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Abstract

The primary focus of our research has been to develop models and algorithms to
optimize large scale service network design problems for transportation providers.
Service network design problems arise at airlines (passenger and cargo), trucking
companies, railroads, etc., wherever there is a need to determine cost minimizing
routes and schedules, given constraints on resource availability and level of service.
We have developed models and a novel decomposition technique to solve large scale
service network design problems with time windows and demand consolidation. We
apply our models and algorithms to design the service network of a key player in the
express shipment delivery industry. Our approach results in savings in total operating
costs and provides a valuable tool for making decisions at strategic and tactical levels.
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Chapter 1

Introduction

1.1 Network Design Problem

Network Design Problem requires the determination of facility locations and the rout-

ing of demand on the network of facilities such that the sum of fixed cost associated

with locating the facilities facilities and the variable cost associated with the flow of

demand is minimized. We motivate the Network Design Problem with an example of

supply chain planning (see Sheffi [82]). In a typical supply chain operation, different

raw materials from suppliers are fed into different plants, which manufacture prod-

ucts for consumption (commodities). The products from manufacturing plants are

stored in regional warehouses or distribution centers (DCs) that cater to the needs of

different customer zones. In designing such a system the questions that arise are:

* How many facilities such as suppliers for raw materials, plants and DCs are

needed, where should they be located and at which capacity should they oper-

ate?

* How much of each product from each plant should be routed through each DC

to each customer zone so that all the demand is met ?

The overall objective of such a planning exercise is to minimize total cost, that is a

sum of fixed costs and variable costs. Such a planning problem belongs to a general

class of mixed integer programming problems called the Network Design Problem



(NDP). We present below a mathematical formulation of NDP and a survey of recent

literature on this subject.

1.1.1 Baseline Network Design Problem Formulation

Let G = (N, A) be a directed network, where N is the node set and A is the arc set.

For our purpose, we will assume throughout the thesis that by default, a commodity

k is identified with a specific origin and destination. We will let K(3 k) be the set of

commodities and bk be demand for commodity k that is to be transported from its

origin denoted by O(k) to its destination D(k). The network design model contains

two types of decision variables - one modeling integer design decisions and the other

modeling continuous flow decisions. Let u1 be the capacity of asset type f. Let y:

indicate the number of times asset type f is deployed on arc (i, j) in the solution.

Let xi represent the fraction of bk on arc (i, j). Let hf be the fixed cost of deploying

asset type f on arc (i, j) once and ci be the cost per unit flow of commodity k on

arc (i, j). The mathematical program for the network design problem can be written

as follows:

Minimize Z h~y + CI .kI ,(1.1)k
fEF (i,j)EA kEK (i,j)EA

such that:

bZ ufy V(i,j) E A (1.2)
kEK fEF

1 if i = O(k)
E xi - E zi = -1 ifi=D(k) Vi E N, Vk E K (1.3)

jEN jEN
0 otherwise

xk >0, Vk E K, V(i,j) EA (1.4)

y. 2 0 and integer, V(i,j) E A, Vf E F (1.5)

The objective (1.1) is to find the cost minimizing deployment of assets and routing

of flows on the network constituted by the assets subject to constraints (1.2) - (1.5).

Constraints (1.2), the forcing constraints limit the amount of flow on any are to its



capacity, as determined by the value of design variables. Constraints (1.3) are the

flow conservation constraints that ensure that each commodity is fully serviced from

its origin to destination. Constraints (1.4) ensure non-negativity of commodity flows

and constraints (1.5) ensure the integrality and non-negativity of design variables.

1.1.2 Literature

A survey of literature on network design can be found in Minoux [66], Magnanti and

Wong [64] and Kim [52]. For a course on the design of survivable networks under

connectivity constraints in telecommunications, we refer the reader to Stoer [84]. We

outline some of the recent research in the area below:

* Magnanti et al. [63] demonstrate how to tailor Benders' decomposition to

the uncapacitated network design problem. The uncapacitated network de-

sign problem is a variant of the general network design problem where there are

no forcing constraints (1.2).

* Gendron and Crainic [38] analyze classical relaxation methods applied to several

formulations of a fixed charge multicommodity network design problem using

resource-decomposition based solution techniques.

* Clarke and Gong [24] contrast link-based and path-based formulations of the

capacitated telecommunication network design problem. They strengthen the

model using valid inequalities developed by Magnanti et al. [62] and propose

SOS constraints to take advantage of SOS branching in MINTO (the Mixed

INTeger Optimizer [69]).

* Li et al. [57] consider the computational complexity of point-to-point delivery

problems and closely related point-to-point connection problems. They prove

that all variations of both the problems are NP -hard, but there are polynomial

algorithms for special cases.

* Medhi and Tipper [65] present different solution approaches to a multi-hour

communication network design problem. They compare the approaches based



on a genetic algorithm and Lagrangean relaxation.

* Balakrishnan et al. ([5] and [6]) present models and algorithms for the multi-

level network design problem that addresses topological design trade-offs in

hierarchical networks.

* Balakrishnan et al. [8] develop and test a decomposition algorithm to gener-

ate cost-effective expansion plans with performance guarantees, for local access

networks.

* Magnanti et al. ([61] and [62]) study two core subproblems of a specialized ca-

pacitated network design problem called the Network Loading Problem (NLP).

They develop families of facets and completely characterize the convex hull of

feasible solutions to the integer programming formulation of the problems.

* Balakrishnan et al. [7] study a class of models, called overlay optimization

problems, composed of "base" and "overlay" subproblems, linked by the re-

quirement that the overlay solution be contained in the base solution. They

describe a heuristic procedure and establish worst-case performance guarantees

for the uncapacitated multicommodity network design problem.

Some of the recent developments in the area have been in approximation algorithms.

* Goemans and Williamson [40] demonstrate how the primal-dual method of solv-

ing linear programs can be modified to provide good approximation algorithms

for a wide variety of NP-hard problems. They also provide a good summary

of developments in primal-dual approximation algorithms for network design

problems.

* Agrawal, Klein and Ravi [2] introduce the use of approximation schemes for

network design problems without reference to linear programming.

* Goemans and Williamson [41] expand the approach of Agrawal, Klein and Ravi

[2] and make explicit use of linear programming to provide an approximation

scheme for network design problems.



* Williamson et al. [88] present the first polynomial-time algorithm for a class of

network design problems including the Steiner network problem (see Ahuja et

al. [3]) and the survivable network design problem (see Stoer [84] for details)

that arises in telecommunication.

* Gabow et al. [37] improve the approximation algorithm presented by Williamson

et al. [88] for the survivable network design problem.

* Goemans et al. [39] study a class of network design problems where one needs

to find a minimum cost network satisfying certain connectivity requirements

and present an approximation algorithm with a performance guarantee that is

harmonic with respect to the requirement function.

* Hochbaum and Naor [46] use the results of Goemans et al. [39] and provide an

approximation scheme for network design problems with some special connec-

tivity requirements.

The major disadvantage of approximation algorithms has been the fact that the

bounds given by approximation schemes are very loose and the analyses done to

arrive at the bounds are usually very tight. Also the treatment of approximation

algorithms in the literature has been rather theoretical in nature and there is a dearth

of computational testing on practical applications.

1.2 Contributions

The contributions of our research are three-fold:

Modeling Contributions

We have developed an iterative modeling framework for large scale transporta-

tion service network design problems with time windows. Within our frame-

work, we divide the problem into two subproblems. The first subproblem in-

volves routing decisions and the second involves shipment flow decisions. We

use an approximate service network design model for routing decisions. For



the shipment flow decisions, we have developed a novel variant of mixed integer

multicommodity flow models called the Location Elimination Model (LEM). We

present two equivalent formulations of LEM based on path-based and tree-based

definition of flow variables. LEM enables the overall framework to provide in-

sight out of an infeasible routing plan and enables decisions to be made that

subsequently increase the ease of subproblem solution future iterations. Since

the amount of memory needed is the key stumbling block, the exactness of

the modeling framework increases if the memory availability is increased or if

the problem size is reduced, thereby making apparent the trade-off between

computer memory and exactness of the solution.

Algorithmic Contributions

We have contributed a decomposition solution algorithm for service network de-

sign that is particularly amenable for large scale problems. The overall solution

algorithm involves solution of two kinds of subproblems, one for each type of

decision variable. The route generation subproblem is a large scale general inte-

ger program and is solved using a Branch-and-Price-and-Cut approach, where

both route variables and violated constraints are generated on an "as needed"

basis. We use a Branch-and-Price strategy to solve the shipment flow subprob-

lem, LEM, where the shipment flow variables are generated on an "as needed"

basis by solving a series of shortest path subproblems.

We provide a proof-of-concept of the efficacy of our solution approach by

solving the service network design problem of a large carrier in the express

shipment delivery industry. We are unable to generate optimal IP solutions due

to the huge size of the carrier's operations and NP-completeness that typifies

service network design problems. However, our solution approach provides IP

feasible solutions that result in annual cost savings measuring in tens of millions

of dollars, with run times acceptable for strategic planning.



Applied Contributions

We have developed a modeling framework and a decomposition solution ap-

proach for service network design problems that arise at airlines, trucking com-

panies, railroads, supply chains, etc. The common characteristic of these service

network design problems is the need to determine cost minimizing routes and

schedules, given constraints on resource availability and level of service. De-

pending on the specific operating characteristics of the application, additional

constraints may be necessary. For our express shipment delivery application,

we illustrate how to model fleet balance constraints, fleet size constraints, fleet

capacity constraints, hub landing capacity constraints and connectivity con-

straints. These specific constraints may be either relaxed or interpreted differ-

ently for other applications. For example, the hubs in the express shipment

delivery operations are analogous to distribution centers (DCs) in supply chain

operations in that they serve the same purpose of demand consolidation. Hence

hub capacity constraints can be envisaged as constraints on storage space at

DCs and the landing capacity constraints would similarly correspond to the

limitations on number of vehicles in the loading/unloading area.

Our decomposition approach for service network design has the capability

to solve large scale real-life problems in a reasonable time frame, and thereby

supplanting cumbersome manual planning processes. As a decision support sys-

tem, it enables planners to focus on analyzing relevant scenarios at strategic and

tactical levels, and translating the results into recommendations for operations

planning.

1.3 Outline of the Thesis

The rest of the thesis is outlined as follows:

In Chapter 2, we describe the Transportation Service Network Design Problem

and present three equivalent model formulations. We review the literature specific to

the Service Network Design Problem and motivate the need for our solution approach.



We also present a high-level description of our decomposition solution approach. In

Chapter 3, we present routing models for Service Network Design and outline solution

techniques for large scale problems. In Chapter 4, we detail shipment flow models

and their applications. In Chapter 5, we apply our models and algorithms to solve the

Service Network Design Problem of a large carrier in the express shipment delivery

industry. In Chapter 6, we conclude the thesis with some final remarks and directions

for future research.



Chapter 2

Transportation Service Network

Design

2.1 Problem Description

In a typical transportation service operation, the service provider carries customer

demand from origins to destinations using the assets that are deployed on various

transportation legs. The Service Network Design Problem (SNDP) requires the de-

termination of a set of routes for the assets, that satisfies all customer demand at a

minimum cost without violating the capacities of the service legs. The SNDP has an

added degree of complexity over the Network Design Problem (NDP) described in

Chapter 1 in that, the assets need to be balanced at the end of the planning period

for continuity in the service cycle. Such problems include the following:

* Less - than - Truckload (LTL) Operations Planning. Motor carriers carry

freight from origin end - of - line (EOL) terminals to destination EOL termi-

nals, through consolidation centers (CCs), on a daily basis. The objective is to

determine minimum cost routes and schedules for tractors and trailers so that

all the demand can be conveyed with the available fleet size and capacity. The

tractors and trailers must reach their starting terminal at the end of the day,

to be available for service the following day.



* Airline Scheduling. Airlines need to determine a revenue maximizing set of

routes and schedules for their fleet of aircraft. Since passengers are flown on a

daily basis, aircraft must be repositioned to allow repetition of the schedule on

the following day.

* Express Package Delivery. This is similar to airline scheduling where pack-

ages, instead of passengers are transported from origins to destinations on a

daily basis. Timing constraints are more stringent in this case, since level of

service guarantees are often in place.

2.2 Service Network Design Problem

Formulations

In this section we present three equivalent models for the service network design prob-

lem. The models may differ in the number of variables and the number of constraints

they contain.

