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"I went to the woods because I wanted to live deliberately, to front only the

essential facts of life. And see if I could not learn what it had to teach and not,

when I came to die, discover that I had not lived."

- Henry David Thoreau, on his two-year stay at Walden Pond.

"I was born not knowing and have only had a little time to change that here and there."

- Prof. Richard P. Feynman

"Do not keep saying to yourself..., 'But how can it be like that?' because you will get...into a

blind alley from which nobody has yet escaped. Nobody knows how it can be like that."

- Prof. Feynman, on scientific laws.



TRANSITION METAL COMPLEXES

CONTAINING CHELATING AMIDO LIGANDS

by

SCOTT WILLIAM SEIDEL

Submitted to the Department of Chemistry, October 1997,

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy in Chemistry

ABSTRACT

The synthesis of a variety of paramagnetic molybdenum and tungsten alkyl complexes of
the form [N3N]MR ([N3N] 3- = [(Me 3SiNCH 2CH2)3N]3-) has been attempted. When M = W only
the Me and Ph complexes are stable, the rest decompose by a,a-double dehydrogenation to give
[N3N]W-C-R' complexes. Classical magnetic behavior of both the molybdenum and tungsten d2
complexes is observed down to 5 K. [N3N]M(cyclopentyl) complexes are in rapid equilibrium
with the corresponding dO cyclopentylidene hydride complexes. The rate constant for the
formation of [N3N]M(cyclopentylidene)(H) from [N3N]M(cyclopentyl) is approximately the same
for M = Mo and W. Thermodynamic parameters do vary considerably with the metal. f-Hydride
elimination in [N3N]Mo(cyclopentyl) has been shown to be 6-7 orders of magnitude slower than
a-hydride elimination. Analogous investigations have been made with complexes containing the
[N3NF] 3- ligand ([N3NF] 3- = [(C6F5NCH 2CH 2)3N]3-) and the results compared with [N3N]3-
complexes. X-ray studies of [N3N]MoR (R = CD3 , C6Hll) and [N3NF]W-CSiMe 3 have been
carried out, revealing a wide variation in the degree of steric strain present. C6F 5-substituted
diamidoamine complexes of tungsten have also been prepared. [N3NF]W(3,5-dimethylphenyl)
reacts with CO to give the corresponding acyl complex and with atom transfer reagents (pyridine-
n-oxide, trimethylsilylazide) to give the oxo aryl and imido aryl complexes. X-ray studies for
several [N3NF] 3- complexes display unusual distortions, including close contacts between aryl and
perfluoroaryl rings. [N3NF]WX species are reduced in the presence of n-acid ligands (CO,
CN-t-Bu, NO, and ethylene) to give [N3NF]W(L) complexes. Strong backbonding from tungsten
is apparent by IR spectroscopy and an X-ray study of [N3NF]W(CN-t-Bu). [N3NF]W(CO) reacts
smoothly with Na/Hg followed by a TMSC1 quench to give [N3NF]W-C-O-TMS, and with
V(Mes) 3 (THF) to give [N3NF]W(CO)V(Mes) 3 , as evidenced by an X-ray study.
Diamidophosphine complexes of zirconium and molybdenum have also been prepared and
structurally characterized. [N2P]ZrR 2 species polymerize ethylene at 0 OC when activated with
[Ph 3C] [B(C 6F5)4]. NMR studies of cationic tantalum and tungsten methyl compounds have been
carried out in an attempt to obtain evidence for a-agostic interactions.
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General Introduction

The tris(2-aminoethyl)amine (tren) ligand has been used as a chelating ligand in inorganic

chemistry for some time. Werner-type complexes such as [Co(tren)Cl(NH 3)](C1) 2 (1) and

[Cu 2 (tren)2 C12](BPh 4)2 (2) have played an important role in the development of coordination

chemistry.1, 2 In general, five-coordinate tren complexes such as 2 are highly stable relative to

their tetrakis(ammine) analogs as a result of the chelate effect. The tren ligand is particularly useful

in the synthesis of complexes of low-valent, middle and late transition metals where ammine

complexes are common, although octahedral Ti(tren)C13 is known, as are some less well-

characterized lanthanide complexes. 1

Until relatively recently, the tren ligand was largely a tool of the coordination chemist.

However, innovative work in the 1970's led to the development of trianionic derivatives of tren

which proved quite useful for the synthesis of main-group compounds. 3 Ligands of the form

[(RHNCH 2 CH 2)3N] (R = H, Me, i-Pr, SiMe3 )4 lead to complexes coined azatranes, e.g.

[(MeNCH 2 CH 2)3N]Al (3) and [(MeNCH 2 CH 2 )3N]P (4). Phosphine 4 is a commercially

available nonionic superbase. 5 A unique facet of azatrane chemistry is that the ligand adopts two

basic coordination modes, one with the dative amine coordinated to the main-group element and

one with it dissociated (Figure 1). Such flexibility of the ligand in terms of binding modes is

believed to confer some of the unique reactivity observed with these complexes, such as the highly

nucleophilic nature of the phosphorus in [(MeNCH 2 CH2)3N]P. 5 The ability of the dative nitrogen

to coordinate to phosphorus has been proposed to stabilize the cationic P-silylated intermediate (5)

during silylation reactions catalyzed by 4.

R R R SiR 3
S/ . I R

R N 'N R F'"""';P-N

N

4 5

Figure 1. The two coordination modes observed for azatrane complexes.

References begin on page 22.



General Introduction

Transition metal chemistry with tren-derived ligands began with the idea 6 that a trianionic,

TMS-substituted tren ligand might have some of the same advantages as the (TMS)2N- ligand,

namely a steric and electronic profile conducive for the synthesis of a wide variety of hydrocarbon-

soluble and crystalline transition metal7 and actinide 8 complexes. This was indeed found to be the

case, 9 forwarded by the development of a facile procedure for the synthesis of [N3N]Li 3 ([N3N] 3-

= [(TMSNCH 2 CH 2)3N] 3-) in 40 gram quantities. 6 Triamidoamine complexes (we prefer this

more generic nomenclature to "azatrane") of metals in Groups IV through VII are now known, and

a C6F 5-substituted version ([N3NF] 3- = [(C6F5NCH 2CH 2)3N]3 -) has also been prepared with

similar ease, 10 resulting in the high-yield syntheses of [N3NF] 3- complexes of molybdenum and

tungsten. Several general chemical trends have been observed in complexes containing these

ligands. In particular, a high degree of steric protection is provided for ligands in the apical site,

presumably one of the reasons that a number of rarely observed species have been prepared, such

as a Ta phosphinidene, 11 a Ti hydride, 6 and trigonal-monopyramidal complexes of first-row

transition metals from Ti to Mn. 12 A sterically protected apical site is also probably responsible for

the discovery of some unique reactions, such as the (a,-dehydrogenation of W(IV) alkyls' 3 and

the synthesis of a terminal phosphido complex from a W(IV) phosphide. 14 What would otherwise

be unstable species are probably rendered accessible as a result of the coordination environment

provided by this ligand.

The triamidoamine ligand can be at most a twelve electron donor (using the anionic

convention for electron counting). Eight electrons are used in s-bonding molecular orbitals. Only

four of the six amido lone pair electrons can participate in n-bonding with the metal due to

symmetry constraints. Three symmetry-adapted linear combinations of the amide p-orbitals can be

constructed, one with A2 symmetry and another doubly-degenerate set with E symmetry, however,

no metal-based orbital of A2 symmetry exists in the C3v point group. Thus, the remaining two

amido lone pair electrons reside in a ligand-centered nonbonding orbital. A molecular orbital

diagram for amido n-bonding in a triamidoamine complex is shown in Figure 2.

References begin on page 22.



General Introduction

SALCs

a2, e { . a2 

II

I I

I I
II
I I

I I
I I
I I

tr
I

A+At'e

i 8

C)B

N:
I

M

N N

Orbitals are drawn looking down the

M-Naxial vector (taken to be the z-axis)

Molecular orbitals

Figure 2. Molecular orbital diagram for amido n-bonding in triamidoamine complexes.

Since six molecular orbitals are used for T- and 7n-bonding from the [N3N] ligand, there are

three orbitals remaining for bonding with ligands in the apical site of triamidoamine complexes,

one of s-symmetry (dz2 ) and two of n-symmetry (dxz and dyz) (Figure 3). The dz2 orbital is

probably slightly higher in energy than the dxz/dyz set, since some dative amine-dz2 overlap is

possible. Thus, bonding from the ligand(s) present in the "pocket" with the dz2 orbital will be

antibonding with respect to any dz2-dative nitrogen interaction. The orbital arrangement present

contrasts sharply with that of the ubiquitous bent metallocene core, where all three orbitals (one of

References begin on page 22.

Metal orbitals

, dxy, d2 -y2

C<2

a2

q 4



General Introduction

Al symmetry and two of B2 symmetry) lie in the same plane, that passing between the Cp rings. 15

The two n-symmetry frontier molecular orbitals in [N3N] complexes are strictly degenerate,

orthogonal, and probably essentially pure d-orbitals, resulting in an environment that is especially

favorable for the formation of a metal-ligand triple bond. Hybridization of this set also allows for

one doubly-bonded and one singly-bonded ligand in the apical site, or three singly-bonded ligands.

All three of these scenarios result in an 18 electron complex for do metals. This distinctive frontier

molecular orbital configuration, in conjunction with the steric protection afforded by the amido

substituents, has provided a fertile environment for the discovery of new complexes and the study

of reaction mechanisms.

E
N

N N N x
N$N 

N

N N

dyz (T) dxz (T)

Figure 3. Frontier molecular orbitals available for bonding with apical ligands in triamidoamine

complexes.

References begin on page 22.
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CHAPTER I

Direct Detection of a-Elimination Processes That Are More Than

Six Orders of Magnitude Faster Than 3-Elimination Processes in Molybdenum(IV)

Alkyl Complexes That Contain the [(Me 3SiNCH 2CH 2)3N] 3- Ligand.

Much of this material covered in this chapter has been accepted for publication:

Schrock, R. R.; Seidel, S. W.; M6~sch-Zanetti, N. C.; Shih, K.-Y.; O'Donoghue, M. B.;

Davis, W. M.; Reiff, W. M. J. Am. Chem. Soc., in press.



a- and p-Elimination Reactions of Molybdenum(IV) Alkyls

INTRODUCTION

We have been interested in the chemistry of TMS-substituted triamidoamine complexes

of molybdenum and tungsten from several perspectives, including dinitrogen fixation, 1-3 terminal

phosphido and arsenido complexes, 4-7 and new organometallic chemistry. 3,8,9 This chapter

describes the synthesis, characterization, and decomposition of a variety of alkyl complexes of

molybdenum that contain the [N3N] 3- ligand. We have been presented with the opportunity to

prove, by directly measuring rate constants, that ca-elimination reactions are faster than P-
elimination reactions for cyclopentyl and cyclohexyl complexes, even though the products of a-

elimination (alkylidene hydrides) and P-elimination (olefin hydrides) are not observable. This

was made possible by judicious use of 2H NMR, which has a resonant frequency low enough

such that these processes could be observed at temperatures where more severe decomposition

reactions are still slow. These results should be compared to those obtained for related tungsten

complexes, 8,9 the full details of which will be described in chapter II.

RESULTS

Characterization of Paramagnetic Molybdenum Triamidoamine Complexes

Orange, crystalline [N3 N]MoCl is synthesized by reacting [N3 N]Li 3 [10] and

MoC14(THF)2 11 in THF. 12 Yields are typically 30-35%. Despite the moderate yield,

[N3N]MoCl is a practical starting material because both [N3N]Li 3 and MoC14(THF)2 can be

easily prepared in large quantities. The magnetic susceptibility (X,) of [N3N]MoCl is plotted

versus T and 1/T in Figures 1.1 and 1.2. A plot of geff versus T is shown in Figure 1.3. The

susceptibility versus T for temperatures between 50 and 300 K can be fit to curve defined by the

Curie-Weiss equation (X = g2/8(T + 0)) to give values of g = 2.92 ± 0.10 gB and 0 = 6.4 ± 1.0 K.

These data suggest that [N3N]MoCl is a Curie-Weiss paramagnet between room temperature and

-50 K in the solid state with a t value essentially equal to the spin-only value expected for two

unpaired electrons (spin-only Reff = 2.83 tB). 13 We assume that the two electrons are in the set

of degenerate non-bonding orbitals of it symmetry (approximately dxz and dyz if Nax-Mo-Cl is

References begin on page 63.
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a- and P-Elimination Reactions of Molybdenum(IV) Alkyls

taken to be the z axis). The susceptibility of [N3N]MoCl in the solid state between 6 and 300 K

has been reported, 14 but only Curie-Weiss behavior above 100 K (geff = 2.35, 0 = 0.148 K) was

noted. It can be clearly seen from Figures 1.1 and 1.3 that below 50 K, values for X and Peff are

much less than expected for a Curie-Weiss paramagnet. The fairly abrupt decrease in the

effective magnetic moment below -50 K can be attributed to a combination of spin-orbit effects

and low symmetry ligand field components that result in zero field splitting of the d2 ground

state triplet.' 5 Table 1.1 contains the data used to generate the plots in Figures 1.1-1.3.

0.1

0.08

o Observed Susceptibility
- Curie-Weiss Fit

0 50 100 150 200

T (K)
250 300 350

Figure 1.1. A plot of XM versus T for [N3N]MoCl. Data between 50 and 300 K are fit to the

Curie-Weiss law. The g and 0 values obtained from this fit to were used to extend the solid line

in the region below 50 K. The low values in this region compared to those expected for a Curie-

Weiss paramagnet are proposed to result from a combination of spin-orbit coupling and zero

field splitting effects (see text).

References begin on page 63.
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Figure 1.2. A plot of XM versus 1/T for [N3N]MoC1.
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0
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Figure 1.3. A plot of geff versus T for [N3N]MoC1.
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a- and P-Elimination Reactions of Molybdenum(IV) Alkyls

[N3N]MoMe, [N3N]Mo(CH 2SiMe 3), and [N3N]Mo(cyclopentyl) are readily prepared by

alkylation of [N3N]MoCl with the corresponding lithium reagent in ether.12 The susceptibilities

of these complexes in the solid state vary with temperature in ways that are entirely analogous to

the behavior of [N3N]MoC1. A plot of X, versus T for the three complexes is shown in Figure

1.4. Table 1.2 contains the values of g and 0 obtained by fitting the data at temperatures above

50 K to the Curie-Weiss law. The magnetic moment of [N3N]MoMe in C6D 6 at 25 'C was

found to be 2.9 RB by the Evan's method, 12 consistent with the result obtained in the solid state.

0.07 -

0.06

0.05-

XM 0.04-

0.03-

0.02-

0.01-

n

o c-(C5H9)
-o v Me-o

-0-o x CH2SiMe3
o
o

-H i

-I I
SI I I I I I

0 50 100 150 200 250 300 350

T (K)

Figure 1.4. Plots of XM versus T for [N3N]MoR (R = Me, cyclopentyl, and CH 2SiMe3)-

References begin on page 63.
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Table 1.1. Data used to generate the plots in Figures 1.1-1.3.

T (K) Net Magnetization (EMU) a XM b Ceff c

5.00 0.0074399 0.040853 1.2781
6.01 0.0073680 0.040461 1.3946
6.98 0.0073154 0.040174 1.4975
7.98 0.0072702 0.039927 1.5963
8.96 0.0072299 0.039707 1.6868
9.96 0.0071866 0.039471 1.7732
11.98 0.0070726 0.038849 1.9293
13.98 0.0069153 0.037990 2.0610
16.00 0.0067137 0.036890 2.1727
18.03 0.0064791 0.035610 2.2660
20.02 0.0062281 0.034241 2.3414
23.09 0.0058291 0.032063 2.4333
26.05 0.0054502 0.029996 2.4998
29.02 0.0050904 0.028032 2.5507
32.02 0.0047542 0.026197 2.5901
35.01 0.0044467 0.024519 2.6202
38.01 0.0041648 0.022981 2.6431
40.98 0.0039230 0.021662 2.6645
43.97 0.0036872 0.020375 2.6767
46.97 0.0034772 0.019229 2.6876
49.96 0.0032866 0.018189 2.6958
54.96 0.0030080 0.016668 2.7068
59.91 0.0027686 0.015362 2.7130
65.03 0.0025610 0.014229 2.7203
70.10 0.0023759 0.013219 2.7223
75.17 0.0022169 0.012351 2.7249
80.06 0.0020787 0.011597 2.7250
85.07 0.0019593 0.010945 2.7289
90.32 0.0018481 0.010339 2.7328
95.10 0.0017447 0.0097747 2.7266
100.12 0.0016565 0.0092934 2.7279
110.17 0.0014963 0.0084192 2.7236
120.20 0.0013628 0.0076906 2.7190
130.21 0.0012495 0.0070721 2.7138
140.21 0.0011508 0.0065335 2.7067
150.21 0.0010683 0.0060832 2.7033
160.21 0.00099340 0.0056746 2.6964
170.20 0.00092839 0.0053198 2.6910
180.20 0.00087297 0.0050174 2.6890
190.14 0.00081950 0.0047256 2.6807
200.20 0.00077060 0.0044588 2.6719
220.17 0.00068421 0.0039873 2.6497
240.13 0.00061661 0.0036184 2.6361
260.11 0.00055754 0.0032961 2.6185
280.08 0.00050523 0.0030106 2.5969
300.00 0.00045285 0.0027248 2.5569

a Corrected for the susceptibility of the empty sample holder.
b XM = [Mol. wt. (g/mol) x Net mag.] / [Field (gauss) x Sample mass (g)]. X, values were

corrected for the diamagnetic contribution using Pascal's constants, here Xdia = -254 x 10-6 cgsu.
c pleff = 2.828 (XMT) 1/2

References begin on page 63.
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Table 1.2. Values of R in the solid state for [N3N]MoX compounds.a

Compound Rt (tRB) 0 (K)

[N3N]MoCl 2.92 6.4

[N3N]MoMe 2.76 (2.61) 11.1 (4.8)

[N3N]Mo(CH 2SiMe3) 2.72 (2.78) 3.8 (7.5)

[N3N]Mo(cyclopentyl) 2.58 (2.60) -2.2 (-2.4)

a Obtained from SQUID data between 5 and 300 K by fitting the susceptibility (corrected for

core diamagnetism) between 50 and 300 K to the equation x = pt2/8(T + 0). The error in pR is

estimated to be ± 0.10 gB and in 0 to be ± 1 K. Numbers in parentheses refer to a second

sample.

The proton NMR spectrum of [N3N]MoCl at 22 'C consists of three broadened, shifted

resonances, one for the TMS groups and two for the backbone methylene protons of the [N3N] 3-

ligand, consistent with a paramagnetic species that has C3v symmetry on the NMR time scale. It

is not known which of the two methylene resonances corresponds to which [N3N] 3- backbone

methylene group. As the temperature of the NMR sample is lowered the spectrum changes in

two ways. First, the methylene resonances shift upfield (Figure 1.5) and the TMS resonance

shifts (to a lesser extent) downfield (not shown). If the chemical shift of each methylene proton

set is plotted versus 1/T, nearly linear relationships are observed (Figure 1.6), as expected for a

Curie-Weiss paramagnet in solution in this temperature range. (The average of the two

methylene resonances below the coalescence point discussed below was employed when

necessary in Figure 1.6). The second temperature-dependent process observed is a slowed

interconversion between C3-symmetric, chiral A and A conformers as shown in Figure 1.5. The

backbone geminal protons in these relatively low symmetry molecules are rendered

diastereotopic, thus four resonances are observed. At higher temperatures the C3-symmetric

References begin on page 63.
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Figure 1.5. VT 500 MHz IH NMR spectra of [(TMSNCH 2CH 2)3N]MoCl in toluene-d8.
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species becomes C3v-symmetric on the NMR time scale as a consequence of the molecule's

backbone "flipping" rapidly between the two chiral forms. Using the chemical shift difference

between the two types of backbone protons at a temperature that is as close as possible to the

temperature of coalescence, an approximate AGt for the C3v/C3 fluxional process can be

calculated to be 9.2 kcal/mol at ca. -30 oC and 9.0 kcal/mol at ca. -20 OC. (The errors in these

values are estimated to be at least + -0.2 kcal mol- 1.) A C3v/C3 fluxional process is observed for

each [N3N]MoX species discussed in this chapter. This type of fluxional process can also be

observed for a variety of other C3v-symmetric metal complexes that contain the [N3N] 3- ligand,

including diamagnetic species, 16 and complexes that contain the [(C6F 5NCH2CH 2)3N]3-

ligand. 17 We assume that the apical nitrogen donor does not have to dissociate from the metal in

order for the C3v/C3 fluxional process to occur, mainly because AGt values for the C3v/C3

interconversion are much the same for analogous tungsten complexes (see chapter II).

O

-20-

S-40-_

-60 -- ------ ------------- ------------------------e o a c I-----
S-60 ---- Resonance 1

s--- Resonance 2
- -80 0- -- - - -

U -120-

-140

-160-
2.5 3 3.5 4 4.5 5

(1/T) x 1000

Figure 1.6. A plot of the chemical shift of the methylene backbone resonances in [N3N]MoCl

versus 1/T.
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As we shall see later, [N3N]MoMe is a highly thermally stable molecule compared to

some other organometallics of this type. It was thus deemed worthwhile to investigate the solid-

state structure of this complex by X-ray crystallography. A view of the structure of

[N3N]Mo(CD 3 ) is shown in Figure 1.7. Bond lengths and bond angles are compared with

distances and angles in related compounds in Table 1.3. Crystallographic data are contained in

Table 1.4. The choice of the CD 3 complex over the CH 3 complex was circumstantial. The

structure of [N3N]Mo(CD 3 ) is most similar to that of [N3N]MoC114 , except that in the methyl

complex the TMS groups twist out of the plane containing the metal and a given axial and

equatorial nitrogen slightly, simultaneously bringing the backbone carbons, Cp,eq and C.,ax, out

of this N(4)-Mo-N plane. We find the angle between the N(4)-M and Namide-Si vectors a

convenient measure of the degree of this twisting effect. Almost no "twist" is observed in the

structure of [N3N]MoCl, with N(4)-Mo-N-Si values of 176.6 degrees. In [N3N]Mo(CD 3), N(4)-

Mo-Si-N angles range from 160 to 163 degrees. We propose that the TMS groups are twisted to

a larger degree in [N3N]Mo(CD 3) than in [N3N]MoCl as a consequence of the slightly larger

methyl ligand present in the apical pocket. The long Mo-N(4) distance (2.304(9) A) could be

ascribed to a less electrophilic metal center in [N3N]Mo(CD 3) compared to that in [N3N]MoCl

(Mo-N(4) = 2.185(5) A).

C(7)

Si(r ) Si( 2 ) Si( 3 )

N(1) N(2) N(3)

N(4)

Figure 1.7. A view of the structure of [N3N]Mo(CD3).

References begin on page 63.
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A drawing of the structure of [N3N]Mo(cyclohexyl) is shown in Figure 1.8. Bond

lengths and bond angles are compared with distances and angles in related compounds in Table

1.3, and crystallographic data are contained in Table 1.4. The cyclohexyl ring is oriented so that

it lies roughly in a plane that passes between N(1) and N(3) and between N(1) and N(2). The

Mo-C(101) distance (2.167(14) A) is the same as Mo-C(7) in [N3N]Mo(CD 3). The Mo-C(101)-

C(106) and Mo-C(101)-C(102) angles (117 and 120 ") are larger than tetrahedral, consistent with

a significant amount of steric pressure within the trigonal pocket. The possibility of any

concomitant cx-agosticl 8,19 interaction between the C(101)-Ha bond and the metal seems remote

in view of the fact that the only available orbitals (dxz and dyz) each contain one electron.

Interestingly, the N(4)-Mo-Neq-Si dihedral angles are all dramatically smaller (129 to 136') than

those found in [N3N]Mo(CD 3), and the N(4)-Mo distance is approximately 0.1 A longer than in

[N3N]Mo(CD 3). We propose that both are consistent with a significantly greater degree of steric

Figure 1.8. A view of the structure of [N3N]Mo(cyclohexyl).

References begin on page 63.
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interaction between the cyclohexyl ring and the silyl groups on the equatorial amido nitrogens.

"Steric pressure" within the pocket in [N3N]Mo(alkyl) complexes could sharply distinguish one

complex from another in terms of the ease of some proton elimination reactions, as we shall see

shortly.

Table 1.3. Selected bond distances (A) and angles (°) for related complexes.

Mo-Lax

Mo- N(1)

Mo - N(2)

Mo- N(3)

Mo - N(4)

Mo- N(1)-

Mo - N(2) -
Mo- N(3)-

N(1)- Mo-
N(2) - Mo -
N(1)- Mo-

N(4) - Mo -
N(4) - Mo -
N(4) - Mo -

Si(1)

Si(2)

Si(3)

N(2)

N(3)

N(3)

N(1)

N(2)

N(3)

[N3N]MoCla

2.398(2)

1.976(3)

1.976(3)

1.976(3)

2.185(5)

128.2(2)

128.2(2)

128.2(2)

117.7(1)

117.7(1)

117.7(1)
17 6.6b

17 6.6b

17 6.6b

98.8 b

98.8 b

98.8 b

Si(1)

Si(2)

Si(3)
N( 1)-Mo-Lax
N(2)-Mo-Lax

N(3)-Mo-Lax

Mo - C(101) - C(102)

Mo - C(101) - C(106)

[N 3N]Mo(CD 3)

2.188(11)

1.984(9)

1.996(9)

1.973(10)

2.304(9)

128.0(5)

129.1(5)

127.1(5)

117.2(4)

117.6(4)

116.4(4)

162 .4 b

163.3b

160.0 b

99.9(4)

99.3(4)

100.7(4)

[N3N]Mo(Cy)

2.167(14)

1.991(7)

2.012(7)

1.987(7)

2.422(10)

128.2(4)

126.4(4)

131.9(4)

116.3(3)

113.9(3)

116.1(3)

129.1 b

1 3 1 .3b

1 35. 9 b

105.8(3)

102.0(3)

99.6(3)
120.0(7)

116.9(7)

See reference 17.

Obtained from a Chem 3D model.
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Table 1.4. Crystallographic data, collection parameters, and refinement parameters for

[N3N]Mo(CD 3) and [N3N]Mo(cyclohexyl).

[N3N]Mo(CD 3)

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a(A)

b (A)
c (A)

a (deg)

3 (deg)
y (deg)

V (A3)

Space Group

Z

Dcalc (Mg/m3)

F000

X (MoKa)

Scan Type

Temperature (K)
0 Range for Data Collection (deg)

Independent Reflections

Absorption Correction

R [I > 2o(I)]

Rw [I > 2o(I)]

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eA -3)

C 16H39D3MoN4Si 3

473.77

Siemens SMART/CCD

0.17 x 0.12 x 0.12

Monoclinic

17.35280 (10)

9.6851 (2)

15.9445 (3)

90

110.6210 (10)

90

2508.00 (7)

Cc

4

1.255

1000

0.71073 A

(0

183 (2)

2.45 to 23.28

2412

None

0.0660

0.1096

1.085

0.0003 (2)

0.720 and -0.800

[N3N]Mo(cyclohexyl)

C21H50MoN 4Si 3

538.86

Siemens SMART/CCD

0.20 x 0.11 x 0.11

Hexagonal

20.820 (6)

20.820 (6)

11.680 (5)

90

90

120

4385 (3)

P6 3

6

1.224

1728

0.71073 A

0)

183 (2)
1.13 to 20.00

2728

None

0.0569

0.1488

1.113

0.0003 (2)

0.653 and -0.421

References begin on page 63.
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NMR Studies of Paramagnetic Molybdenum(IV) Alkyl Complexes

NMR spectra of [N3N]MoR species show broadened, shifted ligand resonances and

temperature dependencies that are analogous to that observed for [N3N]MoCl (Figure 1.5). For

example, the high field portion of the spectrum of [N3N]Mo(CH 3) that contains the ligand

backbone methylene proton resonances is shown in Figure 1.9. As the temperature is lowered,

the two ligand methylene resonances shift to higher field in a linear fashion versus 1/T (Figure

1.10). Values for AGt for the C3v/C3 fluxional process that becomes slow on the NMR time

scale at ca. -60 'C in [N3N]Mo(CH 3) can be calculated as described for [N3N]MoC1; the values

are 8.6 ± 0.2 kcal/mol and 8.2 ± 0.2 kcal/mol. These free energies of activation are close to those

found for [N3N]MoCl at -20 and -30 'C (9.0 and 9.2 kcal/mol). Therefore, it does not appear

that activation energies for the C3v/C3 fluxional processes in different compounds in this general

family of [N3N]Mo complexes differ dramatically.

So far we have been unable to observe an a-proton resonance in any [N3N]MoR

complex. In order to be certain that we did not overlook an a-proton resonance, we searched for

a 2H resonance in [N3N]Mo(CD 3) between 400 and -400 ppm. 2H NMR was chosen because

resonances in 2H NMR spectra of paramagnetic compounds are often significantly narrower, and

therefore more readily observed, than those in 1H NMR spectra of paramagnetic complexes. 20

Despite this theoretical advantage, we could observe no 2H resonance that could be ascribed to

the CD 3 group in [N3N]Mo(CD 3), even after hours of collection time at 76.7 MHz (500 MHz

1H). We conclude that the CD 3 group in [N3N]Mo(CD 3) is either outside the 400 to -400 ppm

region, or it is too broad to be observed, or both. In no other [N3N]Mo(alkyl) species discussed

here have we been able to observe any 1H or 2H resonance for protons or deuterons attached to a

carbon directly bound to Mo.

Resonances for protons on the 3-carbon of an alkyl ligand can be observed, however. For

example, the 1H NMR spectrum of [N3N]Mo(CH 2CH 3) shows a broad resonance at -51.5 ppm

(at 22 oC) in addition to resonances which can be ascribed to the TMS groups and ligand
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Figure 1.9. VT 500 MHz 1H NMR spectra of [(TMSNCH 2CH 2)3N]MoMe in toluene-d 8
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Figure 1.10. A plot of the chemical shift of the methylene backbone resonances versus 1/T for

[N3N]MoMe.

backbone methylene protons as described earlier for [N3N]MoCl and [N3N]MoMe. Ligand

backbone methylene resonances can be assigned since they split into two resonances at

temperatures where the C3/C 3v fluxional process becomes slow on the NMR time scale. P

Proton resonances in other alkyl complexes (see below) are also typically found in the -50 to -60

ppm range. The chemical shift of the 0 proton resonance is temperature dependent as expected

for a Curie-Weiss paramagnetic species (moving to higher field at lower temperatures).

The variable temperature 1H NMR spectrum of [N3N]Mo(CH 2CH 2CH 2CH 3) between 60

and -60 'C shows, in addition to the TMS and ligand backbone methylene resonances, three

resonances (at 22 'C) at -48, 2.9, and 5.4 ppm. The resonance at -48 ppm can be assigned to the

0 methylene protons, while the resonances at 2.9 and 5.4 ppm can be assigned to the y and 8

proton resonances, or vice versa. The only temperature dependent processes observed in the

range 60 to -60 'C are the Curie-Weiss 1/T chemical shift dependences and slowing of the

interconversion between A and A C3-symmetric conformers at low temperatures.
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The 1H NMR spectrum of [N3N]Mo(cyclopentyl) shows four broadened and shifted

resonances for the cyclopentyl ligand protons at 21.3, 15.6, -48.2, and -58.3 ppm at 22 'C (Figure

1.11). On the basis of chemical shift the resonances at 21.3 and 15.6 ppm can be ascribed to exo

and endo y protons (without specifying which is which), with endo protons being defined as

those on the same side of the ring as the metal. Those resonances at -48.2 and -58.3 ppm can be

assigned to exo and endo 3 protons (again without being able to specify which is endo and which

is exo). The Ha resonance is not observable, and at low temperatures the ligand backbone

becomes locked in one C3-symmetric conformation, just as in all [N3N]MoX complexes

examined.

TMS
I C6D5H

Y7 backbone methylenes
endo/exo endo/exo

20 10 0 -10 -20 -30 -40 -50 -60 ppm

Figure 1.11. 500 MHz 1H NMR spectrum of [N3N]Mo(cyclopentyl) at 22 'C.

The 2H NMR spectrum of [N3N]Mo(C 5H8D), prepared by reacting 1-deuterocyclopentyl-

lithium with [N3N]MoCl for 3 h at room temperature (Figure 1.12), displaced four broad

resonances for 2Hy,exo and 2Hy,,endo (or vice versa) and 2H3,exo and 2HP,endo (or vice versa) at the

same chemical shifts (at a given temperature) as found in the 1H NMR spectrum of

[N3N]Mo(cyclopentyl) (Figure 1.11). They are best observed when the sample is cooled to 0 'C

for reasons that will be discussed below. These data confirm that the deuterium atom has washed

into all exo and endo p and y cyclopentyl positions. We cannot determine if deuterium is also
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30 20 10 0 -10 -20 -30 -40 -50 -60 ppm

Figure 1.12. 76.7 MHz 2H NMR spectrum of [N3N]Mo(cyclopentyl-dl) acquired at 0 OC.

present at the a-carbon, since this resonance is unobservable. When [N3N]Mo(1-deuterocyclo-

pentyl) was prepared by adding 1-deuterocyclopentyllithium to [N3N]MoCl at -20 oC in a sealed

NMR tube and the reaction monitored by 2H NMR, the results shown in Figure 1.13 were

obtained. Initially only a resonance for the deuterium in 1-deuterocyclopentyllithium was

observed at 0.6 ppm. (Alkylation is relatively slow at -20 'C in toluene.) The sample was then

warmed for brief periods to 22 'C and cooled to -20 oC in order to record the 2H NMR spectrum.

After a total of -10 minutes at 22 'C all 1-deuterocyclopentyllithium had been consumed.

However, at this stage only weak 2Hp resonances were observed (at -20 oC) at -58 and -72 ppm.

No y resonances were observed near 20 ppm. The intensity of the P resonances increased with

time, reaching a maximum after the sample had stood for a total for 1-2 hours at room

temperature. After 2 hours some y deuteron intensity was observed near 20 ppm. After 24 hours

the spectrum clearly revealed resonances at 18 and 27 ppm (at -20 "C) for 2 H in y positions

(Figure 1.13). The resonances at 18 and 27 ppm are slightly less intense than those at -58 and

-72 ppm, probably as a consequence of the rapidly decreasing rate of incorporation into y

positions for statistical reasons (only one deuteron total is present). The y resonances in the

sample whose 2H NMR spectrum is shown in Figure 1.12 are also less intense than the P

resonances, as this sample was kept at 22 'C for only -4 hours. Therefore we can say

confidently that the a-deuteron initially present in [N3N]Mo(1-d-cyclopentyl) washes into the

P,exo and f,endo positions of the cyclopentyl ring before it washes into the y,exo and y,endo

positions.
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24 h

2h
l h V

20 min

4 min

0 min
iwll l 'lll I l ll 1

32 26 20 ppm

y positions

-45 -50 -55 -60 -65 -70 -75 -80 -85 ppm

P positions

Figure 1.13. 46.0 MHz 2H NMR spectra (at -20 oC) of [N3N]Mo(cyclopentyl-dl) as a function

of time the sample was kept at 22 'C. (* a resonance due to naturally-abundant deuterium in the

TMS group of [N3N]MoH, a decomposition product, see text.)

The mechanism by which deuterium appears on a P carbon in an exo position is proposed

to be the well-known -hydride elimination reaction, followed by an insertion of the olefin into

the Mo-H bond (equation 1). Subsequent P-hydride elimination/olefin insertion would yield the

Mo

HMo

Mo

H '" H
D

Mo

species in which deuterium appears on a y carbon in an exo position (equation 2). If only 3-

hydride elimination were taking place, deuterium would appear only in exo positions. Therefore

another faster process must interconvert exo and endo protons on P and y carbons (see below).
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We can estimate from Figure 1.13 that scrambling of a deuteron from the at-carbon to the P-
carbons (in both exo and endo positions) is complete (-5 half-lives) in 60-120 minutes.

Therefore the half-life for appearance of deuterium in a 3 position is between 12 and 24 minutes

at 22 'C or kP = 5 x 10-4 sec- 1 to 10-3 sec- 1. No significant cyclopentene is lost from the

cyclopentene hydride intermediate under these conditions. It has been shown that at 66 'C T 1/2 =

17 min for cyclopentene elimination. 12 At equilibrium 1/9 of one deuterium should be found at

each of the nine cyclopentyl positions, ignoring any equilibrium isotope effects, and assuming

that deuterium is scrambled relatively rapidly between exo and endo positions by some other

process.

H

H '" H H D

H O N ( 2 )
Mo Mo H _ Mo

2H NMR spectra of [N3N]Mo(1-d-cyclopentyl) from 0 to 50 oC (Figure 1.14) reveal that

deuterium present in the exo and endo sites equilibrates rapidly on the NMR time scale at the

higher temperatures, where decomposition to give [N3 N]MoH (see later) is still slow. As the

sample is warmed, the four broad resonances coalesce to two average resonances. Resonances

also shift towards the diamagnetic region of the spectrum as a consequence of the Curie-Weiss

1/(T + 0) susceptibility dependence. Both of these temperature-dependent processes are entirely

reversible. (The sharp resonances between 4 and 9 ppm in Figure 1.14 are due to naturally

abundant deuterium in the toluene solvent and the small amount of cyclopentene-dl formed upon

decomposition of [N3N]Mo(cyclopentyl-dl) at the higher temperatures.) This fluxional process

cannot be observed unambiguously by 1H NMR for several reasons, among them the factor of

6.5 difference between 1H and 2H frequencies at a given field strength. Note that the fluxional

process that leads to interconversion of exo and endo deuterons cannot involve any a-deuterium
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in the averaging process. If 2Hx were scrambling rapidly with 2H7 or 2Hp, then the resulting

average resonances either would be shifted significantly, or decreased in intensity dramatically,

or both. Since such dramatic changes are not observed, we conclude that 2HP,exo averages with

2HP,endo and 2Hy,exo averages with 2Hy,endo as the temperature is raised. The fluxional process

is not consistent with any slowed rotation of the cyclopentyl ring within the trigonal pocket, as

the backbone still has pseudo-C3v symmetry at 0 'C by 1H NMR, a temperature where the

cyclopentyl 2H exo and endo resonances are resolved.

y exo/endo , p exo/endo
+I+,*

50 oC

40 oC

30 oC

20 oC

10 OC

0 oc

20 10 0 -10 -20 -30 -40 -50 -60 ppm

Figure 1.14. VT 76.7 MHz 2H NMR spectra of [N3N]Mo(C 5H 8D).

+ Resonances due to residual deuterium in the toluene. * Resonances due to cyclopentene-dl.

We propose that the fluxional process that leads to averaging of exo and endo deuterium

on Cp and exo and endo deuterium on Cy consists of a rapid and reversible a-elimination to give

an intermediate [N3N]Mo(cyclopentylidene)(H) complex (equation 3). This unusual proposal is

sensible in view of the fact that an attempt to prepare [N3N]W(cyclopentyl) yielded

crystallographically characterized [N3N]W(cyclopentylidene)(H) instead9 (see chapter II). The
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rate constant for a-elimination (ka) at 22 'C can be estimated to be 103 sec- 1 from the NMR

experiments shown in Figure 1.14. The half-life for 1-elimination can be estimated to be

between 12 (thus kp would equal 5 x 10-4 sec- 1) and 24 (thus kp would equal 10-3 sec- 1) minutes

at 22 'C (see above). Therefore we can say that the rate constant for a-elimination is at least six

orders of magnitude larger than the rate constant for 3-elimination at room temperature, i.e., kcx

> 106 kp (equation 3). (An accurate comparison of the rate constants for a- and -elimination

per C-H bond would have to include a factor of two since there are two endo P protons and only

one a proton present, but we need not consider that adjustment here in view of the magnitude of

the rate differences in question.) We assume that [N3N]Mo(cyclopentylidene)(H), like

[N3N]W(cyclopentylidene)(H), 9 is diamagnetic, and that [N3N]Mo(cyclopentene)(H) also would

be diamagnetic. There is no evidence that suggests that any significant amount of either is

H P ka k H

Mo - Mo Mo (3)
ka,rev kp,rev

present, i.e., the equilibria for both a- and 1-elimination lie well toward [N3N]Mo(cyclopentyl).

If we assume that the equilibrium constants for forming [N3N]Mo(cyclopentyl) (kX,rev/kac and

kp,rev/kp) are both - 102 or greater, then k[,rev = 10-1 sec - 1 (or greater) and k(x,rev = 105 sec - 1 (or

greater). An alternative explanation of the phenomenon of interconversion of exo and endo

cyclopentyl protons involves C-C bond cleavage and formation of a 1-molybdacyclohexene

complex that has Cs symmetry, but rapid and reversible C-C bond cleavage would seem to be

much less likely than rapid and reversible C-H bond cleavage. (See results and discussion

below.) It should be noted that a significant primary H/D kinetic isotope effect might be

expected for an a-elimination process, 21 but since only one 2H is present among eight 1H nuclei
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in the sample whose 2H NMR spectrum is shown in Figure 1.14, we are most likely observing a

virtually pure a-hydrogen elimination in this case.

The 1H NMR spectrum of [N3N]Mo(cyclohexyl) shows six resonances for the cyclohexyl

ring exo and endo protons that average upon heating the sample. [N3N]Mo(cyclohexyl) is more

stable than [N3N]Mo(cyclopentyl), so it is possible to heat it to higher temperatures before

decomposition to [N3N]MoH and cyclohexene occurs (see below). Nevertheless, resonances for

[N3N]MoH complicate this study, as does the TMS resonance of [N3N]Mo(cyclohexyl). We

assign the resonances at 15.8 and 6.1 ppm to exo and endo y protons, those at 1.9 and -2.0 ppm to

exo and endo 6 protons, and those at -40.9 and -49.9 ppm to exo and endo 3 protons.

Interference by other resonances and the breadth of the cyclohexyl 0, y, and 8 resonances in the

proton NMR spectrum of [N3N]Mo(cyclohexyl) make these results less convincing than those

for [N3N]Mo(cyclopentyl-dl). Nevertheless, we can observe coalescence of the 8 proton

resonances at 64 ± 2 'C and the P resonances at -100 OC (less accurately and not shown).

Unfortunately, the y resonances coalesce under the broad resonance for the TMS group in

[N3N]Mo(cyclohexyl) at -10 ppm. From coalescence of exo and endo 8 protons we can obtain

an approximate value for ka,C6 (2 x 103 s-1) at 64 'C. This value should be compared with the

value for ka in the cyclopentyl complex, ka,C5 = 13 s- 1 at 22 'C. At 64 'C, ka,C5 perhaps

would be ~16 x 103, or approximately eight times larger than ka,C6. (A second estimate at a

different temperature is made below using another approach.) Note that in the cyclohexyl case it

is possible to distinguish a rapid a-elimination from a rapid P-elimination on the basis of the

number of averaged ring resonances alone (three ideally), regardless of assignment.

The 2H NMR spectrum of [N3N]Mo(C 6D11) at 46.0 MHz is shown in Figure 1.15. The

expected six C6D11 resonances in the ratio of 2 (y):2 (y): 1(8):1(8):2(p):2(p) are observed at 10 oC.

Upon heating the sample these resonances broaden and coalesce pair-wise. The coalescence

temperature varies for each set of resonances as a consequence of the different chemical shift

difference between the respective exo and endo 2H resonances [Av(y) > Av(3) > Av(8)] . Since a
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Figure 1.15. 46.0 MHz VT 2H NMR spectra of [N3N]Mo(cyclohexyl-dl i).

single physical process (a-elimination) is responsible for all three coalescence phenomena, we

can obtain a rate for that process at three different temperatures from the spectra shown in Figure

1.15. The results for a -0.1 M sample in toluene are ka= 378 sec- 1 at 324 K, 755 sec- 1 at 339 K,

and 955 sec- 1 at 343 K. By performing a similar experiment at 76.7 MHz with a -0.1 M sample

three additional points were obtained: ka = 606 sec- 1 at 331 K, 1273 sec-1 at 346 K, and 1555

sec- 1 at 352 K. Virtually identical values were obtained for a sample that was half the

concentration (-0.05 M). A plot of ln(k/T) versus 1/T for these six points gave AHt = 11 + 1

kcal mol-1 and ASt = -14 ± 3 e.u. (exact values may be found in the Experimental Section). The

rate constant for o-elimination in [N3N]Mo(C 6H11 ) at 337 K was found to be 2155 sec- 1 (see
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above). Since the rate of a-elimination in [N3N]Mo(C 6D 11) at 337 K can be calculated to be

696 sec- 1 from the Eyring plot, kH/kD for a elimination at 337 K is 3.1 + 0.3. Observation of a

substantial isotope effect confirms that a C-H bond cleavage is involved in the process that gives

rise to interconversion of exo and endo protons, and therefore rules out a possible, if implausible,

alternative equilibration by C-C bond cleavage and formation of a metallacycloheptene ring. We

also can compare the rate constant for a-elimination at 22 'C for [N3N]Mo(C 6D 11) (calculated to

be -64 sec - 1) and [N3N]Mo(C 5H9 ) (estimated to be -1000 sec- 1). The ka at 22 'C for

[N3N]Mo(C 6H1 1) should be -200 sec- 1 on the basis of kH/kD = 3. Thus, the rate of a-

elimination in [N3N]Mo(C 5H9) is approximately five times faster than the rate of a-elimination

in [N3N]Mo(C 6H11) at 22 'C (cf. the estimate of eight times faster at 64 OC above).

Both [N3N]Mo(cyclobutyl) and [N3N]Mo(cyclopropyl) have also been studied by VT 1H

NMR in order to determine if a similar rapid a-elimination process is occurring. The endo and

exo p protons in the cyclopropyl complex are separated by > 110 ppm. If a reversible a-

elimination process was taking place, the large peak separation would require too high of a

temperature in order to observe coalescence, since the cyclopropyl complex decomposes to

[N3N]Mo-CH with a half-life of -1 h at 50 oC. 12 In [N3N]Mo(cyclobutyl), endo and exo P

protons are separated by > 70 ppm, a margin which is again too large to observe any coalescence

before the molecule decomposes to [N3N]Mo=CH 2CH 2CH 2CH 3 (t1/2 for this process = 23 min

at 60 oC). 12 Endo and exo y protons in the cyclobutyl complex are too broad and too close

together to evaluate whether they coalesce. As the sample is warmed, the y resonances simply

shift to give one broad resonance, presumably as a result of Curie-Weiss 1/(0 + T) dependence.

Therefore we cannot confirm or exclude a reversible a -elimination process in

[N3N]Mo(cyclopropyl) or [N3N]Mo(cyclobutyl).

Thermolysis of [N3N]MoX Complexes

Thermolysis of several [N3N]Mo(CH 2R) complexes leads to formation of [N3N]Mo-CR

complexes with loss of molecular hydrogen (equation 4).12 The reaction is fastest when R =
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CMe3 , but can also be observed when R = SiMe 3, Ph, or n-propyl. This decomposition is

analogous to the faster and better documented decompositions of tungsten complexes of this

type. 8 It is proposed that [N3N]Mo(CH2 R) is converted into [N3N]Mo(H)(CHR), and that

dihydrogen is lost from [N3N]Mo(H)(CHR) by a type of "a(-hydrogen abstraction" reaction

TMS CH 2R| TMS
TMSN".MoI-N/

VP

R

III /TMS

IMo-NA 2

-H 2

(equation 5).21 We have shown that the rates of forming a cyclopentylidene hydride from

[N3N]Mo(cyclopentyl) and a cyclohexylidene hydride from [N3N]Mo(cyclohexyl) can be

relatively fast. Since the difference between the rates of a-elimination in [N3N]Mo(cyclopentyl)

and [N3N]Mo(cyclohexyl) is already significant (ca. one order of magnitude), we suspect that the

rates of forming [N3N]Mo(H)(CHR) complexes from various [N3N]Mo(CH 2R) complexes will

also differ dramatically (see discussion section).

