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ELECTRON BEAM WAVES IN MICROWAVE TUBES*

H.A. Haus
Department of Electrical Engineering and Research Laboratory

of Electronics, Massachusetts Institute of Technology

This paper presents a review of wave propagation along electron beams and of the
interaction of these waves with the fields of microwave structures. It also provides the
basis for a unified theory of microwave amplifiers with distributed interaction.

The small-signal power theorem for beams with zero curl of the generalized mo-
mentum is derived. This theorem and the better-known theorem for longitudinal beams
are interpreted. The waves along longitudinal beams, cylindrical Brillouin beams, and
Brillouin strip-beams in crossed fields are reviewed and their small-signal power flows
are studied. The interaction of waves in a longitudinal-beam, traveling-wave tube is
analyzed with the aid of Pierce's coupling-of-modes formalism. The small-signal power
theorem is used in deciding whether or not exponential growth of a wave signifies gain.
Finally, a variational principle is derived for longitudinal beams and beams with zero
curl of the generalized momentum. For reasonable trial fields, the principle leads to
Pierce's coupling-of-modes formalism, and can also be applied to study cases of stronger
coupling than those analyzable by the coupling-of-modes theory. Equations of the mag-
netron amplifier are derived from the variational principle.

I. Introduction

One purpose of this paper is to present a unified theory for the
various electron beam devices that use slow-wave structures with
weak coupling between the beam and circuit fields (an approximation
that is made in most analyses). We shall show explicitly that existing
theories of the longitudinal-beam, traveling-wave tube and of the
magnetron amplifier can be derived from a variational principle by
physically appealing trial solutions. In the process of the derivation
we shall review the work done by various authors on electron beam
waves in microwave tubes, thus fulfilling another intention of this
paper: to provide a brief tutorial review of important work in this
field. Several regrettable omissions are necessary, for which the
author offers his apologies.

In the interest of coherence and logical sequence of the present
paper, we shall not follow the various theoretical developments in
chronological order. Since for the understanding of tube operation,
the power interchange between the electron beam and rf fields plays

an important role, it is logical to start with a discussion of the small-

*This work was supported in part by the U. S. Army (Signal Corps), the U. S.
Air Force (Office of Scientific Research, Air Research and Development Command), and
the U. S. Navy (Office of Naval Research).
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ELECTRONIC WAVEGUIDES

signal power theorem. This theorem makes possible a study of power
interchange in a manner that is consistent with the small-signal as-
sumptions. From the power theorem we can learn when electron beam
waves that grow exponentially with distance represent a gain mech-
anism, and when they correspond to attenuation. We shall limit our
study of the small-signal power theorem to a form that is applicable
to longitudinal beams and beams with zero curl of the generalized
momentum. These are two important cases for which the theorem
assumes a particularly simple form.

Next, we present a discussion of space-charge waves in a longi-
tudinal electron beam, a cylindrical Brillouin beam, and a strip beam
in crossed electric and magnetic fields. This discussion is limited
to space-charge waves that propagate in the absence of a slow-wave
circuit.

Pierce's theory of mode coupling is briefly reviewed and the
role of the power theorem in its derivation is stressed. The coupling
coefficients that appear in the coupling- of- modes equations are evalu-
ated for a longitudinal beam tube under the assumption of weak coupling.
A new approach is presented in Section VI which can be used to

evaluate coupling coefficients even in cases of fairly strong coupling.
Using the small-signal power theorem, we derive a variational prin-
ciple for the propagation constant of waves in uniform slow-wave
structures that contain longitudinal and Brillouin electron beams.
This principle can be used to obtain the best possible values for the
propagation constants when an approximate (trial) solution of the
problem is known. The principle also serves to optimize any adjust-
able parameters in an approximate solution. The use of the varia-
tional principle to obtain the propagation constant from a trial solu-
tion consisting of a linear superposition of the fields of the slow waves
of the unperturbed systems has the following advantages:

1. The problem of finding the (slow-wave) fields of a compli-
cated, composite system is reduced to the problem of finding the
fields of the simpler subsystems.

2. Under the circumstances, the best possible value of the
propagation constant is obtained.

3. With the assumption of weak coupling between the beam and
circuit, the method leads in all significant cases to the determinantal
equations already obtained for the traveling-wave tube and magnetron
amplifier. The coupling-of-modes formalism is shown to be derivable
from the variational principle with a reasonable trial solution under
the assumption of weak coupling. With the same trial solution, how-
ever, better solutions for the propagation constant can be obtained
from the variational principle than from the coupling-of-modes theory
if no approximations of weak coupling are introduced.

4. Through the variational principle a clear picture of the
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approximations involved in the conventional analyses is presented.

II. The Small-Signal Power Theorem

The behavior of amplifiers in their linear region of operation is
satisfactorily represented by linearized equations. The fundamental
equations are linearized by assuming that the products of the ampli-
tudes of the rf excitation in the electron beam are small as compared
with the first-order terms, and can be disregarded. The velocity of
the electrons is written in the form*

jwt
u (r,t) = u +u e (1)

where uo is the velocity of the electrons in the absence of an applied
rf excitation. The kinetic energy of an electron at a particular in-
stant of time t is (m/2e) [u + Re (u ejwt)J 2 If we evaluate the time
average of this kinetic energy over many electrons passing a given
small cross section, we obtain (m/2e)(u o +(1/2)u -u*). Thus the
time average of the kinetic energy involves terms of second order in
u. However, changes of this order in the time average velocity o
are neglected in the small-signal theory. Hence, it seems that under
the small-signal assumptions a study of kinetic energy and power re-
lations is doomed to failure. This, however, is not so.

In order to recognize kinetic energy flow in a manner consis-
tent with the small-signal assumption, we start with the fact that the
electromagnetic power radiated by the beam can be evaluated from
the small-signal solutions correctly within second order of the small-
signal amplitudes (i. e., consistently with the small-signal theory) .
From the small-signal equations we can prove a relation between the
electromagnetic power and products of the beam excitation amplitudes.
This relation, the small-signal power theorem, can then be used to
interpret the power interchange between the beam and the electromag-
netic fields in a manner that is consistent with the small-signal as-
sumptions.

Now let us consider the electromagnetic power delivered by( or
supplied to) the electron beam. If we use the small-signal complex
electric and magnetic field vectors E and H, the electromagnetic
power Pe out of a volume enclosed by a surface S is given cor-
rectly within second order (of the small-signal amplitudes) by (see
Fig. 1):

P = Re EX H · dS (2)

*To avoid a cumbersome notation later on, we do not use a subscript 1 to identify
u as a complex ac quantity. No confusion should arise; the time-dependent quantities
will always be identified by the appropriate variables in the parentheses.

___ _·l _1 _1_· -1
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A

INTEGRATION

Fig.1 Electron beam and surface of integration.

The terms neglected in (2) are all of higher than second order in the
small-signal amplitudes. They are: (a) the contribution of harmonics
of the fundamental frequency; and (b) contribution from correction
terms in the fundamental amplitudes that would be obtained from a
higher-order theory.

We now turn to the derivation of the small-signal power theo-
rem. This theorem has been proved for an entirely general case.1,2
But since the terms that appear in the general theorem have not yet
been satisfactorily interpreted, we shall confine ourselves to two im-
portant special cases: the longitudinal electron beam, and the beam
with zero curl of the generalized momentum.

A. Kinetic Power Theorem for Longitudinal
Electron Beams

A longitudinal electron beam is an electron beam that is con-
fined by an infinite magnetic field, with the time average and the time-
varying velocities following the magnetic field lines. The field lines
are not necessarily parallel.

The small-signal power theorem for longitudinal beams was
first derived by L. J. Chu, 3 who also first recognized the implications
of a study of power flow based on small-signal assumptions. Details
of the derivation are given in Appendix I of Ref. 4; they will not be re-
peated here. The method is analogous to the method used in deriving
the power theorem for beams with zero curl of the generalized mo-
mentum, which is described later. The result is

Re (E +VJ) . dS 0 (3)
2 Re fi (E X H + VJ ) . dS = (3)

-- ----
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where J is the complex ac current density

J= p u+pu (4)
o o

in which p is the time-average space-charge density, p is its com-
plex amplitude, and

m --

V - u .u (5)
e o

the kinetic voltage. Here, u is the small-signal Eulerian velocity.
It is obtained by comparing the real, time-dependent velocity u(r, t)
at the point with the velocity uo(r) at the same point in the ab-
sence of an applied excitation.