2.2.1 Node-Arc Formulation

Minimize h -y~y + c b k. (2.1)
fEF (i,j)EA keK (i,j)EA

such that,

Z bkxk <k ufy V(i,j) E A (2.2)
keK fEF

1 if i = O(k)

xi - x i = -1 if i= D(k) Vi E N, Vk E K (2.3)
jEN jEN

0 otherwise

yi - yfi 0 Vi E N, V f F (2.4)
jEN jEN

xi 0, Vk E K, V(i,j) c A (2.5)

y > 0 and integer, V(i,j) E A, Vf E F (2.6)



The objective (2.1) is to find the cost minimizing deployment of assets and routing

of flows on the network constituted by the assets subject to constraints (2.2) - (2.6).

Constraints (2.2), the forcing constraints limit the amount of flow on any are to the

capacity of that arc, as determined by the value of design variables. Constraints (2.3)

are the flow conservation constraints that ensure that each commodity is fully ser-

viced from its origin to destination. Constraints (2.4) are design balance constraints

that distinguish service network design problems from conventional network design

problems. Constraints (2.5) ensure non-negativity of commodity flows and constraints

(2.6) ensure the integrality and non-negativity of design variables.

2.2.2 Path Formulation

For the path and tree formulations, we let design route r be a sequential set of design

variables of some type f in the Node-Arc formulation, that is balanced everywhere

except possibly at the start and the end of the sequence. Any individual aircraft route

can start and terminate at any location. So the starting point of the aircraft route

may not always coincide with the ending point and this could result in an imbalance

of fleet types. Our requirement is that the schedule be repeatable or cyclic. So we

need to impose balance only by aircraft type and not by aircraft.

Notations

We define some notations before presenting the path formulation.

SETS

K(3 k) : the set of all O-D commodities

Rf : the set of all design routes for fleet type f

pk(3 p) : the set of all feasible paths from origin O(k) to destination D(k) for

eack k E K

PARAMETERS

hf = E(i,j)CA hja : the cost of design route r of type f

c = E(i,j)EA ci6j : the cost of flowing one unit of commodity k from O(k) to



D(k) along path p E pk

INDICATOR VARIABLES

S 1 if design variable for (i, j) is included in design route r

0 otherwise

1 if i E N is the start node of design route r

i - 1 if i E N is the end node of design route r

0 otherwise

6? = 1 if arc (i, j) belongs to path p{ 0 otherwise

DECISION VARIABLES

yf : number of assets of type f deployed on design route r

z : fraction of bk on path p E pk for all k E K

With these notations we present the path formulation below (see Ahuja et al. [3]

for demonstration of equivalence between Node-Arc and Path formulations).

SNDP-Path

Minimize hf y + (ckbk )x k  (2.7)
rERf kEK pEPk

such that,

E S (bk)x < ufyfa , V(i,j) E A (2.8)
kEKpEPk fEF rERf

x=1 , Vk E K (2.9)
pEP

C yf = 0 , Vi E N, VfE F (2.10)
rERI

xk > 0 Vp E P k, Vk E K (2.11)



y{ > 0 and integer, Vr E Rf, Vf E F

The objective (2.7) is to find the cost minimizing deployment of assets and routing of

flows on the network constituted by the assets. Constraints (2.8) - (2.12) correspond

to constraints (2.2) - (2.6) in the Node-Arc formulation.

2.2.3 Tree Formulation

If arc costs remain the same for all commodities, then the flow variables can be

represented on origin-based or destination-based trees (see Jones et al. [48]) to arrive

at an equivalent tree formulation. Here the idea is to aggregate all O-D commodities

with the same origin (destination) into a single super commodity so that we have one

commodity for each origin (destination) location.

Notations

We additionally use the following notations for the origin-based tree formulation of

SNDP.

SETS

O(E o) : set of all origin locations

Qo (3 q) : the set of all trees at origin o, for all o E O

Ko : the set of all O-D commodities with origin o

pk : the unique path from O(k) to D(k) in tree q

PARAMETERS

cq = -kEKo (i,j)EA Fqkbk : the cost of flowing the entire portion of all O-D com-

modities with O(k) = o from O(k) to D(k) along path pq in tree q.

INDICATOR VARIABLES

1 if arc (i, j) belongs to the path pk from 0(k) to D(k) in tree q

0 otherwise

DECISION VARIABLES

wtq: fraction of bk flown on the path pk from O(k) = o to D(k) in tree q

(2.12)



SNDP-Tree

Minimize Z h y! + ~ cqw q  (2.13)
rERI oEO qEQo

such that,

{ (E I w  _bk yf uy , V(i,j) E A (2.14)
oEO qEQo kEKo fEF rERf

w g = 1, VoEO (2.15)
qEQo

Z yf =0 , Vi E N, Vf E F (2.16)
rERI

wq 2 0, Vq E Q, Vo E O (2.17)

yf 0 and integer, Vr E Rf, Vf E F (2.18)

The objective (2.13) is to find the cost minimizing deployment of assets and rout-

ing of flows on the network constituted by the assets. Constraints (2.14) - (2.18)

correspond to constraints (2.2) - (2.6) in the Node-Arc formulation.

2.2.4 Comparison of Formulations

Compared to SNDP - Node - Arc the number of flow conservation constraints in

SNDP - Path is reduced from INI x |KI to IKI. In the tree formulation this number

is further reduced to 101, the number of origin locations. The reduction in the number

of constraints makes the path and tree formulations particularly amenable to large

scale problems. We refer the reader to Ahuja et al. [3], Jones et al. [48] and Kim [52]

for a discussion on the advantages of path and tree formulations over the node-arc

formulation. However, the number of variables increases exponentially in the path

and tree formulations. In Chapter 3, we outline some solution methods for problems

with a large number of decision variables. Table (2.1) summarizes the differences in

the number of flow conservation constraints and the number of decision variables

among the three formulations.



SNDP-Node-Arc SNDP-Path SNDP-Tree
Flow Balance Constraints INI x IKI IKI 101
Number of Variables JAl x IKI O( 2N) O(20(2"))

Table 2.1: Comparison of SNDP Formulations

2.3 Literature

In this section we summarize some of the recent research in transportation service

design.

* Chestler [22] studies the express shipment delivery industry in the early stages

of development. Qualitative analyses of network configuration, competition and

hub location are presented.

* Chan and Ponder [21] review the air freight industry with special reference

to the Federal Express Corporation. They outline the characteristics of the

industry and present a survey of different managerial practices.

* O'Kelly [72] develops several models for the location of interacting hub facilities.

An empirical example is used to demonstrate the relevance of a single-hub model

for an understanding of contemporary express delivery networks.

* Kanafani and Ghobrial [50] analyze the phenomenon of hubbing in airlines.

They examine the economics behind hubbing and conclude that there are sig-

nificant potential benefits to the airports to be gained from some sort of hub

pricing.

* Hall [43] examines the impact of overnight restrictions and time zones on the

configuration of an air freight network. The effect of the location of a hub

terminal on the arrival pattern of aircraft at the terminal is studied. Practical

restrictions that tend to favor eastern terminal locations over western locations

are reported.



* Kuby and Gray [54] compare the cost-effectiveness of hub-and-spoke networks

with stopovers and feeders to that of pure hub-and-spoke networks and present

a case study on Federal Express. They assume a single sorting hub and a

relatively small market covering only the western United States and develop a

mixed integer program to design the least-cost air network.

* Barnhart and Schneur [18] develop a model and algorithm for an express ship-

ment service network design problem. In their model, (1) there is only one hub,

(2) transfer of shipments between aircraft at gateways in disallowed and (3)

only one type of aircraft is allowed to serve each gateway location. The upshot

is that shipment routings are completely determined by aircraft routes.

* Kamoun and Hall [49] analyze the express mail delivery problem for the courier

services industry. These companies operate like taxi companies, but transport

mail and packages instead of people. Kamoun and Hall propose two new de-

signs without using linear programming techniques and provide results based

on simulation.

* Kim [52] develops generic models and algorithms for large-scale transportation

service network design problems and illustrates an application in the express

package delivery industry. By exploiting special problem structure and applying

novel problem reduction techniques, a dramatic decrease in problem size is

achieved without compromising exactness of the model.

* If we consider the NDP with a single source node e and a fixed capacity uij = U

on all arcs and add assignment constraints,

y,= 1 ,ViEN\ {e}
jEN

Yij= 1 ,Vj E N\{e}
iEN

as well as the constraint,

SYej < n,
iEN



the NDP becomes a vehicle routing problem (VRP) for a homogeneous fleet of n

vehicles each domiciled at depot e and each having a capacity U. Comprehensive

surveys by Magnanti [59], Magnanti and Wong [64], Golden and Assad [42]

Desauliniers et al. [30] and Desrosiers et al. [32] summarize the developments

in this field.

* Talluri and Gopalan [85] survey various mathematical models in airline schedule

planning. Barnhart et al. [17] and Shenoi [83] present integrated models and

solution techniques for airline planning including integrated fleet assignment and

maintenance routing, and integrated crew scheduling and deadhead selection.

Daskin and Panayotopoulos [29] analyze the probem of assigning aircraft to

scheduled routes to maximize profits in passenger hub and spoke networks. A

Lagrangian relaxation of the formulation is outlined together with heuristics for

converting Lagrangian solutions into primal solutions and for improving on the

solutions.

* In the railroad industry, Ziarati et al. [91] develop models for assigning loco-

motives to trains to operate a given schedule. They solve the models using a

Dantzig-Wolfe decomposition technique, where subproblems are formulated as

constrained or unconstrained shortest path problems. Newton [71] and Barn-

hart et al. [14] study network design problem with budget constraints with an

application to railroad blocking problems.

* Powell [74] models the load planning problem for Less-Than-Truckload (LTL)

motor carriers as a Service Network Design Problem. A local improvement

heuristic is proposed which adds and drops links to and from the network in

an intelligent sequence. After each change, the routing of freight over the net-

work is approximately reoptimized. Farvolden and Powell [33] present local-

improvement heuristics for a SNDP encountered in LTL common carrier appli-

cations. The add/drop heuristics are based upon subgradients derived from the

optimal dual variables of the shipment routing subproblem that is modeled as a

multicommodity network flow problem. The basis of the multicommodity net-



work flow problem is partitioned to facilitate the calculation of dual variables,

reduced costs and subgradients (see Farvolden et al. [34]). Powell and Sheffi

[75] also use add/drop heuristics for LTL motor carrier applications.

Wong [89] raises some algorithmic and computational questions in transporta-

tion network research. Possible advances in improving the quality of solutions,

increasing the size of problems that can be handled and use of approximate

procedures are suggested.

Most of the previously developed models and solution techniques have been used to

solve small and medium scale real-life problems (see Kim [52] for details). In the next

section we identify the needs to solve very large scale real-life problems and present

an overview of our solution approach.

2.4 Decomposition Solution Approach

We recall that the service network design problem has two kinds of decision variables,

one for the deployment of transportation assets onto network paths and the other

for the routing of shipments over the network. Simultaneous solution for both these

types of variables for many transportation applications requires hardware capabilities

that are far greater than those available to most transportation service providers. As

the size of the problem increases, it might take hours of runtime just to discover that

there is not enough memory in the system to solve the problem. This time consuming

process often yields very little insight into the problem. Hence there is a pressing need

for a procedure that allows us to solve very large-scale transportation applications.

Our solution approach strives to satisfy this need by using two models, each dealing

with a subproblem for one kind of decision variable, in an iterative framework that

integrates results from both the models. We use an approximate service network

design model, called SNDP-Approx, to generate routes for transportation assets and

a variant of integer multicommodity flow models, called LEM, to generate shipment

flows.



2.4.1 Decomposition Algorithm

We first generate routes for transportation assets by using the route generation model,

SNDP - Approx. On the network constructed from these routes, we flow shipments

in an intelligent manner using the shipment flow model, LEM, and based on these

shipment flows we fix some of the routes and strip out the shipments that can be

serviced by the routes selected so far. We repeat this procedure with the shipments

remaining to be serviced. This way the number of shipments that need to be serviced

is successively reduced so that in the end we either have a set of selected routes

that have enough capacity to service all the shipments or a small enough number of

shipments that the problem can be solved using exact models without computational

burden.

Our solution approach can be outlined as follows:

0. Initial Input: Input all commodity demand data, locations, ca-

pacities, costs and initialize the set of selected routes to a null-set. Go to

Step 1.

