
Hillslope-scale Soil Moisture Estimation with a

Physically-based Ecohydrology Model and L-band

Microwave Remote Sensing Observations from Space
by MASSACHUSETTS INST E

Alejandro Nicolas Flores OF TECNOOGY

M.S. Civil Engineering, Colorado State University (2003) MAR 2 6 2009
B.S. Civil Engineering, Colorado State University (2001)

Submitted to the Department of Civil and Environmental Engineerin LIBRARIES

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
at the

Massachusetts Institute of Technology
February 2009

@2008 Massachusetts Institute of Technology. All rights reserved.

J / ;

Author .........

Certified by ....

...................... ... ..'of * " V ..... ....
Department of Civil a E ental Engineering

ceber,,24, 2008

( Rafael Luis Bras

Professor of Civil an'dEnvironmental Engineering
Dean of the Henry Samueli School of Engineering

University of California, Irvine

f1
Thesis Supervisor

Certified by ...........................
Dara Entekhabi

Professor of Civil and Environmental Engineering
Massachuserttanstitute of Te5 .,hplgy

/ h s rv!i *sor,
Accepted by......... ........

Daniele Veneziano
Chairman, Departmental Committee for Graduate Students

ARCHIVES





Hillslope-scale Soil Moisture Estimation with a Physically-based

Ecohydrology Model and L-band Microwave Remote Sensing

Observations from Space

by

Alejandro Nicolas Flores

Submitted to the Department of Civil and Environmental Engineering
on October 24, 2008, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in the Field of Hydrology

Abstract

Soil moisture is a critical hydrosphere state variable that links the global water,
energy, and carbon cycles. Knowledge of soil moisture at scales of individual hill-

slopes (10's to 100's of meters) is critical to advancing applications such as landslide
prediction, rainfall-runoff modeling, and wildland fire fuel load assessment. This
thesis develops a data assimilation framework that employs the ensemble Kalman

Filter (EnKF) to estimate the spatial distribution of soil moisture at hillslope scales

by combining uncertain model estimates with noisy active and passive L-band mi-

crowave observations. Uncertainty in the modeled soil moisture state is estimated

through Monte Carlo simulations with an existing spatially distributed ecohydrol-

ogy model. Application of the EnKF to estimate hillslope-scale soil moisture in a

watershed critically depends on: (1) identification of factors contributing to uncer-
tainty in soil moisture, (2) adequate representation of the sources of uncertainty in

soil moisture, and (3) formulation of an observing system to estimate the geophys-
ically observable quantities based on the modeled soil moisture.

Uncertainty in the modeled soil moisture distribution arises principally from

uncertainty in the hydrometeorological forcings and imperfect knowledge of the

soil parameters required as input to the model. Three stochastic models are used
in combination to simulate uncertain hourly hydrometeorological forcings for the

model. Soil parameter sets are generated using a stochastic approach that samples
low probability but potentially high consequence parameter values and preserves
correlation among the parameters. The observing system recognizes the role of

the model in organizing the factors effecting emission and reflection of L-band mi-
crowave energy and emphasizes the role of topography in determining the satellite
viewing geometry at hillslope scales.

Experiments in which true soil moisture conditions were simulated by the model



and used to produce synthetic observations at spatial scales significantly coarser
than the model resolution reveal that sequential assimilation of observations im-
proves the hillslope-scale near-surface moisture estimate. Results suggest that the
data assimilation framework is an effective means of disaggregating coarse-scale ob-
servations according to the model physics represented by the ecohydrology model.
The thesis concludes with a discussion of contributions, implications, and future
directions of this work.
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Thesis Supervisor: Dara Entekhabi
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Lyrics to "Throwing Stones"
Performed by The Grateful Dead
Words by John Perry Barlow
Music by Bob Weir

Picture a bright blue ball, just spinning,
spinnin free,
Dizzy with eternity.
Paint it with a skin of sky,
Brush in some clouds and sea,
Call it home for you and me.

A peaceful place or so it looks from space,
A closer look reveals the human race. Full
of hope, full of grace
Is the human face,
But afraid we may lay our home to waste.

There's a fear down here we can't forget.
Hasn't got a name just yet.
Always awake, always around,
Singing ashes, ashes, all fall down.
Ashes, ashes, all fall down.

Now watch as the ball revolves
And the nighttime falls.
Again the hunt begins,
Again the bloodwind calls.
By and by, the morning sun will rise,
But the darkness never goes
From some men's eyes.

It strolls the sidewalks
and it rolls the streets,
Staking turf, dividing up meat.
Nightmare spook, piece of heat,
It's you and me.
You and me.

Click flash blade in ghetto night,
Rudies looking for a fight.
Rat cat alley, roll them bones.
Need that cash to feed that jones.
And the politicians throwin' stones,
Singing ashes, ashes, all fall down.

Ashes, ashes, allfall down.

Commissars and pin-stripe bosses
Roll the dice.
Any way they fall,
Guess who gets to pay the price.
Money green or proletarian gray,
Selling guns 'stead of food today.

So the kids they dance
And shake their bones,
And the politicians throwin' stones,
Singing ashes, ashes, all fall down.
Ashes, ashes, all fall down.

Heartless powers try to tell us
What to think.
If the spirit's sleeping,
Then the flesh is ink
History's page will thus be carved in stone.
And we are here, and we are on our own
On our own.
On our own.
On our own.

Instrumental

If the game is lost,
Then we're all the same.
No one left to place or take the blame.
We can leave this place and empty stone
Or that shinin' ball we used to call our
home.

So the kids they dance
And shake their bones,
And the politicians throwin' stones,
Singing ashes, ashes, all fall down.
Ashes, ashes, all fall down.



Shipping powders back and forth
Singing black goes south and white comes
north.
In a whole world full of petty wars
Singing I got mine and you got yours.
And the current fashion sets the pace,
Lose your step, fall out of grace.
And the radical, he rant and rage,
Singing someone's got to turn the page.
And the rich man in his summer home,
Singing just leave well enough alone.
But his pants are down, his cover's blown...

And the politicians throwin' stones,
So the kids they dance
And shake their bones,
And it's all too clear we're on our own.
Singing ashes, ashes, all fall down.
Ashes, ashes, all fall down.

Picture a bright blue ball,
Just spinnin', spinnin, free.
Dizzy with the possibilities.
Ashes, ashes, all fall down.
Ashes, ashes, all fall down.
Ashes, ashes, all fall down.
Ashes, ashes, all fall down.
Ashes, ashes, all fall down.
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CHAPTER 1

INTRODUCTION

This thesis addresses the estimation of soil moisture using both observations and

models. Prior to delving into the methodologies used in this thesis, the technical

aspects of implementing those methods, and presentation of results, it is critical

to make the case for the importance of this work. This chapter introduces the im-

portance of soil moisture in the global hydrologic cycle, including a survey of the

magnitude of the stores of water and fluxes that make up the water cycle. After this

survey, which is designed to highlight the role of soil moisture as a dynamic inter-

face for water vapor exchange between the land and atmosphere, the importance

of knowledge at hillslope scales (10's to 100's of meters) is stressed. The chapter

concludes with an outline of the remainder of the thesis.

1.1 Soil moisture and the global hydrologic cycle

Water is the chemical compound most responsible for the presence of life on

planet Earth. For example, water is central to plant photosynthesis and the citric

acid cycle, two chemical reactions that together are responsible for the conversion

of light into carbohydrate and then from carbohydrate to metabolic energy. Water is

also a critical component in moderating Earth's weather and climate. Atmospheric

water vapor is one of the greenhouse gases (along with carbon dioxide, methane,



hydro-fluorocarbons and a host of other atmospheric gases) that acts to trap in-

frared radiation emitted at the land surface in the atmosphere. This "Greenhouse

Effect," first quantitatively studied by Arrhenius 1896, leads to the ambient tem-

peratures that are higher than those predicted by a simple equilibrium black-body

radiative transfer model. Because the triple point of water is 273.16 K, the moder-

ate temperatures associated with the "Greenhouse Effect" on Earth imply that water

can exist simultaneously in all three phases in the Earth system. Thus, the chemical

composition of the Earth's atmosphere, in the context of the energy output of the

Sun and the distance between the Earth and the Sun are the factors that lead to

a planet in which spatiotemporal thermodynamic gradients can create a dynamic

water cycle 1

Ultimately, incoming solar radiation serves as the fuel that drives the engine of

the global hydrologic cycle (figure 1-1). Solar radiation is supplied at the top of the

atmosphere at a rate of approximately 1350 W/m 2 [Eagleson, 1970]. The Earth's

rotation about its axis and curvature lead to spatiotemporally varying solar input,

leading to a diurnal temperature cycle and latitudinal variation in long-term aver-

aged temperatures. In the atmosphere, differential solar heating induces poleward

transport of heat energy. Because water has a high latent heat of vaporization and

a high specific heat capacity, it plays a critical role in the redistribution of energy

in the atmosphere. Evaporation from ocean and land surfaces dissipate input solar

radiation, while condensation and precipitation release heat energy into the atmo-

sphere (figure 1-1). Associated with this energy transport is the mass transport of

water. From the perspective of the Earth's surface, evaporation removes water from

the ocean and land surface, while precipitation injects water into the ocean and

land systems. At the land-atmosphere interface, incoming solar energy is converted

into sensible, latent, and ground heat. The magnitude of the latent heat flux is lim-

ited by: (1) the availability of liquid water, (2) the availability of energy to vaporize

liquid water; and (3) the existence of a transport mechanism to remove moist air

'Astronomers have defined the so-called Circumstellar Habitable Zone as a region in the space
surrounding stars where, based on the luminosity of the star, orbiting exoplanets could exhibit sur-
face temperatures that would notionally sustain liquid water.
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Figure 1-1: A diagrammatic representation of the hydrologic cycle, including both
fluxes of mass and energy. Taken from a Climate Change Science and Subcommittee
on Global Change Research report 2003.

from the near surface in order to sustain a vapor pressure deficit required to evapo-

rate moisture into the air. Latent heat flux, in turn, serves as a forcing at the bottom

boundary of the atmospheric column that, depending on atmospheric conditions,

can initiate a suite of processes that ultimately lead to rainfall.

Because a supply of liquid water in the form of near-surface soil moisture or

water stored in plants is needed for evaporation, and because latent heat flux can

trigger atmospheric convection, the precipitation and latent heat flux processes are

coupled over land masses. The strength of this coupling varies varies, although

modeling studies suggest that coupling is weakest nearer the ocean and equator

and highest in interior semiarid regions [Koster et al., 2004]. Understanding and



quantifying this non-linear coupling of the land surface with the atmosphere is of

critical importance in understanding the global climate system, particularly when

viewed through the lens of assessing the climate impacts of the accelerating anthro-

pogenic emission of greenhouse gases since the Industrial Revolution.

Soil moisture also imposes a significant mass-balance constraint at the land sur-

face because it controls the partitioning of incoming precipitation into infiltration

and runoff. The nature of the mass and energy coupling between the land surface

and the atmosphere is best illustrated by briefly reviewing the simplified equations

of state for soil moisture. The change in volumetric soil moisture mixture fraction

(0) with time is given by Richards equation [Celia et al., 1990; van Dam and Feddes,

2000],

ao- = D (0) + K (0) -S(z), (1.1)
Ot az 89z

where t is time, z is depth (positive down), D is the diffusivity, K is the hydraulic

conductivity, and S(z) is a sink term that represents plant water uptake. Equation

1.1 specifically highlights the vertical direction (z) because moisture gradients are

generally the sharpest, and moisture fluxes therefore the greatest, in this direction.

Since both D and K depend on the moisture status at time t, equation (1.1) is a

nonlinear partial differential equation for which no generic analytical solution ex-

ists. In general, D and K depend not only on the current moisture, but also on the

time-history of wetting and drying. Furthermore, because 0 is bound to lower and

upper limits, there exist fundamental constraints on how quickly (or slowly) water

can infiltrate into partially-saturated soils. In numerical solutions of equation (1.1)

this hysteresis is often neglected and nonlinear functional relationships between D

and K and 0 assumed (e.g., Broolks and Corey [1964]). Adding to the complexity of

the problem, D and K are anisotropic and vary at significantly small spatial scales

[Vogel and Roth, 2003]. Given initial and boundary conditions, equation (1.1) can

be solved numerically, but the nonlinear nature of the constitutive relationships be-

tween D, K and 0 requires significant attention to the discretization of the area

62



under study and the numerical solution scheme (Celia et al. [1990]; van Dam and

Feddes [2000]). Hydrologic and applied mathematics literature burgeon with stud-

ies dedicated to schemes solving equation (1.1) and its more simplified forms under

a spectrum of different conditions and assumptions. In modeling the spatial distri-

bution of soil moisture, most models impose the following flux boundary conditions

at the surface:

1. Infiltration flux, f is equal to precipitation, P, for 0 < P < fiimit.

2. f is equal to K(O) for P > flimit. The difference P - fiimit becomes the

instantaneous runoff rate R.