Re L(r)etj ]= ui(T, t) - () (6)

We now turn to an interpretation of the power theorem. It shows that
a net electromagnetic power flow out of the surface S must be bal-
anced by a negative term (1/2) Re V J * dS. Thus Eq.(3) is a
conservation theorem that traces the electromagnetic power delivered
by a beam to changes in the flow of the quantity (1/2) Re V J*. If
the beam enters the surface unexcited, we have V = J = 0 on the
entry cross section. If the beam delivers electromagnetic power, the
quantity (1/2) Re V J *- dS integrated over the exit cross section
must be negative. Now let us study the physical significance of the
integral. For this purpose consider the flow of the quantity V J*
along a hose of current with walls everywhere parallel to JO and J.
Let the vector cross section of the hose at some chosen point be* da.
The vector d is assumed to be parallel to, and in the same direc-
tion as, uo. Assume that J da and V are out of phase at the
chosen point along the hose. Then we have

2 Re (J da V) < 0 (7)
2

a situation that exists at the exit cross section of a volume within
which the beam delivers electromagnetic power.

Let us see what it means physically when V and J · d-a are in
phase opposition. When the amplitude of the ac current is at its
positive extremum, the ac kinetic voltage has its extreme negative
value. Since e is negative, we conclude from definition (5) that at
this instant of time the amplitude of the velocity is at its positive ex-
treme. When the ac amplitude of the velocity is positive the total
velocity of the electrons passing the point at this particular instant of
time is larger than it would be in the absence of an applied signal.
Similarly, we find that the total rate of passage of electrons through

*We use the symbol dS for an element of a closed surface; the symbol da for
an element of area that does not pertain to a closed surface.

�____I LI�1 �I--I�-I1 1--- ---·----- �-----
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the hose at the same instant of time is smaller than it would be in the

absence of an applied signal. This situation is illustrated schemati-

cally in Fig. 2. We show the distribution of the electrons and their

I-

,, U , J A ~CO ~ I

-0 --- - -O- i '4-0 -0 "0 -*0

Fig.2 Small Signal velocities and densities in beam-hose
with negative kinetic power.

velocities in a hose taken out of a beam with an excitation correspond-

ing to negative kinetic power.
At a time half a period later, the rate of passage of electrons

is highest, and the velocity has reached its minimum value. Thus at

this later time, more electrons pass the cross section da than in

the absence of an rf signal. These electrons have a smaller veloc-

ity than they would have in the absence of a signal.
We have found that at the time when the number of electrons

passing the cross section is less than the average number they have

a larger velocity than they would have in the absence of an rf signal;
at the time when more electrons pass the cross section they have a
velocity smaller than the average. Thus the average (over all elec-

trons passing the cross section) of the kinetic-energy flow through

the surface is smaller than it would be in the absence of an applied

signal. Accordingly, the occurrence of (1/2) Re (V J*. da) < 0 can

be interpreted as a decrease of the average kinetic energy flow below

the flow in the absence of an rf signal. This finding is entirely in
agreement with the fact that condition (7) accompanies a net delivery

of electromagnetic power by the beam, according to Eq. (3).
Conversely, (1/2)Re (V J . da ) > 0 can be interpreted as an

increase of the time-average kinetic energy flow over the kinetic en-
ergy flow in the absence of an applied rf signal. We shall use the
term "kinetic power" and the symbol Pk for the term

(1/2)Re (VJ*- d) .
The preceding argument shows that delivery of electromagnetic

power can be traced to changes in the kinetic energy flow in a longi-
tudinal beam in a way that is consistent with the assumptions of small-
signal theory.
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ELECTRON BEAM WAVES 95

B. Small-Signal Power Theorem for Curl-Free
Electron Beams

Electron beams that originate from a cathode on which there is
no normal component of the dc magnetic field, have zero curl of the
time-average generalized momentum po

p = mu + eA (8)
o o o

where Ao is the vector-potential of the magnetic field. If noise is
disregarded and if the cathode is situated outside the field of the rf
excitation, the curl of the alternating (time-varying) generalized mo-
mentum is also zero. 2

VX pi = VX (mu+ eA) = 0 (9)

where curl A = B, the complex ac magnetic field.
The force equation and the continuity equation for a flow with

zero curl of the generalized momentum can be written as

jw + V( ) -- E = 0 (10)
o m

jwJ+u V J- jp 0 (11)

Here we have
J = p +pfu (12)

O O

inside the electron beam. It is expedient to include in J the surface
current K on the surface of the beam

K = p r nu (13)

where n is the normal to the beam boundary, and rl is the small-
signal displacement of an electron on the beam boundary. (The sur-
face current (13) was first proposed by Hahn; 5 later it was used by
Rigrod and Lewis, 6 Zitelli 7 and others. The surface current is quite
easily interpreted in "polarization variables" where it appears quite
naturally. 2) Thus, J is given correctly everywhere by

J = + p + K6(S) (14)
o O

where 6 (S) is a delta function which, when integrated over any flat
pillbox on the beam surface, gives f6 (S) dT = da. (See Fig. 3) We
shall now show that Eq. (11) is the correct continuity equation even
when the surface current is contained in J as given by (14). Intro-
ducing (14) into (11), we can neglect, within the current sheet, the
terms p u + pu and - jwpU as compared to the delta function. We

O O
have

6(S) jpo(j 1( i)u +u V J = 0

1_1__1____( _�



9 6 ELECTRONIC WAVEGUIDES

M SURFACE

Fig.3 Pillbox on beam surface.

Cancelling the common factor uo and integrating over the pillbox

shown in Fig. 3, we have

K -i ds - .n -wp r n (15)
n o1

Equation (15) is the correct continuity equation for the surface cur-
rent. It states that the current lost to the pillbox by the surface cur-
rent passing through its sides and by the volume current inside the
beam passing through its endface, is equal to the time rate of decrease
of the surface charge pol · nT. Introduction of the surface current
in the continuity equation greatly simplifies the subsequent operations.

The small-signal Maxwell equations are

V X E + jwu H0 = (16)

V X H - j 0 E- J= 0 (17)

Here again J has to be interpreted by Eq. (14) in order to give the
correct discontinuity of H at the surface of the beam. Gauss's the-
orem can be applied to the resulting fields as if they were continuous,
since the surface current can always be considered as distributed
over a layer of small but finite thickness on the beam surface.

Dot-multiplying Eq. (16) by H, the complex conjugate of Eq.
(17) by -E, Eq. (10) by (-m/e)J*, and the complex conjugate of
Eq. (11) by (m/e)u we obtain, upon addition,

V E'X + m _ _) J*]
e (18)

+[ L /oi e o * 2
+ j Li 1 H0H - + P0 I I _ E0 0;
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Integrating over a volume between two reference cross sections as
shown in Fig. 4, and taking the real part, we have

/ \ \

\ '

\ / I /do do

CROSS SECTION I CROSS SECTION 2

Fig.4 Surface of integration for Eq.(18) .

Re EX H dS = - Re fs (u u) J 
e (2)

(19)
+ Re ( u u -)J · da|e o 1

This is the form of the power theorem as first derived by J.W.Kluiver. 8
Equation (19) looks very much like the kinetic power theorem of Eq.
(3); yet it implies a rather novel mechanism of power transfer.

In ordertobringthe mechanism of powertransfer into evidence,
we must consider how a change of energy transport in an electron
beam is determined. In principle, this would be done as follows: An
observer stands at a given reference cross section. He first studies
the velocity (and potential energy) of a given group of electrons ( the
electrons originating from a given spot on the cathode, for example)
in the absence of an applied signal. Then he determines the velocity
of the same group of electrons as they pass the reference cross sec-
tion in the presence of an applied signal. The observer would thus
define a change of the electron velocity as

Re(w ej ) = (Wt) - () + Re ejt) (20)

where rT is the displacement in the cross-section of the group of
electrons from their unperturbed point-of-passage through the cross-
section. (See Fig. 5. ) The velocity is the one to be used in a
study of changes in kinetic energy in a beam system. The first two
terms in Eq. (20) can be identified as the Eulerian velocity, Re(u ejwt)
[compare Eq. (6) . From Eq. (20) we thus have

__ _ __1_1__1__ ___ __1 11 1__~~~~~~~~~~~~~~~~~~~~~~-- 
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PERTURBED )

- UNPERTURBEDJ BEAM BOUNDARY

rPERTURBED ELECTRON -
POINT OF PASSAGE OF UNPERTURBED ELECTRON 

BEAM BOUNDARY UNPERTURBED '
UNPERTURBED 

J

REFERENCE CROSS SECTION

Fig.5 Definition of vector r
T

w = +rT' Vu (21)

Now consider the quantity (m/e) u ·0 u which enters into the small-
signal power theorem (19). Using Eq. (21), we have

m_ _ m _ _2- u u= -u · w-r *V(-U )
e o e o T e o

For a flow with V X = 0 we have the force equation

mu =-2u--u 
e o o

Combining the two equations results in

m- - m - -
-u u = -u w - rT E (22)
e o e o T o

The first term on the right of Eq. (22) is the change in the kinetic en-
ergy associated with the longitudinal motion. The second term is the
change in the potential energy of the beam caused by a transverse dis-
placement in the dc electric field. The small-signal power, dP, in
a hose of cross section da

dP = 2Re [(-- w)J T ] (23)

thus consists of a kinetic and potential term. This power can be neg-
ative either because m/e (o. W) J * da has a negative real part and
the hose has lost kinetic energy flow as interpreted in connection with
Eq. (3); or, the "potential power flow", (1/2)Re (-FT ·Eo) J* da],
is negative since the hose has moved, on the average, into regions of

I
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lower potential energy (higher voltage, for a beam of negative charge).
Figure 6 shows a sketch of a hose in a beam that has lost potential en-

PERTURBED
0o HOSE BOUNDARY

0 0000 0 0 0 0000
000000 0 0 0 0 000000 o o 0o 0 o o o 0 0 0 0 

UNPERTURBED
ELECTRON BUNCH ELECTRON ANTI-BUNCH HOSE BOUNDARY

Fig.6 Electron densities in beam hose with negative "potential power".

ergy while possessing a negligible ac velocity excitation. This
mechanism is at work in the magnetron amplifier, 9,10,11 and in the
helitronl 2 (or spiratron1 3 ). It is quite remarkable that we were able
to find an interpretation of this mechanism on the basis of the small-
signal equations.