1. Route Generation: Solve the model SNDP - Approx with the

input set of commodities and generate "promising" routes for transporta-

tion assets.

2. Shipment Flow Generation: Solve LEM and arrive at a set

of commodity flows over the service network generated in the Route

Generation step.

3. Variable Fixing : Augment the set of selected routes by fixing

some of the promising routes generated in the Route Generation step.

The selected routes are those that are very likely to be in the optimal

solution and are identified based on the flows from the Shipment Flow

Generation step. We provide more details in Chapter 5.

4. Feasibility Check: Verify using LEM if the service network

formed by the current set of selected routes has enough capacity to carry

all demand. If yes, STOP; else go to the Problem Size Reduction step.



5. Problem Size Reduction: Eliminate commodities that can be

moved on the service network formed by the set of selected routes. If the

service design problem for the remaining commodities is small enough to

solve exactly with available hardware, solve using the service network de-

sign model (detailed in Section 2). Otherwise, go to the Route Generation

step with the remaining set of commodities as input.

A key idea of our approach is that we keep selecting routes and flowing commodi-

ties at each step until the size of the problem with the remaining commodities is small

enough to be solved exactly with current memory availability or we have a feasible

solution. This greatly enhances the tractability of our solution technique. The flow

chart corresponding to our algorithm is shown in Figure 2-1.

2.4.2 Shipment Flow Model Description

We now introduce a variant of integer multicommodity flow models called the Location

Elimination Model (LEM) to flow shipments in such a way as to reduce the size of

the subproblem at the next iteration. In Chapter 4, we describe LEM in detail.

The motivation for LEM arises from the fact that the routes generated in the Route

Generation step of our solution approach may not have enough capacity to move the

entire demand for shipments from their origins to their destinations. Hence there is a

need for a model that can flow some of the shipments on such a network that does not

have enough capacity and aid the overall solution algorithm in making some decisions

based on the shipment flow patterns. LEM establishes a set of commodity flows on

the fleet network that maximizes the number of origin and destination locations for

which all demand originating at or destined for that location, as the case may be, is

assigned to network paths. If all origin and destination locations do not have their

entire demands assigned to the network, we can fix only the fleet routes that carry

the entire demand of origin or destination locations they visit. This results in the

following:



Input the entire
set of commodities

----------- ----

Fix some routes

Generate promising routes
by solving the model

SNDP-Approx

Generate shipment flows
by solving LEM

Fix some promising route
variables

Reduced
Problem
Size

Input the set of
commodities
remainingI I/

YES Does the network of Feasible ?
STOP fleet routes selected so far
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selected so far
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L - - - - - - - - - - - - - - j

YES Is the remaining NO
Solve using exact problem small

model enough?

Figure 2-1: Decomposition Algorithm



* The number of O-D commodities, whose demand is satisfied is reduced. This

translates into a reduction in the size of input data for the Route Generation

problem in the next iteration.

* There is an elimination of some origin and destination locations whose demand

has been entirely moved. This results in a corresponding reduction in the size

of the fleet network in the Route Generation step.

LEM can be used either in a stand-alone fashion or embedded in an iterative

framework for solving large scale problems. If all origin and destination locations

have their entire demands assigned to the network, we can infer that there is enough

capacity in the network to carry all O-D demand. Thus LEM can be used as a

stand-alone model to check the feasibility of any solution to the NDP with respect to

demand.

The elimination of some origin and destination locations might result in a consid-

erable reduction in the size of the fleet network in the Route Generation step, since

many transportation applications involve time as a factor and every single physical

location will correspond to multiple nodes in a network in space and time. Thus LEM

is intelligent because it flows shipments in a way that reduces problem size for future

consideration.



Chapter 3

Routing for Transportation

Service Network Design:

Models and Solutions

In this chapter we describe the first type of subproblem that deals with arriving at

a routing plan for the transportation assets or fleet. We use approximate service

network design models to solve this problem. We first present approximate SNDP

models after providing some necessary background. We then present a brief review

of literature followed by some solution techniques for solving large scale problems.

3.1 Valid Inequalities

Given some values for the design variables y, thereby determining the capacities on

the arcs, the SNDP has a feasible flow of bk from O(k) to D(k) only if the capacity of

every O(k) - D(k) cutset is at least bk. In general, for any feasible solution to SNDP,

the aggregate capacity across the cutset must be no less than the demand across the

cutset. These aggregate capacity demand inequalities (see Magnanti et al. [62]) are



expressed as:

E Uf YT DS,T , for all O - D cutsets {S,T} (3.1)
fEf

where we define cutset {S, T} to be a partition of the node set N into two mutually

exclusive and collectively exhaustive non-empty subsets S and T = N \ S. We let
Yf = (ij)6A Y in the Node-Arc formulation and Yf f -rE (i,) {ST}nr Y in

S,T =(ij)EA Yij 'T =ErERf Z(ij)ES,T}flr yi

the route-based formulation. We let DS,T be the total demand of all commodities

with origin in subset S, i.e. O(k) E S and destination in subset T (D(k) E T).

Inequalities (3.1) are knapsack inequalities that can be strengthened in many ways.

One way is to use rounding that results in Chv&tal - Gomory cuts. Alternatively we

could generate cutset inequalities as explained in Magnanti et al. ([62] and [61]) and

Magnanti and Mirchandani [60]. Also see Stoer [84] for details on valid inequalities.

3.1.1 Chvatal-Gomory Cuts

The aggregate capacity demand inequalities (3.1) can be lifted by applying simple

integer rounding to produce Chvatal - Gomory (C-G) cuts. If we let I be a particular

asset or service type then the following C-G cuts are valid for each O-D cutset {S, T}.

S ] YS,[T > 1  ,V 1 E F, for all 0 - D cutsets {S,T} (3.2)

We refer the reader to Nemhauser and Wolsey [70] for further details. The difficulty

in using C - G cuts is that there are exponentially many. For instance, in the case of

N origin locations and F fleet types, the total number of C - G cuts including the

aggregate capacity demand inequalities is { 2 (2N - 1)} x (IFI + 1).

3.1.2 Cutset Inequalities

The aggregate capacity demand inequalities (3.1) can be alternatively strengthened

by using cutset inequalities. Cutset inequalities, extensively researched by Magnanti,

Mirchandani and Vachani ([62] and [61]) and Magnanti and Mirchandani [60], may



provide tighter LP bounds than C-G cuts. We assume that there are only two service

or asset types for ease of exposition. However, they can be generated for more than

two types. The cuts (3.1) can be written as:

uLYJT + U2 S2T > DS,T (3.3)

and the two types of cutset inequalities can be written as:

1T 2 , (3.4),T + r(Ds,T,U
1 ) u (3.4)

1 1 YV > ](3.5)
r(Ds,T, 2) S,T S,T - (3.5)

where r(Ds,T, u) DS,T - ( )
The generalized version of cutset inequalities can be found in Magnanti et al.

[62]. As with the C - G cuts, the number of cutset inequalities grows exponentially

with the number of locations. For example, in the case of N origin locations and F

fleet types, the total number of cutset inequalities including the aggregate capacity

demand inequalities is { 2 (2
N - 1)} x (IF+ 1), which is the same as that for C-G cuts.

3.2 The Approximate Service Network Design

Cutset Model

When the costs of flow variables are negligible compared to fixed design variable

costs, we can approximate the network design problem without considering flows

explicitly. When there is only one commodity, we can show using a max - flow min -

cut argument that aggregate capacity demand inequalities are both necessary and

sufficient, to guarantee a feasible single-commodity solution (see Ahuja et al. [3] for

details). For multicommodity problems, aggregate capacity demand inequalities are

a necessary, but not a sufficient, condition to guarantee a feasible multicommodity

flow solution (for example, see Mirchandani [67]). Because SNDP involves multiple



commodities, we approximate SNDP with SNDP-Approx. Correspondingly we call

the approximation of SNDP - Node - Arc as SNDP - Approx - Node - Arc and that

the approximation of SNDP - Path and SNDP - Tree as SNDP - Approx - Route.

SNDP-Approx models enable us to solve SNDP approximately, considering only the

design variables and ignoring the huge number of flow variables and large number of

constraints (flow balance and forcing constraints) associated with the flow variables.

3.2.1 Approximate SNDP Formulations

We present below the approximate node-arc and route-based formulations.

SNDP-Approx-Node-Arc

Minimize C hfyfj (3.6)
fEF (i,j)EA

such that

SUf Y!T, > DS,T , V O - D cutsets {S, T} (3.7)
fef

y - yf = 0 Vi E N, V f F (3.8)
jEN jEN

yf. > 0 and integer, V(i, j) E A, Vf E F (3.9)

SNDP-Approx-Route

Minimize 5 h{yf (3.10)
rERf

such that

SufYsT', DS,T , V 0 - D cutsets {S, T} (3.11)
fEf

Pryf = 0 , Vi E N, Vf E F (3.12)
rERf

yf o0 and integer, Vr E Rf, Vf E F (3.13)



3.3 Literature

Cutset based formulations have been used in the literature to model variants of NDP

such as the survivable network design problem, Steiner tree problems, location-design

and location-routing problems, point-to-point routing problems etc. Goemans and

Williamson [40] outline several of these problems and summarize the research in

approximation algorithms for solution to these problems. Stoer [84] presents a study

on existing cutset models, decomposition solution techniques, valid inequalities and

lifting theorems for the design of survivable networks. In transportation, Kim [52]

presents an application of cutset models for express shipment delivery.

3.4 Solution Approach

In this section we present a generic solution to large-scale integer programs with a

prohibitively huge number of variables and constraints. Direct solution to these prob-

lems is usually not possible even with state-of-the-art LP/IP solvers (such as CPLEX

[26] , MINTO [69] , OSL [47]). We first present a solution technique for large-scale

linear programs that is based on variable restriction and constraint relaxation. We

then present a solution technique for integer programs that is based on variable re-

striction and constraint relaxation embedded within a Branch-and-Bound framework.

We provide details of specific techniques for our application in Chapter 5.

3.4.1 LP solution

Column Generation

When a linear program contains an exponential number of variables (or columns)

rendering a direct solution very difficult, we resort to Dantzig-Wolfe decomposition

[28] or Column Generation solution techniques. The key idea is to start with a very

small number of decision variables from the original formulation called the Master

Problem (MP) to form a smaller problem called the Restricted Master Problem

(RMP), that is solved to optimality. To check the optimality of a solution to RMP



with respect to MP, a subproblem called the pricing problem is solved. The result is

that either optimality is proved or new variables whose inclusion into the RMP might

improve the solution quality are identified. If such variables are found, the RMP is

re-optimized. The entire process is repeated until optimality of the MP is proved.

The ease with which the pricing subproblem is solved determines tractability of the

column generation procedure. Column generation can be either implicit or explicit.

Implicit column generation refers to solving the pricing subproblem without evalu-

ating all variables (e.g., by solving an optimization problem of some kind such as

the shortest path problem), whereas explicit column generation refers to solving the

pricing subproblem by calculating the reduced cost of all variables.

Row Generation

Row generation is the dual analogue of column generation for LPs with a huge num-

ber of constraints. The idea is to start with a very small number of constraints from

the MP to form a smaller problem called the relaxed problem (RP), that is solved to

optimality. To check the optimality of a solution to RP with respect to MP, a sub-

problem called the separation problem is solved, that identifies violated constraints

(rows) to add to the current RP. If such constraints are found, the RP is re-optimized.

The entire process is repeated until no violated constraints are found. Row generation

can be either explicit or implicit. Explicit row generation is necessary when there is

no efficient algorithm to solve the separation problem and violated constraints may

be identified by evaluating each constraint. Implicit row generation refers to the case

when there is an algorithm to solve the separation problem.

When there is a single commodity, the task of identifying the most violated cut-

set inequalities, called the cutset separation problem, by max-flow min-cut duality,

reduces to identifying the min-cut. For the case with multiple commodities, there is

no efficient procedure to solve the cutset separation problem (see Balakrishnan et al.

[5]). Leighton and Rao [56] present an approximate max-flow min-cut theorem for a

special kind of multicommodity flow problem called the uniform multicommodity

flow problem. Linial et al. [58] present an approximate max-flow min-cut theorem



for a general multicommodity flow problem and provide an approximation algorithm

for the cutset separation problem. They use the technique of embedding metrics for

the multicommodity cut problem. Williamson et al. [88] and Gabow et al.[37] solve a

cutset separation problem as an intermediate step in an approximation algorithm for

the survivable network design problem. They demonstrate how to solve the separation

problem efficiently for special cases that could arise in telecommunication.