3. If P = 0 and sufficient available energy and transport mechanisms are present,

the bare soil evaporation (E) is the minimum of fiimit and the potential evapo-

ration E, that depends on the available energy and the vapor pressure deficit.

The maximum infiltration rate, fuiit is equal to the product of the soil moisture-

dependent hydraulic conductivity (K(O)) and the vertical moisture gradient at the

land-atmosphere interface. Specifically,

90
fumit = K(O)z (1.2)

z=O

Note the latent heat flux associated with the mass transfer of E from the soil to

the atmosphere is simply AE, where A is the latent heat of vaporization of water.

The term S(z) in equation (1.1) suggests an interaction between soil moisture

and vegetation over a range of depth within the soil column, the dynamics of which

can be controlled by biophysical and biochemical properties of the plant itself. Liq-

uid water enters plant root tissue through osmosis, and then is transported in the

xylem tissue to the leaves where it is required for the carboxylation component of

the Calvin Cycle [Taiz and Zeiger, 2002]. The photosynthetic process, in which at-

mospheric carbon dioxide diffuses into stomatal tissues while water vapor diffuses

out, is at the core of soil moisture control by plants, because the water vapor in



plant stomata is ultimately derived from soil water. The photosynthesis process

also underscores the coupling between terrestrial water, energy, and carbon cycles.

Instantaneous plant water demand in plants is set by the the rate at which photo-

synthesis can proceed and depends on a number of variables that include energy

availability, plant stress, and phenology [Kramer, 1983]. However, the supply of

soil moisture ultimately serves as a constraint on the ability of plants to meet those

demands for transpiration. In hydrologic and climate sciences, the dynamics of

vegetation are being treated in increasingly complex ways that capture the growth,

stress, and senescence of vegetation, therefore incorporating feedbacks between

vegetation and soil moisture dynamics.

The above discussion is an introductory depiction of the nonlinear, multidirec-

tional, and conditional nature of soil moisture dynamics and underscores some of

the complications involved in modeling soil moisture. From this discussion we can

conclude that soil moisture is: (1) a critical hydrosphere state variable because it

couples global water, energy and carbon cycles, and (2) difficult to model owing

to the nonlinear nature of the equations governing soil moisture dynamics and the

intrinsic coupling of soil moisture to atmospheric, biochemical, and biophysical pro-

cesses. To motivate understanding about the potential magnitude of soil moisture

dynamics in the global water cycle, what follows is an overview of previous work to

quantify the stores and fluxes that comprise the global water cycle.

1.2 Magnitude of the global hydrologic cycle

This section provides a brief overview of the magnitude of both the storage

terms and fluxes of the global hydrologic cycle. This is designed to motivate the

discussion of soil moisture in the context of the terrestrial hydrologic cycle by pro-

viding some quantitative estimates of the mass and energy fluxes that occur across

the soil-atmosphere interface. A significant body of scientific literature surveys the

terms of the global water cycle, both for purposes of constraining climate and eval-
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Figure 1-2: A diagrammatic representation of the hydrologic cycle together with

estimates of storages and fluxes from Oki and Kanae [2006]. Storage terms are

given in units of 103 kn 3, fluxes in 103 km3/y, and areas in 106 km 2 .

uating global water resources (e.g., see Korzun [1978]; Shiklomanov [1997]; Chen

et al. [1998]; Douville [1998]; Vorosmarty et al. [2000]; Oki [2005]; Dirmeyer et al.

[2006]; Oki and Kanae [2006]). In a recent review paper that addresses potential

future challenges to global water supply, Oki and Kanae [2006] synthesized the

works of Korzun [1978]; Shiklomanov [1997]; Oki [2005]; Dirmeyer et al. [2006]

and provide a useful graphic illustration of the stores and fluxes of the global hy-

drologic that is shown in Figure 1-2. Their survey provides adequate detail for the

purposes of this discussion, and are therefore referred to throughout this section.

The stores are summarized in Table 1.1. Not surprisingly, the world's oceans

account for the vast majority of the water on Earth, comprising more than 96% of

the total. Of the remaining water on Earth, more than 3% is resides in groundwater

aquifers, glaciers and snowpack. Soil moisture, by contrast accounts for about one

one-thousandth of one percent of global water; containing only about 30% more



water than exists in the atmosphere globally at any time (Table 1.1).

Table 1.1: Summary of storage components in the global hydrologic cycle from Oki
and Kanae [2006]

Reservoir
Ocean Storage

Oceans
Water vapor
over ocean

Terrestrial Storage
Glaciers and snow
Groundwater
Permafrost
Lakes
Soil moisture
Wetlands
Water vapor
over land
Rivers
Biological water

Approximate total

Estimated
volume

[103 kmn3]

1,338,000
10

24,064
23,400

300
175
17
17
3

2
1

1,385,989

Percentage
of total

[%]

96.5376
0.0007

1.7362
1.6883
0.0216
0.0126
0.0012
0.0012
0.0002

0.0001
0.0001

100.0000

To understand the magnitude of the fluxes coming into the terrestrial hydro-

logic cycle, the breakdown of global precipitation is shown if Table 1.2. Note that

the precipitation fluxes are expressed both in terms of mass flux into each store,

and as equivalent depth of mean annual precipitation by normalizing the mass flux

by the appropriate area. Annually, some 502 x 103 km of rainfall (roughly I m in

equivalent depth) falls on the surface of the Earth. About one-fifth of the total pre-

cipitation (111.0 x 10a kn 3/y or 829 mm/y) falls over land masses, approximately

10% of it as snow. Given the annual terrestrial precipitation rate and given that

the amount of water vapor stored in the atmosphere over land is approximately

3000 km3, the average residence time for water vapor in the atmosphere over land

is approximately 10 days (the global average residence time is roughly the same,

although both atmospheric water vapor storage over the ocean and ocean precip-

itation are much larger than the corresponding terrestrial terms). This average
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terrestrial atmospheric water vapor residence time underscores the temporally dy-

namic nature of the precipitation process as a forcing to the soil moisture process at

the land-atmosphere interface. The presence of semiarid and arid lands, as well as

tropical and temperate rainforests underscores the significant spatial heterogeneity

in annual rainfall patterns, despite a relatively short residence time for water vapor

in the atmosphere.

Table 1.2: Summary of precipitation fluxes comprising the
from Oki and Kanae [2006]

global hydrologic cycle

Precipitation
flux
Forest precipitation
Grassland precipitation
Cropland precipitation
Lake precipitation
Wetland precipitation
Other terrestrial
precipitation

Area
[106 km2]

40.1
48.9
15.6
2.7
0.2

26.4

Annual rate

[10 3 km3/y]

54.0
31.0
11.6
2.4
0.3

11.7

Annual rate
[mm/y]

1347
634
744
889
1500
443

Total terrestrial 133.9 111.0 829
precipitation

Snow 12.5 93
Rain 98.5 736

Ocean precipitation 376.2 391.0 1039
Global precipitation 510.1 502.0 984

In contrast with terrestrial precipitation, which injects mass to the terrestrial

hydrologic cycle, Table 1.3 provides a breakdown of the global annual evapotran-

spiration process. In a similar fashion to Table 1.2, evapotranspiration fluxes are

expressed both in terms of mass flux out of each store, and as equivalent depth

of mean annual evapotranspiration by normalizing each mass flux by the appro-

priate area. In terms of mass flux, evapotranspiration from forests constitutes the

largest single source of terrestrial evapotranspiration. This is likely no surprise,

owing to the biomass productivity associated with forests in tropical regions of the

globe. Although the contribution of wetlands to global evapotranspiration is small

(it is roughly one-sixth the annual amount of lake evaporation), wetlands exhibit



the highest annual rate of evapotranspiration, which underscores the productiv-

ity of wetlands. If it is assumed that the size of soil moisture storage does not

change substantially over time, and that evapotranspiration in forests, grasslands,

and croplands originates from the soil moisture and biological water stores2, then

the average residence time for moisture in the soil is on the order of 25 days. It is

expected, however, that there is significant variation about this average residence

time throughout the terrestrial ecosystem, owing to variation ecological climatol-

ogy throughout the world. Nevertheless, given the relatively short residence times

of moisture in the atmosphere over land and in soil and biological moisture stores,

it is readily apparent that the soil moisture process is both temporally dynamic and

spatially variable.

The final discussion in this section seeks to place the hydrologic cycle in the con-

text of the energy required to sustain it. As mentioned previously it is the Sun that

drives the water cycle on planet Earth, and the amount of solar energy absorbed by

Earth surfaces annually is 2700 ZJ [Smil, 2003]". To provide a benchmark of the

energy required to vaporize water to sustain global evapotranspiration, each an-

nual volume flux is converted to an annual energy flux by multiplying the mass flux

by the density of water (taken as 1000 kg/m3 ) and its latent heat of vaporization

(taken as 2260 J/kg). Understandably, these energy flux numbers are astronom-

ically high when expressed using Joules per year. Therefore, the energy required

to sustain each evapotranspiration flux in Table 1.3 is expressed as the number

of 100 megaton TNT Tsar Bombas4 that would need to be detonated per day to

achieve the same energy yield. As seen, the energy required for ocean evaporation

is greater than any single terrestrial evapotranspiration source by an order of mag-

nitude. What is clear in Table 1.3 is that the amount of energy required to drive the

2These assumptions are admittedly suspect. For instance: (1) tropical forest wet canopy evap-
oration is likely non-negligible, (2) many tree species have shown an ability to utilize water from
saturated aquifers, and (3) a substantial amount of cropland evapotranspiration likely arises from
evaporation of irrigated water.

3 1 ZJ = 1 x 1021 J
4The largest thermonuclear weapon ever detonated and the most powerful single device created

by humans, the Soviet "Tsar Bomba" had a nominal yield of 100 megatons TNT. Its actual yield was
closer to 50 megatons TNT.
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global hydrologic cycle, even on a daily basis, is thousands of times greater than the

most energetic device every produced by humans. It is interesting to note, however,

that the Intergovernmental Panel on Climate Change's (IPCC) Fourth Assessment

Report (AR4) estimated the anthropogenic component of radiative forcing to be

approximately 1.6 W/m 2 . When integrated over the surface of the Earth and con-

verted this corresponds to approximately an additional 169 Tsar Bomba's worth of

energy per day.

Table 1.3: Summary of evapotranspiration fluxes comprising the global hydrologic
cycle from Oki and Kanae [2006]

Evapotranspiration Annual rate Annual rate Number of
flux [103 km3/y] [mm/y] Tsar Bombas

per day
Forest evapotranspiration 29.0 723 429
Grassland evapotranspiration 21.0 429 311
Cropland evapotranspiration 7.6 487 112
Lake evaporation 1.3 481 19
Wetland evapotranspiration 0.2 1000 3
Other terrestrial 6.4 242 95
precipitation
Total terrestrial 65.5 489 969
evapotranspiration
Ocean evaporation 436.5 1160 6460
Global evapotranspiration 502.0 984 7429

Although it is quite clear that human activity exerts a positive radiative forcing,

it is considerably less clear how that forcing translates to changes in the hydrologic

cycle. In preparation of the IPCC's AR4, Meehl et al. [2007] studied the effects of

anthropogenic activity on hydroclimatology through the use of a suite of climate

models. Figure 1.3 shows the global distribution of changes in the mean annual

precipitation, soil moisture, runoff, and evaporation for the period 2080-2099 rela-

tive to 1980-1999 for the SRES AIB scenario. Stippled areas in these plots indicate

locations around the globe where at least 80% of the models agree in sign. Al-

though the models fairly consistently model the directionality of impacts on global

precipitation and evaporation over ocean areas (figure 1.3(a) and 1.3(d)), over
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Figure 1-3: Figure and caption taken from Meehl et al. [2007]. Multi-model mean

changes in (a) precipitation [mm/day], (b) soil moisture content [%], (c) runoff

[mm/day], and (d) evaporation [mm/day]. To indicate consistency in the sign of

the change, regionds are stippled where at least 80% of the models agree on the

sign of the mean change. Changes are annual means for the SRES AlB scenario for

the period 2080 to 2099 relative to 1980 to 1999. Soil moisture and runoff changes

are shown at land points with valid data from at least 10 models.

land there is considerable disagreement between model projections. In particular,

soil moisture is predicted to modestly decrease over most of the globe, however

there is little consensus in the model predictions about the local direction of change

(figure 1.3(b)). Furthermore, many of the locations where the models do agree

about the direction of soil moisture change are relatively dry locations (e.g., the

Northern Sahara, the Tibetan Plateau, the High Andes, Western Australia, the Kala-

hari Desert, and much of the Middle East). The implications of these results, which

are presented in the AR4, together with the overview of the global hydrologic cycle

presented above, highlights the need for improved predictability of soil moisture.