H

TMS,. R'- C HH \ TMS
TMS Mo-N

-H2
ON-

R'

TMS. C
.. ITMS

TMS Mo-N

4.NIN

(5)

The thermolysis of [N3N]Mo(CH 2CH 2CH 2CH 3 ) warranted further study, since

[N3 N]MoH (the ultimate product of a 3-hydride elimination/olefin loss reaction sequence) is

formed in significant amounts as well as [N3N]Mo-CCH 2CH2CH 3. It seems that the rates of
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a,a-dehydrogenation (equation 5) and n-hydride elimination followed by loss of olefin (equation

6) are competitive in this case. When [N3N]Mo( 13CH 2CH2 CH2 CH 3) is heated to 80 'C for 6

days, 90% of the labeled product is 1-butene, with a 6 : 1 ratio of H21 3C=CHCH 2 CH 3 and

H2C=CHCH 2
13CH 3. The remaining 10% is a 10: 1 mixture of [N3N]Mo( 13CH 2CH 2CH 2CH 3)

R'

CH2
TMS H TMS MS

CH 2  TMS TMS TMSTMS, /TM TMSKNII\/ / TM . / I MS
TMSN Mo-N Mo-N TMSO N  Mo-N (6)

-H2C=CHR' ty

and [N3N]Mo(CH 2CH 2CH 2 13CH 3). This is the result expected if the metal cannot easily "walk"

to the other end of the butyl chain (by forming [N3N]Mo(sec-butyl) and [N3N]Mo(2-butene)(H)

intermediates) before 1-butene is lost. If an isomerization of this type were rapid relative to the

rate of loss of 1-butene, then a 1:1 mixture of 13CH2=CHCH 2CH 3 and CH 2=CHCH2
13CH 3

would be obtained. Formation of mainly [N3N]Mo-1 3CCH 2CH 2CH 3 is also consistent with no

[N3N]Mo(CH 2CH 2 CH2
13CH 3) being formed before the a,a-dehydrogenation.

Upon heating a solution of the cyclopentyl complex, cyclopentene is lost and yellow,

paramagnetic [N3N]MoH (equation 7) is formed quantitatively, according to NMR spectra. It

TMS TMS H
TMSNMo N TMS - cyclopentene M TMS

SMo-N - - TMSNI . Mo--N (7)

can be isolated in 65% yield on a scale of 1 mmol. Evidence for irreversible cyclopentene loss is

provided by the following experiment. When [N3N]MoD 12 is dissolved in neat cyclopentene
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and the solution is heated to 50 oC for 18 h, no deuterium is incorporated into the cyclopentene

solvent, as can be sensitively ascertained by 2H NMR.

[N3N]Mo(cyclohexyl) also decomposes cleanly to give [N3N]MoH, as determined by 1H

NMR and by monitoring the reaction in toluene by UV/Vis at 562 nm. The first order

conversion of [N3N]Mo(cyclohexyl) into [N3N]MoH was followed at five temperatures between

323 and 363 K, and the values of AH and ASt from an Eyring plot (Figure 1.16) are 24.5 (2)

kcal mol- 1 and -5 (1) e.u. Plots of In [(A - Aoo)/(Ao - Ao)] versus T at the five different

temperatures are shown in Figure 1.17. The decomposition of [N3N]Mo(cyclohexyl) is -10

times slower than that of [N3N]Mo(cyclopentyl). 12 (At 298 K the rate constants are calculated to

be 4.7 x 10-7 sec- 1 for [N3N]Mo(cyclohexyl) and 6.2 x 10-6 sec- 1 for [N3N]Mo(cyclopentyl).) At

343 K [N3N]Mo(C 6D11 ) was found to decompose with k = 3.0 x 10-5 and 3.3 x 10-5 sec-1. Rate

constants were independent of concentration over a fivefold range. Since the rate constant for

decomposition of [N3N]Mo(C 6H11 ) at 343 K is calculated to be 12.3 x 10-5 s-1, the isotope effect

at that temperature is 3.9 (2). A deuterium isotope effect of this magnitude is consistent C-H

bond cleavage in the transition state.

y = 21.109 + -12331x R= 0.99886
-12

-13-

-14-

= -15

-16-

-17 - -

-1

0.00275 0.00285 0.00295 0.00305
1/T

Figure 1.16. An Eyring plot for the decomposition of [N3N]Mo(cyclohexyl) from 323 to 363 K.
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Figure 1.17. First-order kinetic plots for the decomposition of [N3N]Mo(cyclohexyl).

At 100 'C [N3N]MoH begins to evolve dihydrogen to give the paramagnetic

"[bitN3N]Mo" complex 12 shown in equation 8. When [N3N]MoH is heated to 105 oC in toluene-

d8 in an evacuated, sealed NMR tube, a 50/50 mixture of [N3N]MoH and [bitN 3N] is observed

TMS,, H

TMSN Mo-N ..
- V. t-v

TMS
-H 2

+ H 2

(8)

after 22 h. Removal of the H2 from this solution and further heating for another 22 h yields a

70/30 mixture of [bitN 3N] and [N3N]MoH. Heating for another 24 h gave a 80/20 mixture.

[bitN 3N]Mo reacts with D2 slowly to give largely [N3N]MoD in which a second deuterium is
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located in a TMS group, 12 thereby confirming that loss of hydrogen (equation 8) is reversible.

However, both loss of hydrogen from [N3N]MoH and reaction of [bitN3N]Mo with hydrogen are

relatively slow. [bitN 3N]Mo is not formed upon heating [N3 N]MoR complexes that are

relatively stable toward decomposition by other pathways. For example, [N3N]MoPh is quite

stable thermally (decomposition is slow at 120 oC), and there is no evidence that [bitN 3N]Mo

forms over a period of 24 h at 120 OC. Likewise, no [bitN3N]Mo is formed when [N3N]MoMe

decomposes.

DISCUSSION

The J-hydride elimination reaction has been a predominant mode of decomposition for

transition metal alkyls, especially compared to an a-elimination to give an alkylidene hydride. 22

Evidence for an equilibrium between an alkyl complex and alkylidene hydride has usually

involved high oxidation state tungsten 23-25 or tantalum 26-30 alkyl complexes. In the Cp*2Ta

system observable Cp* 2Ta(CH 2 )(H) was found to be in equilibrium with unobservable

Cp*2Ta(CH3).2 9 It was also shown that Cp* 2(H)Ta=C=CH 2 decomposed via intermediate

Cp*(rl5-C5Me4CH 2CH 2CH 2)Ta to the kinetic product, Cp*(rl 5-C5Me4CH 2CH 2CH)Ta(H), by (a-

elimination, and to the thermodynamic product, Cp*(1 5-C5Me4CH 2 -1l2-CH=CH 2)Ta(H), by P-

elimination. 30 It was noted that "the rate of a-H elimination is 108 times greater than the rate of

P-H elimination" in this circumstance. However, it was also noted that "...the generality of

faster a-H elimination versus P-H elimination is questionable, since the transition state for 3-H

elimination in this system is highly strained, whereas that for a-H elimination is much less so."

Finally, it was argued that "for a general alkyl ligand in the permethyltantalocene system, a-H

elimination cannot be kinetically favored over P-H elimination by more than...a factor of -30 in

rate at 25 'C." Similar statements could be made about many of the alkyl complexes reported

here, although the validity and generality of such statements are limited by the experimental data

available. It is generally assumed that an agostic interaction 19 between the metal and the a- or P-
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hydrogen is on the pathway for a - or -elimination, respectively, even though definitive

evidence for a-agostic interactions is still sparse.18

a-Abstraction in a dialkyl complex (to give alkane and an alkylidene complex) 21 is

closely related to a-elimination, and an a-agostic activation of an a-proton in one of the alkyls is

thought to precede a-abstraction. It has long been known that neopentyl complexes are most

prone to a-abstraction, with trimethylsilylmethyl, benzyl, and especially methyl being

progressively less so.21 It was also noted in early studies that a-abstraction is faster in sterically

crowded environments, e.g., when additional ligands coordinate to the metal. 21 Recently it has

been shown that a-abstraction and 1-abstraction can compete in [(Me 3SiNCH 2CH 2N) 3N]Ta

dialkyl species, 3 1 that the rate of a-abstraction can be enhanced by increasing the size of the

alkyls in the apical "pocket,"32 and that a-abstraction to give an alkylidene can be forced to be

virtually the only sterically tenable process by increasing the size of the silyl substituent in

[(R3SiNCH2CH2N) 3N]Ta(alkyl) 2 species from R = Me to R = Et. In a more crowded "pocket,"

the 1-agostic interaction that precedes 1-abstraction in the alkyl becomes sterically disfavored,

while the a-agostic interaction that precedes a-abstraction at the same time is encouraged.

The preceding discussion would suggest that a-processes (abstraction or elimination) can

be dramatically accelerated at the expense of 1-processes (abstraction or elimination), and that

steric (or "conformational") factors play a key role in determining the relative rates of a- versus

-processes in a given complex. Therefore, it is becoming increasingly clear that broad

statements concerning the relative rates of a- versus 1-processes simply cannot be justified, even

for a given metal with the same ligand coordination sphere. Nevertheless, it seems relatively

safe to say that competition between a-and P-processes will continue to be found among the

earlier, heavier metals (Ta, Mo, W, Re) where multiple metal-carbon bonds (alkylidenes and

alkylidynes) are relatively common.2 1 Whether a-elimination is faster than 1-elimination for

later metals (e.g., iridium33) has yet to be investigated thoroughly.

We have observed that a-elimination is fast relative to -elimination in two

[N3N]Mo(cycloalkyl) systems, even though no alkylidene hydride complex is observed in either
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case. To our knowledge any consequence of rapid and reversible a-elimination has never been

observed directly before, perhaps largely because no net change in the alkyl itself occurs. Rapid

a-elimination could be documented here in part because of the paramagnetic nature of the

[N3N]Mo(cycloalkyl) complexes and the resulting dispersion of all cycloalkyl resonances

(including exo and endo resonances) in NMR spectra, a phenomenon that has proved useful in

the coordination chemistry of paramagnetic coordination complexes for some time.2 0 We

suspect that a-elimination in some [N3N]Mo(n-alkyl) complexes can also be "rapid" (e.g., 10-1

sec -1 or greater), but perhaps only when the Mo-Co-C angle is opened up as a consequence of

steric interactions (e.g., in [N3N]Mo(neopentyl)). Unfortunately, we have not been able to

devise a way to measure the rate of conversion of (e.g.) [N3 N]Mo(CH 2CMe 3 ) to

[N3N]Mo(CHCMe 3 )(H) in order to compare the rate of a-elimination with that found in

[N3N]Mo(cyclopentyl) and [N3N]Mo(cyclohexyl). For alkyls in general the situation is

complicated by competitive a-abstraction reaction (a,a-dehydrogenation) and P-hydride

elimination processes. A plausible scenario is that the rate of a-elimination in

[N3N]Mo(CH2 CMe3) could be of the same order of magnitude as it is in [N3N]Mo(cyclopentyl)

or [N3N]Mo(cyclohexyl) (i.e., 102 to 103 sec -1 at 22 oC), but [N3N]Mo-CCMe 3 does not form

readily because [N3N]Mo(CHCMe 3)(H) does not lose hydrogen rapidly enough to compete with

the back reaction to reform [N3N]Mo(CH2 CMe 3). Therefore a plausible explanation as to why

other [N3N]Mo(CH2 R) complexes decompose to [N3N]Mo-CR complexes progressively less

readily as the size of R decreases is that the equilibrium between [N3N]Mo(H)(CHR) and

[N3N]Mo(CH2R) complexes becomes prohibitively large, i.e., virtually no [N3N]Mo(H)(CHR)

is present. The equilibrium between [N3N]Mo(H)(CHR) and [N3N]Mo(CH 2R) could become

large either as a consequence of a precipitous drop in the rate of a-elimination, or as a

consequence of a dramatic increase of the rate of forming an alkyl complex from an alkylidene

hydride complex. If it is the former, then a-elimination could even become rate limiting in the

reaction in which an alkylidyne complex is formed from an alkyl complex, e.g., hypothetical

a,a-dehydrogenation in [N3N]MoMe to form [N3N]Mo-CH. It is interesting to note that the
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overall relative ease of forming an alkylidyne complex via loss of H2 from the alkyl (CH 2CMe3

> CH 2SiMe 3 > CH 2 Ph >> Me) is analogous to what has been observed qualitatively for a-

hydrogen abstraction in tantalum dialkyl complexes to give alkylidene complexes. 2 1 Less data

for formation of alkylidyne complexes from alkylidene complexes 34 by a-hydrogen abstraction

is available, but it is in accord with a general trend toward more facile a-abstraction from bulkier

alkylidenes.

The X-ray structures of the methyl and cyclohexyl [N3N]MoR species illustrate semi-

quantitatively the differences in the degree of steric congestion within the trigonal pocket. These

differences suggest that a greater rate of a-elimination in part could be traced to a relief of steric

strain within the pocket. However, so many other factors must be taken into account that we can

only in a very general sense feel secure in concluding that steric congestion increases the rate of

a-elimination. In fact, the rate of a-elimination in the cyclohexyl complex is significantly

slower than the rate of a-elimination in the cyclopentyl complex at 22 'C, even though one

would expect steric congestion in the ground state of the cyclohexyl species to be greater.

However, a greater degree of steric congestion in [N3N]Mo(cyclohexylidene)(H) (versus

[N3N]Mo(cyclopentylidene)(H)) should oppose that trend and lead to a slower rate of a-

elimination. Correlating the rates of -elimination with steric congestion in either the ground

state or in the olefin hydride intermediate species in these systems is also virtually impossible for

similar reasons at this stage.

In contrast to the equilibria observed here, the equilibrium between [N3N]W(cycloalkyl)

and [N3N]W(cycloalkylidene)(H) complexes has been observed to lie toward the latter for

cyclopentyl 9 and cyclohexyl. 35 However, [N3N]WMe is observable.8  These results are

consistent with a substantially slower rate of a-elimination in the methyl complex and/or a

relatively small equilibrium constant for forming [N3N]W(CH 2 )(H). The observation of

tungsten(VI) alkylidene hydride complexes, but molybdenum(IV) alkyl complexes, could be

explained using oxidation state and/or bond strength arguments. The fact that a,a-

dehydrogenation reactions in [N3N]W(CH 2R) complexes are orders of magnitude faster than in
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the analogous [N3N]Mo(CH 2R) complexes also could be explained in terms of a higher

concentration of alkylidene hydride in a W system versus an analogous Mo system. A more

detailed discussion and relevant results may be found in chapter II.

It may be worth pointing out that we have assumed throughout this work that the [N3N]

ligand is not directly involved in proton migration reactions, i.e., a proton does not migrate from

carbon to nitrogen to produce a [(Me3SiNCH 2CH2)2N(CH2CH 2NHSiMe 3)]2- ligand. However,

such a ligand has been observed in the analogous C6F5-substituted ligand system.3 6 Therefore

the possibility of forming an intermediate via proton migration to an amido nitrogen (e.g.,

equation 9) must be considered. Unlike the o-elimination reaction, there is no change in

oxidation state of the metal in such a reaction if we assume that the alkylidene is a dianion. A

rapid process of this nature could explain interconversion of exo and endo protons in

[N3N]Mo(cyclopentyl), if the alkylidene could rotate readily by 180 degrees before the amido

proton migrates back to the alkylidene carbon atom.

TMS TM S HHTMS/TMS TMS TMS
TMS N Mo-N .TMS Mo N (9)

As alluded to previously, an alternative explanation for the changes in the 2H NMR

spectrum of [N3N]Mo(cyclopentyl-dl) upon warming is that a rapid and reversible carbon-

carbon bond cleavage reaction is taking place (equation 10). Fast access of this Cs-symmetric

metallacyclohexene complex on the NMR time scale would lead to the same interconversion of

endo and exo ring positions. A C-C bond cleavage process occurring at 103 sec-1 would seem

unlikely compared to a C-Ha bond cleavage, although for [N3N]Mo(cyclopentyl) we cannot

entirely rule out this possibility. However, in [N3N]Mo(cyclohexyl), the substantial kinetic
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isotope effect (kH/kD = 3.1 at 64 'C) does demonstrate that a C-H bond is cleaved during the

reaction. Considering that the rate constants for the endo/exo interconversion process in the

cyclopentyl and cyclohexyl complexes are within one order of magnitude (see results section), it

seems likely that a rapid and reversible a-elimination is also in effect with the cyclopentyl

complex.

TMS TMS
TMS TM TMS

TMSiN Mo -N TIMo N (10)

It is perhaps largely a consequence of the relative stability of the [N 3N] 3- ligand system

to various other decomposition reactions, especially intermolecular decomposition reactions and

reactions involving ligand dissociation, that such a variety of intramolecular reactions can be

observed. However, it is also somewhat surprising that the trimethylsilyl substituents do not

undergo C-H activation more readily than they do (e.g., to form [bitN3N]Mo), as carbon-

hydrogen bond activation in (usually hydride) complexes that contain one or more trimethylsilyl-

substituted ligands has been observed in several systems, 37-39 including [N3N]TiH. 10 Other

possible decomposition reactions, e.g., loss of Me3SiH3 1 or degradation of the tren backbone by

cleavage of an Nax-C bond,3 1,32 so far have not been observed with in [N3N]Mo alkyl

complexes.

A potentially important feature of the alkyl systems studied here is the fact that they are

all 16 electron, high spin d2 species. Many of the reactions discussed here, a-hydride

elimination in particular, would seem to require an empty orbital in order to activate a C-H bond

through an agostic interaction. However, so far there is no evidence that the rate of any of the
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reactions discussed here is limited as a consequence of the high spin ground state alone, a

possibility that was proposed in a preliminary communication. 9 Arguments concerning the

degree to which spin state alone can alter the rate of an organometallic reaction have been in the

literature for some time,40-42 and the conclusion in every case so far has been that it cannot have

such effects. However, since the vast majority of examples in the literature concern metals in

lower oxidation states (usually carbonyl complexes), we will keep an open mind concerning the

possibility that accessibility of some 1A spin state (with an accompanying structural change) is

an important feature of some of the chemistry of d2 complexes of the type described here.

EXPERIMENTAL

General Details. All experiments were conducted under nitrogen in a Vacuum

Atmospheres drybox, using standard Schlenk techniques, or on a high vacuum line (< 10-4 torr).

Pentane was washed with HNO 3/H2 SO4 (5/95 v/v), sodium bicarbonate, H20, stored over CaC12

and then distilled from sodium benzophenone under nitrogen. Regent grade benzene was

distilled from sodium benzophenone under nitrogen. Toluene was distilled from molten sodium.

Methylene chloride was distilled from CaH2. Reagent grade ether and THF were sparged with

nitrogen and passed through alumina columns. 43 All solvents were stored in the drybox over

activated 4 A molecular sieves. Deuterated solvents were freeze-pump-thaw degassed and

vacuum transferred from an appropriate drying agent, or sparged with argon and stored over

sieves. NMR spectra are recorded in C6D6 unless noted otherwise. 1H and 13C data are listed in

parts per million downfield from tetramethylsilane and were referenced using the residual

protonated solvent peak. 2H NMR spectra usually were obtained at 46.0 MHz and are referenced

externally to C6D6 (7.15 ppm) in C6H6. Probe temperatures during variable temperature studies

were calibrated with methanol (low T) or ethylene glycol (high T). Coupling constants are given

in Hertz, and routine couplings are not listed. Elemental analyses (C, H, N) were performed on a

Perkin-Elmer 2400 CHN analyzer in our own laboratory.
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Preparation of Starting Materials. [N3N]MoCl, [N3N]MoMe, [N3N]Mo(cyclopentyl),

[N3N]Mo(CH2SiMe3 ), [N3N]Mo-(cyclohexyl), [N3 N]Mo(ethyl), [N3 N]MoH, and

[N3N]Mo(butyl) were prepared as described in the literature. 12 Preparations of isotopically-

labeled molybdenum complexes are given below. Perdeuterocyclohexyl chloride was prepared

from commercially available C6D 1 1OH and DCl by a modification (described below) of a

literature method.44 1-Deuterocyclopentyllithium was prepared by reduction of cyclopentanone

with lithium aluminum deuteride followed by treatment with Ph3PBr 2 in DMF.4 5 The bromide

was converted to the lithium reagent by reaction with lithium powder in refluxing hexane. The

lithium reagent was recrystallized from pentane before use. Cyclohexyllithium was prepared by

the literature method. 46 Li 13CH 2CH 2CH 2CH 3 was prepared by treating 13CO2 with n-PrMgC1,

reducing the acid with LiA1H 4 to the alcohol, chlorinating the alcohol with SOC12/pyridine in

hexane (procedure described below), and finally treating the chloride with lithium wire in the

usual manner; overall yield -20%.

In UV/Vis studies the following equation was employed to follow the disappearance of

an alkyl species: ln[(A o - A,)/(A - A.)] = kt, where Ao = absorbance at wavelength X at time 0,

A0 = absorbance at wavelength X at infinite time, and A = absorbance at wavelength X at time t.

Rate constants of dynamic NMR processes were obtained by using the equation k =

(n/2) - (Av); where Av = the frequency difference between the two resonances which are

exchanging and k is the rate constant at the coalescence temperature.

C6D 11C1. The compound was synthesized by a modification of the literature procedure.

An oven-dried 100 mL flask was charged with C6D 10D (9.3 g, 82.8 mmol), followed by DC1

(12 M in D20, 35 mL). The flask was fitted with a condenser and purged with argon. It was

placed in a 95 'C oil bath for 30 min. It is important for the temperature not to exceed 95 'C at

this point so that the cyclohexene-dl0 intermediate does not boil out of the flask. The

temperature was then increased to 115 'C for -3 h. The reaction was cooled to room temperature

and the product separated from the acid layer. 2H NMR showed complete consumption of the
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starting material, and that a trace of cyclohexene-dlo was present. The product was washed with

water, NaHCO 3, and dried over CaC12. Purification was effected by flash chromatography on

silica (5 cm x 13 cm) with hexanes as the eluant. 25 mL fractions were collected and the first 12

fractions were combined and rotovaped. Gas chromatography and 2H NMR showed no olefin

was present. After freeze-pump-thawing and passing through activated A120 3 in the drybox, the

product was of sufficient purity to be converted to the lithium reagent, 3.77 g chloride obtained

(35%). 2H NMR (CHC13) 8 3.96 (CDCl), 2.00, 1.73, 1.60, 1.45, 1.28 (CD2).

[N3N]Mo(cyclopentyl-dl). A solution of 1-deuterocyclopentyllithium (94 mg, 1.22

mmol, 2 equiv.) dissolved in 6 mL of pentane was added to a solution of [N3N]MoCl (300 mg,

0.610 mmol) in 15 mL of ether in a 100 mL flask. The solution changed color immediately to

purple. After one hour at room temperature the volatile materials were removed in vacuo and

the residue was extracted with minimum (-4 mL) pentane. This extract was concentrated to -1.5

mL and cooled to -40 oC to give purple crystals (209 mg, 65%): 1H NMR 8 21.2 (cyclopentyl),

15.3 (cyclopentyl), 10.2 (SiMe 3), -24.0 (NCH 2), -35.6 (NCH2 ), -48.8 (cyclopentyl), -58.8

(cyclopentyl). Variable-temperature deuterium NMR spectra are shown in Figure 1.14.

[N3N]Mo(CD11). Undecadeuterocyclohexyllithium (21 mg, 0.21 mmol) was added as a

solid to a solution of [N3N]MoCl (92 mg, 0.19 mmol) in 10 mL of ether. The solution turned

deep purple immediately. After 45 min the solvent was removed in vacuo and the residue was

extracted with pentane. Cooling the extract to -40 'C afforded 82 mg (80 %) of purple crystals.

The variable-temperature 2H NMR spectra are shown in Figure 1.15.

NMR monitoring of the thermolysis of [N3 N]MoH to give [bitN3N]Mo. A more

direct synthesis of [bitN 3N]Mo is available in the literature. 12 [N3N]MoH (20 mg, 44 tmol) was

dissolved in 0.7 mL toluene-d8 an NMR tube with a J. Young valve was charged with the

solution. The reaction was degassed by freeze-pump-thaw cycles. The reaction was heated to

105 oC for 22 h. 1H NMR showed a 50/50 mixture of [N3N]MoH and [bitN 3N]Mo. The

hydrogen was removed by freeze-pump-thaw cycles and heating was continued at 110 oC for 24

hours, 1H NMR now showed a 70:30 mixture of [bitN 3N]Mo and [N3 N]MoH. 1H NMR of
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[bitN 3N] 8 18.58 (CH 2), 14.81 (SiMe 3), 1.10 (SiMe2), -18.95 (CH2 ), -20.26 (CH 2), -98.65

(CH 2), -103.55 (CH2), -125.06 (CH 2).

Procedure for determining the rate of P -hydride elimination in [N3N]Mo

(cyclopentyl). In the drybox, a 9" NMR tube with a female 14/20 joint attached was charged

with solid 1-d-cyclopentyllithium (18 mg, 0.23 mmol, 2.3 equiv.). A slurry of [N3N]MoCl (50

mg, 0.102 mmol) in 0.6 mL toluene-d8 was prepared and cooled to -40 C. The cold solution

was added to the NMR tube containing the lithium reagent. The tube was quickly fitted with a

vacuum adapter and removed from the drybox. It was frozen, evacuated, and flame sealed. The

tube was kept in liquid nitrogen during transport to the NMR spectrometer. It was then thawed

and monitored by 2H NMR. The NMR spectra were acquired at -20 C, a temperature at which

a-elimination is slow on the NMR time scale. The reaction times listed in Figure 1.13 represent

total reaction time at room temperature.

Kinetic study of the conversion of [N3N]Mo(cyclohexyl) to [N3 N]MoH. The reaction

was followed by UV/Vis in toluene at 562 nm. Runs were performed with a 3 mM stock

solution of the cyclohexyl complex. Runs were repeated at each temperature, average values (in

units of 10-4 sec- 1) at temperature T (deg. K) are 0.127 (323), 0.428 (333), 1.07 (343), 3.68

(353), and 9.64 (363). A plot of ln(k/T) versus 1/T gave AH = 24,501 cal/mol and ASt = -5.27

e.u. with R = 0.99886. At 343 K the rate constant for decomposition of [N3N]Mo(C 6H11) was

calculated to be 1.23 x 10-4 sec- 1, while [N3N]Mo(C 6D11) was found in two experiments to be

3.0 x 10-5 and 3.3 x 10-5 sec- 1 for a kH/kD = 3.9 + 0.2.

Kinetic study of the x-elimination process in [N3N]Mo(C 6D11). The rate of a -

elimination was determined by VT 2H NMR as shown in 1.15 and described in the text. Values

for k obtained at 46.0 MHz at a concentration of ca. 0.1 M are: 378 sec- 1 at 324 K, 755 sec- 1 at

339 K, and 955 sec- 1 at 343 K. By performing a similar experiment at 76.7 MHz with a -0.1 M

sample three additional points were obtained: ka = 606 sec- 1 at 331 K, 1273 sec-1 at 346 K, and

1555 sec- 1 at 352 K. A plot of ln(k/T) versus 1/T for these six points gave AH = 10,588 cal/mol
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and ASt = -14.189 e.u. with R = 0.988. Using these values k at 337 K was calculated to be 696

sec- 1. The rate of c(-elimination in [N3N]Mo(C 6H11) was determined by 1H NMR to be 2155

sec- 1 at 337 K. Thus kH/kD at this temperature is 3.1 ± 0.3.

X-ray Structures of [N3N]Mo(CD 3) and [N3N]Mo(cyclohexyl). Crystallographic data,

collection parameters, and refinement parameters for these studies can be found in Table 1.4.

Both crystals were grown from pentane at -40 oC. General details for the experimental

procedures 36 and tables of atomic coordinates and all bond lengths and angles can be found

elsewhere.12

Solid-State Magnetic Susceptibility Measurements. SQUID experiments were

performed on a Quantum Design 5.5 T instrument running MSRP2 software. Samples were

prepared in an N2 -filled drybox. A gelatin capsule and 2.2 x 1.9 cm piece of parafilm were

weighed. The capsule was then loaded with the sample and the parafilm was folded and packed

on top using plastic tongs. The capsule was closed and weighed again to determine the sample

mass. It was then suspended in a straw. The straw was placed in a plastic bottle with a screw

cap and the bottle was tightly sealed. At the instrument the straw was quickly attached to the

sample rod and transferred to the helium atmosphere. Measurements were taken in 1 degree

intervals from 5-10 K, 2 degree intervals from 12-20 K, 3 degree intervals from 23-50 K, 5

degree intervals from 55-100 K, 10 degree intervals from 110-200 K, and 20 degree intervals

from 220-300 K, see Table 1.1. A background measurement of an empty gel capsule, parafilm

square, and straw was taken over the entire temperature range. These values were subtracted

from the observed susceptibility at each temperature.
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CHAPTER II

Kinetic Studies on a- and f-Elimination Reactions of Paramagnetic Tungsten(IV)

Alkyl Complexes That Contain the [(Me 3SiNCH 2CH 2)3N] 3- Ligand.

Much of the material covered in this chapter has been accepted for publication:

Schrock, R. R.; Seidel, S. W.; M6sch-Zanetti, N. C.; Dobbs, D. A.; Shih, K.-Y.; Davis, W. M.

Organometallics, in press.



a- and p-Elimination Reactions of Tungsten(IV) Alkyls

INTRODUCTION

The preceding chapter describes studies on the rates of c- and -elimination reactions of

molybdenum cyclopentyl and cyclohexyl complexes that contain the [N3N] 3 - ([N3N] 3- =

[(TMSNCH 2CH 2)3N] 3-) ligand. The remarkable result that ac-elimination is six to seven orders

of magnitude faster than -elimination with these complexes led us to wonder if similar studies

could be made with tungsten analogs of the [N3N]Mo(cycloalkyl) complexes. A qualitative

determination that ca-elimination is faster than 1-elimination at -13 'C with the [N3N]W-

(cyclopentyl) complex has been made by observing that only [N3N]W(cyclopentylidene)(D) is

formed when [N3N]WCl is reacted with 1-deuterocyclopentyllithium. 1 This chapter will

describe further studies towards measuring exact rate constants of these processes.

[N3N]W(CH 2R) species with R # H all lose dihydrogen rapidly at room temperature to

yield [N3N]W-CR complexes. 2 The analogous molybdenum complexes undergo this a,a-

double dehydrogenation reaction much more slowly.3 Only [N3N]Mo(CH 2CMe 3 ) loses

dihydrogen cleanly to form [N3N]Mo-CCMe 3, and the reaction occurs at reasonable rates only

at temperatures above 60 'C. Additionally, differences are observed in the rates of some C-C

bond cleavage reactions. [N3N]Mo(cyclobutyl) is an isolable species which decomposes upon

thermolysis to yield [N3N]Mo-CCH 2CH 2CH 3 whereas [N3N]W(cyclobutyl) is only a presumed

intermediate in the synthesis of [N3N]W(cyclo-CHCH 2 CH 2CH 2 ) (1) from [N3 N]WCl and

cyclobutyllithium, 1 is converted to [N3N]W-CCH 2CH2CH 3 upon thermolysis. Results in this

chapter describe the much greater facility with which tungsten complexes undergo this type of C-

C bond cleavage reaction. The differences in the relative rates of alkylidyne formation between

these congeneric complexes can be qualitatively rationalized by considering the relative

"electrophilicity" of each metal, but such arguments are speculative at best. The goal of the work

in this chapter is to understand the differences between the chemistry of these W and Mo

complexes in a more conclusive way. We will compare kinetic, thermodynamic, and magnetic

data obtained for [N3N]M(cyclopentyl) (M = Mo, W) complexes with regard to understanding

References begin on page 92.
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the differences between these two metals in terms of rates of alkylidyne formation and other

reactions.

RESULTS

Characterization of Paramagnetic Tungsten Triamidoamine Complexes

[N3N]WCl is synthesized by reacting [N3N]Li 3 4 with WCl4 (dme) 5 in THF.6 The

reaction proceeds in only 15-20% yield, presumably because reduction of the metal and loss of

TMSC1 occur readily. [N3N]WCl is an available starting material only because both [N3N]Li 3

and WC14(dme) can be easily prepared in large quantities. A plot of the magnetic susceptibility

of [N3N]WCl versus T from 5 to 300 K is shown in Figure 2.1. The susceptibility of [N3N]WCl

is as much as one order of magnitude smaller than that of [N3N]MoCl at a given temperature (see

chapter I). geff is thus lower than the spin-only value for an S = 1 configuration (2.83 gB) at

room temperature, and decreases smoothly with decreasing temperature (Figure 2.2). The
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0.0035 --
o

-0
-0
-o-0

0.003 0o
0

0.0025 - o o
O
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Figure 2.1. A plot of X, versus T for [N3N]WC1.

References begin on page 92.

Chapter II



a- and P-Elimination Reactions of Tungsten(IV) Alkyls

2.5--

2-- 0 ooo0 0- o
OO

1.5-- oo
eff

1-

0.5

0 50 100 150 200 250 300 350
T (K)

Figure 2.2. A plot of Reff versus T for [N3N]WC1.

susceptibility of the tungsten compound also changes much more slowly with temperature than

that of [N3N]MoCl. These differences are best illustrated by plotting X, versus T for both

[N3N]MoCl and [N3N]WCl on the same graph (Figure 2.3). The susceptibility behavior of

[N3N]WCl is explained by a combination of spin-orbit coupling and low symmetry ligand field

components which result in zero field splitting of the d2 ground state triplet.3,7 These effects

were also used to explain the drop in 9eff with [N3N]MoCl at temperatures below 50 K (see

chapter I). The effect manifests itself at much higher temperatures in the tungsten complex

because the spin-orbit coupling constant for tungsten(IV) is more than twice that of

molybdenum(IV) (X(W4+) = 1050 cm-1 while X(Mo 4+) = 475 cm-1).7 The degenerate dxz and

dyz orbitals each contain one electron in this case, resulting in the triplet ground state. Two

measurements of geff for [N3N]WCl in solution by the Evans method8 at 22 'C in C6D6 gave

values of 2.4 and 2.5 9B, 9 consistent with the solid-state results.

References begin on page 92.
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Figure 2.3. A plot of XM versus T for [N3N]MoCl and [N3N]WC1.

[N3N]W(CH 3) and [N3N]W(C6H5) are readily prepared by alkylation of [N3N]WCl with

the corresponding lithium reagent. [N3N]WH is prepared by heating [N3N]W(cyclopent-

ylidene)(H) (see below) to 45 'C for one day. The susceptibilities of these three compounds in

the solid state vary with temperature in ways that are entirely analogous to the behavior of

[N3N]WC1. Apparently conjugation of the dxz/dyz set with the phenyl ring in [N3N]W(C6H5) is

not significant enough to change any magnetic properties. A plot of XM versus T for all three

compounds is shown in Figure 2.4. gteff for [N3N]W(CH 3) was found to be 2.5 gtB in C6D6 at 22

°C 6 by the Evan's method.
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Figure 2.4. XM versus T plots for [N3N]WMe, [N3N]WH, and [N3N]WPh.

The proton NMR spectrum of [N3N]WH at room temperature displays three shifted

resonances, one for the TMS groups at 17.9 ppm and one for each set of geminal methylene

protons at -30.1 and -94.4 ppm. As is the case with all triamidoamine complexes, we are unable

to assign which methylene resonance corresponds to protons a to the amides or a to the amine.

No resonance is observed for the hydride ligand, as expected for a hydrogen bonded directly to

the paramagnetic center. The paramagnetic shift becomes more pronounced as the temperature

decreases (Figure 2.5, TMS resonance not shown) as a consequence of the slight increase of the

molar susceptibility of [N3N]WH with decreasing temperature. Peaks are noticeably sharper and

more shifted than in [N3N]MoCl and [N3N]MoMe (see chapter I). At temperatures below -20

'C, geminal methylene protons become inequivalent as a consequence of a locking of the

molecule into a C3-symmetric chiral conformation. This type of fluxional process has been

observed in a variety of other triamidoamine complexes, including diamagnetic species.10

References begin on page 92.
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For [N3N]WH, AGt is 9.7 ± 0.3 kcal/mol at -20 'C and 8.5 ± 0.3 kcal/mol at -50 oC. These

values are within the same range as those obtained for [N3N]MoCl and [N3N]MoMe. Thus, we

feel that the fluxional process is best explained by the simple C3v to C3 conformational change

described above. More complicated processes involving dissociation of the amine donor would

be anticipated to be considerable more energetically costly for tungsten than molybdenum since

tungsten would be expected to have a stronger M-Nax bond.

Synthesis of Tungsten Triamidoamine Alkylidenes and Alkylidynes.

[N3N]WCl reacts with LiCH 2R reagents (R = H, Me, n-Pr, SiMe 3, t-Bu) or KCH 2Ph in

ether or THF to yield alkylidyne complexes, [N3N]W-CR and molecular hydrogen (equation

1).2,6 Reaction is rapid in all cases except when R = H. [N3N]W(CH 3) is an isolable species and

decomposes to [N3N]W-CH in a first-order reaction. The rate constant for this process at 330 K

is 4.35 x 10-4 sec- 1.2 [N3N]WCl reacts with LiCD2CH 2CH 2CH 3 to give [N3N]W-C-

CH 2CH 2CH 3 and D2 gas exclusively. The tungsten chloride also reacts with

Li1 3CH2 CH2 CH 2CH 3 to yield [N3N]W= 13CCH 2CH2CH 3 . The Jcw value (242 Hz) could easily

be obtained with this labeled complex and is in the range normally observed for tungsten

alkylidyne complexes." These experiments show that loss of dihydrogen from the oa-carbon

occurs faster than any processes which would result in "walking" of the metal along the butyl

chain. Scrambling also does not occur to a significant degree with the molybdenum analog,

[N3N]Mo( 13CH2CH 2CH 2CH 3), although in this case the alkyl is isolable at room temperature

R
TMS. Cl TMS TMS

TMS C TMS
TMS I / LiCH2R TMS III /

-- " O (1)

8NJH2

R = H, Me, n-Pr, Ph,

SiMe 3 , CMe 3
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and must be heated in order to observe decomposition. Also, the major decomposition product

of [N3N]Mo(n-Bu) is [N3N]MoH (see chapter II). These results should also be compared with

those found in C6F 5 -substituted complexes. With the [N3NF] complexes, complete scrambling is

observed with both the deuterated and 13C-labeled butyllithium reagents (see chapter III for a

discussion).

Addition of cyclobutyllithium to [N3N]WCl results in the formation of a tungsten

metallacyclopentene complex, 1, as shown in equation 2. 1H and 13C NMR spectra are

consistent with the metallacycle structure. The alkylidene carbon is observed at 265 ppm with

1JCH = 130 Hz. The 1H NMR spectrum shows three sets of methylene protons for the complex,

ruling out a fast equilibrium on the NMR time scale between 1 and [N3N]W(cyclobutyl).

TMS Cl TMS.TMS TMSTM z ITMS (,,, /
Nv W-N Li T N W- N  (2)

1

An X-ray structure of 1 was carried out and the metallacyclopentene structure was

confirmed. A view of the structure is given in Figure 2.6, and Table 2.1 contains selected bond

lengths and angles. Crystallographic data can be found in Table 2.2. As is common in TMS-

substituted triamidoamine complexes with apical ligands, twisting of the TMS groups out of the

W-Neq-N(4) plane is observed (N(4)-W-Si-Neq dihedral angles are 142, 149, and 170 deg.) This

twisting effect has been documented in structurally-characterized [N3N]Mo complexes (see

chapter I) and has been used as a measure of the degree of strain present (cf. [N3N]Mo(CD 3) and

[N3N]Mo(cyclohexyl)). The W-N(4) distance is relatively long (2.395(5) A), also indicating a

relatively high degree of steric strain in the molecule. The 1-tungstacyclopentene ring is oriented

References begin on page 92.
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so that it lies roughly in the N(1)-W-N(4) plane, resulting in an opening of the N(2)-W-N(3)

angle to 135.5(2) deg. The W-C(10) and W-C(7) distances are typical of W(VI) alkylidene and

alkyl bonds, respectively. The W-C(10)-C(9) angle is larger than the W-C(7)-C(8) angle, and the

N(4)-W-C(10O) angle is much larger than the N(4)-W-C(7) angle, as expected for the alkyl-

alkylidene structure.

C(10)

N(1)

C(8)

) C(7)

Si(2)

Figure 2.6. A view of the structure of [N3N]W(cyclo-CHCH 2CH2 CH 2) (1).

References begin on page 92.
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Table 2.1. Selected bond distances (A) and angles (deg.) for [N3N]W(cyclo-CHCH 2CH 2CH 2) (1).

Distances (A)

2.015(5)

2.033(5)

2.004(5)

2.395(5)

2.216(6)

w- C(10)

C(7) - C(8)

C(8) - C(9)

C(9) - C(10)

1.972(6)

1.527(8)

1.508(8)

1.509(8)

Angles (deg.)

W- N(1) - Si(1)

W - N(2) - Si(2)

W- N(3) - Si(3)

N(4) - W - N(1) - Si(1)

N(4) - W - N(2) - Si(2)

N(4) - W - N(3) - Si(3)

W- C(7)- C(8)

C(7) - C(8) - C(9)

C(8) - C(9) - C(10)

W- C(10)- C(9)

C(7) - W - N(4)

134.0(3)

133.1(3)

136.3(3)

142 a

170 a

149 a

113.0(5)

104.8(5)

105.2(5)

127.1(5)

130.3(2)

N(1)- W- C(7)

N(2) - W - C(7)

N(3) - W- C(7)

N(1) - W - N(2)

N(2) - W- N(3)

N(1) - W- N(3)

C(10)- W- C(7)

C(10) - W- N(1)

C(10) - W- N(3)

C(10) - W- N(2)

C(10) - W- N(4)

a Obtained from a Chem 3D model.

References begin on page 92.

W- N(1)

W- N(2)

W- N(3)

W- N(4)

W- C(7)

151.0(2)

77.9(2)

91.1(2)

100.9(2)

133.5(2)

109.0(2)

72.7(3)

83.8(2)

97.4(2)

120.9(2)

155.3(2)
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Table 2.2. Crystallographic data, collection parameters, and refinement parameters for

[N3N]W(cyclo-CHCH 2CH 2CH2 ) (1).

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a (A)

b (A)

c (A)

V (A3)

Space Group

Z

Dcalc (Mg/m3)

F000

X, radiation

Scan Type

Temperature (K)

0 Range for Data Collection (deg)

Independent Reflections

Absorption Correction

Refinement Method

Data/Restraints/Parameters

Final R indices [I>2o(I)]

R indices (all data)

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eA -3)

C19H4 3N4 Si 3W

595.69

Siemens SMART/CCD

0.22 x 0.16 x 0.13

Orthorhombic

17.494 (3)

15.860 (4)

19.350 (4)

5369 (2)

Pbca

8

1.474

2408

0.71073 A, MoKa

0)

183 (2)

2.03 to 23.27

3703

None

Full-matrix least-squares on F2

3701/0/245

R1 = 0.0309, wR2 = 0.0603

R1 = 0.0590, wR2 = 0.0706

1.043

0.00024 (3)

0.661 and -0.475

References begin on page 92.
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Alkylation of [N3N]WCl with cyclopentyllithium in ether at room temperature results in

the formation of a crystallographically-characterized cyclopentylidene hydride complex (2)

(equation 3).1 The X-ray structure revealed that the cyclopentylidene ring lies in the N(1)-W-

N(4) plane, directly between two of the TMS groups. Electron density ascribable to the hydride

ligand was found in the plane containing the alkylidene carbon, W, and N(1), but it did not

TMS Cl TMS TMS H TMS
TMS~NI -/TMS TMSW- ITMS, / /WNI... w_ N(1)N Nvo N (3

N ( N(4) (3)

2

survive refinement. The orientation of the cyclopentylidene and hydride ligands is as expected

considering the set of orbitals (dxz, dyz, and dz2 ) available for bonding with apical ligands.

Hybridization of a dxz (or dyz) orbital with the dz2 results in two orbitals of the proper symmetry

for c-bonding with the alkylidene and the hydride. The remaining dyz (or dxz) orbital is then

available for the formation of the alkylidene it-bond. Reaction of [N3N]MoCl with

cyclopentyllithium results in the formation of paramagnetic [N3N]Mo(cyclopentyl). Although in

the molybdenum system only this d2 cyclopentyl tautomer was directly observed, a rapid

equilibrium between it and the molybdenum analog of 2 was the simplest way to explain changes

in the NMR spectrum of [N3N]Mo(cyclopentyl) upon warming. Further studies have

corroborated this explanation (see chapter I).

The 1H NMR spectrum of [N3N]W(C 5H8)(H) at room temperature shows a broad singlet

at 0.22 ppm for the TMS groups, two sets of triplets at 2.11 and 3.34 ppm for the backbone

methylene protons, a multiplet for the four cyclopentylidene protons y to the metal (ring positions

2 and 3 in equation 4), and two broad singlets at 3.97 and 5.11 ppm for the inequivalent

References begin on page 92.
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cyclopentylidene protons 0 to the metal (ring positions 1 and 4 in equation 4). The single TMS

resonance and backbone triplets indicate that the [N3N] core spins about the Nax-W vector on the

NMR time scale at 22 'C. Upon cooling to -40 oC, the TMS resonance splits out

3
2 4

TMS 1 TMS H
TMH TMS TMS. TMS

S ;W-N - N"I. .W-- N (4)

ka t,

2 3

into two resonances in a 2:1 ratio and the ligand backbone methylene protons resonances become

multiplets, consistent with a "freezing out" of the Cs-symmetric structure of 2 shown in equation

3. The hydride resonance also sharpens and coupling to tungsten can be observed below 0 'C

(JHW = 89 Hz).

1H NMR spectra of 2 above room temperature show

60 oC that the cyclopentylidene ring methylene -protons (positions

50 oC -1 and 4) broaden and coalesce to a single resonance at 46 'C

(Figure 2.7). We attribute this behavior to the equilibrium

40 0 C shown in equation 4. We propose that access of

[N3N]W(cyclopentyl) (3) would allow for facile rotation

30 oC about the W-C single bond, resulting in interconversion of

protons in positions 1 and 4. kI was determined to be 1.3 x

20 0C 103 sec- 1 at 46 oC from the peak separation of methylene

5.6 5.0 4.4 ppm protons 1 and 4 in the low-temperature spectrum. ka is
H1  H4

Figure 2.7
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apparently greater than kl, since what we believe would be paramagnetic 3 (cf. [N3N]WMe and

[N3N]Mo(cyclopentyl)) is not observed. A similar process was proposed to explain

interconversion of endo and exo ring protons in [N3N]Mo(cyclopentyl), although in this case the

equilibrium favors the paramagnetic cyclopentyl complex and no [N3N]Mo(C 5H8 )(H) was

directly observed (see chapter I). The slower rate constant (the equivalent of ka in equation 4) in

the molybdenum system was found to be - 103 sec- 1 at 22 'C.