Having derived the two forms of the power theorem, we are
now ready to discuss their applications. Some of these have been
published and will merely be listed here with the proper references.

1. An orthogonality condition can be derived for waves in uni-
form electron beams. 2

2. Necessary and sufficient boundary conditions for obtaining
a unique solution can be determined. 2

3. The theory of lossless mode couplingl4 is applicable to sys-
tems containing electron beams. While this theory has been used only
for longitudinal electron beams, 14,15 the theorem stated in Eq. (19)
makes it applicable to beams with curl-free flow.

4. A variational principle can be found on the basis of the small
signal power theorem.1 6

5. The amplifying and attenuating nature of waves in electron
beams can be recognized from the power theorem without a laborious
matching of boundary conditions.

In this paper we shall discuss only points 3, 4 and 5. Before
we turn to the theory of lossless mode-coupling and the variational

--- -I ---_.____P1- -·XIIL�--·I�LC··-�lI^ .I�··_1I1II^·*·I�--·�-^-I
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principle, we shall review the waves propagating along electron beams
in the absence of slow-wave structures. We shall consider the three

better-known and more important cases: the longitudinal beam, the

cylindrical Brillouin beam, and the Brillouin beam in crossed electric

and magnetic fields.

III. Space-Charge Waves in Electron Beams

A. The Longitudinal Beam

The study of space-charge waves in electron beams startedwith

W. C. Hahn's 5 pioneering work. He and S. Ramol 7 derived general

expressions and introduced the idea of surface current for matching

of the boundary conditions. Most of their attention, however, was

devoted to the circular, cylindrical beam of radius b confined by an

infinite magnetic field along the z-axis. We shall start with a review

of the pertinent equations and results. The notation used here em-

ploys symbols that have come into widest usage and does not follow

that of the original work. The force equation is

L i + a V= E (24)
e a =

where e = w/uo is the electronic propagation constant and

V = (m/e) uo- u is the complex ac kinetic voltage. The continuity

equation can be written in the form

JSe+az Ja J 2 V e

where V (m/2e) u 2 is the dc potential of the beam.

Equations (24) and (25) have a particularly simple solution if

the beam is very thick [(w/uO) b >> 1]; then a solution exists with a

negligible transverse dependence so that a/ax - a/ay 0, and the

only dependence to be considered is the z-dependence. The equation

V X = J+ j (26)

in conjunction with

V X E = - j H (27)

leads to a TEM solution that does not couple to the electrons, and is,
therefore, uninteresting; and to a solution with only a z-component of
the electric field that fulfills the equation

jWE Ez + J = 0 (28)
0 z Z

Introducing Eq. (28) into Eq. (24) we obtain
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ao z[j + V= - 1 (29)Je az +

We set

e P o e o 2
= (30)

m E m E u p

where tp is the plasma frequency. Further, defining the plasma
propagation constant,

= P (31)
p u

We can write for Eq. (29):

V P
a v~j o e J (32)je+ V= j 21J J (32)

Equations (25) and (32) can now be solved easily. They are reminis-
cent of transmission line equations with the exception that the opera-
tor a/az of a transmission line equation is replaced by the operator

j + a
e az

For this reason the solutions of Eqs. (25) and (32) differ from those of
transmission line theory by a multiplier exp(-j ez). The solutions
are

_ jo _z -jP~z _jIez
V(z) LVe = +V e e

J(z) Y L iveJ ]pZ -i eZ] 

The "characteristic admittance" in units of mho/m is

Y 0 (34)
o 2V w

o p

V+ and V are integration constants. The wave with the subscript
(+) has the propagation constant e - P and thus has a phase veloc-
ity larger than u (as long as p < Pee, a case always met in prac-
tice for reasons that will be explained later). This is the fast wave.
The other wave has a phase velocity less than u and is the slow
wave. The kinetic power density Sk = ( 1 /2)Re (VJ *) of thefastwave
is positive; that of the slow wave is negative. Thus, a delivery of
power by the beam along its length must cause a preponderant exci-
tation of the slow space-charge wave.

_1_ ___1_ ___- -I-·-- -- --·�-L-·L�-�-^·I-IPII·sllCI---·YIIII��I�
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The waves in the infinite beam provide the basis for the under-
standing of the space-charge waves in the finite circular-cylindrical
beam. In order to find these waves, one has to solve the Maxwell
equations (26) and (27) in conjunction with Eqs. (24) and (25), matching
the boundary conditions on the surface of the beam. This has been
done by various authors, the first discussion being due to Hahn 5 and
Ramo.17 An infinite number of waves is found in this manner; each
wave has a particular radial and -dependence ( is the angular co-
ordinate in cylindrical coordinates). Here we shall be interested only
in the cylindrically symmetric waves. If the space charge is not too
large, a condition always met in practice, pairs of waves have a com-
mon radial dependence for both V and J. We shall denote a pair of
such space-charge waves by the word "mode". The kinetic voltage
and the ac current density of a particular mode have the radial de-
pendence Jo(pmr), where J is the Bessel function of zeroth order,
and the value of the real parameter pm changes from mode to mode.
These Pm are found from a matching of boundary conditions. The
mode with the lowest value of PM, Pm = Po' has the slowest radial
variation and is usually the mode of greatest importance. It is, there-
fore, called the dominant space-charge mode. The field of a single
wave of the dominant space-charge mode is sketched in Fig. 7.

Fig.7 Sketch of field in single wave of dominant mode in longitudinal beam.

The results of the analysis that has been briefly outlined here
can be conveniently explained a posteriorilby physical reasoning, with
the use of Eqs. (25) and (32) of the "one-dimensional" beam model.
Equation (25) holds even in a beam of finite radius. Equation (32) was
obtained from Eq. (24) the force equation, by substituting Eq. (28) for
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the longitudinal electric field. Equation (28) does not hold for an ex-
citation with non-zero radial variation. However, we can modify it
in a simple manner to take into account such a radial variation (al-
ways present in a finite-beam geometry).

A finite transverse variation of the beam fields establishes a
transverse electric field at the expense of the longitudinal field. Thus,
for any particular mode, the longitudinal field corresponding to a
given longitudinal current is less than it would be in the absence of a
transverse dependence. The phase of the field with regard to the cur-
rent is still the same as that resulting from Eq. (28), since the peak
of the field is to be expected between the current bunches (or rather
charge bunches, which, for small space charge, are essentially co-
incident with the current bunches). From this reasoning we obtain
the force equation for the mth mode

2
V (r 2 )

+ V = -_ o 3e
e az m 2J 1 e m

where rm (< 1) is the plasma frequency reduction factor (a real pa-
rameter). The kinetic voltage Vm and the current density Jm of
this mode depend upon the radius r, as Jo(pmr), where J is the
Bessel function of zeroth order. The plasma frequency reduction
factor rm is a function of Deb and b/a, (a and b are drift tube and beam
radius). It is different for different modes. The faster the transverse
variation of the mode, the smaller its space-charge reduction factor.
The largest value of the reduction factor, ro, pertains to the domi-
nant space-charge wave. A plot of r for this mode is shown in Fig.
8. (The plot is taken from Ref. 19). The solutions of Eqs. (25) and
(35) for Vm and Jm (now functions of r) are identical in form with
Eqs. (33), except that p is replaced everywhere by P = rm p, the
reduced plasma propagation constant. Again, it is apparent that the
kinetic power density of the fast wave is positive throughout the beam;
that of the slow wave is negative. Each space-charge wave has also
an electromagnetic power associated with it. However, the electro-
magnetic power is of the order P3q/ Be smaller than the kinetic power,
as shown very elegantly by Louisell and Pierce.1 8 Thus, in most
problems the electromagnetic power of the beam, as compared with
the kinetic power, can be neglected.

