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Abstract

The Co-locating Fast File System (C-FFS) was first developed by Greg Ganger and
Frans Kaashoek[1]. Like their earlier design, the Co-locating Fast File System de-
scribed in this thesis improves small file performance through the use of embedded
indoes, co-location of related small files on disk, and aggressive prefetching. This
thesis moves beyond the earlier work to present a design and working implemen-
tation of a UNIX C-FFS. Unlike the earlier design, this file system provides strict
UNIX semantics. The thesis goes into detail about the changes necessary to integrate
the co-location and pre-fetching algorithms into a modern UNIX operating system.
Novel co-location algorithms, which allow for co-location based on arbitrary criteria,
are presented. The thesis presents benchmarks which show that C-FFS achieve near
90% of the disk bandwidth of large file reads on small file reads. Embedding inodes
in directories provides most of the gain in bandwidth by allowing the file system to
place all data relevant to a file on the same track.
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Chapter 1

Introduction

The hard disk-based file system is a core component of today's computer systems.

As the principal means of sharing and storing data, the file system needs to be both

reliable and fast. Unfortunately, improvements in file system performance have lagged

improvements in processor performance and disk bandwidth[6]. The performance gap

is most pronounced when applications manipulate small files. This gap is especially

felt in the UNIX world, where small tools that manipulate small files are the norm.

This thesis presents a solution: a Co-locating Fast File System for UNIX. The

thesis builds on the earlier design and implementation of a Co-locating Fast File

System by Ganger and Kaashoek [1]. That implementation was done under a novel

operating system called an exokernel[2]. This thesis goes beyond the initial work

and design to present a UNIX version of the file system as well as new co-location

algorithms. To avoid confusion I will use Exo C-FFS to refer to the original work and

UNIX C-FFS to refer to the new design. Unqualified C-FFS is used in statements

that are true for both file systems.

Like Exo C-FFS, UNIX C-FFS attempts to reduce the number of expensive disk

seek operations on small file accesses. It does this by grouping, or co-locating, the

information of related small files and their directories contiguously on disk. This

enables the file system to read a group of related small files in one large contiguous

read. Both file systems aggressively pre-fetch data, in that they will retrieve a group of

files when one file from the group is requested. This is done with the hope that other



files in the group will be accessed soon and that later disk accesses can be avoided.

This technique carries the risk of retrieving useless data from disk and evicting useful

data from memory.

One of the goals of the thesis was to make UNIX C-FFS a drop-in replacement for

the current file systems under UNIX so as to be able to run real UNIX applications for

benchmarking. As such, UNIX C-FFS goes beyond Exo C-FFS in supporting strict

UNIX semantics. In addition, UNIX C-FFS generalizes Exo C-FFS's co-location

algorithms to support co-location based on a variety of criteria, including file owner,

access time, or process id. In contrast, Exo C-FFS only co-locates files from the same

directory.

1.1 Background: UNIX File Systems

This section presents some basic background and introduces terminology which will

be used throughout the thesis.

A UNIX file system is a collection of files. A file system resides on a partition,

which is a contiguous range of addressable memory on a random-access storage device.

A UNIX file is a sequence of bytes. The file system makes no attempts to generate

or interpret the contents of a file - it just stores the bytes passed by the client. Each

file has an associated descriptor, called an inode. The inode includes information on

the file size, file times, ownership, permissions, and pointers to the storage associated

with the file contents.

A UNIX file system provides a hierarchy of file names via directories. Directo-

ries map names to inodes, which represent files or other directories. A well known

directory, called the root directory, anchors the hierarchy. A directory's contents are

not directly interpreted or manipulated by an application. Instead, the file system

presents interfaces for adding, changing, and removing names. Multiple names in a

given file system can refer to the same file. Storage for a file is automatically freed

when the last reference, or link, to the file is removed.

Figure 1-1 summarizes the relationship between the various file system objects.



Data Blocks

Figure 1-1: Relationship between various file system entities

1.2 The Small File Problem

Current file systems are poorly equipped to handle small files. Reading 100 3K files

takes twice as long as read one 300K file. The performance of applications that

use small files extensively, such as web servers, compilers, and searches, is adversely

affected.

The reason for this performance difference is straightforward. Recall than in a

UNIX file system, there are two logical indirections between a file name and the file

data. The name points to an inode and the inode points to the file data blocks. In

most current file systems, these two logical indirections become two physical indi-

rection. That is, the inode, directory entry, and file data are all stored in separate

locations on disk.

Most file systems repeat these levels of indirection for each file access. In the case

of the one 300K file, the file system does two indirections and then reads 300K of file

data. However, in the case of to the 100 3K files, the file system does 300 indirections

to read the 300k of file data. While the file system goes through its many indirections,

the application sits idle.

Directory Inodes



Cycle time of a modern Alpha Processor 2 ns
Time to access random byte of main memory 60 ns
Time to read one byte from disk (no seeks) 40 ns
Average time to seek and start disk transfer 8.5 ms
User noticeable delay 100 ms

Table 1.1: Comparison of various latencies in a computer system

The cost of a physical indirection, or a seek, on disk is expensive, especially as

compared processor cycle times. Table 1.1 summarizes some of the latencies in a

computer system. On a modern Digitial Alpha processor, a process is forced to wait

for almost 1 million instructions before a disk seek is finished.

The disk is not excessively "slow" when it comes to transferring contiguous chunks

of data. Modern disks have bandwidths approaching 25 megabytes per second. The

117 us required to transfer 3 kilobytes is dwarfed by the 8.5 ms it takes to do the

the average seek. In addition, the transfer time is based on transferring from a single

disk. Using N disks in parallel cuts the transfer time by a factor of N.

If indirections are so expensive, then it is necessary to explain why there is only

a factor of two between the 100 small files and 1 large file. This is due to caching

being done by the disk and by the file system. The file system caches file system

blocks in semiconductor RAM, whose access time is several orders faster than disk.

The directory block read when manipulating the first small file will probably yield

information about other names soon to be referenced. In addition, each inode block

contains several inodes, so reading one of the inodes from disk effectively gives the

others for free. Finally, the hard disk has a track cache, which store a range of

contiguous data on disk. As long the blocks requested from disk are localized, the

disk's track cache will absorb many of the reads.

It would seem unreasonable to ask a file system to give equally good performance

on reading 100 random files off of disk and it would for one large file. However, in

reality, applications do not exhibit random access patterns. A web server will need

to fetch images associated with an HTML document. A compiler will compile all the



files in a single directory.

Current file systems do not exploit access patterns to lay out related files contigu-

ously on disk. Nor will file systems attempt to read or write the data of more than

one file per disk request. Contiguous layout of relevant data is important when doing

pre-fetching - otherwise the file system is either limited in its ability to pre-fetch or

the data pre-fetched is not relevant and must be discarded. C-FFS, on the other hand,

uses both contiguous layout and pre-fetching to reduce the number of disk requests

and potential seeks.

File systems which do not explicitly group are subject to aging difficulties. Since

file allocation decisions are done on an individual basis, files will tend to get placed

wherevver there is room. The net result is that file data become scattered around

disk and the effectiveness of the disk's cache goes down. A grouping file system can

help to stave off this difficulty by making the allocation decisions less arbitrary.

1.3 Solutions

There are a couple different algorithmic approaches to co-locating files. C-FFS uses

the simplest approach, hard-coded heuristics, but it is worthwile to examine the other

potential approaches.

The first approach is the one used today by performance-aware applications.