1.3 Practical necessity of soil moisture knowledge

The above discussion underscores the idea that soil moisture is a temporally

dynamic and spatially heterogeneous hydrosphere state variable, and because soil

moisture affects the partitioning of mass and energy exchange between the land

surface and atmosphere there applications for which knowledge of soil moisture

is critical. As a way of outlining the motivation for advancing the ability to pre-

dict soil moisture at the spatial resolutions addressed in this thesis, this section

briefly discusses five of these applications that would potentially benefit from soil

moisture estimates at the targeted spatial scales. Specifically, this section identifies

and outlines how soil moisture could benefit each of the following applications:

(1) prediction of terrain mobility and maneuverability in military applications, (2)

irrigation scheduling, (3) rainfall-induced landslide susceptibility forecasting, (4)

flood forecasting, and (5) wildland fire fuel load estimation. In discussing each of

these potential applications, specific attention is paid to the scale at which knowl-

edge of soil moisture is required. Prior to discussing each individual application it

is important to highlight the similarities they all share, aside from a requirement of

knowing soil moisture in high spatial resolution. The common threads that these

applications share impact the viewpoint of the thesis work in ways that will become

apparent later on. First, they are all real-time applications. That is, they are all

applications in which some estimate of the spatial distribution of soil moisture is

required now through some time in the near future. Second, these applications all

implicitly involve identification of some kind of risk of occurrence of a potentially

negative consequence (i.e., landslides, floods, and fire), which a knaowledge of soil

moisture may help mitigate against. Evoking the concept of risk in these applica-

tions necessitates a treatment of uncertainty in estimates of the spatial distribution

of soil moisture, which will become a central part of the thesis work. Finally, these

applications all involve discrete events that occur in the Earth system as a conse-

quence of forcings and boundary conditions imposed by climatology, ecology, and

geology. Therefore, changes in the frequency, magnitude, and any relationship be-



tween frequency and magnitude (the regime) of these discrete events is a potential

local expression of global change.

The moisture and energy states and fluxes significantly impact U.S. Army op-

erations. Soil moisture directly impacts the ability to move troops and materiel

over land, as soil wetness impacts the dynamic load-bearing capabilities of natural

soils [Hillel, 1998]. Evaluation of soil strength for Army applications is traditionally

done through a combination of in situ measurements involving, for instance, cone

penetrometers, shear vanes, and other handheld equipment. The trafficability of

the soil is then assessed by comparing the measurements against vehicle-specific

thresholds meant to convey the ease or difficulty of passibility [Shoop, 1993]. Not

only is realtime trafficability assessment of importance to planning and execution

of Army operations, but it is also critical to the sustainable management of mili-

tary lands, as training exercises conducted under conditions that can significantly

degrade soils may have long-lasting and undesirable consequences. Therefore, the

ability to remotely assess trafficability conditions in realtime over large areas in

adequate spatial detail (e.g., 10s to 100s of m) with some combination of models

and observational data is of significant importance to Army operations. Remote

trafficability assessment is a complex logistical issue because it involves the inter-

play of several important factors: (1) the spatial heterogeneity of soils and their

intrinsic and moisture-dependent load-bearing capacities, (2) the spatial variability

of soil moisture and its effect on the load-bearing capabilities of soil, (3) the tim-

ing of and likely weather conditions during the intended operation as it pertains to

the local trafficability conditions as the materiel arrives, (4) the composition of the

tactical formation and the corresponding vehicle-specific sensitivities to soil load-

bearing capacities, and (5) the size and arrangement of the tactical formation and

the degree to which the operation will itself impact local trafficability. It must be

underscored that other secondary and tertiary sensitivities to moisture and energy

conditions exist. For instance, optical-electrical night vision equipment is sensitive

to the physical soil and canopy surface, and sky temperatures, and therefore im-

pacted by soil moisture. Additionally, excessive helicopter rotorwash, which is a



function of soil texture and wetness, can compromise a concealed presence during

the daytime, and endanger personnel during night vision-assisted landings. The

important contribution of this thesis work to this application lies in the critically-

important prediction of soil moisture in sufficiently high detail for Army operations

using data and models.

In many cultivated lands, precipitation must be augmented with irrigation from

either groundwater aquifers or surface waters to realize sufficient crop yields to

achieve some desired utility (e.g., profit maximization). In market-based agricul-

tural settings, the realized profit of a crop at harvest is determined by the market

or negotiated price of the crop, the amount of the crop produced (the yield), and

the integrated costs incurred to produce a particular harvest. The incurred costs

range from taxes paid on the land to operating costs for planting and harvesting

machinery to the unit costs of water. The amount, timing, and duration of irrigated

water that must be applied (the irrigation schedule) is a function of: (1) the type

of crops being grown and their developmental stage as it pertains to crop water

demand, stress, and water use efficiency, (2) the current soil wetness conditions (or

from the agronomist's perspective, the soil moisture deficit), (3) the expected near-

term weather conditions, (4) the structure and terms of the water allotment (i.e.,

the water rights), and (5) any external demands related to, for example, leaching

requirements to prevent soil salinization [Rhenals and Bras, 1981]. Many irrigation

technologies, such as center pivot sprinkler and drip irrigation, allow some de-

gree of control over the plot-scale distribution of applied irrigation water. In areas

where the price of water constitutes a significant portion of growing costs or where

the allotment of water is fixed, scheduling irrigation in a manner that minimizes

water use while negligibly affecting yields can improve profit margins. Irrigation

scheduling can potentially be substantially improved through an enhanced ability

to characterize and predict the spatial distribution of soil moisture, as has been

previously found [Bras and Cordova, 1981; Aboitiz et al., 1986]. The integrated

demand of irrigation water for a growing season within an irrigation district, along

with the structure of the water rights within the district, are of critical importance



to agencies tasked with providing adequate water supply (such as the Army Corps

of Engineers and the Bureau of Reclamation in the U.S.). Management of reser-

voirs, vis-i-vis the timing, duration, and rate of release, is a complex optimization

and control problem that involves not only demands from agriculture, but aiso

potentially power generation, recreation, and increasingly in-stream channel main-

tenance. Although seasonal scale planning of reservoir release schedules is most

sensitive to the current storage, climatology, and forecast climatological anomalies

(e.g., the El Nifio Southern Oscillation), realtime adaptive management of reservoirs

could be improved if farmers and growers had access to accurate knowledge of soil

moisture in sufficiently high detail to allow for more optimal irrigation scheduling

Georgiou et al. [2006]. Hence, this thesis makes a potentially important contri-

bution to agricultural applications such as irrigation scheduling, and indirectly to

realtime adaptive management of surface water impoundments.

Landslides pose a significant hazard to life and property throughout the U.S.

and the world, and are ubiquitous in steep terrain. It has been previously estimated

that casualties and economic losses due to landslides in the U.S. equate annually to

approximately 25-50 deaths and $1-2B [Schuster and Fleming, 1986]. These fig-

ures are likely greater today due to development in landslide-prone areas, changing

climate, and other anthropogenic disturbance. Effects of individual landslides can

be staggering to individual communities as evidenced by several widely reported

events in Guinsaugon, Philippines; La Conchita, California; Cordillera de la Costa,

Venezuela; and Mameyes, Puerto Rico. These risks have motivated significant sci-

entific effort to understand the interplay between geologic, hydrologic, and mete-

orologic processes associated with mass-wasting, and to develop methodologies to

predict and mitigate effects of mass-wasting. Mass-wasting is commonly triggered

by significant rainfall, seismic activity, volcanic eruption, and human disturbance.

Dai et al. [2002] report that extreme rainfall is one of the most common triggering

mechanisms. Hillslope hydrology ultimately modulates rainfall triggering of land-

slides, and is sensitive to: (1) the antecedent conditions, (2) the hydraulic proper-

ties of the soil-bedrock matrix, (3) the near-surface soil and vegetation conditions,



and (4) the spatiotemporal characteristics of rainfall. High-resolution digital ele-

vation models (DEMs) are an enabling factor in the study of mass-wasting from

a physically-based perspective. This is largely because DEMs can serve as the to-

pographic boundary conditions for dynamic hydrology models that resolve the soil

pore pressure distribution, which affects slope stability, at spatial scales of individ-

ual hillslopes and temporal scales coinciding with landslide occurrence. Studies

coupling slope-stability and seepage analysis have identified the promise of DEMs

for mass-wasting assessment [Okimura and Nakagawa, 1988; Montgomery and Di-

etrich, 1994; Casadei et al., 2003]. In realtime forecasting of landslides, the initial

soil moisture state and the associated pore pressure distribution is critical to being

able to issue a reliable forecast about the risks of landsliding in an area given uncer-

tain forecasts of precipitation. It is apparent that reliable prediction of individual

landslide events requires knowledge of soil moisture at spatial scales of individual

hillslopes and with lead times sufficiently long to allow implementation of mitiga-

tion activities.

Flood forecasting has long been a central application in hydrology, and it has

long been recognized that river discharge depends on the nature of the rainfall

falling on a watershed, and on the initial moisture conditions in the watershed.

For instance, even the Soil Conservation Service curve number approach (1968) to

flood runoff prediction allows for variation of curve number (and therefore runoff

potential) on the basis of "antecedent moisture conditions." Channel networks serve

as conduits for the runoff produced from hillslopes in a watershed, aggregating

runoff in a downstream direction through lateral influxes of water from adjoining

hillslopes and (more importantly) through interception of other tributary channels.

The spatial density and connectivity of channel networks accounts for a significant

degree of the variation in discharge regimes between watersheds of similar size,

soil characteristics, and climate. However, variation in the timing and magnitude of

discharge in a particular watershed are a function of variation in the spatiotemporal

distribution of runoff production between those events. As outlined in the above

survey of the Richards equation, runoff production at a point is a nonlinear func-



tion of soil moisture conditions, the local rainfall rate, and the properties of the soil.

Hence, the distribution of runoff production in a watershed depends on the spatial

organization of soil moisture, soil heterogeneity, and rainfall. This is a major lim-

iting factor in application of the unit hydrograph methodology [Sherman, 1932],

which assumes a linear time-invariant system, and a contributing factor in the in-

creasing use of spatially distributed watershed models for flood forecasting [Wig-

mosta et al., 1994; Downer et al., 2002; Ivanov et al., 2004b,a, 2008a,b]. Many con-

temporary physically-based continuous simulation models pose watershed rainfall-

runoff simulation in three distinct phases: (1) simulating the spatial distribution

of runoff production based on local soil moisture, soil character, and rainfall con-

ditions, (2) routing produced runoff as overland flow to channels, and (3) routing

runoff from distal channel reaches to the outlet. This approach links the discharge

hydrograph at the outlet of the watershed with the upstream spatial distribution of

soil moisture dynamics, allowing greater generality in model application. A. conse-

quence of this approach is that flood forecasting requires an accurate initialization

of the spatial distribution of soil moisture. Thus, improved knowledge of the spa-

tial distribution of soil moisture upon initialization of the models will enhance the

ability to predict floods. Related to flood forecasting is the coupling between soil

moisture and atmospheric conditions, vis-a-vis its impact on evapotranspiration. In

a hindcast of a flash flood event in a topographically complex area of the Colorado

Front Range, Chen et al. [2001] found that realistic initialization of soil moisture

patterns significantly improved 24 hr lead time precipitation forecasts.

Wildland fires play a fundamental role in the disturbance regimes of many ter-

restrial ecosystems, yet they pose a significant threat to life in areas where these

ecosystems intersect. Fires are also a significant source of atmospheric CO 2, wa-

ter vapor, and dark particulate matter, which both tend to have a positive impact

on radiative forcings. Furthermore, because wildfires are sensitive to temperature

and precipitation regimes, there is substantial evidence that contemporary climate

change has resulted in increases in the frequency and magnitude of wildland fires

[Running, 2006]. Rough estimates on the amount of biomass consumed through
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burning of biomass in the conterminous United States range from 77-189 Tg an-

nually 4 [Leenhouts, 1998]. A significant amount of scientific work has gone into

understanding the role of wildland fire in terrestrial ecosystems, including the de-

velopment of fuel beds, fire growth and evolution, and impacts of fire as a dis-

turbance mechanism in terrestrial ecosystems. Although mapping of fuel loads for

wildfire is incredibly complex, fuel maps are nevertheless essential tools for risk

management and mitigation in fire-prone ecosystems [Keane et al., 2001]. Fuel

maps are typically produced through some combination of input from field, remote

sensing, and simulation data that attempts to characterize the spatial distribution

of fuel and its associated moisture content, along with observations and forecasts of

meteorological variables that affect fuel moisture (e.g., Keane et al. [2001]; Rollins

et al. [2004]). These maps have relatively high spatial resolutions (e.g., 10's of

meters), however the rate at which maps can be updated is sensitive to the revisit

interval of the satellite data used as input to the models. In many cases, remote

sensing data sources use spectral bands and are therefore associated with longer

revisit intervals, limitations on canopy penetration, and the potential of corruption

of the observation by clouds. Hence, ecosystem simulation models are becoming

increasingly important in the production of fuel maps. These models fuse field

and remote sensing data to estimate parameters that are critical to determining

fire risk, including: net ecosystem productivity, ecosystem respiration, and leaf area

index [Rollins et al., 2004]. Because soil moisture is inextricably these and other

variables required as input to fuel loading models, knowledge of soil moisture at

spatial resolutions of 10's to 100's of meters would presumably enhance the ability

to model fuel loads and moisture, potentially yielding improved understanding of

fire risk.