Let us summarize the relations for the dominant space-charge
waves in a thin beam (eb << 1). Here, the ac current and kinetic
voltage distributions are approximately uniform throughout the beam.
For the beam power we have

Pb 2 Re(Vi ) = Pk (36)
where
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Fig.8 Plot of plasma frequency reduction factor r for dominant

space-charge mode vs 8e b. R = a/b.

integrated over a cross section of the beam, and

+j 3 +z -jq z
V = +e q +V e q e e

(38)

i Yo V+ -V e e
jpq] -j"·e z

I 3
O= e

o 2V 1
o q

(39)

Io is the dc current in the beam. The similarity between these ex-
pressions and Eqs. (33) and (34) for the one-dimensional beam is un-
mistakable.

3.8 4.0

-- I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~- --
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B. Space-Charge Waves in Cylindrical Brillouin
Beams

The case of a Brillouinbeam in a conducting drift-tube has been
analyzed in detail by Zitelli7 and Rigrod and Lewis. 6 They found so-
lutions with zero curl of the generalized ac momentum. No space-
charge-wave solutions with a finite curl of the generalized ac mo-
mentum have yet been found.* The solutions are of two types. There
is an infinite number of solutions that have the propagation constants

3= -c + -P (40)u u
oz oz

independent of geometry. Here p = (e/m)(pO/eo), Uoz is the
longitudinal dc velocity. These solutions do not have fields exter-
nal to the beam. (if they did, their propagation constant would de-
pend upon the geometry of the beam. ) These solutions correspond to
a "plasma oscillation" at the plasma frequency wop inside the beam
with fields that are shielded to the outside of the beam by the accom-
panying surface charge on the beam surface, pn rl. Since these
solutions have no outside field, they cannot couple to the fields of an
external structure unless the structure penetrates into the beam by
means of an obstruction -- grids, for example. Similarly, an exter-
nal structure without grids (the only kind considered here) cannot
couple to these solutions.

We are more interested in the other mode solutions which have
external fields. There is only one such mode with cylindrical sym-
metry that consists of two waves; it has zero ac space charge inside
the beam. The field produced by this mode is caused entirely by the
bulging and contracting of the beam surface. It is the gradient (at
non-relativistic velocities) of a potential that fulfills Laplace's equa-
tion inside and outside the beam. At practical (small) dc space-charge
densities the radial dependence of the longitudinal field and current in-
side the beam is of the form I(3 e r), where e is the beam propa-
gation constant (e = /Uoz), Io is the modified Bessel function of
zeroth order and first kind. Outside the beam, the longitudinal field
decays away from the beam, the discontinuity in aEz/ar, and, thus,
in the radial field is provided by the surface charge pon . F1 . Figure
9 shows a sketch of the lines of force of the ac field E(r) in such a
surface wave. The bulging and contracting of the beam boundary is
exaggerated in the figure. The fields are produced by equivalent neg-
ative and positive surface charges on the boundary of the unperturbed
beam. These surface charges express the effect of the perturbations
in the boundary. A small-signal field analysis does not give the details

*It is possible that such solutions violate the assumption of laminar flow. It
would then be very difficult to find them.
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Fig.9 Sketch of fields of surface wave in Brillouin beam.

of the fields in the regions between the perturbed and unperturbed
beam boundaries, and therefore no fields are drawn in those regions.
(When computing the fields acting on the electrons that enter into
those regions, one uses the values just inside the surface charge-
carrying unperturbed beam boundary. ) The ac surface current Kz
is much larger than the ac volume current. This justifies the name
"surface waves" by which we are going to denote these waves.

The propagation constants of the two waves of this mode are
again given by

1= b + + (41)
e q

where q is a quantity less than

3p = P ,
p u

oz

and is a function of geometry. Thus, the z-dependence of this mode
bears a strong resemblance to the z-dependence of the dominant
space-charge mode of the longitudinal beam.

Let us now turn to the investigation of the power flow in these
two waves (compare Eq. (19))

Pb 2 Re f e (5 u) Jz da (42)b 2s e o z
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A detailed study shows that for small space charge (13q << e) the
contribution to the power from the volume current is negligible when
compared to the power of the surface current. We have, approximately,

1 *
P = Re(V i ) (43)

b 2 zz
where

i = K 2rb (44)
z z

for a beam of radius b, and

m_
V -u · (45)

z e o
r= b

These quantities have the z-dependence

V= LV e q +V e j e

where

Io 1 e 2I1 (P b)~Y = - - b(47)
2V P P b ( b)

0 q L e o e ]

(I o is the dc current in the beam.) When the beam is thin, the last
factor is unity. Then Eqs. (43), (46), and (47) are in perfect agree-
ment with those for the thin longitudinal beam.

C. Space-Charge Waves in a Brillouin Beam in
Crossed Fields

We shall now briefly consider the waves that propagate along a
strip beam infree space, infinite inthe x-direction, moving inthe z-
direction, and of thickness 0 in the y-direction. The method of an-
alysis and the fundamental equations for this case were first presen-
ted by Buneman. 20 Macfarlane and Hay 2 1 gave a detailed analysis
and presented various curves for the propagation constant as functions
of frequency. These curves are quite involved for thick beams with
a large velocity spread. But the thin beam results are often adequate
for the coupling-of-modes theory and the variational principle applied
to magnetron amplifiers. These are much more easily obtained from
a !'thin beam analysis" first outlined by Gould. 11 Here, we shall
summarize two methods and their results for later application in mag-
netron amplifier studies.
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a. We start with the adiabatic approximation in which the forces
of inertia are neglected. Then a balance between the electric and
magnetic forces is required:

E+uX B =0
0

When this approximation is made, we obtain two solutions that are
consistent with the approximation. For a thin beam, far away from
any conductors, we find the propagation constants

A= ~ (1 + jSD) (48)
u

0

where uo is the dc velocity of the center of the beam and

-

2
E B u

o 

where a o
= po e is the dc charge per unit beam area (in the x-z

plane) and Bo is the dc magnetic field. The ac space-charge den-
sity for these solutions is zero, not unlike the solutions in the cylin-
drical Brillouin beam found by Rigrod and Lewis.

b. The same result for the propagation constant can be obtained
from a one-dimensional beam model used by Pierce1 0 in his magne-
tron amplifier analysis. Pierce neglected space-charge forces.
Gould 1 took space-charge forces into account while, in essence, re-
taining Pierce's beam model. In this model we consider the beam to
be infinitesimally thin and to consist of a single layer of electrons.
The time-average velocity of this layer is u. The beam experiences
a transverse displacement Y ( has the same meaning as rT in
Eq. (20)) and a longitudinal current iz . The displacement and the
longitudinal current produce electric fields that can be computedfrom
electrostatic considerations. The fields, in turn, are introduced in-
to the force equation. Four propagation constants result:

3= -- (1 +jD6) (50)u
0

where D6 for a beam far from conducting boundaries is approximately
given by

jD6= +- (51)

and

D6 = + SD (52)

Wc = I(e/m)Bo I is the cyclotron frequency, and SD is given by Eq.
(49). The approximation used to get the roots (52) holds, provided
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SD << c (53)

The waves corresponding to (52) are identical with solutions (48). The
waves corresponding to (50) are cyclotron waves with a circular ro-
tation of the electrons in a reference frame moving with the velocity
u0 , negligibly affected by space-charge forces. The waves (52) are

the "diocotron waves" .22 They correspond to the breakup of a thin
beam as caused by the mutual repulsion forces between the "valleys"
and "hills" in a corrugated strip beam. 23, 24 In the coupling-of-
modes theory of the magnetron amplifier these waves are particular-
ly important, because the circuit wave is usually adjusted to be close

to synchronism with uo and thus couples most strongly to the dioco-
tron waves whose phase velocity is equal to u . For this reason we
shall study the small-signal power of these waves in greater detail.

We use the small-signal expression in the form of Eq. (23) be-
cause an Eulerian velocity is meaningless in the case of an infinites-
imally thin strip beam. Indeed, the Eulerian velocity is obtained
from the difference between the actual electron velocity and the veloc-
ity of the unperturbed electrons at the same point. If the beam exe-
cutes a transverse motion, it enters space within which there are no
electrons in the absence of a perturbation and thus, strictly speaking,
no Eulerian velocity can be defined.* Thus, having stated the nature
of the velocity to be used, we now conclude that the transverse dis-
placement Y1 is related to wy by [jw + uO (d/dz)] Y = wy. Using
Eq. (48) for the diocotron waves, we have

w

- wSD

In a beam far from conducting boundaries, the longitudinal velocity
wz can be shown to be equal in magnitude to wy. Thus, using the
above expression to compare the magnitude of the two terms in the
general expression for the small-signal power (23), we have

--u w = -u SDy
e o z e 0 1

Now compare this with

m
-y E u y w

Using inequality (53), we find that the contribution-to the power from
the kinetic term is much less than that of the potential term. We can

*The application of Eq.(23) to a beam consisting of a single layer of electrons

is somewhat strained. However, a small-signal power theorem was derived for such

beams.1 Its application to the present case leads to the same result.