Performance-driven application programmers restructure their programs to use larger

files, which are often collections of smaller objects. They are able to explicitly pre-

fetch groups of small objects by issuing a large read on the file. This lends excellent

performance to this approach. However, applications must be rewritten to take ad-

vantage of the larger files. If the objects are irregular, applications can be forced

to replicate the allocation algorithms of file systems and in doing so add significant

complexity to their code. Another potential disadvantage of this approach is that

the names and contents of the small objects are now hidden from easy manipulation

by utilities. Finally, this approach needs little support from the file system, so is

uninteresting from a file system designer's standpoint.



It is also possible to modify the file system interface to express groups of files. In

the second approach, the file system is told which files the application is interested in

reading, writing, or allocating as a group. This approach has the advantage of passing

information about grouping between the file system and the application. However, it

has the large disadvantage of requiring rewrites of every application which wishes to

take advantage of this function.

In the third approach, the file system tracks the file access patterns of applications.

It then lays out and pre-fetches files based on those patterns. This approach has the

advantage of not requiring changes to the file system interfaces or current application

programs. Unfortunately, the code for detecting patterns has the potential to be

memory and computationally intensive.

The final approach is to use hard-coded heuristics to identify groups. For exam-

ples, files in the same directory are often accessed together, and as such, should be

grouped on disk. The principal advantage of this approach is simplicity. Of course,

such a technique by itself will not be able to take advantage of access patterns which

do not fit into one of its heuristics.

C-FFS uses simplest approach, hard-coded heuristics, to determine and maintain

groups on disk. In Exo CFFS, the co-location is done based on locality in the names-

pace. That is, files in the same directory get placed next to each other on disk. UNIX

C-FFS retains this approach in its reportoire.

1.4 Contributions

While the UNIX C-FFS design is based on the Exo C-FFS design, the implementation

was done from a completely independent code base. Major changes had to be made to

the original Exo C-FFS to support UNIX semantics. This thesis describes in detail the

UNIX C-FFS design, pointing out differences from the original Exo C-FFS wherever

relevant.

UNIX C-FFS is implemented on top of BSD UNIX, which allows for benchmarking

against a mature, commercial grade, and reliable file system - namely the Berkeley



Fast File System. The Berkeley FFS implementation was used as the starting point

for the UNIX C-FFS implementation, which renders the comparison even fairer, since

many of the mechanisms are shared between the two file systems.

Significant changes were necessary in OpenBSD to support a C-FFS. The changes

are not unique to OpenBSD, so relevant implementation details are included for the

aspiring C-FFS developer.

This thesis also contributes a new co-location algorithm. Key-based co-location

generalizes the directory-based co-location presented in Ganger's work by allowing

the file system to group on an arbitrary key. If the key chosen is the inode of the

parent directory, then the scheme should operate in a similar fashion to the original

directory-based co-location algorithm. However, other keys, such as the user ID of

the file owner, can be used for grouping.

Finally, the thesis measures the performance of C-FFS on both application and

micro benchmarks. Some initial insights are gained into the interaction of the various

design elements in the performance of the final system.

1.5 Related Work

The Co-locating Fast File System in [1] evolved from the Fast File System design

introduced in [3] which in turn is derived from Ken Thompson's original Unix File

System [11].

Achieving a transfer rate equal to the disk bandwidth is a solved problem for large

files. [4] describes a method of delivering the disk bandwidth on large files in FFS.

The scheme works by detecting sequential acceses to a file and then prefetching blocks

ahead of the current read pointer.

Several file systems have properties that improve small-file performance over the

vanilla FFS. Silicon Graphics XFS [10] delays allocations of blocks until the last

possible moment (be fore the file data is written to disk). As such, it maintains

short-lived small files entirely in main memory, vastly increasing their performance.

The log structured file system [9] significantly improves small-file write perform ance



by batching all file-system updates into a large sequential (512k) write to an on-disk

log. LFS, however, does not attempt to provide high read throughput from disk on

small files. Instead, it relies on the main memory cache to absorb the cost of reads.

Since LFS lays out files by update time, files that are updat ed together are placed

together on disk, possibly yielding beneficial properties for pre-fetching.

Microsoft Windows 98 [5] has an off-line disk optimizer that groups application

data and files along with the applications on the hard disk. Loading large applications

like Microsoft Word has been sped up by a factor of two by this technique.

Explicit grouping and aggressive prefetching of small files were first demonstrated

in the Co-locating Fast File System [1]. This thesis builds upon this work, studying

in detail the grouping algorithms.

[8] presents and analyzes policies for prefetching and caching within a theoretical

context in addition to running them against traces. They argue for certain desirable

properties of a combined strategy that enables their algorithm to operate within a

factor of two of optimal. However, they do not present any algorithms for guessing

future reference patterns. [7] present a scheme that uses explicit application hints

to do informed prefetching and caching. In their approach, the operating system

arbitrates amongst hints coming from multiple applications, trying to achieve a global

optimum. My thesis focus is complementary to their approach. The file system could

be one of clients of this mechanism.

1.6 Summary

The rest of the thesis is organized as follows.

Chapter 2 discusses the origins and the design of the Co-locating Fast Fast File

System. It also discusses the co-location algorithms used to improve small file per-

formance.

Chapter 3 examines some of the more interesting implementation details.

Chapter 4 describes the experimental apparatus, experiments, and experimental

method and presents the results of the experiments.



Chapter 5 presents areas for future work.

Chapter 6 concludes the thesis.



Chapter 2

Design

The design of UNIX C-FFS is heavily based on the original Exo C-FFS and the

Berkeley Fast File System. However, there are some novel elements in the new UNIX

C-FFS. Two new data structures, the inode locator table and the external inode

table, are used to provide UNIX semantics. In addition, new key-based co-location

algorithms are described in Section 2.3.2.

2.1 The On-disk Data Structures of C-FFS

C-FFS divides its partition into file system blocks, which usually consist of multiple

underlying device blocks, or sectors. The file system block is the fundamental unit of

addressing in C-FFS.

2.1.1 Superblock

C-FFS needs to be able to discover the size of the file system, the location of the root

directory, and various other random pieces of state given a raw partition. To solve this

problem, the first block every C-FFS file system contains a well-known data structure

called the superblock. The superblock describes global file system properties, such

as the file system block size, the size of the various on-disk structures, the number

of free blocks, and whether the file system was properly shut down. One field of the



superblock is reserved for a special constant. This constant is checked by the file

system at mount time to ensure that the superblock is in the correct format.

2.1.2 Inodes in C-FFS

The C-FFS inode contains all the information associated with the file except for the

name. Figure 2-1 contains a full listing of the inode contents. The type of the file

(directory, regular file, character or block device, symbolic link, socket, or pipe) is

described in the inode. The inode also lists the blocks which store the contents of the

associated file. The first several entries of the list are physically located within the

inode. For files which require more entries in the list, indirect blocks are allocated.

An indirect block is a file system block devoted to listing other file system blocks.

A first level indirect block lists file system blocks. A second level indirect block lists

first level indirect blocks. A third-level indirect block lists second-level indirect blocks

and so on. Up to three levels of indirection are allowed in C-FFS.

The inode contains a generation number that is changed each time the inode is

created. This helps applications which name files by their inode number, such as

Network File System (NFS) server, track when an inode number has been re-used

to described another file. The 64-bit combination of the generation number and the

inode number is effectively a unique identifier for a UNIX file across the life-time of

a UNIX file system.