Synchronized Column and Row Generation

To solve LPs with both a huge number of variables and a huge number of constraints,

it may be necessary to use both column and row generation. The idea is to start with

a small number of columns (variables) and rows (constraints) from the original master

problem MP, to form the RMP. One approach is to perform column generation until

all columns have non-negative reduced costs. Then this is followed by row generation

until no violated constraints are identified. After completing row generation, the

entire process is repeated. The algorithm terminates when there are both no columns

and no violated constraints to add. The challenge in implementing such a procedure is

in adding constraints that do not change the structure of the pricing subproblem and

adding columns that do not change the structure of the separation subproblem. This

is averted however, if we use explicit column generation and explicit row generation.

The difficulty is that explicit generation may be computationally expensive or even,

impractical. The growth of the size of RMP is illustrated in Figure 3-1.

3.4.2 IP solution

Branch-and-Bound is a divide-and-conquer solution technique (refer to Cormen

et al. [25]) to solve IPs by solving a series of LP subproblems (see Nemhauser and

Wolsey [70] and Bradley et al. [20]). When the problem contains a huge number of

decision variables, a technique called Branch - and - Price that integrates features

of both Column Generation and Branch-and-Bound, is used (see Figure 3-2). The

major challenge of Branch-and-Price is to devise branching rules that maintain an
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Figure 3-1: Illustration: Synchronized Colummn and Row Generation



efficient structure of the pricing subproblem (see Barnhart et al. [16]). We refer the

reader to Parker and Ryan [73], Desrosiers et al. [32], Vance et al. [87], Barnhart

et al. [16] and Desrochers and Soumis [31] for alternative branching strategies for

different types of problems.

When the problem contains a huge number of constraints, a Branch - and -

Cut technique can used. Branch-and-Cut integrates Branch-and-Bound and Row

Generation by using Row Generation (or Cut Generation) in solving LPs at each

node of the Branch-and-Bound tree. Branching occurs when no violated constraints

are found. The difficulty is in developing an algorithm to solve the separation problem.

For problems with huge number of both columns and rows, Branch-and-Price and

Branch-and-Cut can be integrated to form a Branch - and - Price - and - Cut

solution technique. However, incompatibility between row and column generation

steps often make it difficult to solve IPs using Branch-and-Price-and-Cut. Barnhart

et al. [16] present heuristic approaches that may be able to provide a good integer

solution.
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Chapter 4

Shipment Flow Problem:

Models and Applications

In this chapter we describe the second type of sub-problem that deals with the decision

of commodity routing over a given fleet network with finite arc capacities. Such

problems belong to a general class of network flow problems called Multicommodity

Flow (MCF) problems. Because of their interesting mathematical properties and

wide applicability, MCF problems have been extensively studied. We first outline

some generalities of the MCF problem before presenting our model.

4.1 Baseline Multicommodity Flow Problem

Formulation

The multicommodity flow problem is a subproblem embedded in the Network Design

Problem. When the design variables in the NDP model (as presented in Chapter

1) are fixed, only decisions on the flow variables remain and the problem reduces to

finding a minimum cost routing of commodities from their origins to destinations over

the network formed by design variables. If we assume uij to be the capacity on arc

(i, j) E A after fixing the design variables, then the resulting MCF problem can be

formulated as:



Minimize E EC cbkx (4.1)
kEK (i,j)EA

such that

Sbkx. u ij V(i, j) E A (4.2)
kEK

1 if i = O(k)

xj - ji= -1 if i= D(k) Vi E N, Vk E K (4.3)
jEN jEN

0 otherwise

x > 0, Vk E K, V(i,j) E A (4.4)

The objective (4.1) is to find a minimum cost routing of commodities from their origins

to destinations over the network. Constraints (4.2) are called bundle constraints

that limit the amount of flow on any arc to its capacity. Constraints (4.3) are flow

conservation constraints that ensure that each commodity is fully serviced from

origin to destination. Constraints (4.4) guarantee non-negativity of flow variables.

4.2 Applications of Multicommodity Flow

Models

Multicommodity flow problems have a number of applications in various areas like

transportation, logistics, telecommunication, production, etc. Some of the applica-

tions are presented in this section.

4.2.1 Transportation and Logistics

Some applications of MCF problems in transportation and logistics are described

below.

* Routing vehicles in Traffic networks(Dynamic Traffic Assignment). This

involves the determination of minimum delay routes for vehicles from their ori-

gins to their respective destinations over the traffic network. The allowable



congestion levels determine the arc capacities. Alternatively, there are no ca-

pacities but the cost on an arc is a function of the amount of flow on the arc.

* Airline Fleet Assignment. Given a time table of flight arrivals and departures,

the expected demand on the flights and a set of aircraft, the objective is to arrive

at a minimum cost assignment of aircraft to the flights. This problem has been

extensively studied (see Abara [1] and Hane et al. [44]).

* Aircraft Maintenance Routing. Given an assignment of flights to fleets, the

task is to determine a sequence of flights, or routes, starting and ending at

maintenance stations or to find rotations (cycles) in the network, to be flown

by individual aircraft so that all the flight legs are covered. This problem has

been studied by Barnhart et al. [11] Clarke et al. [23], Shenoi [83] and Feo and

Bard [35].

* Airline Crew Scheduling. This problem deals with minimum cost pairing of

crews and aircraft. Factors such as aircraft type compatibility, hours of work

limitations and Federal Aviation Administration (FAA) regulations must be

taken into account while solving the problem. For an in-depth study the reader

is referred to Anbil et al. [4] and Barnhart et al. [15].

* Distribution systems planning. In this problem there are different commodi-

ties produced at several plants with known production capacities. Each com-

modity has a certain demand in each customer zone. The demand is satisfied by

shipping via regional distribution centers (DCs) with finite storage capacities.

The problem of routing the commodities from the manufacturing plants to the

customer zones through the DCs can be formulated as a MCF problem.

* Import and export models. One of the factors that may affect export is handling

capacity at ports. Barnett, Binkley and McCarl [9] uses a MCF model to analyze

the effect of US port capacities on the export of wheat, corn and soybean.

* Optimization of freight operations. Crainic, Ferland and Rousseau [27] de-

velop a MCF-based routing and scheduling optimization model that considers



the planning issues for the railroad industry. More recently, Newton [71] and

Barnhart et al. [14] study the railroad blocking problem using multicommodity

based formulations.

* Freight Assignment in the Less - than Truck load(LTL) industry. An LTL

carrier has to consolidate many shipments to make economic use of the vehicles.

This requires the establishment of a large number of terminals to sort freight.

Trucking companies use forecasted demands to define routes for each vehicle to

carry freight to and from the terminals. Once the routes are fixed, the problem

is to deliver all the shipments with minimum total service time or cost. This

problem can be formulated as a MCF problem.

* Express Shipment Delivery. Kim [52] models the shipment delivery problem

faced by express carriers like Federal Express, Unites States Postal Service,

United Parcel Service etc. as a MCF problem on a network in space and time.

4.2.2 Other Applications

We present below some other applications of MCF models:

* Routing messages in a communication or computer network. The network

consists of transmission lines. Each message request is a commodity. The

problem is to route the messages from origins to the respective destinations at

a minimum cost.

* Long - term hydro - generation optimization. The task in this case is to

determine the amount of hydro-generation at a reservoir in an interval of time,

that minimizes the expected cost of power generation over a period of time,

divided into several intervals. Nabonna [68] showed that this problem can be

modeled as a MCF problem with inflows given as probabilistic density functions.

* Forest Management. For each planning period, forest managers have to make

decisions concerning the land areas to be harvested, the volume of timber to

be harvested from these areas, the land areas to be developed for recreation



and the road network to be built and maintained in order to support both the

timber haulers and recreationists. This problem has been formulated as a MCF

problem by Helgason, Kennington [51] and Wong [45].

* Street planning. Foulds [36] introduced this problem and modeled it as a MCF

problem. The objective is to identify a set of two-way streets such that making

these streets one-way minimizes the total congestion cost in the network.

* Spatial price equilibrium(SPE) problem. This problem requires modeling con-

sumer flows within a general network. The SPE problem determines the op-

timum levels of production and consumption at each market and the optimal

flows satisfy the equilibrium property. Segall [81] models and solves the SPE

problem as a MCF problem.

For a more comprehensive description of applications we refer the reader to Schneur

[79], Ahuja et al. [3] and Kennington [51].

4.3 Multicommodity Flow Solution Techniques

The linear MCF problem is the most studied instance of MCF problems. A fairly

comprehensive survey of linear multicommodity flow models and solution methods is

presented in Ahuja et al. [3]. We describe below some of the recent results in this

area.

* Saviozzi [78] uses subgradient techniques on the Lagrangean relaxation of the

bundle constraints and proposes a method of arriving at an advanced start-

ing basis for the minimum cost multicommodity flow problem. Depending on

whether the basis is primal feasible or dual feasible, further iterations can be

carried out with primal or dual simplex method, as the case may be.

* Barnhart and Sheffi [19] present a network-based heuristic solution strategy in

a primal-dual framework for MCF problems. This procedure is designed for

large-scale problems, whose size is excessive for the simplex or barrier methods.



* Barnhart et al.[13] present a cycle-based formulation of the MCF problems.

They also describe a partitioning solution procedure for large-scale MCF prob-

lems based on both column generation and constraint relaxation.

* Schneur [79] describes a procedure that uses the concepts of C-optimality (see

Ahuja et al. [3]) and scaling, together with a quadratic penalty function for the

capacity constraint, to solve the linear MCF problems.

* Barnhart [10] provides a dual-ascent heuristic for MCF problems that gives a

valid lower bound on the optimal primal objective value and an advanced start-

ing solution for primal-based solution methodologies. A heuristic to generate

an approximate primal-optimal solution is also described.

* Jones et al. [48] compare and contrast the different formulations of MCF prob-

lems. They present empirical evidence that the path-based formulation by de-

composition yields lower CPU times than the equivalent tree-based formulation.

* Radzik [76] considers one kind of MCF problem called the maximum concurrent

flow problem, where the objective is to design a set of commodity flows with

minimum possible congestion. The congestion of a given flow of commodities

is defined as the minimum number having the property that the flow is feasible

when all edge capacities are multiplied by this number. Radzik demonstrates

how approximate solutions to this problem can be computed deterministically

using a number of single-commodity minimum cost flow computations.

* Klein et al. [53] develop approximation algorithms for the concurrent flow prob-

lem with uniform capacities. Leighton et al. [55] present generalized algorithms

that are valid for problems with arbitrary capacities.

* Interior Point methods provide polynomial time algorithms for the MCF prob-

lems. The best time bound is due to Vaidya [86].

* Schultz and Meyer [80] provide an interior point method with massive parallel

computing to solve multicommodity flow problems.



* Zenios [90] presents an algorithm for nonlinear optimization problems with mul-

ticommodity flow constraints. Empirical results for a parallel implementation

are reported for quadratic programs with approximately 10 million columns and

100,000 rows.

4.4 Integer Multicommodity Flow Problems

4.4.1 Integer MCF Applications

In many applications of MCF models, each commodity is identified with a specific

origin and destination. In many cases, the demand for any commodity cannot be split

and assigned to multiple paths. Since MCF problems do not obey the integrality

property (see Ahuja et al. [3]), unlike pure network flow problems, it is necessary

to impose integrality requirements. These applications include the following (see

Barnhart et al. [16]):

* Bandwidth packing. This involves optimal allocation of bandwidth in telecom-

munication networks and routing of calls from their points of origins to their

destinations. In case of video teleconferencing, calls cannot be split and all O-D

demand should be routed on a single path.

* Express Package Delivery. In this problem that is mentioned before, often

it is desirable for all O-D demand to be routed on a single path to facilitate

operational ease and satisfy all the level of service requirements.

* Aircraft Maintenance Routing. In this problem mentioned before, each air-

craft is a commodity and aircraft should be assigned to paths such that each

flight is covered by exactly one aircraft.

4.4.2 Integer MCF Solution Techniques

Barnhart et al. [16] present a general solution strategy called Branch-and-Price, for

solving large-scale IPs. Branch-and-Price involves features from both Branch-and-



Bound and Column Generation. Researchers have tailored Branch-and-Price solution

techniques for solving different integer multicommodity flow models as follows:

* Barnhart et al. [12] study the large-scale Integer Multicommodity Flow Problem

in which the entire demand of any commodity is to be assigned to the same

path. They present a column generation model and Branch-and-Price-and-Cut

algorithm with specialized branching rules.