4This is substantially lower than the preindustrial era because of bias in contemporary fire man-
agement toward suppression.



1.4 Problem definition, objective, and outline of thesis

The above discussion is designed to convey the importance of soil moisture in

the global hydrologic cycle, as well as three practical applications that would ben-

efit from knowledge of soil moisture at spatial resolutions of 10's to 100's. The

overarching theme of this work is to develop a framework for estimating soil mois-

ture at these spatial scales that combines the ability of spatially distributed eco-

hydrology models to represent the physical processes governing the dynamics of

moisture and the capabilities of satellite platforms to provide repeated observa-

tions of variables related to near-surface soil moisture. The approach taken is a

data assimilation framework that recognizes uncertainty in both the observations

and model estimates, producing an estimate of the spatial distribution of soil mois-

ture that weights each source of information according to its degree of certainty.

While process ecohydrology models are capable of simulating soil moisture at the

required spatial scales, they are subject to both structural and input uncertainty. By

contrast, remotely sensed observations from space yield relatively accurate near-

surface moisture information at spatial scales too coarse to capture hillslope-scale

variation. Therefore the assimilation framework seeks to combine these sources of

information in a way that leverages their respective strengths while compensating

for their respective weaknesses. Chapter 2 provides a detailed review of the lit-

erature relating to observation of soil moisture through remote sensing, modeling

soil moisture, and previous works that employ data assimilation to estimate soil

moisture. The uniqueness and potential contributions of this work in the context of

these previous works is also discussed. In chapter 3, the mathematical framework

of the data assimilation methods used in this thesis are developed, and the nec-

essary developments to constrain the observations to the model are otlined The

mathematical framework of an observing syst:em that relates the modeled spaial

distribution of soil moisture to observation of coarse scale observable quantities,

particularly microwave brightness temperature and radar backscatter, is developed

in chapter 4. Chapter 5 outlines a stochastic rainfall generator that can represent



uncertainty in the spatiotemporal distribution of rainfall. Development of a Latin

Hypercube-based technique to represent uncertainty in the soil hydraulic and ther-

mal properties required as input to the ecohydrology model is covered in chapter

6. Chapter 7 is describes a set of experiments that investigate the sensitivity of soil

moisture to the various factors contributing uncertainty to soil moisture prediction.

Chapter 8 outlines and presents the results of the data assimilation experiments. Fi-

nally, chapter 9 provides a discussion of results and the contribution of this work to

hillslope-scale soil moisture estimation and concludes with an overview of potential

future research directions.
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CHAPTER 2

LITERATURE REVIEW

The overarching objective of this research is to construct a data assimilation

system to estimate soil moisture at hillslope scales (10's to 100's of meters) that

combines noisy remotely sensed observations with an uncertain estimate of soil

moisture derived from a physically-based ecohydrology model. This literature re-

view is designed to outline the state of the art of methods to constrain knowledge

of the spatial distribution of soil moisture. Two particular techniques, remote sens-

ing using microwave technology and spatially distributed process modeling, receive

the most focus because they are central to the development of the data assimila-

tion system. Specifically; a detailed review of techniques to observe soil moisture

through remote sensing satellites is provided. The spatially distributed ecohydrol-

ogy model used throughout this thesis, the TIN-based Real-time Integrated Basin

Simulator and VEGetation Integrated Development (tRIBS-VEGGIE) model [Ivanov

et al., 2004b,a; Vivoni et al., 2004; Ivanov et al., 2008a,b, 2007] and its conceptual

heritage are then overviewed. The remainder of the chapter is devoted to a discus-

sion of previous hydrologic data assimilation work, largely based on a chronologi-

cal review of notable historical work. This historical outline leads to contemporary

identification of soil moisture data assimilation at hillslope scales as an area where

research effort is needed. The review concludes by enumerating the developments

required for construction of a system to estimate soil moisture at hillslope scales



through data assimilation, and linking the required developments enumerated with

chapters in the thesis.

2.1 Estimation of soil moisture

As the introduction demonstrates, knowledge of soil moisture and its spatial

distribution is of critical importance to understanding the hydrosphere because

soil moisture links global water, energy, and vegetation dynamics. This section

deals with methods to measure or otherwise estimate soil moisture. The meth-

ods by which soil moisture is typically estimated can be broadly categorized into

three distinct classes: (1) in situ measurement through a host of analytical tech-

niques such as gravimetric sampling or water content reflectometry, (2) active and

passive remote sensing through satellites or aircraft, or (3) estimation by models.

Within each of these categories there is substantial conceptual, analytical, and tech-

nical heterogeneity in techniques. For instance, in situ measurement can vary from

instantaneous "grab sampling" in which samples are taken to a geotechnical lab

for analysis, to continuous monitoring through devices such as time-domain reflec-

tometers (TDRs) or tensiometers. Further, modeling of soil moisture can vary from

geostatistical modeling to dynamic conceptual models to process-based continuous

forecasting. An exhaustive review of techniques within each of these categories is

beyond the scope of this thesis, and detailed discussion of these techniques, their

assumptions, limitations, and accuracy could fill several volumes. It is useful to

highlight some of the potential benefits and drawbacks of a few particular subsets

of techniques within each category here:

1. in situ measurement:

* Advantages: Inexpensive samles, entire profile accurately, continuous

* Drawbacks: Labor intensive, point-scale observation only leading to con-
siderable spatial uncertainty



2. Microwave (- 1 GHz) remote sensing:

* Advantages: Global, high revisit rate, sensitive to moisture

* Drawbacks: Near surface observation only, coarse scale, requires inverse
model

3. Physically-based models:

* Advantages: Represent processes, integrates multiple-scale data, contin-
uous in time, high spatial resolution

* Drawbacks: Input uncertainty, model uncertainty, numerical complexity,
computational burden

Presently, estimating the spatial distribution of soil moisture at scales of interest

to this thesis is performed using either deterministic prediction using distributed

basin hydrology models, or downsampling of coarse-scale observations according

to empirical scaling relationships and/or geostatistical trends. Deterministic hy-

drologic forecasting neglects the uncertainty associated with the input data. Geo-

statistical interpolation tends to impose stationary patterns on the disaggregated

moisture product (e.g., Kim and Barros [2002a,b]). Reviewing the advantages and

drawbacks of each source of soil moisture information, it becomes apparent that

microwave remote sensing of soil moisture and physically-based modeling provide

fairly complementary sources of information. Therefore, fusion of these two im-

portant sources of soil moisture information leverages the benefits of each, while

minimizing their drawbacks. The underlying hypothesis of this thesis work is that

coarse-scale remotely sensed observations of geophysical variables related to soil

moisture can be disaggregated to hillslope scales, conditioned by a physically-based,

spatially distributed estimate of soil moisture produced via a modeling framework

in which the sources of uncertainty are explicitly represented. The value added by

these coarse-scale remote sensing observations is a decrease in uncertainty of soil

moisture at hillslope scales. An overview of soil moisture remote sensing and an

introduction to the process ecohydrology model used in this research are the topic

of the remainder of this section.
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2.1.1 Microwave remote sensing of soil moisture

The advent of spaceflight in the 1950's was a watershed moment in the ob-

servation of the Earth system. Spaceborne remote sensing provides tremendous

flexibility in observing the Earth and its hydrologic cycle. For instance, satellites

can be placed into orbits that allow for rapid observation of the entire planet on

a regular basis (e.g., low earth orbit). Other orbits allow for continuous moni-

toring of a particular portion of the planet (i.e., geostationary orbit). There are

two fundamental techniques for remote sensing: active and passive. Active remote

sensing requires a powered transmitter to broadcast energy toward a target, and

a (not necessarily co-located) receiver to measure the intensity of the scatter (of-

ten expressed as the ratio of power measured at the receiver relative to the power

transmitted). When the transmitter and receiver are co-located in a remote sensing

package, fractional energy returned is often quantified in terms of a dimensionless

backscatter coefficient [Ulaby et aL., 1986; Rees, 2001]. Passive remote sensing,

by contrast, measures only naturally emitted or reflected radiation from a target.

The intensity of the emitted or reflected radiation being observed is expressed as a

brightness temperature in units of kelvins. It is important to note that active and

passive sensors are not mutually exclusive and can be used aboard the same vehicle.

In the L-band microwave region of the electromagnetic spectrum (i.e., < 5 GHz),

the dielectric constant of the near surface (i.e., < 10 cm) soil-water-air matrix and

therefore emission and backscatter are sensitive to moisture content [Njoku and

Kong, 1977; Ulaby et al., 19861. Therefore, lower microwave remote sensing is

a powerful tool for remote sensing of soil moisture [Njoku and Entekhabi, 1996;

Crow et al., 2001; Kerr et al., 2001; Entekhabi et al., 2004; Paloscia et al., 2006].

Spaceborne low frequency microwave radiometry is emerging as an important

tool for passive remote sensing of the hydrologic state of the Earth system. This is

largely because radiometer sensitivity is typically much smaller than the soil mois-

ture dependent dynamic range of radiobrightness variation, resulting in a large

signal-to-noise ratio in the measurement of microwave radiation emission and a



theoretical accuracy in soil moisture observation of approximately 1 - 2% [Njoku

and Entekhabi, 1996]. While land surface factors such as soil surface roughness

[Choudhury et al., 1979; Tsang and Newton, 1982; Mo et al., 1987, 1982] and

vegetation canopy attenuation [Jackson et al., 1982; Ulaby et al., 1983; Pampaloni

and Paloscia, 1986; Jackson and Schmugge, 1991] render the theoretical accuracy

unrealizable in practice, microwave radiometry is nevertheless a powerful tool to

observe near-surface soil moisture over much of the planet [Njoku and Entekhabi,

1996].

For instance, L-band microwave radiometry technology is vital to both the Euro-

pean Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission, scheduled

to launch in 2008 [Wigneron et al., 2000; Pellarin et al., 2003], and the National

Aeronautical and Space Administration's Soil Moisture Active-Passive (SMAP) mis-

sion, scheduled to launch between 2010-2013 (http://smap. jpl.nasa.gov/). A

change in brightness temperature of 10 K in both horizontal and vertical polar-

izations is associated approximately with an 8% and change in volumetric water

content at incidence angles ranging from 40' to 600 for a loam soil with sparse

natural grass cover [Njoku and Kong, 1977; Mo et al., 1982; Njoku and Entekhabi,

1996]. This range of incidence angles coincides with off-nadir look angles of exist-

ing and planned radiometers Wigneron et al. [2000]; Crow et al. [2001]; Pellarin

et al. [2003]; Entekhabi et al. [2004]. The forthcoming SMOS satellite [Kerr et al.,

2001] will be the first satellite to observe soil moisture and ocean salinity using L-

band microwave radiometery. It incorporates a multiangular viewing concept that

observes the vertically and horizontally polarized brightness temperature of a par-

ticular location at viewing angles ranging from 0O (nadir) to 550 off-nadir in a 7

MHz band centered at 1.4 GHz. A consequence of this synthetic aperture approach

is that the spatial resolution of the brightness temperature products varies with

viewing angle. The expected ground resolution of released SMOS products, how-

ever, is approximately 40 km [Kerr et al., 2003; Merlin et al., 2005]. Since the sensor

provides multiple observations over the same location nearly instantaneously, the

relationship between brightness temperature at a location and satellite viewing an-



gle can, in principle, be used to better constrain soil moisture than a single-look

observation at one viewing angle. NASA's SMAP mission is now in formulation, and

inherits much of its conceptual heritage from the cancelled Hydrosphere State (HY-

DROS) satellite mission. The purpose of SMAP, like HYDROS before it, is to provide

global observation of soil moisture at a revisit rate of 2-3 days. Similar to SMOS,

satellite design also calls for a microwave radiometer to observe land surface mi-

crowave brightness temperature at a frequency of 1.4-1 GHz. However, in the case

of SMAP the radiometer will be conically-scanning, with a single viewing angle of

400 off-nadir. The ground resolution of the SMAP radiometer products will also be

4-0 km. Microwave radiometer observation of soil moisture at an altitude that will

allow frequent satellite revisit necessitates large antennae on both these missions

[Long et al., 2005; Njoku et al., 2000]. The SMOS mission accomplishes a larger an-

tenna via the multiangular viewing aperture synthesis technique mentioned above

[Wigneron et al., 2000], while the SMAP mission employs an expandable antenna

[Entekhabi et al., 2004.].