Taking advantage of the fact that modern hard drives write sectors atomically,

inodes in C-FFS do not span sectors. This ensures that inodes are updated atomically

on disk.

2.1.3 Directories

Directories are also described by inodes in C-FFS. The type field of the inode dif-

ferentiates them from regular files. This allows common file operations to be used

when allocating and manipulating directory contents. This significantly simplifies the

directory manipulation code.



Inode number
Type (directory or regular file)

Number of hard links
Size of file in bytes

Last access time
Last modification time

Last change time
Owner's User ID

Group ID
Permissions for owner, group, world

Number of blocks allocated to the file
List of direct blocks

Pointer to first indirect block
Pointer to second indirect block
Pointer to third indirect block

Inode number of parent directory
Generation number

Figure 2-1: Contents of the inode



Inode Number (32 bits)
Record Length (16 bits)

File Type (8 bits)
Name Length (8 bits)

Embedded Inode (optional)
File Name

Free Space (optional)

1 byte

#312 152 Reg 7 Embedded Inode foo.txt\0

4 bytes 2 bytes 1 byte 128 bytes 8 bytes 8 bytes

152 Bytes Total

Figure 2-2: Directory entry record format and example

A directory is made up of multiple directory blocks. Each directory block is an

independent linked list of variable-length directory entries. Each directory entry con-

tains a name, type, inode number, and usually the inode too. Figure 2-2 summarizes

the format.

Unlike FFS, C-FFS does not maintain directory entries for "." and ".." on disk.

Both entries are readily faked from the in-core inode, which contains both the inode

number of the directory and its parent directory.

The consistency and recoverability of directory information is guaranteed using a

couple techniques. First, all new blocks allocated to a directory are written to disk

before the size of the directory is update in the inode. Second, as is the case with

inodes, directory entries do not span sectors, to ensure atomicity of directory entry

updates.



2.1.4 Cylinder groups and free bitmaps

The file system is divided into adjacent extents of blocks called cylinder groups. At

the beginning of each group, there is a block with the free bitmap for that group.

The bitmap records for each block whether it is allocated or not.

The free bitmap is used to quickly find free blocks or extents. The information

is redundant, since the inodes already list the allocated blocks in the file system.

As such, the contents of the free bitmaps can be reconstructed from a file system

of un-corrupted inodes. This fact is used by the file system to avoid writing the

bitmap to disk on every allocation. Instead the bitmaps are written lazily to disk and

reconstructed by the file system check utility in case of an unclean shutdown of the

file system.

The cylinder group also contains some information on the number of blocks free

in the cylinder group.

2.1.5 Inode Locator Table

UNIX requires the file system to be able to retrieve files based on their inode number.

In addition, UNIX semantics require us to maintain a constant inode number for the

life of a file, even across renames.

The problem becomes how to locate the inode on disk based on the inode number.

For other file systems, this is not much of a problem, since they keep their inodes

in well known places on disk. However, in C-FFS, inodes are located in directories,

which are located at arbitrary locations on disk.

Original Exo C-FFS design

The original Exo C-FFS design used a 32-bit inode number, which was split into

a 16-bit directory ID and a 16-bit directory offset. There was an additional data

structure, called a directory table which mapped the 16-bit directory ID to the 32-bit

inode of the parent directory.

This scheme had the unfortunate effect that the inode number changed whenever



the inode changed directories. Since inodes were relocated on rename, the inode

number could change during the file's life-time. This violated strict UNIX semantics.

The static partition of bits between directory ID and directory offset traded the

maximum number of directories on a volume or the size of the directories.

New Exo-CFFS approach

In the newer version of Exo-CFFS, the inode is named by its position on disk. This

limits the inode to never moving during the life of a file (this is inherently incompatible

with our external inode table concept). As a result, directory blocks can not be moved

around on disk, which might be desirable if we needed to defragment or group the

directory. In addition, when a directory is deleted with active inodes in it, the storage

with the active inodes cannot be reclaimed. Instead, those blocks are assigned to a

special file off of the root of the file system to be reclaimed when the reference count

on the inodes contained therein goes to zero.

UNIX C-FFS approach

The UNIX C-FFS approach is to give each inode a unique identifier. UNIX C-FFS

maintains a table that maps each identifier to it the inode's location on disk. The

format of the table entry is shown in Figure 2-3. A container inode number of zero

indicates that the entry is unsued.

New inode numbers are found by scanning the free entry map at the beginning of

the file. The inode locator table uses a slightly more advanced data structure than

the free bitmap. The free entry map occupies four kilobytes which is devided among

4096 one-byte entries. Each one byte entry counts the number of used inodes in a

255 inode range. Once C-FFS finds a block of 255 inodes with some inodes free, it

must scan the entries individually to find a free one.

The free map describes the status of about 1 million (4096 * 255) inodes in a 4k

block. To allow for more inodes, another free map can be appended after the initial

entries, but before the entries it describes. This process can be repeated to provide

for an arbitrary number of inode entries.



Container inode (4 bytes)
Byte offset in container (4 bytes)

Figure 2-3: Inode locator table entry

Finding an inode on disk by number is a matter of reading the inode from its

container at the appropriate offset. If the container's inode information is not in

memory, it may have to be read from disk too, thus recursing down the hierarchy to

the root of the file system. The recursion stops at the root since the root inode is

located in a well-known place on disk. Figure 2-4 presents the pseudo-code for this

operation.

The inode locator table is store as a file for convenience. Because of this, it is easy

to dynamically grow the file and the number of inodes in the system. This contrasts

with the static number of inodes available in FFS. The inode locator table, since it

is stored as a file, also has an inode. Its inode is located alongside the root in a

well-known place in the first cylinder group.

Even with the extra layer of indirection due to the table, CFFS does not lose the

performance benefit of embedding inodes in the directory. First, the UNIX interface

does not allow programs to open files based on their unique identifier. Instead, most

commands take a file path. As long as C-FFS traverses the directory hierarchy from

root to leaf, it should never need to consult the inode locator table, since the inodes

for the directories are adjacent to their names. When traveling in the reverse direction

(i.e. doing lookups on ..), the inodes for the directories are often cached in-core, so we

don't have to try to find the inode on disk, again avoiding a table lookup. In fact, the

code to deal with retrieving an inode using the inode locator table was accidentally

broken for months and yet the file system could operate for hours of moderate activity

(reading e-mail, compiling large programs).

Maintaining the table is not overly burdensome either. Since the contents of the

table can be reconstructed from an uncorrupted file system, updates to the table can

be written lazily.



get_file(inode_number) returns (file)

if file = is_already_in_memory(inode_number) then
return (file)

if inode_number < KNOWN_INODES then
read inode from known location on disk

file = init_file(inode)
else

container = lookup_container(inode_number)

offset = lookup_offset(inode_number)

containerfile = get_file(container)
inode = read(file, offset, INODE_SIZE);

file = init_file(inode)

close (containerfid)
end

return (fid)

Figure 2-4: Psuedo-code for reading inode



2.1.6 External Inode Table

The external inode table was added to UNIX C-FFS to answer the following important

questions: Where does C-FFS place the inode when two or more names in the file

system refer to the same inode?

Other possible designs were considered before the data structure was added. For

example, the file system could place the inode adjacent to each name. That has the

problem of requiring multiple writes to update a single inode.

In Exo C-FFS, the inode stays next to its original entry and all other names point

back to the original entry. This approach has the problem of finding a new place for

the inode when the original entry and its enclosing directory is deleted and adjusting

all the pointers. Exo C-FFS solves this problem by attaching the orphaned directory

block to a special hidden directory off of the root of the file system.

