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Abstract

Exploring and mapping an unknown environment is a fundamental problem, which is
studied in a variety of contexts. Many works have focused on finding efficient solutions
to restricted versions of the problem. In this thesis, we consider a model that makes
very limited assumptions on the environment and solve the mapping problem in this
general setting.

We model the environment by an unknown directed graph G, and consider the
problem of a robot exploring and mapping G. We do not assume that the vertices of
G are labeled, and thus the robot has no hope of succeeding unless it is given some
means of distinguishing between vertices. For this reason we provide the robot with
a "pebble" - a device that it can place on a vertex and use to identify the vertex
later.

In this thesis we show: (1) If the robot knows an upper bound on the number of
vertices then it can learn the graph efficiently with only one pebble. (2) If the robot
does not know an upper bound on the number of vertices n, then E(log log n) pebbles
are both necessary and sufficient. In both cases our algorithms are deterministic.
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Title: Professor



Acknowledgments

The author gratefully thanks Michael Bender, Antonio Fernandez, Dana Ron, and

Salil Vadhan for collaborating on the research presented in this thesis.

The author would like to thank his advisor, Professor Shafi Goldwasser, and Pro-

fessor Oded Goldreich for providing direction in research. The author would also like

to thank his brother, Anant Sahai, and parents Rajeshwar and Jyoti Sahai.



Contents

1 Introduction. 7

2 Preliminaries 15

3 Learning with a Single Pebble 17

3.1 Compressing Closed Paths ........................ 17

3.2 Learning with a Return-Path Oracle . ................. 19

3.3 Orienting Procedures ........................... 20

3.4 Learning with an Orienting Procedure . ................ 22

3.5 Learning the Graph while Building an Orienting Procedure ...... 24

4 Learning without an Upper Bound on n 29

A Extensions 41



List of Figures

1-1 A Combination Lock Graph. .................... .... 10

1-2 A Graph consisting of Two Combination Locks. . .......... . 10

4-1 A Combination Lock with a Tail. ................... . 32



Chapter 1

Introduction.

The problem of exploring and mapping an unknown environment is a fundamental

problem with applications ranging from robot navigation to searching the World Wide

Web. As such, a large body of work has focused on finding efficient solutions to vari-

ants of the problem, with restrictive assumptions on the form of the environment (cf.

[13, 12, 16, 22, 14, 26, 7, 4, 1].) In this thesis, we consider a model that makes very

limited assumptions about the environment, and give efficient algorithms to solve the

mapping problem in this general setting.

A natural way to model the problem is by a robot exploring a graph. The case

where the graph has both undirected edges and labeled vertices can be solved in time

linear in the number of edges by depth first search. Other search techniques [21]

improve on this bound by a constant factor. Unfortunately, many exploration and

mapping problems do not satisfy these constraints. For instance, if the graph repre-

sents a city (having one-way streets) or the Internet, it would contain directed edges.

This alone does not make the problem substantially more difficult, as the problem

with directed edges and labeled vertices can be solved by a greedy search algorithm

whose running time is O(n - m), where n the number of vertices in the graph and m

is the number of edges. More sophisticated techniques [16, 1] yield improved running

times.

Regardless of whether there are directed edges, a more daunting difficulty arises

if vertices are not uniquely labeled. This situation could result from limited sensory



capabilities of a robot or the changing appearance of vertices. If no assumptions are

made on the labeling of the vertices (so that all vertices may appear the same), we

need a way to mark vertices in order to have any hope of mapping the environment.

In this thesis, we model a marking device by a pebble, which can be dropped at a

vertex and later identified and retrieved. This notion of marking is basic and can be

simulated in many situations. It can be shown that a robot provided with a pebble

can map an undirected graph with unlabeled vertices in time O(n -m), by repeatedly

marking nodes and backtracking.' However, if we remove both the assumption that

the graph is undirected and the assumption that the vertices are labeled, then the

existence of an efficient algorithm has remained open.

The main contribution of this thesis is a general mapping algorithm. This algo-

rithm efficiently solves the mapping problem without assuming unique labelings of

the vertices and while allowing the edges to be directed.

The problem. Let G be a strongly-connected directed graph over n vertices, where

the vertices have no labels. The outdegree of each vertex is d,2 and the outgoing edges

at each vertex are numbered from '1' to 'd'.3 The vertices' indegrees are not assumed

to be seen. The robot is placed at an arbitrary starting vertex in G, and at each step

it traverses one of the edges emanating from its current vertex. The robot's task is to

explore and map G efficiently. That is, after walking a polynomial number of steps

(in the size of the graph), it should output a graph G isomorphic to G. As mentioned

above, unless the robot has a tool to help it distinguish vertices, it is condemned to

failure as a cartographer. For example, a robot traveling alone cannot decide whether

G consists of a single vertex or many vertices. A basic tool for the robot is a pebble.

Now, as the robot explores G, it can mark a vertex by dropping the pebble, and it

1In addition to undirected edges and labeled vertices, other simplifying assumptions that can be
made about the environment include geometric structure (such as planarity) or random access (as
on the World Wide Web).

2In fact, identical outdegrees is the worst case, and with minor modifications, our algorithms
work for graphs having arbitrary degrees.

3The assumption that the edges emanating from a vertex are numbered is a local (and weak)
assumption, as opposed to a global assumption that the vertices are labeled. Also, without some
way of distinguishing edges it is not clear how to reach one vertex from another even given a map
of the graph.



can identify the vertex if it finds the pebble later. Upon finding the pebble, the robot

can pick it up. However, because the graph is directed, the robot cannot retrace its

steps to retrieve the pebble.

Bender and Slonim [7] show that a robot given a pebble can explore and map any

graph in exponential time. However, they prove that a robot cannot map graphs in

polynomial time using a constant number of pebbles, when it does not know a bound

on n. This lower bound motivates two questions: (1) How many pebbles are needed

to learn graphs efficiently if n is known? (2) How many pebbles are needed if n is

unknown?

In this thesis we demonstrate that surprisingly few pebbles are needed in both cases.

We show that

* If the robot knows n (or an upper bound ft on n), it can learn the graph with

only one pebble in time polynomial in n (respectively, n^).