-- �.1_111_1_11�111_ 11 -- .I·l�-.��l·.^·LII11 XLI--·__-^I.I. -�I_��L4�·-slUL �-�PII-�-l(----- ---L·

109



110 ELECTRONIC WAVEGUIDES

compute the small-signal power entirely on the basis of the potential

term. Since E o = -u o B o = (m/e) u o c, this is

1 m
P -Re (-- u Y i ) . (54)

b 2 e oc z

It is clear that a single diocotron wave cannot carry any power; the
power would grow (or decay) exponentially, in violation of power con-
servation. Power is thus carried only in the presence of both the
growing and decaying waves. A detailed evaluation of the expression
(54) confirms this.

We shall also need the relation between the longitudinal current
i z and the transverse displacement Y1. This relation is best ex-
pressed in terms of an important quantity iy defined by

i =jwCo Y (55)
y 0 1

where is the width of the beam in the x-direction. We then have
for a beam far from any conductors:

i = + i for wave growing in positive z direction
(56)

i = - i for wave decaying in positive z direction
y z

IV. Pierce's Theory of Mode Coupling

The small-signal power theorem provided the basis for Pierce's
coupling-of-modes analysis of longitudinal beam tubes. We shall

briefly review the theory of mode coupling, its advantages, and its
disadvantages in its present formulation. We shall consider the sim-
plest case of coupling between two approximately synchronous waves,

a circuit wave and the slow-beam wave of a thin, circular cylindrical,
longitudinal electron beam. (See Fig. 10) This is the case of a travel-

ing-wave tube with a large value of Pierce's QC parameter. A slightly

I SLOW-WAVE STRUCTURE

I - e-z Z COLLECTOR
GUN I ,

Fig.10 Schematic of beam tube. Arrows on the a's indicate direction
of phase velocity.

different notation from that employed in the original papers14,15 is
used.

The fields of the (unperturbed) slow-beam wave in the absence
of the circuit are largest in the beam, and decay exponentially (like

_�_�1_��_1___ ___ I__ ___� �
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modifiedBesselfunctions of the second kind) outside the beam. In a
similar way, the field of a (unperturbed) slow wave on the lossless circuit
in the absence of the beam reaches a peak near the circuit and, in gen-
eral, decays rapidly with distance from the circuit. The circuit field
is relatively weak at the position of the beam, and vice versa. We
should, therefore, expect that the propagation along the combined cir-
cuit-beam structure could be described as a perturbation of the two
(or more) waves along the unperturbed circuit and the unperturbed
beam. Denote the amplitude of the circuit wave by al, and the am-
plitude of the beam wave by a2 . Amplitudes a and a2 are so nor-
malized that +al 2 and -la 2 12 are the powers carried by either
wave. The sign of the circuit power is determined by the nature of
the wave. A wave traveling in approximate synchronism with the
beam waves on a forward-wave circuit has positive power (i. e.,
power traveling in the direction of the dc beam velocity); a wave on
a backward-wave circuit has negative power. Amplitudes a and a2

can be related to the more familiar quantities, that is, to the circuit
field at the beam, E1 , and Pierce's K parameter and to the cha-
racteristic beam admittance Yo, and beam current i 2 in the fast
wave. Indeed, the power P 1 on the circuit is

E2

pl=± la 2 = + 1 (57)
22 K

e

and the power in the fast wave (if we neglect the electromagnetic power
term) is

P =la2= 1 1 i 12 (58)
0o

By an arbitrary phase adjustment we can set

E

a = (59)

i

a 2 (60)
2Y

Denote the unperturbed propagation constants of the two waves by 1
and B2' Then, in the absence of coupling, (complete separation of
circuit and beam) we have

da

=dz j1I a1 (61)
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da 2

dz - j 2 a2 (62)

If coupling is introduced between beam and circuit, the presence of
one wave affects the rate of change of the amplitude of the other. If

the coupling is weak, the coefficients jP1 and jj 2 willnot be affected,
and the coupling is properly taken into account by setting

da

dz -j lal + 12a2

(63)da

= C2 a -al j a2

Further information about the coupling coefficients cl 2 and c2 1 can
be obtained from power considerations. Indeed, if the coupling is
weak, the total power is equal to the sum of the powers as computed
on the basis of the unperturbed systems

P = ± la 1 1
2 - la 2 12

Since the system is governed by a conservation law, the small-signal
power theorem, we must have

dP da1 da 1 da 2 , da 2

dz + [z 1 a dz dz a a2 dz 0

Introducing Eqs. (63) into the foregoing equation we find

a 2 (±+ c1 2 - c 2 1 ) a1 + complex conjugate = 0

This relation has to be fulfilled for an arbitrary choice of initial con-
ditions, i. e., arbitrary a and a2 . Thus, we must have

21 = + 12 (64)

Introducing condition (64) into Eqs. (63), assuming a dependence
exp(-y z), and solving for y results in

1 1 2 4C212 I(65)

The upper sign applies for a forward-wave circuit, the lower sign for
a backward-wave circuit. It should be noted that this difference in
sign arose from power considerations. It was pointed out quite gen-
erally by Pierce,14 with the aid of an equation like Eq. (65), that coup-
ling between waves with equal sign of power (both waves carry positive
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or negative power) never leads to exponentialgrowth or decay, whereas
coupling between waves of power with opposite sign leads to growth or
decay at, or near, synchronism.

We also can obtain quantitative information about the coupling
coefficient c 2 1 from power considerations. Thus, consider the rate
of change of the power P 2 in the beam, dP 2 /dz,

dP2 * da2 * * *

dz dz a2 +a 2 21 2 21 1

This power has to be provided by the field of the circuit E1 that works
against the beam current density J 2. If the beam is thin, the current
density J 2 and the longitudinal component of the field E 1 are uni-

form across the beam, and thus

dP

dz 4 (Ei2 + E 1 i) where i 2 = f da4 1 2 12 cross section

Using Eqs. (59) and (60) and combining the last two equations, we have

1 *
21 4-E1 i2 Be 2 (66)
-21 4 =e o

Using Eq. (39) and the fact that in Pierce's notation

I

4V

we have

3 C3

2 e

21 2,
q

which checks with Gould's expression. 15 (Gould obtained this value
by comparing the results obtained from the theory of mode-coupling

with Pierce's original determinantal equation. )
Let us now summarize the advantages and disadvantages of the

coupling-of-modes analysis derived here. There are the following
advantages.

1. The solution of a composite system is reduced to the solu-

tion of two simpler subsystems.

2. Frompower considerationsthe generalnature of the coupled
waves can be predicted without even setting up the equations of coupling.

It has the following disadvantages.

1. The approximations made in deriving the coupling equations
are not entirely clear.
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2. The analysis fails for more strongly coupled systems.

The variational principle to be derived in the sequel removes
the first-mentioned disadvantage and leads, in the case of weak cou-
pling, to the coupled-mode equations. Since it can also be applied to
cover cases of stronger coupling, it does not suffer to the same ex-
tent from disadvantage (2).

V. Other Applications of the Power Theorem

In the presence of a slow-wave structure the beam waves couple
to the slow circuit-waves, and a gain results if, in the process, the
beam delivers electromagnetic power to the structure. When this
happens, we conclude from the small-signal power theorem that the
small-signal beam power must become more and more negative. This
means that the circuit has to couple predominantly to a wave carrying
negative kinetic power.

Considerations of this kind explain many known phenomena.
Thus, it is known that for a maximum gain in traveling-wave tubes
with appreciable space charge (large QC), the beam voltage has tobe
higher than the voltage corresponding to equality between beam veloc-
ity and circuit wave velocity. This phenomenon can be interpreted as
follows: The slow space-charge wave carries negative power. In order
to achieve gain we have to couple predominantly to this wave. If the
space charge is large, the phase velocity of the slow wave is appre-
ciably less than the beam velocity. In order to favor coupling to the
slow wave, its phase velocity has to be brought close to synchronism
with the circuit wave. This is done by raising the beam voltage above
the value corresponding to synchronism between the beam velocity and
phase velocity of circuit wave.

The power theorem also can be used to decide whether or not an
electron beam corresponds to a gain mechanism or to attenuation. Ex-
ponential dependence upon distance of a wave can signify gain if, and
only if,

(a) the growth occurs in the direction of the electromagnetic
power flow, and

(b) the small-signal beam power becomes increasingly negative
in the direction of the dc beam velocity.

Condition (a) states that an exponential growth of power corresponds
to gain only when it leads to a spatial rate of increase (rather than
decay) of the power. Condition (b) states the requirement that the
(initially weakly excited) beam must lose kinetic energy imparted to
the beam by the dc power supply (and not by an initial modulation).