UNIX C-FFS takes the alternate approach of moving the inode data to an external

table when a second name for a file is created. The directory entries, however, continue

to reference the inode through the inode number stored in the directory entry.

Moving the inode out the directory is an expensive process. It makes subsequent

accesses across the original name slower, since the inode is no longer contained next

to the directory entry. Luckily, hard links are used for only a few esoteric purposes,

such as maintaining Internet News spools.

2.2 Ensuring Recoverability of the File System

To ensure recoverability, both FFS and C-FFS order their writes to disk. In the case

of FFS, the file system ensures that the link count on the inode is always greater than

or equal to the number of names in the file system that refer to an inode. This means

that the name of a file is written to disk before the inode is. Similarly, on remove,

the inode is cleared before the name is removed.

To maintain ordering, FFS issues an immediate disk write and waits for it to

complete. This is known as a synchronous write and is quite slow. However, it

provides firm guarantees since once the operation is complete, the data is on disk



and the second write can proceed. In the case of remove, the second write occurs

synchronously, to make sure there are never two directory entries with the same name.

FFS uses two synchronous writes on remove and two synchronous writes on create.

C-FFS, by placing the inode with the directory entry, can do both operation in just one

write, so no ordering is necessary. Thus, C-FFS can do a create in zero synchronous

writes and remove in one synchronous writes.

Synchronous writes, since they involve waiting for disk, are slow. Often this wait

involves an expensive seek. Given that the average seek is 10ms, this limits the file

bandwidth to about 100 files per second.

Finally, embedding inodes impact recoverability. In C-FFS, a corrupted sector

can irreperably detach a whole directory hierarchy by wiping the inode of a directory.

Since the inode has been wiped out, there is no way of figuring out which blocks

on disk belong to the directory and thus no way to read the inodes contained in

the directory. Though C-FFS could mitigate this problem by strictly maintaining

its locator table, error correction on modern drives and ready availability of backup

media seem better ways to attack the problem.

2.3 Algorithms for co-location

The goal of the co-location algorithms in C-FFS is to make related small files adjacent

on disk. The extent to which files are related is determined by the access patterns of

the file that use them.

2.3.1 Directory-based co-location algorithm

The initial co-location algorithm is based on the observation that files in the same

directory are often accessed consecutively (e.g. compiles, reading mail). The pseudo-

code for the algorithm is shown in Figure 2-5.

To support the grouping and I/O algorithms, two fields have been added to each

inode, a group start field and group size field. Both the group start and group size

are expressed in file system blocks. The file system uses this information in the inode



when reading file blocks off of disk. It checks to see if the file block it's fetching is

somewhere in the group described in the inode. If it is, it tries to fetch as many

blocks from the group as possible, subject to the following constraints: 1) the blocks

fetched must be contiguous and 2) the blocks must not already be resident. The

second constraint prevents us from over-writing dirty blocks in the buffer cache.

When allocating, only the first block of a file is explicitly placed in a group. Other

blocks are allocated using the conventional file system allocation algorithms.

To find a group to put the file block in, C-FFS traverses the inodes in a directory

(including the inode of the directory itself). For each inode it traverses, it consults

the free bitmap to see if there is any opportunity to place a block in the group or

extend the group. If we cannot find a group with room, we allocate a block using the

standard allocation algorithm and start a new group with that block.

Each time the group size is updated, every inode that is both 1) located in the

same directory and 2) a member of the group is updated.

The size of a group is limited by the file system to 64 kilobytes. In part, this due

to the underlying buffer cache implementation, which does not support reads larger

than 64k.

2.3.2 A Keyed Co-location Algorithm

The goal of this algorithm is the ability to group on an arbitrary key. A key in this

scheme is a 32-bit integer. Related files share the same integer key. For example, the

key could be the parent directory's inode number, the creator's uid, or even the last

access time of the file.

There are a couple tricks in the previous scheme that are no longer valid. For ex-

ample, in the previous algorithm, C-FFS searched the directory for relevant groups.

In this scheme, we are seeking to be more general, so the alogirthm needs an alter-

nate method of searching for relevant groups. In the previous scheme, the algorithm

updated the grouping information by scanning through the directory and rewriting

the information in the affected inode. In this scheme, the inodes need not be in the

same directory, so the approach can no longer be used.



bool group_alloc(inode, lbn, out block_no_found)

if lbn != 0 then

return (false);

inodes_to_be_considered = { inode->parent_inode } U
{ other inodes in the directory };

for each potential_inode in inodes_to_be_considered

prevgroupsize = potential inode->group.size

if has_room(potential_inode->group, block_no_found) then

inode->group = potential_inode->group;

if prevgroupsize != potential_inode->group.size then
for each inode in inodes_to_be_consdered

if inode->group.start

== potential_inode->group.start then

inode->group = potential_inode->group;

return (true);

end

alloc_block(inode, lbn, block_nofound);

inode->group.start = block_no_found;

inode->group.size = 1;

return TRUE;

bool hasroom(group, out block_nofound)

if emptyblock in free_bitmap[group.start .. group.start + group.size - 1]
block_no_found = empty_block

return true;

if group.size >= maxgroupsize return false;

if freebitmap[group.start + group.size] != allocated then

group.size = group.size + 1;

blockno_found = group.start + group.size

return true;

return false;

Figure 2-5: Initial co-location algorithm



To find related inodes in the new co-location scheme, C-FFS consults a table of in-

core inodes that is indexed by key. The table, when queried, yields inodes associated

with that key. The design of this table is critical to the performance of the algorithm,

so it is best to spend some time describing it.

Unlike the previous scheme, where groups were explcitly described by the inode,

this scheme divides the file system into adjacent 64 kilobyte extents called segments.

The read algorithm, when reading a block from a small file, attempts to read in as

much of the segment as possible.

The table maps keys to the head of a double-ended queue of inodes related to that

key. The table is currently implemented as a hash table for efficient lookups. As the

algorithm searches for an inode which points to an empty segment, it moves inodes

which refer to full segments to the end of the list. New segments are inserted at the

head of the queue.

By dividing the disk into fixed segments, we avoid having to update the inodes

with group information when the group changes. A caveat is that we'll be more likely

to read irrelevant data from disk with new approach. It is unclear at this time how

the two factors will balance out.

When allocating a block for a small file, the algorithm examines the segments of

the in-core inodes with the same key. Figure 2-6 gives more details.

Large file allocation still goes through the normal FFS algorithms.

This algorithm should benefit from delayed allocation. In delayed allocation,

specific blocks are not allocated for the file data until they need to be written to disk.

At that point in time, the file system has a better idea of how large the file is. Thus,

delayed allocation improves the chances of placing all of the blocks in a small file into

the same segment. In addition, allocation can be done on extents of blocks, instead of

a block by block basis, leading to efficiency gains when traversing disparate groups.

2.3.3 Group write algorithms

The group write algorithm is invoked when blocks are written back to the disk. The

algorithm takes advantage of this opportunity to write out other dirty blocks in the



if (have previous allocation)

try to allocate in the same segment;

inodes = lookup_inodes(key);

for inode in inodes

Check the segment related to the inode's first disk block for
room. If found, allocate in that segment and return

move inode to end of queue

If not found, try to find an empty segment and place block in it.

If still no block found, pick a random segment and place the block.