* If the robot does not know n (or i), then e(log log n) pebbles are both necessary

and sufficient.

In both cases our algorithms are deterministic. The lower bound of Q(loglog n) for

the case of unknown n holds even for probabilistic algorithms.

Intuition. To understand the difficulties facing the exploring robot, consider the

problem of traversing a graph (i.e., visiting all vertices and edges). Certainly, in order

to map the graph, the robot must visit all vertices and edges. One natural technique

that comes to mind is using random walks. Unfortunately, while for undirected graphs

the expected time until a random walk visits all vertices is polynomial in n, for directed

graphs, this time may be exponential in n and random walks are therefore relatively

ineffective.

Consider, for example, the graph in Figure 1-1. This graph is called a combination

lock graph, because in order to reach the rightmost node va, the robot must discover

the unique sequence of edge labels (the combination) extending from vl to v,. Notice

that in polynomial time, with overwhelming probability, a random walk only visits

a logarithmic number of vertices in the combination lock. More generally, for any



Figure 1-1: A Combination Lock Graph.

polynomial time (randomized) algorithm that does not mark vertices, there exists a

combination lock graph that cannot be fully explored by the algorithm.

Figure 1-2: A Graph consisting of Two Combination Locks.

We now return to the problem of learning with a pebble. Although one (pebbleless)

robot cannot traverse combination locks (efficiently), a robot with a pebble can learn

them using random walks [7].4 However, consider the graph shown in Figure 1-2.

This graph consists of two combination locks, where the end of one combination lock

leads into the beginning of the other. If the robot ever drops its pebble in the top

lock and travels into the bottom lock, then it is doomed. The robot will be stuck

in the bottom combination lock without its pebble, and cannot traverse this lock to

learn it. Notice that once the robot has lost its pebble, knowing the size of the graph

trapping it is not helpful.

4More generally, graphs having high conductance can be learned efficiently [7].



This example illustrates the dilemma facing the robot as it explores the unknown

graph G. The robot must drop the pebble in order to learn new terrain, but when

the robot drops the pebble, it runs the risk of losing it.

Closed paths. To avoid losing its pebble, the robot must know how to return to

it. Thus, before dropping the pebble at a vertex, the robot should know a closed

path containing this vertex. However, such a path may be difficult to obtain. When

n is unknown, the robot can only identify a closed path by dropping the pebble and

finding it again. Thus, we encounter a chicken-and-egg situation. In order to safely

drop the pebble, the robot must find a closed path. But in order to find a closed

path, the robot must drop its pebble.

Now we recognize the tangible benefit of knowing n. By repeating the same

pattern of edges n times, the robot can enter a closed path without dropping its

pebble. For example, if the robot repeatedly follows edges labeled '1', it enters a

cycle after at most n moves. Once the robot knows a closed path, it can map the

subgraph visited by the path using the pebble. However, it is not clear how to harness

this additional power. By repeating one pattern of edges, the robot enters a closed

path and can map one subgraph. Later, the robot may repeat a different pattern

of edges, enter another closed path, and map a second subgraph. Thus, the robot

can map many subgraphs, but it is not obvious how to piece these maps together.

This is because the robot has little information about how the subgraphs overlap and

interconnect. As a result, finding closed paths permits the robot to drop the pebble,

map a (small) portion of the graph and retrieve the pebble, but does not solve the

mapping problem.

In order to solve the mapping problem, we use an algorithmic tool that we call

an orienting procedure. An orienting procedure allows our algorithms to construct a

limited number of maps. Instead of trying to piece these maps together, the algorithm

expands them separately until one maps all of G. This expansion is possible because

by executing the orienting procedure, the robot can recognize particular vertices in

the graph that are associated with the maps.



Orienting procedures. Intuitively, an orienting procedure for a graph G leads the

robot around the graph and ultimately leaves the robot at a vertex it "recognizes".

The robot recognizes this vertex by observing the output produced by the procedure.

More precisely, if the robot sees the same output in two different executions of the

procedure, then both times it ends up at the same vertex.5 The notion of orienting

procedures is analogous to the notion of (adaptive) homing sequences in automata

theory [20]. It is closely related to the notion of two-robot homing sequences intro-

duced by Bender and Slonim [7]. In the context of learning, homing sequences were

first applied by Rivest and Schapire [26, 25]; they were used for learning environments

modeled by finite automata.

We show that given an orienting procedure, the robot can build maps of subgraphs

containing the ending vertices of the procedure. Since the robot is not provided

with an orienting procedure, it builds maps using a partially-constructed orienting

procedure, which it gradually improves. Each map is associated with a different

output of the procedure. There is a difficulty, however, in using a partial orienting

procedure. Namely, the underlying graph may look different from what the map

associated with the procedure's output suggests. As a result, the robot could become

disoriented and lose the pebble.

A central idea in our algorithms is how to avoid losing the pebble while using mis-

leading information about the graph. The algorithms employ a two-tiered structure of

the cycling technique mentioned above. At the lower level, the robot uses the cycling

technique to verify safely whether the underlying graph is consistent with its map.

If verification fails the robot is able to improve the partial orienting procedure. At

the higher level, the robot uses a generalization of the cycling technique to arbitrary

deterministic procedures (instead of edge-label patterns). This generalized cycling

technique allows the robot to find closed paths that visit increasingly large portions

of G, until all of G is visited and mapped.
5Actually, the robot may be at vertices equivalent under automorphism, but we avoid this issue

in the introduction.



Extensions. Our results generalize to the case in which the observed labeling of the

edges at the robot's current vertex is a function of the robot's previous vertex. This

models the situation that arises when navigating in a city, where the relative location

of the streets exiting an intersection is determined by the direction from which the

intersection was entered. Some intuition is given in the Appendix.

Related work. Our work is most directly related to the work of Bender and

Slonim [7]. Bender and Slonim show that two cooperating robots can explore and map

unknown directed graphs with unlabeled vertices in polynomial time. The robots do

not require any prior knowledge of the size of the graph. Bender and Slonim demon-

strate that two robots are strictly more powerful than one robot with O(1) pebbles.