As alluded to above, the hydride resonance in 2 is extremely sensitive to temperature.

Upon warming, the resonance broadens dramatically and shifts to lower field (Figure 2.8). We

attribute these effects to the equilibrium in equation 4. At higher temperatures, it appears that

more of paramagnetic 3 is present. We have not been able to observe any protons or deuterons

attached to a-carbons by 1H or 2 H NMR in complexes such as [N3 N]WCH 2 R or

[N3N]MoCH 2 R. Thus, we believe a-protons in these types of paramagnetic complexes are

extremely broadened and shifted as a result of their proximity to the paramagnetic center. We

presume the a-proton in 3 would therefore also be severely broadened and shifted. Since the

equilibrium between 2 and 3 is fast, the observed "hydride" resonance during the NMR

experiment is a summation of its diamagnetic component from 2 and paramagnetic component

from 3. The degree of shifting and broadening

40.4 OC of the hydride resonance then depends on [3]/[2]

30.7 oC or Keq. If we assume that the chemical shift of

the a-proton in 3 follows a 1/T dependence

18.4 oC (which is probably reasonable in the 270 to 360

K range based on XM versus T plots for related
7.8 oC

tungsten paramagnets, see above), and that these

-3.3 oC resonances do not shift for any other reason, then

20.8 20.4 20.0 19.6 ppm we can determine AGO (i.e. kl/ka or Keq) for the

Figure 2.8 equilibrium in equation 4 by using equation

5,12-14 where 8 is the observed "hydride"
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chemical shift at a given temperature, 8dia is the hydride chemical shift of 2 in the absence of any

3, and C is a constant. The chemical shift of the hydride ligand was measured every five degrees

from 270 to 360 K, and a plot of 8 versus T was fit to equation 5 (Figure 2.9), which gave

6 = 8dia+

T 1+ exp ( A HO - A
I RT R ]

AHo = 11.8(6) kcal/mol, ASO = 33(2) e.u., and 8dia = 19.46 ppm (identical to the low-temperature

chemical shift of the hydride in 2). From these data, Keq at 46 'C is calculated to be 0.13.

Therefore 0.13 = kl/kaw, and since k1 was determined above to be 1.3 x 103 sec -1, kaw = 1.0 x

104 sec-1 at 46 oC. This value should be compared to kaMo, the rate constant for the formation

280 300 320
T (K)

340 360 380

Figure 2.9. A plot of the chemical shift of [N3N]W(H)(cyclopentylidene) versus T fit to equation 5.
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of [N3N]Mo(C 5H8)(H) from [N3N]Mo(cyclopentyl) (see chapter I). kaMo (103 sec- 1 at 22 °C)

could be as much as one order of magnitude greater than this at 46 'C. From these data, we

conclude that the rate constants for a-elimination in [N3N]Mo(cyclopentyl) and

[N3N]W(cyclopentyl) are approximately the same at this temperature. Therefore, the fact that

the alkylidene hydride is the preferred species for tungsten, whereas for molybdenum it is the

alkyl that is favored must be attributed to a much larger klMo than klw. Unfortunately, no way

has been found to accurately measure klMo and compare it to klw. However, since no

[N3N]Mo(H)(C 5H 8) is observed during the NMR experiment (which would not be difficult since

the alkylidene hydride should be diamagnetic) we have estimated that kl/ka for Mo is 102 or

greater. From this assessment, klMo can be estimated at 106 sec- 1 (or greater) at 46 'C. This

should be compared to klw, measured to be 1.3 x 103 sec- 1 at this temperature. The fact that the

rates of a-elimination are so similar but the rates of retro-a-elimination (kl) are so dissimilar for

analogous Mo and W complexes seems peculiar and will be discussed further (see below).

Reaction of 1-deuterocyclopentyllithium with [N3N]WCl in toluene at -13 oC led to the

formation of only [N3N]W(D)(C 5H8).1 When the sample was warmed to room temperature for

brief periods and then re-cooled to -20 oC to monitor the progress of the reaction by 2H NMR,

the spectra shown in Figure 2.10 were obtained (-20 'C is a convenient temperature to record the

spectrum since at this temperature retro-a-elimination is slow on the 2H NMR time scale and

virtually no paramagnetic [N3N]W(cyclopentyl) is present). Deuterium incorporation into the j

positions (at 3.8 and 5 ppm) was observed first, followed by incorporation into the y positions at

ca. 2 ppm. We propose this process occurs by a reversible 3-hydride elimination of the

cyclopentyl complex (3) to yield an olefin hydride complex (4) (equation 6). Recall that we have

shown that 2 and 3 are in rapid equilibrium at room temperature, although [3]/[2] at 25 'C is

-0.03. We show below that little cyclopentene is lost from the molecule under these conditions

(t1/2 at 22 'C = 3.1 days). We can obtain a fairly accurate value for the rate constant of
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Figure 2.10. 46.0 MHz 2H NMR spectra (at -20 OC) of [N3N]W(cyclopentylidene)(H)-dl as a
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(6)

scrambling of deuterium from the hydride position into the cyclopentylidene ring by plotting the

logarithm of its intensity (normalized against the toluene resonance) versus T (Figure 2.11). If

we assume the reaction is first-order (the data are not of high enough quality to verify this), the

rate constant at 22 'C is 3.7 x 10-4 sec- 1 (11/2 = 31 min). Since neither 3 or 4 is directly

observed, we have no information about which of these two complexes is the preferred species

3

2.5
o

2
0

o 1.5o

-0.5 0-0-0::. 5 I I I I

-20 0 20 40 60

T (min)

80 100 120 140

Figure 2.11. Kinetic plot for the decrease of deuterium in the hydride site of 2 over time.

References begin on page 92.

Chapter II



a- and p-Elimination Reactions of Tungsten(IV) Alkyls

and thus no information about the relative magnitudes of kp and kl. Therefore we cannot

determine whether we are measuring kp or k1 in this case and thus are unable to precisely

compare ka and kp. The fact that only [N3N]W(D)(C 5H 8) is observed initially requires that ka

be greater than k3, and the large difference between ka (estimated at 103 sec- 1 at 298 K) and kobs

for deuterium scrambling (3.7 x 10-4 sec-1) would seem to assure that this is the case. We note

that kp in the molybdenum system was estimated at 5 x 10-4 sec- 1 (see chapter I). It should also

be noted that after 24 h, less deuterium than would be expected on statistical grounds (1/9 of the

initial) is present in the hydride site of 2 (Figure 2.10). We attribute this observation to an

equilibrium isotope effect. 15 A AG' for the equilibrium between [N3N]W(D)(C 5H 8 ) to

[N3N]W(H)(C 5H7D) can be estimated at -0.8 kcal/mol by considering the changes in the IR

stretching frequencies of the bonds involved. Since the increase in bond enthalpy of a C-D bond

compared to a C-H bond is greater than the increase in bond enthalpy of a W-D compared to a

W-H bond, the situation most thermodynamically stable is that in which the hydrogen is bound

to the metal and the deuterium is bound to a carbon on the cyclopentylidene ring. A AG' of -0.8

kcal/mol gives an equilibrium constant of -4 in favor of [N3N]W(H)(cyclopentylidene-dl). Thus

25% of 1/9 (-3%) of the original deuterium signal would be expected in the deuteride site at

equilibrium, and this is approximately what is observed by integration after 24 hours (Figure

2.10).

[N3N]W(H)(cyclopentylidene) (2) decomposes above -45 'C to give cyclopentene and

[N3N]WH (5). Compound 5 has NMR spectra (Figure 2.5) and magnetic susceptibility behavior

(Figure 2.4) similar to other d2 tungsten [N3N] complexes. Heating 2-dj to 45 'C resulted in the

production of 5 and cyclopentene-dl in which deuterium was scrambled throughout the ring

according to 1H and 2H NMR, as expected. The decomposition of 2 is proposed to proceed via

formation of the cyclopentyl complex followed by decomposition by P-hydride elimination and

olefin loss (equation 7). Kinetics of the transformation from 2 to 5 were followed at 45, 60, and

80 'C by 1H NMR and the reaction was found to be first-order in 2 through three or more half-
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R RH K H
,/R R R 1. R

"W-NN'"-i -W- N W- (7)

N JN cyclopentene &N

5

lives. At 80 'C, the rate constant was found to be 1.9(1) x 10-3 sec- 1. An Eyring plot yielded

AHt = 22.9(3) kcal/mol and ASt = -6(1) e.u. (see Experimental section for exact values). Thus,

the rate constant for cyclopentene loss at 22 'C is calculated to be 2.6 x 10-6 sec- 1. This is ca. 2

orders of magnitude slower than the rate of deuterium scrambling (kobs = 3.7 x 10-4 sec- 1).

DISCUSSION

The P-hydride elimination reaction has dominated the decomposition of transition metal

alkyls since the first syntheses of these types of complexes were attempted. In fact, it was long

believed that the transition metal-carbon bond was inherently unstable because so many early

synthetic attempts involved alkyls with 3-protons and thus led only to decomposition. 16,17 Once

the 0-hydride decomposition pathway was elucidated, a wide variety of transition metal alkyls

with no 0-hydrogens, namely MR species with R =, e. g. Me, CH 2Ph, or CH 2CMe 3, were

prepared. An a-elimination reaction to yield an alkylidene hydride complex is a much less well-

documented transformation compared to 0-hydride elimination to yield an often unstable olefin

hydride complex, and a-elimination has always been assumed to be slower than 3-elimination.

This may in part be due to the fact that alkylidenes are only common for early and middle heavy

transition metals such as Mo, W, Ta, and Re.

Previous observations of an equilibrium between an alkyl complex and an alkylidene

hydride have usually involved high oxidation state tantalum 18-21 or tungsten 22-24 complexes.

Cp*2Ta(CH=CH 2) was found to decompose via intermediate Cp*(fl5-C 5Me4CH 2CH 2CH 2)Ta to
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the kinetic product, Cp*(r 5 -C5Me4CH 2CH 2 CH)Ta(H), by a-elimination, and to the

thermodynamic product, Cp*(r 5-C5Me4CH2-1r2-CH=CH 2)Ta(H), by P-elimination. 18 The rate

of a-elimination was determined to be 108 times that of 1-elimination in this system. However,

the authors stated that this result could be a consequence of a transition state for -elimination

which is much more strained than that for a-elimination. A kinetic preference for a-elimination

has been demonstrated for [N3N]Mo(cycloalkyl) complexes (see chapter I). We will now

compare several [N3N]W(alkyl) complexes with their molybdenum analogs in terms of the

alkyl/alkylidene hydride equilibrium.

The equilibrium shown in equation 8 is in effect for M = Mo and W. With the tungsten

complex, ka is greater than ka,rev and the alkylidene hydride is the observed species. At 298 K,

[alkyl]/[alkylidene hydride] = -0.04 for tungsten, and ca. 102 or greater for molybdenum. This

difference between the two metals can be explained by bond strength and oxidation state

arguments. One M-C bond is traded for a M=C bond and a M-H bond with concomitant

oxidation of the metal center. A greater difference between the metal-alkylidene and metal-

hydride bond strengths compared to the metal-alkyl bond strength would be expected for M = W,

since in general tungsten forms stronger bonds than molybdenum. Additionally, tungsten is

TMS TMS
H TMS kTMS

TMS TMSN IN

N'-ka,rey' (8)

more easily oxidized than molybdenum, thus providing further thermodynamic drive towards the

tungsten alkylidene hydride complex. A AAG ° between the tungsten and molybdenum

complexes of as little as 5 kcal/mol is all that is required for the observed shifts in Keq. It is

perhaps surprising that the a-elimination process occurs at nearly the same rate for molybdenum
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and tungsten (kaw and kaMo are probably within one order of magnitude of each other). This

result may be circumstantial, or it may be that the transition state for u-elimination is early on the

reaction pathway and hence relatively independent of the nature of the product.

The (a,-dehydrogenation reaction (equation 9) of tungsten alkyls of the type

[N3N]W(CH 2 R) has been determined to be many orders of magnitude faster than with

[N3N]Mo(CH 2R) complexes, 2,3 despite the fact that the rates of a-elimination (equation 9; ka)

are nearly the same. The studies performed with [N3N]M(cyclopentyl) complexes provide some

explanation for this difference. A thermodynamic preference for the alkylidene hydride species

shown in equation 9 with tungsten complexes would mean it is present at an appreciable

concentration. Although we have no data on the relative rate of a-abstraction of the alkylidene

proton by the hydride for tungsten and molybdenum complexes, the fact that concentration of the

molybdenum alkylidene hydride is so low compared to the concentration of the tungsten

alkylidene hydride intermediate (as a result of thermodynamic constraints) certainly impedes the

final step, loss of H2, for the molybdenum complexes. These arguments are all consistent with a

high thermodynamic stability of the tungsten(VI) species with a triply bonded ligand present in

the apical site.

R H RTMST. S TMS TM I%S CH2  TMS S-. C H TMS C TMSTMS I / ka TMS / / TMS III /
M-N MN N M

sN krev - H2

The transformation of [N3N]W(cyclopentyl) into [N3N]W(H)(cyclopentylidene) must

involve conversion to a low-spin species at some point along the reaction path. Presumably, the

a-elimination reaction begins with an agostic interaction of the a-proton with the tungsten

center. Since [N3N]W(cyclopentyl) has a 3E ground state, both orbitals available for forming

this agostic interaction (the dxz and dyz) contain one electron. Thus, an a-agostic interaction is
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not possible unless these electrons pair into one orbital, leading to a 1A electronic configuration.

In earlier work, 1 we raised the possibility that a reaction could be slowed by crossover to a

singlet ground state. We thus entertained the notion that the (a,-dehydrogenation reaction could

be much faster for tungsten than molybdenum because of a more facile 3E to 1A conversion with

tungsten. However, all magnetic behavior observed so far has been of the classical type, with the

lower moments observed for tungsten complexes readily ascribed to the larger spin-orbit

coupling constant for tungsten compared to molybdenum. We conclude that thermodynamic

considerations (as discussed above) are better explanations for the faster alkylidyne formation

with tungsten as opposed to a more facile spin crossover. We also have no data on whether the

triamidoamine ligand remains a true ancillary ligand during the reaction, or if a-proton

abstraction is assisted by the amides. Whether or not dissociation of the dative amine donor is

required for the reaction to occur is also still unresolved. We hope to be able to test this issue in

the future by employing new multiamido/donor ligands with donors other than nitrogen (see

chapter V).

EXPERIMENTAL

General Details. All experiments were conducted under nitrogen in a Vacuum

Atmospheres drybox, using standard Schlenk techniques, or on a high vacuum line (< 10-4 torr).

Pentane was washed with HNO 3/H2SO 4 (5/95 v/v), sodium bicarbonate, H20, stored over CaC12

and then distilled from sodium benzophenone under nitrogen. Regent grade benzene was

distilled from sodium benzophenone under nitrogen. Toluene was distilled from molten sodium.

Methylene chloride was distilled from CaH2. Reagent grade ether and THF were sparged with

nitrogen and passed through alumina columns. 25 All solvents were stored in the drybox over

activated 4 A molecular sieves. Deuterated solvents were freeze-pump-thaw degassed and

vacuum transferred from an appropriate drying agent, or sparged with argon and stored over 4 A

sieves. NMR spectra are recorded in C6D6 unless noted otherwise. 1H and 13C data are listed in

parts per million downfield from tetramethylsilane and were referenced using the residual
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protonated solvent peak. 2H NMR spectra usually were obtained at 46.0 MHz and are referenced

externally to C6D 6 (7.15 ppm) in C6H6 . Probe temperatures during variable temperature studies

were calibrated with methanol (low T) or ethylene glycol (high T). Coupling constants are given

in hertz, and routine couplings are not listed. Elemental analyses (C, H, N) were performed on a

Perkin-Elmer 2400 CHN analyzer in our own laboratory.

[N3 N]WC1, [N3N]WMe, [N3N]WPh, [N3N]WH, [N3N]W-CR complexes, [N3N]W-

(cyclo-CHCH 2CH 2CH 2 ), and [N3N]W(cyclopentylidene)(H) were synthesized as described in

the literature. 6 1-Deuterocyclopentyllithium was prepared by reduction of cyclopentanone with

lithium aluminum deuteride followed by treatment with Ph3PBr 2 in DMF. 26 The bromide was

converted to the lithium reagent by reaction with lithium powder in refluxing hexane. The

lithium reagent was recrystallized from pentane before use. Lil1 3CH 2CH 2CH 2CH 3 was prepared

by treating 13CO 2 with n-PrMgC1, reducing the acid with LiAlH 4 to the alcohol, chlorinating the

alcohol with SOC12/pyridine in hexane, and finally treating the chloride with lithium wire in the

usual manner; overall yield -20%. LiCD2 CH 2CH 2CH 3 was prepared by treating butyryl

chloride with LiA1D 4 in ether and then following subsequent steps as described for the 13C_

labeled reagent.

Rate constants of dynamic NMR processes were obtained by using the equation k =

(7r/2) - (Av); where Av = the frequency difference between the two resonances which are

exchanging and k is the rate constant at the coalescence temperature.

Procedure for determining the rate of deuterium scrambling in [N3N]W(D)-

(cyclopentylidene). A solution of 1-deuterocyclopentyllithium (10 mg, 0.13 mmol) in -300 gL

toluene was prepared and cooled to -40 'C in the drybox. This was added to a -40 'C slurry of

[N3 N]WCl (50 mg, 0.086 mmol) in -200 gL toluene. After the solution was quickly mixed, it

was added to a 9" NMR tube with a female 14/20 joint. A needle valve was placed on top and

the tube was removed from the drybox, frozen, and flame-sealed. The tube was kept in liquid

nitrogen during transport to the NMR spectrometer. It was then thawed and monitored by 2H
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NMR. NMR spectra were acquired at -20 'C, a temperature where interconversion with

[N3N]W(cyclopentyl) is slow on the NMR time scale. The reaction times in Figure 2.10

represent total reaction time at room temperature.

Kinetic study of the decomposition of [N3N]W(H)(cyclopentylidene). The reaction

was followed by 1H NMR in toluene-d8 at 0.02 M. Protio toluene was used as an internal

standard. Probe temperatures were calibrated with either methanol or ethylene glycol both

before and after runs were performed, temperature drift was less than 0.5 K. Values for the rate

constants (10- 4 sec- 1) at temperature T (deg K) are: 0.48 (318), 2.3 (333), 18 (353), 20 (353). A

plot of In(k/T) versus 1/T gave AHt = 22,916 cal/mol and ASt = -6.44 e.u.

X-ray Structure of [N3N]W(cyclo-CHCH 2CH 2CH 2). Suitable crystals were grown

from pentane at -40 'C. Crystallographic data, collection parameters, and refinement parameters

for this study can be found in Table 2.2, and selected bond lengths and angles are located in

Table 2.1. General details for the experimental procedures 27 can be found elsewhere.

Solid-State Magnetic Susceptibility Measurements. SQUID experiments were

performed on a Quantum Design 5.5 T instrument running MSRP2 software. Samples were

prepared in an N2-filled drybox. A gelatin capsule and 2.2 x 1.9 cm piece of parafilm were

weighed. The capsule was then loaded with the sample and the parafilm was folded and packed

on top using plastic tongs. The capsule was closed and weighed again to determine the sample

mass. It was then suspended in a straw. The straw was placed in a plastic bottle with a screw

cap and the bottle was tightly sealed. At the instrument the straw was quickly attached to the

sample rod and transferred to the helium atmosphere. Measurements were taken in 1 degree

intervals from 5-10 K, 2 degree intervals from 12-20 K, 3 degree intervals from 23-50 K, 5

degree intervals from 55-100 K, 10 degree intervals from 110-200 K, and 20 degree intervals

from 220-300 K, see Table 1.1. A background measurement of an empty gel capsule, parafilm

square, and straw was taken over the entire temperature range. These values were subtracted

from the observed susceptibility at each temperature.
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CHAPTER III

Tungsten(VI) and Molybdenum(VI) Alkyl and Alkylidyne Complexes

That Contain the [(C6F5NCH2CH 2)3N] 3- Ligand.

A portion of the material covered in this chapter has appeared in print:

Shih, K.-Y.; Totland, K.; Seidel, S. W.; Schrock, R. R. J. Am. Chem. Soc., 1994, 116, 12103.



Synthesis of W(VI) and Mo(VI) Alkylidynes

INTRODUCTION

The chemistry of triamidoamine ligands with molybdenum and tungsten in mid- to high

oxidation states has interested us for some time. The triamidoamine ligand allows for the

preparation of group six metal complexes in the relatively rare +4 oxidation state.

Organometallic compounds of the type [(Me3SiNCH 2CH 2)3N]MR (M = Mo, W) have displayed

a wide variety of unique reactivity patterns. A molybdenum cyclopentyl complex with this

ligand undergoes rapid and reversible a-hydride elimination at a rate many orders of magnitude

faster than it undergoes f-hydride elimination. 1 Additional studies have shown that alkyls of the

type [N3N]MCH 2R (M = Mo, W, [N3N] = [(Me 3SiNCH 2CH2)3N] 3-) can decompose thermally

to give alkylidynes and molecular hydrogen, in some cases rapidly at room temperature. 2,3

Alkylidynes are formed by many other unusual routes, including coupling of terminal acetylides 4

and cleavage of C-C bonds in strained cycloalkane rings.1, 3 [N3N] ligands provide a sterically

protected environment for the apical ligand, which is shrouded by the trialkylsilyl groups on the

amido nitrogens. This steric shielding is likely the reason such unconventional reactivity has

been discovered; reactive intermediates are kinetically stabilized by the bulky amido nitrogen

substituents.

One limitation with the use of silylated triamidoamine ligands for molybdenum and

tungsten complexes is that the [N3N]MCI starting materials can be prepared only in low yield

(15-35%). We suspect that loss of TMSC1 and reduction of the metal are side reactions which

limit the efficiencies of these metatheses. A related triamidoamine ligand,

[(C6F5NHCH2CH 2)3 N], abbreviated as [N3NF]H3, reacts with metal tetrachlorides in the

presence of triethylamine to give [N3NF]MCI (M = Mo, W) complexes in good yields (70-

80%). 5 Presumably, such reactions proceed in better yield because of the decreased lability of

the N-C 6 F 5 linkage relative to the N-SiR 3 bond, and less reducing nature of these

perfluorophenyl ligands. The [N3NF] 3 - ligand provides a different steric and electronic

environment around the metal, and we wondered how this difference would affect the chemistry

of [N3NF] complexes as compared to their silylated tren analogs. This chapter will describe the
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synthesis of alkyl and alkylidyne complexes that contain the [N3NF] 3- ligand. The alkylidyne

syntheses utilize reactions which were first discovered with the silylated tren ligand system, such

as the loss of molecular hydrogen from complexes of the type [N3N]M(CH2R) and the loss of

ethylene from tungsten cyclopropyl complexes.

[N3NF]-based alkylidynes can be synthesized by more conventional methods as well. We

have recently become interested in complexes containing dianionic, tridentate diamidoamine

ligands for titanium, zirconium, and tantalum complexes. 6,7 Changing from a triamido to a

diamido ligand opens up another coordination site at the metal, potentially allowing for a wider

variety of reactivity. C6F5-substituted diamidoamine ligands, such as [(C6F 5NCH2CH 2)2NH]2-,

have been prepared and used for the synthesis of tantalum complexes. 6 This chapter will

describe more a customary synthesis of alkylidyne complexes that contain the C6F5-substituted

diamidoamine ligand.

RESULTS

Synthesis of Tungsten and Molybdenum Organometallic Complexes

Alkylation of paramagnetic [N3NF]WC15 with LiCH 2R (R = CMe3 , SiMe 3, Me, n-Pr)

reagents in toluene at room temperature leads to evolution of molecular hydrogen and formation

of the corresponding tungsten(VI) alkylidynes as shown in equation 1. [N3NF]W-CPh (ic) can

be prepared similarly from [N3NF]WI (If). Hydrogen was observed by 1H NMR analysis of a

R

C6F5  X C6F5
C F CCFcC6F5 N "~. I C6 F5 LiCH2R C6F5

N" LiCH2R N ,.
t - N (1)

R = Me (la), n-Pr (ib), Ph (1c), SiMe 3 (id), or CMe3 (le)
X = Cl, I
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reaction between [N3NF]WC1 and LiCH2 SiMe3 run in a flame-sealed NMR tube (the chemical

shift of dihydrogen in toluene-d8 is 4.5 ppm). We presume that the first step in this process is

formation of [N3NF]W(CH 2R), which then undergoes loss of molecular hydrogen to give the

alkylidyne. The light tan or brown solids are isolated in 50-70% yield. These alkylidynes are

not very soluble in hydrocarbons, and the alkylation reactions proceed essentially

heterogeneously in toluene ([N3NF]WCl is only sparingly soluble in that solvent). Interestingly,

attempts to alkylate [N3NF]WCl homogeneously in THF led only to decomposition. We also

note that [N3NF]WCl does not react with Grignard reagents at room temperature. Alkylidyne
13C chemical shifts range from 281 to 296 ppm. JCW for [N3NF]W= 13CCH 2CH 2CH 3 was

determined to be 254 Hz by alkylating with Lil 3CH 2CH 2CH 2CH 3. These NMR parameters are

in line with those of other do alkylidyne complexes.8

Qualitative differences are noticed in the rates of alkylidyne formation depending on the

nature of the alkylating agent. In particular, when LiCH2SiMe 3 reacts with [N3NF]WC1, the

solution turns red initially, but over the course of a day the color lightens. After two days,

[N3NF]W=CSiMe 3 can be isolated in 72% yield. This relatively slow reaction led us to wonder

if an intermediate alkyl complex could be isolated before decomposition to the

trimethylsilylmethylidyne occurs. Reaction of the tungsten chloride with LiCH2SiMe3 at -10 OC

for one hour gave a red solid precipitate which displayed 1H and 19F NMR spectra indicative of a

paramagnetic complex, as expected for d2 [N3NF]W(CH 2SiMe 3 ) (1g). This complex

decomposes in a first-order manner to yield [N3NF]WCSiMe 3 . The transformation was

followed by 19F NMR with 0.01 M THF solutions of Ig at five temperatures from 16 to 53 'C

(see experimental section for details). A plot of In(k/T) versus 1/T (Figure 3.1) yielded a AHt of

20.3 ± 0.2 kcal/mol and a AS of -7 ± 1 e.u. (R = 0.999). The rate constant at 298 K is calculated

to be 2.3 x 10-4 sec-1. These values may be compared only qualitatively to those found with

trimethylsilyl-substituted complexes. During the alkylation of [(TMSNCH 2CH 2)3N]WCl with

LiCH2SiMe3 , alkylidyne formation is complete within 2 h and no evidence of intermediate

[N3N]W(CH 2SiMe 3) is observed. 3 If we assume that 2 h (or less) represents five half-lives for
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this decomposition, then the rate constant is -5 x 10-4 (or greater). Thus, the trimethylsilyl-

substituted analog decomposes at least twice as fast as [N3NF]W(CH2SiMe 3 ) does at room

temperature.

y = 20.259 + -10227x R= 0.99936

-11

-12

-14

-15

-16 I I I I

0.003 0.0031 0.0032 0.0033 0.0034 0.0035
1/T

Figure 3.1. Eyring plot for the decomposition of [N3NF]W(CH 2SiMe3 ) between 16 and 53 °C.

An X-ray study of [N3NF]W-CSiMe 3 (ld) was carried out. A view of its structure is

shown in Figure 3.2. Bond distances and angles can be found in Table 3.1. Crystallographic

data can be found in Table 3.2. As is typically observed in structures of complexes containing

the [(C6F5NCH2CH 2)3N] 3- ligand, the aryl rings form a "bowl" around the ligand trans to the

dative amine donor. Qualitatively, the size of the cavity in which the apical ligand resides is

much greater than in complexes containing the [(TMSNCH 2CH 2) 3N] 3 - ligand (see Chapter I). 1

Whether or not this cavity is maintained in solution cannot be ascertained for this particular

complex, however, in a related diamidoamine complex, restricted rotation of the aryl rings is

observed on the NMR timescale up to 110 oC (see below). The W-C triple bond distance

(1.768(6) A) is in the range normally observed for tungsten alkylidynes.8 The W-N(4) distance
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(2.323(4) A) and the W-N(1), N(2), and N(3) distances (1.963(5) to 1.973(4) A) are similar to

those observed in other W(VI) triamidoamine complexes. The dihedral angle between N(4)-W

and the N(1)-C(1) is 173.6' and values for the other amides are similar. These angles are close

to what is observed in the structure of [N3NF]MoC1, 5 and are indicative of little steric strain in

the molecule (cf. [N3N]Mo(cyclohexyl), Table 1.3).

C(1)

Figure 3.2. A view of the structure of [N3NF]W-CSiMe 3 (Id).
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Table 3.1. Selected bond distances (A) and angles (deg.) for [N3NF]W-CSiMe 3 (id).

Distances (A)

W- C(19)

W- N(2)

W - N(4)

C(1)- N(1)

1.768(6)

1.963(5)

2.323(4)

1.411(7)

W- N(1)

W- N(3)

Si- C(19)

C(13) - N(3)

Angles (deg.)

W- C(19)- Si

N(2) - W- N(3)

W- N(1) - C(1)

N(1) - W- C(19)

176.9(4)

114.8(2)

126.8(3)

102.0(2)

N(1) - W- N(2)

C(13)- N(3)- W

N(4) - W- C(19)

N(3) - W- N(4)

Dihedral Angles (deg.)a

N(4) - W- N(1) - C(1)

N(4) - W- N(3) - C(13)

173.6

175.4

a From a Chem 3D drawing
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1.973(4)

1.968(4)

1.876(6)

1.422(7)

116.4(2)

126.5(3)

177.3(2)

78.0(2)
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Table 3.2. Crystallographic data, collection parameters, and refinement parameters for
[N3NF]W=CSiMe 3 (Id).

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal Color, Habit

Crystal System

a (A)

b (A)

c (A)
f3 (deg)

V (A3)

Space Group

Z

Dcalc (Mg/m 3)

F000

t (MoKa)

Scan Type

Temperature (K)

X (MoKa)

Absorption Correction

Structure Solution

Refinement

Number of Observations [I>3c3(I)]

R

Rw

GoF

Largest Diff. Peak and Hole (eA -3)

C28H23N4F 15SiW
912.43

Enraf-Nonius CAD-4

0.280 x 0.280 x 0.240

Yellow, Prismatic

Monoclinic

9.285(2)

28.268(5)

12.054(2)

100.25(2)

3133(2)

P21/c

4

1.946

1768

39.41 cm -1

0)

187
0.71069 A

Lorentz-polarization

(Trans. factors: 0.92 - 1.10)

Patterson Method

Full-matrix least-squares
5512

0.032

0.035

1.37

0.99 and -0.96
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Attempts to prepare [N3NF]W(CH 3) were not successful, and therefore we were unable to

determine if this methyl compound undergoes the a,a-double dehydrogenation reaction to yield

[N3NF]W-CH (1h). [N3NF]WX (X = Cl, I, OTf, 3,5-dimethylphenoxide) slowly decomposes

when treated with MeLi or MeLi-TMEDA in toluene (not every permutation was attempted).

Ethereal solvents led to more rapid decomposition. Treating [N3NF]WI with MeMgCl in

CH 2C12 results in almost no reaction. In some cases during reactions with MeMgCl or MeLi, a

trace of diamagnetic product was observed which might be [N3NF]W-CH, but none could ever

be isolated. [N3NF]WC1 does not react with Me 3Al in toluene at 60 oC for 2 h. [N3NF]W-CH

could be prepared, however, by reacting [N3NF]WCl with cyclopropyllithium in toluene. We

presume that this reaction proceeds as in the analogous silylated tren complex, where an initially

formed tungsten cyclopropyl complex loses ethylene to yield the methylidyne (equation 2). 3 The

light orange microcrystalline solid displays a characteristic low-field 13C resonance8 for the

methylidyne carbon at 284.3 ppm, and a resonance at 5.24 ppm (2JHW = 76 Hz) in the 1H NMR

spectrum for the methylidyne proton. When a C6H6 solution of 1h is treated with -4 atm D2 in a

sealed NMR tube at 70 oC for 18 h, no [N3NF]W-C-D was detected by 2H NMR. It appears

that, just as with the TMS-substituted alkylidynes, 2 the a,a-double dehydrogenation reaction is

irreversible.

H
I

C6F5 CC 6 F5 
C6F5

- ethylene C6F N W -N
[N3NF]WCl + Li 0 (2)

Li

lh

[N3NF]MOCl 5 reacts with LiCH2SiMe 3 and LiCH2CMe 3 in toluene to yield the

corresponding alkyl complexes, [N3NF]Mo(CH 2 CMe 3) (2a) and [N3NF]Mo(CH 2SiMe 3) (2b).

In stark contrast to the tungsten analogs discussed above, these complexes are stable towards
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dihydrogen loss at room temperature. Increased stability of molybdenum alkyls is also observed

with [N3N] 3- complexes. 1  Upon thermolysis at 121 'C, 2a is converted cleanly to

[N3NF]Mo-CCMe3 (2c) in a first-order reaction. The rate constant at 121 OC in toluene is 7.9(5)

x 10-5 sec- 1 and is independent of concentration over a threefold range. as determined via UV-

Vis spectroscopy. This value should be compared to the rate constant for the decomposition of

the silylated analog, [N3N]Mo(CH 2CMe3), which was found to be 9.41 x 10-4 sec- 1 at 121 'C. 1

[N3NF]Mo(CH 2SiMe 3) could not be converted to the corresponding alkylidyne by thermolysis at

85 'C for 5 days.

Mechanistic Studies of Alkylidyne Formation

We propose that the loss of molecular hydrogen from [N3N] 3- and [N3NF] 3- tungsten(IV)

alkyl complexes involves an a-elimination to yield an unobserved alkylidene hydride complex,

which then undergoes intramolecular a-abstraction of the alkylidene proton by the hydride,

yielding dihydrogen and the alkylidyne (equation 3). Corroboration of this mechanism came

with the observation that paramagnetic [N3N]W(cyclopentyl) is in equilibrium with its (a-

elimination product, [N3N]W(H)(C 5H8), and that the equilibrium constant is -28 in favor of the

alkylidene hydride complex at room temperature. 3,9

R H R

CH 2  R- - C  H C
wI wC111 (3)
W W W

The observation that alkylidynes are still formed smoothly even when f-protons are

present on the alkyl, as in the reaction between [N3NF]WCl and BuLi to give lb, led us to

wonder if the a-processes involved in the loss of molecular hydrogen from unobserved

[N3NF]W(CH 2 CH 2CH 2CH 3) were actually occurring faster than 3-hydride elimination. A

kinetic preference for a-elimination over -elimination has been demonstrated for both tungsten
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and molybdenum complexes that contain the TMS-substituted triamidoamine ligand. 1,3 Reaction

of [N3NF]WCl and LiCD2CH2 CH2CH 3 leads to the formation of lb which contains a statistical

amount of deuterium scrambled throughout the propyl chain.

We propose that the mechanism for scrambling involves a f-hydride elimination of

[N3NF]W(CD 2CH 2CH 2CH 3 ) to give an olefin hydride complex, which can then undergo

migratory insertion of the olefin into the hydride to yield the sec-butyl complex. A series of P-

hydride elimination-migratory insertion reaction sequences could eventually afford to an n-butyl

complex with scrambled deuterons which then finally undergoes the loss of dihydrogen (Scheme

3.1). Further support of this mechanism was obtained by reacting [N3NF]WCl with

Li 13CH 2CH 2CH 2CH 3, yielding lb with -50% 13C label at the alkylidyne carbon, and -50% 13C

label at the terminal carbon on the propyl chain. These results with the C6F5-triamidoamine

ligand system should be compared to those observed with the TMS-triamidoamine ligand

complexes. When [N3N]WCl is reacted with LiCD 2 CH 2CH 2CH 3 , D2 gas is lost and the

butylidyne product contains only hydrogen, as evidenced by 2 H NMR. 2 Similarly, when

[N3N]WCl is reacted with Lil 3CH 2CH 2CH 2CH 3, the product formed is labeled exclusively at

the alkylidyne carbon. 3 Thus, with the TMS-substituted complexes, the a-processes involved in

loss of molecular hydrogen from [N3N]W(n-butyl) are apparently faster than the f-processes

required to scramble the labels in these alkyls, in line with the previous demonstration of a

kinetic preference for a-elimination with TMS-substituted complexes. 3,9 It seems reasonable to

attribute this difference between the [N3N] 3- complexes and their [N3NF] 3- analogs in terms of

relative rates of a and 1 processes to a greater degree of steric shielding from the TMS groups

which may prevent the -hydrogen from interacting with the metal center. Steric effects have

been used in the past to rationalize preferential a versus 1 abstractionll ,11 and elimination 12-14

processes. Additionally, the a-process resulting in alkylidyne formation may be slower with

complexes containing the fluorinated ligand system as a result of a metal center which is more

electron-poor than that in [N3N]3- complexes. Since a-elimination, the proposed first step in
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D

DDD H D-y D, W
W DW W

(D)H H(D) statistical deuterium
H(D) incorpoation

D D (D)H H
H(D)

W W W

Scheme 3.1. Scrambling of deuterium during the formation of [N3NF]W-C-n-Pr-dl.5.

loss of H2 from the alkyls (equation 3), requires oxidation of the metal from W(IV) to W(VI), it

seems likely that an electron-poor metal center would be less able to undergo this first step.

Cyclic voltammetry studies have shown that complexes containing the [N3NF] 3- ligand are

generally more difficult to oxidize than those containing the [N3N] 3- ligand. The inductive effect

of the 15 fluorine atoms present in C6F5-substituted complexes is likely the reason for this

difference.

Several additional experiments were carried out in order to substantiate the mechanism

shown in Scheme 3.1. [N3NF]WCl reacts with sec-butyllithium to yield the linear butylidyne,

[N3NF]W-CCH 2CH 2CH 3. This result lends credence to the notion that a sec-butyl intermediate

can "walk" along the metal to yield a straight-chain butylidyne. We also investigated the

formation of [N3NF]W-CMe (la) by a similar labeling study to determine if P-hydride

elimination competes with the loss of molecular hydrogen in this reaction as well. [N3NF]WCl

reacts with LiCH2 CD 3 to yield [N3NF]W=CMe which contains hydrogen scrambled with

deuterium in the methyl group. Apparently P-processes again compete with X-processes during

the formation of la.
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Diamidoamine Alkylidyne Complexes

Addition of tungsten neopentylidyne trichloride DME adduct to an ethereal solution of

[(C6F5NHCH2CH 2)2NH]6 in the presence of triethylamine leads to the formation of yellow

[(C6F5NHCH2CH 2)2NH]W-CCMe 3(C1) (3a) in 79% yield (equation 4). 1H NMR spectra of

this complex show diastereotopic geminal methylene ligand backbone protons as well as a broad

triplet for the proton bound to the dative amine. A band is observed in the infrared spectrum of

the complex at 3306 cm-1 (Nujol mull) which we assign to the secondary amine N-H stretch. We

feel that the most reasonable structure for the molecule is that shown in equation 4, a "two-

armed" complex directly analogous to the [N3NF] 3- tungsten alkylidyne complexes described

above. The high stability of triamidoamine complexes with triply-bonded ligands in the site

trans to the amine donor and the remarkably diverse routes which can be followed to form them

are now well-established. 1,15 ,16 The decrease in symmetry upon going from a triamidoamine

alkylidyne complex to 3a, C3v to Cs, should not result in large changes of the d-orbital energies.

Thus, we believe that 3a is highly stable for the same reasons the triamidoamine complexes

discussed above are (see discussion section).

C6F5  C

2.2 NEt 3  N -W Cl
Me 3CC=WC13(dme) + H2[N2NH] (4)

ether (4)
N H

3a

[N2NH]W-CCMe 3(C1) ([N2NH]2- = [(C6F 5NCH 2CH2)2NH] 2-) is smoothly alkylated

with methyllithium and ethyllithium in toluene to give [N2NH]W=CCMe 3(R) (R = Me (3b) or Et

(3c)). No tendency for deprotonation of the secondary amine in 3a is observed. In fact,

[N2NH]W-CCMe 3(Me) does not lose methane even when heated to 75 'C. 3a also reacts with
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sodium acetylide in THF to yield a parent acetylide complex, [N2NH]W-CCMe 3(C-CH) (3d).

19F NMR spectra of 3a, 3b, and 3c and show that all five ring fluorines are inequivalent in these

complexes on the NMR timescale at room temperature. These fluorines remain equivalent up to

110 'C for 3a. Typically, a three-set pattern is observed in 19F NMR spectra of diamagnetic

complexes containing the [N3NF] 3- ligand (see experimental section for [N3NF]M-CR

complexes). We attribute the NMR parameters these [N2NH] 2- complexes display to hindered

rotation about the F5 C6 -N bond. One would not expect rotation about this bond to be more

difficult in complexes 3a through 3c than in their [N3NF]M-CR counterparts. However, the

lower symmetry present in the [N2NH] 2- alkylidynes makes it possible to observe this hindered

rotation, since the ortho and meta fluorines will have an "inside" and "outside" orientation in the

slowed rotation limit. It seems likely that hindered rotation is also in effect with [N3NF] 3-

alkylidyne complexes, but simply cannot be observed by 19F NMR because of the higher

symmetry present.

[N2NH]W-CCMe 3(Cl) reacts with silver triflate in THF to yield a complex formulated as

{ [N2NH]W-CCMe 3(THF)2 } {CF 3SO 3 }, 3e. 1H NMR and elemental analysis are consistent with

two equivalents of THF per metal center, and IR shows a band at 1205 cm-1, consistent with

ionic triflate. 17 This type of six coordinate complex has also been observed for a related

diamidophosphine zirconium complex.' 8

DISCUSSION

We sought to prepare the alkylidyne complexes described above to determine, at least

qualitatively, how the chemistry of silylated [N3N] 3- complexes and their [N3NF] 3- analogs

differ. In both cases, a variety of alkylidynes can be prepared by loss of molecular hydrogen

from alkyls. We cannot directly compare the rates of alkylidyne formation with the two ligands

since kinetics were done on [N3N]W(CH 3)2 and [N3NF]W(CH2SiMe 3 ), complexes with very

different alkyl groups in terms of both sterics and electronics. It is well known that, at least for

a-abstraction reactions, the alkyl substituent has a dramatic effect on the rate of reaction. 19 For
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[N3N]W(CH 2SiMe 3 ) and [N3 NF]W(CH 2SiMe 3 ), a qualitative estimate places the rate of

decomposition of [N3N] complex at least twice that of [N3NF] complex. The two systems can be

directly compared, however, in the reaction between [N3N]WCl and [N3NF]WCl with

LiCD2CH2 CH 2CH 3 . The fact that scrambling is observed when the fluorinated complex is

alkylated suggests that P-hydride elimination/migratory insertion pathways can compete

kinetically with the loss of molecular hydrogen in the fluorinated system. When

[(TMSNCH 2CH 2)3N]WCl is reacted with LiCD 2CH 2CH2 CH 3 , D2 gas is lost and the

organometallic product contains no deuterium. A similar difference is observed when these two

chlorides are reacted with Lil 3CH 2CH 2CH 2CH 3. With the C6F 5-substituted triamidoamine

complex, scrambling of the 13C label is observed during the reaction, but with the Me 3Si-

substituted triamidoamine complex, only [N3N]W- 13CCH 2CH2CH 3 is formed. Thus, the a-

processes required to form an alkylidyne in the silylated triamidoamine complex are faster than

any -processes. It would seem that in the fluorinated system, a more conventional kinetic

preference for 3-elimination over a-elimination is occurring. 20 We speculate that the primary

reason for these differences lies in the steric environments of the apical sites of [N3N] 3 - and

[N3NF] 3- complexes. Nearly all of the C6F 5-substituted triamidoamine complexes which have

been crystallographically characterized show that the aryl rings twist in order to form a "bowl"

which affords the apical ligand a relatively open coordination environment. Conversely, X-ray

structures of TMS-substituted triamidoamine complexes often reveal a greater degree of steric

strain for the ligand in the apical site.1,21 It seems reasonable that transition state for 3-

elimination in [N3N]W(CH 2CH 2CH 2CH 3) could be considerably more strained than the

transition state for -elimination in [N3NF]W(CH2CH 2CH 2CH 3) as a result of this difference in

steric environments. Such effects have been used to explain changes in the relative rates of a-

and 1-abstraction reactions in [N3N]TaR2 complexes when the amido substituent is changed

from TMS to triethylsilyl.11 Electronic effects may also be important, as it has generally been

found by cyclic voltammetry that C6F 5-substituted complexes are less easily oxidized than their
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silylated analogs. An electron-rich metal center may facilitate the formation of the proposed

W(VI) alkylidene hydride intermediate in the dehydrogenation reaction (equation 3).

It is possible to make a direct comparison of the rates of alkylidyne formation from

[N3N]Mo(CH2CMe 3 ) and [N3NF]Mo(CH2CMe 3 ). Previous studies have shown that

molybdenum alkyls also undergo reversible a-elimination reactions, although alkylidene hydride

complexes analogous to [N3N]W(H)(cyclopentylidene) have not been directly observed.1 Both

decomposition reactions are first-order at 121 oC, but the fluorinated complex loses dihydrogen

12 times more slowly than the silylated complex does. We propose that this difference is due to

the same factors which were discussed above regarding the differences in the reactions with

labeled butyllithium reagents. A more open steric environment in [N3NF]MoCl leads to less

steric pressure between the neopentyl group and the amido substituents. Steric strain has been

proposed to assist in a-abstraction reactions by forcing the a-hydrogen closer to the metal center,

rendering it more easily removed. 19 It should be noted that, if our mechanistic proposals are

correct, steric strain assists both the a-elimination and the a-abstraction steps leading to product

(equation 3). We feel that electronic effects are also important in these reactions. The electron-

withdrawing C6F 5 rings may deactivate the complexes towards loss of dihydrogen. It is

generally accepted that C-H activation processes such as the one proposed to occur in the first

step of the formation of [N3NF]Mo=CCMe 3 are facilitated by electron-rich metal centers. 20

Another way in which complexes containing the [N3NF] 3- ligand differ from their TMS-

substituted analogs is in certain alkylation reactions. [N3N]WCl is smoothly alkylated with

MeLi to give [N3N]W(CH 3)2 and with cyclopentyllithium to give [N3N]W(cyclo-

pentylidene)(H). 9 Neither of the corresponding [N3NF] complexes could be prepared, either no

reaction or decomposition was observed (see Results section). Similarly, [N3N]Mo(CH 3) is

readily synthesized in high yield whereas [N3NF]Mo(CH 3) was never isolated. 22 We propose

that the [N3NF] complexes are more problematic in these reactions for two reasons. First of all,

the C6F 5 ring in [N3NF]WX starting materials may be susceptible to nucleophilic attack or

electron transfer from the alkylating agent (in these cases highly reducing alkyllithium reagents).
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Secondly, it has been generally observed that [N3NF] complexes are more susceptible to

decomposition reactions where the ligand becomes stripped off the metal, such as protonolysis.