Estimates of near-surface soil moisture are typically retrieved from brightness

temperature observations through numerical inversion of radiative transfer models

(RTMs), which relate geophysically observable quantities like brightness temper-

ature to land surface states like soil moisture and temperature [Wigneron et al.,

2000; Pellarin et al., 2003; Crow et al., 2005]. These algorithms are often devel-

oped by inverting simulated brightness temperature observations to retrieve known

inputs to the generally nonlinear RTM. The known inputs to the RTM are typically

spatial maps of near-surface moisture and temperature, along with ancillary data

related to surface vegetation conditions and soil roughness. Moisture and temper-

ature states input to the RTM are frequently derived from physically-based land

surface simulation models. As part of the HYDROS mission, three soil moisture

retrieval algorithms that differ in ancillary data requirements were tested using

simulated brightness temperature observations over the Arkansas-Red River Basin,

US. Results indicate that volumetric soil moisture accuracy of 4% is obtainable ex-

cept in woodland areas [O'Neill et al., 2004]. Previous work requiring extensive



RTM use typically resolve the land surface at resolutions coarser than 1 km [Crow

et al., 2001, 2005; Pellarin et al., 2006; Paloscia et al., 2006; Holmes et al., 2008]. It

has been well established that the spatial distribution of inputs to existing radiative

transfer models, specifically soil moisture, vary significantly over a range of spatial

scales [Rodriguez-Iturbe et al., 1995; Schmugge and Jackson, 1996; Haverkamp

et al., 1998]. Variation at the hillslope scale (10s of meters) is associated with spa-

tial variability of topography, soils and vegetation [Western et al., 1999]. In these

studies, spatial variation in soil moisture and vegetation states at hillslope scales

has largely been ignored. This is primarily because models capable of resolving

moisture and vegetation states at these scales are of very high dimension when

spatial domains of sufficient size to develop soil moisture retrieval algorithms are

represented. Besides influencing hydrology and vegetation, local topography and

relative sky position of the observing satellite dictate the incidence angle [Njoku

and Kong, 1977; Mo et al., 1982; Njoku and Entekhabi, 1996] and the polariza-

tion [Mitzler and Standley, 2000], to which observed brightness temperature is

sensitive. The impact of topography on viewing geometry is increasingly gaining

attention in the remote sensing literature [MIitzler and Standley, 2000; Kerr et al.,

2003; Mialon et aL, 2008; Sandells et al., 2008]. In a modeling study using digital

elevation models Kerr et al. [2003] find that modeled brightness temperatures in

areas of variable topography can be several kelvins different than a corresponding

flat surface. Further; Mialon et al. [2008] recently discussed these effects in the

context of the SMOS mission, and developed a criterion to identify SMOS bright-

ness temperature pixels in which topographic effects on incidence angle are likely

to result in observation errors greater than the required 4 K accuracy [Kerr et al.,

2001]. The works of Sandells et al. [2008] and Mitzler and Standley [2000] are

notable because they include the effects of topographic slope on the geometry of

observation, they did not consider the covariation between topography and the

land surface factors affecting emission of microwave energy. It is important to note,

however, that despite limitations of developed retrieval algorithms in topograph-

ically variable areas, as will become apparent later these RTMs are invaluable in
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soil moisture data assimilation because they mathematically relate the land surface

state to the geophysically observed quantity.

The coarse spatial resolutions associated with passive L-band soil moisture ob-

servations, however, make them difficult to meaningfully use for hillslope-scale

moisture estimation, at least in the absence of ancillary data that can be useful for

disaggregation. Significant effort has gone into development of brightness temper-

ature disaggregation schemes. For instance, Crow and Wood [2002] used a scaling-

based downscaling algorithm to enhance the resolution of microwave brightness

imagery to better estimate regional-scale surface energy fluxes. Using a multifrac-

tal interpolation technique with ancillary land surface data Kim and Barros [2002a]

downscaled remotely sensed soil moisture from the Southern Great Plains 1997

Field Experiment to a resolution of 1 km. While these downscaling techniques are

able to estimate soil moisture at resolutions finer than observation in a relatively

computationally efficient manner, they represent the processes responsible for the

redistribution of moisture in the subsurface in a statistical sense and the spatial scale

of the downscaled products is nevertheless significantly coarser than hillslopes.

The uniqueness of the SMAP mission lies in the pairing of the radiometer with

an active microwave real aperture radar measuring backscatter at 1.26 GHz. One

of major advantages of active remote sensing of soil moisture is a considerable

improvement in the resolution of radar products. For instance, while the SMAP

radiometer product will have a resolution of 4-0 kin, the active component will

have a resolution of -3 km [Entekhabi et al., 2004]. Reconstruction and resolu-

tion enhancement techniques will fuse the radiometer and radar data to yield a

soil moisture product at 10 kml. resolution [Long et al., 2005]. The inclusion of the

radar component on the SMAP payload underscores a broader increase in interest in

radar observation of soil moisture (e.g., Wang et al. [1986]; Engman [1991]; Evans

et al. [1992]; Chen et aLo [1995]; Altese et aL. [1996]; Hoeben and Troch [2000];

Entekhabi et al. [2004]). Like passive microwave observation, radar backscatter

is sensitive to surface roughness, as well as the dielectric constant and therefore
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soil moisture [Dobson and Ulaby, 1986; Wang et al., 1986; Engman, 1991; Evans

et al., 1992]. The first opportunity to investigate the usefulness of L-band synthetic

aperture radar for geophysical measurement was the Shuttle Imaging Radar pay-

load, which flew aboard NASAs space shuttle on mission STS-41G in October 1984

[Dobson and Ulaby, 1986]. The radar operated at a frequency of 1.28 GHz and at

horizontally transmitted and received polarizations [Wang et al., 1986]. Overflying

several experimental ground-truthing stations throughout the world, the ground

resolution of the radar products was as high as 12.5 m, and analysis of radar im-

ages collected near Fresno, California by Wang et al. [1986] showed that L-band

radar is a potentially powerful tool for observation of soil moisture.

L-band radar measurement of soil moisture is not, however, without problems.

Existing models of radar backscatter are significantly more complex than the RTMs

used for passive microwave observation (e.g., see Eom and Boener [1986]; Fung

et al. [1992]; Fung [1994]). Radar backscatter, as will be shown in a later chapter, is

significantly more sensitive to the roughness at the surface than is passive brightness

temperature [Fung et al., 1992]. The presence of vegetation can significantly impact

the ability to infer soil moisture from observations of microwave radar backscatter.

Up to a Normalized Difference Vegetation Index (NDVI) of approximately 0.2, the

microwave backscatter is largely due to interaction of transmitted energy with the

surface [Dubois et al., 1995]. However, as NDVI increases beyond 0.2, volume

scattering by the vegetation canopy becomes progressively more important [Dubois

et al., 1995]. Vegetation impacts scattering because the vegetation canopy is semi-

tansparent to the transmitted energy, resulting in backscatter from the vegetation

volume itself and an interaction between surface scattering and the vegetation vol-

ume scattering [Njoku et al., 2002]. Three approaches to treating vegetation are

generally pursued. The first approach involves applying surface scattering models

and inversion techniques (e.g., Fung [1994]) only to areas where vegetation cover

is known to be sparse, such as semiarid to arid settings [Oh et al., 1992; Altese et al.,

1996; Chen et al., 1995; Shi et al., 1997; Hoeben and Troch, 2000; Thoma et al.,

2006]. Another approach seeks to use more complex backscatter models for lay-
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ered, heterogeneous media such as the Matrix Doubling Method [Eom and Boener,

1986]. The final approach is based on the assumption that changes in the volume

of the vegetation canopy are slow relative to the revisit time of the satellite sensor,

and therefore the temporal change detected in backscatter observations between

successive observations is due largely to changes in surface soil moisture [Njoku

et al., 2002; Narayan et al., 2006; Narayan and Lakshmi, 2008].

The preceding review of active and passive microwave soil moisture observation

highlights the potential benefits, drawbacks, and limitations of soil moisture remote

sensing. Spaceborne soil moisture observing satellites have the potential to glob-

ally measure geophysical variables related to soil moisture (brightness temperature

and radar backscatter) with revisit intervals ranging from 2-3 days. Brightness tem-

perature and backscatter are particularly sensitive to variation in soil moisture in

the lower microwave range of the electromagnetic specrum. However, these obser-

vations alone are not immediately useful to characterize soil moisture at hillslope

scales because the spatial resolutions of their respective products ranges from ap-

proximately 3 akm for radar data to 4-0 km for radiometer data. And while RTMs for

passive observation have received significant attention in the literature, the impacts

of topography on modeled and observed brightness temperatures has not been well

understood, historically. Moreover, while active systems can realize significantly

better spatial resolution than passive observation, the forward models of microwave

scatter are either limiting in their geographic applicability and/or significantly more

complex in form. Hence, before microwave data can be useful for hillslope-scale soil

moisture data assimilation, the significant challenge of formulating both passive

and active observing systems that incorporate topographic effects on observational

geometry must be overcome. This topic is dealt with in Chapter 4: Formulation of

the observing system.
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2.1.2 Land surface ecohydrology modeling: The tRIBS-VEGGIE model

Spatially distributed process models are an attractive way to estimate the spa-

tial distribution of soil moisture. This is due, in part, to the fact that such mod-

els explicitly represent the physical, chemical, and biological processes responsible

for mass, energy, and carbon exchange between the land and atmosphere as they

are known. They also provide a numerical framework by which multi-scale data

representing the boundary conditions (i.e., elevation from Digital Elevation Mod-

els (DEMs) and soils from SSURGO), meteorological forcings (e.g., rainfall from

weather radar, temperature and solar radiation from weather stations) can be fused

through the laws governing moisture redistribution to ascertain the hydrologic state

of a watershed. Of particular interest to the applications outlined in the introduc-

tion are the spatial arrangement of soil moisture and biomass, and a continuous

estimate of discharge at the outlet. The model used in this thesis work is the cou-

pled Triangulated Irregular Network (TIN)-based Realtime Integrated Basin Simu-

lator (tRIBS) [Ivanov et al., 2004b,a; Vivoni et al., 2004] coupled to the VEGeta-

tion Integrated Evolution model (VEGGIE) [Ivanov et al., 2008a,b, 2007], hereafter

referred to as tRIBS-VEGGIE. tRIBS-VEGGIE is a spatially-distributed model that

resolves mass, energy and carbon balance over a watershed at the hillslope scale

by representation of coupled: (1) biophysical energy processes (e.g., partitioning

of input solar radiation in the canopy and soils), (2) biophysical hydrologic pro-

cesses (partitioning of rainfall into interception, throughfall, plant water uptake,

etc.), and (3) biochemical processes and vegetation phenology. A full treatment of

the tRIBS-VEGGIE model is beyond the present review and the reader is directed to

previous studies describing the development, parameterization, and confirmation

of the tRIBS-VEGGIE framework [Ivanov et al., 2004b,a; Vivoni et al., 2004; Ivanov

et al., 2008a,b, 2007]. What follows in this section is a brief description of the soil

moisture modeling component, the vegetation dynamics embodied by the model,

and an overview of the static data required to simulate the near-surface moisture,

temperature, and vegetation variables that impact microwave remote sensing.



Figure 2-1: A schematic representation of the way in which the landscape is ab-

stracted in the tRIBS framework. Reproduced from Vivoni et al. [2005].

The tRIBS uses a triangulated irregular network (TIN) representation of land

surface topography (figure 2-1), in contrast with a square element grid represen-

tation of other distributed basin hydrology models (e.g., Wigmosta et al. [1994];

Downer et al. [2002]). A TIN representation of watershed topography can readily

be constructed using DEMs such as those associated with the Shuttle Radar Topog-

raphy Mission [Farr et al., 2007]. The principle benefit of the TIN computation

mesh is the ability to vary the resolution of the land surface according to the degree

of topographic ruggedness within a basin, thereby reducing the number of compu-

tational nodes needed to simulate basin hydrologic response [Vivoni et al., 2004].

Vertices of TIN triangles are centroids of the corresponding Voronoi polygon net-

work (VPN) and represent the computational nodes where the equations mass and

energy conservation are solved numerically (figure 2-2).

Spatially variable precipitation may be intercepted by the vegetation canopy, or

fall directly to the ground where it may infiltrate into the subsurface or runoff the

land surface as overland flow. Rainfall interception is modeled according to the

canopy water balance method [Rutter et al., 1971]. Intercepted water may drain to

the surface through leaf dripping or stemflow following the model of Shuttleworth

[1979] where it may be partitioned to infiltration and/or runoff, or intercepted pre-

cipitation may evaporate directly from the leaf surfaces following the method of

Eltahir and Bras [1993]. Infiltration is modeled through an implicit finite-element
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Figure 2-2: A conceptual representation of the connection between the Triangulated

Irregular Network (TIN) and the Voronoi Polygon Network (VPN). The VPN consti-

tutes the computational mesh, on which the governing equations of mass, energy,

and carbon balance are solved. Adapted from the work of Ivanov et al. [2004b].

backward Euler time marching solution of the 0-based form of Richards equation1

[Ivanov et al., 2008a,b]. The model uses the characteristic soil water retention

curve parameterization of Brooks and Corey [ 1964]. Runoff production in the tRIBS

model can occur as saturation excess, infiltration excess, or groundwater exfiltra-

tion. Two distinct types of runoff routing are performed, hydrologic runoff routing

on hillslopes and hydraulic routing in channel networks, and runoff is routed from

one computational node to the next node in a steepest-descent fashion. The hy-

drologic runoff routing procedure parameterizes the hillslope runoff velocity as a

power function of the ratio of the stream discharge at the hydrologically-nearest

downstream channel node to the contributing area at that node. This velocity and

a hillslope path length that is obtained from the geometry of the basin can be used

to compute the travel time from any hillslope point to the hydrologically nearest

stream channel. At the upstream-most channel node, the hydrologic runoff routing

1see a review of Richards solving methods in Celia et a. [1990] and van Dam and Feddes [2000]
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Figure 2-3: A diagram depicting the concepts of carbon cycling embodied by VEG-GIE. Reproduced from the work of Ivanov et al. [2008a].

procedure yields a hillslope hydrograph that serves as input to the hydraulic routing
scheme. These hillslope hydrographs are then routed through the channel network
using a kinematic wave routing model (e.g., Goodrich et al. [1991]; Singh [1996]).