Figure 2-6: Key-ed co-location algorithm

buffer cache. It coalesces data from adjacent dirty disk blocks and the original block

into one disk transfer. Because of the limitations of the host operating system, these

writes are limited to 64 kilobytes in size. However, it is sensible to limit them in any

case, so that we don't write out too much data that is going to be changed or perhaps

discarded soon. In addition, the larger writes tie up the disk for longer periods of

time, potentially delaying subsequent synchronous reads or writes.

2.3.4 Group maintenance algorithms

Whenever we write file blocks out to disk, we can take the opportunity to write the

blocks into a different, more optimal location. This still involves the overhead of

modifying the block pointers in the inode and updating the bitmaps. However, if the

small file's properties have changed significantly since it was originally allocated, it

might be worthwile to move it to a new location. Stability is a concern in this scheme.

Depending on the pattern of key changes, the file system might find itself constantly

shuttling the same data between groups.



Chapter 3

Implementation

UNIX C-FFS is implemented on top of OpenBSD, a freely available BSD UNIX

variant. OpenBSD was chosen because of the ready availability of source code for

the entire system, good documentation of its internal structures, and its history as a

platform for file system experimentation. It also has a fast, robust file system - the

Berkeley Fast File System (FFS). Thus UNIX C-FFS implementation is a severely

modified version of the FFS code.

This chapter explores some of the challenging issues related to implementing C-

FFS on top of OpenBSD and reports on the current status of the implementation.

3.1 Small file grouping and the buffer cache

Before C-FFS fetches a block from disk, it needs to know whether the block is already

in the buffer cache, to avoid both caching multiple inconsistent copies of the same

disk block and an expensive disk read. Often, C-FFS knows that the block belongs

to a specific file and can ask the buffer cache if the that block of the file is already in

memory. However, when pre-fetching a range blocks from disk, C-FFS would prefer

not to go through the effort of figuring out which file every block belongs to. For

pre-fetching, then, it makes more sense to ask the buffer cache whether a given block

from the physical device is already present in memory.

To support group writes across files, we need to find a group of blocks contiguous



on disk to write out. This is most easily done if we can ask the buffer cache whether

given blocks from the physical device are dirty and in memory.

At the same time, to support delayed allocation, we'd like to be able to keep blocks

in the buffer cache whose disk address we do not know yet. We'd like to name those

blocks purely by their offset in the file.

Most modern operating systems, including OpenBSD, index their buffer caches

solely by offset in a file. To support a C-FFS, they need to support simulatenously

indexing block in their buffer cache by offset on device.

In the final scheme that was settled on, the OpenBSD buffer cache was logically

divided into two caches. The physical block cache cached only blocks related to

devices, such as a disk. The logical block cache only caches blocks that are associated

with a files or directories. The read and write interface to the buffer cache was largely

unchanged. Instead, requests against physical devices are automatically routed to the

physical block cache and requests against files automatically go to the logical block

cache.

The same block can appear in both caches. For example, the second block of a

directory could also be the 453rd block on the second disk partition.

Special care must be taken when the file system requests a block from logical block

cache. Often, the buffer cache must ensure that the block requested is not already in

the physical buffer cache (the result of pre-fetching, perhaps). To do this, the buffer

cache calls back up to the file system bmap function to ask for the physical name of

the block. In some situation, this has the potential to create an infinite loop, so the

file system can short-circuit the callback by providing both the logical and physical

names when requesting a block from the cache.

A couple functions were added to the buffer cache interface. The bassignlogi-

calidentity and bassignphysicalidentity functions place already resident blocks in the

logical or physical buffer cache, respectively. The latter function is especially useful

in delayed writes, where C-FFS assigns the physical location of the buffer on disk at

the last minute.

The astute reader will notice a problem at this point. With delayed allocation, we



are asking for a logical block from the buffer cache that has no physical counterpart.

To support this, the buffer cache interprets a disk address of -1 returned from bmap

as a buffer with an unassigned identity.

The final problem with delayed allocation occurs when we attempt to assign the

physical identity. There could already be a block with that physical identity in the

buffer cache due to a poor pre-fetch decision. Luckily, it is safe to discard that block.

Since we are allocating over it, it must contain out of date information.

3.2 Issues with Concurrency Control and C-FFS

When a file system requests a block from the buffer cache, it receives the block back

in a locked state. The block remains locked for the duration of the file system's

interactions with that block and is finally unlocked when it is released back to the

buffer cache. If a file system requests a block that is currently locked by another

process, it will go to sleep, waiting for the block to be freed. The file system does not

release any of its other locks while it sleeps so the potential for deadlock exists.

A new try-lock style primitive was added to the buffer cache. It attempts to

acquire the lock on the buffer but returns failure instead of sleeping. The C-FFS

group read and write algorithms use this primitive to improve performance and avoid

deadlock with the rest of the system.

Another potential issue for C-FFS implementors results from the need to update

directory blocks when updating an inode. A directory can be locked for a variety

of reasons, including searching or adding names, and it is natural to ask whether a

process should wait for the directory to be unlocked before updating the inode. After

all, C-FFS might be re-organizing the directory from under us while we're trying to

write the inode.

Luckily, UNIX C-FFS easily avoid this issue since access to the contents of disk

blocks is serialized by a lock on each buffer. As long as the inode update or directory

entry update was done within the context of a single buffer request, the action should

appear atomic to the rest of the system.



Another place where this issue comes up is the co-location algorithms. With

the directory-based co-location, C-FFS scans through a directory when allocating

blocks for a file in that directory. Then, after the allocation in finished, C-FFS must

write back the modified inode information. Whether C-FFS should do this with the

directory locked is a difficult question. A little more analysis will help to inform an

answer.

The locking discipline forced upon C-FFS by the BSD kernel requires the file

system to lock in the direction of root to leaf in the directory hierarchy. This precludes

acquiring a lock on a parent directory while a child is held locked.

Again, C-FFS deals with the issue by not locking the inode and using the disk

buffer lock to serialize access. This could cause problems when multipe processes are

doing simultaneous updates on the grouping information directory. If the one with

the lower group size goes second, it can erase the previous grouping information. To

get around this, the implementation checks to see if the group described is already

larger before updating the inode.

3.3 Status

This section talks about the status of the current C-FFS implementation. It concen-

trates on discussing which elements of the design are still missing an implementation.

Hard links have not yet been implemented under C-FFS. This has not been a

hindrance in running common UNIX utilities and development applications. However,

hard links are still necessary for specialized applications, so must be present in a fully

operable UNIX implementation.

A file system recovery utility, similar to UNIX fsck, is necessary to provide recovery

in cases of failure or corruption of the file system. Currently, a skeleton implemen-

tation verifies the consistency of the directory hierarchy and the inodes contained

therin. However, it does not yet rebuild the inode locator table, which is integral to

a working UNIX C-FFS implementation.

Keyed co-location algorithms were not implemented for this thesis, though an



implementation of the table structure for the in-core inodes was completed.

Finally, fragments should be reintroduced to increase bandwidth and reduce wasted

space in small files. Given the pre-fetch algorithms in C-FFS, this would require ma-

jor changes to the buffer cache. The pre-fetch algorithms fetch entire blocks into the

physically named buffer cache. If the block turns out to belong to multiple files due to

fragments, the corresponding buffer must be split up before any portion of it is placed

in the logical buffer cache. In addition, the pre-fetch code needs to be able to figure

out whether any portion of a block is resident before pre-fetching the block. The

current buffer cache is not equipped with functions to deal with these two scenarios.



