2, in kg/m3) 1.165

visc.(H2, in kg/m.s) 8.87E-06
visc.(N2, kg/m.s) 1.76E-05

% H2 64%

% N2 36%
rho(fuel, in kg/m3) 0.473032

visc.(fuel, in kg/m.s) 1.200E-05

Parameters

Results

Re(z=zmax) 4.06E+05 Air temp. away from flame (in K)
h 1.754E+02 To= 300

Biot's number 2.264E-03 (must be<<0.25)

Temperature profile in the lobes T(z)=A.(exp(mz)-exp(-mz))+To
z (heigth, in m) 0.0219 m- 187.3136517

T(z) (in K) 349 A- 0.806713787
Temp. Gradient (in K) 49

(Timoshenko)

MAX THERMAL ELASTIC LIMIT
STRESS (in psi) 2.36E+04 (in psi) 6.00E+04



90



Appendix D : Corrections on helium

flow rates

In order to make cold flow measurements, the hydrogen was replaced by helium.

Therefore, the flowmeters being calibrated for hydrogen, the flow rate indication is going

to be biased, and corrections have to be made to obtain the actual flow rate.

The properties of helium at standard conditions are :{He = 2.01 x 10-5 kg.m-'.s-1

pHe = 1.624 x 10- 1 kg. m- 3

kHe = 0.149 W. m- 1. K- 1

The flowmeters which are installed on the lines are thermal meters, i.e. they measure the

flow rate through the estimation of the heat transfer to the fluid flowing through them:

Vindicated oc 1 (D.1)
h

where h is the heat transfer coefficient from the sensor to the fluid.

Since the heat transfer is accomplished by forced convection, one can use eqn. (3.28) and

(3.32) to estimate h :

k 0.0288k
h= -Nu z = ReH pr . (D.2)

z z

Therefore, assuming that Pr=1 for both gases, the ratio of the indicated flow rates is :



VHe hH kH2 (PH e (D)
= = (D.3)

V,2 hHe kHe PHe49H2 )

Replacing the viscosities and densities in eqn. (D.3), one finds:

VHe = 1.133 x kH2 = 1.506
VH2 kHe