The dynamic vegetation component of tRIBS-VEGGIE operates on specified plant
functional t3ypes (PFTs) [Bonan et al., 2002a] within each Voronoi cell. For each
PFT, tRIBS-VEGGIE simulates carbon fluxes by representing the processes of photo-
synthesis, autotrophic respiration, stress induced foliage loss, and tissue turnover.
The fluxes that determine the exchange of CO2 between the atmosphere and land
surface contribute to the dynamics in three carbon pools modeled within tRIBS-
VEGGIE: foliage, sapwood, and fine roots. Assimilation of CO2 through photosyn-
thesis is coupled to surface energy and water balance through the stomatal resis-
tance model, which depends on the budget of longwave and solar radiation and
site soil moisture throughout the rooting profile of the PFT. A conceptual map of
the VEGGIE model is shown in figure 2.3.

The amount of incoming solar radiation being received at any time during the
day at the land surface depends on site slope and aspect, as well as the solar azimuth
angle. In this manner, tRIBS-VEGGIE simulates the spatial covariation between inci-
dent solar radiation and surface moisture, energy, and plant vigor processes, which
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Figure 2-4: A conceptual illustration of Voronoi element scale evaporation and tran-

spiration fluxes, partitioned by PFT. Taken from Ivanov [2006].

leads to North- and South-facing contrasts in variables such as surface temperature,

canopy temperature, and available energy (figure 2-4).

Inputs to the tRIBS-VEGGIE model correspond to four categories of data: (1)

hourly hydrometeorological forcings, (2) soil hydraulic and thermal properties, (3)

vegetation parameters, and (4) a static elevation field representing watershed to-

pography. Hydrometeorological forcings for tRIBS-VEGGIE include hourly: (1) pre-

cipitation, (2) sky fractional cover or incoming solar radiation, (3) air temperature,

(4) dew temperature, and (5) wind speed. In this study, hydrometeorological forc-

ings under which the moisture and vegetation state are evolved by tRIBS-VEGGIE

were generated by a stochastic weather generator Ivanov et al. [2007]. Soil hy-

draulic and thermal parameters are consistent with those common to many land

surface models (e.g, Liang et al. [1994]; Chen et al. [1996a]; Koster and Suarez

[1996]; Peters-Lidard et al. [1997]; Oleson et al. [2004]) and available in pub-

lished soil databases such as the STATSGO or SSURGO products. Soil parameters

required for water- and energy-balance solution include: (1) saturated hydraulic

conductivity, (2) saturation moisture content, (3) residual moisture content, (4)

Brooks-Corey parameters, (5) specific volumetric heat capacity, and (6) thermal

conductivity. Parameters required by the vegetation development model coincide

with the C4 grass PFT parameterized in other biophysical-biochemical models (e.g.,

see Bonan [1995, 1996]; Sellers et al. [1996]; Levis et al. [2004]; Arora and Boer
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[2005]).

The outputs of the tRIBS-VEGGIE model as they relate to remote sensing of soil

moisture include spatially distributed output such as the forecast value of soil mois-

ture at each Finite Element node within the soil profile, the surface soil temperature,

the canopy temperature, Leaf Area Index, and fractional vegetation area.

2.2 Hydrologic data assimilation

Combining hydrologic models with observations to produce optimal estimates

of hydrologic variables of interest has a long history in the primary literature. Much

of the early work was targeted toward combining models and observations for prac-

tical applications such as flood forecasting and irrigation scheduling (e.g., Kitanidis

and Bras [1980b,a]; Aboitiz et al. [1986]). Early work in this arena largely focused

on the use of lumped parameter models for which obtaining state space representa-

tions and statistical linearization required to employ recursive filtering techniques

such as the extended Kalman Filter [Schweppe, 1973; Gelb, 1974] was relatively

straightforward. The Kalman Filter is a powerful estimation framework that as-

sumes imperfect observations, with additive, white, gaussian observation errors;

and linear, gaussian models whose uncertainty can be completely characterized by

a mean and error variance-covariance matrix. The Kalman Filter, which is reviewed

in detail in the next chapter, was the centerpiece of many early hydrologic data as-

similation studies. Using a state-space formulation of the National Weather Service

river forecasting model [Burnash et al., 1973] that depends on basin soil moisture

state, Kitanidis and Bras [1980b,a] applied the Kalman Filter to ingest observations

of discharge. In a previous work, Kitanidis and Bras [1979] coupled a Kalman

filtering framework to a Bayesian likelihood ratio test to detect transient errors as-

sociated with non-stationary input error structure. Aboitiz et al. [1986] developed

a conceptual state space model describing soil moisture balance for an irrigated

field, which they combined with observations of soil moisture depletion through

96



the Kalman Filter. Other hydrologic data assimilation works have used frameworks

not based on the Kalman Filter. For instance, Seo et al. [2003] applied a varia-

tional data assimilation approach to update the soil moisture states of the Burnash

et al. [1973] rainfall-runoff model and the ordinates of the unit hydrograph with

observations of real time discharge and precipitation, and climatological potential

evaporation values for a headwater basin. Variational assimilation methods find

an optimal estimate of the model state by minimizing a cost function that usually

involves some metric of error between forecast and observed quantities.

In addition to assimilation of discharge, which provides a measure of runoff pro-

duction integrated in space and time, significant scientific effort has been invested

in using data assimilation as a way to constrain models with remotely sensed mi-

crowave brightness temperature and radar backscatter data. Although the observed

brightness and backscatter quantities are sensitive only to near-surface soil mois-

ture, several published studies have demonstrated that these data can provide addi-

tional information about profile moisture in the context of a hydrologic model, vis-

i-vis an assimilation approach. For instance, Entekhabi et al. [1994] developed an

inverse solution to retrieve soil moisture and temperature profiles from brightness

observations using a radiative transfer and a coupled moisture and heat diffusion

model. Calvet et al. [1998] demonstrated that knowledge of surface soil moisture

and temperature could be used to retrieve the root zone moisture profile. Houser

et al. [1998] used Newtonian nudging methods, which involve post hoc corrections

to the modeled state, to assimilate microwave radiometer observations and update

profile soil moisture evolved through the TOPLATS model [Famiglietti and Wood,
1994b]. In a later work, Galantowicz et al. [1999] used the Kalman Filter method-

ology to assimilate brightness temperature observations into a soil hydraulic and

temperature diffusion model. Hoeben and Troch [2000] also employed Kalman Fil-

tering to assimilate microwave backscatter observations to update the soil moisture

profile evolved with a linearized 1-dimensional Richards solver. The work of Reichle

et al. [2001] provide an important counterexample, however, in their recognition

of the usefulness in posing the downscaling of microwave brightness observations



as a data assimilation problem. They used a 4-D (three spatial dimensions and

one temporal dimensional) variational approach to downscale radiobrightness im-

ages from resolutions of tens of kilometers to scales of a few kilometers. Fine scale

spatiotemporal variation in soil moisture can be resolved using data assimilation

methodologies provided that soil textural, land cover, and micrometeorological in-

puts exist at these scales. The work presented in this thesis is partly a conceptual

extension of their work, based on the hypothesis that topography is a significant

source of variation in soil moisture at the finest scales of interest (10s to 100s m).

Developing a novel application of satellite data assimilation, Crow [2007]; Crow

and Zhan [2007]; Crow and Bolten [2007] ingested observations from the X-band

Advanced Microwave Scanning Radiometer (AMSR-E) into a relatively simple an-

tecedent precipitation index model using the Kalman Filter and used the results to

diagnose errors in satellite precipitation products.

Nonlinear representation of hydrological processes in models and the increas-

ing use of spatially distributed models limits the feasibility of Kalman Filtering and

other techniques such as some variational methods that require tangent linear mod-

els (and their adjoints) for soil moisture data assimilation at hillslope scales with

models as complex as tRIBS-VEGGIE. This is largely due to numerical instabilities

and the significant effort associated with linearizing complex, high-dimensional

models. Algorithmic developments in the ocean modeling community, however,

have significantly improved the prospects for hillslope-scale soil moisture data as-

similation. Using a nonlinear quasi-geostrophic model Evensen [1994, 2003, 2004]

demonstrated that Monte Carlo methods could be used to forecast error statistics

and approximately estimate an error variance-covariance matrix directly, rather

than evolving it forward in time as required by the Kalman Filter. This technique,

known as the Ensemble Kalman Filter (EnKF) is reviewed in detail in Chapter 3,

led to the rapid growth of ensemble-based data assimilation methods for nonlinear

models with high dimensionality in the geosciences. Because the state error covari-

ance matrix is obtained via a Monte Carlo approach, however, the EnKF algorithm

requires explicit modeling of uncertainty in data input to models like tRIBS-VEGGIE
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(i.e., hydrometeorological forcings and parameters). Moreover, particular care in

identifying and modeling those sources of uncertainty is required to ensure that the

error in the model forecast is adequately represented. The importance of proper

uncertainty representation will be underscored in the next chapter.

In hydrology, ensemble-based data assimilation has become popular for esti-

mating hydrologic state variables of interest, including profile and near-surface soil

moisture, using observational data and models. Margulis et al. [2002] used the

EnKF to combine remotely sensed soil moisture measurements from the Southern

Great Plains 1997 field campaign with modeled soil moisture fields evolved by the

NOAH land surface model described by [Chen et al., 1996b]. Reichle et al. [2002]

evaluated the performance of the EnKF against an optimal variational smoother

for prediction of soil moisture. They also investigated the effect of non-Gaussian

forecast errors and the ensemble size, or number of realizations of the soil moisture

state evolved using Monte Carlo methods, on final forecast accuracy compared with

soil moisture estimates unconstrained to observation. More recently, Dunne and

Entekhabi [2005] argued that soil moisture estimation is more akin to a reanalysis

problem and developed a hybrid estimation routine combining the EnKF operating

across rainfall events with an Ensemble Kalman Smoother (EnKS) operating during

drying cycles. More recently, Kim et al. [2007] assumed hydrologic similarity to

update spatially distributed soil moisture states using an Ensemble Kalman Filter

(EnKF).

While these past efforts demonstrate the utility of ensemble data assimilation

for estimation of hydrological variables of interest, there are several limitations to

the methods employed. For instance, the RTMs that produce predictions of observ-

able quantities based on the modeled soil moisture state often require significant

ancillary data that characterizes the vegetation canopy and the soils. Vegetation

ancillary data is commonly treated as static (e.g., Crow et al. [2005]), although

the phenology and growth of plants are clearly coupled to soil moisture dynamics

while also being important to the RTM. The work of Pauwels et al. [2007] provides
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an interesting attempt to deal with vegetation dynamics by assimilating synthetic

measurements of both soil moisture and leaf area index using an EnKF. Another

limitation that is important to this work is the emphasis in previous studies on spa-

tial resolutions too coarse to account for fine scale heterogeneity in topography and

soil hydraulic properties. Many make use of soil-vegetation-atmosphere transfer

schemes that evolve the soil moisture state at scales that completely neglect the role

of topography in the redistribution of subsurface moisture [Dickinson et al., 1986;

Sellers et al., 1986; Bonan, 1991, 1995, 1996] or do so only in a statistical manner

as a subgrid-scale parameterization [Famiglietti and Wood, 1994b,a; Peters-Lidard

et al., 1997; Crow and Wood, 2033]. The high dimensionality of digital terrain

data-based hydrologic models is one of the primary reasons for the limited use

of topography dependent models in soil moisture state estimation research. The

work of van Loon and Troch [2002] provide a notable exception, although their ob-

servations consisted of geostatistically interpolated coarser-scale observations, that

estimated soil moisture at spatial resolutions ranging from 20 m to 60 m for a

44 ha catchment. Another critically important element of ensemble soil moisture

data assimilation is proper representation of uncertainty. Advocating for an adap-

tive ensemble Kalman filter approach, Reichle et al. [2008] demonstrated that poor

characterization of input errors led to large errors in surface fluxes. Ensemble soil

moisture data assimilation studies conducted over large regions frequently attribute

much of the uncertainty in soil moisture to errors in the spatial arrangement and

intensities of precipitation, although uncertainty in model parameters is frequently

represented as well [Margulis et al., 2002; Reichle et al., 2002; Zhou, 2005; Dunne

and Entekhabi, 2006]. In a later chapter, the importance of adequately representing

uncertainty in hydrometeorological forcings and soil hydraulic and thermal proper-

ties on hillslope-scale soil moisture estimation will be demonstrated.