It seems that the C5F6 amides are less tightly bound to the metal than their TMS counterparts,

perhaps for both steric (the amide lone pair is less well-protected) and electronic reasons. It

could be that, rather than alkylate at the metal, MeLi causes removal and subsequent

decomposition of the [N3NF] ligand. Interestingly, reagents such as LiCH2 SiMe 3 and

LiCH 2CMe3 do alkylate [N3NF]MCI (M = Mo, W) cleanly, perhaps because these larger alkyls

are less able to react with the C6F5 rings on steric grounds and therefore alkylate the metal

relatively rapidly.

Although we were initially surprised to find that [N2NH]W-CCMe 3(C1) (3a) reacts with

methyllithium to yield [N2NH]W-CCMe 3(Me) with no deprotonation of the secondary amine,

consideration of the molecular orbital picture of this complex provides an explanation for its

stability. Dehydrohalogenation of 3a would yield a C2v-symmetric species as shown in equation

5. If all three amide donors in this species participate in it-bonding with the metal, the alkylidyne

group cannot be triply-bonded to the metal. The frontier molecular orbitals for the C2v-

symmetric triamide ligand are shown in Figure 3.3. Only one a-type and one it-type MO is

C6F 5  cC 5
C6F C6F5 C 6F5

N 6 Cl N-W- N (5)

H :B N

3a C2v-symmetric

available for bonding of the ligand in between the C6F5 rings (in this case the alkylidyne).

Therefore, a triply bonded alkylidyne ligand is not possible with the planar triamide ligand.

Additionally, it-bonding from both the C6F5-substituted amides can only occur with one metal d

References begin on page 122.

Chapter III

110



Synthesis of W(VI) and Mo(VI) Alkylidynes

orbital, whereas in Cs-symmetric 3a, ic-bonding from these amides can occur with both the dxy

and dx2-_2 orbitals. It seems that the net result of these effects is that the Cs structure with a

tetrahedral dative secondary amine donor is favored when the apical ligand is triply bonded. A

similar preference has been observed in tantalum chemistry with an apical nitride donor.23

R R R R R R

N N N N N N

dz2  z dxz  dx2_y2

y

x

Figure 3.3. Frontier molecular orbitals for C2v-symmetric triamido ligands.

CONCLUSION

Triamidoamine complexes of molybdenum and tungsten have shown a remarkable

tendency to form triply-bonded ligands in the apical site. This proclivity stems from the fact that

the two n-type frontier molecular orbitals in these C3v-symmetric complexes, dxz and dyz, are

strictly degenerate and probably almost pure d-orbitals. Thus, 18-electron [N3NF] tungsten

alkylidynes are sufficiently thermodynamically stable that 16-electron [N3NF]W(CH 2R)

complexes will eject dihydrogen rapidly at room temperature to form [N3NF]W-CR complexes.

In this chapter, a comparison between C6F5- and TMS-substituted complexes in terms of this

dehydrogenation reaction has been made. Both [N 3 NF]W(CH 2SiMe 3 ) and

[N3NF]Mo(CH 2 CMe3) decompose more slowly than do their silylated analogs. We attribute this

difference to less steric strain and increased metal center electron-deficiency in these molecules

as compared to the TMS-substituted complexes. Perhaps more interestingly, it seems that when
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n-protons are present on the alkyl, as in [N3NF]W(n-Bu) and [N3NF]W(Et), n-elimination can

compete with the dehydrogenation reaction as evidenced by several types of labeling studies.

This is in stark contrast to what is observed with silylated triamidoamine complexes, where

labeling studies have shown that solely the a-dehydrogenation reaction occurs in

[N3N]W(CD 2CH 2CH 2CH 3 ) (see Chapter II). It should be emphasized that the experiments

performed have only shown that f-elimination competes with the overall dehydrogenation

reaction with the [N3NF] complexes. A reversible a-elimination process which is faster than 3-

elimination could be in effect with these complexes just as in their silylated analogs (see

Chapters I and II). However, we are unable to make this determination with the C6F5

complexes, largely because the [N3NF]M(cyclopentyl) complexes could not be synthesized.

EXPERIMENTAL

General Details. All experiments were conducted under nitrogen in a Vacuum

Atmospheres drybox, using standard Schlenk techniques, or on a high vacuum line (<10 -4 torr).

Glassware was dried in a 135 'C oven overnight. Pentane was washed with HNO3/H 2SO 4 (5/95

v/v), sodium bicarbonate, H20, stored over CaC12 and then distilled from sodium benzophenone

with tetraglyme under nitrogen. Ether and THF were purified by sparging with nitrogen and

passing through alumina columns. 24 Reagent grade benzene was distilled from sodium

benzophenone under nitrogen. Toluene was distilled from molten sodium. Acetonitrile was

distilled from P20 5 . Methylene chloride was distilled from CaH2. All solvents were stored in

the drybox over activated 4A molecular sieves. Deuterated solvents were freeze-pump-thaw

degassed and vacuum transferred from an appropriate drying agent, or sparged with argon and

stored over molecular sieves. 1H NMR spectra were recorded at either 250 or 300 MHz at 25 'C.
13C, 19F, and 3 1P NMR spectra were recorded at 75.4, 282, and 121 MHz respectively. 1H and

13 C data are listed in parts per million downfield from tetramethylsilane and were referenced

using the solvent peak. 19F NMR are listed in parts per million downfield of CFC13 as an

external standard. 2H NMR spectra were obtained at 46.0 MHz and referenced to external C6D 6
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(7.15 ppm). 3 1P NMR spectra are listed in parts per million downfield from H3PO 4. Coupling

constants are given in Hertz, and routine couplings are not listed. Magnetic susceptibility

measurements were done by NMR using the Evans method. 25 Elemental analyses (C, H, N)

were performed on a Perkin-Elmer 2400 CHN analyzer in our own laboratory.

Preparation of starting materials. [N3NF]WCl and [N3NF]MoCl were synthesized as

described in the literature, 5 except that WC14 (dme)26 was used instead of WC14(Et 2S) 2 for the

synthesis of the tungsten chloride. CH3CH2CH 2CD 2Li was prepared by reduction of butyryl

chloride with LiAID 4 in ether followed by reaction with thionyl chloride in hexane in the

presence of pyridine. The hexane/butyl chloride mixture was dried and distilled together from

P20 5 . Treatment of this solution with lithium wire gave CH 3CH2 CH 2CD2 Li in -15% overall

yield. D3CCH 2Li was prepared by treatment of D3CCH 2 Br (Cambridge Isotope Labs) with

lithium wire. CH 3CH 2CH 2
13CH 2Li was prepared from 13CO 2 by formation of the acid with n-

PrMgC1, followed by LiAlH4 reduction to the alcohol. Treatment with SOC12 in hexane in the

presence of pyridine as for LiCD2CH 2CH 2CH 3 and subsequent reaction with lithium metal gave

the labeled reagent in 20% overall yield. Phenyllithium and 3,5-xylyllithium were prepared by

treatment of the aryl bromide with BuLi in ether/hexane at -35 oC. Ethyllithium was prepared by

the literature procedure. 27 Trimethylsilylmethyllithium was purchased commercially as a

solution in pentane and the pentane was removed in vacuo. Cyclopropyllithium was synthesized

from the bromide and lithium powder in ether. Neopentyllithium was prepared by the literature

procedure. 28  Benzyllithium was prepared by the transmetalation method. 29  Tungsten

neopentylidyne trichloride DME was prepared by the literature procedure. 26 This material can

also be prepared from Me3CC-W(O-t-Bu)3 by treatment with BC13- 30

In the UV/Vis study, the following equation was employed to follow the disappearance of

an alkyl species: ln[(A o - A.)/(A - A.)] = kt, where Ao = absorbance at wavelength X at time 0,

A0 = absorbance at wavelength X at infinite time, and A = absorbance at wavelength X at time t.
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[N3NF]W-CMe (la). A room temperature suspension of [N3NF]WCl (0.50 g, 0.58

mmol) in 10 mL toluene had ethyllithium (31 mg, .842 mmol) added as a solid. Gas was evolved

instantaneously and the reaction changed from orange to brown over 30 min. After 45 minutes

the toluene was removed in vacuo and the residue extracted with 10 mL CH 2C12. Filtration

through a short column of Celite and removal of the solvent left the crude product. It was

recrystallized by dissolving in a mixture of CH2C12 and ether and cooling to -40 'C. Two crops

of tan-yellow solid were obtained. Total yield: 249 mg (50%): 1H NMR (CDC13) 8 2.2 (t, W-C-

Me, 3, JWH = 8.7 Hz), 3.1 (t, NCH 2, 6), 3.9 (t, NCH 2, 6); 13C{ 1H} NMR (CDC13) 8 30.1 (W-C-

Me), 51.8 (NCH2), 56.8 (NCH2), 135.6, 138.9, 140.7, 144.0 (C6F5), 286.3 (W-C-Me); 19F NMR

(CDCl3) 8 -165.2 (t, m-C6Fs, 6), -164.8 (t, p-C6F 5 , 3), -151.0 (d, o-C 6F 5, 6). Anal. Calcd. for

C26H1 5N4F1 5W: C, 36.64; H, 1.77; N, 6.57. Found: C, 36.71; H, 1.90; N, 6.42.

[N3NF]W-CCH 2 CH2CH3 (ib). n-Butyllithium (0.581 mL, 1.45 mmol, 2.5 M in

hexane) was added via syringe at room temperature to a suspension of [N3NF]WCl (1.00 g, 1.16

mmol) in 30 mL of toluene. Within minutes the color began to change from orange to brown and

gas evolved. The reaction was stirred for three hours and then filtered through Celite. The

filtrate was reduced in volume in vacuo until crystals began to form and then cooled to -40 OC

overnight. The off-white microcrystalline product was filtered off and dried in vacuo . A second

crop was obtained by reducing the volume of the mother liquor and cooling to -40 OC; total yield

0.673 g (66%): 1H NMR C6D6 6 0.25 (t, -CH2CH 2CH3 , 3), 0.41 (sextet, -CH 2CH 2CH 3 , 2), 2.05

(t, NCH2 CH 2N, 6), 2.50 (t, -CH 2CH2CH 3, 2), 3.33 (t, NCH 2 , 6); 13C{ 1H} NMR C6D6 8 12.94

(CH 2CH 2 CH 3 ), 22.29 (CH 2 CH2CH 3), 46.71 (CH 2CH 2CH 3 ), 51.22 (NCH 2 ), 56.92 (NCH 2),

136.2, 139.5, 141.4, 144.7 (br s, C6F5), 292.64 (W-C, JCw = 254 Hz) Anal. Calcd for

C28H19N4F1 5W: C, 38.20; H, 2.18; N, 6.36. Found: C, 38.33; H, 2.27; N, 6.32.

[N3NFIW-CPh (ic). PhCH2Li (325 mg, 1.70 mmol) was added as a solid to a stirred

suspension of [(C6F5NCH2CH 2)3N]WI (750 mg, 0.788 mmol) in 25 mL of toluene. The reaction

darkened immediately and gas was evolved. The reaction was stirred for 2 days, at which point

the toluene was removed in vacuo. The residue was dissolved in CH 2C12, filtered through Celite
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and evaporated. Dissolution in a minimum amount of CH2C12 and cooling this solution to -40

'C overnight gave the product as an off white solid, 337 mg (47%): 1H NMR (C6D6 ) 8 2.09 (t,

NCH 2, 6), 3.37 (t, NCH 2, 6), 6.09 (d, Hortho, 2), 6.41 (t, Hpara, 1), 6.70 (t, Hmeta, 2); 13C{1H}

NMR (CD2Cl 2) 8 52.7 (NCH2), 58.0 (NCH2), 127.2 (C6H5 ), 130.5 (C6H5 ), 136.2, 137.2, 139.5,

141.8, 145.0, 146.7 (C6F 5), 281.6 (W-C-Ph); 19F NMR (C6D6 ) -164.8 (t, m-C 6F5 , 6), -164.0 (t,

p-C6F 5, 3), -150.7 (d, o-C 6F 5, 6).

[N3NF]W-CSiMe3 (ld). LiCH 2SiMe 3 (66 mg, 0.70 mmol) was added as a solid to a

stirred suspension of [N3NF]WCl (500 mg, 0.581 mmol) in 10 mL of toluene at room

temperature. The reaction turned wine-red and bubbling was observed. After stirring for 2 days,

the reaction mixture was evaporated to dryness and the residue was extracted with CH2C12. The

extract was filtered through Celite and the solvent removed from the filtrate in vacuo to give the

crude product as a pink residue. This residue was recrystallized by dissolving it in - 3 mL THF,

layering TMS2 0 on top, and standing the solution in the refrigerator at -40 oC. After two days

red crystals were filtered off; yield 0.381 g (72%): 1H NMR (CDC13) 8 -0.80 (s, -SiCH3, 9), 3.03

(t, NCH 2, 6), 3.97 (t, NCH2 , 6); 13C{ 1H} NMR (CDC13) 8 -0.87 (SiCH3), 51.13 (NCH2), 57.35

(NCH 2), 136, 139, 142, 145 (br s, C6F 5), 288.37 (W=C); 19F NMR (C6D6) 8 -165.24 (br s, o-

C6F5), -164.61 (t, p-C6F 5), -150.22 (br s, o-C6F 5). Anal. Calcd for C28H21N 4F1 5SiW: C, 36.94;

H, 2.32; N, 6.15. Found: C, 36.90; H, 2.42; N, 6.12.

[N3NFIW=CCMe3 (le). LiCH 2CMe 3 (79 mg, 1.02 mmol) was added as a solid to a

stirred suspension of [N3NF]WCl (500 mg, 0.581 mmol) in 20 mL toluene. Within seconds gas

was evolved and the color began to change from orange to light yellow. After 3.5 h, the toluene

was removed in vacuo and the off white residue dissolved in - 60 mL 1,2-dimethoxyethane. The

solution was then filtered through Celite and the volume reduced in vacuo until microcrystals

began to form. Cooling this solution to -40 oC overnight gave the product as a light yellow

powder. A second crop was obtained by concentrating the mother liquor and cooling to -40 "C.

Total yield 0.317 g (61%): 1H NMR (THF-d8 ) 8 .064 (s, W=C-C(CH3)3 , 9), 3.12 (t, NCH 2 , 6),

3.94 (t, NCH 2 , 6); 13C {1H} NMR (THF-d 8) 8 29.90 (W=C-C(CH 3)3), 48.73 (W=C-CMe 3),
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52.54 (NCH 2), 58.35 (NCH 2), 137, 139, 143, 146 (C6F5 ), 296.07 (W-C-CMe3 ); 19F NMR

(C6 H6 ): -165.3 (d, m-C6F 5 ), -164.6 (t, p-C6F5 ), -150.7 (s, o-C6F5 ). Anal. Calcd. for

C29H 21N4 F1 5W: C, 38.95; H, 2.37; N, 6.26. Found: C, 38.82; H, 2.18; N, 6.12.

[N3NF]WI (1f). A solution of [N3NF]WCl (870 mg, 1.01 mmol) in 30 mL CH2C12 had

TMSI (216 gl, 1.52 mmol, 1.5 equiv.) added via syringe. The reaction was stirred overnight and

the solution evaporated. The yellow-brown residue was recrystallized from CH 2Cl 2/Et2 0

mixtures, 755 mg orange crystals isolated (97% yield). 1H NMR (C6D6 ) 8 -25.5 (br s, Av1/2 =

156 Hz, CH 2), -50.0 (br s, Av1/2 = 115 Hz, CH 2 ); 19F NMR (C6D6 ) 8 -86.5 (ortho F), -124.0

(meta F), -144.5 (para F) Anal. Calcd for C24H12N 4F15WI: C, 30.28; H, 1.27; N, 5.88. Found: C,

30.45; H, 1.32; N, 5.80.

[N3NF]W(CH2SiMe 3) (1g). A -40 oC solution of LiCH2SiMe3 (131 mg, 1.39 mmol, 1.2

equiv.) in 40 mL of toluene was added via cannula to solid [N3NF]WCl (1.00 g, 1.16 mmol) in a

100 mL Schlenk flask immersed in a -10 'C bath. The heterogeneous reaction mixture was

stirred at this temperature for 1 hour, the color changing gradually from orange to red. The red

solid was filtered off and dried in vacuo; yield 908 mg (86%). Extraction with methylene

chloride and recrystallization from CH2C12 layered with pentane gave the product as red crystals:

1H NMR (C6D6) 8 -0.82 (br s, 9, TMS), -18.3 (br s, 6, NCH 2), -52.1 (br s, 6, NCH 2); 19 F NMR

(C6D6) 8 -29 (br s, o-C 6F5), -112 (s, m-C 6F5), -140 (s, p-C6F 5).

The dehydrogenation of [N3NF]W(CH2SiMe 3) was followed by 19F NMR at 470 MHz

by monitoring the decrease in intensity of the meta fluorine resonance verses fluorobenzene as an

internal standard. Runs were done in THF with an initial alkyl concentration of -0.01 M and

followed through two to five half-lives. The values for k (x10 -4 s-1) at temperature T (K) are as

follows: 48.1 (326), 16.9 (316), 6.47 (306), 1.97 (297), 0.774 (289). A plot of ln(k/T) versus I/T

yielded AHt = 20,321 cal/mol and ASt = -6.956 e.u.

[N3NF]W-C-H (1h). [N3NF]WCl (500 mg, 0.581 mmol) was dissolved in 40 mL of

toluene by stirring the solution for 1 h. A solution of cyclopropyllithium (84 mg, 0.56 mmol, 1

equiv.) was prepared by adding 3 drops of THF to the solid lithium reagent followed by 2 mL of
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toluene. This solution was added dropwise to the chloride. The reaction was stirred for twenty

minutes, at which point 0.3 more equivalents of cyclopropyllithium (28 mg, 0.19 mmol) in 1 mL

toluene was added. After an additional thirty minutes of stirring, 19F NMR showed the reaction

was complete. The solution was filtered through Celite and the solvents removed in vacuo.

Recrystallization from CH 2Cl 2 layered with pentane yielded several crops of orange

microcrystals which were isolated by decantation of the mother liquor and drying in vacuo; yield

394 mg (81%): 1H NMR (C6D6 ) 8 1.99 (t, NCH2, 6), 3.29 (t, NCH2 , 6), 5.24 (s, JHW = 76 Hz,

W-C-H, 1); 13C NMR (CD 2Cl2) 8 52.2 (t, NCH2), 57.9 (t, NCH2), 136.1, 137.0, 139.4, 140.2,

141.8, 145.1, (C6F5), 284.3 (W=C-H); 19F NMR (C6D6 ) 8 -150.9 (br s, o-C 6F5 ), -163.4 (t, p-

C6F 5), -164.9 (br s, m-C6F 5 ).

[N3NFI]Mo(CH 2CMe3) (2a). [N3NF]MoCl (750 mg, 0.971 mmol) was slurried in 50 mL

toluene and stirred for -45 minutes to dissolve. Neopentyllithium (151 mg, 1.16 mmol, 1.2

equiv.) was added as a solid to the toluene solution. The color changed instantly from orange to

wine-red. After 30 minutes 19F NMR showed the reaction was complete. The toluene was

removed under reduced pressure and the residue extracted with methylene chloride and filtered

through Celite. The methylene chloride solution was reduced in volume, layered with pentane,

and cooled to -40 oC. 544 mg product crystallized in two crops (70%). 1H NMR (C6D6): 8 4.5

(br s, 9, C(CH3)3), -9.5 (br s, NCH2N), -66 (br s, NCH 2N). 19F NMR (C6D 6): 8 -47.3 (br s, 6, o-

C6F 5), -120.7 (s, 6, m-C 6F 5), -139. 2 (s, 3, p-C 6F5). Anal. Calcd. for C29 H2 3N4F1 5Mo: C,

43.09; H, 2.87; N, 6.93. Found: C, 43.03; H, 3.16; N, 6.87. Xmax = 492 nm (E = 1.6 x 103

M-1cm-1).

Kinetic study for the conversion of 2a into [N3NF]Mo=CCMe 3 . The reaction was

followed by UV/Vis in toluene at 492 nm. Runs were performed with a 1.6 mM stock solution.

A cuvette with a teflon stopcock was charged with 2.0 mL of the solution and a stir bar. It was

placed in a stirred 121.0 + 0.2 'C oil bath for 4 min. It was then removed from the bath, rinsed

with hexane, and placed in the UV/Vis Peltier block kept at 70 OC during the entire run so that

the absorbance measurements could all be obtained at the same temperature. After equilibration
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at 70 'C, a spectrum was recorded and used as the To value. The cuvette was placed back in the

121 'C bath and, after allowing 30 seconds for temperature equilibration, timing was begun.

Data points were collected approximately every 1.5 h and a rate constant of 7.9(5) x 10-5 sec- 1

was obtained. Another measurement at a concentration of 0.53 mM gave a rate constant of 7.8 x

10-5 sec- 1

[N3NF]Mo(CH2SiMe3) (2b). [N3NF]MoCl (153 mg, 0.198 mmol) was slurried in 10

mL toluene and stirred to dissolve for -30 min. Trimethylsilylmethyllithium (22 mg, 0.24

mmol) was added as a solid and the color of the reaction changed instantly from orange to deep

purple. The solvent was removed under reduced pressure and the residue extracted with

methylene chloride. This solution was filtered through Celite and the volume reduced in vacuo.

The solution was layered with pentane and stored at -40 'C for 15 h. Red microcrystals formed

which were isolated by decantation of the mother liquor and dried under reduced pressure, yield

67 mg (41%). 1H NMR (C6D6): 8 3.54 (s, Si(CH3)3), -11 (br s, NCH 2N), -67 (br s, NCH 2N).

19F NMR (C6D6): 8 -47.8 (br s, 6, o-C 6F5), -121.9 (s, 6, m-C 6F5), -140.1 (s, 3, p-C6F5). Anal.

Calcd. for C2 8H2 3N4F15 SiMo: C, 40.79; H, 2.81; N, 6.80. Found: C, 40.39; H, 2.99; N, 6.46.

[N3NF]Mo=CCMe3 (2c). [N3NF]Mo(CH2CMe 3) (300 mg, 0.373 mmol) was heated in

10 mL toluene at 110 'C for 24 h, at which point 19F NMR indicated the reaction was complete.

The reaction mixture was cooled to -40 OC for 15 h. 204 mg of product crystallized (68%). 1H

NMR (C6D6) 8 3.26 (t, 6, NCH2N), 2.05 (t, 6, NCH2N), 0.074 (s, 9, CMe3). 19F NMR (toluene)

6 -150.0 (d, 6, o-C 6F5), -164.9 (t, 3, p-C6F5), -165.2 (t, 6, m-C6F5 ). 13C NMR (CD 2Cl2) 8 27.3

(CMe3), 52.3 (NCH2N), 58.0 (NCH2N), 137, 139, 142, 144 (C6F5), 312.9 (Mo-C).

[HN(CH2CH 2NC 6F5)2]W-CCMe 3(CI) (3a). A solution of HN(CH 2CH2NC 6F 5)2 (1.50

g, 3.45 mmol) and triethylamine (1.06 mL, 7.58 mmol, 2.2 equiv.) in 60 mL diethyl ether was

cooled to -40 oC. W-CCMe3(C1) 3(dme) (1.55 g, 3.45 mmol) was added as a solid over 5 min to

the stirred ethereal solution. The reaction was stirred overnight at room temperature and then the

volatiles were removed in vacuo. The residue was extracted with THF, filtered and the THF

removed. The yellow solid remaining was recrystallized by layering a concentrated
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dichloromethane solution with pentane and cooling to -40 oC for 15 h. The product was obtained

as yellow microcrystals, 1.97 g (79%). 1H NMR (CDC13) 8 3.88 (m, 4, NCH2 N), 3.38 (m, 2,

NCH 2N), 3.08 (m, 2, NCH 2N), 2.86 (br t, 1, NH), 0.372 (s, 9, CMe3 ). 19F NMR (CDC13) 8

-150.2 (d, 2, o-C 6F5), -150.6 (d, 2, o-C 6F5), -162.5 (t, 2, p-C6F5), -164.4 (dt, 4, m-C 6F5). 13C

NMR (CDC13) 8 305.3 (W-C), 145, 140, 139, 135 (br m, C6F5), 59.5 (NCH 2N), 48.6 (NCH2N),

45.8 (NCH2N), 30.2 (CMe3) IR (Nujol mull) cm-1 3306 (NH), 1500 (C6F5-N), 986 (C-F). Anal.

Calcd for C21H1 8N3C1F 10 W: C, 34.95; H, 2.51; N, 5.82. Found: C, 35.16; H, 2.12; N, 5.60.

[HN(CH2CH2NC 6F5)21]WCCMe3 (Me) (3b). [HN(CH 2 CH 2NC 6F5)2]W-CCMe 3(C1)

(770 mg, 1.07 mmol) was dissolved in 25 mL toluene. MeLi (1.4 M in Et2 0, 838 gL, 1.17

mmol, 1.1 equiv.) was added to the stirred solution via syringe. Stirring was continued for 3 h,

and then the reaction was filtered and the volatiles were removed in vacuo. The residue was

dissolved in 8 mL benzene and filtered again to removed the last traces of LiC1. The benzene

was removed under reduced pressure and the tan residue recrystallized at -40 'C from minimum

toluene layered with pentane. The product was obtained as light orange crystals, 478 mg (64%).

1H NMR (C6D6) 8 3.17 (m, 2, NCH2N), 2.97 (m, 2, NCH 2N), 2.12 (m, 2, NCH2N), 2.03 (m, 2,

NCH 2N), 1.60 (br t, 1, NH), 0.930 (s, 2 JWH = 8 Hz, 3, Me), 0.514 (s, 9, CMe3 ). 13C NMR

(C6D6) 8 298.2 (W-C), 144, 142, 139, 138, 136 (m, C6F5), 58.3 (NCH2N), 48.4 (2JWC = 41 Hz,

W-CCMe3), 46.2 (NCH2N), 30.1 (CMe3), 29.0 (1Jwc = 112 Hz, WMe). 19 F NMR (CDC13) 6

-150.2 (d, 2, o-C 6F5), -152.2 (d, 2, o-C 6F5), -164.8 (t, 2, p-C6F 5), -165.4 (br t, 2, m-C 6F5), -165.8

(t, 2, m-C 6F 5). Anal. Calcd for C22H2 1N3F1 0 W: C, 37.68; H, 3.02; N, 5.99. Found: C, 37.96; H,

3.03; N, 5.73.

[HN(CH 2CH 2NC 6F5)2]W=CCMe 3 (Et) (3c). [HN(CH 2C H2NC 6F5)2]W-CCMe 3(C1)

(100 mg, 0.139 mmol) was dissolved in 5 mL toluene. Ethyllithium (6 mg, 0.166 mmol, 1.2

equiv.) was added as a solid to the stirred toluene solution. After stirring for 5 h, the solution

was filtered, the volatiles were removed in vacuo, and the yellow-tan solid recrystallized from

toluene/pentane mixtures, 43 mg (44%). 1H NMR (C6D6 ) 8 3.15 (m, 2, NCH 2N), 2.95 (m, 2,

NCH 2N), 2.37 (t, 3, WCH2 CH 3 ), 2.10 (m, 2, NCH 2N), 2.01 (m, 2, NCH 2 N), 1.25 (q, 2,
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WCH2 CH 3), 0.513 (s, 9, CMe 3). 19F NMR (C6D6) 8 -150.8 (d, 2, o-C 6F5 ), -151.9 (d, 2, o-

C6F5), -164.7 (t, 2, p-C6F5), -165.1 (br t, 2, m-C6F 5), -165.3 (t, 2, m-C 6F5).

[HN(CH 2CH2 NC 6F5)2]W=CCMe 3(CCH) (3d). Sodium acetylide (7 mg, 0.15 mmol,

1.1 equiv.) was added as a solid to a stirred solution of [HN(CH 2CH 2NC 6F5)2]W-CCMe 3(C1)

(100 mg, 0.139 mmol) in THF. Stirring was continued for 15 h, at which point the solvent was

removed under reduced pressure. The residue was extracted with toluene and NaCl filtered off.

Recrystallization at -40 'C from minimum toluene layered with pentane gave the product as a tan

solid, 40 mg (40%). 1H NMR (C6D6) 8 11.36 (s, 3JWH = 23 Hz, 1, HC-CW), 4.02 (br t, 1, NH),

3.10 (m, 2, NCH 2N), 2.65 (m, 2, NCH 2N), 2.46 (m, 4, NCH 2N), 0.966 (s, 9, CMe3). 13C {1H}

NMR (C6D6) 8 231.6 (W-C), 187.7 (d, 1JCH = 212 Hz, 2JCW = 119 Hz, WC-CH), 177.9 (d,
2JCH = 23 Hz, WC-CH), 146, 142, 139, 136, 133 (m, C6F5), 59.1 (t, NCH2N), 49.9 (t, NCH2N),

44.1 (s, W-CCMe 3), 30.2 (q, CMe3). IR (Nujol mull) cm-1 3213 (NH), 1501 (N-C6F5), 1059,

1011, 987 (C-F), 850, 700.

[HN(CH 2CH2NC 6F 5)2]W=CCMe 3(THF)2 (OTf) (3e). Silver triflate (107 mg, 0.416

mmol) was added to a stirred solution of [HN(CH 2CH2NC 6F5)2]W-CCMe 3(C1) (300 mg, 0.416

mmol) in 10 mL THF. A precipitate began forming immediately. After 2 h, the solution was

filtered and the volatiles removed in vacuo. The yellow solid was dissolved in 10 mL warm

THF, layered with pentane, and stored at -40 OC for 40 h. Yellow microcrystals were obtained,

332 mg (82%). 1H NMR (CDC13) 5 3.97 (br m, 12, THF, NCH 2N), 3.62 (br s, 1, NH), 3.40 (m,

2, NCH 2N), 2.96 (m, 2, NCH 2N), 1.95 (q, 8, THF), 0.359 (s, 9, CMe 3). 19F NMR (THF) -78.3

(s, 3, OTf), -148.1 (s, 4, o-C 6F5), -166.6 (t, 2, p-C6F5), -167.1 (t, 4, m-C6F5). IR (Nujol mull)

cm - 1 3249 (NH), 1501 (N-C 6F 5 ), 1205 (OTf), 1013 (C-F), 856, 633. Anal. Calc. for

C30 H34N3F 13SO 5W: C, 36.79; H, 3.50; N, 4.29. Found: C, 36.87; H, 3.55; N, 4.29.

X-ray structure of [N3NF]W=CSiMe 3 (ld). Crystallographic data are located in Table

3.2, and selected bond lengths and angles are given in Table 3.1. Full tables of atomic

coordinates and bond lengths and angles will be published. Suitable crystals were grown from

THF layered with hexamethyldisiloxane at -40 OC. A crystal was attached to a glass fiber and
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transferred to a Enraf-Nonius CAD-4 diffractometer with graphite monochromated MoKu

radiation. Cell constants and an orientation matrix for data collection, obtained from a least-

squares refinement using the setting angles of 25 carefully centered reflections in the range 13.50

< 2j < 21.000 corresponded to a monoclinic cell with the dimensions given in Table 3.2. Based

on the systematic absences of h01: 1 # 2n and OkO: k # 2n and the successful solution and

refinement of the structure, the space group was determined to be P21/c (#14).
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Synthesis of [N3NF] Complexes of Mo and W

INTRODUCTION

Our interest in developing the chemistry of the [N3NF] 3 - ([N3NF] 3 - = [(C6F5-

NCH2 CH2)3 ]3-) triamidoamine ligand arose after it was determined that syntheses of [N3N] 3-

([N3N] 3- = [(TMSNCH 2CH 2)3N] 3-) complexes of molybdenum and tungsten were plagued by

side-reactions, presumably involving cleavage of the silicon-nitrogen bond. It was postulated

that a more robust triamidoamine ligand such as C6F 5-substituted [N3NF] 3 - might be more

amenable to forming [N3NF]MCI complexes for molybdenum and tungsten, and that was indeed

found to be the case. 1 Whereas [N3N]MCI starting materials can only be obtained in low yield

(M= W, -20%; M = Mo, -35%),2,3 [N3NF]MCI complexes for both Mo and W can be prepared

in nearly 80% yield from the [N3NF]H3 ligand and MC14 (L)2 in the presence of triethylamine.

Since [N3NF]H3 and WC14(dme) are readily accessible, we are able to routinely prepare orange,

crystalline [N3NF]WC1 in 15 gram quantities, greatly facilitating the development of the

chemistry presented in this chapter.

We begin by exploring some of the chemistry of [N3NF]W(IV) organometallic

complexes. As described in chapter III, alkylation of [N3NF]WCl with certain RCH 2Li reagents

results in rapid loss of dihydrogen and formation of tungsten(VI) alkylidynes of the form

[N3NF]W=CR. We thus became interested in exploring the chemistry of some [N3NF] 3--

containing tungsten(IV) organometallic complexes which could not lose dihydrogen, such as

phenyl compounds. Here, we describe the preparation and reactivity of these [N3NF]W(Ar) (Ar

= Ph, 3,5-Me 2 Ph) complexes, rare examples of tungsten(IV) organometallics (especially

considering that they do not utilize the bent metallocene core). We also report the synthesis of a

variety of tungsten(III) complexes of the general form [N3NF]W(L), where L is a high-field Rt-

acceptor ligand. No complex where L = N2 has been synthesized; it appears that more

aggressive ligands are required for clean products to be isolated. Interesting reactivity of some of

the [N3NF]W(L) complexes is reported, with the general trend once again being toward a high

stability of W(VI) complexes with triply-bonded ligands in the apical site.

References begin on page 176.
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RESULTS

[N3NFI] Tungsten Aryl Complexes

[N3NF]WI reacts with ArLi reagents (Ar = Ph, 3,5-Me 2Ph) to yield the corresponding

aryl complexes, [N3NF]W(Ph) (la) and [N3NF]W(3,5-Me2Ph) (ib), as red-orange, paramagnetic

solids. [N3NF]WCl cannot be used as a starting material because it does not react readily enough

with ArLi reagents. Just as with [N3N]W(Ph) (see chapter II), overlap of the metal d-electrons

with the T7 system of the aryl rings in these systems is apparently not substantial enough to break

the degeneracy of the dxz/dyz HOMO of the molecule and result in a diamagnetic complex. The

observed magnetic moment of lb in C6D6 solution at 22 oC is 3.0 ± 0.1 gB, close to the spin-

only value for two unpaired electrons (2.83 gB). 1H NMR spectra of the complexes reveal ligand

backbone resonances between -15 and -60 ppm, similar to TMS-substituted triamidoamine

tungsten(IV) complexes (chapter II). Resonances for the aryl protons are not observed, but in lb

a sharp resonance which we assign to the aryl methyls is observed at -53.9 ppm. la is only

sparingly soluble in hydrocarbon solvents, whereas lb is soluble enough in toluene to render

extraction into this solvent a viable method for separating lb from most of the Lil side-product.

These aryl complexes react with hydrogen (3 atm) in toluene at 40 'C to yield a

diamagnetic trihydride complex, [N3NF]W(H)3 (ic). This trihydride is a direct analog to one

synthesized previously which contains the silylated triamidoamine ligand, [N3N]3-.[4] The

C6F5  I C6F 5  Ar C6 F5
SC6F5 C6F5 H C F5

C6F5 W- N ArLi C6F5  W- N 3.0 atm H2 C6F5H N N

toluene toluene, 40 C (1)

Ar = Ph (la), 3,5-Me2-Ph (ib) ic

hydride resonance of [N3NF]W(H)3 is observed at 11.1 ppm in the 1H NMR spectrum with JHW

= 25 Hz. The relaxation time of the hydride was determined to be 344 ± 5 msec at 22 'C,

indicative of a classical hydride complex.5 A band observed at 1898 cm-1 in the IR spectrum is
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assignable to the W-H stretch. The trideuteride could be prepared similarly by employing D2 gas

in the synthesis. The proton NMR of [N3NF]W(D)3 has no resonance at 11.1 ppm, whereas the

2H NMR spectrum does display a resonance at 10.9 ppm. In addition, the IR spectrum of

[N3N]W(D) 3 lacks a band at 1898 cm- 1, but a new band at 1372 cm-1 is present which we assign

to the deuteride stretch.

Atom-Transfer Reactions with W(IV) Aryl Complexes

Both la and lb are cleanly oxidized in DME by pyridine n-oxide to yield tungsten(VI)

oxo complexes, [N3NF]W(O)(Ph) (2a) and [N3NF]W(O)(3,5-Me2Ph) (2b). No IR stretch for the

oxo ligand is observed in either complex, presumably because the region around 1000 cm-1

where a tungsten oxo stretch is normally observed6 is obscured by strong absorptions from the

C6F5 ligand. Room temperature 1H and 19 F NMR spectra for diamagnetic 2b show a normal

C3v-symmetric ligand backbone. The oxo ligand in 2b proved highly unreactive. The complex

survives unchanged after treatment with TMSI at room temperature or with trimethylphosphine

in C6D6 at 60 oC for 14 h. 2b decomposes upon treatment with TMSCl/aniline/NEt 3 in DME at

70 'C or upon reaction with TMSOTf at room temperature in the same solvent, none of the

products could be identified.

C6 5F, Ar C6F5  O

C6 F5  /C 6F5  F No, II ,,Ar
C6F5 pyridine n-oxide C6F5 W C6F5  (2)

DME N

Ar = Ph (2a), 3,5-Me 2-Ph (2b)

The NMR data for 2b, along with its high stability, rendered the structure and the

tungsten-oxygen bond order in the molecule unclear (see discussion section). The X-ray

structure of the complex was therefore determined. A side view is shown in Figure 4.1, and a

References begin on page 176.

Chapter IV

127



Synthesis of [N3NF] Complexes of Mo and W

view down the W-N(4) axis is shown in Figure 4.2. Table 4.1 contains selected bond lengths and

angles for the complex, and Table 4.3 contains crystallographic data. The structure is of low

quality, only the tungsten, fluorine, nitrogen, and oxygen atoms could be refined anisotropically

(see ORTEP diagram, appendix I).

C(32) C(12
C(36)

C(31) C(1) C(16)

SN(3)

C(26) W N(1)

C(51)

C(5)

C(4)

C(3)

C(31')

Figure 4.1. A view of the structure of [N3NF]W(O)(3,5-Me 2Ph) (2b).

However, it does display an unusually distorted conformation of the triamidoamine ligand.

Rather than reside in the pocket formed by the three C6F 5 rings, the xylyl ring is found in

between N(1) and N(2), and the oxo ligand is nearly trans to N(4). The distortion can best be

visualized by considering the complex to be a deformed octahedron with the 0, N(1), N(2), N(3),

N(4), and C(1) atoms residing at the vertices. The N(1)-W-N(2) angle is opened up from the
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- 120o value expected for a C3v-symmetric [N3NF] complex to 146.0(7)0. This is the smallest

angle for ligands "trans" to one another in the distorted octahedron, with the other two such

angles, O-W-N(4) and N(3)-W-C(1), equal to 165.2(7) and 167.2(7)' respectively. We use the

dihedral angle between the N(4)-W bond and a Namide-C6F5 bond as a measure of how much

steric strain is present between the fluorinated aryl rings and the principal ligands. For the C6F 5

rings closest to the xylyl ring, significant twist is observed. Dihedral angles are 154 and 140',

indicating that these C6F5 rings swing away from the xylyl ligand by a rotation about the W-N(1)

or N(2) bonds. The C6F5 attached to N(3) across from the xylyl ring is almost pointed straight

up from N(4), with N(4)-W-N(3)-C(31) = 178'. The tungsten-oxygen bond length of 1.685(14)

A lies in the range normally observed for pseudo-triply bonded tungsten oxo ligands.6 The

solution-state structure is apparently dynamic, since NMR data support a C3v-symmetric

structure at room temperature.

Figure 4.2. The structure of 2b viewed down the W-N(4) axis.
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Table 4.1. Selected bond lengths (A) and angles (deg.) for [N3NF]W(O)(3,5-Me 2Ph) (2b).

Distances (A)

1.685(14)

2.06(2)

1.96(2)

2.13(2)

2.33(2)

W- C(1)

N(1) - C(11)

N(2)- C(21)

N(3) - C(31)

2.23(2)

1.37(3)

1.45(3)

1.32(3)

Angles (deg.)

W- O-N(4)

N(1)- W- N(2)

C(1) - W- N(3)

O - W - C(1)

165.2(7)

146.0(7)

167.2(7)

99.5(7)

N(3) - W- N(1)

N(4) - W- N(3)

W- N(1) - C(11)

W- N(2) - C(21)

Dihedral Angles (deg.)a

N(4) - W - N(2) - C(21)

N(4) - W- N(1) - C(11)

N(4) - W - N(3) - C(31)

154.4

139.9

178.5

a Obtained from a Chem 3D drawing

References begin on page 176.

W-O

W- N(1)

W- N(2)

W - N(3)

W- N(4)

86.7(7)

75.3(7)

123.3(13)

124.7(14)
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Nitrogen-atom transfer to [N3NF]W(3,5-Me 2Ph) can be accomplished with trimethylsilyl-

azide, leading to an imido complex, [N3NF]W(=N-TMS)(3,5-Me 2-Ph), 3 (equation 3). This

nitrogen analog of 2b has Cs symmetry on the NMR timescale. Apparently the fluxional process

which renders 2b C3v-symmetric by NMR is slower in 3, if it is occurring at all. A related

molecule containing the [(TMSNCH 2 CH2)3N] 3- ligand has recently been synthesized in our

laboratories by a alternate method ([N3N]Mo(=N-TMS)(Me)), 7 and is also Cs-symmetric by

NMR.

F TMS

C6F5  I
CC6F 5  C6 F5  N

C6 F5  W-N TMS-N 3  C 6F 5  , F..' (3)

4QN)

lb 3

Synthesis of [N3NFIW(IV) Phenoxides

[N3NF]WCl reacts quickly with potassium pentafluorophenoxide or potassium 3,5-

dimethylphenoxide in THF to provide the corresponding tungsten(IV) phenoxides, [N3NF]W(O-

C6F5 ), 4a, and [N3NF]W(O-3,5-Me 2-Ph), 4b, and in good yield. Both phenoxides are

paramagnetic, with contact-shifted 1H and 19F NMR spectra. All six magnetically inequivalent

fluorines in 4a can be unambiguously assigned, demonstrating the utility of 19F NMR in the

synthesis and characterization of the paramagnetic complexes presented in this chapter. An X-

ray study of 4b was carried out, and a view of the structure is shown in Figure 4.3. Table 4.2

contains selected bond lengths and angles for the complex, and Table 4.3 contains

crystallographic data. The usual C3-symmetric structure seen for the [N3NF] 3 - ligand is

observed, with the C6F5 rings forming a bowl around the phenoxide. The three F5C6-Neq-M-

N(4) dihedral angles are 161.7, 174.4, and 178.2', suggesting that the molecule is relatively
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strain-free (cf. Table 1.3). With silylated complexes, the Si-Neq-M-N(4) dihedral angle can vary

from nearly 1800 (as observed for [N3N]MoCl 8) with a small ligand in the pocket down to -130'

as seen with [N3N]Mo(cyclohexyl) (chapter I). The W-N(4) distance (2.195(7) A) and the W-

Neq distances (1.990(6)-1.975(7) A) are in the range normally observed for triamidoamine

complexes, also indicating little steric strain in the molecule. The W-O distance for the

phenoxide ligand is 1.991(7) A, and the W-O-C(41) angle is 145.0(6)0. M-O bond distances and

M-O-C bond angles have been used as a measure of the degree of n-bonding between oxygen

and the metal for early transition metal alkoxides and aryloxides, but careful analysis of the data

has shown that there is little or no significance of the M-O-C angle in this regard.9,10 The M-O

bond distance in a series of tungsten complexes has been shown to increase with increasing

formal electron count of the complex," but we are reluctant to draw any conclusions at this stage

regarding the degree of oxygen to tungsten nT-bonding in effect in 4b from the observed metrical

data, considering that steric and electronic effects may also perturb these parameters. The 3,5-

xylyl ring is oriented directly over one of the C6F5 rings, with short aryl carbon-fluorinated aryl

carbon distances (C(41)-C(26) = 3.153 A, C(42)-C(21) = 3.487 A, see Table 4.2 for others).

Typical phenyl-perfluorophenyl it-it stacking distances range from 3.4 to 3.6 A.12-14 It may be

that a van der Waals interaction between the Me2C6H 3 ring and the C6F5 ring is responsible for

the observed metrical parameters for the phenoxide ligand.
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C(44)

C(25)

C(26)

Figure 4.3. A view of the structure of [N3NF]W(O-3,5-Me 2Ph) (4b). The C6F5 ring attached to

N(1) was removed for clarity.
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Table 4.2. Selected interatomic distances (A) and angles (deg.) for

[N3NF]W(O-3,5-Me 2Ph) (4b).

Distances (A)

W-O

W- N(1)

W- N(2)

W- N(3)

W- N(4)

N(3) - C(31)

N(2) - C(21)

1.991(7)

1.990(6)

1.968(7)

1.975(7)

2.195(7)

1.392(11)

1.423(10)

C(41) - C(26)

C(41) - C(21)

C(42) - C(21)

C(46) - C(26)

C(44) - C(25)

C(42) - C(22)

Angles (deg.)

W- O- C(41)

W- N(3) - C(31)

W- N(2) - C(21)

N(3) - W- N(2)

145.0(6)

127.8(6)

125.1(5)

115.8(3)

N(3) - W- N(1)

N(4)- O-W

N(3) - W - N(4)

Dihedral Angles (deg.) a

N(4) - W- N(1) - C(11)

N(4) - W - N(2)-C(2 1)

N(4) - W- N(3) - C(31)

161.7

178.2

174.4

a Obtained from a Chem 3D drawing
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3.153a

3.318a

3.487a

3.398a

3.915 a

3.609a

119.8(3)

176.3(3)

80.3(3)
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Table 4.3. Crystallographic data, collection parameters, and refinement parameters for

[N3NF]W(O)(3,5-Me2Ph) (2b) and [N3NF]W(O-3,5-Me 2Ph) (4b).