They prove that one robot with a constant number of pebbles cannot (efficiently)

learn arbitrary directed graphs without knowing an upper bound on the number n of

vertices. They conjecture that the same holds when n is known; our results disprove

this conjecture. Our O(loglogn)-pebble algorithm (for unknown n) can be simu-

lated by two robots. This yields a deterministic alternative to Bender and Slonim's

randomized two-robot algorithm."

Most early work on graph exploration assumed that the robot is a finite automa-

ton. Rabin [23] first proposed the idea of providing the automaton with pebbles to

help it explore. This led to a body of work examining the number of pebbles needed

to explore various environments [28, 13, 12, 3, 24]. Deng and Papadimitriou [16) pro-

pose and study the problem of exploring an unknown directed graph having labeled

vertices. Albers and Henzinger [1] give improved algorithms for this problem. These

works study exploration from the perspective of competitive analysis. The results are

stated in terms of the deficiency of the graph (i.e., the minimum number of edges to

be added to make the graph Eulerian). Betke, Rivest, and Singh [9] and together with

Awerbuch [4] study the problem of piecemeal learning undirected labeled graphs. In

the piecemeal learning problem the robot is required to return to its starting position

periodically.

6In light of our results and those of Bender and Slonim, we see that a friend is only worth log log n
pebbles.



Rivest and Schapire [26, 25] study the problem of learning environments modeled

by finite automata. Here, an environment is represented by a directed graph, in which

each vertex has one of two (or constant) possible labelings. The robot has learned

the environment (automaton) when it can predict the label of any vertex (state)

reached on an arbitrary walk. Hence, if the automaton is irreducible, then the robot

actually learns the topology of the underlying graph. Their algorithms (with the

exception of one, for permutation automata) rely on a teacher. The teacher supplies

counterexamples to the robot's hypotheses. Variants of this problem that do not rely

on a teacher are studied in the following works [14, 18, 27, 17]. We note that Dean

et. al. [14] apply a cycling technique related to ours for different purposes.

Exploring and navigating in geometric environments is studied extensively. A

sample of papers includes [5, 22, 15, 11, 6, 10, 8, 19, 2].



Chapter 2

Preliminaries

Let G = (V, E) be the unknown directed graph the robot explores and maps. Suppose

that the graph is strongly connected and that all the vertices of G are unlabeled and

have (the same) outdegree d. Let the edges emanating from each vertex be labeled by

distinct indices in {1,..., d} and denote an edge from u to v with label a by (u, a, v).

Let n = IVI and let i~ be an upper bound on n.

The exploring robot starts at an arbitrary vertex of G. The robot has a single

pebble.' At each time step, the robot may traverse any outgoing edge from the vertex

it is at. In addition, the robot may drop the pebble at the vertex. or pick up the pebble

that it has previously dropped at the vertex.

We say that a graph M = (VM, EM) is isomorphic to G (denoted, M = G) if there

exists an isomorphism between the two graphs that preserves edge labels. Namely,

there exists a one-to-one and onto mapping f : VM - V, such that the following

holds: For every two vertices w and z in VM, there is an edge labeled a from w

to z in M, if and only if there is an edge labeled a from f(w) to f(z) in G. Let

wo and vo be distinguished vertices in M and G, respectively. We use the notation

(M, wo) = (G, vo0 ) to say that there exists an isomorphism f between M and G such

that f(wo) = vo. We say that (M, wo) is consistent with (G, vo) if there exists a

subgraph G' of G containing vo, such that (M, w0o) (G', vo).

We say that the robot at vertex v in G has learned the graph G when it outputs

1In Chapter 4 we consider a robot having a source of pebbles.



a graph G together with a vertex i in G such that (G, i~) - (G, v). Since in each time

step the robot traverses a single edge, the running time of the algorithm is the number

of moves the robot makes. Though computation time is ignored in this definition, we

note that the total computation time of our algorithms is polynomial in the size of

the graph.



Chapter 3

Learning with a Single Pebble

In this chapter we present our algorithm for learning efficiently any graph using a

single pebble and knowledge of i. We start (in Section 3.1) by describing an important

subroutine of our algorithm, which we call path compression. The robot executes this

subroutine (using the pebble) to map subgraphs of G that are visited by closed paths

known to the robot. In Section 3.2 we show that the robot can learn G if we assume

the robot has access to a return-path oracle for G. The robot can query this oracle

from any vertex in the graph and receive a sequence of edges that leads it back to its

start vertex. In the following sections we progressively weaken this assumption. In

Section 3.3 we formally define an orienting procedure and describe how to devise such

a procedure based on procedures for distinguishing between vertices. In Section 3.4

we replace the assumption that the robot has access to a return-path oracle with the

assumption that it knows an orienting procedure for G. Finally, in Section 3.5 we

show how the robot can use knowledge of ft to explore and learn the graph while

building an orienting procedure on its own.

3.1 Compressing Closed Paths

Here we present an essential building block of our algorithms. Let the robot be at

vertex v in G. Assume the robot knows a closed path in G that starts (and ends) at

v. The path visits a subgraph G' of G. Namely, G' consists of all vertices and edges

traversed along the path. Since the path may visit the same vertices several times,



G' is not necessarily a simple cycle. In the path compression procedure the robot

uses the pebble to identify repeating vertices on the path and construct a graph M

isomorphic to G'.

More precisely, let path = al,..., k be a sequence of edge labels corresponding

to a closed path starting (and ending) at v. Let u0 , u l ,..., uk be the vertices in G

visited along the path, where uo = Uk = v. The robot maintains a list of length k + 1

where ultimately the i-th entry in the list identifies the i-th vertex occurring on the

path in G. Initially the list is (wo, A,..., A, wo), where A means "unidentified." The

goal of the robot is to replace all "unidentified" entries with vertex names.

The algorithm proceeds in at most n stages, each starting and ending with the

robot and the pebble at v. In the first stage, the robot drops the pebble at vertex v

and follows the entire closed path; for each i such that the robot observes the pebble

after i steps (i.e., at the vertex reached by traversing 1a,... ,aoi), the robot replaces

the i-th entry in the list with wo. In the j-th stage, let t be the smallest index such

that the t-th entry in the list is A. The robot traverses al,..., at, and after the t-th

step drops the pebble at the vertex reached. Then it replaces the t-th entry with wj_ 1

(i.e., a new vertex name). As in the first stage, it traverses the rest of the closed path

(and returns to v). For each i such that the robot observes the pebble after i steps,

the robot replaces the i-th entry in the list (which must be a A) with wj-1. After

returning to v, the robot follows path once more to pick up the pebble.