Chapter 4

Experiments

4.1 Experimental Apparatus

The CFFS times were collected on a 200Mhz Intel Pentium Pro PC. It contains one

NCR 53c815-based SCSI controllers attached to 2 2GB Quantum Atlas hard disks on

a 10 megabyte/second SCSI-2 bus. The machine contains 64mb of 60ns EDO RAM.

A buffer cache of 17 megabytes was used.

The OpenBSD operating system was used for development and experiments. It

is a variant of the BSD family of UNIX-like operating systems. It was primarily

chosen due to its ready availabity in our research environment and the presence of

an optimized, well tested implementation of the Berkeley FFS. In addition, a version

of the log structure file system has been implemented, though it is not currently

functional.

The January 18, 1998 version of OpenBSD was used as the base for the ver-

sion with CFFS. The C development tools, namely GCC version 2.7.2.1, were taken

straight from the OpenBSD source tree of that date (/usr/src/gnu/usr.bin/gcc).

For all of these examples, the FFS file system used an 8K block size with 1024

byte fragments. The UNIX C-FFS file system used an 8K block size and does not

support fragments.



Operation Time Bandwidth Reads+Writes

FFS create/write 10.49 6.10 19+1640
read 11.15 5.74 1050+18
overwrite 10.27 6.23 27+1550

C-FFS create/write 10.23 6.26 19+1550

with grouping read 10.80 5.93 1053+18

overwrite 10.15 6.31 27+1650

C-FFS create/write 10.20 6.27 19+1650

w/o grouping read 10.82 5.91 1051+18
overwrite 10.16 6.30 27+1590

Table 4.1: Large file benchmark results

4.2 Experimental Questions

The questions addressed by the experiments were:

1. Do the co-location algorithms in C-FFS improve small file bandwidth?

2. Do the co-location algorithms in C-FFS degrade large-file bandwidth?

3. Do the co-location and pre-fetching algorithms in C-FFS improve application

performance?

4.2.1 Large File Bandwidth

To ascertain large file bandwidth, a micro-benchmark consisting of operations on large

files was used. The micro-benchmark consisted of the following phases:

1. Create/write 64MB file

2. Read file contents

3. Overwrite file contents

The results of running the benchmark are shown in Table 4.1.

The data shows the performance on large files to be essentially unchanged by the

addition of co-location and embedded inodes in C-FFS. Since the code for clustered



reads, writes, and allocations for large files is identical to the code used in FFS, this

result is not entirely unexpected. However, it confirms that the co-location algorithms

do not adversely impact large file performance.

4.2.2 Small File Bandwidth

A small-file microbenchmark was used to ascertain whether C-FFS improved small

file bandwidth. The benchmark has four phases:

1. Create 1000 4k files across 10 subdirectories

2. Read the 1000 files

3. Overwrite the 1000 4k files

4. Remove the 1000 files

The cached blocks for the file system being benchmarked are flushed between each

phase. Since the expectation is that the file system will eventually migrate all the data

to disk, the flushing allows the inclusion of that overhead into the microbenchmark.

The flushing is accomplished by calling the sync operation on the file system. If

any block still remain, they are ejected synchronously. The times in the benchmarks

include the time require to synchronize the file system.

The results of the micro-benchmark for FFS and UNIX C-FFS are shown in

Table 4.2.

C-FFS beats or matches FFS in every category. The most marked improvements

in throughput (600% and 52%) are in file create and remove. This is not surprising,

since embedded inodes allow us to remove one synchronous write on remove and

both synchronous writes on create. However, by eliminating the layer of indirection

between the directory name, throughput on read and writes improved by 31% and

12% respectively.

The addition of grouping in C-FFS significantly decreases the number of disk

requests on the small file benchmark. On the overwrite phase, the number of disk



Operation Time # of reads+writes Files Per Second

FFS create/write 15.34 41+3052 65.2
read 2.08 1031+21 480

overwrite 3.98 1031+1021 251
remove 13.19 41+2033 76

C-FFS create/write 2.48 2+1064 403
without grouping read 1.59 1031+30 629

overwrite 3.55 1031+1030 282
remove 8.66 34+1004 115

C-FFS create/write 2.55 4+181 392
with grouping read 1.47 151+31 680

overwrite 3.32 167+135 301
remove 8.62 34+1006 116

Table 4.2: Small file micro-benchmark results

reads and writes goes down by more than a factor of 6 as compared with non-grouping

C-FFS and FFS. However, this decrease is not met with a commensurate increase in

file throughput. Throughput on reads and overwrites improved by only 6.7% and

7.5% respectively. Most of those improvements were probably due to the decrease in

overhead of initiating disk requests. The failure of an order of magnitude difference

in disk requests to show up in the file throughput figures is most likely due to the

effectiveness of the disk's track cache in absorbing and coalescing smaller reads and

writes.

The track cache is especially effective in this case since the benchmark is being run

on an empty file system. With an empty file system, the FFS allocation algorithms

co-locate the data on disk much like the C-FFS file system with grouping.

At 680 files per second in the disk read benchmark, grouping C-FFS with an 8

kilobyte block size is attaining 5.4MB/s transfer rate off of disk. In contrast, FFS,

which reads only 4 kilobytes per file, is only getting 1.9 MB/s from the disk. The

5.4MB/s figure of C-FFS is 90% of the large file bandwidth of C-FFS. Even non-

grouping C-FFS achieve an impressive 5.0 MB/s or 85% of large file bandwidth.

Embedded inodes are key. They allow all data relevant to a file to be located on the

same disk track, thus allowing the file system to take advantage of the on-disk cache.



Finally, grouping does not improve remove performance at all since it is throttled

by the synchronous write it must do to remove the directory entry. The performance

on create went down by about 3%. This is no doubt due to the overhead of searching

directories for groups and the dirtying of large numbers of inodes in updating the

group information. Still, the performance hit is impressively small, given the naivete

of the algorithm.

4.2.3 Application Performance

The final benchmark involves three applications run daily in our local development

environment. The benchmarks were run over the source tree for the exo-kernel oper-

ating system, which contains 5955 files spread over 952 directories. Of the files, 5681

of them are under 32 kilobytes.

The operations done on this tree are as follows:

1. A checkout of the entire source tree from a repository stored on a separate local

partition. The repository is stored locally, rather than over the network, to

avoid variations in the benchmark due to varied network conditions.

2. A compile of the entire source tree from the Makefile at the top.

3. A search the source files for a string that is not present. This search is done

with the compiled files in the directories.

The results of the benchmarks are shown in Table 4.3.

The table reports the total run time of the application, the percentage of time

spent doing actual work as percentage of the total time spent by the applicaton and

the number of reads and writes. The number of reads and writes in this cases includes

other partitions.

The CVS checkout was significantly sped up by the addition of embedded inodes.

The CPU utilization of the checkout was doubled by C-FFS and the time was almost

halved. The real story here is the write requests. The number of write requests

decreased by 23% for C-FFS without grouping and 46% in the case of C-FFS with



CPU
Operation Time utilization Reads+Writes

FFS CVS checkout 5:22 8.9% 9990+39700
compile 20:01 96.5% 10000+29430
search tree 0:46.09 4.2% 6350+680

C-FFS CVS checkout 2:57 16.6% 8440+30700
without grouping compile 20:19 95.3% 16200+35400

search tree 0:33.59 6.8% 8330+840
C-FFS CVS checkout 2:50 19.5% 8340+21400
with grouping compile 20:00.75 98.6% 6580+20630

search tree 0:42.80 5.0% 2520+780

Table 4.3: Application performance results

grouping. Since there are roughly 6000 files and directories in the tree, the drop in

requests from 39700 to 30700 between FFS and C-FFS without grouping is probably

due to the replacement of 2 synchronous writes/inode with one delayed write/inode.