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a (A)

b (A)

c(A)
P (deg)

V (A3)
Space Group

Z

Dcalc (Mg/m3)

pt (absorption coefficient) (mm-1)

F000

X (MoKa)

Temperature (K)

0 Range for Data Collection (deg)

Reflections Collected

Independent Reflections
R [I > 2y(I)]

RW [I > 2a(I)]

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eK -3)

[N3NF]W(O)(3,5-Me 2Ph)

C 3 2 H 2 1F 15 N 4 0W

946.38

Siemens SMART/CCD

n/a

Monoclinic

21.73 (2)

14.92 (2)

24.17 (3)

94.94 (2)

7804 (15)

I2/a

8

1.611
3.061

3664

0.71073 A
188 (2)
1.61 to 18.75

8082

3030

0.0855

0.1761

1.160

0.00008 (4)

0.819 and -0.767

[N3NF]W(O-3,5-Me 2Ph)

C 3 2 H 2 1F 15 N 4 0W

946.38

Siemens SMART/CCD

0.50 x 0.15 x 0.15

Monoclinic

15.2959 (9)

13.8809 (8)

15.5727 (9)

98.9050 (10)

3266.6 (3)

P21/c

4

1.924

3.657

1832

0.71073 A

188 (2)

1.35 to 23.28

12524

4657

0.0522

0.1247

1.128

0.0023 (4)

2.056 and -2.920
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[N3NF]W(O-3,5-Me 2Ph) (4b) reacts with pyridine n-oxide to yield a complex which

analyzes correctly for [N3NF]W(O)(O-3,5-Me2Ph) (5) (equation 4). We have no direct proof

that the oxo ligand is present, since the IR spectrum is masked by the C-F absorbances in the

region around 1000 cm-1 . However, given that 5 is diamagnetic and that pyridine is produced

C6F5  C6F5  O

C6F C6F5 C6F N,,, O (4)C6F5  N pyridine n-oxide 6 5  N'N C6F(
NOW N Nf)

N t (or TBHP) Ill. N

3b 5

during its formation (as evidenced by 1H NMR) we propose that oxygen atom transfer has

occurred in a manner analogous to the formation of [N3NF]W(0)(3,5-Me 2Ph), 2b. Just as with

[N3NF]W(3,5-Me2Ph)(=N-TMS) (3), it seems that a fluxional process similar to the one which

renders 2b C3v-symmetric on the NMR timescale at room temperature (despite its distorted

solid-state structure) is slower in 5, if it is occurring at all. Anhydrous t-butylhydroperoxide

(TBHP) as a 5.5 M solution in decane also reacts with 4b to yield 5, although the reaction is not

as clean with pyridine n-oxide, perhaps because 5 is susceptible to protonolysis by TBHP or the

t-butanol side-product. Reaction of [N3NF]W(3,5-Me 2Ph) (lb) with t-butylhydroperoxide led

only to decomposition, possibly because lb or 2b is again too susceptible to protonolysis. 4b

also reacts with butyllithium to yield [N3NF]W-CCH 2CH 2CH 3 with liberation of dihydrogen

(equation 5). The reaction probably proceeds by metathesis of the phenoxide with the butyl

BuLi
[N3NF]W(O-3,5-Me 2Ph) - [N3NF]W-CCH 2CH 2CH 3  (5)

4b
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anion to lead to an intermediate [N3NF]W(butyl) complex, which then loses molecular hydrogen

as would be expected (see chapter III).

Attempted Synthesis of Terminal Phosphido and Arsenido Complexes

[N3NF]WCl and [N3NF]MoCl1 react smoothly with lithium phenylphosphide to give the

corresponding phosphido complexes, [N3NF]M(PHPh), M = Mo (6a) or W (6b), in high yield as

brown solids (equation 6). The phosphido proton resonance of the tungsten compound was

located at 17.50 ppm in the proton NMR spectrum (JHP = 295 Hz, JHW = 22 Hz) and the

Ph H
CF, I C 6F CF , C 6F 5

C6F5 ' M-- N LiPHPh C6F5  /NC... 5N
M-N - N

t (6)

M = Mo (6a), W (6b)

phosphorus resonance at 118.1 ppm (Jpw = 742 Hz) in the 3 1p spectrum. For 6a, 8PPhH = 11.20

ppm, JHP = 281 Hz, and 8p = 189.6 ppm. These data are analogous to the NMR parameters

found for the TMS-substituted analogs, [N3N]W(PPhH) and [N3N]Mo(PPhH). 7  The

diamagnetism of these d2 phosphides can be ascribed to 7t donation of the lone pair on

phosphorus to the metal, resulting in pairing of the two d electrons in the remaining orbital.

Since the mechanism of conversion of [N3N]W(PHPh) into the rare terminal phosphido complex,

[N3N]W-P, is believed to involve removal of the phosphido proton, attempts were made to

convert [N3NF]W(PPhH) into [N3NF]W-P employing various lithium reagents (LiPPhH, BuLi,

MeLi, PhLi) under a variety of conditions, but in all cases either no reaction occurred or no

products could be identified. The cyclic voltammagram of 6b showed a reversible oxidation

wave at 0.40 V, however, chemical oxidation with [Cp2Fe]OTf followed by addition of

triethylamine did not yield a clean product. An attempt to cleave the phosphorus-phenyl linkage
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photochemically was unsuccessful, 6b is stable towards photolysis at 30 oC. Lithium metal P-Ph

cleavage was also attempted, but only decomposition was observed. The reaction between

[N3NF]WCl and Li 2PPh also failed. We conclude that [N3NF]W-P simply is not formed as

readily as [N3N]W-P, or much less probably, [N3NF]W=P is unstable under the reaction

conditions. Of course, none of these results constitutes evidence that [N3NF]M-P species are not

stable, only that they cannot be made by the methods employed so far.

[N3NF]M-N (M = Mo, W) complexes are readily prepared1 from the [N3NF]MCI

complexes and sodium azide. They are quite stable, but a nitrido complex is a far less exotic

species than the [N3NF]W-P target. Although both [N3N]Mo-As and [N3N]W-As are known

compounds, 7 we were again unable to prepare [N3NF]-containing analogs of these terminal

arsenido complexes. The reaction between LiAsPhH and [N3NF]WX (X = Cl, I, OTf, or 3,5-

dimethylphenoxide) resulted either in no reaction or slight decomposition of the tungsten starting

material, depending on the conditions. Similarly, despite the fact that [N3N]WPh reacts

smoothly with PhAsH 2 itself to yield [N3 N] W-As, [N3NF]W(3,5-Me 2Ph) completely

decomposes when treated with phenylarsine in CH2C12 or THF over a few days in the dark. We

presume that the reasons for the inability to synthesize [N3NF]W-As are related to the inability

to convert [N3NF]M(PPhH) complexes to terminal phosphides; the more open steric environment

and less electron-rich metal center present in the C6F 5-substituted complexes compared to the

TMS-substituted complexes render the reaction unfavorable, at least under the conditions

attempted thus far.

Carbon Monoxide Insertion Reactions

Both [N3NF]W(Ph) and [N3NF]W(3,5-Me 2Ph) react with one equivalent of CO to yield

the corresponding acyl complexes, [N3NF]W(OC)Ph (7a), and [N3NF]W(OC)-3,5-Me 2Ph (7b),

as diamagnetic black microcrystalline solids (equation 7). Exactly one equivalent of carbon

monoxide must be used during the synthesis, since both products decompose upon treatment
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Ar\
C6F5  Ar C6F5  C O

'6F /C 6F, CC \ J C6F5
C6F5 *N ' N CF 5 "...o \__,NWU 

W-N 

CO

THF 
(7)

Ar = Ph (7a), 3,5-Me2Ph (7b)

with additional CO. An X-ray study of 7b showed an Tq2 acyl structure. Dative bonding of

oxygen with tungsten apparently breaks the degeneracy of the dxz/dyz set in the complexes,

resulting in pairing of the electrons into one of these orbitals and a 1A electronic configuration.

1H, 19F, and 13C NMR show a C3v-symmetric structure at 22 'C. It appears that the acyl ligand

is able to rotate about the W-Naxial vector on the NMR timescale. This type of fluxional process

is not uncommon for triamidoamine complexes with local Cs-symmetric apical ligand(s) (cf.

[N3N]W(cyclopentylidene)(H), chapter II). The IR spectra display no stretch which can be

assigned to the acyl, but all compounds containing the [N3NF] 3- ligand (including [N3NF]H3)

display a strong band at - 1510 cm-1 which we assign to the to the N-C 6F5 stretch. Considering

that the C-O stretch in many early and middle transition metal acyl complexes 15 is observed

between 1500 and 1600 cm-1, it is possible that the C-O stretch in 7a and 7a is concealed by the

intense N-C 6F5 absorbance. Both complexes have a low-field 13C resonance (256.9 ppm for 7a

and 252.3 ppm for 7b) in the range normally observed for 112 acyl complexes, 15 although the

concentration of the samples was too low to observe tungsten-carbon coupling.

Crystals of 7b suitable for X-ray diffraction were grown by vapor diffusion of pentane

into a dichloromethane solution at -40 'C, and one CH 2C12 molecule per molecule of 7b was

observed in the crystal. A drawing of the structure is shown in Figure 4.4, and Table 4.4

contains selected bond lengths and angles. Table 4.8 contains the crystallographic data. The

structure confirmed that the acyl ligand is bound 112 to tungsten, with W-O, W-C(40), and C(40)-

O distances of 2.177(4), 1.931(7), and 1.296(8) A, respectively. The W-C(40) distance is
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particularly short for compounds of this type. 15 This could be a result of a significant amount of

backbonding between tungsten and C(40), resulting in multiple bond character. Such

backbonding would also be expected to decrease the C(40)-O bond order, elongating that bond

distance. The observed distance is indeed at the long end of the spectrum for r12 acyl C-O

bonds. 15 The xylyl ring in 7b lies in between two of the three C6F5 rings, resulting in a stack of

the three rings with inter-ring distances short enough for a van der Waals interaction to be

present. The shortest distances between ring carbons range from 3.182 A (C(42)-C(22) to 3.497

A (C(41)-C(11)). Consistent with an interaction between these three rings, the N(1)-W-N(2)

angle is the smallest of the three Neq-W-Neq angles, at 113.1(3)0. One might expect this angle to

be greater than 1200 on steric grounds. N(4)-W-Neq-C6F5 dihedral angles are 178.0, 170.5, and

164.00, indicative of only a slight degree of steric strain in the molecule (cf. the dihedral angles

for TMS-substituted complexes in Table 1.3). Similarly, the W-Neq and W-N(4) distances are in

the range normally observed for relatively sterically unobstructed triamidoamine complexes.

C(32)

Figure 4.4. A view of the structure of [N3NF]W(CO)(3,5-Me 2Ph) (7b) (CH 2C12 removed).

References begin on page 176. 140

Chapter IV



Synthesis of [N3NF] Complexes of Mo and W

Table 4.4. Selected interatomic distances (A) and angles (deg.) for [N3NF]W(CO)(3,5-Me 2Ph).

Distances (A)

2.177(4)

1.988(6)

1.969(6)

1.988(7)

2.227(6)

W - C(40)

0 - C(40)

C(40) - C(41)

N(1) - C(11)

N(2) - C(21)

1.931(7)

1.296(8)

1.464(10)

1.413(9)

1.429(11)

Angles (deg.)

W- C(40) - O

C(40) - W- O

C(40) - O- W

W - C(40) - C(41)

W- N(3) - C(31)

W - N(1) - C(11)

82.3(4)

36.2(2)

61.5(3)

151.3(5)

126.6(5)

125.6(4)

N(3)- W-

N(2)-W-

N(2)-W-

N(4)- W-

N(4)- W-

N(3)- W-

N(1)

N(3)

N(1)

N(3)

N(1)

O

117.6(3)

116.7(3)

113.1(3)

79.9(2)

76.8(2)

82.0(2)

Dihedral Angles (deg.)a

N(4) - W - N(2) - C(21)

N(4) - W- N(1) - C(11)

N(4) - W- N(3) - C(31)

170.5

178.0

164.0

W-N(1)-

W- N(2) -

W- N(3)-

C(11) - C(16)

C(21) - C(26)

C(31) - C(32)

60.0

71.4

80.0

a Obtained from a Chem 3D drawing
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As stated above, both 7a and 7b decompose when treated with additional carbon

monoxide, although the nature of the decomposition is not known. Decomposition with excess

CO is also observed with TMS-substituted triamidoamine complexes. When

[(TMSNCH 2 CH 2)3N]Mo(CH 3)16 is reacted with an excess of 13CO in ether at 0 'C for 15 min, a

rust-colored crystalline product is isolated. 1H and 13C NMR data are consistent with an 12 acyl

complex, with 8 ( 13CO) = 245.7 ppm, a one-bond acyl carbon-methyl carbon coupling constant

of 32 Hz, and a two-bond H 3C- 13CO JCH value of 6 Hz. The ability to measure these coupling

constants allowed us to determine that the carbon monoxide had inserted into the Mo-Me bond,

since these data are consistent with a single bond between H3 C and 13CO.17 When

[N3N]Mo(CH 3) is treated with an excess of CO over the course of hours at room temperature in

ether, a Mo(II) decomposition product (8) is formed (equation 8).

Me TMS
TMS, Me TMS, CO /

--.. TMS " C- O
TMS , MS excess CO TM.,COl 0

-Mo- N M ,,"Mo- N (8)jN v- 
ether, RT 

N

8

8 is the result of formal insertion of an acetyl fragment into an amido nitrogen-silicon

bond, and two terminal carbonyl ligands are bound to the metal, as determined by an X-ray

study. 18 Since I did not discover this reaction, I will not discuss mechanistic proposals for the

transformation or the structure of 8, this information will be available in the literature. 18 The

high thermodynamic stability of this decomposition product is evidenced by the following

experiment. When a toluene-d8 solution of [N3N]Mo(CO)Me is heated to 65 'C in a sealed tube

for 4 h, [N3N]Mo(CH 3) and 8 are formed in a 2:1 ratio (equation 9). Apparently migratory de-

insertion of carbon monoxide in [N3N]Mo(CO)Me is facile enough at 65 'C that the liberated

CO can react to form 8.
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Me\ Me TMS
TMS, CO TMS4. CO I /

TMS M- N toluene-d8  TM , I . C

3 M N6e N ' + 2 [N3N]MoMe
65 oC, 4 h

(9)

Adducts of [N3NF]W

The impetus for our work in this area came with the discovery that [N3NF]Mo(OTf)

could be reduced with sodium amalgam under nitrogen to yield [N3NF]Mo(N2)Mo[N3NF]. 1 We

sought to determine if a similar reaction would occur with the tungsten analog. When

[N3NF]W(OTf) is reacted with sodium amalgam, a paramagnetic product of unknown structure

is obtained in only moderate purity. Attempts to purify this material further were unsuccessful.

The same impure product is obtained when the reaction is run under argon or in vacuo, ruling out

the possibility of formation of a dinitrogen complex. Addition of t-butyl isocyanide to the

mixture does not result in the formation of known [N3NF]W(CN-t-Bu) (see below), suggesting

that the product is not trigonal-monopyramidal [N3NF]W, the complex resulting from reductive

loss of sodium triflate. It appears that binding of dinitrogen in the tungsten system is not

competitive with whatever processes give rise to the decomposition product observed.

In the presence of stronger it-acid ligands than dinitrogen, [N3NF]WX species can be

reduced to give [N3NF]W(L) complexes. [N3NF]W(OTf)' reacts with one equivalent of 0.5%

sodium amalgam under carbon monoxide to yield [N3NF]W(CO) (9) as a paramagnetic, red

crystalline solid in high yield. Interestingly, [N3NF]WCl does not react under the same

conditions. The 1H NMR spectrum of 9 contains two broad signals for the ligand methylene

protons at 29.3 and -19.2 ppm. One high-field and one low-field ligand backbone proton

resonance is characteristic of W(III) complexes of this type (see below). In 9, only the meta and

para fluorine atoms are observed as broad resonances at -132.1 and -170.5 ppm. A magnetic

moment of 2.8 + 0.1 gB at 22 'C is observed in CD 2C12 solution by the Evan's method, and the

References begin on page 176.

Chapter IV

143



Synthesis of [N3NF] Complexes of Mo and W

IR spectrum shows a band at 1846 cm-1 which we assign to the CO stretch. This value is

abnormally low for a terminal carbonyl ligand, indicative of a high degree of backbonding from

the metal. 19 A carbonyl hydride complex, [(TMSNCH 2CH 2)3N]W(H)(CO), has recently been

prepared and crystallographically characterized in our laboratories, 4 and has an even lower CO

stretching frequency (1766 cm-1). We note that attempts to synthesize [N3NF]W(CO) from

[N3NF]WCl under the same conditions lead to no reaction.

A facile, reversible reduction wave is observed in the cyclic voltammagram of

[N3NF]W(CO) (9) at 0.16 V, which led us to attempt to reduce it chemically. When a THF

solution of 9 is stirred over one equivalent of sodium amalgam for one hour, 19F NMR shows

clean conversion to a diamagnetic species. Quenching with TMSC1 leads to the formation of

[N3NF]W-C-O-TMS (10) as a light brown solid (equation 10). The reduction of carbon

TMS

0

C6F5  CC
CO 1) Na/Hg C6F5 N4K N6F

[N 3NF]W(OTf) - O--- [N3NF]W(CO) Na/Hg C N
Na/Hg 2) TMSC1 t W

N
(10)

10

monoxide to yield a siloxycarbyne is rare, the only other examples to our knowledge are those of

some tantalum carbonyl complexes, 20 and a related example from our laboratories.4 Electron

transfer to 9 might be facilitated by the inductive effect of the C6F5 rings. The formation of 10 is

probably thermodynamically driven as well, considering the exceptional propensity for the

formation of triple 7,21 or pseudo-triple 22 bonds in the apical site of triamidoamine complexes.

When [N3NF]WCI is treated with one equivalent of sodium amalgam in the presence of t-

butyl isocyanide, orange [N3NF]W(C-N-t-Bu) (11) is formed in high yield as a paramagnetic
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crystalline solid. Using [N3NF]W(OTf) as a starting material gives identical results. NMR

parameters are similar to those for [N3NF]W(CO), with ligand backbone protons observed at 8.0

and -25.8 ppm, and a resonance observed at 13.8 ppm for the t-butyl group (Figure 4.5). The CN

stretch for the isocyanide complex is observed at 1684 cm-1, an abnormally low value for a

coordinated isocyanide ligand. 23 It appears that extensive rt-backbonding occurs into the

isocyanide ligand, just as with [N3NF]W(CO). Cyclic voltammetry showed that the complex

could be oxidized reversibly at a potential of 0.33 V. Treating a THF solution of 11 with

[Cp2Fe][OTf] leads to the formation of ferrocene and an diamagnetic product which appears to

be [[N3NF]W(CN-t-Bu)][OTf] (11b) by NMR. C6F5 resonances are observed in the 19F

spectrum (THF) at -148.3, -162.0, and -164.6 ppm, and a broad triflate resonance is seen at -79.3

ppm. The IR shows a strong stretch at 2107 cm -1, and a peak at 157.3 ppm (JCW = 93 Hz) is

observed in the 13C spectrum which we assign to [N3NF]W(CN-t-Bu) + . Satisfactory elemental

analyses have not yet been obtained. The data in hand suggest that the C-N bond order in the

cation is nearly three, but some multiple W-C bonding must still be present in order to break the

degeneracy of the dxz/dyz set and yield a diamagnetic complex.

4- - -110 -110 -0 -40 -160 -10 PPM

ortho F meta F para F

Figure 4.5. The 19F NMR spectrum of [N3NF]W(CN-t-Bu) (11) in CH 2C12 at 22 'C.
* A diamagnetic impurity, see text.

References begin on page 176.

Chapter IV

145



Synthesis of [N3NF] Complexes of Mo and W

An X-ray study of 11 was carried out, and a view of the structure is shown in Figure 4.6.

Table 4.5 contains selected bond lengths and angles, and Table 4.6 contains the crystallographic

data. The t-butyl isocyanide ligand in 11 is unusually bent, with C(7)-N(5)-C(8) = 132.2(10)0.

Additionally, the W-C(7) distance is 1.913(11) A, in the range normally observed for tungsten-

carbon double bonds. The isocyanide C(7)-N(5) distance is 1.249(14) A, elongated from that in

free isocyanides. The metrical data are consistent with strong 7t-backbonding from tungsten to

the isocyanide, in line with the low IR C-N stretching frequency of 1684 cm-1. Based on the data

in hand, the complex could be considered a W(V) imidocarbene rather than a W(III) isocyanide

adduct. Isocyanide ligands with Ca-N-R angles of less than 1700 are rare, with most of the other

examples occurring in low-valent complexes of middle transition metals in which the isocyanide

ligand is the best it-acceptor ligand present in the coordination sphere. 24 The isocyanide in 11 is

canted slightly from the pseudo-C3 axis; the torsion angle between the N(4)-W and C(7)-N(5)

vectors is equal to 11.00. This is presumably a result of steric pressure between the t-Bu group

and the C6F 5 rings attached to N(1) and N(3). N(4)-W-Nax-C 6F5 dihedral angles range from

169.3 to 179.00, indicative of no substantial distortions of the "pocket" geometry.

Solid-State Magnetic Susceptibility Measurements

The magnetic susceptibility of 11 in the solid state can be readily modeled using the

Curie Law (XM = (g2/(7.997 x T)) - C). -t obtained in this manner is 1.70 ± 0.05 tB, close to the

spin-only value for one unpaired electron. This data lends credence to the formulation of 11 as a

W(V) imidocarbene complex. Figure 4.7 shows a plot of XM versus T for 11. The magnetic

susceptibilities of [N3NF]WCl and [N3NF]MoCl are unexceptional. Behavior very similar to

what is seen with silylated analogs [N3N]WCl and [N3N]MoCl is observed (see chapters I and

II). The magnetic moment of [N3NF]WCl falls smoothly as temperature decreases, most likely a

result of a combination of spin-orbit coupling and low-symmetry ligand field components which

result in zero field splitting of the d2 ground state triplet.25 These effects are less pronounced in

the molybdenum complex, where Curie-Weiss behavior is observed down to 50 K (g = 2.76 9B;

0 = -6.9). Figures 4.8 through 4.10 show the data obtained by SQUID for these complexes.

References begin on page 176.

Chapter IV

146



Synthesis of [N3NF] Complexes of Mo and W

C(81)
C(82)

C(83)

F(24)

N(5)

C(24)
C(31)

C(21)

N(3) C(11)
N(2)

SN(1)

Figure 4.6. A view of the structure of [N3NF]W(CN-t-Bu) (11). The fluorine atoms from the

C6F5 rings attached to N(1) and N(3) were omitted for clarity.
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Table 4.5. Selected bond distances ( A) and angles (deg.) for [N3NF]W(CN-t-Bu) (11).

Distances (A)

W- C(7)

N(5) - C(8)

W- N(2)

W- N(4)

N(1) - C(11)

1.913(11)

1.42(2)

1.967(8)

2.243(8)

1.409(12)

C(7) - N(5)

W- N(1)

W- N(3)

C(24) - F(24)

N(3) - C(31)

Angles (deg.)

C(7) - N(5) - C(8)

N(1)- W - N(2)

W - N(1) - C(11)

W- N(1) - C(1)

N(5) - C(8) - C(83)

N(4)- W - N(2) - C(21)

N(4) - W - N(1) - C(11)

N(4) - W- N(3) - C(31)

132.2(10)

114.7(3)

127.9(6)

118.9(6)

116.5(11)

W - C(7) - N(5)

N(2) - W - N(3)

W- N(3) - C(31)

N(4) - W - N(2)

N(5) - C(8) - C(81)

172.1(8)

117.8(3)

125.5(6)

78.7(3)
111.3(13)

Dihedral Angles (deg.)a

169.3

179.0

172.8

Torsion Angle (deg.)a

N(4) - W - C(7) - N(5) 169.0

a Obtained from a Chem 3D drawing
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Table 4.6. Crystallographic data, collection parameters, and refinement parameters for

[N 3NF]W(CN-t-Bu) (11).

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a(A)

b (A)
c (A)
3 (deg)

V (A3)

Space Group

Z

Dcalc (Mg/m3)

g (absorption coefficient) (mm-1)

F00 0

X (MoKa)

Temperature (K)
0 Range for Data Collection (deg)

Reflections Collected

Independent Reflections
Absorption Correction

Max. and Min. Transmission
R [I > 2Y(I)]

Rw [I > 2a(I)]

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eA-3)

C29H2 1F 15N5W
908.36

Siemens SMART/CCD

0.21 x 0.14 x 0.08

Monoclinic

9.344 (4)

27.09 (2)

12.237 (10)

97.26 (5)

3073 (4)

P21/c

4

1.964

3.881

1756

0.71073 A
153 (2)
1.50 to 23.32

9917

4215

Semi-empirical from w-scans

0.3124 and 0.2333
0.0494

0.1103

1.216

0.0012 (2)

1.633 and -0.997
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Figure 4.7. A plot of XM versus T for [N3NF]W(CN-t-Bu).
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Figure 4.9. A plot of XM versus T for [N3NF]WC1.
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Figure 4.10. A plot of geff versus T for [N3NF]WC1.
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Unstable Isocyanide Complexes and Formation of Other Adducts

When [N3NF]WCl is reacted with sodium amalgam in the presence of n-butyl isocyanide

under conditions identical to those used to synthesize 11, a paramagnetic species can be observed

by 19 F NMR after -1 h. The 19F chemical shifts and peak widths are similar to those observed

for 11, and we propose that [N3NF]W(C-N-n-Bu) (12a) is present at this point. However, after

normal workup and attempting to crystallize from CH 2C12, the solid isolated is contaminated

with diamagnetic impurities as evidenced by NMR. Diamagnetic peaks can also be observed by

simply allowing the reaction mixture to stir for periods longer than 1 h. If the crude solid is

recrystallized from toluene, conversion to the diamagnetic material(s) is nearly complete. The

gated-decoupled 13C NMR spectrum of the decomposition product(s) displays two low-field

resonances, a singlet at 240 ppm and a doublet at 173 ppm (JCH = 164 Hz). The IR spectrum

shows a weak, broad band at 3291 cm-1 and an intense stretch at 1647 cm- 1. 1H NMR is

consistent with two different types of n-butyl groups. Based on these data, we speculate that the

decomposition products could arise from hydrogen atom abstraction from toluene. Hydrogen

atom transfer from the solvent to 12a could lead to [N3NF]W-C-NH-n-Bu if H- reacts at

nitrogen, and the iminoformyl complex, [N3NF]W(CH=N-n-Bu) if H. reacts at carbon. One

problem with this hypothesis is that when 12a was allowed to stand in toluene-d8 for 12 h,

decomposition to the diamagnetic material was again observed, but 2H NMR showed that the

product(s) did not contain any deuterium. We cannot rule out other decomposition pathways

involving intermolecular processes, possibly via hydrogen atom abstraction from the

triamidoamine ligand backbone. An equally likely possibility is the some type of dimer forms,

an isoelectronic tungsten acetylide complex containing the TMS-substituted triamidoamine

ligand, [N3N]W(C--CH), has been shown to couple at the j-carbon, leading to a dimeric complex

with an olefinic bridging group. 16 It is worth noting that both [N3NF]W(CO) and [N3NF]W(CN-

t-Bu) are always contaminated with a trace (< 5% by NMR) of a diamagnetic impurity, although

this did not prevent the successful C, H, and N analysis of both products. For [N3NF]W(13CO),

a 13C NMR study revealed a sharp resonance at 205.1 ppm which displayed tungsten satellite

References begin on page 176.
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peaks (Jcw = 131 Hz), which we attribute to the diamagnetic impurity. Upon proton coupling,

this peak splits into a doublet with JCH = 7.5 Hz. Based on these data alone, we cautiously

postulate that the diamagnetic impurity present is a carbonyl hydride complex,

[N3NF]W(CO)(H), analogous to crystallographically characterized [(TMSNCH 2 CH 2)3N]-

W(CO)(H). 4

When [N3NF]WCl is reduced with sodium amalgam in the presence of MeN-C, complete

decomposition is observed. An interesting progression based on the size of the isocyanide ligand

appears to be in effect. The t-butyl isocyanide adduct of [N3NF]W is stable, a complex proposed

to be the n-butyl isocyanide adduct can be observed in solution but decomposes upon workup,

and the MeN-C adduct is not even detected before total decomposition occurs. Moving to

molybdenum changes the situation somewhat. [N3NF]MoCl is cleanly reduced by sodium

amalgam in the presence of n-butyl isocyanide to yield red, crystalline [N3NF]Mo(C-N-n-Bu)

(12b) in good yield. NMR parameters and the magnetic moment (measured to be 2.3 ± 0.1 tB)

are similar to those of the paramagnetic [N3NF]W(III) 7t-acid adducts. The C-N stretch in the IR

spectrum of 12b is seen at 1790 cm- 1, 106 cm-1 higher than that in [N3NF]W(CN-t-Bu),

consistent with a lower degree of backbonding in the molybdenum complex. Again, a trace of

diamagnetic material is present in spectra of 12b, although it again did not prevent successful C,

H, and N analysis.

[N3NF]WCl is reduced with sodium amalgam in the presence of an excess of nitric oxide

to yield [N3NF]W(NO) (13) in high yield as a diamagnetic tan powder. [N3NF]W(OTf) can also

be used as a starting material with identical results. A band in the IR spectrum is observed at

1614 cm -1, abnormally low for a terminal nitrosyl. We presume that the metal-based HOMO of

the molecule, the dxz/dyz set, is completely filled as a result of the additional electron present in

NO compared to isolobal CO or CN-t-Bu. This orbital set is of the proper symmetry for

donation into the nt* orbitals of the NO ligand, which is evidently a efficacious process

considering the low NO stretching frequency. Related chromium 26 and molybdenum 27 nitrosyl

complexes of the form (t-BuArN) 3M(NO) (Ar = 3,5-dimethylphenyl) have recently been
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reported, and are also diamagnetic and have a low NO stretching frequency (M = Cr, 1662 cm-1;

M = Mo, 1604). The authors found that the NO bond in these complexes was susceptible to

cleavage by tris(mesityl)vanadium(THF) 28 to yield (t-BuArN) 3M-N species. Treatment of 13

with two equivalents of V(Mes) 3(THF) at room temperature led to no reaction, while heating to

70 'C for 14 h gave decomposition. 13 is also not deoxygenated by trimethylphosphine at room

temperature.

[N3NF]W(CO) (9) does react with V(Mes) 3(THF) in toluene at room temperature to yield

[N3NF]W(CO)V(Mes) 3 (14) in high yield as a black crystalline solid. Broadened and slightly

shifted 1H NMR resonances for the mesityl rings are observed at 17.5, 16.2, and 6.6 ppm. The

effective magnetic moment at 22 'C is 2.1 ± 0.1 rB. Resonances for the [N3NF] half of the

molecule, however, are located at the normal diamagnetic positions, although the typical H-H

and F-F coupling is not observed. No 13 C resonance for the CO ligand is observed, even after a

long acquisition time using [N3NF]W(13CO)V(Mes) 3 . Apparently the unpaired spin present in

the molecule renders this resonance unobservable. No band assignable to the C-O stretch is

observed in the IR spectrum, indeed spectra of [N3NF]W(CO)V(Mes) 3 and

[N3NF]W( 13CO)V(Mes)3 are line-for-line the same.

Crystals suitable for X-ray diffraction were obtained from a toluene solution at -40 oC.

The structure was determined and a view of the molecule is given in Figure 4.11. Table 4.7

contains selected interatomic distances and angles. One toluene molecule per 14 is observed in

the crystal. Crystallographic data are located in Table 4.8. The proposed connectivity was

verified, although the structure is not of high quality (only W, V, O, N, and F atoms were refined

anisotropically, see ORTEP diagram, appendix II). The errors in most of the bond lengths are

too large to comment extensively on them. The metrical parameters for the triamidoamine side

of the molecule are all typical and do not suggest much steric strain in the complex. The N(4)-

W-Neq-C6F5 dihedral angles are close to 1800, thus the pocket formed by the rings is nearly

undistorted. The mesityl rings on vanadium adapt a propeller-like orientation, probably to

minimize steric interactions between the ortho methyl groups present on the rings. The V-O
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distance of 1.824(14) A similar to that observed for some vanadium alkoxides, 29 and a nearly

tetrahedral geometry at the vanadium center is observed. Although both the W-C(l)-O and V-O-

C(1) angles are close to 180', the torsion angle between the W-C(1) and O-V bond is 167', a

substantial deviation from linearity even considering the error in the structure. Distances

between some of the mesityl ring carbons and the C6F5 ring carbons range from 3.3 to 3.5 A,

short enough for a van der Waals interaction to be present, although the rings do not lie flat

against each other as a result of the twisted mesityl groups. 12-14

C(45)

Figure 4.11. A view of the structure of [N3NF]W(CO)V(Mes) 3 (14), with toluene omitted.
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Table 4.7. Selected interatomic distances (A) and angles (deg.) for [N3NF]W(CO)V(Mes) 3 (14).

Distances (A)

W- C(1)

W- N(1)

W- N(2)

W- N(3)

W- N(4)

C(14) - C(43)

C(34) - C(55)

N(3) - C(31)

1.88(2)

1.98(2)

1.98(2)

1.95(2)

2.31(2)

3.55a

3.32a

1.45(3)

O- C(1)

V-O

V - C(41)

V- C(51)

V- C(61)

C(24) - C(63)

C(33) - C(55)

N(2) - C(21)

Angles (deg.)

W- C(1)-O

C(1)- O-V

O-V-C(41)

O - V - C(51)

W- N(3) - C(31)

W- N(2)- C(21)

N(2)- W- C(1)

178(2)

176(2)

112.5(8)

105.0(8)

127.4(13)

124.9(13)

99.8(8)

N(3)

N(2)

N(2)

N(4)

N(4)

N(3)

N(1)

-W

-W

-W

-W

-W

-W

-W

N(1)

N(3)

N(1)

N(3)

N(1)

C(1)

C(1)

116.4(7)

118.4(7)

114.9(7)

80.1(8)

81.4(7)

101.0(8)

101.7(8)

Dihedral Angles (deg.)a

N(4) - W- N(2) - C(21)

N(4) - W- N(1) - C(11)

N(4) - W- N(3) - C(31)

176

179

178

Torsion Angle (deg.)

W-C(1)-O-V 166.6

a Obtained from a Chem 3D drawing

References begin on page 176.

1.19(2)

1.824(14)

2.05(2)

2.03(2)

2.05(2)

3.41a

3.64a

1.40(2)
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Table 4.8. Crystallographic data,

[N3NF]W(CO)(3,5-Me 2 Ph) -CH 2C12

collection parameters, and refinement parameters for

(7b) and [N3NF]W(CO)V(Mes)3 (14)

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a (A)
b (A)
c (A)
f3 (deg)

V (A3)

Space Group

Z

Dcalc (Mg/m 3)

Absorption Coefficient (mm-1)

F000

X (MoKa)

Temperature (K)

8 Range for Data Collection (deg)

Reflections Collected

Independent Reflections

Absorption Correction

Max. and Min. Transmission

R [I > 2a(I)]

Rw [I > 2(I)]

R (all data)

Rw (all data)

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eK -3)

[N3NF]W(CO)(3,5-Me 2Ph) -
CH 2C12

C34H23C12F 15N40W

1043.31

Siemens SMART/CCD

n/a

Monoclinic

12.32550 (10)

20.6113 (5)

15.6883 (5)

111.4180 (10)

3710.29 (12)

P21/n

4

1.868

3.368

2024

0.71073 A

183 (2)

1.71 to 23.26

14753

5314

Semi-empirical from y-scans

0.4609 and 0.2132

0.0399

0.0861

0.0496

0.0943

1.211

0.00043 (9)

0.741 and -0.745

[N 3NF]W(CO)V(Mes) 3 '
toluene

C59H52F1 5N4 0VW

1352.84

Siemens SMART/CCD

0.12 x 0.12 x 0.10

Monoclinic

12.1785 (7)

17.3080 (10)

26.374 (2)

95.6570 (10)

5532.2 (5)

P21/c

4

1.624

2.342

2696

0.71073 A

188 (2)

1.41 to 20.00

15746

5147

Semi-empirical from y-scans

0.2986 and 0.2177

0.1078

0.1955

0.1272

0.2191

1.400

0.00047 (12)

0.732 and -1.501
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[N3NF]W(OTf) reacts slowly with sodium amalgam in THF under -3 atmospheres of

ethylene to give [N3NF]W(C2H4) (15) in good yield. The molecule is paramagnetic, and is the

only compound in this chapter for which no 1H NMR signal is observed. The magnetic moment

measured in solution at 22 'C is 1.8 gB, the lowest value for any [N3NF]W(L) complex in this

chapter. Three resonances are observed by 19F NMR (Figure 4.12), although the one which we

assign to the ortho fluorines is -2,500 Hz wide at half-height. Even after precipitation, the

brown solid product contains a trace of a paramagnetic impurity, as Figure 4.12 shows. The

chemical shifts of this impurity are the same as the species observed when [N3NF]W(OTf) is

reduced in the absence of any trapping ligand (see above). More bulky olefins such as 2-butene

or cyclopentene do not trap "[N3NF]W" efficiently enough, only the decomposition product

observed without any trap present (see above) is observed. [N3NF]W(OTf) reacts with sodium

amalgam in the presence of excess bromotrifluoroethylene to yield a paramagnetic complex

tentatively formulated as [N3NF]WBr (16) based on 1H and 19F NMR and C, H, and N analysis.

16 might be more expediently synthesized from [N3NF]WCl and TMSBr (cf. the synthesis of

[N3NF]WI (chapter III)), although we have not attempted that reaction.

A TMS-substituted triamidoamine ethylene complex of tantalum ([N3N]Ta(C2H4)) has

been synthesized, and has been shown to react smoothly with various weak acids to yield Ta-

ligand multiply-bonded species. 22,30 15, however, either did not react or decomposed when

treated with acids such as aniline, phenylphosphine, pyridinium triflate, or HC1 in ether. The

cyclic voltammagram of 15 shows a reversible oxidation wave at 0.40 V. Treatment with

[(Cp2Fe][OTf] in THF led to the formation of [[N3NF]W(C 2H4)] [OTf] (17) as a red diamagnetic

powder in high yield, along with ferrocene. The 1H NMR spectrum displays a peak at 3.10 ppm

which we assign to the ethylene ligand. Attempts were made to attack the ethylene ligand in 17

with nucleophiles such as lithium phenylphosphide or Grignard reagents, with no success.
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C6F5

C6F5 N,41 N -

-80 -100

ortho F

-110 -130 -140

meta F para F

Figure 4.12. The 19F NMR spectrum of

* An unknown impurity, see text.
[N3NF]W(C2H 4 ) (15) in C6D6 at 22 'C.

Table 4.9. Selected characterization data for [N3NF]W(X) and [N3NF]W(L) complexes.

[N3NF] Complex % Yield Morphology Jteff (B units) E1/ 2 (V) IR v (cm-1)

W(CO) 92 red blocks 2.6 0.16 (red.) 1846

W(CN-t-Bu) 92 orange plates 1.70a 0.33 (ox.) 1684

W(CN-t-Bu)+  53 brown powder diamagnetic 0.33 (red.) 2107

Mo(CN-n-Bu) 76 red needles 2.3 0.36 (ox.) 1790

W(NO) 86 tan powder diamagnetic - 1614

W(C2H4) 79 brown blocks 1.8 0.40 (ox.)

W(CO)V(Mes) 3  88 black blocks 2.1

W(O-3,5-Me 2Ph) 84 purple needles 3.2 0.33 (ox.)

W(3,5-Me 2Ph) 81 burgundy needles 3.0 0.39 (ox.)

Satisfactory C, H, and N analyses were obtained for all complexes. teff values were obtained by

the Evan's method at 22 'C using TMS 20 as an internal standard, the estimated error is ± 0.1 tB.

Electrochemical measurements were performed in CH 2C12 under nitrogen, potentials listed are

for the lowest energy reversible wave.

aObtained in the solid state using SQUID.
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DISCUSSION

The nature of the product of the reaction between [N3NF]W(3,5-Me 2Ph) and pyridine n-

oxide, [N3NF]W(O)(3,5-Me2Ph) (2b) was initially somewhat enigmatic since the product

appeared to a typical C3v-symmetric triamidoamine complex by NMR. Such a geometry would

have limited the tungsten-oxygen bond order at two, since only the dz2 , dxz, and dyz orbitals

would be available for binding both the oxo ligand and the xylyl group. In an undistorted

pseudo-C3v triamidoamine complex, the dxy and dx2- 2 orbitals are of the proper symmetry for

it-bonding with the amides, therefore only two amide-to-metal it-bonds are possible. Oxo

ligands which are only doubly-bonded to the metal are rare, and high reactivity of the oxo in such

complexes is often observed.3 1 The oxo ligand in 2b proved relatively unreactive, suggesting

that it was actually pseudo-triply bonded to tungsten. The X-ray structure showed that this is the

case, and is rendered possible from a molecular orbital standpoint by an unusually distorted

triamidoamine coordination environment (Figures 4.1 and 4.2). Since the molecule is now closer

to pseudo-octahedral, the oxo ligand can bond with the dz2 , dxz, and dyz orbitals (taking the W-

dative nitrogen bond as the z axis), resulting in a pseudo-triple bond. Additional it-bonding from

oxygen must occur at the expense of tx-bonding from the amido ligands, since now only the dxy

orbital is of the proper symmetry to it-bond with the amides. Figure 4.13 shows a simplified

y

zx Ph-3,5-Me 2
z

(straight up)

Figure 4.13. Molecular orbital for the interaction between the

dxy orbital on tungsten and amido p-orbitals for complex 2b.

diagram of the approximate molecular orbital for the one amide-tungsten it-bond possible in this

situation. The complex is thus an 18 electron species, with the triamidoamine acting as a 10
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electron donor. The display of structural flexibility evidenced by this X-ray structure may be an

important aspect of triamidoamine chemistry: similar distortions might occur in sterically or

electronically unfavorable reaction intermediates, with subsequent reorganization to a stable C3v-

symmetric complex.

We became interested in investigating reductions of [N3NF]WX complexes from the

point of view of dinitrogen fixation. Previous efforts in this area from our laboratories have

made use of the Cp*MMe 3 core, 32,33 with M = Mo and especially W. When the Cp*MMe 3

fragment assumes a square pyramidal geometry with one empty basal coordination site, two it

bonding orbitals (dz2 and dxy, taking the z axis as the M-Cp vector) and a a bonding orbital are

available for binding dinitrogen and reduced dinitrogen fragments, an arrangement isolobal with

the [N3N]M fragment. The successful fixation of dinitrogen by [N3NF]Mo(OTf) 1 and the fact

that previous efforts with the Cp*MMe 3 system were superior with tungsten instead of

molybdenum led us to attempt the synthesis of an [N3NF]W dinitrogen complex, and it may

seem somewhat surprising that we have been unable to isolate one. However, no [N3NF]

vanadium dinitrogen complex could be synthesized either,34 despite the fact that similar

vanadium dinitrogen complexes are fairly common. 35 ,36 In fact, both [N3N]VC137 and

[N3NF]VC138 can be reduced in noncoordinating solvents to give crystallographically-

characterized trigonal-monopyramidal vanadium triamidoamine complexes, neither of which has

any tendency to bind dinitrogen. Therefore, especially in light of the ready syntheses of the

[N3NF]W(L) (L = a strong-field 7t-acid ligand) complexes described in this chapter, it could be

that the reason [N3NF]W(N2) proved elusive is that upon reduction of [N3NF]W(OTf), the

triamidoamine complex decomposes at a rate much faster than it binds dinitrogen.

An interesting observation regarding the chemistry presented here is that no complexes

with c-donor ligands, such as trimethylphosphine, could be prepared. Pyridine also did not react

cleanly with [N3NF]W(OTf) upon reduction, nor did acetonitrile. It would seem that the e set of

orbitals in the [N3NF]W(L) complexes overlaps well with the t* orbitals of a suitable acceptor

ligand, considering the low IR stretching frequencies for diatomics bound to [N3NF]W (Table
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4.9). It may be that a relatively low-energy lr* orbital on the ligand is needed in order to

sequester [N3NF]W before decomposition ensues, if in fact hypothetical [N3NF]W is a reaction

intermediate during the formation of [N3NF]W(L) complexes. This proposal could also explain

why no dinitrogen complex is formed when the reduction is carried out under N2 alone; overlap

between the high-energy rt* orbitals of dinitrogen and the e set of orbitals on tungsten may not be

great enough for binding to occur.

Several of the X-ray structures present in this chapter show relatively close contacts

between C6F 5 carbons and 3,5-Me 2Ph or 2,4,6-Me 3Ph rings. These could be a result of C6F 5-

C6H 3Me 2 interaction, an arene-arene interaction rendered particularly strong by the fact that in

benzene, the polarization of the C-H bonds is such that the hydrogens are rendered partially

positive, and the carbons partially negative. The situation is reversed in C6F6 as a result of the

high electronegativity of fluorine. These perfluorophenyl-phenyl van der Waals interactions thus

tend to be stronger than other arene-arene interactions, and are a matter of considerable current

interest. 12 In the structure of [N3NF]W(O-3,5-Me 2Ph) (4b) distances are between 3.15 and 3.92,

well within the range normally observed for a perfluoroaryl-aryl interaction. 13,14 Of course, the

coordination environment in the apical site of a complex containing the [N3NF] 3- ligand is fairly

crowded, and it may also be that the 3,5-Me 2Ph ring in 4b simply resides slightly closer to one of

the C6F5 rings on steric grounds alone. The structure of [N3NF]W(CO)(3,5-Me 2Ph) (7b) also

displays fairly close 3,5-Me 2Ph to C6F 5 distances, and in this case two of the C6F5 rings appear

to be involved. The geometrical constraints placed by the acyl moiety would seem to guarantee

that the 3,5-Me 2Ph ring lies in between two C6F5 rings, however, the fact that the angle between

the amido ligands to which those two C6F5 rings are attached is the smallest of the three Neq-W-

Neq angles would indicate an attractive interaction. In the structure of [N3NF]W(CO)V(Mes) 3

(14), close contacts between some of the perfluorophenyl and mesityl ring carbons are observed,

but the twisted, propeller-like orientation of the mesityl rings and the O-V-Cmesityl and W-Neq-

C6F 5 angles do not allow them to lie parallel to the C6F 5 rings, thus any van der Waals

interaction between them is likely to be relatively weak.
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A noteworthy difference between complexes containing the [(TMSNCH 2CH 2 )3N] 3- and

[(C6F 5NCH2CH 2)3N]3- ligands is in reactions with lithium phenylphosphide and lithium phenyl

arsenide. Although [N3N]W-P is formed readily by reacting [N3N]WCl with two equivalents of

LiPHPh or from [N3N]W(PHPh), 7 no terminal phosphide has yet been synthesized containing

the [N3NF] 3 - ligand. Formation of a terminal phosphide in this manner involved formal

oxidation of the metal. These types of reactions have been shown to be slower for complexes

containing [N3NF] 3 -. For example, [N3NF]W(CH2SiMe3) loses hydrogen relatively slowly

while the reaction between [N3N]WCl and LiCH2SiMe 3 yields [N3N]W-CSiMe 3 rapidly (see

chapter III), presumably via intermediate [N3N]W(CH 2SiMe3), as has been observed for other

[N3N]W(CH 2R) complexes. 2 1 Kinetic studies have shown that [N3NF]Mo(CH 2CMe3) loses

dihydrogen 12 times more slowly than [N3N]Mo(CH 2CMe3 ) at 121 OC to yield the

corresponding alkylidynes (chapter III). The electron withdrawing nature of the C6F5 rings

renders the metal more electron poor and therefore less susceptible to oxidation to the 6+

oxidation state. Since [N3NF]M complexes are also less sterically crowded in the trigonal pocket

than are [N3 N]M complexes (see above), there is presumably also less steric pressure on the

phenyl group bonded to phosphorus to be lost to give the [N3NF]M=P. During the attempted

synthesis of [N3NF]W-P, the C6F5 rings of [N3NF]W(PHPh) might also be subject to electron

transfer from or nucleophilic attack by a lithium reagent.

In general, it seems that chemistry involving nucleophilic attack at the metal center is

sometimes complicated by side reactions with [N3NF] complexes, whereas these types of

reactions with [N3N] complexes tend to be relatively clean. For example, [N3N]M(Me), 2 1

[N3N]W(H)(cyclopentylidene), 39 and [N3N]MH 4 (M = Mo, W) can be prepared in high yield

and purity, whereas [N3NF]-containing analogs of these complexes have yet to be prepared (see

chapter III). Conversely, reactions involving reduction of [N3NF]M(X) complexes tend to

proceed more smoothly than with [N3N]M(X) complexes (M= Mo, W). Reduction of

[N3N]Mo(OTf) leads to a dimeric decomposition product resulting from formal loss of

TMS(OTf),40 and attempts to synthesize [N3 N]Mo(CO) are limited by formation of
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[N3N]Mo-C-O-TMS as a by-product, presumably arising from intermolecular migration of a

TMS group to oxygen. 41 The electron-withdrawing nature of the [N3NF] 3- ligand along with the

relatively high stability of the N-C 6F 5 linkage are probably what render the formation of the

[N3NF]W(L) (L = 7t-acid ligand) complexes so facile. Current interests involve the synthesis of

other types of C6F 5-substited amine ligands, particularly ones containing phosphine donors

instead of amine donors (chapter V).