* Parker and Ryan [73] describe a Branch-and-Price algorithm for the bandwidth

packing problem in telecommunication networks. Bandwidth packing involves

the selection of a set of commodities to maximize revenue.

* Ziarati et al. [91] consider the problem of assigning railway locomotives to

trains. They model the problem as an integer multicommodity flow problem

with side constraints and solve using a Dantzig-Wolfe decomposition technique,

where subproblems are formulated as constrained or unconstrained shortest

path problems.

* Raghavan and Thompson [77] illustrate the use of randomized algorithms to

solve some integer multicommodity flow problems. They use randomized round-

ing procedures that give provably good solutions in the sense that they have a

very high probability of being close to optimality.

4.5 Location Elimination Model (LEM)

In this section we present a variant of a mixed integer multicommodity flow model,

called the Location Elimination Model (LEM), that was introduced in the context of

our decomposition solution approach in Chapter 2. We recall that LEM establishes

a set of commodity flows on the fleet network that maximizes the number of origin

and destination locations such that all demand originating at or destined for those

locations, as the case may be, is assigned to network paths. We let G = (N, A) be

the given fleet network over which commodities are to be flown, O the set of all



origin locations and D the set of all destination locations. Again, each commodity is

identified by a specific origin and destination pair. We let y, be a zero-one variable

for each origin o E O, that is equal to 1 if all the O-D commodities with O(k) = o are

assigned to network paths and equal to zero otherwise. Similarly we let Zd be a zero-

one variable for each destination d E D, that is equal to 1 if all the origin-destination

(O-D) commodities with D(k) = d are assigned to network paths and equal to zero

otherwise. The objective is to maximize

EoEo yo + EdED Zd

As with the multicommodity flow problem, the flow variables can be represented

on arcs and paths. Since we will be dealing with commodity independent arc costs,

we can also represent the flows on origin-based or destination-based trees, as has been

demonstrated by Jones et al. [48]. Since an arc based formulation has huge memory

requirements, we will consider only path-based and tree-based formulations.

4.5.1 LEM Path Formulation

Notations

Before presenting the path formulation, we first define some notations.

SETS

K(E k) : the set of all O-D commodities

pk(D p) : the set of all feasible paths from origin O(k) to destination D(k) for

eack k E K

Ko : the set of all O-D commodities with origin o

Kd : the set of all O-D commodities with destination d

Od : the set of all origins o such that there exists a commodity with O(k) = o and

D(k) = d, for each d E D

Do : the set of all destinations d such that there exists a commodity with O(k) = o

and D(k) = d, for each o E 0



PARAMETERS

bk : the demand for commodity for each k E K

uij : the capacity of arc (i, j) E A

INDICATOR VARIABLES

= 1 if arc (i, j) belongs to path p

0 otherwise

DECISION VARIABLES

x : fraction of bk on path p E pk for all k E K

The path formulation is as follows:

Maximize E Yo + E Zd (4.5)
oEO dED

such that,

x k - yo|Do| > 0, Vo EO (4.6)
keKo pEPk

SZxk - zdOd > , Vd ED (4.7)
kEKd pEPk

k < 1, VkcK (4.8)
pEPk

x k S x(6bk) < ui,, V(i,j) E A (4.9)
kEK pEPk

zk > O (4.10)

yo, Zd E {0, 1} (4.11)

Constraints (4.6) ensure that a location cannot have all of its originating de-

mand served unless each commodity originating there is fully assigned to an origin-

destination path. Similarly we have constraints (4.7) for the destination locations.

Constraints (4.8) are generalized upper bounding constraints to ensure that the total

flow of any commodity k from O(k) to D(k) does not exceed its demand. Constraints



(4.9) represent the arc capacity constraints. Constraints (4.10) ensure that the path-

flows are non-negative. Constraints (4.11) imply that a location has either all of its

commodities served or it does not.

4.5.2 LEM Tree Formulation

Notations

Before presenting the tree formulation, we first define some more notations.

SETS

Qo(E q) : the set of all trees at origin o, for all o E O

Od : the set of all origins o such that there exists a commodity with O(k) = o and

D(k) = d, for each d E D

k : the unique path from O(k) to D(k) in tree q

INDICATOR VARIABLES

1 if arc (i, j) belongs to the path pk from O(k) to D(k) in tree q
2 3 0 otherwise

DECISION VARIABLES

wq: fraction of bk flown on the path pk from O(k) = o to D(k) in tree q

The tree formulation is as follows:

Maximize Yo + E Zd (4.12)
oEO dED

such that,

w - yo 0, Vo EO (4.13)
qEQo

S wg - Zd IOd l _ O, Vd ED (4.14)
oEOd qEQo

w q < l ,  VoEO (4.15)
qEQo



{ ( r bk)W} < uij, V(i,j) E A (4.16)
oEO qEQ kEKo

wg> , Vq E Qo, Vo E O (4.17)

Yo, Zd E {0, 1} (4.18)

Constraints (4.13) through (4.18) in the tree formulation correspond to constraints

(4.6) through (4.11) in the path formulation.

4.6 LEM LP Relaxation Solution

We will first consider solution to the linear programming relaxation of LEM. Our

approach to both the path and tree formulations will be based on Dantzig-Wolfe

decomposition [28] or Column Generation. The general approach is to start with

an initial subset of variables and generate more variables as needed by solving a

pricing subproblem. In our case, since the Yo and Zd variables are not too many in

number, we will start with all of them and generate only the flow variables by solving

the pricing subproblem.

4.6.1 Solution to the Path Formulation LP

We will generate the path flow variables x 's by solving the pricing problem. In

order to formulate the pricing problem, we will use the following vectors for the dual

variables:

A : duals corresponding to constraints (4.6)

p : duals corresponding to constraints (4.7)

a : duals corresponding to constraints (4.8)

7r : duals corresponding to constraints (4.9)

The pricing problem then can be written as follows:

p* = max{-Ao(k) - tD(k) - k ~- (6jbk)7r, }, Vk E K (4.19)
pEpk (i,j)EA



or equivalently,

= - min{ AO(k) + D(k) + k + (6jb k)r},
ppk (i,j)EA

Vk E K (4.20)

The reduced costs of all the path variables are non-positive if the following set of

conditions is satisfied:

- {AO(k) + I-lD(k) + 0 k + E (J6jbk)-i 0,
(i,j)EA

Vp E pk, Vk e K (4.21)

Equivalently, optimality is reached if the following set of conditions is satisfied:

Vk e K (4.22)

The problem of determining the path that minimizes E(i,j)A (6 Jbk ) rij is a shortest

path problem for each k E K over the fleet network with modified arcs costs of 7rij (see

Ahuja et al [3]). That is, the pricing problem for the path formulation is solved by

finding a solution to an origin-destination shortest path problem for each commodity

k E K.

4.6.2 Solution to the Tree Formulation LP

We use the same notation for duals as the path formulation. The pricing problem is

formulated as:

p* = max{-A -
qEQo SPd - -

dEDo,

Vo E 0 (4.23)E (K (ij)eA k
kEK, (ij)EA

or equivalently,

p=- min{Ao + -d o+ Eo + E I
qEQo dEDo kEKo (i,j)EA

min{ E (6jbk)irij} > -O(Aok) + ID(k) + 0k),
PEPk (i,j)EA

(4.24)Vo E O.



Optimality is reached if the following set of conditions is satisfied:

S bk(min (F)rj}) -(A + d + ao) ,Vo e O. (4.25)
qEQo --

kEK, (i,j)EA dEDo

The problem of finding the path that minimizes E(i,j)EA(FPq)7rij over all trees

q E Qo is a shortest path problem for each origin o E O and for each commodity

k E Ko over the fleet network with modified arcs costs of 7rij. That is, the pricing

problem for the tree formulation is solved by finding a solution to a single-origin

single-destination shortest path problem for the combination of each origin o E O

and each O-D commodity k E K,.

4.7 LEM IP Solution

Although integer multicommodity flow problems have been studied by many re-

searchers (see section 4.4), LEM is a very different kind of integer MCF problem

in that the demand for any commodity can be split between paths. Hence previously

developed Branch-and-Price techniques do not apply. We will use a variant of Branch-

and-Price in which simple branching is done on origin and destination variables, yo

and Zd, and the shortest path pricing subproblem is solved for the generation of flow

variables (xk and wg).



Chapter 5

Service Network Design for

Express Shipment Delivery:

A Case Study

In this chapter we demonstrate a successful application of our models and solution

techniques in the express shipment delivery industry, where consolidation occurs when

shipments are sorted at the hubs. We first describe the express shipment delivery

operation and the practical constraints that need to be considered while modeling

the decision problem. We then present a routing model and solution algorithm and

describe how we use our decomposition technique to solve this service network design

problem. We conclude this chapter with computational results.

5.1 Express Shipment Delivery Operation

In this section we describe the service network design problem of a large carrier in the

express shipment delivery industry. Our description is abstracted from Kim [52]. The

objective is to determine the cost minimizing movement of shipments (or packages)

from their origins to their destinations using a limited amount of resources, such that

all level of service (LOS) requirements are satisfied. There are multiple products

or service types, depending on the LOS requirements. Premium service that occurs



overnight is referred to as Next Day Service, while guaranteed service within 48

hours is called Second Day Service and service within 3-5 days is called Deferred

Service.

5.1.1 Problem Description

This service network design problem, like others, can be envisaged to consist of two

types of decisions: the first is to determine the service network formed by the routes

of transportation assets and the second is to determine shipment flows over the

service network. The service network is defined by the movements in space and time

of the transportation assets, in this case, aircraft and ground vehicles. The routes for

individual shipments from origins to destinations determine the flows on each link in

the service network.

Service Network and Shipment Flows

Shipments originate and terminate at locations, that could either be airports called

gateways or non-airport all ground locations, where they are loaded, unloaded and

transferred between aircraft and/or ground vehicles. From its initial gateway, a ship-

ment may be flown to at most one additional gateway before it is flown to a hub. Hubs

are specialized gateways or all ground locations, where shipments are consolidated as

they are sorted based on their respective destinations. At a hub, a shipment is un-

loaded from an inbound vehicle, sorted and loaded on an outbound vehicle. Again

it may be flown to at most one intermediate gateway before being flown to its final

destination.

Associated with the gateways are earliest pickup times (EPT's) and latest

delivery times (LDT's). An EPT denotes the time at which shipments will be avail-

able for pickup at a gateway. Each gateway's EPT is scheduled as late as possible

to allow customers enough time to prepare their shipments, but early enough so that

delivery service standards can be met. A gateway's LDT denotes the time by which

all shipments must be delivered to the location in order to satisfy delivery standards.



In setting EPTs and LDTs, we also consider hub sort capacities and time windows

designating the start and end sort times. An aircraft route can be decomposed into

two distinct components, a pickup route and a delivery route. A pickup route typi-

cally departs from some gateway in the early evening and is restricted to contain at

most one intermediate stop before its final stop at a hub. A delivery route begins at

a hub, typically departing in the early morning, and stops at most at two gateways.

The number of stops on a pickup or delivery route is restricted to three to limit the

potential of schedule problems arising in this hub-and-spoke network. Fewer take-offs

and landings result in a reduction in the expected schedule slippage. Given the time

sensitive nature of the express shipment delivery operation, robustness of operation

is critical.

Costs

The costs of an express shipment operation can be expressed as the sum of vehiucle

costs and shipment handling costs. For a given flight leg and aircraft type, aircraft

operating costs are the sum of associated fuel cost, crew cost, cycle cost (cost of

take-off and landing), maintenance cost, etc. Depending on the nature of the model,

aircraft ownership cost may or may not be included. Ownership cost is not included

for near-term planning because the company already owns the aircraft, however a fixed

cost per aircraft is included if the model is to be used in a more strategic context, e.g.,

if the model is to be used to determine future fleet composition. Shipment handling

costs are expressed per unit of shipment for each gateway and hub location.

5.1.2 The Planning Process

For most express package operations, there are four types of planning activities, char-

acterized by their time horizon. The first, termed, strategic planning looks several

years into the future. This type of planning is focused on problems of aircraft ac-

quisition, hub capacity expansion, new facility location, etc. The planners are not

constrained by existing resources. As a matter of fact, determining the required



resources under future operating conditions is one of the objectives of this type of

planning activity. Although the data used in this type of planning exercise are often

imprecise, relying heavily on forecasts, the planners must construct an operating plan

to assess various scenarios.