To understand the implications of these conditions consider a
simple example where an exponential growth of power does not signify
gain. Consider interaction between the fast wave of a longitudinal

-
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beam in synchronism with a wave of a backward-wave structure. The
coupling to any other wave is disregarded. The fast wave carries
positive kinetic power, the wave on the backward-wave circuit has
negative electromagnetic power corresponding to an electromagnetic
powerflowfrom collector endtogun end. (See Fig. 10.) From Pierce's
coupling-of-modes formalism we conclude that the coupling leads to a
pair of waves, one growing in the direction of the dc beam velocity,
the other growing in the opposite direction. It is this latter wave that
has growth inthe direction of the electromagnetic power flow and thus
meets condition (a). Yet, it cannot lead to gain. The wave has an
electromagnetic and a kinetic power flow as shown in Fig. 11, the two

II

POWER

t

CIRCUIT POWER

GUN END COLLECTOR END

Fig.ll The power flow in waves resulting from coupling between
backward-circuit wave and fast beam wave.

power flows adding up to zero by the requirement of conservation of
the generalized power. From the figure it is clear that the beam is
losing positive kinetic power rather than acquiring negative kinetic
power. In the light of our interpretation of the power theorem, negative
kinetic power increasing in the direction of the dc beam velocity cor-
responds to a slow-down of an initially weakly excited beam; decreas-
ing positive kinetic power corresponds to extraction of power supplied
to the beam by an initial rf excitation. Only the former mechanism
corresponds to gain.

VI. The Variational Principle

In the preceding discussion, the small-signal kinetic power the-
orem was derived and interpreted, and the various waves that can
exist along an electron beam were studied. The coupling-of-modes

---- �� -�--_I�
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formalism discussed in Section IV combined the two concepts and,with
the aid of an example, arrived at an intuitively appealing set of equa-
tions for the traveling-wave tube with large QC. This section is de-
voted to the derivation of a variational principle that will put the cou-
pling-of-modes formalism on a firmer basis. It will also make pos-
sible the analysis of systems with an interaction between beam and
circuit stronger than that consistent with the coupling-of-modes for-
malism of Section IV.

We shall give a brief derivation of the variational principle for
curl-free electron beams in uniform, lossless, microwave structures.
The variational principle for longitudinal beams is little different from
that for curl-free beams.

Suppose we are interested in a solution with a z-dependence of
the form exp(-y z) propagating along a uniform electron beam in a
uniform lossless slow-wave structure. As an example, consider a
cylindrical electron beam inside a cylindrical sheet helix. The entire
system is surrounded by a conducting envelope. (See Fig. 12. ) We

CONDUCTING 
ENVELOPE

____ _ ____ ____ _____ ____ CYLINDRICALCYLINDRICAL
BRILLOUIN

HELIX BEAM

L ….

Fig.12 Section of sheet-helix traveling-wave tube with
cylindrical Brillouin beam.

shall later make use of the concepts "beam system", "slow-wave
system", and "composite system". In our example, the "beam sys-
tem " is the beam inside the conducting envelope with the helix removed,
and the "slow-wave system" refers to the helix inside the same en-
velope with the beam removed. The "composite system" is the sys-
tem consisting of helix, beam, and envelope. Denote the transverse
dependence of the electric field of the solution in the composite sys-
tem, with the z-dependence exp(-yz) by E+(x, y), that of the mag-
netic field by H+(x, y), that of the current density by J+(x, y), and
that of the Eulerian velocity by u+(x, y). Introduction of the expres-
sions

E(x, y, z) = e E+, etc.

�.1_ _�
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into Maxwell's equations (17) and (16), and into Eqs. (10) and (11) re-
sults in

V T + j H Y X E+ (67)
T + o + z +

X jWE E -J j i X H (68)
T + 0 + + z + (68)

e -
jWU + V T (o . u+)- m E+ = O + (69)

+ To0 + m o +

jw + u - jp u+ Yu i J (70)

where

V = ia + i (71)
T x x y ay

Now, the following statement can be proved1 6 for any uniform system
that is lossless in the general sense that it fulfills a conservationthe-
orem of the form of Eq. (18);

A solution of the system of the form exp(--yz) implies the ex-
istence of a solution exp(y * z).

If y is pure imaginary, this statement is trivial. If is com-
plex, however, this means that the existence of an exponentially
growing wave implies the existence of an exponentially decaying wave
of equal and opposite decrement.

Denote the transverse dependences of the solution with the de-
pendence exp(+ *z) by E_(x,y), H_(x,y), J-(x,y), and u_(x,y).
These vector fields fulfill Eqs. (67) to (70) with replaced by -*.
By dot-multiplying Eq. (67) by H*, Eq. (68) by -E , Eq. (69) by
J , and Eq. (70) by (m/e)u* , and integrating over the cross sec-
tion, we obtain, upon adding and solving for y ,

Y={- f1x ++JoH+) H -(VTXH+

m - m- -
-jLOE E -J )E +(jw- u +V - u *u

0o + + - e + Te o +

- E) J + (jwJ++ u VT +

+·T -jwp u ) u 1da - XH0 + e 4 - j

+E X H + u u J + - (u da (72)
- + e - 0+ e + o)J

This formidable expression is simplified considerably when applied to
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the coupling-of-modes formalism. For the moment let us note its
variational character. It can be shown, with the aid of Eqs. (67)
through (70) and the corresponding equations for the (-) solution, that
(72) is a variational expression, provided the electric and magnetic
fields inside the system are continuous. Thus, suppose that we in-
troduce into Eq. (72) expressions for the quantities E+, H+, J+, and
u+, the quantities E+, H+, J, and ±, which are not solutions
of Eqs. (67) to (70), but deviate from the correct solutions as follows

E = E + 6E
+ + +

H+ = H + 6H
+ + +

_1 = j + 6j (73)

+ + +

u = u + u
+ +

If the deviations 6E+ and 6H+ are continuous functions of x and y,
if the tangential component of 6E± vanishes on conductors, and if
6J+ and 6u± vanish outside the beam boundary, the error in y ob-
tained from Eq. (72) is of higher order than first in these deviations.
Thus, Eq. (72) is indeed a variational expression.

If the H-fields in the region of interest experience a discontin-
uity, such as along a sheet helix, the numerator of the variational ex-
pression (72) has to be supplemented by the term - E+- K * ds,
where K_ is the surface current pertaining to the solution exp(y*z)
and causing the discontinuity. The integral is carried over the helix
contour in the x-y plane. Note, that for the correct solution this
term is zero. The stipulation, then, is that the trial solutions used
in (72) fulfill electric boundary conditions on the conducting envelope
(not necessarily on the sheet helix), that the tangential E-field of the
trial solution be continuous across the sheet helix, and that the H-
field tangential to the sheet helix experience only a discontinuity in
its component normal to the wires of the sheet. A similar term in
the numerator can serve to extend the validity of the variational prin-
ciple to trial solutions that do not fulfill the boundary conditions on
the conducting envelope. Then K in the integral A E+ K* ds
gives the current of the (-) solution in the envelope; the contour inte-
gral is carried over the contour of the envelope.

The corresponding variational expression for the longitudinal
beam is derived in a similar manner. We set up the equations forthe
(+) solution and the (-) solution, i. e., waves with the z-dependences
exp(-yz) and exp(-y*z), respectively. Those for the (+) solution are,
for example

VT X E+ + jio H+ = yi X E+ (74)

�� �_ __
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VT X H+ jW E - J = H+ (75)
T + 0 + z +

j- V- E = -yV (76)
u + + +

0 O

~j-VJ Vi =-YJ77)
u + 2V u 77)

Here J+ is a z-directed vector. By proper dot-multiplication of Eqs.
(74) to (77) by the corresponding quantities of the (-) solution we ob-
tain the variational principle

{1 4f[ x E+ + jwpoH+) H - T +

jWE E+-J+) E + (j- V -E+) J
- u + z+ z-

(.0 0'ol (.0 ~ (78)+(j JW - 0 V)V da+ u Jz+ j 2V u V+) V
o o o

+X H +E X H +V J + V+J ·ida

Again, the numerator has to be supplemented by - E+, K_ ds if
a sheet helix is considered which causes discontinuities of the fields,
or if the trial solutions do not satisfy electric boundary conditions on
the envelope.

VII. Coupling-of-Modes Theory as Derived from the
Variational Principle

We shall now show how the coupling-of-modes theory, and with
it the existing theories of the traveling-wave tube and magnetron am-
plifier, can be derived from the variational principle.