EXPERIMENTAL

General Details. All experiments were conducted under nitrogen in a Vacuum

Atmospheres drybox, using standard Schlenk techniques, or on a high vacuum line (<10-4 torr).

Glassware was dried in a 135 'C oven overnight. Pentane was washed with HNO 3/H2 SO 4 (5/95

v/v), sodium bicarbonate, H20, stored over CaC12 and then distilled from sodium benzophenone

with tetraglyme under nitrogen. Ether and THF were purified by sparging with nitrogen and

passing through alumina columns. 42 Reagent grade benzene was distilled from sodium

benzophenone under nitrogen. Toluene was distilled from molten sodium. Acetonitrile was

distilled from P20 5. Methylene chloride was distilled from CaH2 . All solvents were stored in

the drybox over activated 4 A molecular sieves. Deuterated solvents were freeze-pump-thaw

degassed and vacuum transferred from an appropriate drying agent. 1H NMR spectra were

recorded at either 250 or 300 MHz at 25 oC. 13C, 19F, and 3 1P NMR spectra were recorded at

75.4, 282, and 121 MHz respectively. 1H and 13C data are listed in parts per million downfield

from tetramethylsilane and were referenced using the solvent peak. 19F NMR are listed in parts

per million downfield of CFCI3 as an external standard. 2H NMR spectra were obtained at 46.0

MHz and referenced to external C6D6 (7.15 ppm). 3 1P NMR spectra are listed in parts per

million downfield from H3P0 4. Coupling constants are given in Hertz, and routine couplings are

not listed. Magnetic susceptibility measurements were done by NMR using the Evans method 43

with TMS20 as an internal standard. Elemental analyses (C, H, N) were performed on a Perkin-
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Elmer 2400 CHN analyzer in our own laboratory. Cyclic voltammetry measurements were

performed in methylene chloride versus Ag/AgC1 using [Bu 4 N][PF6 ] as the supporting

electrolyte and a scan rate of 100 mV/sec. Ferrocene was used as an internal standard (0.47 V).

Starting materials. [N3N]WC1, [N3NF]MoC1, and [N3NF]W(OTf) were synthesized as

described in the literature, 1 except WC14 (dme) 44 was used instead of WC14 (Et 2S) 2 for the

synthesis of the tungsten chloride. [N3NF]WI was prepared as described in chapter III.

Phenyllithium and 3,5-xylyllithium were prepared by treatment of the aryl bromide with BuLi in

ether/hexane at -35 'C. Pyridine n-oxide (Alfa) was sublimed onto a 0 o probe under dynamic

vacuum prior to use. Ferrocenium triflate was prepared by the literature procedure. 45 Sodium

amalgam (0.5% by weight) was freshly prepared from sodium spheres and triply-distilled

mercury (Aldrich). Methyl isocyanide was prepared by a literature procedure. 23 CO (99.99%)

and H2 were purchased from Matheson and used directly from the cylinder. Electronic grade NO

was used directly from the cylinder. t-Butyl and n-butyl isocyanides were purchased

commercially.

[N3NF]WPh (la). [N3NF]WI (500 mg, 0.525 mmol) was dissolved in 10 mL of toluene

by stirring the solution for 30 minutes. A solution of phenyllithium (59 mg, 0.63 mmol, 1.2

equiv.) was prepared by addition of 3 drops of THF to solid phenyllithium followed by 5 mL of

toluene. This solution was added dropwise to the iodide over fifteen minutes. The reaction was

stirred for seven hours, at which point 0.3 more equivalents of phenyllithium (15 mg, 0.161

mmol) in 1 mL of toluene were added. The reaction was stirred for another 15 hours. The

solvents were removed in vacuo and the residue was extracted with dichloromethane. The

extract was filtered through Celite and the dichloromethane was removed in vacuo to yield the

crude product as an orange solid; yield 413 mg (87%). The crude product proved sufficiently

pure for subsequent reactions. The product could be purified further by recrystallization from

methylene chloride/pentane mixtures; yield 279 mg (59%): 1H NMR (C6D6) 8 -16.7 (br s, A1/2

= 52), NCH 2), -58.1 (br s, A1/ 2 = 47), NCH2 ); 19F NMR (toluene) 8 22.2 (br s, o-C 6F5), -120 (s,

m-C 6F5), -139.6 (s, p-C6F5)-
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[N3NF]W(3,5-Me2C 6 H3) (Ib). [N3NF]WI (985 mg, 1.03 mmol) was suspended in 20

mL of toluene and a solution of 3,5-xylyllithium (139 mg, 1.24 mmol, 1.2 equiv.), prepared by

addition of 5 drops THF to the solid aryllithium followed by 10 mL toluene, was added dropwise

to the iodide. The reaction was stirred for 2 hours and then allowed to stand - 1 hour and the

precipitated Lil filtered off (74 mg). The toluene was removed in vacuo and the residue taken up

in a minimum amount of dichloromethane. The solution was allowed to stand for - 1 hour and

filtered through Celite to yield an additional 30 mg of precipitate (78% yield of Lil). The

dichloromethane extract was layered with pentane and the mixture was chilled to -40 'C for 15

hours to give 590 mg of burgundy microcrystals. The volume was reduced in vacuo and the

process repeated to give a second crop (188 mg); total yield 778 mg (81%): 1H NMR (C6 D6) 6

-16.5 (br s, A1/ 2 = 64), NCH 2), -53.9 (s, 3,5-dimethylphenyl), -59.0 (br s, A1/2 = 54), NCH2 ); 19F

NMR (C6D6) 8 12.5 (br s, o-C6F5 ), -120.2 (s, m-C 6F5), -136.0 (s, p-C6F5); E1/2(ox) = 0.39 V

(reversible); Reff = 3.0 JIB (Evan's method). Anal. Calcd. for C32H21N4F15W: C, 41.31; H, 2.28;

N, 6.02. Found: C, 40.69; H, 2.55; N, 5.72. The sample may have still been contamined with

Li.

[N3NF]WH 3 (1c). A 300 mL glass bomb was charged with [N3NF]W(3,5-Me 2 -Ph) (400

mg, 0.430 mmol), a teflon coated stir bar, and 25 mL toluene. The bomb was attached to a high

vacuum line and degassed by 3 freeze pump thaw cycles. It was then chilled to 77 K and

dihydrogen (640 mmHg, 39.9 mmol, 92 equiv.) was introduced by vacuum transfer. The bomb

was sealed, warmed to room temperature, and placed in a 40 'C oil bath, and the reaction

mixture was stirred for 15 hours. The volatile components were removed under reduced pressure

and the crude product recrystallized by layering a concentrated toluene solution with pentane and

cooling to -40 oC. The brown product was isolated in two crops; yield 214 mg (60%). The

trideuteride was prepared similarly, employing D2 instead of H2: 1H NMR (C6D6) 8 11.1 (s,

1JHW = 25, 3, hydride, T1 (22 oC) = 344(5) msec), 3.27 (t, 6, NCH 2), 2.28 (t, 6, NCH2 ); 19F

NMR (C6D 6) 8 -152.6 (d, 6, o-C6F5 ), -163.9 (t, 3, p-C6F 5), -165.7 (t, 6, m-C 6F5). IR (KBr):
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2908 m, 2875 m, 1898 ms, hydride, 1508 s, 1314 w, 1261 w cm- 1. Anal. Calcd. for

C24 H15N 4F1 5W: C, 34.80; H, 1.83; N, 6.76. Found: C, 34.48; H, 1.73; N, 6.42.

[N3NF]W(O)(Ph) * (dme)1.5 (2a). To a THF (5 mL) solution of [N3NF]W(Ph) (100 mg,

0.111 mmol) was added pyridine n-oxide (11 mg, 0.11 mmol). The reaction was stirred for 8 h

and the volatiles removed by rotary evaporation. Recrystallization from DME layered with

pentane at -40 'C yielded 69 mg red crystals (68%): 1H NMR (CD 2C12) 8 7.96 (d, 2, o-C 6 H5),

7.20 (m, 3, m- and p-C6H5), 4.31 (t, 6, NCH2N), 3.63 (s, 6, dme CH2), 3.51 (t, 6, NCH 2N), 3.48

(s, 9, dme CH3). 19F NMR (CD 2C12) 8 -146.8 (s, 6, o-C 6F 5), -163.7 (t, 3, p-C6F 5), -165.3 (t, 6,

m-C6F 5).

[N3NF]W(0)(3,5-Me2C6H3) (2b). [N3NF]W[3,5-Me2C6H 3] (150 mg, 0.161 mmol) was

dissolved in 5 mL dimethoxyethane. Pyridine n-oxide (15 mg, 0.16 mmol, 1 equiv.) was added

as a solid and the reaction was stirred for 15 hours. The solvent was removed in vacuo and the

red residue recrystallized by layering a concentrated DME solution with pentane and cooling the

solution to -40 'C overnight. The red crystalline product was isolated by decantation of the

mother liquor and drying in vacuo (95 mg, 62%): 1H NMR (C6D6 ) 8 7.70 (s, 2, Hortho), 6.72 (s,

1, Hpara), 3.69 (t, 6, NCH 2N), 2.58 (t, 6, NCH 2N), 2.22 (s, 6, C6H3Me2). 19 F NMR (dme) 8

-146.8 (d, 6, o-C6F 5), -164.9 (t, 3, p-C6F 5), -166.7 (t, 6, m-C 6F5). IR (Nujol mull): 1514 s, 1076

w, 988 s, 848 w. Anal. Calcd. for C32H21N4F 150W: C, 40.61; H, 2.24; N, 5.92. Found: C,

40.65; H, 2.09; N, 5.80.

[N3NFIW(3,5-Me 2Ph)(=N-TMS) (3). To a stirred solution of [N3NF]W(3,5-Me 2Ph)

(100 mg, 0.108 mmol) in 5 mL THF was added trimethylsilylazide (14 gL, 0.11 mmol) via

syringe. The color changed instantly from red to light orange. Stirring was continued for 4 h

and then the THF was removed under reduced pressure. The orange solid was recrystallized

from CH 2C12 / pentane at -40 oC. Orange plates formed after 15 h, 75 mg in two crops (69%):

1H NMR (C6D6): 8 7.91 (s, 2, Hortho), 6.98 (s, 1, Hpara), 3.9, 3.6, 3.4, 2.8 (br s, diastereotopic

NCH 2N), 2.43 (s, 6, 3,5-(Me)2-Ph), 2.34 (br s, diastereotopic NCH 2N), -0.40 (s, 9, TMS). 19 F

NMR (C6D 6): 8 -143.8 (s, 4, Fortho), -148.4 (d, 2, Fortho), -164.6 (t, 4, Fmeta), -165.0 (t, 2, Fpara),
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-165.7 (t, 2, Fmeta), -166.5 (t, 1, Fpara). IR (Nujol mull): cm-1 1509, 1119, 1072, 1036, 990, 844.

Anal. Calc. for C35H30N5F 15SiW. Calc.: C, 41.31; H, 2.97; N, 6.88. Found: C, 41.45; H, 3.18;

N, 6.56.

[N3NF]W(OC6F5) (4a). [N3NF]WOTf (250 mg, 0.257 mmol) was covered with 8 mL

THF and the mixture cooled to -40 oC. C6F50K (57 mg, 0.26 mmol) was added as a solid and

the reaction was warmed to room temperature and stirred for 6 hours. The solvent was then

removed under reduced pressure and the red residue extracted with CH 2Cl 2 . The extract was

reduced in volume, layered with ether, and cooled to -40 oC overnight. The red crystalline

product was isolated by decantation of the supernatant and drying in vacuo, 129 mg in two crops

(50%): E 1/2 (ox) = 0.41 V (reversible), E1/ 2(ox) = 0.49 (quasireversible). 1H NMR (CD 3CN) 6

-18.5 (br s, NCH 2N), -51.5 (s, NCH 2N). 19F NMR (CD 3CN) 8 -4.53 (s, 2, phenoxide ortho),

-54.1 (s, 6, o-C6F 5), -100.4 (s, 2, phenoxide meta), -125.9 (s, 6, m-C6F5), -147.3 (s, 3, p-C6F5),

-170.8 (s, 1, phenoxide para). Anal. Calcd. for C30H12N4F20 0W: C, 35.74; H, 1.20; N, 5.56.

Found: C, 35.92; H, 1.21; N, 5.72.

[N3NF]W(O-3,5-Me2C 6H3 ) (4b). To a stirred -40 'C solution of [N3NF]WCl (200 mg,

0.232 mmol) in 10 mL THF was added solid potassium 3,5-dimethylphenoxide (37 mg, 0.23

mmol). The color of the reaction changed from orange to deep purple within seconds. After 3

hours the solvent was removed in vacuo and the residue extracted with CH 2C12. The potassium

salts were filtered off and the extract was concentrated, layered with pentane, and cooled to -40 °

for 15 hours. Purple needles formed and were isolated by decantation of the mother liquor and

drying in vacuo, 184 mg (84%): 1H NMR (CD3CN) 8 -8.5 (s, 6, 3,5-dimethylphenyl), -15.1 (br

s (A1/ 2 = 46 Hz), 6, NCH2N), -27.8 (s, 1, Hpara), -42.2 (br s (A1/ 2 = 10 Hz), 2, Hortho), -47.6 (br s

(A1/ 2 = 23 Hz), 6, NCH 2N). 19F NMR (CD 3CN) 8 -59.8 (br s, o-C 6F5 ), -123.4 (s, m-C 6F 5),

-142.6 (s, p-C6F 5 ). El/2(ox) = 0.33 V (reversible). gobs = 3.2 tB. Anal. Calc. for

C32H2 1N4 0F1 5W. Calc.: C, 40.61; H, 2.24; N, 5.92. Found: C, 40.79; H, 2.30; N, 5.73.

[N3NF]W(O-3,5-Me 2Ph)(0) (5). Pyridine n-oxide (11 mg, 0.11 mmol) was added as a

solid to a solution of [N3NF]W(O-3,5-Me 2Ph) (107 mg, 0.113 mmol) in 5 mL dimethoxyethane
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with good stirring. The color of the solution changed from purple to light orange. After 20 min.,

the solvent was removed under reduced pressure and the orange residue recrystallized from

dimethoxyethane layered with pentane at -40 OC. The product was obtained as a light orange

fluffy solid, 90 mg (83%): 1H NMR (CDC13) 8 6.60 (s, 2, Hmeta), 6.50 (s, 1, Hpara), 4.41, 4.28,

4.18, 3.71, 3.42 (m, diastereotopic NCH 2N), 2.20 (s, 6, 3,5-(Me) 2 -Ph). 19F NMR (CDC13) 6

-145.9 (d, 4, o-C 6F5), -148.6 (d, 2, o-C 6F5 ), -162.29 (t, 1, p-C6F5 ), -162.32 (t, 2, p-C 6F 5),

-163.93 (t, 4, m-C 6F5), -164.33 (t, 2, m-C 6F5). Anal. Calc. for C32H2 1N4 0 2F1 5W. Calc.: C,

39.94; H, 2.20; N, 5.82. Found: C, 39.98; H, 2.36; N, 6.12.

[N3NF]Mo(PPhH) (6a). Solid LiPPhH (45 mg, 0.39 mmol) was added to a stirred slurry

of [N3NF]MoCl (300 mg, 0.388 mmol) in 20 mL toluene. Ten drops THF were then added,

which caused the mixture to become homogeneous. After 1 hour, more LiPPhH (14 mg, 0.12

mmol) was added and the mixture stirred for three hours. A 19F NMR spectrum showed the

reaction to be complete. The reaction was filtered through Celite and the solvent removed in

vacuo. The brown residue was recrystallized from CH 2C12 layered with pentane at -400 C. The

product was obtained as a brown microcrystalline solid, 263 mg in two crops (80%): 1H NMR 8

11.2 (d, JPH = 281, 1, MoPPhH), 6.99 (m, Ph), 6.87 (m, Ph), 3.29 (t, 6, CH 2), 2.44 (t, 6, CH 2);
19F NMR 6 -150.1 (d, 6, Fortho), -164.5 (t, 3, Fpara), -165.3 (t, 6, Fmeta); 3 1P NMR 8 189.6 (d).

Anal. Calcd for C30H 18N4F 15PMo: C, 42.57; H, 2.14; N, 6.62. Found: C, 42.57; H, 2.32; N,

6.37.

[N3NF]W(PPhH) (6b). To a stirred slurry of [N3NF]WCl (500 mg, 0.581 mmol) in 30

mL toluene was added solid LiPPhH (67 mg, 0.58 mmol) followed by 20 drops of THF.

Addition of THF caused the reaction to become homogeneous. After 30 minutes, a second

portion of LiPPhH (20 mg, 0.17 mmol) was added. The reaction was stirred for another 30

minutes, at which point 19F NMR showed it was complete. The solution was filtered through

Celite and the volatiles removed in vacuo. The brown solid was recrystallized from CH 2 C12

layered with pentane at -400 C, 469 mg (86%) brown crystals isolated in three crops: 1H NMR 6

17.5 (dd, JPH=295 Hz, 2JWH = 22, 1, PPhH), 6.97 (t, 4, phenyl), 6.82 (m, 1, phenyl), 3.23 (t, 6,
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CH 2), 2.35 (t, 6, CH 2); 19F NMR 8 -150.4 (s, 6, Fortho), -164.0 (t, 3, Fpara), -165.1 (s, 6, Fmeta);

3 1P NMR 8 118.1 (2, Jpw = 742, PHPh). Anal. Calcd for C30H18N4F 15PW: C, 38.57; H, 1.94;

N, 6.00. Found: C, 38.57; H, 2.11; N, 5.55.

[N3NF]W(OC)Ph (7a). A 50 mL round bottomed flask was charged with [N3N]WPh

(200 mg, 0.222 mmol), 10 mL THF, and a stir bar. It was fitted with a vacuum adapter and

attached to a high vacuum line. The solution was degassed by 3 freeze pump thaw cycles and

CO (67 mmHg, 0.22 mmol, -1 equiv.) was introduced. The reaction was sealed and warmed to

room temperature. Within minutes the color of the reaction has changed to jet black. After 40

minutes the volatiles were removed in vacuo and the black residue dissolved in 4 mL CH2C12,

layered with 8 mL pentane and chilled to -40 'C for 15 hours. The black crystalline product was

isolated by decanting off the mother liquor and drying in vacuo, 166 mg in two crops (81%): 1H

NMR (C6D6) 8 6.83 (t, 2, Hortho), 6.62 (d, 2, Hmeta), 6.20 (t, 1, Hpara), 3.45 (br s, 6, NCH 2N),

2.37 (br s, 6, NCH 2N). 19F NMR (C6D6 ) 8 -150.7 (s, 6, o-C6F5 ), -163.6 (t, 3, p-C6F5), -164.9

(t, 6, m-C6F5). 13C {1H} NMR (C6D6) 8 256.9, 131.9, 131.6, 125.9, 53.9. IR (CDC13): 2930 w,

2864 w, 2361 w, 2254 w, 1504 s, 1066 w, 989 s, 912 s. E1/2(ox) = 0.35 V (reversible).

[N3NF]W(OC)(3,5-Me2C 6H 3) (7b). A 50 mL round-bottomed flask was charged with

[N3NF]W[3,5-Me2C6H3] (200 mg, 0.215 mmol), 10 mL THF, and a stir bar. The flask was

fitted with a vacuum adapter and attached to a vacuum manifold. The solution was degassed at

-78 'C and carbon monoxide (60 mmHg, -1 equivalent (headspace volume estimated to be 47

mL)) was introduced and the flask sealed. The reaction was warmed to room temperature with

stirring, and after 5 minutes at room temperature the volatiles were removed in vacuo. The

product was recrystallized by layering a concentrated CH 2C12 solution with pentane, 135 mg in

two crops (66%): 1H NMR (C6D6) 8 6.31 (s, 2, Hortho), 6.01 (s, 1, Hpara), 3.49 (t, 6, NCH2N),

2.42 (t, 6, NCH 2N), 1.76 (s, 6, 3,5-(C6H 3Me2 )). 19F NMR (C6 D6 ) 8 -150.9 (s, 6, o-C 6F5 ),

-166.4 (t, 3, p-C6F5 ), -167.1 (s, 6, m-C 6F5). 13C NMR (C6D6 ) 8 252.3, 145.6, 142.3, 139.2,

135.9, 133.6, 132.6, 130.0, 127.3, 58.2, 54.0, 20.7. IR (KBr): 2921 w, 2872 w, 1506 s, 1356 m,
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1310 m, 1244 m, 1131 m, 1067 s, 986 s, 859 s. Anal. Calcd. for C33H2 1F 15N4 0W: Calc: C,

41.36; H, 2.21; N, 5.85. Found: C, 41.09; H, 2.10; N, 5.75.

[N3NF]W(CO) (9). A 100 mL round bottomed flask was charged with [N3NF]WOTf

(500 mg, 0.513 mmol), 25 mL THF, 0.5% Na/Hg amalgam (2.36 g, 0.513 mmol, 1 equiv.), and a

stir bar. The flask was fitted with a vacuum adapter and attached to a high vacuum line. It was

degassed by 3 freeze pump thaw cycles and CO (99 mmHg, 2.05 mmol, 4 equiv.) was introduced

by vacuum transfer at 77 K. The reaction was then sealed, warmed to room temperature, and

stirred for 2.5 hours. The volatiles were removed in vacuo and the red residue extracted with

CH 2C12 . The solution was filtered through Celite and the volume reduced to - 4 mL. 10 mL

pentane was layered on and the solution stored at -40 'C for 3 days. 330 mg of red crystalline

product (in two crops) were isolated by decantation of the mother liquor and drying in vacuo.

(76%). The 13C labeled compound was prepared similarly. E1/2(ox) = 0.50 V (quasireversible),

E1/2(red) = 0.16 V (reversible). eff = 2.6 9tB. 1H NMR (C6D6 ): 8 29.3 (br s, A1/ 2 = 553 Hz,

NCH 2N), -19.2 (br s, A1/ 2 = 415 Hz, NCH2N). 19F NMR (C6D6): 8 -132.1 (br s, A1/ 2 = 277 Hz),

-170.5 (s). IR (Nujol mull): 1846 s, 1510 s, 1006 m, 983 s, 856 w cm- 1. Anal. Calcd. for

C25H 12N4F 150W: C, 35.19; H, 1.42; N, 6.57. Found: C, 35.45; H, 1.45; N, 6.74.

[N3NFIW-C-O-TMS (10). A solution of [N3NF]W(CO) (100 mg, 0.117 mmol) in 5 mL

THF was added to 0.5 % Na/Hg amalgam (539 mg, 0.117 mmol). The reaction was stirred for 1

hour, at which point 19F NMR indicated clean formation of the anion. The reaction was filtered

and trimethylsilyl chloride (18 gL, 0.14 mmol, 1.2 equiv.) was added via syringe. After stirring

for 3 hours, the volatiles were removed in vacuo and the brown residue extracted with CH 2C12.

Reduction in volume of the extract, layering with pentane, and cooling to -40 oC for 15 hours

gave the product as brown blocks. It was isolated by decantation of the mother liquor and drying

in vacuo, 73 mg (67%). The 13C labeled compound was prepared similarly. 1H NMR (C6D6): 8

3.33 (t, 6, NCH 2N), 2.10 (t, 6, NCH2N), -0.487 (s, 9, TMS). 19F NMR (C6D6): 8 -151.1 (s, 6, o-

C6F5 ), -165.7 (s, 9, m-C6F 5 and p-C6F 5 ). 13C NMR (C6D6): 8 216.9 (W=C-O-TMS), 144.8

(C6F5), 141.6 (C6F5), 139.3 (C6F5), 137.2 (C6F5), 136.0 (C6F 5), 56.8 (NCH2 N), 52.1 (NCH2N),
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-1.4 ((H3C) 3Si). Anal. Calc. for C28H21N4F15OSiW. Calc.: C, 36.30; H, 2.28; N, 6.05. Found:

C, 35.92; H, 2.18; N, 5.99.

[N3NF]W(CN-t-Bu) (11). [N3NF]WCl (700 mg, 0.813 mmol) and 0.5% Na/Hg

amalgam (3.74 g, 0.813 mmol) were added to a 100 mL round bottomed flask. A solution of

t-butyl isocyanide (92 1tl, 0.813 mmol) in 20 mL THF was prepared and subsequently added to

the reaction flask. The mixture was stirred for 1.25 hours, at which point 19F NMR showed it to

be complete. The solution was decanted from the amalgam and the volatiles removed under

reduced pressure. The orange-brown residue was extracted with CH 2C12 and filtered through

Celite. The volume was reduced until the solution was saturated with the product at room

temperature, -20 mL solvent. It was then chilled to -40 'C overnight. Orange plates of the

product were isolated by decantation of the mother liquor and drying in vacuo, 683 mg in two

crops (92%): El/2(ox) = 0.33 V (reversible), E1/2(red.) = -0.020 V. geff = 2.2 gB. 1H NMR

(C6D6): 8 13.6 (br s, A1/ 2 = 67 Hz, t-Bu), 8.0 (br s, A1/ 2 = 132 Hz, NCH2N), -25.8 (br s, A1/ 2 =

99 Hz, NCH 2N). 19F NMR (C6D6): 8 -77.0 (br s, A1/2 = 86 Hz, Fortho), -142.5 (s, Fmeta), -161.2

(s, Fpara). IR (Nujol mull): 1684 ms 1509 s, 1061 m, 1009 s, 984 s, 853 m, 644 w cm- 1. Anal.

Calc. for C29H21F 15N5W: Calc.: C, 38.35; H, 2.33; N, 7.71. Found: C, 38.20; H, 2.22; N,

7.75.

[N3NF]W(CN-t-Bu)][OTf] (l1b). A solution of 11 (100 mg, 0.110 mmol) in 5 mL THF

was prepared. [Cp2Fe][OTf] (39 mg, 0.11 mmol) was added as a solid, giving an immediate

color change. The reaction was stirred for 20 min, at which point 19 F NMR showed it to be

complete. It was then filtered and the volume reduced to 2 mL. 12 mL pentane was then added

with stirring to precipitate the cation.. The brown precipitate was allowed to settle and the

supernatant decanted off. Pentane was again added (to wash the product) and then decanted off.

Drying in vacuo gave 63 mg of a brown powder (54%). 1H NMR (CDCl3 ) 8 4.19 (br t, 6,

NCH2N), 3.78 (br t, 6, NCH2N), 1.09 (s, 9, CMe3). 13C NMR (CDC13) 8 157.3 (s, W-C=N, JCw

= 93 Hz), 144, 142, 140, 138, 136, 135 (br s, C6F5), 63.7 (s, NCH2N), 59.9 (s, CMe 3), 53.9 (s,

NCH 2N), 30.2 (CMe3). 19F NMR (CDC13) 8 -78.4 (br s, OTf), -147.6 (d, o-C 6F5), -158.4 (t, p-

References begin on page 176.

Chapter IV

172



Synthesis of [N3NF] Complexes of Mo and W

C6F 5), -161.8 (s, m-C6F 5). IR (Nujol mull) cm- 1 (2111, 2104 (C-N)), 1503 (N-C 6F 5), 1273,

1195, 1155, 1031, 988, 860, 722. 638.

[N3NF]Mo(CN-n-Bu) (12b). [N3NF]MoCl (200 mg, 0.259 mmol) and 0.5% sodium

amalgam (1.19 g, 0.259 mmol) were added to a vial. A solution of n-butyl isocyanide (27 gL,

0.26 mmol) in 10 mL THF was prepared and added all at once to the molybdenum chloride and

amalgam. The reaction was stirred for 3 hr, at which point 19F NMR showed it was complete. It

was then filtered and the volatiles were removed under reduced pressure. The product was

recrystallized from CH 2C12 layered with excess pentane at -40 'C. After 15 hr large reddish

needles formed which were isolated by decanting away the mother liquor and drying in vacuo,

162 mg (76%): 1H NMR (C6D6 ): 8 5.7 (br s (A1/2 = 81 Hz), 6, NCH 2N), 5.2 (br s (A1/ 2 = 25

Hz), n-butyl), 4.0 (br s (A1/ 2 = 12 Hz), n-butyl), -0.1 (br s (A1/ 2 = 25 Hz), n-butyl), -27.6 (br s

(A1/ 2 = 94 Hz), 6, NCH 2N). 19F NMR (C6D6): 8 -67 (br s (A1/ 2 = 716 Hz), 6, o-C 6F5 ), -144.0 (s,

3, p-C6F 5), -161.2 (s, 6, m-C6F5). IR (Nujol mull): cm-1 1790 (RNC). E1/ 2(ox) = 0.36 V. Peff =

2.3 g B. Anal. Calc. for C29 H21N5F15Mo. Calc.: C, 42.46; H, 2.58; N, 8.54. Found: C, 42.14;

H, 2.55; N, 8.53.

[N3NFI]W(NO) (13). A 50 mL round bottomed flask was charged with [N3NF]WCl (200

mg, 0.232 mmol), sodium amalgam (1.07 g, 0.232 mmol), and THF (10 mL). It was fitted with a

vacuum adapter, sealed, and attached to a high vacuum line. After degassing by freeze pump

thawing, nitric oxide (0.82 mmol) was introduced by vacuum transfer. The reaction was sealed

and warmed to room temperature, during which time the color changed from black-red to light

yellow. It was stirred for 1 hour and the solution was decanted off the amalgam, filtered,

stripped, and extracted with CH2C12 . The volume of the CH2C12 was reduced until the solution

was saturated with the product at room temperature. The solution was then kept at -40 OC for 15

h, and the light yellow powder isolated by decantation of the supernatant, 171 mg (86%): 1H

NMR (CD3CN): 8 4.06 (t, 6, NCH 2N), 3.35 (t, 6, NCH 2N). 19F NMR (CD 3CN): 8 -151.7 (s, 6,

Fortho), -164.1 (t, 3, Fmeta), -166.0 (s, 6, Fmeta). IR (Nujol mull): cm-1 1614 (NO). Anal. Calc.

for C24H 12N 5F 150W. Calc.: C, 33.71; H, 1.41; N, 8.19. Found: C, 33.41; H, 1.49; N, 8.59.
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[N3NF]W-C=O-V(Mes) 3 * toluene (14). A scintillation vial was charged with

[N3NF]W(CO) (100 mg, 0.117 mmol) and V(mesityl)3.THF (56 mg, 0.12 mmol). 4 mL toluene

was added, resulting in a deep black solution. The reaction was stirred for one hour, at which

point 19F NMR showed complete conversion to product. The reaction was filtered and the

volume of the toluene reduced to ca. 2, mL. Pentane was layered on and the vial cooled to -40

oC. After 15 h, black crystals had formed and were isolated by decanting off the mother liquor

and drying in vacuo, 130 mg in two crops (88%). The 13C labeled compound was prepared

similarly. 1H NMR (C6D6): 8 17.5 (br s(A 1/2 = 22 Hz), 9, mesityl Mepara), 16.2 (br s(A 1/2 = 300

Hz), 18, mesityl Meortho), 6.6 (br s(A 1/2 = 45 Hz), 6, mesityl Hmeta), 3.38 (s, 6, NCH2N), 2.06 (s,

6, NCH 2N). 19F NMR(C 6D 6): 8 -153.2 (s, 6, o-C 6F5), -162.9 (s, 3, p-C6F 5), -164.3 (s, 6, m-

C6F5). IR (KBr press): cm-1 2916, 2867, 1587, 1501, 1278, 985, 851, 756, 729. geff = 2.1 gB.

Anal. Calc. for C59H53N4F150VW. Calc.: C, 52.34; H, 3.95; N, 4.14. Found: C, 52.28; H,

3.77; N, 3.96.

[N3NF]W(C2H4) (15). A 300 mL glass bomb was charged with [N3NF]W(OTf) (500

mg, 0.513 mmol), 0.5% sodium amalgam (2.60 g, 0.564 mmol Na), 50 mL THF, and a Teflon

coated stir bar. It was sealed and attached to a high vacuum line. The solvent was degassed by

freeze pump thawing and then ethylene (-40 mmol) was introduced by vacuum transfer. The

reaction was allowed to thaw and stirred efficiently at room temperature for 15 h. Efficient

stirring is required for the reaction to proceed at a reasonable rate. The brown solution was

decanted from the amalgam and the volatiles removed under reduced pressure. The residue was

extracted with CH2C12 and filtered through Celite. The volume of the CH 2C12 was reduced and

the solution layered with pentane. Storage at -40 'C for 15 h resulted in precipitation of the

product as a brown powder, 346 mg (79%) in two crops: 19F NMR (C6D6): 8 -100 (v br s (A 1/2

= 2,500 Hz), 6, Fortho), -137 (br s (A11 2 = 650 Hz), 6, Hmeta), -152.1 (br s (A1/ 2 = 140 Hz), 3,

Hpara). E1/2(ox) = 0.40 V. geff = 1.8 kB. Anal. Calc. for C26H 16N4F1 5W. Calc.: C, 36.60; H,

1.89; N, 6.57. Found: C, 36.54; H, 2.03; N, 6.36.
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[N3NFIWBr (16). A flask was charged with [N3NF]W(OTf) (100 mg, 0.103 mmol),

THF, and sodium amalgam (0.5%, 519 mg, 0.113 mol Na). It was attached to a vacuum line and

degassed by freeze-pump-thawing. Bromotrifluoroethylene (1.6 mmol) was introduced by

vacuum transfer at 77 K and the reaction was sealed and warmed to room temperature. After

stirring overnight, the solution was decanted from the amalgam and the volatiles removed in

vacuo. The solid remaining was extracted with CH2C12 and filtered. Recrystallization from

minimum CH 2C12 layered with pentane at -40 oC gave the product as orange crystals, 40 mg

(43%, not optimized). 1H NMR (C6D6) 8 -25.0 (br s, 6, NCH2N), -52.2 (br s, 6, NCH 2N). 19F

NMR (C6D6) 8 -76.9 (br s, 6, o-C 6F 5), -123.4 (s, 6, m-C 6F5), -144.8 (s, 3, p-C6F 5). Anal. Calcd.

for C24H12F 15BrN4W: C, 31.85; H, 1.34; N, 6.19. Found: C, 32.23; H, 1.42; N, 6.24.

[N3NFIW(C2H4) OTf (17). Ferrocenium triflate (83 mg, 0.23 mmol) was added as a

solid to a solution of [(C6F5NCH 2CH2 )3N]W(C2H4) (200 mg, 0.234 mmol) in 8 mL THF. The

solution turned deep red instantly. After 15 min., the solution was filtered and the THF removed

in vacuo. The ferrocene was sublimed away from the product onto a -78 'C probe. The solid

which remained was recrystallized from CH 2C12 / pentane to give the product as a red solid, 215

mg (91%): 1H NMR (C6D6): 6 4.42 (br s, 6, NCH2 CH2N), 3.96 (br s, 6, NCH 2CH 2N), 3.10 (s,

4, C2 H4). 19F NMR (CDC13): 8 -78 (br s, 3, OTf), -143.7 (s, 6, Fortho), -152.7 (s, 3, Fpara),

-159.8 (s, 6, Fmeta). Anal. Calc. for C27H 16N4F 180 3SW. Calc.: C, 32.35; H, 1.61; N, 5.59.

Found: C, 32.53; H, 1.63; N, 5.46.
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CHAPTER V

Transition Metal Complexes Containing Multiamidophosphine Ligands,

Including Zirconium Alkyl Complexes as Catalyst Precursors for Olefin Polymerization



Complexes Containing Multiamidophosphine Ligands

INTRODUCTION

Given the success of the triamidoamine ligand in the development of a range of new

transition metal chemistry, 1 we became interested in making some extensions of it. In particular,

we would like to determine what the ramifications of replacing the dative amine donor by a

phosphine donor would be on the observed reactivity of such complexes. We also would like to

prepare ligands which are less susceptible towards some documented decomposition reactions of

the [(TMSNCH 2CH 2)3N] 3- ligand, such as Si-N bond cleavage2,3 and abstraction of a hydrogen

f3 to one of the amides. 3 A phosphine ligand would be expected to be a better donor than an

amine ligand, at least for later transition metals, which should result changes in the chemistry

proceeding in the "steric pocket" of such complexes. Another ongoing project is to develop

diamido-donor ligands which allow for more flexibility in terms of the types of complexes which

can be prepared. Such [N2 donor]2- ligands form complexes with dO metals in group IV and d2

metals in group VI which have two sites where reactivity can take place, as opposed to [N3N] 3-

complexes, where reactions can only be carried out at the apical site. [N2 donor]2- complexes

containing zirconium are of interest as catalyst precursors for olefin polymerization as the next

logical step in the progression from bis(Cp) 4 to "hybrid" Cp-amido5 to bis(amido) zirconium

catalyst precursors.

A resurgence of research by organometallic chemists in the area of Ziegler-Natta catalysis

has come with the discovery that bent metallocene complexes activated by methyl aluminoxanes

can be used to polymerize o-olefins at high activities.6 Since this discovery, a large body of

research has been carried out in an attempt to understand and make improvements upon the

reaction. 4 Complexes containing one amido ligand and one cyclopentadienyl ligand 5 or two

amido ligands7-10 are of current interest as analogs to the bent metallocene catalysts which have a

comparatively low formal electron count at the metal. A living system utilizing a zirconium

catalyst which contains a chelating diamido ligand with a dative oxygen donor has recently been

developed in our laboratories." We became interested in preparing zirconium complexes

containing a chelating diamidophosphine donor and investigating "activated" forms of them as

References begin on page 221.
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olefin polymerization catalysts. We will detail the preparation of such complexes as well as our

results regarding their ability to polymerize olefins.

RESULTS

Synthesis of a Hexamethyltriaminophosphine Ligand

Our initial preparations of phosphorus-containing derivatives of triamidoamine ligands

utilized ring opening of tosyl aziridines with phosphides. LiPH2(dme) (see experimental section

for notes on handling this material) reacts with n-tosyl-2,2-dimethylaziridine (readily prepared in

85 gram quantities) in THF to yield a primary phosphine as evidenced by proton-coupled 3 1p

NMR (8 = -161 ppm, JPH = 192 Hz). (PH3 itself does not react with three equivalents of n-tosyl-

2,2-dimethylaziridine in THF or CH 2C12 at room temperature.) Addition of two equivalents of

BuLi to the primary phosphine at -40 oC followed by two additional equivalents of the tosyl

aziridine and subsequent quenching with water yields P(CH 2CMe 2NHTs) 3 (1). The reaction can

also be performed stepwise (forming the secondary phosphine first and then the tertiary

phosphine) but the streamlined procedure described is preferred. Treatment of 1 with an excess

of sodium naphthalide in DME yields P(CH2CMe 2NH2)3 (2) in low isolated yield (27-37%).

Scheme 5.1 details the one-pot synthesis of 2 from n-tosyl-2,2-dimethylaziridine and

LiPH2(dme) (Scheme 5.1). The tosyl amide cleavage reaction was problematic for the several

reasons. A large quantity of insoluble side-products are produced which are difficult to separate

from the product. Also, after extraction of the product from this mixture, it remains

contaminated with substantial quantities of naphthalene. Pure 2 was finally obtained as a white

crystalline solid by fractional distillation followed by recrystallization.

Attempts to convert 2 to a tris(perfluorophenyl) derivative by reaction with C6F6 in

DMSO in the presence of K2CO 3 , analogous to the preparation of [(C6F5NCH2 CH2)3N]H 3,'[12]

were unsuccessful. 19F NMR showed no reaction after 24 h at 70 'C, and higher temperatures

and longer reaction times led to decomposition. We were able to convert 2 to *[N3PF]H3 (3)

References begin on page 221.
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LiPH2(dme)

Ts

+ N
THF

-40 'C to RT

then
H20 quench

P §K.NH2) 3

1) Na / Napthalene

2) H20

Scheme 5.1. The one-pot synthesis of P(CH2CMe 2NH2)3 (2) from LiPH2(dme).

(*[N3PF]H3 = (P(CH2 CMe2 NHC6F5)3 ) by a different method. Deprotonation of 2 with two

equivalents of BuLi followed by treatment with one equivalent of C6F6 at -40 oC leads to mono

C6Fs-substituted, monolithiated 2 by 19F NMR. Two equivalents of BuLi are required because

the amine proton of RNHC 6F5 formed during the reaction is more acidic than those of

P(CH2CMe2NH2)3 , therefore, as lithiated 2 begins to react with C6F6 the RNHC 6F5 proton is

removed by another lithiated 2, giving RNLiC 6F5 . The second equivalent of BuLi serves to keep

a CH 2CMe2NHLi fragment present so that the arylation reaction goes to completion. 19F NMR

shows upfield-shifted resonances for "P(CH2CMe 2NLiC6F5)(CH 2CMe 2NHC 6F5)2" at -167.2,

References begin on page 221.
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-171.2, and -199.2 ppm. Repeating the process twice and quenching with water leads to 3 in

moderate yield (30-40%) on small scales (-500 mg product obtained, equation 1). When the

reaction was run on a larger scale (10.6 mmol of 2) the yield dropped to below 15%. This

1) 2 BuLi H20 P(CH2CMe2 NHC6F5)3
P(CH 2CMe2NH2)3

2) C 6F6  repeat twice quench - N3P]H 3

2 3

(1)

method for obtaining 3 is thus quite limited. The reaction does not proceed cleanly by 19F NMR,

decomposition peaks are evident at all stages of the sequence. It seems likely that some of the

difficulties involve instability of the presumed trilithiated intermediate, *[N3PF]Li3 (4).

Although high-field peaks ascribable to this trilithium salt are observed in the 19F NMR at the

end of the reaction, 4 may be inherently unstable with respect to loss of LiF or other

decomposition routes (no trilithium salts of a series of fluorinated aryl-substituted triamidoamine

ligands, including [(C6F5NLiCH 2CH2 )3N] have been isolated either). 12 A species proposed to

be [N3NF]K3 ([N3NF] 3- = [(C 6F5NCH2CH 2) 3N]3- ) has been prepared in situ, but was shown to

be unstable in solution.13

The problems with the preparation of 3 led us to seek a more direct route for its

preparation. 2,2-dimethylaziridine reacts with C6F6 in DMSO in the presence of K2CO 3 to give

n-C6F5-2,2-dimethylazidine (5) in low yield. Presumably, the reaction is sluggish because of the

relatively low nucleophilicity of the aziridine nitrogen. It was hoped that 5 would react with

lithium phosphides to yield 3 directly. Unfortunately, addition of 5 to LiPPhH in THF leads only

to decomposition according to 19F NMR (equation 2). The C6F5 ring in 5 is probably too

susceptible to electron transfer or nucleophilic attack by LiPHPh.

References begin on page 221.

Chapter V

183



Complexes Containing Multiamidophosphine Ligands

-F
5

H
N C6F6, excess K2CO3  LiPHPh

DMSO, 120 oC, 48 h THF
(2)

5

Despite the laborious and low-yield preparation of *[N3PF]H3 (3), we were able to

investigate the possibility of forming transition metal complexes containing it. 3 does not react

with Ti(NMe2 )4 or Mo(NMe 2)4 in refluxing toluene after 15 h. Treatment of 3 with

TiC14 (THF)2 in THF in the presence of triethylamine resulted in no reaction. When 3 is treated

with three equivalents of BuLi in THF at -40 oC, 19F NMR shows clean conversion to the

species proposed to be *[N3PF]Li3 (4) within 20 min. 4 is not formed as cleanly in diethyl ether.

The proposed trilithium salt did not prove to be useful synthetically. Addition of TiC14(THF) 2 or

WC14 (DME) to THF solutions of 4 led to either decomposition or regeneration of 3. *[N3PF]H3

does react with Zr(NMe2)4 , giving a species which we propose is the corresponding zirconium

dimethylamide complex, *[N3PF]Zr(NMe 2) (6) as a pentane-soluble colorless solid. 6 remains

incompletely characterized due to the difficulties associated with obtaining substantial quantities

of the *[N3PF]H3 ligand. A single resonance in the 3 1P NMR spectrum of *[N3NF]Zr(NMe 2) is

observed at -23.7 ppm, 32 ppm downfield from the 31P resonance in *[N3PF]H3. The 1H NMR

spectrum shows that the methyl groups on the apical amido ligand are inequivalent, suggesting

that rotation about the Me2 N-Zr bond is slow on the NMR time scale. Although the 1H

resonances for the ligand backbone CH 2 and CMe2 groups are observed as singlets at 1.06 and

0.115 ppm respectively, the 19F NMR spectrum displays three resonances of equal intensity for

the ortho fluorines, possibly resulting from hindered rotation of the apical dimethylamido ligand

(leading to a Cs-symmetric complex) as well as hindered rotation about the N-C 6F5 bonds. In

this situation, the C6F5 ring attached to the amide which lies in the mirror plane would give rise

to one ortho fluorine resonance, and the other two C6F5 rings would have "inside" and "outside"
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fluorines, giving rise to three fluorine resonances. A more complicated pattern is observed for

the meta and para resonances because these are less well-separated. The situation is much the

same as what is seen in [(C6F 5NCH2CH 2)NH]W-CCMe 3(C1) (chapter III), hindered rotation of

the C6F5 rings was also used to explain the 19F spectrum, although only two C6F5 rings are

present in that molecule. For *[N 3PF]Zr(NMe2 ), another possibility is that the complex is not

C3v-symmetric, although integration of the 1H NMR spectrum does imply only one NMe 2 ligand

is present on zirconium. These NMR data should be compared to those observed with

[(C6F5NCH 2CH 2)3N]Mo(NMe 2).12 In this molybdenum complex, a single resonance for the

dimethylamido ligand is observed by 1H NMR at room temperature, and the 19F NMR spectrum

shows the typical three-peak pattern seen for diamagnetic [N3NF] 3- complexes; thus, the NMe 2

ligand rotates freely. The difficulties associated with the synthesis of gram quantities of

*[N3PF]H3 led us to switch directions towards more easily synthesized ligands before 6 could be

more fully characterized. Considering the unusual NMR data associated with 6, we cannot be

completely certain that our formulation of it as *[N3PF]Zr(NMe 2) is correct without satisfactory

analytical data.

Synthetic Attempts Towards a-Methylated Triamidoamine Ligands

n-Tosyl-2,2-dimethylaziridine reacts with NH 3 (-22 psi) in ethanol to give the ring-

opened diamine product, H2NCH 2CMe2NHTs (7) in good yield (Scheme 5.2). This product

reacts with two equivalents of n-tosyl-2,2-dimethylaziridine in DMSO at room temperature to

give the dialkylated product, HN(CH2CMe2NHTs) 2 (8) in moderate yield. The reaction does not

proceed 100% regioselectively; some of what is proposed to be HN(CH 2 CMe 2NHTs)-

(CMe 2CH 2NHTs) is detected by 1H NMR in the crude product mixture. The regiochemistry of

the product is easily determined by 1H NMR by comparison with literature compounds. 14 8 does

not react further with aziridine to give trialkylated product, even upon increasing the reaction

temperature. Forcing conditions tend to lead to elimination and other decomposition reactions.