The algorithm maintains the property that the same label wj appears in places k

and k' in the list if and only if the k-th and k'-th vertices on the closed path in G are

the same. When the list is completed, the robot constructs a map M in accordance

with the list and the edge labels in path. Namely, the vertices of M are the vertices

in the list, and if wj and wj, appear in places i and i + 1 in the list, then there is an

edge (wj, ai+l, w,) in M.

Lemma 1 Let v be a vertex in G and path be a sequence of edge labels that corre-

sponds to a closed path in G starting and ending at v. Let Gpath be the subgraph of

G visited by path. The path compression procedure runs in time O(n. I pathl) and

outputs a graph M such that (M, wo) c (Gpath, v).



3.2 Learning with a Return-Path Oracle

In this section, we assume that the robot is given access to a return-path oracle.

Namely, at any time step it can query the oracle and receive a sequence of edge labels

that returns the robot to a particular vertex vo0.

We show how the robot can learn G by querying the oracle and using repeated

applications of the path compression procedure. The return-path algorithm proceeds

in at most n-d = IEI stages. In each stage the robot learns at least one new edge

in G. In the i-th stage, the robot constructs a strongly connected map Mi having a

designated vertex wo. The initial map, M0 , consists only of the vertex w0 (and no

edges). The final map is the output, G, of the algorithm. The algorithm maintains

the invariant that (Mi, wo) is consistent with (G, vo) (where consistency is defined in

Section 2). The algorithm associates a closed path path(Mi) with each map Mi. This

path starts and ends at wo and passes through all vertices and edges in Mi. Since Mi

is strongly connected, the robot can easily compute such a path of length O(n 2d).

We say that a vertex w in a map Mi is finished if it has d outgoing edges in Mi.

Otherwise it is unfinished. In the i + 1-th stage the algorithm augments the map

Mi with a new edge emanating from an unfinished vertex in Mi and perhaps other

vertices and edges. This is done as follows. Let w be an unfinished vertex in Mi

and let a be the label of a missing edge from w. Let explore(Mi) be a sequence of

edge labels connecting w0o to w, concatenated with a. The robot performs the walk

corresponding to explore(Mi) in G starting from vo. It then queries the return-path

oracle. Let the return path that the oracle provides be called reti. The robot returns

to vo using the path reti. Then it compresses the closed path

pathi+1 = path(Mi) o explore(Mi) o reti .

The algorithm lets Mi+l be the resulting map. By Lemma 1, we know that (Mi+l, wo) =

(Gpath,+l, vO). Since path±+ contains path(M), Mi+, contains Mi as a subgraph; by

the choice of w and a, Mi+l also contains at least one new edge (the edge labeled a

going out of w).



Note that the time complexity of this algorithm can be improved. However, the

above formulation serves as a basis for subsequent algorithms (that do not rely on a

return-path oracle). We obtain the following lemma.
Lemma 2 Let £ be the length of the longest return path provided by the oracle. The

return-path algorithm runs in time O(n 2d. (n2d +e)) and outputs a map G isomorphic

to G.

3.3 Orienting Procedures

Intuitively, an orienting procedure for a graph G guides the robot around the graph

and ultimately leaves the robot at a vertex it "recognizes." We note that an orienting

procedure does not lead the robot back to a particular vertex. Hence, assuming an

orienting procedure is weaker than assuming a return-path oracle. Before we define an

orienting procedure formally, we explain the notion of equivalence between vertices.

We say that two vertices u and v in G are equivalent, denoted u - v, if (G, u) r (G, v),

i.e., there exists an automorphism of G mapping u to v.

Definition 1 An orienting procedure op for a graph G has the following properties.

1. It determines the robot's actions (i.e., what edge labels it traverses and when it

drops and picks up the pebble).

2. The robots starts and ends with its pebble, regardless of the starting vertex.

3. The procedure is deterministic.

4. The procedure returns an output. The output is a function of when the robot sees

the pebble.

Notice that because the procedure is deterministic, every time the robot executes

the orienting procedure starting from any fixed vertex v in G, it returns the same

output and finishes at the same final vertex. Thus, an orienting procedure has at

most n outputs.

5. Let output(op, v) be the output of the procedure op when started at vertex v, and

let final(op, v) be the final vertex reached. An orienting procedure guarantees that

for every u and v in G



output(op, u) = output(op, v) == final(op, u) -- final(op, v).

Note that the converse is not guaranteed. Namely, the procedure may end at the

same vertex with two different outputs.

We show how to build an orienting procedure using distinguishing procedures for

inequivalent vertices in G.

Definition 2 Let u and v be two inequivalent vertices in G. A distinguishing proce-

dure dp,v for u and v has the following properties.

1-4. As in Definition 1.

5. output(dpUv,, u) = output(dpU, , v).

Notice that a distinguishing procedure differentiates between starting vertices whereas

an orienting procedure differentiates between ending vertices. In addition, a distin-

guishing procedure differentiates between a single pair of starting vertices whereas an

orienting procedure differentiates among all possible ending vertices.

Every orienting procedure op that we consider can be viewed as a tree Top in

the following sense: Each leaf in Top corresponds to a different output of op. The

internal nodes of Top are distinguishing procedures. The branches emitting from a

node are labeled by the possible outputs of the distinguishing procedure. Leaves are

labeled by the sequence of outputs on the branches leading from the root to the leaf.

Consider all vertices in G that the robot may end at when op terminates with output

A at a leaf (A; denote this set of vertices by reach(A). Property 5 dictates that all

vertices in reach(A) are equivalent.

We can build an orienting procedure of the above type in stages, extending the tree

in each stage. Initially we let our candidate orienting procedure cop be the empty

procedure, i.e. the robot makes no actions, and the tree Tcop has a single leaf.