Finally, formulation of observing systems that relate the model estimate of soil

moisture to the geophysically observed quantity is the tie that binds remote sens-

ing of soil moisture to the model. In particular, the EnKF requires an observation

operator that ingests information about the model state to produce predicted ob-
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servations (e.g., see Galantowicz et al. [1999]; Margulis et al. [2002]; Reichle et al.

[2002]; Dunne and Entekhabi [2005, 2006]). The necessity of the observing system

will become clear in Chapter 3, and the whole of Chapter 4 will be dedicated to

formulating a system that takes as input the spatial distribution of moisture, tem-

perature, and vegetation simulated by tRIBS-VEGGIE to yield predictions of L-band

microwave brightness temperature and radar backscatter as output.

2.3 Conclusion: Required developments

This chapter concludes with a recapitulation of the developments necessary to

construct an assimilation system to estimate soil moisture at hillslope scales using

remotely sensed data and the tRIBS-VEGGIE model. Because it places no a priori

restrictions of the form of the model used for assimilation and the nonlinear na-

ture of the processes embodied by tRIBS-VEGGIE do not lend themselves well to

linearization, and because it has a heritage of use in soil moisture data assimilation,

the EnKF is well suited to the task at hand. Below are listed the particular compo-

nents of the data assimilation system that needed to be developed by this work and

the chapters of the thesis in which they are addressed:

1. Identification of a form of the ensemble Kalman Filter algorithm suited to

hillslope-scale soil moisture estimation with tRIBS-VEGGIE and remotely-sensed

data at scales of kilometers (Chapter 3),

2. Formulation of an observing system that relates the spatial distribution of

near-surface soil moisture simulated by tRIBS-VEGGIE to L-band microwave

measurements of brightness temperature and radar backscatter (Chapter 4),

3. Identification and formulation of techniques to explicitly represent uncer-

tainty in the hydrometeorological forcings (Chapter 5) and soil hydraulic and

thermal properties (Chapter 6) required as input to tRIBS-VEGGIE, and
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4. A detailed uncertainty analysis assessing the relative impacts of hydrometeo-

rological versus soil hydraulic and thermal property uncertainty on soil mois-

ture predictability (Chapter 7).
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CHAPTER 3

DATA ASSIMILATION

MACHINERY

This chapter describes the mathematical machinery used in the soil moisture

data assimilation system constructed for this work. The chapter begins with an in-

troduction to the Kalman Filter equations, and their relevant assumptions and impli-

cations. The extension of Kalman Filtering to nonlinear and non-Gaussian problems

through Monte Carlo modeling, the ensemble Kalman Filter (EnKF), is described in

detail. An implementation of the EnKF that is well-suited to high dimensional and

low rank problems is introduced. Since the original Kalman Filter and the EnKF

pose the mathematical formulation of observing system as a linear transformation

of the model state, a discussion of observing systems that nonlinearly relate the

state to predicted observations is required. The final part of this chapter presents a

detailed outline of the workflow required to assimilate observations of microwave

brightness temperature for hillslope-scale soil moisture estimation with the tRIBS-

VEGGIE model.

3.1 Vector Kalman Filtering

What follows in this section is an introduction to the Kalman filter (KF) recursive

estimation algorithm. The review presented below largely follows the algorithm as

outlined in Gelb [1974] and Schweppe [1973]. The KF was derived as a gener-
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alization of the Weiner filter to linear stochastic systems involving non-wide-sense

stationary processes, and/or observation intervals that do not allow for linear least-

squares estimation through Linear Time Invariant filtering. The discrete-time KF

assumes that the Lx-dimensional system state vector, x, at time n + 1 can gener-

ically be described as a linear transition of the state at the previous time interval

x [n], taking into account random forcings subjected to the system at time n, v [n],

which may have dimension different from x,

x [n + 1] = A [n] x [n] + B [n] v [n] (3.1)

This is generally referred to as the canonical form of the state model, A [n] is of

dimension Lx x Lx and referred to as the system state-transition matrix, and B [n]

is an operator of dimension Lv x Lv that projects the forcings v [n] onto state space.

The Ly-dimensional vector of observations y [n] is related to x [n] through the

so-called observation equation,

y [n] = H [n] x [n] + w [n] (3.2)

The random forcing (v [.]) and observational noise (w [.]) are assumed to be

independent, zero-mean white processes with covariance matrices Q [n] and R [in],

respectively. Additionally, the initial condition x [0] is zero-mean with covariance P,

and it is assumed that there is no correlation among v [.], w [.], and x [0].

Let i [n in] denote the linear least-squares estimate (LLSE) of the true state x [n]

at time n, given all observations y [0],y [1],...,y [n]. The orthogonality principle dic-

tates that i [nn], which is optimal in a linear least-squares sense, yields an error

estimate that is orthogonal to all of the data. Stated mathematically, the LLSE pos-

sesses an estimation error e [nin] = : [nln] - x [n] that satisfies:
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E e [nn] y [k]T -E ( [nln] - x l n]) y ylk]Tj =-0, k=-0,1, .,n (3.3)

The orthogonality principle also holds for the prediction, R [nIn - 1], which is

derived by propagating the filtered state at time n - 11, [n - 1In - 1], forward one

time step using the system equation. Hence,

[e [nn - 1] y [kT] =E[(x [nn - 1] - x [n]) y [k]T =0, k=0,1,...,n-1.

(3.4)

Because of the linearity of the system, the observation equation can be rewritten

in a form to reflect the predicted observation at time n as a function of predicted

state R [nIn - 1],

S[nln - 1] = H [n] X [nln - 1] + w [n] (3.5)

It can be shown that choosing w [.] to be uncorrelated with both v [.] and x [0]

ensures that v [n] is uncorrelated with y [0],y [1],...,y [n]. w [n] is also uncorrelated

with x [-] because of the imposed constraint that w [n] is white. If the expectation

of the last term in the above equation is zero (as it is assumed), then the best

prediction of the data based on the model state is therefore,

S[njn - 1] = H [n] R [nIn - 1] (3.6)

The measurement residual, or innovation, is the difference between the ac-

tual observation and the predicted observation. The innovations process, z [n], is

a white, causally invertible, random process:

z[n]= y[n] - [In- 1]= y [n] - H [n] k [nln - 11 (3.7)
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Recasting the model equation as a mechanism to produce an unfiltered estimate

at time n (the predicted state), given the posterior (filtered) state estimate at time

n - 1,

k[nln- 1 = A n - 1] [n- n- 1] + B [n- 1] v [n- 1]. (3.8)

The prior (predicted) error covariance at time n, Ee [nIn - 1] e [nn - 1]T =

P [nIn - 1], can similarly be determined by evolving the posterior (filtered) error

covariance at time n - 1, P [n - 1 In - 1], forward under the model dynamics of the

system,

P [nln - 1] = A [n] P [n - 1n - 1] A [n]T + Q [n] (3.9)

At the heart of the Kalman filter is an algorithmic machinery through which the

prior estimate (the predicted state), x [njn - 1], can be updated with new infor-

mation in the form of observations at time n, y [n]. Additionally, the prior error

covariance, P [nln - 1], can also be updated, conditioned on the new information

to arrive at a posterior error covariance P [nln] that reflects the impact of new infor-

mation on the uncertainty of the state. It can be shown that this posterior estimate

of the state (the updated state), x [nln ], is the Bayes' least-squares estimate given

systems that are both linear and Gaussian. The posterior estimate is simply the

prior estimate plus a term that represents the product of a gain matrix and the

innovation,

^ x[nln] = R [n.ln - 1] + K [n] z [n], (3.10)

where K [n] is the Kalman, or optimal gain, which is computed as:

K [n] = P[nn- 1] H[n]T (H n] P [nn- 1] H [n]T + R[n]) (3.11)
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The prior error covariance can similarly be updated through the following,

P [nln] = (I - K [n] H [n]) P [n~n - 1]. (3.12)

3.1.1 Implications of the Kalman Filter

In equation 3.6, if the predicted observation, [njn - 1], is identical to the actual

observation, y [n], then the innovation z [n] = 0 as seen in equation 3.7. This

can only occur in the trivial case when the predicted state, X^ [nn - 1], is equal to

the true state, x [n]. Of more interest are the relative influence of observational

uncertainty contained in R [n] and the accuracy of the state estimate as described

by the predicted error covariance P [nln - 1]. As a heuristic example, following is

the special case of a scalar system described by initialization,

x [01 - 1] = 0, and,

o21 [01- 1] = a2,

(3.13)

(3.14)

where a2 [njn - 1] is the error covariance at time n, given all observations through

time n - 1. For this special case the model prediction, predicted observations, and

prior error covariance are of the forms:

(3.15)

y [nln - 1] = ci [nn - 1] + w [n], (3.16)

S2 [nln - 1] = a2a 2 [n - 1|n - 1] + 0u2,

107

(3.17)

[nn - 1] = a^ In - 1In - 1] + v [n],



where w [-] has a variance, ua, and v [-] has a variance, a. In this scalar problem,

the Kalman gain (also a scalar) will reduce to the following,

cC' [nln - 1]
S[n] [n = (3.18)

C2U 2 [n n - 1] + U2

Substituting the above gain term, the state update follows as,

S[nln] = i [nln - 1] + c[ 1] (y [n] - ci [nln - 1]), (3.19)

and the posterior estimate of the error covariance is given by,

0o [nln] = U2 [nln - 1] - 1] coU [nln - 1] (3.20)e en =c2a 2 [nin - 1] + a2

Rewritten slightly,

[nn] = 2 [nn - 1] e- [ -1] (3.21)

c + ,, lc2 o[nin-1]

Inspection of equation (3.19) reveals that when ae [nln - 1] > ac,, the obser-

vation dominates, and the updated state approximates the inverted observation,

(1/c)y [n]. Conversely, when e2 [nlr - 1] < uw, the model prediction dominates and

the updated state approximates the prior estimate, ^ I[nln] 1 i [nan - 1]. Between

these two extremes, the updated state corresponds to some intermediate weighting

of the model predictions and observations, multiplied by the innovation. In terms

of the uncertainty, equation 3.20 reveals that the only circumstances in which the

posterior error covariance will not be reduced with respect to the prior error co-

variance occur when a' > c2 [nn - 1]. Hence, the added value introduced by

the KF algorithm is both an updated state that considers information in the form of

observational data, and reduced uncertainty in the posterior state estimate due to

the inclusion of those observations.
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3.1.2 Summary of Kalman filter algorithm

The following is a summary outline of the Kalman Filter algorithm for state

estimation with a linear model in which the state error and observational error

distributions are known to be (or assumed) Gaussian:

1. Initialize the model with an initial estimate of the state, i- [01 - 1], and initial
error covariance, P [O0 - 1].

2. Propagate the initial state and error covariance forward to observation time n
through equations 3.8 and 3.9, respectively.

3. As the product of the predicted state, - [nln - 1], and the observational oper-
ator, H [n], compute the predicted observation, r [nln - 1] based on equation
3.6.

4. From equation 3.7 obtain the innovation, z [n], as the difference between the
actual observation, y [n], and the predicted observation.

5. Compute the Kalman gain based on the prior error covariance P [nln - 1],
observation operator, and observational noise R [n].

6. Obtain the posterior (filtered) state estimate, k [nln], based by adding the
product of the gain, K [n], and the innovation, z [n], to the prior estimate

[njn - 1].