For example, refluxing a mixture of 7 and n-Ts-2,2-dimethylaziridine in the presence of

ytterbium(III) triflate (known to assist aziridine ring opening reactions 15) leads to ring-opening
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Ts NHTs
N HN N

2 2

8

DMSO

H
N 22 psi NH3  NHTs

EtOH, 18 h H
N

NHTs

Yb(OTf)3
THF, reflux

Scheme 5.2. Ring-opening reactions with amine nucleophiles.

via elimination, yielding H2C=C(Me)(CH 2NHTs), a literature compound. 16 We found that

lithium amides do not react cleanly with n-Ts-2,2-dimethylaziridine, ruling out the possibility of

using these more potent nucleophiles to effect ring opening. Even if the reactions discussed here

had been more successful, the fact that the products are tosyl amides would probably seriously

limit the syntheses because of the difficulty of cleaving this functionality.

Preparation of TMS-Substituted Diamidophosphine Ligands

CICH2 CH 2NH 2 - HC1 reacts with Me2CISiCH 2CH 2SiMe 2 Cl in the presence of

triethylamine to give the protected P-chloroethylamine, CICH2CH 2(cyclo-NSiMe 2CH 2CH 2-

SiMe2) (9). Addition of butyllithium at -10 OC to a THF solution of two equivalents of 9 and

phenylphosphine results in the formation of PhP(CH2CH 2(cyclo-NSiMe 2CH 2CH 2SiMe2)) (10)

in quantitative yield as an air-stable oil. Removal of the silyl protecting group is effected by

treatment with aqueous HCI in ether. PhP(CH2 CH 2 NH 2 ) - 2 HCI (11) is isolated by

recrystallization in 65% overall yield from phenylphosphine. This dihydrochloride salt has been
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prepared previously from CICH 2CH 2NH2 and phenylphosphine in NH 3 (1),17 but we find the

preparation in THF from 9 more convenient. 11 reacts with four equivalents of BuLi followed

Me2Si Me2Si
I 2 BuLi

PhPH2 + 2 Si SiCPhPH2 +Me 2  THF, -10 OC PPh Me2

10

HC1

1) 4 BuLi
PhP(CH 2CH2NHSiMe 2R)2  : PhP(CH 2CH 2NH2) 2 . 2 HC1

R = Me (12); Ph (14) 2) 2 RMe 2SiCl11

Scheme 5.3. Synthesis of silylated diaminophosphine ligands.

by two equivalents of TMSC1 to yield [N2P]H 2 (12) ([N2P] 2- = [(TMSNCH 2CH 2)2PPh]2-)

quantitatively. A dilithium salt, [N2P]Li2 (13), can be prepared from 12 and two equivalents of

BuLi as a white, pentane-soluble crystalline solid in moderate to good yield. A phenyldimethyl-

silyl-substituted ligand [PhN2P]H 2 (14) ([PhN 2P] 2 - = [(PhMe 2SiNCH2CH 2)2PPh] 2-) can be

prepared quantitatively simply by replacing PhMe2SiCl with TMSCl in the synthesis.

[N2P]H 2 reacts with Zr(NMe 2)4 in pentane to yield [N2P]Zr(NMe2) 2 (15) as an oil. 1H

NMR spectra of 15 display inequivalent dimethylamido ligands as well as diastereotopic ligand

backbone methylene protons, consistent with the Cs-symmetric structure shown in equation 2. A

single resonance is observed in the 31P NMR spectrum at -10.5 ppm. 15 is converted to white,

crystalline [N2P]ZrCl2 (16) by treatment with two equivalents of TMSC1 in pentane. Within

minutes, analytically pure 16 begins to crystallize directly from the reaction mixture. Workup is

effected by simply filtering the product off and drying it in vacuo. The backbone methylene

protons of [N2P]ZrCl 2 are diastereotopic, again suggesting a Cs-symmetric structure, and 8 (31p)
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for the complex is 1.94 ppm. Phenyldimethylsilyl-substituted analogs, [PhN2P]Zr(NMe 2)2 (17)

and [PhN 2P]ZrCl2 (18) are readily prepared by analogous methods.

TMS NMe 2

TMS N I
Zr(NMe 2) 4  TMS N . Zr NMe 2

[N2P]H 2  Ph 2 TMSC [N2P]ZrC12

(2)

15 16

[N2 P]ZrCl2 reacts with 2 equivalents of CH 3MgCl to yield [N2P]Zr(CH 3)2 (19) as an oil.

Attempts to crystallize this highly soluble complex were unsuccessful, and we were therefore

unable to obtain analytical data. 1H NMR spectra of the product isolated after extraction with

pentane show no impurities. 1H NMR parameters for the [N2 P] ligand backbone in 19 are

similar to those observed for 17 and 18. The methyl groups are observed at 0.80 (3JHP = 6 Hz)

and 0.60 (3JpH < 1 Hz). By extension from some similar complexes which will be described

below, we propose that the methyl group with the larger 3JPH value is cis to phosphorus and one

with the smaller 3JPH value is trans to phosphorus. The 13C-labeled complex ([N2P]Zr( 13CH 3)2)

displays two resonances in the 13C NMR spectrum in ether (unlocked) at 35.9 ppm with 2Jp C =

29 Hz and at 40.9 ppm with 2Jpc = 2 Hz. The higher 2JpC value is indicative of a methyl trans to

phosphorus. [PhN 2 P]ZrCl 2 also reacts with two equivalents of MeMgCl to yield

[PhN2 P]Zr(Me)2 (20), but the complex is also an oil which could not be crystallized.

Alkyl-chloride and mixed alkyl species can also be prepared. Treatment of an ethereal

solution of [N2P]ZrCl 2 with one equivalent of MeMgC1 (3.0 M in THF) leads to the formation of

[N2P]Zr(Me)(THF)Cl (21) as a white crystalline solid (equation 3) in moderate yield. Analytical

data and 1H NMR are consistent with the formulation as a six-coordinate mono THF adduct, as

one equivalent of THF per zirconium remains after extraction with pentane, removal of the

volatiles in vacuo, and recrystallization from pentane. The 3 1P resonance is observed at -0.49
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ppm. Again by extension from a similar complex (see below), we propose that the THF is bound

in the equatorial plane which contains the two amides and the methyl ligand, since 3JPH = 7 Hz.

Such a six-coordinate structure has also been proposed for a tungsten diamidoamine complex

(see chapter III). [N2P]ZrCl2 is methylated in the absence of THF with Me2Mg to give base-free

[N2P]Zr(Me)C1 (22), 8 (3 1p) = -1.6. The CH 3 ligand is observed at 0.9 ppm with no proton-

phosphorus coupling, therefore, we propose that the structure is a base analog of that of 21 with a

cis CH 3 ligand.

TMS Cl

TMS .r ,THF
MeMgC1 in THF N'"

[N2P]ZrCl2 i Me (3)
ether

Ph

21

[N2 P]ZrCI2 reacts with one equivalent of Me2CHCH 2MgCl to form [N2P]Zr(Cl)(CH 2-

CHMe 2) (23). Ca from the i-Bu ligand is observed in the 13C NMR spectrum at 70.9 ppm with

no coupling to phosphorus, indicative of a cis(i-Bu), trans(C1) arrangement. Cp is observed at

29.9 ppm, and here phosphorus coupling is observed (JCP = 5 Hz). Whether or not a f-agostic

interaction is present has not been probed by VT NMR. The 1H NMR of 23 shows a virtual

triplet at 1.5 ppm for CH2CHMe2 , with 3jpH = 7.7 Hz and 3JHH = 6.8 Hz, as determined by a

phosphorus-decoupled 1H spectrum. 23 is not very stable thermally, decomposing over days in

solution. Treatment of [N2 P]ZrCl 2 with two equivalents of i-BuMgCl yields only 23; no

evidence for the dialkyl is observed, possibility because such a species is too crowded. 23 also

decomposes when treated with MeMgC1. [N2P]ZrCl 2 reacts with one equivalent of EtMgCl to

give a mixture of products, none of which were identified.

Treatment of [N2P]ZrCl2 with one equivalent of MeMgCl followed by one equivalent of

BnMgCl (Bn = C6H5 CH2) leads to the formation of white, crystalline [N2P]Zr(CH 3)(Bn) (24) in
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good yield. The 1H NMR spectrum displays a resonance for the benzylic protons at 2.83 ppm

(3JpH = 9 Hz) and a resonance at 0.588 ppm for the CH 3 ligand (3JPH not observed). The 13C

NMR spectrum shows a resonance at 62.4 ppm (2JCp = 4.6 Hz, 1JCH = 130 Hz) for the benzylic

carbon, and a resonance at 38.2 ppm (2JCp = 27.9 Hz, 1JCH = 112 Hz) for the 13CH 3 group. As

we have done for all [N2P]Zr alkyls thus far, we propose that the ligand with the large value of
2Jcp (in this case CH 3) is trans to the phosphine, and the ligand with the small value of 2JCp is

cis. For 24, crystals suitable for X-ray diffraction were obtained from pentane at -40 OC,

allowing us to test this proposal.

A view of the structure of [N2P]Zr(CH 3)(Bn) is shown in Figure 5.1, and Table 5.1

contains selected bond lengths and angles. Crystallographic data are located in Table 5.3. The

structure verified that the methyl group is trans to phosphorus, and showed that the ipso carbon

of the benzyl ligand is within bonding distance of zirconium (Zr-C(41) = 2.835(4) A). The Zr -

C(47) - C(41) angle is 95.4' . These metrical data are consistent with a weak zirconium-Cipso

interaction, more typical values for 112 benzyl M-Cipso distances and M-Ca-Cipso angles are 2.50-

2.65 A and 87-880.18,19 The 1JCH value observed (130 Hz) by NMR in C6D6 is consistent with

the weak r 2 interaction observed in the solid state. 18 The Zr-P distance is 2.9343(11) A,

relatively long in comparison to related complexes20 -22 (the structures in the cited works have Zr-

P distances from 2.75-2.85 A, but they do not have methyl ligands trans to phosphorus). A

diamidophosphine ZrMe2 complex similar to 24 with silicon present in the ligand backbone,

[(2,6-Me2PhNSiMe 2CH 2)2PPh]Zr(Me) 2 (25), has been prepared and crystallographically

characterized in our laboratories, and the Zr-P bond length is 2.916(2) A.23 It may be that a trans

effect from the strongly a-donating methyl ligand in 24 and 25 results in a weaker Zr-P

interaction than what has been observed previously. The TMS groups in 24 are fairly twisted,

with P-Zr-N-Si dihedral angles of 139.6 and 144.7', and N(1)-Zr-N(2) is 102.35(13)". These

data indicate substantial distortion from a trigonal-bipyramidal geometry.
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C(1) N(2)

C(5)

N(1)

C(3)

C(4)

Figure 5.1. A view of the structure of [N2P]Zr(CH 3)(Bn) (24).
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Table 5.1. Selected bond distances (A) and angles (deg.) for [N2P]Zr(CH 3)(Bn) (24).

Distances (A)

Zr -P

Zr- N(1)

Zr - N(2)

C(41) - C(47)

C(2) - P

N(1) - Si(1)

2.9343(11)

2.054(3)

2.062(3)

1.464(5)

1.843(4)

1.733(3)

Zr- C(5)

Zr - C(47)

Zr - C(41)

P- C(31)

C(4) - P

N(2) - Si(2)

Angles (deg.)

N(1)- Zr- N(2)

Zr- P- C(31)

C(31) - P - C(4)

C(2) - P - C(4)

C(47) - Zr - N(2)

C(5)- Zr - N(1)

102.35(13)

144.66(13)

104.6(2)

106.7(2)

127.56(13)

109.96(14)

Zr - C(47) - C(41)

C(5) - Zr- P

C(31) - P- C(2)

C(3) - N(1) - Si(1)

Zr- N(1)- Si(1)

C(47) - Zr- N(1)

Dihedral Angles (deg.)a

P- Zr- N(1) - Si(1) 139.6 P- Zr- N(2) - Si(2) 144.7

a Obtained from a Chem 3D drawing
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2.294(4)

2.295(4)

2.835(4)

1.822(4)

1.836(4)

1.746(3)

95.4(2)

174.65(12)

105.0(2)

115.6(3)

125.0(2)

114.25(14)

Chapter V

192



Complexes Containing Multiamidophosphine Ligands

A bis(benzyl) complex can be prepared from [N2P]ZrC12 and two equivalents of BnMgC1

(equation 4). Light yellow, crystalline [N2P]Zr(Bn) 2 (26) is obtained in good yield after

recrystallization from ether/pentane mixtures. 1H NMR shows inequivalent benzyl groups, at

2.75 (d, 3JpH = 6.6 Hz) and 2.69 (d, 3JPH = 2.4 Hz) ppm. 13C NMR shows two resonances that

we assign as the Ca cis to the phosphine (at 69.3 ppm, 1JCH = 126 Hz (c.f. 130 Hz for 24), 2JCp

= 3.2 Hz) and the Ca trans to the phosphine (at 65.9 ppm, 1JCH = 118 Hz, 2JCp = 22 Hz).

TMS Bn

TMS4 NI Zr
2 BnMgCl Bn

[N2P]ZrCl2  2 BnMgC (4)
ether

Ph

25

Activation of [N2P]Zr Dialkyl Complexes and Polymerization Studies

[N2P]Zr( 13CH 3)2 (19) reacts with [Ph 3C][B(C6F 5)4 ] in bromobenzene-d 5 at -30 oC to

yield [[N2P]Zr(13CH 3)][B(C 6F5)4] (27) along with Ph 3C13CH 3 . The 13C NMR spectrum at -30

'C (Figure 5.2) shows a peak at 55.1 ppm (14 ppm downfield from the lower field CH3

resonance in 19) which we assign to [[N2P]Zr(13CH 3)]+, as well as a resonance for Ph3C13CH 3

at 30.5 ppm. The peak for the organic product is much more intense that for 27, presumably a

result of a large difference in relaxation times between the Ph3C13CH3 and [[N 2P]Zr( 13CH 3)]+.

A similar variation in peak heights is observed during the preparation of

[[t-Bu-o-C6H4) 20]Zr(13CH 3)]+,24 a living catalyst for 1-hexene polymerization. 11 Thus, we are

reasonably confident that variable relaxation times, rather than significant decomposition of 27,

are the origin of the disparity in peak heights. The 3 1P NMR spectrum shows a relatively broad
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[[N 2 P]Zr(13CH 3)] +

Ph3C13CH 3

40 30 20 10

Figure 5.2. The 13C (top) and 31P (bottom) NMR spectra of [[N 2P]Zr(13CH 3)]+

[B(C 6F5)4]- (27) in bromobenzene-d 5 recorded at -30 'C.
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resonance at 26.8 ppm, 42.5 ppm downfield of that in 19. The proton NMR spectrum at -30 OC

shows a fairly broad TMS signal. No resonance for [[N 2P]Zr(13CH 3)]+ could be resolved,

possibly because what would be expected to be a relatively weak doublet near 0 ppm is obscured

by the broad TMS resonance. Since no C-P coupling is seen in either the 3 1p or 13C spectrum,

we propose that the methyl group is cis to phosphorous and the apical site is vacant or contains

loosely coordinated solvent (equation 5). 27 is not very thermally stable. Evidence of

decomposition is observed by 13C and 3 1P NMR within minutes of warming to room

temperature.

TMS 13CH 3  TMS Sol
TMS [Ph 3C][B(C 6F5)4] +

TMS N Zr-C... 13TMS*N..Nl Zr. 13CH 3  (5)
NO' 3 C6D5Br, -30 oC

Ny Ph Ph3 C 3 CH 3  ' Ph

19 27

The thermal instability of 27 led us to search for more robust cations. It was hoped that

the ability of benzyl ligand to act as more than a two electron donor would stabilize a cationic

species. [N2P]Zr(Bn) 2 (26) reacts with [Ph 3C][B(C 6F5)4] in bromobenzene-d 5 at -30 'C to yield

a species proposed to be [[N 2P]Zr(Bn)][B(C 6F5)4] (28). The 1H NMR spectrum at -30 'C shows

a peak at 3.88 ppm (c.f. 2.75 and 2.69 ppm for the CH 2Ph ligands in 26) which we assign as

[[N 2P]Zr(CH 2Ph)]+. No proton-phosphorous coupling is observed, leading us to again assign the

stereochemistry of this benzyl ligand as cis to phosphorus. A single TMS resonance is observed

at 0.096 ppm. The 3 1P NMR spectrum displays a broad peak at 22 ppm, close to that observed

for 27. Warming the sample to room temperature results in decomposition in a matter of minutes

as evidenced by 1H and 3 1P NMR. Apparently, no additional stability is imparted to the cation

by the benzyl ligand. [[N 2P]Zr(Me)(Bn)] also reacts with [Ph 3C][B(C 6F5)4 ] in bromobenzene-

d5 at -30 'C, although a mixture of products is formed as determined by NMR at -30 OC,

References begin on page 221.

Chapter V

195



Complexes Containing Multiamidophosphine Ligands

presumably a result of a lack of selectivity towards removal of the benzyl ligand over the methyl,

or vice versa. No increase in cation stability was observed by 3 1P NMR upon attempted

generation of [[N 2P]Zr(Me)][B(C 6F5 )] in C6H 5Cl instead of bromobenzene-d5, unlike the

behavior observed with the species proposed to be [[(2,6-Me 2 PhNCH 2 C H2)2 S]-

Zr(Me)][B(C 6F5 )] .25

Cation formation with phenyldimethyl-substituted complexes was also investigated in the

hope that the phenyl group might stabilize the cation by some Tn-interaction. [PhN2P]Zr( 13CH 3)2

(20) reacts with [Ph 3C][B(C 6F5)4 ] in bromobenzene-d 5 at -30 'C to give a mixture of several

species, as evidenced by 1H, 3 1P, and 13C NMR at this temperature. It appears that the

phenyldimethylsilyl substituents allow for other decomposition pathways to occur rather than

garner additional stability.

Addition of n,n-dimethylaniline to [[N 2P]Zr( 13CH3)][B(C 6F5)4] (27) immediately after it

is generated leads to a new species which can be observed spectroscopically at -30 'C. We

cautiously propose that a base adduct, [[N 2P]Zr( 13CH 3)(NMe 2Ph][B(C 6F5)4 ] (29) is formed,

although other species are present by 3 1P and 13C NMR. Interestingly, the 13CH 3 group in 29

appears as a doublet at 44.7 ppm, 2JCp = 25 Hz. A doublet is also observed in the 3 1P spectrum,

again with a 25 Hz coupling constant. We interpret these data by proposing that the methyl

group in 29 is trans to the phosphine, and the dimethylaniline base is bound in the equatorial site.

Resonances for both free (2.64 ppm) and bound (2.77 ppm) NMe 2Ph are observed in the 1H

NMR spectrum. Although 29 is not formed cleanly, warming to room temperature for 30 min

and re-cooling results in no change in the spectra, thus whatever species are present are much

more thermally stable than "cations" generated in the absence of NMe 2Ph. Attempts to generate

cationic base adducts from [(PhNMe 2H][B(C 6F5)4] and [N2P]ZrR2 complexes directly at room

temperature in C6D5Br were unsuccessful, only decomposition was observed.

Addition of 20 equivalents of 1-hexene to [[N 2 PZr(CH3)][B(C 6F5)4 ] (27) in

bromobenzene-d 5 and allowing the reaction to stand at 0 oC for 1 h results in the formation of

some polymer as evidenced by 1H NMR, although >50% monomer is still present. Longer
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reaction times result in almost no additional polymer. Despite the increased thermal stability of

29, a similarly sluggish reaction with 1-hexene was observed. Both 27 and

[[N 2P]Zr(Bn)][B(C 6F5 )] (28) appear to be effective catalysts for the polymerization of ethylene

in chlorobenzene at 0 oC. A white solid was obtained from the reactions which has not been

characterized, "activities" at -1 atm ethylene are 2.3 x 105 and 5.4 x 104 g/mol-h-atm for 27 and

28, respectively.

P-C Bond Cleavage During the Attempted Synthesis of a [N2P] 2 - Molybdenum Complex

[N2P]Li2 reacts with MoC14(THF) 2 in THF to yield [N2P][NP]Mo(IV) (30) ([NP] 2- =

[TMSNCH 2CH 2 PPh] 2 -) in 5% yield as a diamagnetic, dark orange crystalline solid.

Presumably, the reaction is plagued by the same problems which occur during the synthesis of

[(TMSNCH 2CH 2)3N]MoCl, rupture of the TMS-N linkage and formation of TMSC1. Here, an

additional problem is observed, namely cleavage of one of the P-(CH 2CH 2NTMS) linkages to

yield the [NP] 2- ligand. Two resonances are observed in the 3 1P NMR spectrum, one at 210 ppm

for the phosphide and one at 62 ppm for the phosphine. Both are doublets with 2Jpp = 10 Hz,

consistent with a cis arrangement. Two TMS groups are observed in the 1H NMR at 2.21 and

0.452 ppm in a 2:1 ratio.

An X-ray structural determination of 30 was carried out, and a view of the structure is

shown in Figure 5.3. Table 5.2 contains selected bond lengths and angles, and Table 5.3 contains

the crystallographic data. The molybdenum-phosphine distance (Mo-P(1)) is 2.525(3) A, in the

range normally observed for molybdenum phosphines. 26 The Mo-phosphide distance is -0.2 A

shorter, at 2.223(4) A. Several of the metrical parameters indicate a high degree of steric strain

in the complex. Most notable are the P(1)-Mo-Neq-Si dihedral angles, 131.8 and 118.30. The

TMS groups are thus substantially twisted towards Mo, whereas in 24 they are twisted away

from Zr. 30 is presumably diamagnetic for the same reason as [N3NF]Mo(NMe 2) is, 12 7r-

bonding from the apical amido ligand results in energetically inequivalent dxz and dyz orbitals,

leading to a singlet ground state.

References begin on page 221.

Chapter V

197



Complexes Containing Multiamidophosphine Ligands

Figure 5.3. A view of the structure of [N2P][NP]Mo (30).
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Table 5.2. Selected bond distances (A) and angles (deg.) for [N2P][NP]Mo (30).

Distances (A)

Mo- P(1)

Mo- N(1)

Mo - N(2)

P(1) - C(4)

C(2) - P(1)

N(1) - Si(1)

N(3) - Si(3)

2.525(3)

2.001(9)

2.004(9)

1.837(12)

1.805(13)

1.762(10)

1.781(10)

Mo - P(2)

Mo- N(3)

C(6) - P(2)

P(2) - C(34)

P(1)- C(14)

N(2) - Si(2)

Angles (deg.)

N(1)- Mo- N(2)

N(3) - Mo - P(2)

Mo - N(3) - Si(3)

C(2) - P(1) - C(4)

P(1) - Mo- N(3)

Mo - N(2) - Si(2)

126.6(4)

82.4(2)

122.8(5)

107.2(6)

174.7(2)

126.8(5)

P(1)- Mo- P(2)

N(1) - Mo - P(2)

N(2) - Mo - P(2)

C(2) - P(1) - C(14)

C(6) - P(2) - C(34)

Mo - N(1) - Si(1)

Dihedral Angles (deg.)a

P(1)- Mo- N(1) - Si(1)

P(1) - Mo - N(2)- Si(2)
131.8

118.3

a Obtained from a Chem 3D drawing
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2.223(4)

2.063(10)

1.855(12)

1.796(12)

1.821(13)

1.739(10)

102.74(12)

119.3(3)

111.0(3)

103.7(6)

106.9(6)

129.4(5)
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Table 5.3. Crystallographic data, collection parameters, and refinement parameters for

[N2P]Zr(CH 3)(Bn) (24) and [N2P][NP]Mo (30).

[N2P]Zr(CH 3)(Bn) [N2P][NP]Mo

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal Color

Crystal System

a (A)

b (A)

c(A)
3 (deg)

V (A3)

Space Group

Z

Pcalc (Mg/m 3)
Absorption Coefficient (mm-1)

F000

% (MoKa)

Temperature (K)
Scan Type

0 Range for Data Collection (deg)

Reflections Collected

Independent Reflections

Absorption Correction
R [I > 2a(I)]

Rw [I > 2a(I)1

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (e A- 3)

C24H4 1N2PSi 2Zr

535.96

Siemens SMART/CCD

0.26 x 0.12 x 0.08

Colorless

Monoclinic

13.677 (3)

11.936 (3)

17.646 (3)
96.182 (14)

2863.9(11)

P21/c

4

1.243

0.536

1128

0.71073 A

183 (2)
(1

1.50 to 23.26

8939

3928

None

0.0450

0.0912

1.164

0.0016 (3)

0.373 and -0.332

C27H49MoN 3P2Si 3

657.84

Siemens SMART/CCD

0.38 x 0.12 x 0.12

Orange

Monoclinic

11.2882 (8)

16.6242 (11)

17.8030 (12)
93.5440 (10)

3334.5 (4)

P2 1/c

4

1.310

0.618

1384

0.71073 A

183 (2)
wc

1.68 to 20.00

9797

3112

None

0.0999

0.2507

1.030

n/a

1.753 and -1.028
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Preparation of Complexes Containing the [(C6F5NCH 2CH 2)2PPh]2- Ligand

The low yields observed for the preparations of [N2P][NP]Mo and [N3N]MoCl stand in

stark contrast to the high yields obtained for the preparation of [N3NF]MCI (M = Mo, W)

complexes. 12 We thus became interested in preparing a C6F5-substituted diamidophosphine

ligand in the hope of extending such chemistry towards complexes containing middle transition

metals. PhP(CH 2CH 2NH2)2 - 2HCl reacts with an excess of C6F6 in DMSO in the presence of

K2CO 3 under nitrogen to give PhP(CH2CH 2NHC6F5)2, [N2PF]H2, (31) as a white crystalline

solid which is air-stable enough to be chromatographed on alumina under air. 31 reacts with

Mo(NMe2)4 in pentane to give [N2PF]Mo(NMe2)2 (32). The 3 1P NMR spectrum of 32 shows a

single resonance at 61.6 ppm, -90 ppm downfield from that of 31, and very similar to the

chemical shift for the phosphine ligand in [N2P][NP]Mo. A diastereotopic ligand backbone is

observed by 1H NMR, as well as two dimethylamido resonances. 32 is probably diamagnetic

because 7T-bonding from the apical NMe 2 ligand renders the dxz and dyz orbitals acutely

inequivalent. We propose that the structure of 32 is similar to analogous [N2P]Zr(NMe 2 )2 (15),

as shown in equation 6. 19F NMR spectra show a pattern typical of diamagnetic C6F 5-substitued

complexes in which the rings rotate readily on the NMR time scale, a doublet at -150.9 ppm for

the ortho fluorines and a multiplet at -165.5 ppm for the meta and para fluorines.

C6F5  NMe 2

C6F5 N,,. Mo...

Mo(NMe2) 4  N o NMe 2  (6)
[N2PF]H 2  t

pentane P' Ph

31 32

[N2PF]H2 reacts with MoC14(THF)2 in the presence of triethylamine in THF to give an

orange, paramagnetic species which we formulate as an anionic amido-amine-phosphine

complex, [[PhP(CH 2CH 2NHC6F5)(CH 2CH 2NC 6F 5)]MoC14 ][HNEt3 ]. (33) C, H, and N analyses
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are consistent with this formulation. The 19F NMR spectrum displays five paramagnetic signals

which we assign to the amido C6F5 ring (presumably not rotating on the NMR time scale) and 3

diamagnetic signals (chemical shifts of these fluorines are very similar to those of [N2PF]H2)

which we assign to the amino C6F5 ring. No 3 1P resonance is observed, as would be expected if

the phosphine is bound directly to the paramagnetic center. A band at 3346 cm-1 is observed in

the IR spectrum, assigned as an N-H stretch. The 1H NMR spectrum shows two large, broad

peaks at 1.63 and 1.38 ppm for the HNEt3
+ cation, and eight resonances for the ligand backbone

protons, in two groups of four (presumably each group comes from one ethylene backbone unit).

The chemical shifts of the first group are 15.7, 13.2, 10.7, and 8.8 ppm, and those for the second

are -7.05, -20.68, -23.8, and -38.35 ppm. These high-field peaks are in the range normally

observed for [N3N] and [N3NF]MoX complexes; 12,27 therefore, we cautiously assign them to the

ethylene unit bonded to the amide, and the other, less-shifted set to the amino ethylene unit.

Based on the fact that the 1H and 19 F resonances assigned to the amino ethylene unit are not

significantly shifted, we feel that the most likely structure is that shown in equation 7, with an

C1
C6F5  Cl\ / [HNEt 3]

MoC14 (THF)2  N- Mo- Cl
[N 2PF]H 2  I Cl/t (7)

THF, NEt3

31
C6F5NH

33

octahedral geometry and the amine ligand dissociated. In Cs symmetry, the z-axis is

conventionally perpendicular to the mirror plane. Thus, the two d electrons in 33 reside in the

dxy and dyz orbitals, which are not rigorously degenerate (cf. dxz/dyz in C3v symmetry, which

are). However, the energy difference between them in this case is evidently so small that the

complex remains paramagnetic. RuC12(PPh 3)3 reacts with [N2PF]H2 in the presence of

triethylamine to give a diamagnetic complex. NMR data are consistent with a structure similar to
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that proposed for 33, but we have not yet obtained the ruthenium complex in pure enough form

to verify its composition by elemental analysis.

DISCUSSION

We became interested in preparing a chelating triamido ligand without any protons 3 to

the amides after the observation that a 16 electron tantalum ethylene complex containing the

[N3N]3- ligand rearranges via what is formally an abstraction of one of the triamidoamine ligand

-protons to give a triamido-monoamido product. 3,28 Presumably, replacement of all six P-

protons in a triamidoamine complex by methyl groups would result in a ligand framework less

susceptible to such decomposition reactions. However, we found that hexamethyltriamido

ligands were difficult to prepare, the only success being the low-yield synthesis of

[(C6F5NCMe2CH 2)3P]H 3 (abbreviated as *[N3PF]H3 (3)) from LiPH2 (DME) and n-Ts-2,2-

dimethylaziridine. Attempts to prepare transition metal complexes containing 3 were seriously

limited by the fact that the ligand is to date only available in milligram quantities.

Another continual goal in our laboratories has been the preparation of a chelating,

triamido phosphine ligand in order to investigate the effect of changing the dative donor from

nitrogen to phosphorus. The successful preparation of [(TMSNCH 2CH 2)2PPh]2- ([N2P] 2-) has

allowed us to initiate studies with some phosphine-containing diamido ligands. 10-12 gram

quantities of [N2P]H 2 are available in three steps from phenylphosphine (-60% overall yield).

This has allowed for the synthesis of a class of zirconium(IV) complexes containing the [N2P]2-

ligand. The coordination environment in [N2P]ZrX 2 complexes is unique in several ways. The

phosphine ligand's high barrier to inversion (relative to nitrogen or oxygen) through a planar

phosphorus intermediate imparts stereochemical rigidity to the complexes, thus complexes such

as [N2P]Zr(NMe 2)2 and [N2P]Zr(Me)2 have inequivalent axial and equatorial X ligands on the

NMR time scale at room temperature (c.f. [(t-Bu-o-C6H4 )2 0]ZrX2 ,[1 1] where such inversion is

fast on the NMR time scale). We note that even if the phosphine ligand in an [N2 P] complex

dissociates from the metal, interconversion of axial and equatorial X ligands would still be slow
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due to the fact that a planar phosphine is a high-energy species. This chemical inequivalence of

axial and equatorial ligands stands in contrast to ubiquitous Cp2ZrX2 species, where the X

ligands are related by a mirror plane.

The presence of the phosphine donor in [N2P] 2 - complexes provides a valuable NMR

handle, both for monitoring reactions by 3 1P NMR, and in making stereochemical assignments of

axial and equatorial ligands based on 2JCp and 3JHP values. For [N2P]Zr dialkyls, one of the

alkyls usually has a 2JCp value of -25 Hz, and the other is much lower, < 5 Hz. Trans couplings

through a transition metal center are generally observed to be greater than the corresponding cis

couplings, 29 and we propose that the complexes in this chapter are no exception. For one

complex, [N2P]Zr(trans-Me)(cis-Bn), we were able to verify the stereochemistry predicted by
2Jcp coupling constants by X-ray crystallography. Interestingly, 3JPH values for cis alkyls are

observed to be -6 Hz, and those for trans are < 2 Hz (for mixed alkyl and alkyl-chloride

complexes where such a distinction can be made).

The X-ray structure of 24 displays a long Zr-P distance (2.9343(11) A). At least for the

zirconium complex studied, it appears that changing the dative donor from N to P results in a

relatively weak interaction, possibly because Zr prefers harder donors such as N or O. The

structure of [N2P][NP]Mo, however, shows a molybdenum-phosphine distance of 2.525(3) A,
indicative of a more tightly-bound phosphine ligand. It appears that [N2P] ligands may be more

appropriate for the synthesis of complexes of later transition metals. However, it has generally

been found that TMS-substituted multiamidoamine complexes of metals such as Mo and W have

been difficult to prepare, presumably because of the propensity for Si-N bond cleavage during

the reactions. This problem has been resolved for molybdenum and tungsten complexes by

replacing the TMS amide substituents with C6F5 rings. 12 [N2PF]H2 would thus seem to be a

good choice for the synthesis of complexes of later transition metals, and the preliminary

experiments carried out indicate that this is the case for metals such as molybdenum and

ruthenium.
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Considering the recent interest in using diamido ligands as Ziegler-Natta catalysts (both

with a dative amine donor8 and with no dative donor 9,30 ) and the development of a living system

for the polymerization of 1-hexene with a catalyst containing a dative oxygen, l l we attempted to

generate several cationic zirconium alkyl complexes. Species proposed to be [[N 2P]ZrMe]

[B(C 6F5)4] (27) and [[N 2P]ZrBn][B(C 6F5)4 ] (28) were observed spectroscopically at -30 oC, but

decomposed upon warming to room temperature. Given the observed thermal instability, it is

perhaps not surprising that both species are poor 1-hexene polymerization catalysts at 0 'C.

However, both do generate a white insoluble solid, presumably polyethylene, at activities one or

two orders of magnitude lower than those observed in typical zirconocene/MAO or

zirconocene/MeB(C 6F5)3 systems. 31 The thermal instability of 27 and 28 might stem from the

relatively labile Si-N linkage, decomposition via cleavage of this functionality is now a well-

documented transformation in complexes containing the [(TMSNCH 2CH 2)3N] 3- ligand. 2,3,32

Another possible decomposition pathway is via rupture of the P-(CH2 CH 2NTMS) linkage, as

observed during the synthesis of [N2P][NP]Mo (30). Coordination of the phosphine to a cationic

zirconium center would be expected to activate the P-C bond towards this type of reaction.

Based on the data obtained so far, it seems that diamidophosphine ligands are inferior to

diamido-ether ligands in terms of stabilizing a zirconium cation. The phosphine may also

provide too much electron density to the metal, resulting in a poor catalyst. We feel that the

results with the [N2PF]H2 ligand are more promising in terms of creating a new framework upon

which to build middle transition metal complexes.

EXPERIMENTAL

General Details. All experiments were conducted under nitrogen in a Vacuum

Atmospheres drybox, using standard Schlenk techniques, or on a high vacuum line (< 10-4 torr).

Pentane was washed with HNO3/H 2 SO 4 (5/95 v/v), sodium bicarbonate, H20, stored over CaC12

and then distilled from sodium benzophenone under nitrogen. Regent grade benzene was
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distilled from sodium benzophenone under nitrogen. Toluene was distilled from molten sodium.

Methylene chloride was distilled from CaH2. Reagent grade ether and THF were sparged with

nitrogen and passed through alumina columns. 33 Aldrich anhydrous grade DME was sparged

with argon and brought in the drybox. All solvents were stored in the drybox over activated 4 A

molecular sieves. Deuterated solvents were freeze-pump-thaw degassed and vacuum transferred

from an appropriate drying agent, or sparged with argon and stored over 4 A sieves. NMR

spectra are recorded in C6D6 unless noted otherwise. 1H and 13C data are listed in parts per

million downfield from tetramethylsilane and were referenced using the residual protonated

solvent peak. 2H NMR spectra usually were obtained at 46.0 MHz and are referenced externally

to C6 D6 (7.15 ppm) in C6H6 . Unless otherwise noted, NMR experiments were run in C6D6

solution and 13C and 3 1p spectra were proton-decoupled. Probe temperatures during variable

temperature studies were calibrated with methanol (low T) or ethylene glycol (high T). Coupling

constants are given in hertz, and routine couplings are not listed. Elemental analyses (C, H, N)

were performed on a Perkin-Elmer 2400 CHN analyzer in our own laboratory. Column

chromatography was performed by the method of Still.34

LiPH 2(dme) was prepared as described in the literature.35 All precautions detailed in the

procedure regarding handing PH3 (g) should be followed and the experimental carried out

exactly as stated, including the use of a mercury safety valve and a special gas inlet. We found it

more convenient to destroy excess PH3 by entraining it in a stream of argon and bubbling

through aqueous CuSO 4 rather than by burning. PH 3 (g) is a toxic and pyrophoric species, thus

all operations should be carried out in an efficient fume hood under rigorously anaerobic

conditions. 2,2-Dimethylaziridine was prepared by a modification (given below) of the literature

procedure. 36 It was converted to the n-tosyl derivative as previously described.3 7 Zr(NMe 2)4

was prepared by a literature procedure. 38 DMSO was stored over activated molecular sieves

before use. 13 CH 3MgI was prepared from 13CH 3I (Cambridge Isotopes) and magnesium in

ether. Grignard reagents were titrated with n-propanol using 1,10-phenathroline as an indicator
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before use. Me2Mg was a gift from Dr. Timothy Warren. MoCl4 (THF)2 [37] and Mo(NMe2)4 [39]

were prepared by literature procedures.

Modified preparation of 2,2-dimethylaziridine. A solution of 2-amino-2-methyl-

propanol (100 g, 1.12 mol) in 200 mL water had a solution of 60 mL conc. H2SO 4 in 200 mL

water added. The reaction was heated under argon and the water distilled away until the reaction

temperature reached 115 'C. The distillation was then continued, now under aspirator pressure,

and the reaction temperature slowly increased to 210 'C, at which point the material thickened

and began to darken. It was then cooled to room temperature and the reaction flask broken with

a hammer to remove the solid mass of product. This was broken up with a screwdriver and

ground to a coarse powder in a mortar and pestle. 200 mL of 40% aqueous NaOH was added to

the powder and the dark slurry which formed was distilled. The first 125 mL of aziridine/water

azeotrope was collected, bp 78-100 'C. KOH was added to this distillate to remove the water

and the aziridine was then dried over KOH followed by sodium. The dry aziridine was now

distilled from sodium, bp 72-73 'C, 48.6 g obtained (61%): 1H NMR (CDC13) 8 1.53 (s, 2,

CH2), 1.21 (s, 6, Me2), 0.50 (s, 1, NH).

P(CH2CMe2NH2 )3 (2). To a stirred solution of LiPH2(dme) (7.50 g, 40.3 mmol) in 125

mL THF was added a solution of n-tosyl-2,2-dimethylaziridine (9.08 g, 40.3 mmol) in 125 mL

THF dropwise. After the addition was complete, the reaction was stirred at room temperature for

2 h, at which point 3 1p NMR showed that the primary phosphine was present. The reaction was

cooled to -40 oC and BuLi (2.5 M, 32.2 mL, 80.5 mmol) was added via syringe. After warming

and stirring at room temperature for 10 min, it was recooled to -40 OC and n-tosyl-2,2-

dimethylaziridine (18.2 g, 80.6 mmol) was added as a solid in portions. The reaction mixture

was allowed to stand overnight, the volume reduced to ~ 125 mL, and the reaction was quenched

with water (2.2 mL, 3.1 equiv.). The rest of the THF was removed by rotary evaporation to yield

proposed tosylamide 1 as a light yellow solid.
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A 500 mL round bottomed flask was charged with naphthalene (20.7 g, 161 mmol),

sodium spheres (12.0 g, 524 mmol), and 250 mL DME. The tosylamide was slowly added in 70

mL DME and the reaction stirred overnight. Water (10 mL, 352 mmol) was added slowly via

syringe and the solvents were removed under reduced pressure. The residue was extracted with

-300 mL pentane/toluene (50/50 v/v) and filtered. The insolubles were rinsed carefully with

pentane. The filtrate was stripped on the rotary evaporator and the yellow oil left behind was

distilled using a flame heat source. Naphthalene was removed as the first fraction. A 15 cm

vigereux column was introduced to the distillation apparatus and the product distilled over, bp

105-140 oC (0.065 torr). It was obtained as an air-stable colorless oil. The oil was dissolved in

20 mL pentane and cooled to -40 OC overnight to give the product as white crystals which melt

around room temperature, 3.7 g (37%): 1H NMR (C6D6): 8 1.52 (d, 2JPH = 4.0 Hz, 6, CH2 ),

1.13 (s, 18, C(CH3)2), 0.99 (br s, 6, NH 2). 3 1P NMR (C6D6): 8 -58.0. 13C NMR (C6D6): 8 50.3

(d, 1JpC = 13.8 Hz), 48.3 (d, 2JpC = 13.2 Hz), 32.4 (d, 3JpC = 7.8 Hz). IR (neat, salt plates): cm-1

3336, 3264 (NH2 stretch), 1596 (NH2 bend), 884 (br s, NH wag).

P(CH2CMe2NHC 6 F5)3 (3). A solution of 2 (648 mg, 2.62 mmol) was prepared in 20

mL THF. It was cooled to -40 oC and BuLi (2.5 M, 2.10 mL, 2 equiv.) was added via syringe.

The reaction was stirred for 2 h, cooled to -40' C, and C6F6 (302 gL, 2.62 mmol, 1 equiv.) was

added via syringe. 19F NMR at this point showed no C6F6 . The reaction was re-cooled, two

more equivalents BuLi added, and stirred 45 minutes. It was then cooled again and one

equivalent C6F6 added. After stirring 1.5 hr, it was re-cooled and 2 equivalents BuLi added.

After stirring for 45 minutes, one final equivalent C6F6 was added slowly at room temperature.

The reaction was then stirred overnight and then quenched at 0 OC with water (189 gL, 4 equiv.).

After stirring 15 minutes, the solvents were removed in vacuo. The residue was partitioned

between 50 mL CH 2C12/H 20, washed with brine, and dried over Na2 SO4. The methylene

chloride was removed on the rotovap and the residue subjected to flash chromatography on

A120 3 using 40% CH2C12/hexane as the eluant. The product came off with the solvent front in

the first few fractions along with a brown impurity. It was then recrystallized from minimum
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pentane and isolated as off-white crystals, yield 416 mg (21%). 1H NMR (C6D6): 8 3.12 (br s, 3,

NH), 1.70 (d, 2JPH = 3 Hz, 6), 1.08 (s, 18, C(CH3)2 ). 31P NMR (C6D6 ): 8 -54.6. 13C NMR

(C6D6): 8 144.4, 141.2, 139.9, 138.2, 136.6, 135.4, 121.0 (C6F5), 57.6 (d, JPC = 14 Hz), 45.6 (d,
2Jpc = 13 Hz), 28.7 (d, 3JpC = 9 Hz). 19F NMR (C6D6): -149.7 (d, Fortho, 6), -163.5 (t, Fpara, 3),

-164.0 (t, Fmeta, 6). IR (Nujol mull): 3343, 3309, 1514, 1002, 972. FABMS (m/e) = 746 (M +

1).

n-C6F5-2,2-dimethylaziridine (5). 2,2-Dimethylaziridine (1.00 g, 14.1 mmol),

hexafluorobenzene (3.40 g, 18.3 mmol), potassium carbonate (2.33 g, 16.9 mmol), and 16 mL

DMSO were added to a round bottomed flask. The reaction was heated for 2 days at 120 oC, at

which point 19F NMR showed the C6F 6 had been consumed. It was cooled to room temperature,

poured onto 100 mL water and extracted with 30 mL CHC13 . The chloroform was then washed

twice with water and once with brine to remove all the DMSO. It was dried over Na2 SO 4 and

the chloroform removed in vacuo to yield a brown liquid. This was distilled under aspirator

pressure to give a clear, colorless liquid, bp 80 'C, 400 mg (12%, not optimized): 1H NMR

(CDC13) 8 2.32 (s, 2, CH2), 1.30 (s, 6, Me2). 19F NMR (CDC13) 8 -155 (br s, 2, Fortho), -164.2

(br s, 2, Fmeta), -166.6 (t, 3, Fpara). 13C NMR (CDC13) 8 143.2, 139.9, 137.5, 136.6, 134.2, 126.2

(m, C6F5), 42.2 (CH 2), 41.4 (CMe 2), 22.3 (CMe2).

H2NCH2CMe2 NHTs (7). A 200 mL Fisher porter bottle was charged with n-tosyl-2,2-

dimethylaziridine (3.45 g, 15.3 mmol) dissolved in 15 mL THF. 65 mL ethanol were then added

and the bottle sealed and pressurized with ammonia (22 psi). The volume of the solution

increased to 100 mL over the course of an hour due to absorbed NH 3 and the mixture was stirred

under NH3 pressure for 17 more hours behind a blast shield. The pressure was then released, the

ammonia sparged out, and the ethanol removed in vacuo. The oil which resulted crystallized

after being under vacuum for -~ 1 hr. This solid was recrystallized by dissolving in minimum hot

toluene, hot filtering off insoluble impurities, and adding hexane to the point of precipitation

while hot. Upon slow cooling to room temperature, 2.86 g of white crystalline product was

obtained (77%): 1H NMR (CDC13 ) 8 7.77 (d, 2, TsHortho), 7.26 (d, 2, TsHmeta), 2.56 (s, 2,
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CH 2 ), 2.40 (s, 3, Ts-CH3), 1.11 (s, 6, CMe2), 1.08 (s, 1, NH-Ts). 13C NMR (CDC13 ) 6 142.9

(Ts-Cipso), 140.8 (Ts-Cpara), 129.6 (Ts-Cortho), 127.1 (Ts-Cmeta), 57.0 (CMe 2), 52.6 (CH 2), 25.3

(CMe2), 21.6 (Ts-CH3). IR (CDC13) cm- 1 3288 (br w), 3155 w, 2254, 1470, 1385, 1320. Anal

Calc. for C11H 18N2 0 2 S. Calc.: C, 54.52; H, 7.49; N, 11.56. Found: C, 54.81; H, 7.45; N,

11.37.

HN(CH 2 CMe2NHTs)2 (8). A vial was charged with H2NCH 2 CMe2NHTs (0.75 g, 3.1

mmol) and n-Ts-2,2-dimethylaziridine (1.39 g, 6.19 mmol). DMSO (1.5 mL) was added and the

reaction stirred at room temperature for 2 days. TLC (35% EtOAc/hexanes) showed no

H2NCH 2CMe2NHTs was remaining. The reaction was worked up by pouring onto 100 mL

water and extracting with 60 mL ether. The extract was washed twice with water, once with

brine, and dried over sodium sulfate. The volatiles were removed in vacuo and the residue

purified by flash chromatography on silica (35% EtOAc/hexanes eluant). 0.63 g (44%) of the

desired product was obtained. The less mobile HN(CH 2 C M e2NHTs)(CMe 2CH 2NHTs)

regioisomer could be obtained by continued elution (0.18 g). Characterization data for

HN(CH2CMe2NHTs) 2: 1H NMR (CDC13) 8 7.78 (d, 4, Ts), 7.28 (d, 4, Ts), 5.75 (br s, NH), 2.67

(s, 2, CH 2), 2.40 (s, 6, TsCH3), 1.17 (s, 12, CMe2). FABMS (m/e) = 468 (M + 1).