The further drop from 30700 writes to 21400 writes is no doubt due to the group

writes. However, consistent with the small file benchmark, the drop in disk requests

between grouping and non-grouping CFFS is not accompanied by a significant im-

provement in performance.

The compile seems to be a mostly processor bound task. As such, improving disk

bandwidth will not significantly improve overall performance. However, there is still

a significant enough disk component that it can be measured and evaluated.

In the compile operation, FFS beats out C-FFS without grouping in both time

and processor utilization. This is due to FFS' allocation algorithms, which do a

better job of placing new directories than C-FFS does. FFS places new directories

in cylinder groups with a greater than average free number of inodes and files in the

same cylinder group as their directories. C-FFS has no notion of used versus unused

inodes. Instead, it uses the first cylinder group with the smallest number of directories

to create the new directory. Directories, then become closer packed on disk which

leaves less room for the large object files created by the compile. The object files

scatter on disk when they overflow their cylinder groups which hurts performance.



The increase in write requests over FFS in ungrouped C-FFS is indicative of this

phenomenon.

On the compile, C-FFS with grouping improves the CPU utilization considerably

when compared with C-FFS without grouping. However, the run time just matches

that of FFS reflecting additional overheads. One possible source of this overhead is

the co-location algorithms, which scan the entire directory looking for a promising

group. Offsetting the overheads of the co-location algorithms, there are 30% fewer

writes in C-FFS with grouping, no doubt due to group writes. There are also 34%

fewer reads than FFS and 60% fewer reads than C-FFS without grouping, which

demonstartes the effectiveness of the group allocation in cutting the number of disk

requests.

The search operation sees a 60% jump in CPU utilization in C-FFS without group-

ing versus C-FFS with grouping. This performance gain is attributed to embedded

inodes, which decrease the number of seeks that must be done. However, the number

of disk requests is higher than FFS, suggesting that the files or directories may have

been fragmented. Still, since the performance of C-FFS without grouping is the best

of all of the approaches, the fragmentation did not adversely affect performance. This

is possible, for example, in the case where a directory block is not contiguous with

other directory blocks, but is still right next to the data which is described by its

inodes. In this case, the track cache will cache the related data blocks when it goes

to read the directory block.

For unknown reasons, C-FFS performs more poorly with grouping on and than

with grouping off. This is especially perplexing since C-FFS with grouping has a lower

number of disk requests in both reads and writes and the algorithms were supposedly

optimized for this scenario. This is definitely an area that needs more study.

4.3 Conclusions

Embedded inodes are a good idea. They significantly increase small file bandwidth on

creates by removing the need for synchronous writes. Embedded inodes also increase



performance across the board by removing a level of physical indirection between the

directory and entry. Though they introduce significant complexity into the design

and implementation of the file system code, embedded inodes are worthwhile from a

performance standpoint.

The small file microbenchmark shows that C-FFS reaches 90% of the large file

bandwidth when reading off of disk. In contrast, FFS only attains about 33% of disk

bandwidth. The placement of all relevant file data in the same track, which is possible

with embedded inodes, is critical to the performance difference.

Disk request counts are essentially useless for predicting the throughput or runtime

of both microbenchmarks and applications. They are rendered useless by today's

disks, which seem to absorb common sequential or near-sequential access patterns

in their cache. Disk access patterns, such as those derived from tracing tools to be

discussed in Chapter 5, should be a much better predictor of performance.

The measurements, however, do not support the hypothesis that the co-location

algorithms are worth the complexity of retooling the buffer cache and file system

allocation algorithms. Though they significantly reduce the number of disk requests

necessary, most of the performance gains seen in the microbenchmarks come from the

embedded inodes.

However, the measurements done for this thesis were limited. The real test of the

effectiveness of the grouping algorithms come as the file system fills and ages. As a

file system fills up and as numerous create and remove operations are done against it,

files tend to get placed wherever they fit rather than grouped on disk. Earlier studies

by Ganger[l] show that files in the same directory in an aged Fast File Systems have

poor locality on disk. Similar studies need to be done on an aged UNIX C-FFS to

ascertain the effectiveness of grouping algorithms over the long term.



Chapter 5

Future directions

C-FFS, though functional, is still very much a work in progress. Significant work

in the implementation, testing, and measurements are necessary before it is a viable

replacement for the native UNIX file system.

The actual implementation of the keyed co-location algorithms is an integral part

of continuing the work on UNIX C-FFS. The benchmarks results on the initial design

and implementation will no doubt cause further iterations of the design. Since the

performance improvement due to the initial directory-based co-location algorithm is

scant, many iterations need to be done to refine the design.

5.1 Testing

Any production file system must be extensively tested before it is put into use. Since it

is the core component for storing and sharing information in most computer systems,

when it becomes unavailable, the system loses many if not all of it functions. Restoring

the information from backups can be time-consuming.

Though the file system designer and implementor can be careful, not all of the

flaws will be caught initially. Some problems will only manifest themselves after hours

or days of operation and then only once. Confidence in the stability and reliability

of a file system grows with the number of hours of continual use. Variety is also

important. Different workloads stress thef file system in different ways and uncover



different bugs. Certainly, since UNIX C-FFS's use has been limited to one person,

the author, it does not meet the criteria of a well tested system.

5.2 Future Measurements and Experiments

More data needs to be collected about file and disk access patterns of I/O bound

applications. The access pattern data can be used to fashion more effective grouping

algorithms than the ones currently present in C-FFS. In addition, more, different

application benchmarks and detailed static analysis of disk layout would contribute

greatly to the understanding of the file system. This section goes into detail about

future experiments and the tools they will be built upon.

To collect data about file and disk access patterns, the OpenBSD kernel was instru-

mented to record data about the occurrence and duration of file system operations.

Though the mechanism for collecting and processing the data is fully implemented

and woking, there was insufficient time to fully implement and run the experiments

mentioned below for this thesis.

5.2.1 Tracing driver design

To record the duration of an operation, C-FFS calls the trace recording routine at the

start and end of the operation. This is accomplished by manually inserting procedure

calls in the file system and disk driver code. Figure 5-1 shows an example of an

instrumented code fragment.

The trace recording routines note the event that occured (e.g. VFS _EAD) along

with the current time. Since multiple processes can be in the file system simultane-

ously, the process identifier of the current process is also recorded. In addition to the

event, the trace recording routine accepts a payload of bytes which is appended to the

trace record. The payload is not interpreted by the trace driver. A full breakdown of

the trace record format is shown in Figure 5-2.

The trace events are recorded in a trace buffer located in kernel memory. The

trace buffer is exposed read-only through a device which can be mapped into the



(bp)

struct buf *bp;

if (ISSET(bp->b_flags, B_DONE))

panic("biodone already");

SET(bp->b_flags, B_DONE); /* note that it's done */

if (IS_UFS(bp->b_vp))

record_it(5, ID_BIODONE, bp, bp->b_vp, bp->b_1blkno, bp->b_blkno);

Figure 5-1: An example of the instrumentation

Size of payload in bytes 1 byte
Current Time 8 bytes

Current Process ID 2 bytes
Event ID 4 bytes
Payload Variable size

Figure 5-2: Format of trace buffer

address space of client applications. The trace buffer is a circular queue. Through

the ioctl interface, the application can query the trace device for the head and tail of

the queue. To delete data from the queue, applications with write priveleges on the

device are allowed to set the head of the queue (as long as the new value for the head

is valid).