The second type of planning is tactical planning. This planning activity, that

considers anything from one month to several months into the future, generates a

plan to be executed in the operation. Components of short-range operations planning

such as flight crew planning and maintenance planning are based on the output of

this process. In tactical planning, the freedom to change existing resources is very

limited. However, it is common to use these models to analyze different scenarios,

like determining the incremental operating costs for a set of volume changes. The

results are used to direct marketing efforts over the next one to two years. We call

this type of analysis market planning.

The other type of planning activity called contingency planning includes prepar-

ing the system to adapt to sudden volume changes, recovering from weather disrup-

tions, etc.

While our primary objective is to facilitate strategic planning, we design our

models to be also applicable for tactical planning, operations planning and market

planning as well.

In the case of the company we study, planning is still done primarily manually,

with limited automation. In the case of tactical planning, a database system is used to

generate reports to compare operations and plan, but no automated decision support

per se is available. As a result, it takes an entire year to develop a long range plan.

The models we develop will shorten this planning cycle and allow extensive analyses

to be performed.

Scope of the Problem

The focus of our research is on solving the next day problem over a single day planning

horizon. We determine both the service network and the shipment flows over the

service network. The output specifies the schedule of every vehicle route, the vehicle



type assigned to each route and the shipment routings in the resulting network.

The model inputs include shipment movement requirements, a network of po-

tential ground movements (called legs), fleet composition and characteristics, and

sort capabilities and characteristics. The fleet composition is given with an option

available to lease additional aircraft. All aircraft, gateway and hub operating charac-

teristics, such as range, speed, runway length, sort capacity, etc. are assumed fixed.

Although we have a myopic focus on a shortened planning horizon and only one

kind of product, our approaches allows us to develop modeling techniques and de-

composition solution algorithms for the ultimate problem by solving relatively smaller

self-contained problems.

5.2 Express Shipment Service Network Design

5.2.1 Design Variables

In the case of the Express Shipment Service Network Design Problem (ESSNDP),

the design variables in the general SNDP presented before represent the movement

of vehicles (aircraft and trucks) and the flow variables represent the movement of

shipments. We use route-based design variables for the following reasons (see Kim

[52]):

1. Fixed costs and nonlinearities in the cost structure can be captured since each

vehicle is assigned to one design variable.

2. Complicated restrictions on vehicles and shipment routes cannot be represented

using other types of design variables.

3. The node-arc formulation could result in a problem size prohibitively large to

solve.



5.2.2 Side Constraints

The SNDP must be tailored to represent the constraints under which express carriers

operate, including fleet balance, fleet capacity, hub sort capacity, hub landing capacity

and network connectivity (see Kim [52]).

Fleet Balance

Fleet balance constraints force the number of routes into a gateway location for each

fleet type f E F to be equal to the number out of it:

Y P =0, Vi E N, Vf e F (5.1)
rER4URf

where O/ is equal to 1 if route r ends at node i, is equal to -1 if route r begins at

i, and is equal to zero otherwise.

Fleet Size

There is a limitation on the number of vehicles available for each fleet type. We model

this by restricting the number of pickup routes or the number of delivery routes for

fleet type f to be less than the fleet size nf, for all f E F:

S yf _ nf , Vf E F (5.2)
rERfp

or,

Sy{ <n f , Vf E F (5.3)
rERfD

There is no need to impose both sets of constraints because fleet balance is ensured

by constraints (5.1).



Hub Sort Capacity

Each hub can sort only a limited number of shipments per unit time. To model

these hub sort capacity constraints, we divide the total time during which sorting is

performed into equal intervals t = {1, 2, ..., T}. We let Pt to be the set of package

routes with the earliest arrival time at hub i, that is at or after the start time of

the interval t E {1, 2, .. , T} and e be the sort capacity of hub i during the interval

m E T. Then the hub sort capacity constraints are written as follows:

* Path Formulation

T

bkx < e , ViEH, Vt c {1, 2, ..T} (5.4)
kEK pEpkP 1t m=t

* Tree Formulation

T

Sk J{ < 6'bk}w e , Vi E H, Vt E {1,2,..T} (5.5)
oEOqEQo kEKpEpknpit  m=t

Hub Landing Capacity

Each hub cannot have more than a certain number of aircraft land in an interval of

time. The hub landing capacity constraint for each hub i is modeled by dividing the

total time during which aircraft arrive, into equal intervals t = {1, 2, ..., T}. We let

L be the set of pickup routes with earliest arrival time at hub i no earlier than the

start time of interval t and aT be the number of aircraft that can land at hub i during

interval m E T. Then the hub landing capacity constraints are represented as follows:

T

S Yf< E am , ViEH, Vt {1,2,..T} (5.6)
fEF rERf nLL m=t



Network Connectivity

Many carriers offering express delivery services operate with a major hub and one

or more regional hubs. For example Federal Express has a major hub at Memphis,

United Parcel Service at Louisville and Airborne Express at Wilmington. For oper-

ational reasons, some carriers require all-point service to and from their regional

hubs. Hence there should be one pickup route from each origin location to the major

hub and one delivery route from the major hub to each destination location. We let

Vp be the set of pickup routes ending at the major hub and VD be the set of delivery

routes beginning at the major hub. The Network Connectivity constraints or the

all-point service constraints are represented as follows:

Sy 1 y l, ViEN (5.7)
fEF rERfnVp

yf > 1Y , ViE N. (5.8)
fEF rERfDnVD

5.3 Routing Model for Express Shipment

Delivery

In this section we present a routing model that is used in our decomposition approach

for solving the ESSNDP. Since the routing model is only a part of the decomposition

approach and not an end in itself, we will only use an approximate model. Since we

would like to consider only the routes and not the flows, we will not impose hub sort

capacity constraints. However, we will impose hub landing capacity constraints to

serve as a kind of proxy for hub sort capacity constraints.

Since do not consider shipment flows, we do not explicitly include flow conser-

vation constraints in our model. We use cutset inequalities to model the capacity

requirements in our problem.



5.3.1 Cutset Inequalities

The motivation behind these inequalities is the requirement that the total capacity

provided by the design variables must be greater than or equal to the total demand,

for any O-D cutset {S, T}. An O-D cutset {S, T} is defined as a partition of the node

set N into two mutually exclusive and collectively exhaustive non-empty subsets S

and T such that S contains o and T contains d for some shipment commodity k with

origin O(k) = o and destination D(k) = d. Arc (i, j) belongs to O-D cutset {S, T} if

nodes i and j belong to different sets S and T. We will let Ds,T be the total demand

of all commodities with origin in subset S and destination in subset T. Assuming

S, T = ErERfURf (i, (i,j)e{S,T}nr y, the aggregate capacity demand inequalities are

written as follows:

UfY ,T > DS,T , forall 0 - D cutsets {S, T}. (5.9)
fEf

We strengthen the inequalities (5.9) by lifting and creating Chv6ital - Gomory cuts

or cutset inequalities as illustrated in Chapter 2. We let inequalities (5.9) represent

both the original aggregate capacity demand inequalities plus the lifted inequalities

and we refer to them collectively as cutset inequalities.

5.3.2 ESSNDP-Approx Model

For the route generation step in our decomposition, we would ideally like to consider

only the route decision variables and not the shipment flows, to limit problem size.

Hence we do not impose hub sort capacity constraints. However, we do impose hub

landing capacity constraints to serve as a proxy for hub sort capacity constraints.

The approximate model is written as follows:

Minimize C hyf (5.10)
rERfURfP D



such that:

Syfy = 0, Vi E N, V f F (5.11)
rERf URf

yf < n, Vf c F (5.12)
ER4

T

S Y -f am a', Vi E H, Vt E {1,2,..T} (5.13)
fEF rERR fLt  m=t

S yf >1, Vi EN (5.14)
fEF rERf nVp

Sy I>, Vi EN (5.15)
fEF rERf nVD

S ufYT > DS,T , V 0 - D cutsets {S, T} (5.16)
fEf

y > 0 and integer, Vr E Rf U Rf, Vf E F. (5.17)

5.3.3 ESSNDP-Approx Solution Algorithm

We solve ESSNDP-Approx by applying synchronized column and row generation (the

procedure is described in Chapter 3) as follows:

Step 1: Solve the LP relaxation of ESSNDP-Approx, given a fixed

set of constraints, using explicit column generation of route variables.

Step 2: Arrive at a feasible IP solution for ESSNDP-Approx, given a

fixed set of variables (columns) and constraints, using branch-and-bound.

Step 3: Explicitly generate violated inequalities, given the current

feasible IP solution. If any violated inequalities are found, add them to

the current basis and go to Step 1. Otherwise, go to Step 4.

Step 4: Collect all the positive route variables in the current

ESSNDP-Approx IP solution. These routes will be input to LEM.



5.4 Decomposition Solution Algorithm for Express

Shipment Delivery

We use the decomposition solution algorithm outlined in Chapter 2 to solve the

ESSNDP. We can outline the solution approach in the context of the ESSNDP as

follows:

0. Initial Input: Input all commodity demand data, locations, ca-

pacities, costs and initialize the set of selected routes to a null-set. Go to

Step 1.

1. Route Generation: Solve the cutset model ESSNDP - Approx

with the input set of commodities and generate "promising" routes.

2. Shipment Flow Generation: Solve LEM and arrive at a set

of commodity flows over the service network generated in the Route

Generation step.

3. Variable Fixing : Augment the set of selected routes by fixing

some of the promising routes generated in the Route Generation step.

We use the following rule to fix the routes:

If any pickup (delivery) route generated in the Route Generation

step carries all the flow out of (into) the locations it visits, fix this route

and add it to the set of selected routes.

4. Feasibility Check: Verify using LEM if the service network

formed by the current set of selected routes has enough capacity to carry

all demand. If yes, STOP; else go to the Problem Size Reduction step.

5. Problem Size Reduction: Eliminate commodities that can be

moved on the service network formed by the set of selected routes. If

the service design problem for the remaining commodities is small enough

to solve exactly with available hardware, solve using the service network

design model. Otherwise, go to the Route Generation step with the re-

maining set of commodities as input.



5.5 Computational Results

5.5.1 Data Description

We use three different data sets provided by the express shipment delivery company

to test our solution procedure (Table 5.1). DS3 represents the company's entire

operation while DS1 and DS2 represent portions of their operation. We use DS1 and

DS2 primarily for computational testing and for gaining insight about the larger DS3

problem. For DS3, we have eight fleet types, including one type for ground vehicles

and eight sorting hubs including one all ground hub, meaning the hub can service

only ground vehicles.

We utilize the following characteristic of the company's cost structure to reduce

the size of the data set:

The cost of transporting shipments using ground vehicles is negligible when com-

pared to the cost of transport using aircraft. Also, the number of ground vehicles

available is very large (on the order of hundreds of thousands) when compared to the

number of available aircraft (less than 200). So if any shipment can be transported

from its origin to its destination through the all ground hub, using only ground trans-

port without violating any of the LOS requirements, we will do so and fix these vehicle

and shipment routes a priori. Also, we will ground feed the demand originating at

an all ground location to the gateway nearest the origin and similarly ground feed the

demand destined for an all ground location to the gateway nearest the destination.

This results in reductions in the size of input data for our decomposition solution ap-

proach. The size of the input data after this ground consolidation is given in Table

5.2.

5.5.2 Results

We implemented our decomposition algorithm on a SGI Power Challenge workstation,

using CPLEX 4.0 [26] with 2 processors and 256 MBs RAM. Recall that the number of

cutset inequalities in the route generation model are exponentially many (see Chapter



DS1 DS2 DS3
Number of Locations 31 91 258
Number of Hubs 4 7 7
Number of O-D Commodities 863 6157 54563
Number of Fleet Types 4 6 8

Table 5.1: Data Description (before ground consolidation)

DS1 DS2 DS3

Number of Locations 24 50 84
Number of Hubs 3 5 7
Number of O-D Commodities 552 2070 6606
Number of Fleet Types 4 6 8

Table 5.2: Data Description (after ground consolidation)

3). We therefore reduce memory requirements for the route generation model by

considering only cutsets with ISI 5 3 and ITI 3. (Even with |SI 3 and ITI 3,

the number of possible inequalities exceeds 5 million.) Also, we will not solve LEM

optimally for an integer solution. While applying Branch-and-Price, we perform

column generation only at the root node of the Branch-and-Bound tree.