A variational principle is useful in obtaining values for propa-
gation constants if we have good approximate solutions for the trans-
verse dependence of the fields inside the system. Consider a thin
longitudinal beam in a sheet helix to which we apply the variational
principle (78) supplemented with the term - f E+ K* ds in the
numerator. If the phase velocity of the slow circuit wave with the
propagation constant 1 is close to one of the beam waves, say the
slow beam wave with the propagation constant 2, then reasonable
trial functions for the (+) are

___1 I _II ------· li-�----L� _X��FI_-IIIII-_LIIXIII^·�--Y··IIIIP�-�I _~~I __ ·Is~~~~~~~----·~~~~~L II_-r y^^-·L-·IIIIIIIICI-·- III~~~~~~~~~~~~~0H -- 
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E=a E +a E+ 1 1 2 2

H+ = a H1 + a2 H2

J = a J
+ 2 2

+ = a 2 u2u+ 22

(79)

where the subscript 1 indicates the transverse dependences of the
circuit fields, and the subscript 2 indicates the transverse depend-
ences of the beam fields, current density, and velocity. These are
all normalized in a manner that will be discussed shortly. The a' s
are adjustable parameters. For the trial functions for the (-) solu-
tion it is reasonable to use another linear combination of fields 1 and
2:

E = bl E1 + b2 E2

H_= blH1+b2H 2

TJ =b2 J2

u = b2 22 2 

l. >(80)

The transverse dependences of waves 1 and 2 satisfy Eqs. (74) to
(77) with y replaced by 1 (= jl 1 ) and 72(= jP2 ), respectively.
Using this fact and introducing the trial functions (79) and (80) into
the variational principle (78) we obtain

b H1 1 a l + bl a + b2 a + H b1 122 2 21_1 2 H22b 2
'7' Y ~ += a+*(81)
b P +b2 P 2 a

blllal + b 1 12 a 2 21 la +b 22

where

P =
1 Re E XH da

11 2 Re 1 1 z

1 ~
P f ( xT1 +E x H i da P_ (82)

12 4 (E 2 2 X 1 ) iz da= P1 (82)

- -4 -*
22 2 Re (E2 X H2 + V2J2 )i da

These are the self- and cross-powers of waves 1 and 2. For the H's
we have

_���� �I�_�__
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11 1 11

H y - ~ cE K ds
12 2 12 4 2 1

~~1 (83)
H Y P r E J da

21 1 21 4 1 2

H =yP
22 2 22

By integration by parts of the integral expression for H21, we can
further show that

H21 = - H12 (84)
**

The variational expression (81) contains al, a 2 , b1 , and b2 as ad-
justable parameters. Since y is an extremum for the correct solu-
tion, we obtain the best value for y if we find the extremum for y
as given by (81). Differentiation with regard to b and b leads to
the two equations,

'Pla 1 + P1 12a2 11 Ha + H 1 2 a 2

(85)

P21l + YP22a = H21a + H22a 2

The solution for y from the homogeneous equations (85) are obtained
from the determinantal equation

P11 -H11 YP12 -12

= 0 (86)

P21 -H21 P22- H22

We first note that both y and -y* are solutions of Eq. (86). This can
be easily demonstrated by taking the complex conjugate of the entire
determinant and taking into account the specific expressions (82), (83),
and (84) for the P' s and H' s. This fact is of importance when study-
ing the equations that result when the variational expression (81) is
differentiated with regard to al and a 2 . Then equations result that
are of the form of Eqs. (85) but now contain the b*' s instead of the
a' s. We can easily show that these equations yield solutions identi-
cal with those of Eq. (85), using the fact that solutions y, and -y*
always must appear in pairs. Thus, we rnay concentrate entirely on
the solutions of Eqs. (85).

Equations (85) can be simplified if the coupling between the beam
and circuit is weak. In this case, the propagation constant y deviates
from 71 or 2 only by a term of the order of the coupling parameter
I H1 2 in the region of y values within which appreciable interaction
occurs. Neglecting terms involving products of P 1 2 and H1 2 , we

__� ·��_�UCI_(�I__ _I �1_1__ __�1_1_1
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1 - ^1 *
Y P -H1 -Y2 P H " 1 %.K 1-ds12 - 12 2 12 - 12 : 2 1

(87)

(88)7 P - H YP - H 1 f E J d a

2PZ1 21 1 21 21 4 2

Using these expressions in Eq. (85) we obtain

1 - -
7Pllal =

7 1Pllal 4 E 2 ' K1 ds a 2

(89)
1 -*

7P a = YP a - ' J da a
22 2 2 22 2 4 J1 1 

By proper normalization we can adjust the self-power of the slow
beam wave, P 22' to -1. Correspondingly, we can adjust the self-
power of the circuit wave to the value of ± 1, where the lower sign
pertains to a backward wave circuit. We obtain for the preceding
equations

- 1
ya = ya +-

1al 1 al 4

ya 2 = 72 a27= 2a2 +-4

f E K ds a
2 1 2

+ E1 *J2 ds aI

(90)

If we note that multiplication by -y corresponds to differentiation
with respect to z we have reduced Eqs. (90) to the coupling Eqs. (63).
The coupling coefficient c2 1 , Eq. (66), checks with that of the second
of Eqs. (90). Relation (64) is not fulfilled in an obvious way. We may
show however that in the case of weak coupling this relation is indeed
satisfied; that is, we have

4 E ' K ds - - E i = 
4 2 Indeed,1 4from Eqs. (84)2 4

Indeed, from Eqs. (84) and (83) we have

1
12 : 2 12 4

f E 2 K ds
2 1

* *P 1 -*
21 = -1P + - E1 ' J da

E 21 s : (. -=da+(+
~4 2 4 + 71 2 1 2)P12

But y1 and 2 are imaginary and can
order of the coupling coefficient H 12 |
action occurs. Hence, the last term in
ligible.

differ only by a term of the
in the range in which inter-

the preceding equation is neg-
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S E ' J2 da (91)

or
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Thus, we have shown that Eq. (91) is satisfied within our degree
of approximation. Accordingly, we have proved that Pierce' s cou-
pling-of-modes formalism is a consequence of a variational principle
into which we have introduced a trial solution that consists of a super-
position of the beam fields and the slow-wave fields of the circuit wave.
Pierce' s formalism implies an additional approximation that neglects
all terms of second order in the coupling coefficients. Equation (85)
obtained from the variational principle is thus applicable to coupling
stronger than the coupling that is permitted in the coupling-of-modes
theory.

Next, let us consider the application of the variational principle

when interaction between more than two waves is of importance. For
this purpose we shall consider a curl-free beam (e. g., a solid cylin-
drical Brillouin beam, or a strip beam in crossed electric and mag-
netic fields) and shall use the corresponding variational principle (72).
If the phase velocity of the slow circuit wave is close to the phase ve-
locities of a group of beam waves, say (n-l) such waves, then it is

reasonable to suppose that the transverse dependences of the fields,

beam currents, and so forth, are well represented by a linear super-
position of the transverse dependences of the slow wave of the "slow-

wave system" and the (n-l) waves of the "beam system". Denote the
fields of the circuit wave by the subscript 1, the beam waves by the
subscripts 2 to n. Suppose that all beam waves have pure imaginary
propagation constants except the last two, which may be a pair of
growing and decaying diocotron waves. We have

n

Z E a . (93)
i= 1

The trial solution for the H-field is

n

H+ E a. Hi. (94)
i=l

For the current, it is
n

J a. J. (95)

i=2

and for the velocity, it is
n

+ Z a. u (96)
i=2 

The (-) trial functions are chosen analogously with coefficients b to
bn. These trial fields are then introduced into Eq. (72). The result
is best written in matrix form. We define
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al

a2

a
n

b
1

b
n

(97)

Further, we denote by a dagger ( ) the operation of taking the com-
plex conjugate transpose of a matrix. We then obtain from Eq. (72):

bt Ha

b Pa
(98)

The matrices H and P are obtained from an evaluation of the vari-
ous integral expressions in the numerator and denominator of Eq.(72).
The element Pij of P is the cross-power between the ith and jth
wave. Since power orthogonality 2 exists between any two unperturbed
beam waves (with the exception of the finite cross-power between the
two diocotron waves), we have Pij
exception of Pn, n-1 and Pn 1 n'
We further note that the self-power
zero. Thus, the P-matrix has the

P11 P12 P13

P21 P22 

P31 0 P33

0 0

P
nl

0 0

= 0 for i 1, j 1, with the
for which Pn, n-1 Pn-n 0.
of the diocotron waves is equalto

simple form

* . * Pl(n-1)

. . . . 0

. . . . 0

P
In

0

0

P(n-l)n

n(n-1)
0

Further, we can easily show that

P = P
h .