Assume inductively that cop preserves properties 1-4 and has k possible outputs (so

that Tcop has k leaves). If cop is not yet a complete orienting procedure, then for

some output A corresponding to leaf (A there exist inequivalent vertices u and v in



reach(A). Let dp,,v be a distinguishing procedure for u and v. We replace the leaf (A

with dp,,. Since output(dpV,, u) = output(dpU,,, v), the new tree has at least k + 1

leaves. Therefore, the modified cop has at least k + 1 outputs. Since an orienting

procedure has at most n different outputs, we obtain an orienting procedure after

at most n - 1 stages.' It can be shown that for every pair of inequivalent vertices

there exists a distinguishing procedure with running time O(n3 d). Hence, every graph

has an orienting procedure with running time O(n4d). In Section 3.5, we exhibit an

algorithm in which the robot devises distinguishing procedures and builds an orienting

procedure while exploring the graph.2

3.4 Learning with an Orienting Procedure

In this section we assume that the robot has a prespecified orienting procedure op

for the graph G. For ease of the presentation, we assume throughout this section

that the graph has no automorphisms (and hence no vertices are equivalent). This

assumption can easily be removed here and is not used in later sections.

By the above assumption, for each possible output A, the set reach(A) (defined in

the Section 3.3) contains a single vertex, which we denote VA. With each output A,

the algorithm associates a map M(A), which is constructed as the algorithm proceeds.

The map M(A) contains a designated vertex wo(A). The algorithm ensures that each

M(A) is strongly connected and maintains the following invariant:

INVARIANT 1 (orienting procedure): For every output A of op, (M(A), wo) is consis-

tent with (G, vA)

Learning proceeds in at most n2d phases. In each phase, some map M(A) is

augmented with at least one new edge. We say that a map is finished if all its

vertices are finished. The algorithm terminates when some map M(A) is finished, in

which case it outputs M(A). We use the shorthand path(A) to represent path(M(A))

and explore(A) to represent explore(M(A)), where path(.) and explore(.) were

'For the purposes of this construction, it actually suffices to relax the definition of a distinguishing
procedure to allow either output(dp ,,, u) - output(dpU,,, v) or final(dp,,,, u) = final(dp,~, v).

2However, our algorithm may terminate (correctly) before the orienting procedure is complete.



defined in Section 3.2. Let Gpath(A) be the subgraph of G visited by path(A) when

starting from VA. In each phase the algorithm uses the orienting procedure to find a

closed path satisfying the following:

1. For some output A, the path starts and ends at VA-

2. The path visits all of Gpath(A) and at least one additional edge.

The robot compresses this closed path and lets M(A) be the resulting map.

To find a closed path satisfying the above properties the robot does the follow-

ing. Starting from its current vertex, it executes the orienting procedure, observes

its output A1 , and follows path(Al) o explore(A). It then executes the orienting

procedure again, observes its output A2, and follows path(A2) o explore(A 2). The

robot repeats the above until it observes an output Aj that it has previously seen

(i.e., Aj = Ai for i < j). Note that some output must reappear after at most n + 1

repetitions (though the robot need not know n). At this point the robot has dis-

covered a closed path that starts and ends at VAj. Furthermore, this closed path

starts with path(A) o explore(Ai), and hence visits all of Gpath(Ai) and at least

one additional edge. Informally, since the robot does not know to which vertex it

will return, it "prepares" all vertices VA for the possibility. It does so by following

path(Ai) o explore(Ai) from each VAi.

Let T(op) be the running time of op. Since for every map M(A), Ipath(A)I =

O(n2d), and

jexplore(A)l < n - 1, the length of the closed path found is O(n - (T(op) + n2d)).

By Lemma 1, the closed path can be compressed in time O(n 2 - (T(op) + n2d)). We

obtain the following lemma.

Lemma 3 A robot with a single pebble can learn any strongly connected graph G

using an orienting procedure op for G in time O(n4 d - (T(op) + n2d)).



3.5 Learning the Graph while Building an Orient-

ing Procedure

In this section we show that a robot having a single pebble can efficiently explore and

map any strongly-connected directed graph if it knows an upper bound f on the size

of the graph. Recall that if the robot does not know ft then this task is impossible.

The structure of the algorithm is similar to the structure of the algorithm described

in Section 3.4. Since the robot does not have a real orienting procedure it uses a

candidate orienting procedure cop. In each phase, for some output A of cop the

algorithm either (1) replaces M(A) with a new, larger M(A) or (2) discovers a

distinguishing procedure dp.,, for some u and v in reach(A). In the latter case it

improves cop using dp,, (as described in Section 3.3). Since the improved cop will

never again output A, the algorithm discards M(A). The algorithm terminates when

some M(A) is finished, in which case it outputs M(A). We show that the algorithm

maintains the following invariant, which is a relaxation of Invariant 1.

INVARIANT 2 (candidate orienting procedure): For every output A of cop there exists

a vertex u E reach(A) such that (M (A), wo (A)) is consistent with (G, u).

In particular this invariant ensures that the finished map is isomorphic to G.

In Section 3.4 we had the property that reach(A) consisted of a single vertex vA.

This provided a method for the robot to identify closed paths that start and end

at some VA. Here, this method does not work since reach(A) may contain several

vertices (equivalent or not equivalent). Therefore, the robot could observe output A

twice without being on a closed path. The robot's knowledge of h combined with the

following observation suggests a remedy for this problem - that is, how to find a

closed path that starts and ends at a vertex u in some reach(A).

Observation 1 Let f : V - V be any deterministic function. Then for every

vertex v E V, the sequence v, f(v), f(f(v)), ... becomes cyclic within the first n

applications of f.

Suppose the robot repeats the following: it executes cop, observes its output A,

and follows path(A) o explore(A). Then after at most ft repetitions it has entered a



cycle. We later show how after another 2fi repetitions it can find a closed path that

starts and ends at a vertex u in reach(A) for some output A.

Suppose the robot runs the algorithm from the previous section with the enhance-

ment above. The robot can now find closed paths, but the algorithm still has a serious

flaw. Consider a map M(A) that results from compressing a closed path that starts

and ends at u E reach(A). Assume that in a subsequent stage in the algorithm, the

robot obtains a new M(A) by compressing a closed path that starts and ends at

u' E reach(A). If u' - u then the argument that the new M(A) is larger than the old

M(A) holds as before. However, if u' 0 u then we can claim nothing about the size or

structure of the new M(A). This is because (old M(A), wo(A)) may not be consistent

with (G, u'). Hence, the argument that the new M(A) is bigger than the old M(A) is

no longer valid. This motivates the need for a map verification procedure.