We evaluate the performance of our decomposition approach by comparing our

solution cost for data sets DS1, DS2, and DS3 with the corresponding cost of the

solutions generated by the planners of the express shipment delivery company. The

costs we consider are ownership cost, cycle cost, and operating cost (maintenance

cost plus fuel cost). Our results are summarized in Table 5.3. Our solution approach

has resulted in a 16% reduction in total annual costs. This cost does not include the

reduction in crew costs that results from using fewer aircraft.

The run times for DS1, DS2 and DS3 are about 5 minutes, 1 hour and 6 hours

respectively.

Since DS3 represents the carrier's entire scale of operation for a future forecast, we

examine its results in greater detail. In Table 5.4, we compare the Planners' solution



with our solution, contrasting the number of legs flown by aircraft, distance traveled

and aircraft utilization. The comparison of individual cost components, distance,

number of legs, and the number of aircraft for each fleet type is given in Table 5.5.

The figures corresponding to the Planners' solution are given in parentheses. From

these results, we observe the following:

* When compared to the Planners' solution, our solution uses more legs. However,

fewer aircraft are used resulting in a considerable reduction in aircraft ownership

costs that more than offset the increase in the leg-based cycle costs. The reason

we have fewer aircraft is that in our solution, aircraft do a lot of double stopping

because the model has intelligently identified two-legged routes that satisfy LOS

requirements.

* Our solution utilizes cheaper fleet types more effectively. That is, cheaper fleet

types, especially type 4, fly more legs and a longer distance. In our solution,

aircraft of type 4 fly 231 legs and 98,481 miles whereas, in the Planners' solution,

they fly only 165 legs and 76,277 miles. Our solution, with more legs per aircraft

on average, results in a higher utilization of aircraft capacity. The capacity

utilization for our solution is about 66%, compared to 58% for the Planners'

solution.

* In our solution, aircraft do not always trace back their pickup routes on the

delivery side, unlike the Planners' solution. The possible reason for this is

that the shipment demand originating at any gateway location need not be

proportional to that destined for that location and sometimes it is more cost-

effective to use different routes for pickup and delivery. Consider the following

example in which there are two types of aircraft, the first with 200 units of

capacity and the second with 100 units. Supposing we have two locations (1

and 2) with 50 units of demand to be sent from 1 to 2 and 130 units of demand to

be sent from 2 to 1. If the aircraft trace back their pickup routes on the delivery

side, in the best solution, the first aircraft would travel four legs: location 1 to

location 2, location 2 to hub, hub to location 2, and location 2 to location 1.



DS1 DS2 DS3

ESSNDP 194,929 488,462 4,143,722
Planners' 267,027 603,039 4,971,022

Cost Savings 27% 19% 16.6%

Table 5.3: Results

ESSNDP Planners'

Number of Aircraft 109 140
Number of Legs 362 336
Number of Legs per Aircraft 3.32 2.40
Distance traveled by aircraft 152,198 188,448
Aircraft Capacity Utilization 66% 58%

Table 5.4: Analysis for DS3

The second aircraft would travel two legs: location 2 to hub and hub to location

2. However, our algorithm gives a solution where the first aircraft travels only

three legs: location 1 to location 2, location 2 to hub and hub to location 1.

For illustration, see Figure 5-1.

We highlight below an attractive feature of our solution:

The schedules generated by our models are flexible in that there is a lot of leeway in

moving the aircraft arrival and departure times within time windows without violating

other constraints. To illustrate this, we compare the arrival pattern of aircraft at the

sorting hubs for our solution with that of the Planners'. We divide the duration of

sorting at the hubs into three time slots and enumerate the number of aircraft arriving

in each time slot. The results are shown in Table 5.6. The numbers corresponding to

those of the Planners' solution are given in parentheses. It can be noticed that, all

the aircraft could arrive in the first time slot in our solution. This feature makes our

solution more robust since we have a lot of slack in our schedule. Our schedule may

be able to absorb delays without disruption to the delivery route schedules.



Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

1 9 7,949 21,987 26 28,600 166,500
(19) (17,877) (49,447) (47) (51,700) (351,500)

2 2 790 3,362 5 6,000 38,000
(7) (4,454) (18,953) (18) (21,600) (133,000)

3 2 10,828 82,973 4 10,000 64,000
(3) (11,942) (91,510) (6) (15,000) (96,000)

4 61 98,481 251,977 231 231,000 1,830,000
(61) (76,277) (195,165) (165) (165,000) (1,830,000)

5 15 18,443 55,329 56 56,000 720,000
(15) (30,656) (91,968) (32) (32,000) (720,000)

6 15 8,801 35,922 28 36,400 337,500
(18) (23,048) (94,073) (34) (44,200) (405,000)

7 5 6,866 25,222 12 18,000 125,000
(17) (24,194) (88,876) (34) (51,000) (425,000)

Total 109 152,198 476,722 362 386,000 3,281,000
(140) (188,448) (630,022) (336) (380,500) (3,960,500)

Table 5.5: Cost Distribution for DS3

Hub Time Slot 1 Time Slot 2 Time Slot 3

1 7 0 0

(9) (0) (0)
2 8 0 0

(11) (2) (0)
3 7 0 0

(9) (0) (0)
4 10 0 0

(13) (7) (2)
5 12 0 0

(19) (0) (0)
6 63 0 0

(58) (11) (0)

Table 5.6: Aircraft Arrival Pattern at the Hubs for DS3
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Figure 5-1: Illustration for Disproportionate Demand Distribution



5.5.3 Scenario Analysis

One more advantage of our approach is that we can relatively quickly examine a

number of scenarios and perform "what-if" analyses. We use our models and de-

composition solution technique to evaluate different scenarios that are of strategic

importance to the express shipment delivery company. The key strategic decisions

are the ones concerning the number of hubs and fleet composition. We consider six

relevant scenarios for DS3 corresponding to the company's entire scale of operation

for a future forecast and compare each of our solutions to the Planners' solution.

The overall results are juxtaposed in Table 5.7. The first five scenarios are different

combinations of the number of hubs and the fleet composition. For the sixth scenario

we consider a different operating model and present its evaluation.

Baseline Scenario

The baseline scenario with respect to which we evaluate our new scenarios corresponds

to the company's operating plan with seven aircraft types and seven air hubs. The

eighth fleet type in the data description corresponds to ground vehicles and the eighth

hub is an all ground hub.

Scenario 1: Single Hub Operation Model with All Seven Aircraft Types

We consider a single hub model of operation where consolidation of shipments serviced

by aircraft occurs only at the company's main sorting hub, i.e., hub 6. We will consider

the entire spectrum of seven aircraft types and impose the same fleet size restrictions

as the baseline scenario. The results are given in Table 5.8. It can be seen that all

available aircraft of types 4 and 5 are used in our solution and no aircraft of types 1,

2 and 7 are used, demonstrating the cost-effectiveness of aircraft types 4 and 5. The

resulting cost savings for this scenario are about 30%.



Scenario 2: Multiple Hub Operation Model with Aircraft Types 4 and 5

The second scenario we consider differs from the baseline scenario in terms of the

number of aircraft types. Instead of using all seven aircraft types, we investigate the

possibility of using only two aircraft types. Narrowing the range of aircraft types

may ensure more uniformity in crew compatibility requirements and maintenance

requirements. However, such a strategy is implementable only if all the gateway

locations have operating characteristics, such as, runway length, that are compatible

with the chosen aircraft types. Our results for the baseline scenario and the preceeding

scenario 1 indicate that all available aircraft of types 4 and 5 are used in our solutions.

Aircraft types 4 and 5 are cost-effective in general (based on the cost structure and

the company's past experience) and they form the backbone of the company's existing

operations. Also, they represent the state-of-the-art in terms of aviation technology.

These factors motivate us to choose aircraft types 4 and 5 for our current analysis.

While solving the ESSNDP-Approx model in the Route Generation Step, we do not

impose fleet size constraints (5.12) because one of our objectives is to determine future

fleet composition. The results corresponding to this scenario are given in Table 5.9.

Since it is not possible to satisfy the LOS requirements for the demand for some

locations with only aircraft types 4 and 5, we allow our model to use a minimal

number of higher speed aircraft of type 3. The results indicate savings beyond the

base case of at least 7% for this multiple hub model of operation with primarily two

aircraft types.

Scenario 3: Single Hub Operation Model with Aircraft Type 4

As the third scenario, we consider a single hub model of operation and evaluate the

impact of homogenizing the aircraft mix by allowing only aircraft of type 4 to be

used. As before, we allow a minimal use of aircraft of type 3. The cost distribution

is given in Table 5.10. The resulting cost savings are about 10%.



Scenario 4: Single Hub Operation Model with Aircraft Type 5

The fourth scenario is similar to the third except that we allow the use of aircraft

of type 5 instead of type 4. The cost distribution for this scenario is given in Table

5.11. The resulting cost savings are about 20%. The savings resulting from the use

of only type 5 aircraft are about twice as much as those resulting from the use of

only type 4 aircraft. A possible explanation based on the fact that aircraft of type 5

have a higher capacity than those of type 4, is that there are significant economies

of scale resulting from the use of aircraft of type 5. The total distance traveled, the

total number of legs, and the total number of aircraft are all less when compared

to Scenario 3 resulting in an overall reduction in costs. This is because the total

capacity of aircraft in our solution is 1,012,516 units which is less when compared to

1,041,404 units of capacity for Scenario 3 implying a lesser degree of unused capacity

in the system. Also, the average number of legs per aircraft is higher resulting in an

effective use of two leg routes. For type 5 aircraft, it is possible to have more legs

per aircraft and yet satisfy LOS requirements because, they have higher speed when

compared to type 4 aircraft.

Scenario 5: Single Hub Operation Model with Aircraft Types 4 and 5

We consider a single hub operating model as in the two preceeding scenarios. However,

instead of homogenizing the aircraft mix, we allow the use of two aircraft types

(types 4 and 5). The results for this strategy are shown in Table 5.12. We can

see that for the single hub modus operandi, the strategy allowing the use of both

type 4 and type 5 aircraft is more economical. The reason for this phenomenon

is that the distribution of demand between locations is not uniform and hence two

different aircraft capacities are more effectively used to accomodate these differences

in demand. The total distance traveled, the total number of legs, and the total

number of aircraft are all less when compared to Scenario 3 but they are more when

compared to Scenario 4. The average number of legs per aircraft is greater than that

for Scenario 3 but less than that for Scenario 4. This is because the average aircraft



speed is less than that for Scenario 4 and it is not possible for aircraft to satisfy

all LOS requirements while using as many two-legged routes as Scenario 4. The

reduction in ownership cost is much greater than the increase in operating cost and

cycle cost when compared to Scenario 4, resulting in greater cost savings. Although

the average number of legs per aircraft is more (when compared to Scenario 4), cost

savings are possible because the total aircraft capacity is 886,500 units which is less

than 1,012,516 units of capacity for Scenario 4. Also, the range of feasible solutions

for scenarios 3 and 4 is contained within the range of feasible solutions for scenario 5

and hence the solution for scenario 5 cannot be worse than the solution for either of

the scenarios 3 and 4.

Scenario 6: Regional Hub Operation Model with Aircraft Types 4 and 5

We consider a new model of operation with aircraft types 4 and 5. At the core, we

essentially use a single hub operating model. However, rather than having no demand

consolidation at the regional hubs, we consider a different configuration of the fleet

network and allow the use of satellite sorting facilities at the regional hubs. We allow

consolidation to occur in two degrees: primary consolidation occurs when the ship-

ments are sorted at the company's main hub, i.e., hub 6 and secondary consolidation

occurs whenever shipments are sorted at the regional hubs, i.e., hubs 1, 2, 3, 4 and 5.

We design a fleet network in which the allowable routes for aircraft are the only

the ones connecting the regional hubs and the allowable routes for ground vehicles

are the ones connecting gateway locations and the regional hubs. If the demand for

any O-D commodity can be serviced from its origin to its destination on such a fleet

network while satisfying all LOS requirements, we will fix the shipment routes as such.

All such shipments bypass the main hub and are subject to secondary consolidation

at the satellite sorting facilities at the regional hubs. A typical origin-to-destination

shipment route will use three legs: one ground leg from the origin to a regional hub

on the pickup side, one aircraft leg from the regional hub on the pickup side to a

regional hub on the delivery side and one ground leg from the regional hub on the

delivery side to the destination. Under such a setting, shipments are sorted twice,



once at each regional hub.