CICH2CH2(cyclo-NSiMe 2 CH2CH 2SiMe2 ) (9). A 1 L flask was charged with

CICH2 CH 2NH 2 - HC1 (32.3 g, 0.278 mol), triethylamine (128 mL, 0.835 mol, 3.3 equiv.), and

600 mL CH 2C12 (dry solvent is unnecessary). A solution of CIMe2SiCH 2CH 2SiMe 2C1 in 200

mL CH 2 C12 was prepared in the drybox. It was added slowly via dropping funnel to the well-

stirred ClCH2CH 2NH 2 - HC1 slurry over one hour, giving a mild exotherm. The reaction was

stirred overnight and the voluminous NEt 3 - HCl precipitate was filtered off. The CH2C12

solution was evaporated and the residue extracted with hexanes. The NEt 3 - HC1 was also

thoroughly extracted with hexanes and the combined extracts evaporated. Vacuum distillation of

the liquid remaining gave the product as a colorless liquid which clouded slightly upon standing,

bp. 45 oC (100 mtorr), 45.3 g (73%). 1H NMR 8 3.18 (m, 2, CH 2), 3.00 (m, 2, CH 2), 0.665 (s, 4,
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SiCH 2CH 2Si), 0.040 (s, 12, Me 2Si). 13C NMR 8 45.6 (CH 2), 45.1 (CH 2), 8.12 (SiCH 2CH 2Si),

-0.158 (Me2Si).

PhP(CH2CH2 (cyclo-NSiMe 2CH 2CH2 SiMe2))2 (10). In the drybox, a 500 mL Schlenk

flask was charged with 300 mL THF, CICH2CH2 (cyclo-NSiMe 2CH 2CH 2SiMe2) (50.0 g, 0.225

mol), and a stir bar. It was fitted with a septum and brought out to the Schlenk line.

Phenylphosphine (12.4 mL, 0.113 mol) was introduced via syringe. The flask was cooled to -10

'C (ice/acetone bath) and fitted with an addition funnel containing 2.5 M BuLi in hexanes (90.1

mL, 0.225 mol). The butyllithium solution was added dropwise in over 1.5 h. After the addition

was complete, the reaction was warmed to room temperature and stirred overnight. 3 1P NMR

clean conversion to product, which is air-stable enough to allow for workup under air. The

volatiles were removed by rotary evaporation and the heterogeneous residue extracted with

hexanes (200 mL). This solution was filtered through a bed of Celite and the volatiles removed

under reduced pressure, leaving the product as a light yellow oil, 54.3 g, 100%. 1H NMR 6 7.50

(t, 2, Ph), 7.36 (d, 3, Ph), 2.81 (m, 4, CH 2), 1.80 (m, 4, CH 2), 0.655 (s, 8, SiCH2CH 2 Si), -0.0153

(s, 24, SiMe 2 ). 13 C NMR 8 139.1 (d, Phipso), 132.7 (d, Phmeta), 129.1 (Phpara), 128.7 (d,

Phortho), 39.8 (d, 1Jcp = 24 Hz, NCH 2 CH 2P), 34.6 (d, 2JCp = 15 Hz, NCH2CH2P), 8.37

(SiCH2 CH 2Si), 0.19 (Si(CH 3)2). 3 1P NMR (THF) -33.2 (s).

PhP(CH2CH2NH 2)2 * 2HC1 (11). Under air, a 500 mL round-bottomed flask was

charged with PhP(CH2CH2(cyclo-NSiMe 2CH2CH 2SiMe 2))2 (54.3 g, 0.113 mol) and 350 mL

ether. It was cooled on an ice bath. A dilute solution of HC1 was prepared by adding 12 M HCl

(24 mL, 0.29 mol, 2.5 equiv.) to 75 mL water. This was added to the ethereal solution over 5

min and the reaction was stirred overnight. The layers were separated and the aqueous extract

washed with ether (2 x 100 mL). The water was removed by rotary evaporation with a bath

temperature of 60 'C to leave the crude product as an off-white oily mass. Ethanol (800 mL,

sparged with argon) was added and the mixture heated under argon in an 80 'C oil bath for 20

min with good stirring. White microcrystals formed which were isolated on a Btichner funnel.

A second crop was obtained by reducing the volume of the mother liquor to -250 mL, resulting
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in oiling out of more product. Heating this mixture as before led to formation of a second crop

of microcrystals which were filtered off. The product was dried at 50 OC in vacuo to remove the

last traces of EtOH, 19.9 g (65%). 1H NMR (DMSO-d 6) 8 8.22 (6, NH 3+), 7.55 (2, Ph), 7.41 (3,

Ph), 2.78 (br m, 4, NCH 2P), 2.10 (t, 4, NCH2P). 31P NMR (DMSO-d 6) 8 -29.6.

PhP(CH2 CH2NHTMS) 2 (12). In the drybox, a 500 mL round-bottomed flask was

charged with PhP(CH2CH 2NH2)2 - 2HCl (10.0 g, 37.2 mmol) and 300 mL THF. The slurry was

cooled to -40 OC and BuLi (2.5 M in hexanes, 59.4 mL, 149 mmol) was slowly added via

syringe. The reaction was re-cooled several times during the addition. Once all the BuLi was

added the mixture was stirred at room temperature for 2.5 h. It was again cooled to -40 oC and

TMSC1 (9.9 mL, 78.0 mmol) was added via syringe. After stirring at 22 'C for 3 h, the volatiles

were removed in vacuo and the oily residue extracted with 180 mL pentane. Filtration through a

bed of Celite and removal of the pentane under reduced pressure left the product as a brown oil

in quantitative yield, 12.6 g. 1H NMR 8 7.58 (t, 2, Ph), 7.12 (m, 3, Ph), 2.82 (m, 4, NCH 2P),

1.79 (m, 4, NCH 2P), 0.3 (br s, 2, NH), 0.01 (s, 18, Si(CH 3)3). 31P NMR 8 -35.7 (s). 13C NMR 6

139.0 (d, Phipso), 132.7 (d, Phmeta), 129.0 (d, Phpara), 128.8 (d, Phortho), 39.7 (d, 1JCp = 24 Hz,

NCH2CH 2P), 34.6 (d, 2JCp = 15 Hz), 8.37 (SiCH2 CH2 Si), 0.191 (Si(CH3)2).

PhP(CH2CH 2NLiTMS) 2 (13). A 100 mL round-bottom was charged with

PhP(CH2 CH 2NHTMS) 2 (4.00 g, 11.7 mmol) and 70 mL pentane. It was cooled to -40 'C and

BuLi (2.5 M in hexanes, 9.4 mL, 24 mmol) was added. The reaction was stirred at 22 'C for 50

min and the volume reduced to -30 mL. Cooling to -40 OC with seeding led to crystallization of

the product. It was filtered off and rinsed quickly with cold pentane. A second crop was

obtained similarly for a combined yield of 2.54 g (62%). 1H NMR (THF-d8) 6 7.45 (t, 2, Ph),

7.24 (m, 3, Ph), 3.23 (m, 4, NCH 2P), 1.91 (m, 4, NCH 2P), -0.068 (s, 18, Si(CH 3)3). 3 1P NMR

(THF-d8) 8 -29.2. 1 3C NMR 8 143.6, 132.1, 128.8, 128.1 (Ph), 46.2 (d, 1Jcp = 16 Hz,

NCH 2CH2P), 36.4 (NCH2CH2 P), 2.11 (Si(CH 3)3). Several attempts to obtain satisfactory

analytical data for this dilithium salt have failed.
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PhP(CH2CH2NH(SiPhMe 2)2 (14). This ligand was prepared by the same procedure

used for PhP(CH2 CH2NHTMS) 2; using PhP(CH 2CH 2NH2)2 * 2HCI (1.50 g, 5.57 mmol), 70 mL

THF, 2.5 M BuLi in hexanes (8.92 mL, 22.3 mmol), and PhMe 2SiC1 (1.87 mL, 11.2 mmol). The

product was obtained as an oil, 2.51 g (97%). 1H NMR 8 7.56, 7.44, 7.24, 7.11 (m, Ph), 2.82 (m,

4, NCH2P), 1.66 (m, 4, NCH 2P), 0.585 (br t, 2, NH), 0.225 (s, 12, Si(CH3)2).

[N2P]ZrCI2 (16). [N2P]H 2 (2.00 g, 5.87 mmol) was dissolved in 60 mL pentane. The

solution was cooled to -40 oC and Zr(NMe 2)4 (1.57 g, 5.87 mmol) was added as a solid. The

reaction was stirred overnight, filtered to remove a small amount of precipitate, and the volatiles

then removed under reduced pressure. [N2P]Zr(NMe 2)2 was left as an oil. 1H NMR 8 7.35 (tt,

2, Ph), 7.02 (d, 3, Ph), 3.5 (m, 2, NCH2 P), 3.2 (m, 2, NCH2P), 3.13 (s, 6, NMe 2), 3.05 (s, 6,

NMe 2), 1.99 (m, 2, NCH 2P), 1.68 (m, 2, NCH2P), 0.30 (s, 18, SiMe 3). 3 1P NMR 6 -10.5 (s).

The bis(dimethylamido) compound was dissolved in 40 mL pentane and TMSC1 (1.49 mL, 11.7

mmol) was added by syringe. The reaction was stirred vigorously for 10 min and then allowed

to stand for two hours. The off-white crystalline solid which formed was isolated on a frit and

dried in vacuo, 2.36 g (80%). No further purification was necessary, although the complex may

be recrystallized from toluene/pentane mixtures. 1H NMR 8 7.63 (t, 2, Ph), 7.13 (m, 3, Ph), 2.94

(br m, 2, NCH 2P), 2.73 (m, 2, NCH 2P), 1.91 (m, 4, NCH2P), 0.37 (s, 18, SiMe3). 3 1P NMR 8

1.94 (s). 13C NMR 8 133.0, 130.1, 129.0, 125.6 (Ph), 50.0 (d, JPC = 15 Hz, NCH2 P), 38.3 (d,

JCP = 20 Hz, NCH2P), 1.30 (Si(CH 3)3). Anal. Calc. for C16H3 1N2PSi 2ZrC12 : C, 38.38; H, 6.24;

N, 5.59. Found: C, 38.53; H, 6.20; N, 5.52.

[PhN2P]ZrCI2 (18). The complex was prepared by the same method used for

[PhN 2P]ZrCl 2; starting from [PhN2P]H 2 (1.00 g, 2.15 mmol), Zr(NMe2)4 (576 mg, 2.15 mmol),

and 40 mL pentane. [PhN2P]Zr(NMe 2)2 was obtained as an oil. 1H NMR 8 7.74 (d, Ph), 7.23

(m, Ph), 7.03 (m, Ph), 3.5 (m, 2, NCH 2P), 3.19 (s, 6, NMe 2), 3.06 (s, 6, NMe 2), 1.78 (br t, 2,

NCH 2P), 1.60 (m, 2, NCH 2P), 0.57 (s, 6, SiMe2), 0.54 (s, 6, SiMe 2). 3 1P NMR 6 -10.2 (s). The

bis(dimethylamido) compound was dissolved in 20 mL pentane and TMSC1 (546 gL, 4.30

mmol) added by syringe. After 15 min of stirring, the reaction was allowed to stand overnight.
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The off-white microcrystalline product was isolated on a frit, washed with cold pentane, and

dried in vacuo, 1.08 g (80%). No further purification was necessary. 1H NMR 8 7.7 (d, Ph), 7.3

(t, Ph), 7.15 (m, Ph), 7.0 (m, Ph), 3.5 (br m, 4, NCH2 P), 1.6 (br m, 4, NCH 2P), 0.87 (s, 6,

SiMe2), 0.74 (s, 6, SiMe2). Anal. Calc. for C26H35N2PSi 2ZrCl 2 : C, 49.98; H, 5.65; N, 4.48.

Found: C, 50.11; H, 5.31; N, 4.49.

[N2P]Zr(CH 3)2 (19). [N2P]ZrCI2 (260 mg, 0.519 mmol) was dissolved in 15 mL ether.

The solution was cooled to -40 oC and MeMgCl (3.0 M in THF, 346 gL, 1.04 mmol) was added

by syringe. The reaction was stirred for 45 min at room temperature and then the volatiles were

removed under reduced pressure. The residue was extracted with 12 mL pentane for 1 h, filtered,

and the volatiles removed. The product was left as an oil, 220 mg (92%). The complex could

not be crystallized and therefore was not purified further. 1H NMR 8 7.3 (m, 2, Ph), 7.0 (m, 3,

Ph), 3.4 (m, 2, NCH2 P), 3.1 (m, 2, NCH 2P), 1.8 (m, 2, NCH 2P), 1.62 (m, 2, NCH 2P), 0.80 (d,

2JHP = 6 Hz, 3, cis-Me), 0.60 (s, 3, trans-Me). 13C NMR of [N2 P]Zr(13CH 3)2 (ether) 6 35.9

(2JCp = 29 Hz, 1JCH = 113 Hz), 40.9 (2JCp = 2 Hz, 1JCH = 114 Hz). 3 1p NMR 6 -15.7 (s). The

[N2P]Zr( 13CH 3)2 complex was prepared similarly.

[PhP(CH2 CH 2N(SiPhMe2)2]Zr(CH 3)2 (20). [PhP(CH 2CH 2 N(SiPhMe 2)2 ]ZrCI 2 (150

mg, 0.240 mmol) was dissolved in 10 mL ether and the solution cooled to -40 'C. MeMgCl (3.0

M in THF, 160 gL, 0.480 mmol) was added by syringe. A white precipitate formed and after 2

h, 3 1P NMR showed the alkylation was complete. Dioxane (45 gL, 0.53 mmol, 2.2 equiv.) was

added and the resultant precipitate allowed to settle for -15 min. The reaction was filtered

through a short plug of Celite and the ether removed in vacuo. The product was left as a thick

oil, 138 mg (99%). The 13CH 3 complex was prepared similarly from 13CH3MgI. 1H NMR 6

7.73 (m, Ph), 7.18 (m, Ph), 7.0 (m, Ph), 3.41 (m, 2, NCH2P), 3.04 (m, 2, NCH 2P), 1.52 (m, 4,

NCH2P), 0.86 (d, 2JpH = 4.5 Hz, 3, cis-Me), 0.75 (s, 12, SiMe 2), 0.67 (s, 3, trans-Me). 31P NMR

8-15.9 (s).

[N2P]Zr(CH3)(THF)CI (21). [N2 P]ZrCl2 (300 mg, 0.599 mmol) was dissolved in 20

mL ether and the solution cooled to -40 oC in the drybox freezer. MeMgCl (3.0 M in THF, 100
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gL, 0.300 mmol) was added via syringe over 4 min. The solution was placed back in the freezer

for 15 min and then another portion of MeMgCl (100 gL, 0.300 mmol) was added. After stirring

at room temperature for 30 min, the volatiles were removed under reduced pressure. The reside

was extracted with 40 mL pentane for 2 h. The extract was filtered through Celite and the

volatiles removed. Recrystallization from pentane at -40 oC gave the product as white crystals,

140 mg (42%). 1H NMR 8 7.32 (m, 2, Ph), 7.02 (m, 3, Ph), 3.64 (m, 4, THF), 3.2 (m, 4,

NCH 2P), 1.8 (m, 4, NCH2P), 1.33 (m, 4, THF), 0.84 (d, 2JPH = 7 Hz, 3, Me), 0.42 (s, 18, SiMe 3).

31P NMR 8 -0.49 (s). Anal. Calc. for C21H42N2PSi 2C1OZr: C, 45.66; H, 7.66; N, 5.07. Found:

C, 45.54; H, 7.85; N, 5.02.

[N2 P]Zr(CH3 )CI (22). [N2P]ZrCl 2 (350 mg, 0.699 mmol) was dissolved in 20 mL ether

and the solution cooled to -40 oC. Me2Mg (0.82 M in ether, 426 gL, 0.350 mmol) was added by

syringe and the reaction stirred for 1 h at room temperature. The ether was removed in vacuo

and the residue extracted with 40 mL pentane. The extract was filtered through Celite and the

volume reduced to -20 mL. Storage at -40 oC for 15 h resulted in precipitation of the product,

223 mg in two crops (66%). 1H NMR 8 7.3 (m, 2, Ph), 6.95 (m, 3, Ph), 3.25 (m, 4, NCH 2P), 1.8

(m, 4, NCH 2P), 0.9 (s, 3, CH 3), 0.40 (s, 18, SiMe3). 3 1P NMR 6 -1.6 (s). Several attempts to

obtain analytical data for the complex have failed.

[PhP(CH2 CH2NTMS) 2]Zr(i-Bu)CI (23). [N2 P]ZrCl 2 (200 mg, 0.399 mmol) was

dissolved in 15 mL ether and the solution cooled to -40 'C. i-BuMgCl (2.16 M in ether, 185 i[L,

0.399 mmol) was added by syringe and the reaction was stirred at room temperature for 2 h.

Dioxane (41 gL, 0.479 mmol) was added and the precipitate allowed to settle for 30 min. The

mixture was filtered through a short plug of Celite and the volatiles removed in vacuo.

Recrystallization from -1 mL ether layered with pentane yielded the product as a light yellow

powder, 137 mg (66%). 1H NMR 8 7.34 (m, 2, Ph), 7.03 (m, 3, Ph), 3.3 (dt, 4, NCH 2P), 2.1

(sept., 1, CH 2CH(CH 3)2), 1.88 (m, 4, NCH 2P), 1.5 (virtual triplet, 3JPH = 7.7 Hz, 3JHH = 6.8

Hz, 2, CH 2CH(CH 3)2 ), 1.07 (d, 6, CH 2CH(CH 3)2), 0.37 (s, 18, SiMe3). 3 1P NMR 8 1.19 (s).

13C NMR 8 134, 132, 130, 129 (Ph), 70.9 (CH 2CH(CH3 )2 ), 48 (d, NCH 2P), 37.8 (d, NCH 2P),
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29.9 (d, 3JCp = 5 Hz, CH 2CH(CH 3)2 ), 28.2 (s, CH 2CH(CH3)2 ), 1.1 (s, Si(CH 3)3). Anal. Calcd.

for C20H40N 2Si 2PClZr: C, 45.99; H, 7.72; N, 5.36. Found: C, 45.52; H, 7.53; N, 5.37.

[PhP(CH2CH 2NTMS) 2]Zr(Bn)( 13CH 3) (24). [N2P]ZrCl2 (250 mg, 0.499 mmol) was

dissolved in 20 mL ether and the solution cooled to -40 OC. 13CH 3MgI (1.4 M in ether, 423 gL,

0.50 mmol) was added by syringe and the reaction was stirred for 40 min. It was again cooled to

-40 'C and BnMgCl (1.0 M in ether, 500 gL, 0.499 mmol) was added. After stirring for 1.3 h,

dioxane (98 gL) was added. The precipitate was allowed to settle for 45 min and the solution

filtered through a plug of Celite. The ether was removed in vacuo and the crude product

recrystallized from ether, 169 mg (63%). 1H NMR 8 7.4 (t, Ph), 7.1 (m, Ph), 6.8 (t, Ph), 3.25 (m,

2, NCH2 P), 2.82 (d, 3JHP = 9 Hz, cis-CH2C 6H5), 2.61 (m, 2, NCH2P), 1.8 (m, 2, NCH 2P), 1.62

(m, NCH 2P), 0.588 (d, 3, trans-13Me), 0.304 (s, 18, SiMe3 ). 3 1P NMR 8 -6.56 (d), 13C NMR 6

131.9 , 129,7 128.9, 127.4, 122.3, 62.4 (cis-CH2C6H5 , 2JCp = 4.6 Hz, 1JCH =130 Hz), 48.7

(NCH 2P), 38.2 (d, trans-13CH3, 2JCp = 27.9 Hz), 37.7 (NCH 2P), 0.927 (SiMe 3). Anal. Calc. for

C24H4 1N2PSi 2Zr: C, 53.69; H, 7.70; N, 5.22. Found: C, 54.08; H, 7.32; N, 5.17.

[PhP(CH2CH2 NTMS) 2]Zr(Bn)2 (26). [N2 P]ZrCl 2 (150 mg, 0.300 mmol) was

dissolved in 10 mL ether. The solution was cooled to -40 oC and C6 H5CH 2MgCl (1.0 M in

ether, 599 gL, 0.599 mmol) was added by syringe. After 3 h, 3 1P NMR showed that the reaction

was complete. Dioxane (56 gL, 0.66 mmol) was added and the precipitate allowed to settle. The

reaction was filtered through Celite and the volatiles removed under reduced pressure.

Recrystallization from ether/pentane at -40 'C left the product as yellow crystals, 120 mg in two

crops (65%). 1H NMR 8 7.28 (d, 4, Bn), 7.05 (m, 2, Ph), 6.95 (m, 2, Ph), 6.7 (m, 2, Ph), 3.15 (m,

2, NCH 2 P), 2.8 (m, 2, NCH 2P), 2.75 (d, 3JpH = 6.6 Hz, 2, cis-CH2C6H 5), 2.69 (d, 3JHP = 2.4

Hz, 2, trans-CH2C6H5), 1.65 (m, 4, NCH 2P), 0.294 (s, 18, SiMe3 ). 3 1P NMR 8 -7.08 (s). 13C

NMR 8 149.6 (Bn-ipso), 143.5 (Bn-ipso), 135.9 (Ph-ipso), 131.7 (Ph-ortho), 129.3, 128.9, 128.8,

128.7, 127.3, 126.8, 122.3, 120.8, 69.3 (2JCp = 3.2 Hz, 1JCH = 126 Hz, cis-CH2C6H5), 65.9 (2JCp

= 22 Hz, 1JCH = 118 Hz, trans-CH2C6H5), 47.7 (d, NCH2P), 37.1 (d, NCH2 P), 1.40 (SiMe 3).
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Anal. Calc. for C30H45N2PSi 2Zr: C, 58.87; H, 7.41; N, 4.58. Found: C, 58.71; H, 7.55; N,

4.47.

[[N 2P]Zr(Bn)][B(C 6F5)4] (28). A solution of [N2 P]Zr(Bn)2 (16 mg, 26 JImol) in -0.3

mL C6D 5Br was prepared and cooled to -40 OC. A solution of [Ph 3C][B(C 6F5)4 ] (24 mg, 26

gmol) in -0.3 mL C6D5Br was prepared and cooled similarly. The cold solutions were quickly

mixed and added to an NMR tube with a 14/20 joint attached. A needle valve was placed on and

the tube was removed from the drybox and immediately frozen. It was evacuated, flame-sealed,

and transported to the NMR instrument. It was then thawed at - -30 oC and placed in a -30 'C

NMR probe for spectroscopic analysis. 1H NMR (C6D 5Br, -30 oC) 8 7.2 (m, Ph), 6.72 (d, 2,

ortho-Ph), 6.39 (d, 2, ortho-Ph), 3.88 (s, 2, PhCH2Ph), 3.6 (m, 2, NCH2P), 3.25 (m, 2, NCH 2P),

2.3 (m, 2, NCH 2P), 1.95 (m, 2, NCH2P), 0.096 (s, 18, SiMe 3). 31p NMR (C6D 5Br, -30 °C) 8 22

(br s). Within minutes of warming the sample to room temperature, decomposition became

evident in both the 1H and 3 1p spectra.

[[N 2P]Zr( 13 CH3)][B(C6 F5 )4] (27). This cation was observed as described above using

[N2P]Zr( 13CH 3)2 (10 mg, 22 gmol) and [Ph 3C][B(C 6F5)] (20 mg, 22 gmol). 1H NMR (C6D5Br,

-30 oC) 8 7.0 (m, Ph), 3.3 (br m, NCH2 P), 2.1 (br m, NCH 2P), 1.8 (d, 13CH 3CPh3), 0.08 (s,

SiMe3 ). 3 1P NMR (C6 D5 Br, -30 oC) 8 26.8 (s). 13C NMR (C6D 5Br, -30 oC) 8 55.1 (s,

Zr(13CH 3)+), 30.5 (s, 13CH 3CPh 3). Decomposition was evident within minutes of warming to

room temperature, T1/2 at 20 OC = 15 min.

[[N 2P]Zr(13CH 3)(NMe 2Ph)][B(C 6F5)4] (29). This species was prepared as described

above using [N2P]Zr( 13CH 3)2 (10 mg, 22 gmol) and [Ph3C][B(C 6F 5)] (20 mg, 22 gmol). After

mixing, NMe2Ph (2.8 gL, 22 gmol) was added by syringe. The sample was then prepared as

before. NMR spectra indicate more than one species is present at -30 oC, the major species

appears to be the Zr(trans-Me)(NMe2Ph)+ complex. 13C NMR (C6D5Br, -30 oC) 8 44.7 (d, 2JCp

= 25 Hz, trans-13CH3). 3 1P NMR (C6D5Br, -30 OC) 8 -1.1 (d, 2JCp = 25 Hz).

Polyethylene. (a) From [[N 2P]Zr(Bn)][B(C 6F 5)4 ]. A 100 mL schlenk was charged with

[N2P]Zr(Bn)2 (20 mg, 33 .tmol) and 50 mL chlorobenzene. The reaction was cooled to -40 'C
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and a -40 'C solution of [Ph 3C][B(C 6F5)4] (30 mg, 33 tmol) in 4 mL chlorobenzene was added.

The flask was fitted with a septum, removed from the drybox, and attached to the schlenk line. It

was placed in an ice bath and ethylene was introduced with a needle through the septum. The

gas flow was directed just over the surface of the solution and allowed to escape through the

argon manifold. The reaction was stirred vigorously during gas addition. After 4.00 min, the

polymerization was quenched with methanol (1.25 mL). The chlorobenzene was removed by

rotary evaporation and the white solid remaining titruated with methanol. The residual volatiles

were removed by heating at -50 oC under high vacuum overnight. The polymer was obtained as

a white solid, 117 mg (5.4 x 104 g / mol • h).

(b) From [[N 2P]Zr(Me)][B(C 6F5)4]. The procedure is identical to that described above

except that [N2P]Zr(Me) 2 (18 mg, 39 gmol) and [Ph 3C][B(C 6F5 )4 ] (36 mg, 39 tmol) were

employed. Ethylene was introduced for 2.00 min and the reaction quenched as before. 295 mg

of a white flaky solid was obtained (2.3 x 105 g / mol - h).

[PhP(CH2CH 2NTMS) 2][PhPCH2 CH2NTMS]Mo (30). A solution of [N2P]Li 2 (849

mg, 2.41 mmol, 1.7 equiv.) in 20 mL THF was cooled to -40 oC. Solid MoC14 (THF)2 (541 mg,

1.42 mmol) was added and the mixture stirred at room temperature overnight. The volatiles were

removed under reduced pressure and the dark brown solid left was washed with pentane (2 x 5

mL). The insolubles were extracted with 2 : 1 ether : pentane (30 mL). The extract was filtered

through Celite and the volatiles removed. Recrystallization from ether gave the product as dark

orange blocks, 50 mg (6%). 1H NMR 8 7.53 (t, 2, Ph), 7.21 (t, 3, Ph), 7.03 (br m, 2, Ph), 6.82 (br

m, 3, Ph), 4.38 (m, 2, NCH 2P), 3.9 (m, 2, NCH2P), 3.0 (m, 4, NCH2P), 2.0 (m, 4, NCH 2P), 0.40

(s, 9, SiMe3), 0.07 (s, 18, SiMe3). 3 1P NMR 8 209.7 (d, 2Jpp = 9 Hz, phosphide), 62.5 (d, 2Jpp =

11 Hz, phosphine). 13C NMR 8 131.5, 131.4, 129.8, 129.0, 128.8, 126.2 (Ph), 54.4 (br s,

NCH 2P), 52.6 (d, NCH2 P), 37.2 (br s, NCH 2P), 34.7 (d, NCH 2 P), 2.21 (s, TMS), 0.452 (s,

TMS). Anal. Calcd. for C27H49MoN 3P2Si 3 : Calcd.: C, 49.30; H, 7.51; N, 6.39. Found: C,

49.41; H, 7.28; N, 6.35.

References begin on page 221.
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[N2PF]H2 (31). A 100 mL schlenk flask was charged with PhP(CH 2CH 2NH2 )2 - 2HCl

(5.00 g, 18.6 mmol), K2CO 3 (11.6 g, 83.6 mmol, 4.5 equiv.), and 50 mL DMSO. It was then

sparged with argon for 20 min. C6F6 (degassed and dried over 4 A sieves) was then added via

syringe. The reaction was heated at 60 oC for 24 h. As this preparation has not been optimized,

a slightly higher temperature or longer reaction time may increase the yield. The reaction is

conveniently monitored by 19F NMR. The reaction was worked up under anaerobic conditions

since the product decomposed upon exposure to oxygen-containing H2 0. The DMSO solution

was partitioned between 50 mL CH2C12 and 100 mL H20 (both degassed) and washed with 100

mL H20 followed by 100 mL brine. The relatively dry CH2C12 solution is now air-stable

enough to be further dried with MgSO 4 under air and evaporated. Flash chromatography (under

air) on a 10 x 5 cm A12 0 3 (neutral, not activated) column with CH2Cl 2/hexane mixtures as the

eluant gave the product as a white crystalline solid, 2.13 g (22%, not optimized). 1H NMR

(CDC13) 8 7.53 (m, 2, C6H 5), 7.39 (m, 3, C6 H5), 3.65 (br s, 2, NH), 3.40 (q, 4, NCH 2CH 2P),

2.13 (m, 4, NCH 2CH 2P). 19 F NMR (CDC13 ) 8 -160.7 (d, 4, o-C 6F5 ), -165.6 (t, 4, m-C 6F5 ),

-172.7 (p-C6F5 ). 3 1P NMR (CDC13 ) 6 -36.4. 13 C NMR (CDC13) 8 139, 137, 134, 124 (m,

C6F 5), 132.6 (d, JCp = 21 Hz, p-C6H5), 130.2 (s, p-C6H5 ), 128.9 (d, JCP = 8 Hz, m-C6H 5), 43.2

(d, NCH 2P), 29.5 (d, NCH 2P). Anal. Calcd. for C22H1 5N2PF10 : Calcd.: C, 50.02; H, 2.86; N,

5.30. Found: C, 49.86; H, 2.97; N, 5.25.

[N2PF]Mo(NMe2) 2 (32). A solution of [N2PF]H2 (150 mg, 0.284 mmol) in 5 mL

pentane was prepared and cooled to -40 'C. A solution of Mo(NMe2)4 (77 mg, 0.284 mmol) in 5

mL pentane was prepared and cooled similarly. The ligand solution was added to that containing

Mo(NMe 2)4 via pipette over 2 min and the reaction stirred for 2 h. 3 1P NMR indicated

conversion to a new material. Crystallization from -20 : 1 pentane : toluene yielded 75 mg of

the product as a dark solid, (37%, not optimized). 1H NMR 8 7.57 (br t, PPh), 7.17 (m, PPh),

3.5, 3.25, 2.07, 1.55 (2, m, NCHHP resonances), 3.06 (6, s, NMe2), 2.91 (6, s, NMe 2). 19F NMR

8 -150.9 (d, o-C6F 5), -165.5 (m, m- and p-C6F5). 3 1P NMR 8 61.6 (s).
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[[PhP(CH 2CH 2NHC6F 5)(CH 2CH 2NC 6F5)]MoC 4][HNEt3] (33). Solid MoC14 (THF) 2

(108 mg, 0.284 mmol) was added to a stirred solution of [N2PF]H2 (150 mg, 0.284 mmol) in 10

mL THF. Triethylamine (83 gtL, 0.625 mmol, 2.2 equiv.) was added via syringe. The reaction

was stirred overnight at which point 19 F NMR indicated clean formation of the product.

Removal of the volatiles in vacuo left an orange residue which was recrystallized from -2 mL

DME layered with -3 mL pentane, 223 mg orange microcrystalline product obtained (92%). 1H

NMR 8 15.7, 13.2, 10.7, 8.8 (br singlets, PCH 2CH2Namine), 1.63, 1.38 (br singlets, HNEt3),

-7.05, -20.68, -23.8, -38.35 (br singlets, PCH2CH2Namide). 19F NMR 8 -46.5 (br s, C6F 5-

Namide), -54.1 (br s, C6F5-Namide), -130.4 (s, C6F5-Namide), -131.9 (s, C6F5-Namide), -148.4 (s,

C6F5-Namide), -158.0 (s, C6F5-Namine), -164.4 (s, C6F 5-Namine), -173.6 (s, C6F 5-Namine). IR

(Nujol) cm - 1 3346 (NH), 1525, 1503, 1025, 987, 801, 743. Anal. Calcd. for

C28H30C14F 10MoN 3P: Calcd.: C, 38.78; H, 3.49; N, 4.85. Found: C, 38.48; H, 3.74; N, 4.77.

References begin on page 221.

Chapter V

220



Complexes Containing Multiamidophosphine Ligands

REFERENCES

(1) Schrock, R. R. Acc. Chem. Res. 1997, 30, 9.

(2) Schrock, R. R.; Rosenberger, C.; Seidel, S. W.; Shih, K.-Y.; Davis, W. M., in preparation.

(3) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1996, 118, 3643.

(4) Brintzinger, H. H.; Fischer, D.; Miilhaupt, R.; Rieger, B.; Waymouth, R. M. Angew. Chem.

Int. Ed. Engl. 1995, 34, 1143.

(5) Shapiro, P. J.; Bunel, E.; Schaefer, W. P.; Bercaw, J. E. Organometallics 1990, 9, 867.

(6) Sinn, H.; Kaminsky, W. Adv. Organomet. Chem. 1980, 18, 99.

(7) Gu6rin, F.; McConville, D. H.; Vittal, J. J. Organometallics 1996, 15, 5586.

(8) Cloke, F. G. N.; Geldbach, T. J.; Hitchcock, P. B.; Love, J. B. J. Organomet. Chem. 1996,

506, 343.

(9) Scollard, J. D.; McConville, D. H. J. Am. Chem. Soc. 1996, 118, 10008.

(10) Scollard, J. D.; McConville, D. H.; Payne, N. C.; Vittal, J. J. Macromolecules 1996, 29,

5241.

(11) Baumann, R.; Schrock, R. R.; Davis, W. M. J. Am. Chem. Soc. 1997, 119, 3830.

(12) Kol, M.; Schrock, R. R.; Kempe, R. J. Am. Chem. Soc. 1994, 116, 4382.

(13) Freundlich, J. S., unpublished observations.

(14) Stamm, H.; Assithianakis, P.; Buchholz, B.; WeiB, R. Tetrahedron Lett. 1982, 23, 5021.

(15) Merguro, M.; Asao, N.; Yamamoto, Y. Tetrahedron Lett. 1994, 35, 7395.

(16) Onistschenko, A.; Buchholz, B.; Stamm, H. Tetrahedron Lett. 1987, 43, 565.

(17) Issleib, K.; Oehme, H. Chem. Ber. 1967, 100, 2685.

(18) Latesky, S. L.; McMullen, A. K.; Niccolai, G. P.; Rothwell, I. P. Organometallics 1985, 4,

902.

(19) Warren, T. H.; Schrock, R. R.; Davis, W. M. Organometallics 1996, 15, 562.

(20) Fryzuk, M. D.; Mao, S. S. H.; Zaworotko, M. J.; MacGillivray, L. R. J. Am. Chem. Soc.

1993, 115, 5336.

221

Chapter V



Complexes Containing Multiamidophosphine Ligands

(21) Fryzuk, M. D.; Haddad, T. S.; Mylvaganam, M.; McConville, D. H.; Rettig, S. J. J. Am.

Chem. Soc. 1993, 115, 2782.

(22) Fryzuk, M. D.; Love, J. B.; Rettig, S. J.; Young, V. G. Science 1997, 275, 1445.

(23) Schrodi, Y.; Davis, W. M., unpublished results.

(24) Baumann, R., unpublished results.

(25) Turculet, L., unpublished results.

(26) Parkin, G. Chem. Rev. 1993, 93, 887.

(27) Schrock, R. R.; Seidel, S. W.; Misch-Zanetti, N. C.; Shih, K.-Y.; O'Donoghue, M. B.;

Davis, W. M.; Reiff, W. M. J. Am. Chem. Soc. , in press.

(28) Freundlich, J. S.; Schrock, R. R.; Davis, W. M. Organometallics 1996, 15, 2777.

(29) Mann, B. E.; Taylor, B. F. 13 C NMR Data for Organometallic Compounds, Academic Press:

New York, 1981.

(30) Scollard, J. D.; McConville, D. H.; Vittal, J. J. Organometallics 1995, 14, 5478.

(31) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1994, 116, 10015.

(32) Schrock, R. R.; Seidel, S. W.; Zanetti-M6sch, N. C.; Dobbs, D. A.; Shih, K.-Y.; Davis, W.

M. Organometallics , in press.

(33) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.

Organometallics 1996, 15, 1518.

(34) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.

(35) Baudler, M.; Glinka, K. Inorg. Synth. 1990, 27, 227.

(36) Cairns, T. L. J. Am. Chem. Soc. 1941, 63, 871.

(37) Woods, C. W.; Borkovec, A. B.; Hart, F. M. J. Med. Chem. 1964, 7, 371.

(38) Diamond, G. M.; Rodewald, S.; Jordan, R. F. Organometallics 1995, 14, 5.

(39) Bradley, D. C.; Chisholm, M. H. J. Chem. Soc. (A) 1971, 2741.

222

Chapter V



APPENDIX I

Attempts to Gain Evidence for x-Agostic Interactions in

[WCp*(Me) 4][PF 6] and [Cp2Ta(Me) 2][BF 4]

A portion of the material covered has appeared in print:

Maus, D. C.; Copid, V.; Sun, B.; Griffiths, J. M.; Griffin, R. G.; Luo, S.; Schrock, R. R.;

Liu, A. L.; Seidel, S. W.; Davis, W. M.; Grohmann, A. J. Am. Chem. Soc. 1996, 118, 5665.



Appendix I

Studies of [Cp*WMe 41[PF 6 ]

NMR has been used extensively to investigate dynamic processes in liquids and solids

because of the wide range of kinetic time scales that are accessible. Usually these studies involve

analysis of line shapes or relaxation times, which directly yield information concerning the rates

and mechanism of motion. We have been interested in obtaining evidence for an a-agostic

interaction in [Cp*WMe 4][PF 6] (1) for some time. The methyl groups in trigonal-bipyramidal 1

are highly acidic. 1 reacts with triethylamine to give unstable Cp*W(Me) 3(CH 2),1 in which the

methylene protons are grossly inequivalent, presumably as a consequence of an Oa-agostic

interaction 2 with one of the methylene C-H bonds with the metal, a characteristic of some

alkylidene complexes of early transition metals. 3 "Activation" of an a-hydrogen through an a-

agostic interaction could conceivable be the source of the high acidity of [WCp*Me 4 ]+. Solution

NMR studies of 1 indicated that the molecule is fluxional, the equatorial and axial methyl groups

exchange readily on the NMR time scale (k -50 sec- 1 at 25 °C), presumably via a square-pyramidal

intermediate. An X-ray study of 1 verified the trigonal-pyramidal geometry, although disorder

prevented accurate determination of bond lengths.'

A solid-state 13C NMR study of [WCp*(1 3CH3)4][PF 6] showed an unusually slow rate of

hopping for the three protons attached to the axial methyl group (Ea = 26.8 ± 1.7 kJ/mol or 6.4 ±

0.4 kcal/mol). 4 The rate of hopping for protons bound to equatorial methyl groups was

determined by solid-state 2H NMR with [WCp*(CD 3)4][PF6 ] to be 10.9 ± 0.4 kJ/mol (2.6 ± 0.1

kcal/mol). 4 In order to determine if the origin of slowed "hopping" (rotation) of the axial methyl

group compared to the equatorial methyl groups was a result of an a-agostic interaction, a high-

quality crystal structure of 1 was required. In an attempt to circumvent the problems with disorder

seen in structural determinations of 1, crystals of [(,r 5-C5Me 4EtW(Me) 4] [PF 6] (2) were grown

and the X-ray structure solved. The structure of 2 is ordered and of high quality. Two

independent molecules per one molecule of CH2Cl 2 are found in the unit cell. Two views of the

structure are given in Figure 1. Selected bond distances and angles are located in Table 1, and

crystallographic data are located in Table 2.
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C(16)

C(15)

C(11)

C(1 1)

Figure 1. Two views of the structure of one of the independent molecules of [W(9 5 -

C5Me 4Et)(Me) 4 ]+ (2), CH 2C12 and [PF6]- removed. The shaded atom in the structure on the left
is the ring centroid, the view on the right is down the C(17)-W bond.

Table 1. Selected bond lengths (A) and angles (deg.) for (2).

Molecule 1

Distances (A)

2.132(11)

2.114(11)

2.122(11)

2.182(11)

Molecule 2

C(15)-W-C(11)

C(15)-W-C(16)

C(16)-W-C(11)

C(17)-W-C(16)

C(17)-W-C(11)

C(17)-W-C(15)

Angles (deg.)

117.0(5)

111.4(5)

116.9(5)

77.7(5)

75.8(5)

77.6(5)

References are located on page 229.

W-C(11)

W-C(15)

W-C(16)

W-C(17)

2.143(11)

2.114(11)

2.122(10)

2.182(10)

115.5(5)

112.9(5)

116.5(5)

77.0(4)

76.4(5)

77.1(4)

225



Appendix I

Table 2. Crystallographic data, collection parameters, and refinement parameters for

[W(r 5-C5Me4Et)(Me)4][PF 6 ] 0.5 CH 2C12 (2).

Empirical Formula

Formula Weight

Diffractometer

Crystal Dimensions (mm)

Crystal System

a(A)

b (A)

c(A)
V (A3)

Space Group

Z

Pcalc (Mg/m3)

Absorption Coefficient (mm-1)

F00 0

X (MoKa)

Temperature (K)

Scan Type

0 Range for Data Collection (deg)

Reflections Collected

Independent Reflections

Absorption Correction

R [I > 2a(I)]

Rw [I > 2o(I)]

GoF

Extinction Coefficient

Largest Diff. Peak and Hole (eA -3)

C 15.50H30C1F 6PW

580.67

Siemens SMART/CCD

0.32 x 0.32 x 0.18

Orthorhombic

25.462 (2)

25.295 (2)

12.6030 (7)

8117.0 (8)

Pbca

16

1.901

5.952

4528

0.71073 A

188 (2)

0

1.60 to 23.28

30453

5835

None

0.0542

0.1172

1.221

0.000059 (11)

1.209 and -1.359
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The three W-Meeq bond distances in 2 are statistically the same, averaging 2.12 A. The W-

Meax bond length is slightly longer, at 2.18 A. This bond could be longer as a result of steric

repulsion from the equatorial methyls, which are pushed towards Meax by the C5Me4Et ring (Meeq-

W-Meax angles deviate little from 770). The only deviation from local 3-fold symmetry of the

WMe4 core is a marginally smaller value for one of the Meeq-W-Meeq angles (- 112.2' average for

the two molecules) versus the other two such angles (-116.5' average). However, as the view

down the C(17)-W bond in Figure 1 shows, the slightly smaller C(16)-W-C(15) angle is the one

with only one of the cyclopentyl carbon atoms (and its ethyl substituent) projected between the two

methyl groups. Therefore, steric effects alone are sufficient to explain the slight distortions from

local three-fold symmetry observed and the very slightly longer W-Meax bond. The structural

study allows us to conclude that there is no evidence for any interaction between W and a CH bond

in either an equatorial or an axial methyl group in [W(r15-C 5Me4Et)(Me) 4][PF 6]. If we assume that

the structure of a 115-C5Me 5 complex is virtually identical to the structure of a r 5-C5Me 4Et

complex, then we can say that an a-agostic interaction in 1 in the solid state is unlikely. The

slowed rotation of the axial methyl group which was observed by solid-state NMR studies could

be a result of a more crowded steric environment for Meax as compared to the Meeq ligands.

Studies of [Cp 2 Ta(Me) 2 ][BF 4 ]

The studies discussed above on [WCp*Me 4 ][PF6 ] raised a question: would the methyl

group "hopping" rates vary in a similar cationic species, [Cp 2Ta(CH 3)2][BF 4 ] (3)? This complex

is also acidic and is deprotonated by Me 3 P=CH 2 to give structurally characterized

Cp2Ta(CH 2)(CH 3).5 [CP2Ta(CD 3)2][BF 4] (4) and [Cp2Ta( 13CH3)2][BF 4 ] were synthesized and

a solid-state NMR study carried out in order to determine the rates of methyl group rotation. Both

methyl groups were found to hop within the same fast limit, k -1010 sec-1,[ 6] thus no NMR

evidence for an a-agostic interaction was found. A anomaly was found, however, in the solution

NMR data of 3 and 4. The CH 3 groups in 3 are observed by 1H NMR at 0.55 ppm in CD 3CN

solution, and the CD 3 groups in 4 are observed by 2H NMR at 1.3 ppm in CH 3CN. Generally,

References are located on page 229. 227
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the 2H NMR chemical shift of a deuterated compound is close to the 1H NMR chemical shift of the

protio analog, leading us to wonder if the observed inconsistency in shifts is the result of an a-

agostic interaction. A stronger a-agostic interaction would be expected in Cp 2Ta(CH 3 )2
+

compared to Cp2Ta(CD 3)2+. The sign of the chemical shift perturbation which might be expected

is a complicated issue, since an agostic interaction generally results in an upfield shift of the proton

which interacts with the metal center and a downfield shift of the other two protons attached to the

particular methyl group. If an a-agostic interaction is occurring in these complexes, it is

apparently averaged over all six protons (or deuterons) by a fluxional process, since only a single

resonance is observed. A VT NMR study of [Cp2Ta(CH3)][BF 4] showed that the chemical shift

of the CH 3 ligands is virtually temperature-independent from 20 to -80 'C. Thus, we feel that the

chemical shift difference between the 2 H NMR resonance of the CD 3 ligands in

[Cp2Ta(CD3)][BF 4] and the 1H NMR resonance of the CH3 ligands in [Cp2Ta(CH3)] [BF 4] is not

a result of an a-agostic interaction, since a strong chemical shift dependence on temperature would

be expected for an a-agostic proton. It is worth noting that the chemical shifts of the methyl

ligands in [Cp*W(CH 3)4][PF6] and [Cp*W(CD 3)4][PF6 ] are identical at -30 'C (a temperature at

which the spectrum is not complicated by the fluxional process described above).

EXPERIMENTAL

General methods can be found in the main text of the thesis. [W(1 5-C5Me4Et)(Me) 4][PF 61

(2) was prepared by a literature procedure. 7 Isotopically-enriched [Cp2Ta(Me)2][BF4] complexes

(CD 3 and 13 CH 3) were prepared by a method analogous to the literature procedure for

[Cp2Ta(CH 3)2][BF4] 5 using Zn(CD 3)2 or Zn( 13CH3). These dimethylzinc reagents were prepared

from the corresponding isotopically-enriched methyl iodide and Zn/Cu by the sealed tube method. 8

We note several requirements which we found for the sealed tube reaction to proceed satisfactorily.

Copper powder must be activated with HCl before use. Also, the reactions should not be stirred

while heating, stirring was found to result in low yields of the product.

References are located on page 229. 228
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C(122)
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