Map Verification. Suppose the robot is at vertex v in some reach(A). We would

like a procedure to verify that (M(A), wo(A)) is consistent with (G, v). This is not

difficult if we allow the robot to lose its pebble. In particular the robot hypothesizes

that path(A) corresponds to a closed path in G starting at v. Then the robot attempts

to compress path(A). If path(A) is not a closed path starting from v and the robot

loses the pebble, then clearly (M(A), wo(A)) is not consistent with (G, v). Otherwise,

the robot compares M(A) to the map resulting from compressing the closed path.

Since we cannot allow the robot to lose the pebble (or else it will not be able to

learn the graph), we must modify the above procedure. The new procedure, described

below, performs a weaker form of verification. We later show that it nonetheless meets

the needs of the algorithm.

1. The robot starts from v and follows path(A) h times.

Clearly, if (M(A), wo(A)) is consistent with (G, v), then the robot ends at v. How-

ever, even if (M(A), wo(A)) is not consistent with (G, v) then by Observation 1 we

know that the robot has entered a cycle.

2. Next the robot drops the pebble at its current vertex v' and follows path(A) once.

e If the pebble is not at the vertex reached, then verification fails. To retrieve



the pebble, the robot continues repeating path(A) until it finds the pebble.

Otherwise, the robot compresses path(A), which it has now identified as a

closed path, starting from v'. If the resulting map differs from M(A) then

verification fails. Otherwise verification passes.

We refer to this procedure as ver(A).

Note 2 There are two situations in which ver(A) passes:

1. (M (A), wo(A)) is consistent with (G, v), or

2. (M(A), wo(A)) is not consistent with (G, v), but (M(A), wo(A)) is consistent with

(G, v').

If verification fails, then because of Invariant 2 ver(A) is a distinguishing proce-

dure. This procedure distinguishes between v and the vertex u in reach(A) such that

(M(A), wo(A)) is consistent with (G, u). Since for every map M(A), the length of

path(M(A)) is O(n 2d), the running time of ver(A) is O(ft -n 2d). We are now ready

to describe the algorithm.

The Algorithm. The algorithm proceeds in at most 2n 2d phases. Initially, its can-

didate orienting procedure cop is the empty procedure (as described in Section 3.3).

In each phase:

1. To enter a closed path, the robot repeats the following ft times.

(*) The robot executes cop and obtains an output A. If this is the first appearance

of output A then the algorithm creates a new map M(A) consisting of a single

vertex wo(A). Next the robot executes ver(A) to verify the map M(A).

* If ver(A) fails, then ver(A) is a distinguishing procedure between a pair

of vertices in reach(A). The robot uses this distinguishing procedure, which

outputs PASS or FAIL, to improve cop (as described in Section 3.3). Thus,

the output of cop is in {PASS, FAIL}*. Because of the extension to cop,

cop will never again output A, so the robot discards M(A). The robot

stops repeating (*), skips stages 2-4, and goes to the next phase with the

improved cop.



* Otherwise (ver(A) passes), the robot follows explore(A). Note that by

definition of ver(A), the robot follows explore(A) starting from a vertex u

such that (M(A), wo(A)) is consistent with (G, u).

The subroutine (*) can be viewed as a function taking the vertex at which the

robot starts to the vertex at which it finishes. By Observation 1, we know that

after ft repetitions of (*), the robot enters a closed path consisting of some number

of executions of (*).

2. The aim of this stage is to determine the closed path the robot has entered.3

To determine this closed path, the robot repeats (*) another 2ii times. Let the

sequence S of outputs observed be A1,..., A2f. The robot finds the smallest p

such that S is composed entirely of periodic repetitions of the last p outputs of

S. More precisely, for all i, A2f-i = A2A-(imodp). Let seq be the sequence of edge

labels traversed in

copover(A2,Ap+l)oexplore(A 2Ap+l )o.. ocopover(A2M)oexplore(A2A).

By the minimality of p, the closed path consists of one or more repetitions of seq.

To determine the closed path, the robot drops the pebble and repeatedly traverses

seq until it finds the pebble at the end of one of its traversals of seq. It then

retrieves the pebble for future use.

3. The robot proceeds along the closed path found above until it reaches the end of

any execution of cop, say with output A. The robot then compresses the closed

path and replaces M(A) with the resulting map.

4. If the new M(A) is finished then the algorithm outputs (the new) M(A) and

terminates.

As noted above, if ver ever fails in Stage 1, the robot can improve cop. If all

verifications pass, by Lemma 1 we know that in each phase (new M(A), wo(A)) is

3Note that the robot cannot simply drop the pebble and repeat (*) until it sees the pebble again
because the robot needs the pebble to execute ().



consistent with (G, u) for some u E reach(A), and thus Invariant 2 is preserved.

Because ver(A) is part of the closed path and by Note 2, the new M(A) contains

the old M(A) as a subgraph. Because explore(A) is part of the closed path (and is

followed from u) the new M(A) also contains at least one new edge.

The algorithm terminates after at most 2n 2d phases because in each phase the

algorithm can either improve the candidate orienting procedure or enlarge a map.

More precisely, since the candidate orienting procedure can be improved at most

n - 1 times, at most n - 1 maps are discarded. At any time the algorithm maintains

at most n maps, and so the algorithm builds at most 2n - 1 maps. Since each map

contains at most n d edges, the bound on the number of phases follows. Note that

the algorithm may terminate before completing the orienting procedure.4

The running time of each phase is the sum of (1) the time to find a closed path,

and (2) the running time of the compression procedure. Item (1) is 0(u) times the

sum of (a) the running time of the candidate orienting procedure, (b) the running time

of the verification procedure, and (c) the length of the exploration sequence (which is

at most n). Recall that the running time of the verification procedures is O( -. n 2d).