We first heuristically design the fleet network described above and fix some of the

shipment flows. Then, we use our decomposition approach to design the network for

the shipment demand remaining to be serviced. The cost figures for this new modus

operandi are given in Table 5.13. We see that the cost savings are about 45% more

than the best single hub model as in scenario 5.

Summary

We summarize below the results of our scenario analyses:

* In general, a single hub model of operation is more cost-effective than a mul-

tiple hub model because maximum possible degree of demand consolidation is

attained. The savings from using a single hub model of operation are enhanced

if a new model consisting of main hub consolidation and regional hub consoli-

dation is adopted.

* Aircraft types 4 and 5 are indeed cost-effective. This inference follows from

the fact that all available aircraft of these two types are used by our solutions

in both the baseline scenario corresponding to a multiple hub model and the

second scenario corresponding to a single hub model.

* For the single hub model, using a heterogeneous aircraft mix with two types

(with different capacities) is less expensive than using a homogeneous aircraft

mix because the service network can be more effectively tailored to account for

non-uniform distribution of demand between locations.



Attribute Scenario Scenario Scenario Scenario Scenario Scenario
1 2 3 4 5 6

Cost 3,480,493 4,603,559 4,444,387 3,939,254 3,641,495 3,037,893
Cost Savings 30% 7.4% 10.6% 20.8% 26.7% 38.9%
Number of
Aircraft 83 114 116 69 82 71
Number of
Legs 312 394 428 261 306 247
Legs per
Aircraft 3.46 3.76 3.69 3.78 3.73 3.48
Distance 138,999 166,014 184,129 113,925 133,362 115,865

Table 5.7: Results of Scenario Analysis

Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
4 61 96,674 247,353 239 239,000 1,830,000
5 15 23,661 70,983 60 60,000 720,000
6 5 7,836 31,984 9 11,700 112,500

Total 83 138,999 433,293 312 320,700 2,726,500

TOTAL COST 3,480,493

Table 5.8: Cost Distribution for Scenario 1

Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
4 96 128,809 329,575 333 333,000 2,880,000
5 16 26,377 79,011 57 57,000 768,000

Total 114 166,014 491,559 394 400,000 3,712,000

TOTAL COST 4,603,559

Table 5.9: Cost Distribution for Scenario 2



Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
4 114 173,301 443,414 424 424,000 3,420,000

Total 116 184,129 526,387 428 434,000 3,484,000

TOTAL COST 4,444,387

Table 5.10: Cost Distribution for Scenario 3

Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
5 67 103,097 309,281 257 257,000 3,216,000

Total 69 113,925 392,254 261 267,000 3,280,000

TOTAL COST 3,939,254

Table 5.11: Cost Distribution for Scenario 4

Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
4 55 79,481 203,363 206 206,000 1,650,000
5 25 43,053 129,159 96 96,000 1,200,000

Total 82 133,362 415,495 306 312,000 2,914,000

TOTAL COST 3,641,4951

Table 5.12: Cost Distribution for Scenario 5

Aircraft Aircraft Distance Operating Legs Cycle Ownership
Type Cost Cost Cost

3 2 10,828 82,973 4 10,000 64,000
4 53 79,735 204,014 182 182,000 1,590,000
5 16 25,302 75,906 61 61,000 768,000

Total 71 115,865 362,893 247 253,000 2,422,000

TOTAL COST 3,037,893 1

Table 5.13: Cost Distribution for Scenario 6



Chapter 6

Closure

6.1 Conclusions

In this thesis, we present an iterative modeling framework and a decomposition so-

lution algorithm for large scale transportation service network design problems with

time windows. We provide a proof-of-concept of the efficacy of our solution approach

by solving the service network design problem of a large carrier in the express ship-

ment delivery industry.

6.2 Future Research Directions

We present below some directions for future research:

* The immediate task is to evaluate more thoroughly the solutions generated by

our models and arrive at a better quantification of the benefits. For instance,

in our express shipment delivery application we did not measure the savings in

crew costs resulting from our solution.

* The models we have developed are deterministic in nature and assume a con-

stant market demand. However, the demand varies cyclically with the day of

the week as well as stochastically. There is a need to test the robustness of our

solution with respect to changing demand patterns. The usage of our models



and algorithms within a stochastic optimization framework should be explored

to consider variations in demand.

* We need to develop efficient branching strategies for use within a Branch-and-

Price-and-Cut solution framework for the Route Generation problem.

* Finding an efficient, or an approximate, algorithm for the cutset separation

problem would lessen the computational burden of solving the Route Generation

problem.

* While there exist approximation algorithms for telecommunication network de-

sign, approximation schemes that exploit the hub-and-spoke structure of trans-

portation service network design problems need to be developed so that feasible

integer solutions with theoretically known bounds can be achieved.

* From an applied perspective, we need to enhance our models to consider service

differentiation. For the express shipment delivery application, we need to plan

for different levels of service such as the Next Day Service, Second Day Service,

Deferred Service and so on.



Appendix A

Notations

A.1 SETS

N(3 i) : the set of all nodes in the service network

A(3 (i, j)) : the set of all arcs in the service network

G = (N, A) : the service network with set of nodes N and set of arcs A

K(3 k) : the set of all O-D commodities

F(3 f) : the set all asset types available

Rf (3 r) : the set of all design routes for fleet type f

Rf (3 r):the set of all design pickup routes for fleet type f

Rf (9 r):the set of all design delivery routes for fleet type f

pk( 3 p) : the set of all feasible paths from origin O(k) to destination D(k) for eack

keK

0(3 o) : set of all origin locations

D(3 d) : set of all destination locations

Qo (3 q) : the set of all trees at origin o, for all o E 0

Ko : the set of all O-D commodities with origin o

Kd : the set of all O-D commodities with destination d

Od : the set of all origins o such that there exists a commodity with O(k) = o and

D(k) = d, for each d E D

Do : the set of all destinations d such that there exists a commodity with O(k) = o



and D(k) = d, for each o E O

pk : the unique path from O(k) to D(k) in tree q

A.2 PARAMETERS

bk : the demand for commodity for each k E K

uij : the capacity of arc (i, j) E A

hf = E(i,j)EA hij j: the cost of design route r of type f

c = E(i,j)EA cjfj : the cost of flowing one unit of commodity k from O(k) to D(k)

along path p E pk

cq = EkgEKo Z(i,j)EA Ikk : the cost of flowing the entire portion of all O-D commodi-

ties with O(k) = o from O(k) to D(k) along path pk in tree q.

A.3 INDICATOR VARIABLES

1 if arc (i, j) belongs to the path pk from 0(k) to D(k) in tree q

0 otherwise

1 if design variable for (i, j) is included in design route r
0 otherwise

1

# = -1

if i E N is the start node of design route r

if i E N is the end node of design route r

otherwise



if arc (i, j) belongs to path p

otherwise

A.4 DECISION VARIABLES

yf : number of assets of type f deployed on design route r

x : fraction of bk on path p E Pk for all k E K

wq: fraction of bk flown on the path pk from O(k) = o to D(k) in tree q

{ 1 if if all the O-D commodities with O(k) = o are assigned to network paths

0 otherwise

Zd= {
0

if if all the O-D commodities with D(k) = d are assigned to network paths

otherwise



Appendix B

Model Formulations

B.1 Baseline Network Design Problem

Formulation

Minimize j y + k ckb k.

ffEE (i,j)EA keK (i,j)EA

such that,

bk kX

kEK
fE ufy
fEF

V(i, j) E A

1 if i = O(k)

-1 if i= D(k)

0 otherwise
jEN

Vi E N, Vk E K

xijk >, Vk E K, V(i,j) E A

y41 > 0 and integer,

(B.1)

jE
jeN

(B.2)

(B.3)

(B.4)

(B.5)V(i,j) E A, Vf E F



B.2 Service Network Design Problem

Formulations

B.2.1 Node-Arc Formulation

Minimize E
fEF

such that,

E bk
kEK

(i,j)EA

f EF

.C k bk k~+ E cijb ij
keK (i,j)EA

V(i,j) e A

if i = O(k)

if i = D(k)

otherwise

Vi E N, Vk E K

Vi E N, Vf E F

x > 0,X3

y2 > 0 and integer,

Vk e K, V(i,j) E A

V(i,j) E A, Vf E F

B.2.2 Path Formulation

Minimize E hyf + C (ckbk)z
rERf kEKpEPk

such that,

fEF rERf

, V(i, j) E A

x 2 1 , Vk e K
pEpk

Py r= 0 , Vi E N, V f E F
rERf

xk 0 Vp E P k , Vk E K

yf > 0 and integer, Vr E RI , Vf E F

(B.6)

xjN
jEN

1

- -1

0

- EN
jEN

(B.7)

jEN
jEN

(B.8)

-ENf =
jEN

(B.9)

(B.10)

(B.11)

EE p bk <

kEK pEP k

(B.12)

(B.13)

(B.14)

(B.15)

(B.16)

(B.17)



B.2.3 Tree Formulation

Minimize E
rERf

hf Yl + EE q C q

oEO qEQo

f< E uryERf
fEF rERf

wg = 1, Vo E O
qEQo

O ry = 0 , Vi E N, Vf E F
rERI

w , Vq e Qo, Vo E O

y/ _ 0 and integer, Vr E R f , Vf E F

such that,

(B.18)

E{ ( E Q bkK,
oCO qCQo keKo

, V(i,j) E A (B.19)

(B.20)

(B.21)

(B.22)

(B.23)



B.3 The Approximate Service Network Design

Cutset Model

B.3.1 Node-Arc Formulation

(B.24)Minimize y hy
fEF (i,j)EA

such that

E UfYSf, T DS,T ,
fef

y! - E y =
jEN jEN

yt 2> 0 and integer,

S0 - D cutsets {S, T}

0 Vi E N, Vf E F

V(i,j) E A, Vf e F

E Uf YST DS,T
fEf

Pry f = 0
rERI

SV 0- D cutsets {S, T}

, Vi N, Vf F

(B.25)

(B.26)

(B.27)

B.3.2 Route Formulation

such that

Minimize hf yf
rERf

(B.28)

y 0 and integer, Vr E R f , Vf E F

(B.29)

(B.30)

(B.31)



B.4 Shipment Flow Models

B.4.1 Baseline Multicommodity Flow Problem

Formulation

(B.32)Minimize c kk 2
kEK (i,j)EA

Sbkx < uij V(i,j) E A
kEK

(B.33)

if i = O(k)

1 if i= D(k)

otherwise

Vi e N, Vk E K

xi >O, Vk E K, V(i,j) E A

B.4.2 Location Elimination Model Path Formulation

Maximize Z Yo + Z Zd
oEO dED

xp - yolDol > 0,
kEKo pEPk

x - zdjOd > 0,
kEKd pEPk

p k < 1,
pEpk

X b(6jb k) _ ui,
kEK pEPk

S1>O

yo, zd E {0, 1}

V(i,j) E A

such that

1

0
jEN jEN

(B.34)

(B.35)

such that,

(B.36)

Vo E O

Vd E D

(B.37)

(B.38)

(B.39)Vk E K

(B.40)

(B.41)

(B.42)



B.4.3 Location Elimination Model Tree Formulation

Maximize 1 yo + E Zd (B.43)
oEO dED

such that,

Swq - yo > O, Vo ( O (B.44)
qEQo

S w q - ZdiOdl O, Vd ED (B.45)
oEOd qCQo

wq < 1 Vo GO (B.46)
qEQo

{ ( L ~bk)wq} uij, V(i,j) c A (B.47)
oEO qEQo kEKo

w > O, VqE Qo, Vo E O (B.48)

Yo, Zd E {0, 1} (B.49)



B.5 Routing Model for Express Shipment

Delivery

(B.50)Minimize Z
reRfURfP D

ViEN, Vf cF~Ryf =0 ,

P D

SYf nf, Vf E F

T

< y E am , ViEH, VtE(1,2,..T}

Zy Z y>I, Vi EN
fEF rER, nVp

S 1yf > Vi EN
fcF rER nVD

SUf YIT > DS,T , V 0 - D cutsets {S, T}
f1f

Vr Rf U Rf, Vf E F.yrf > 0 and integer ,

such that,

(B.51)

(B.52)

(B.53)

(B.54)

(B.55)

(B.56)

(B.57)

h yf
r gr
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