(99)

(100)

In the H-matrix many of its elements are equal to zero because of
the power orthogonality. Defining the matrix of propagation constants

diag ( 1 ' 2 '* * 'n-1' Yn(

_ __ ��_� _ ��
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where

T - -1 with Re(T) 0n n-1 n

we may write H conveniently in the form

H=P r + c
where

1
C--

4

0 fE2 -K ds

fE 1 J2 da

fEl'J 3 da

fE 1 'Jn 1 lda

fE'Jn da

0

fE 2 K1 ds .... f E K ds

0

0

0

0

0

0

0

0

0

0 0

fE.-K1 ds

0

0

0

0
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(102)

(103)

And by integration by parts of the off-diagonal elements of H, we can
show that H j = - Hjl. Further, since the diagonal elements of H
are all pure imaginary, we can summarize these relations as

H= -Ht (104)

Differentiating the variational expression (98) with regard to the ele-
ments of b, we get the coupling-of-modes equation

yPa = Ha

Using Eq. (102), we can write Eq. (105) in an alternate form,

a = r a + P C a

The values of are given by the determinantal equation

det (P - H) = 0

(105)

(106)

(107)

Taking the complex conjugate of the determinantal equation and using
Eqs. (100) and (104) we can prove that -y is a solution of (107) if y
is a solution.

det (y P - H ) = det (a P + H) = 0

Again, as in the case of the two waves, we can show that differentia-
tion of Eq. (98) by the elements of a leads to equations for the b i
identical with those of Eq. (105), except that y is replaced by -7* .
Since we have just demonstrated that these y solutions always appear

-_ 11 1_ 1__1_·I 1 - I ·pl�-- 1I�I�IIII IIC--·�--P-·I�·-·--(-^�-CI·�-·--L·�·--*� --_II-�··*(�--LILLI_1II�CI·
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in pairs, we see that the equation obtained by differentiation of (98)
with regard to a is identical with Eq. (105). Finally, for weak cou-
pling, when products of the first-order coupling terms in the matrix
p-1 C can be neglected, we can replace P, after proper normaliza-
tion, by

+1 0 0 .. 0 0

0 +1 0 0 0

0 0 ±1 0 0

0 0 0 0 1

0 0 0 1 0

(108)

The signs in P have to be chosen to correspond to the sign of the
power flow pertaining to a particular wave. For the coupling equa-
tion (106) using the fact that P of Eq. (108) satisfies the condition
P = p- 1 , we obtain

ya = a + PCa (109)

which is much simpler than (106) because of the simple character of
, C , and P (of Eq. (108)). Using Eqs. (101), (102), (104), and

the form of the P-matrix, Eq. (108), we can also show that

C + C = 0 (110)

This completes the general discussion of the variational princi-
ple as applied to obtaining a coupling-of-modes formalism. We have
already given an illustration of this formalism in the two-wave ana-
lysis for the longitudinal beam traveling-wave tube. The preceding
discussion was devoted to the curl-free beam. It is therefore worth
while to discuss what differences (if any) there are between the cy-
lindrical Brillouin beam and the longitudinal-beam traveling-wave
tube.

Two-Wave Analysis of a Traveling-Wave Tube
with Cylindrical Brillouin Beam

If we compare Eqs. (90) with the coupling Eqs. (109) when applied
to a case of two waves with P = 1, P 2 2 - 1, and C given by
the 2 X 2 matrix in the upper left-hand corner of (103), we find that
the equations check in every respect. We further note the complete
correspondence between the beam equations (38) and (39) for a thin
longitudinal beam and (46) and (47) for a thin Brillouin beam. We
thus conclude that Eq. (66) for c 2 1 holds for the thin Brillouin beam
as well.

It is not difficult to extend the present formalism to a thick
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cylindrical Brillouin beam.

Magnetron Amplifier

We shall now briefly outline the application of the variational

principle to the problem of finding the determinantal equation for the

forward-wave magnetron amplifier.

We shall start with the coupling-of-modes equation (109) anduse

a trial solution that consists of a circuit wave and of the two diocotron

waves of the thin beam. The magnetron sole is assumed to be far

removed (see Fig. 13). Further, weak coupling between circuit and

////////////// //////////
SLOW -WAVE STRUCTURE

Y Y Uo f BEAM _. +

i) B Z

SOLE

Fig.13 Schematic of magnetron amplifier.

beam will be assumed (i. e., a relatively large distance between cir-

cuit and beam) so that we can use as trial solutions the expressions

for the diocotron waves in free space developed in Section III C. We

shall consider a tube of width in the x-direction. Following

Pierce, we again define a circuit impedance by

I E1 z 12

K (111)2
2j 2 P

e

where E1z is the circuit-wave field along the z-axis at the position

of the beam. The y-component of the circuit field for a forward cir-

cuit wave is related to the z-component by

E1ly = ja Elz (112)

If the sole is far removed from the circuit, as assumed here, a = 1.

The coupling coefficient C2 1 is (see Eq. (103))

1 -

C21 = 4 E J 2 da (113)

where J 2 is the current in the growing diocotron wave. We have, in

general,

--·- - -------- �----- � --�-�---�111-
·.. ...... 
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C 1 E J 2da + f E J d l (114)
2 1 4 Elz 2 z da+fEly 2 y (114)

J2z includes the surface current. If the beam is thin, an average
displacement y of the beam* produces a surface current yu o P on
top of the beam, -yu o p o on the bottom of the beam. If the field E 1 z
varies through the beam of thickness 0 , the surface current gives a
finite contribution to the first integral in (114) which is

7 1 lz aElz
-4 YU P o0 = -4 Yu (115)

The contribution of the volume current to f ElzJ2 z da is obtained by
assuming Elz to be constant through the beam. A similar assump-
tion can be made concerning Ely and J2y = Powy2. We thus obtain
for C 2 1

C = E i +y u C + E a 1 w (116)
21 4 Llzz2 +2 2 y o o y2 

with i z = Jz da. This expression can be simplified by noting that
in a slow wave the curl of E1 is zero. We thus have

aE 1
z

'YZ a -Y1 z -%1z

e - (E e -El y e (117)
ay ly 1 ly

The transverse velocity is

Wy2 = (jW - U ) 2 (118)

and y is close to y1. Introducing (112), (117), and (118) (with a= 1)
in Eq. (116), we obtain

1 E +j i
21 4 lz z2 2 

where (see Eq. (55)) iy2 = j o Y2 . Further, since for the growing
diocotron wave

iy2 = + iz2 (56)
we have

1C -E IL 1+j (119)
21 4 lz z2 (119)

Now, let us so normalize E1 z that the circuit power associated with

*We shall omit the subscript 1 indicating small-signal amplitude. A subscript 1
now indicates a quantity pertaining to the circuit wave.
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it is unity. We thus have from Eq. (111)

E = 2K (120)

Further, computing the cross-power term associated with the wave
amplitude a 2 a 3 and a3 a2 with the aid of Eq. (55) we obtain the fol-
lowing values for the elements P 2 3 and P3 2 of P:

1 m * *

32 4 e o c 2z3 3 z2

1 ~2V cW~~ *(121)
1 2o c . .

+4 i (iY2iZ3 iy3 2)

1 L
2Vo * *

P -j (i i(122)23 4 I tw y3z2 y2iz3

We successfully normalize P32 = P23 = 1 if we take into account
Eqs. (56) and set

i3 = + ji 2 (123)

and

i 2 i(124)
z2 2V w

o c

We thus obtain for the coupling coefficient (119)

C - e - K (l+j)=-- D (1 + j) (125)
21 2 2V t 2

o c

in the notation of Ref. 11. The coupling coefficient C3 1 follows from
its definition with the aid of (123), (124), and the fact that for the de-
caying diocotron wave, iy 3 = - iz2 .

1 *e(
C 3 1 - E 3 [1 - j = + e Dj (1 - j) (126)3 1 4 ziz 3 -2

With the following definitions (compare Eqs. (50) through (52)):

-Y = -e (1 + j6D)

- 1= -je (1 + bD) (127)

- 2 = -jIe (1 + jDS)

- = -jie (1 - jDS)
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and noting that according to Eq. (110), C2 1 = - C12 , C3 1 = - C 1 3 ,
we obtain from Eq. (109) the determinantal equation

+ (6 + jb) +1 (1j) + + j)
2 2

+ (1-j) +(a-S) 0

- (1 + j) 0 +(6 + S)
2

= 0 (128)

or

(6 + jb) (62 - S2) 6

This equation checks with Eq. (25) of Ref. 11 applied to a forward wave,
with g = 0. But, the parameter g should be set equal to zero any-
way, when considering a beam that is far from the sole and circuit as
assumed here in order to be consistent with the approximation a 1.

Conclusion

Pierce 's coupling-of- modes description of distributed amplifiers

is, without doubt, very appealing. This description reduces the so-
lution of a composite system to a perturbation of the simpler subsys-
tems, for which solutions are more easily obtained. It uses the con-
cept of power that is basic to an understanding of the interaction be-
tween a beam and a circuit. The coupling of modes theory has found
limited application since no method had been given for the evaluation
of the coupling coefficients, in particular in cases of fairly strong
coupling. The variational principle discussed here removes this dif-
ficulty. It leads to coupling equations, which, in the case of weak
coupling, yield the results obtained by an intuitive methodusingpower
considerations. The coupled-wave equations that are obtained from
the variational principle are the result of an optimization of the propagation
constant of the solution. Thus, the coupled-wave equations resulting

from the variational principle give the best value for the gain of the
tube that can be obtained from a knowledge of the unperturbed waves
along the component systems (beam and microwave structure). Final-
ly, a variational principle for any physical quantity permits us to ob-
tain results that are closer and closer to the true value of the quantity
as more and more adjustable parameters are introduced. It thus
allows the use of any trial solution (not necessarily a superposition
of the unperturbed waves) with a sufficient number of adjustable pa-
rameters.

___I _ I _I __I� �__�_ I____ �I_
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