The file system can generate a large quantity of trace events, especially when

tracking activity in the buffer cache. To reduce the amount of data that needs to be

processes, the trace events are divided into classes which can be selectively turned on

and off for different experiments.

5.2.2 Tracing utilities

Several utilities work together to extract and process the data. The input to these

utilities is the raw trace buffer and the output of the utilities is a nested graph of the

void
biodone



operations. The nested graph allows programs and humans to easily ascertain which

operations were spawned by other operations. This enables various questions such as

"How many disk reads occured for as a result of create operations" to be answered

by the data.

The first utility is a trace server. The trace server is a TCP server which dumps

the contents of the trace buffer to any client that connects to it. The trace client is

equally simple. It connects to the trace server and redirects the raw data from it to

a file specified by the user.

The two utilities allow the trace data to be written to the hard disk of machine

other than the one that is being measured. This prevents distortions such disk writes

and flushing of cached file system blocks from skewing the data. Of course, the trace

server requires some processor time to run, so it will affect application performance.

But it is significantly better than the alternative which contains no server at all.

Several scripts process the binary data from the trace buffer and convert it into

more or less human-readable form. Figure 5-3 shows the output of the various stages

of the scripts.

The first script changes the binary data to human readable numbers and event

identifiers. It does this by parsing the C header files which define the indentifiers.

The second script pairs events. The pairing is done as follows. First, pairing is only

done between events from the same process, so each event is first place into a bin based

on its process ID. Then, an event whose names end in DONE (e.g. VFSREAD_DONE)

are paired with the most recent events whose name is the prefix VFS_READ. Certain

operations (like BIODONE) terminate multiple events whose names are not a prefix.

These operations are specially cased in the code. If two events are matched, the script

outputs a line containing the time of the first and second event along with the process

id, name, and payload of the first event. The payload and name of the second event

is currently discarded since most of the terminating events do not provide additional

information short of the end time of an operation. Finally, if an event cannot be

paired at a given point in the data, it is placed in the bin for possible future matches.

The final script takes the paired events and creates the call graph. The call graph



Stage 1: Dump of trace buffer

1:3611702067

1:3611702903

1:3612110447

1:3612121931

1:3612139735

1:3612140761

1:3612141453

1:3613143866

BREAD 4046031840 4035084672 16 8192 0
DISK_READ 4046031840 16
BIODONE 4046031840 4035084672 4294967295 16
BRELSE 4046031840 4035084672 4294967295 16 1057296
BRELSE 4046031704 0 0 0 8208
BREAD 4046031840 4035084672 560 1024 0
DISK_READ 4046031840 560
BIODONE 4046031840 4035084672 4294967295 560

Stage 2: Pairing of events

1:3611702067

1:3611702903

1:3612140761

1:3612121931 0 BREAD 4046031840 4035084672 16 8192 0

1:3612110447 0 DISK_READ 4046031840 16

1:3613148396 0 BREAD 4046031840 4035084672 560 1024 0

Stage 3: Call graph

1:3611702067 1:3612121931 0 BREAD 4046031840 4035084672 16 8192 0
1:3611702903 1:3612110447 0 DISK_READ 4046031840 16

1:3612140761 1:3613148396 0 BREAD 4046031840 4035084672 560 1024 0

Figure 5-3: Various stages of output



Operation A spawned operation B if:

Apid = Bpid
Astart < Bstart

Aen d > Bend

Operation A spawned an asynchronous operation B if:

Apid = Bpid

Astart < Bstart
Aend < Bend

Figure 5-4: Rules for ordering operations

relation between A and B is defined in figure 5-4. Currently, asynchronous operations

are poorly handled. Namely, the call graph program does not attempt to determine

which operations were spawned by an asynchronous operation. Instead, it assumes

alll operations are spawned by synchronous operations. Handling asynchronous oper-

ations effectively would require another event in addition to the start and end time -

the point at which the procedure that spawned the asynchronous operation returned

to its caller. This would allow the program to differentiate the case where the asyn-

chronous operation spawned an event and the case where the caller called a second

operation.

Utilities for static analysis of the allocation patterns of FFS and C-FFS file system

are also useful for answering questions about the efficacity of the allocation algorithms.

5.3 Major questions

The following experimental questions were largely unanswered by the thesis but are

key to proving the effectiveness of the co-location approach in C-FFS.

1. Do small files matter?

2. Are small file accesses significantly slower than large file accesses?



3. Are small file accesses often grouped?

4. Do small files exhibit poor grouping behavior under current file systems?

5. Are co-location algorithms in C-FFS succesful in grouping small files, even under

the stress of aging?

6. Do the grouping algoirthms in C-FFS improve bandwidth on small file accesses?

7. Do the co-location and pre-fetching algorithms in C-FFS result in improved

application performance?

8. Do the grouping algorithms in CFFS adversely impact large-file performance?



Chapter 6

Summary

This thesis presents the design and implementation of a Co-locating Fast File System

for UNIX. The Co-locating Fast File System concentrates on improving small file

performance by reducing the number of indirections the file system requests of the

underlying device. Specifically, embedding inodes in directories remove a level of

physical indirection from the structure of the file system. In addition, the observation

that files accesses are often grouped allows us to remove even more indirections by pre-

fetching groups of files. Pre-fetching is most effective, however, if files are layed out

contiguously on disk. As such, a special class of layout algorithms called co-location

algorithms are key to file system performance.

Two different algorithms for laying out files contiguously on disk are presented.

The directory-based co-location algorithm comes directly from Ganger and Kaashoek's

earlier work. The key-based co-location algorithm is a novel algorithm presented for

the first time in this thesis. It generalizes the earlier directory-based co-location to

support grouping on various keys. Suggested possibilites for keys include access time,

user id, or even parent directory.

A UNIX file system is required to maintain the logical indirection between a file

name and its inode. This indirection allows for multiple names in the same file system

to refer to the same file. It also allows the programs to assume a constant file identifier

for the lifetime of a file. Removing the level of physical indirection in the presence of a

logical indirection adds complexity to the design. A couple alternatives are discussed.



UNIX C-FFS adds two data structures, the external inode table and the inode locator

table, to provide constant inode numbers and multiple link support.

The buffer cache of the host operating system, OpenBSD, had to be significantly

changed to support the group pre-fetch algorithms. The buffer cache was split into

two caches: a physical block cache and a logical block cache. Individual blocks

could appear in both or either. The new buffer cache structure allowed the pre-fetch

algorithm to read blocks into memory without knowing which files they belonged to.

Performance measurements on the file system confirm the value of embedded

inodes. By allowing the file name, inode, and data to reside in the same track,

small file bandwidth is improved to the point where it is 90% of large file bandwidth.

Measurements also indicate that large file performance does not suffer because of the

addition of the new algorithms. Application benchmarks are not as conclusive about

the benefits of co-location and embedded inodes.

Very little of the performance improvements seen in the benchmarks comes from

grouping. This is mostly due to the excellent performance of all file systems vis-a-vis

grouping on empty partitions. In addition, modern disks help by caching ranges of

contiguous data. The advantages of grouping are expected to become more evident

on a fuller file system in the presence of aging.

Future work will concentrate on developing new co-location algorithms based on

the studies of detailed file system access patterns. These patterns will be collected

by a tracing mechanism in the kernel which instruments file system operations all the

way down to the disk driver. Experimental questions for validating and directing the

future work were presented.
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