Also recall that verification procedures (that fail) are distinguishing procedures for

improving the candidate orienting procedure. Therefore, we can bound the running

time of any candidate orienting procedure by O(ii -n3d). Thus, Item (1) amounts to

O(ft 2n3 d). By Lemma 1, Item (2) is bounded by O(ii 2n4d). Since there are at most

2n 2d phases, we obtain the following Theorem.

Theorem 1 A robot having a single pebble can learn any strongly connected graph

given an upper bound ft on the size of the graph in time 0(ii2n6d2).

4In fact, our algorithm as a whole can be viewed as an orienting procedure that outputs a
completed map and a designated vertex.



Chapter 4

Learning without an Upper Bound

on n

In this chapter we state our results concerning the number of pebbles needed to learn

graphs efficiently if the graph size is unknown. We use the algorithm of Section 3.5

as a subroutine to show that for any c > 0, [c log log n] pebbles are sufficient. The

resulting algorithm is deterministic. In addition, we prove a matching lower bound

demonstrating that Q(log log n) pebbles are necessary. The lower bound applies to any

randomized algorithm that uses an expected polynomial number of moves. We note

that in our upper bound the total computation time to decide on moves is polynomial,

whereas the lower bound applies even when the robot is computationally unbounded.

Furthermore, our upper bound holds even when the pebbles used by the robot are

indistinguishable from each other, while the lower bound holds for distinguishable

pebbles.

We want to study how the number of pebbles needed grows with the size of the

unknown graph. We denote the expected number of pebbles a (probabilistic) robot A

uses on graphs of size n, by pA(n). Namely,

pA(n) = max E[# of pebbles that A uses on G],
GEan

where !n is the set of all graphs on n vertices. The expected running time of A is



defined analogously. (Recall that in each time step the robot makes a single move,

and hence the running time of the algorithm is the number of moves the robot makes.)

Theorem 2 For every constant c > 0, there exists a (deterministic) algorithm that

learns graphs of size n in polynomial-time using at most [clog log n] pebbles, without

knowledge of n.

Proof: We use the algorithm of Section 3.5 combined with a variant of the standard

guess-and-double technique; instead of doubling, the algorithm takes the k'th power

for a suitably chosen k. To be precise, let k = [21/c], let onepeb(f) be the one-pebble

learning algorithm of Section 3.5 which takes a bound f on the number of vertices

as input, and suppose q(ft) is a polynomial bound on its running time. Assume first

that the pebbles used by the robot are distinguishable. The new algorithm works as

follows on a graph of outdegree d: Guess that the number of vertices in the graph is

ni = 2k , and run onepeb(nl) for q(ni) steps using the first pebble. If the algorithm

outputs a finished graph, i.e., every vertex has d edges coming out of it, then output

this graph and halt. On the other hand, if the algorithm fails to produce a finished

graph or the robot loses the pebble during the execution of the algorithm, then the

entire process is repeated using n2 = nl = 2 k 2 instead of nl and using pebble 2. (If

pebble 1 is seen during this execution, it is ignored.) If the execution with n2 fails,

we continue with n = n= 2 k3 . We repeat like this, using ne = n = 2 k at the

f'th stage until some execution is successful.

It is easy to see that if the algorithm onepeb ever outputs a complete graph,

the output is correct, even if the number of vertices given to onepeb is incorrect.

Alternatively, we can simply add an extra map verification procedure as in Section 3.5

to the end of onepeb to guarantee that the output is always either correct or 'FAIL.'

Moreover, by Theorem 1, the algorithm onepeb is guaranteed to give a correct

output within time q(ft) as long as it is given a bound i larger than the number

of vertices in the graph. Thus, given a graph a graph of n vertices, the algorithm

above will always succeed by stage £, where f is the first integer such that 2 k > n,

i.e. f = [(loglogn)/(logk)] < [cloglogn]. Since n = n k nk , the running time



of this algorithm is at most £q(nk) nq(nk), which is polynomial in n. Lastly, the

algorithm uses at most e < [c log log n] pebbles.

To deal with indistinguishable pebbles, we add the following modification. When-

ever the algorithm onepeb assumes the robot is in a cycle and is about to drop its

pebble, we have the robot walk once around the cycle, picking up all pebbles that are

there before proceeding. Consider stage £ of the (parent) algorithm, where £ is the

first integer such that 2 k > n. Then we are guaranteed (by the properties of algo-

rithm onepeb), that the robot is in fact in a cycle whenever it is about to drop its

pebble. Therefore, if it always picks up all pebbles left on the cycle before dropping

its current pebble, then it will not mistake its pebble with previously dropped peb-

bles, and will consequently succeed in learning the graph. To ensure that the parent

algorithm does not halt prematurely and output an incorrect graph (in a stage f such

that 2 kt < n), we do the following. Before halting and outputing a graph, we have

the robot walk around its entire supposed view of the graph collecting all pebbles it

sees. If the number of pebbles it finds is the same as the number of pebbles it has

ever dropped (and not picked up), then it runs the map verification procedure and

halts if it passes. Otherwise, it continues to the next stage. *

Theorem 3 Consider any algorithm A that, with probability greater than 1/2, learns

any graph in expected polynomial time without knowing the size of the graph. Then

pA(n) = (log log n).'

Proof: In order to prove the Theorem, we analyze the behavior of any algo-

rithm on two types of graphs of outdegree 2: cycles and combination locks with

tails. Formally, the cycle of n nodes is the labeled, directed graph Cn on vertex set

{wo0, -, wn-1), where there are two directed edges labeled 0 and 1 going from wi to

W(i+1)modn. A combination lock with tail has the following structure (see Figure 4-

1). Let a = ala2 .. ate E 0, 1)' be any string and let m > 0 be an integer. The

combination lock with combination a and tail m is the graph Lo,m on vertex set

'It is easy to see from the proof that the success probability of 1/2 is arbitrary and can be
replaced by any constant.



{u, U 2,.. .7 Um,V1,..., 7v+ 1 } with the following edges: For each 1 < i < m - 1, there

are two edges labeled 0 and 1 from ui to ui+l; there are two edges labeled 0 and 1

from Ur to vl; for each 1 < i < e, there is an edge labeled ai from vi to vi+l and an

edge labeled di from vi to vl; there are two edges labeled 0 and 1 from ve+l to ul. It is

important to note that a robot starting at vertex vl (i.e., the start of the combination

lock) does not reach vertex Vk+1 unless it executes the consecutive sequence of moves

... ak at some point. We start by giving the intuition behind the proof.

0/1 O/1 Q1 a*2 a I - at

& 0/1

Figure 4-1: A Combination Lock with a Tail.

We analyze any algorithm based on the times it drops pebbles in the case that

it does not see previously-dropped pebbles. We show that there must be huge gaps

in these pebble-dropping times or else the algorithm uses £(log log n) pebbles on

sufficiently large cycles of length n. The quantity Q(log log n) is exactly the threshold

below which the gaps between pebble drops become superpolynomial. That is, for any

polynomial f there are infinitely many time steps t such that no pebble is dropped

between time t and time f(t) with high probability. Then, for one of these big gaps,

we can construct a combination lock with tail for which the following holds. With

high probability, the algorithm drops no pebble within the combination lock and fails

to reach the last few vertices of the lock in its allotted running time. Thus the robot

fails to learn the graph. The idea of using combination locks with tails to foil a

robot comes from Bender and Slonim's argument that a constant number of pebbles

is insufficient [7]. The novel aspect of our proof is the analysis of pebble-dropping

times to determine on what size combination locks does the algorithm fail.

We now turn to the details of the proof. Suppose, in contradiction to the claim in

the theorem, that we have an expected polynomial-time algorithm A which succeeds

in learning graphs with probability greater than 1/2, but does not use £Q(log log n)



pebbles. Let q(n) = O(n k ) be a polynomial bound on the expected running time of

the algorithm. In this proof, we use the standard technique of treating the randomized

algorithm A as a distribution on deterministic algorithms A,, i.e. for every infinite

string r E {0, i}N, A, is the deterministic algorithm given by A using random coins

r. All probabilities and expectations in this proof are taken over the choice of r.

We wish to study how the robot behaves when it doesn't see the pebbles it has

dropped previously. To formalize this, we look at the infinite graph I on vertex set

{wI, w2 ,. .. } where there are two edges labeled 0 and 1 from wi to wi+l for every

i > 1. Now consider the behavior of the robot when it is placed at vertex wl. Notice

that when the robot drops a pebble at vertex wi and moves, it never sees its pebble

again. For t > s > 1, let P(s, t) be the probability that the robot drops at least one

pebble between vertices w, and wt-1, inclusive, and let E(s, t) be the expected number

of pebbles dropped by the robot between vertices w, and wt-1, so E(s, t) > P(s, t).

Notice that E(1, t) is a lower bound on the expected number of pebbles the robot uses

on a cycle Ct of t vertices, because for every r, A,'s behavior in its first t - 1 moves is

the same in Ct as in I. We now use this to show that that there are superpolynomial

gaps in the pebble-dropping times.

Claim: For every fixed c > 0, there are infinitely many t such that

P(t, tc) < 1/8.

Proof of claim: Suppose not, i.e. for all t > to, P(t, tc) > 1/8. Then

for every i > 0,

E(to, t') = E(tj-l,tj)
j=1

__ P (t-c, tc)

j=1

Sbe the smallest value of such that 8.

For n > to, let f, be the smallest value of £ such that n < tc'. Then



log logn < log log to + n log c, so , = Q (log log n). We also have

E(1, n) 2 E(to, n) E(to, tc ) n - )  -1 = Q(log log n).
8

But E(1, n) is a lower bound on the expected number of pebbles the

robot uses on a cycle of length n, so we have a contradiction. ==.

Recall that the expected running time of A is q(n) = O(nk). Using the above

claim with c = k + 1, we can find a t with the following properties:

* P(t, tk+1) < 1

8q(2t+4) 1
2 t  8'

* t k + 1 > 8q(2t + 4).

Consider the random variable W which is a string consisting of the robot's first

8q(2t+4) moves in I. There are less than 8q(2t+4) contiguous subsequences of length

t in W, so there is some string a E {0, 1}t which occurs in W with probability less

than 8q(2t + 4 )/ 2 t < 1/8. In other words there is a sequence of moves a of length t

which the robot performs with probability less than 1/8 in its first 8q(2t + 4) steps

in I.

Let / by any binary string of length 4, and consider the behavior of the robot

when placed at vertex ul in a combination lock GO with tail t- 1 and combination a3p

(and vertex set {ul,..., t-, v1, ... ,Vt+5} as above). Since A runs in expected time

q(n) and G has 2t + 4 vertices, the probability that A makes more than 8q(2t + 4)

moves in GO is at most 1/8.

Let R1 be the set of random coins r for which A, would drop a pebble between

vertex wt and wtk+l_l in I. Let R2 be the set of random coins r for which A, executes

the sequence of moves a at some point during its first 2t + 4 moves in I. Let R3 be

the set of random coins r for which A, makes more than 8q(2t + 4) moves in GO.



Let R = R1 U R2 U R3 . We have shown that Pr [r E R] < 3/8. Notice that for any

r R, the output of A, on G is the same as its output on G- for any string - of

length 4 because the robot never sees a pebble that it has dropped and never reaches

vertex vt+l. Let SY be the set of r R on which Ar outputs GY when placed in GY

(equivalently, G3). Then since A has overall success probability at least 1/2, A must

succeed on at least 1/8 of the r V R. So Pr [r E S- ] > 1/8. But there are 16 SI's and

they are disjoint. == *
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Appendix



Appendix A

Extensions

We have generalized our result to the case when the local labelling of the edges at

a vertex is a function of the previous vertex in the robot's path. (We assume there

is at most one edge between two vertices.) We give only the intuition for the proof

here. Consider the case where the robot can drop a pebble on an edge. In this case,

one can simply execute our algorithm on the edge-adjacency graph of the original

graph. In this new graph, edges of the old graph correspond to vertices, and there is

an edge between vertices el and e2 if there exists vertices in the old graph vl, v2 , v3

such that el = (v1 , v2 ) and e2 = (v2 , v3 ). Thus, in this new graph, edges will have

unique local labellings. One can execute any of our algorithms on this graph, and then

reconstruct the actual graph once the algorithm has terminated. With some care, one

can remove the need to allow dropping of pebbles on edges without increasing the

number of pebbles needed.