7. Compute the posterior error covariance, P [nln], from equation 3.12.

8. Repeat steps 2-7 with the posterior state (k [nun]) and error covariance (P [nln])
as the new initial conditions.

The above outline illustrates the two distinctive components of the KF algo-

rithm: (1) the prediction cycle that yields the prior estimate (steps 1-2), and (2)

the analysis cycle that constrains the prior estimate to new information in the form

of observations (steps 3-7).
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3.2 The ensemble Kalman filter

3.2.1 Original formulation

The ensemble Kalman filter (EnKF) [Evensen, 1994, 2003, 2004] provides a

mathematical approximation to the KF for nonlinear models. The essence of the

EnKF is that the prior error covariance matrix in equation 3.11 is replaced with an

approximation that is computed from an ensemble of Monte Carlo model simula-

tions when an observation becomes available. The ensemble members, or repli-

cates, are produced by propagating an initial ensemble forward with the nonlinear

dynamics of the model, possibly subjected to uncertain forcings or uncertain model

parameters. In this case, the more generic form of the model equation (3.8) would

be,

R [nli - 1] = F (k [n - 11n - 1] ,v [n]), (3.22)

where F (.) is a generally nonlinear vector-valued function that propagates an

initial state corresponding to the posterior state estimate at the previous analysis

cycle, X [n - 1 In - 1], under the focrings v [n]. Dropping specific dependence on

time n for sake of clarity, let xf be an N-dimensional state vector that is an ensem-

ble replicate corresponding to a particular Monte Carlo simulation as posed in the

previous equation. The superscript f is notation used to denote that the replicate

corresponds to a "first guess," or non-filtered estimate. The prior estimate of the

state is embodied by the ensemble of all such replicates, the so-called first guess

ensemble,

Xf =[x x I... x (3.23)

Denote the first guess ensemble mean matrix, X as the matrix whose dimensions

are identical to X I and whose columns are the sample mean, computed through the
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rows of Xf,

X = X1K, (3.24)

where 1K is an K x N-dimensional matrix whose elements are 1/K. The en-

semble of first guess perturbations from the mean is then,

X' = X I - X. (3.25)

The prior error covariance estimate is denoted P{, and is computed directly

from the matrix containing the ensemble of first guesses Xf,

pf = X ' (XI)T
eK-1

(3.26)

If the model describing the evolution of the state were perfect the output vector,

yt, would be related to the true state, xt, through the observing system, H, as

follows,

yt = Hxt. (3.27)

The data vector (the actual observations), y are assumed to be related to the

true observations through additive Gaussian noise,

y = yt + 6, (3.28)

where the vector E is again zero mean with error covariance matrix, R,

R = E [CeT]. (3.29)

In ensemble-based data assimilation the uncertainty in the data are often treated
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explicitly by perturbing the observations with an ensemble of K vectors ej that have

a covariance matrix approximately equal to R. This yields a matrix containing an

ensemble of noisy observations, Y, in which

Y = [Y + 1 y + 2 ... I y + CK] (3.30)

E=[ [c E2 I . I CK] (3.31)

EET
Re = K- (3.32)

The topic of perturbing observations has historically been controversial in nu-

merical data assimilation because while the observation perturbations are additive,

zero mean, and Gaussian, sampling error associated with low ensemble sizes can

induce bias in the observations [Whitaker and Hamill, 2002]. Although Burgers

et al. [1998] presented a theoretical justification of perturbation of the observa-

tions, several have developed analysis schemes that do not require perturbation

of the observations (e.g., see Lermusiaux and Robinson [1999]; Anderson [2001];

Bishop et al. [2001]; Whitaker and Hamill.[2002]) Nevertheless, perturbed obser-

vation ensemble data assimilation remains widely used and is the focus here.

The nomenclature of ensemble-based data assimilation refers to the state update

state (equations 3.10 and 3.11) as the analysis step, and the posterior state estimate

Xa as the analyzed ensemble. In analogous fashion to the Kalman filter update

equation the analyzed ensemble is computed as follows,

Xa = X f + PfHT (HPHT + Re) - 1 (Y - HXf) (3.33)

The EnKF is presented diagrammatically in figure 3.1. As the graphic indicates,

the generic progression of the algorithm is fairly-simple: (1) the nonlinear model is
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Observation: y[n+l] -4

Kalman

Observing system: gain:

HXf[n+1 n] K[n+1]

[nn][n] First guess ensemble [n+n+]

'_ " ~x2[n+lln+l]

xX[n+[nln ] 1 n]
xK[nln] ~ ~-- Analysis

ensemble:Initial ensemble First guess ensemble xa[n+lln + l ]

X"[nln] Xfrn+ I1In]

Figure 3-1: A diagrammatic representation of the ensemble Kalman Filter (EnKF).

As seen, the algorithm amounts largely to a Monte Carlo simulation with explicit

representation of uncertainty in the model forcings and parameters, coupled with a

Kalman update procedure that substitutes an estimate of the state error covariance

matrix from the ensemble itself. The updated states are then used to re-initialize

the model, and the Monte Carlo simulation procedure repeats itself until the next

observation becomes available.

used to propagate forward K initial states under uncertain forcings and parameters,

(2) when an observation is available this ensemble is used to derive an estimate of

the state error variance-covariance matrix which is then used in a Kalman update

to derive a posterior estimate given the observation, and (3) the nonlinear model

is then re-initialized with the K analyzed ensemble state vectors and propagated

forward in time (again under uncertain forcings and parameters) until the next

observation becomes available. This process can be repeated indefinitely.

In many practical applications, the relationship between the state and the ob-

servation is not a simple linear transformation. That is, the predicted observation
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y cannot be posed as the matrix-vector product Hx. In such cases, the observation

operator can be expressed more generally as a nonlinear operation,

R = (R) (3.34)

where 7- is a vector valued function that nonlinearly transforms the N x 1 state

vector R into the m x 1 vector of predicted observations 9.

Although rarely computed directly in practice, the analyzed state error covari-

ance is defined as,

pa = P - PfHT (HPHT + Re)-1 HPf (3.35)

The significance of pa will become apparent in the following section. Because

the ensemble of analysis perturbations (X"') is essentially the square root of the

analysis error covariance matrix pa (i.e., Pa . 1/(K - 1)Xa'(XaW)T), the algorithm

presented below seeks to estimate Xa' and Ra without directly constructing P{.

3.3 Implementation of a square root analysis

The matrix containing the ensemble estimate of the state error covariance, P f

is of dimension N x N. For problems with large state dimensionality it can be

computationally infeasible or impractical to compute Pf directly through equation

3.26. Evensen [2004] reviewed several analysis schemes that use the ensemble

of first guess perturbations, X f', since it is effectively the square root of Pf. The

following is an outline of a square root analysis scheme that largely follows the

outline first set forth by Evensen [2004], which is also stable when Re is of low

rank. For the sake of completeness, in the meteorological literature the presented

implementation is sometimes referred to as the ensemble transform Kalman filter

(ETKF) (esp., Bishop et al. [2001]). From its definition in equation 3.33, up to
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normalization by (K - 1), Pa can be written as,

Xa'Xa/T = X f ' (I - STC1S) Xf/T, (3.36)

where the m x K matrix S contains the ensemble of predicted observation per-

turbations (that is, S = HXf') and the K x K matrix Ce is defined as,

Ce = SST+(K - 1) R e

= SST + EET, (3.37)

where the matrix E is an ensemble of observation perturbations. Because ma-

trix Ce is based on an ensemble approximation and is potentially close to singular,

C- 1 in equation (3.33) should be replaced by a stable pseudo-inverse, denoted by

Evensen [2004] as C+. The motivation of the square root approach is to find an

expression for XP', and a way to find the updated ensemble mean R without con-

structing the full N x N matrix P{. By inspection of equation (3.36), it can be seen

that this amounts to finding some way to factor the matrix (I - STC 1S) into a ma-

trix multiplied by its own transpose. The matrix m x K matrix S can be decomposed

using the singular value decomposition (SVD) as follows,

UoEoVoT = S (3.38)

A stable pseudoinverse of S, S+ can be computed as,

S+ = VoEo+U, (3.39)

where the matrix E+ is a diagonal K x m matrix where the elements of the

diagonal are defined as diag(E + ) = a - 1 , a-, ... , U , 0, where the ai represent the

diagonal entries of the matrix Eo. With the stable pseudoinverse of Eo accessible

115



via the SVD, equation 3.37 can be rewritten as follows,

Ce = SST + (SS) EET (SS)

UoEo (I + E+U EE TUo T) ETUoT

SUoo (I + XoXT) ETUT,
I 0 0 0' (3.40)

where matrix Xo is defined as,

Xo = o U E. (3.41)

The matrix Xo can also be decomposed using the SVD to obtain,

U1EI V T = Xo. (3.42)

Substituting equation (3.42) into equation (3.40), the matrix C, can be ex-

pressed as,

Ce = Uoo (I + U 1 2 UT) Uo0T

- UooU 1 (I + E2) UT UoT.
-- OU , .1 -1 O 0

(3.43)

Note that in equation (3.43) the matrix (I + PE) is always diagonal and there-

fore computing its inverse is trivial. A stable psuedoinverse of Ce can now be ex-

pressed as the following,

C+e= (Uo+TU 1 ) (I + 2) - 1 (UoE+TU 1)T

SX (I + E2)-1 X T , (3.44)
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where the matrix X 1 = U0 +TU1 . Substituting the stable psuedoinverse of Ce,

C+ into equation (3.36) for C- 1, the square root of the ensemble estimate of the

state error covariance matrix can be written as follows,

Xa'Xar = X f ' (I - STCS) XfI

= X' (I- STX 1 (I + E)-1 XTS) XfT

= Xf ' (I- I + E -1)/2 XTS] T [(I+ E -1/2 XTS] X If

=X f (I - XTX 2) Xf, (3.45)

with X2 = (I + 1/2 XTS. Finally, the ensemble of analyzed perturbations

(Xa') can be computed as,

Xa = X'V2 - ETE2 (3.46)

where the matrix V2 arises from a singular value decomposition of the matrix

X2 = U 2 2V T . The random orthogonal matrix e T has the effect of spreading the

variance reduction associated with the analysis across the ensemble members and

Evensen [2004] recommends using it by default. A random orthogonal matrix can

be constructed by using the right singular vectors from a singular value decomposi-

tion of a random K x K matrix [Evensen, 2004]. Recent studies, however, suggest

that this random rotation can potentially induce a bias in the analysis ensemble

[Wang et al,, 2004; Sakov and Oke, 2008]. Although Livings et al. [2008] provides

some diagnostic tools to assess the degree to which multiplication of the analysis

by OT causes bias, a rigorous survey of the magnitude of this effect, particularly in

geophysical models, has not yet been conducted, nor have any mitigation strategies

been widely accepted.

The following summary gives the step-by-step implementation of this algorithm

to compute the analyzed ensemble of perturbations X":
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1. Compute the SVD of the matrix S: UoEoVI = S.

2. Construct the matrix Xo = EoUTE. The matrix Eo is K x m with u-,

o -1, 1.,u-, 0 on the diagonal and zeros elsewhere.

3. Compute the SVD of Xo = U 1EIVT.

4. Construct the matrix X 1 = UoE+TU1 .

5. Update the ensemble mean through the following equation:

a + f + Xf/'STX (I + E2)-1 XT (d - Hxf) (3.47)

This can be done efficiently through the following matrix-vector operations:

a. Compute the vector yo = XT (d - HR ).

b. Compute y2 = (I + 2)-1 y0. Recognize that the term inside the paren-

theses is easily inverted because it is square and diagonal.

c. Compute y3 = Xly 2.

d. Compute the vector y4 = STy3.

e. Update the ensemble mean from Ra = f + Xf'y 4.

6. Construct the matrix X 2 = (I + S)- XTS.

7. Perform the SVD of X 2, such that U 2E 2V2 = X 2.

8. Construct the ensemble of analyzed state perturbations from

Xa'= X'V 2 I- 20T

The ensemble of analyzed state vectors X" is then determined by adding the

analyzed ensemble mean (iRa) to each column of Xa"'. Each column. Each of the K

columns of Xa represents a state vector with which the model can be reinitialized.
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3.3.1 Treatment of nonlinear observation operator

As discussed above it may be necessary or more convenient to formulate the ob-

serving system as a nonlinear transformation of the state vector, 7-(x), as in equa-

tion (3.34) above. If it is not possible to linearize the observing system equations,

the square root implementation of the EnKF formulation outlined above above can

still be used to constrain the model estimate to the observational data. However, it

requires that we assume

S = HXf ' ro -(Xf ) - -(X). (3.48)

The validity of this assumption depends on the degree to which the observing

system yields predicted observations that are linearly related to the state. Hence,

for observing systems that yield predicted observations that exhibit only a weakly

nonlinear dependence on the modeled soil moisture state the assumption is not

likely overly restrictive. Alternatively, the impact of this assumption can be reduced

provided that the predicted observations can be easily transformed (e.g., a logarith-

mic transformation) so that the observing system becomes more linear. The degree

to which the microwave observing system formulated in this thesis yields predicted

observations that are approximately linearly related to the soil moisture modeled

by tRIBS-VEGGIE will be discussed in the following chapter.

3.4 Recasting tRIBS-VEGGIE outputs as a state vector

This chapter concludes with a description of how the square root implemen-

tation of the ensemble Kalman filter can be implemented with the tRIBS-VEGGIE

model. In particular, what is required is a brief translation of how the tRIBS-VEGGIE

soil moisture state can be expressed a vector.

In the soil moisture data assimilation system constructed, the state vector at

the time of observation (x) is the profile soil moisture estimate for every tRIBS-
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VEGGIE computational pixel in the Voronoi Polygon Network representation of the

watershed under study. Since the soil profile consists of 9 finite element layers

associated with 10 soil moisture values at the boundaries of each layer, the state

vector can be constructed as,

0 k,1,1

0 k,1,2

0 k,1,10

0 k,2,1

Ok,2,2
Xk = (3.49)

0k,2,10

Ok,Ns,1

Ok,Ns,2

0 k,Ns,10

where 0k,i,j is the simulated soil moisture of ensemble replicate k, at computa-

tional pixel i of Ns in the watershed, and at finite element node j of 10 in the soil

profile. The first guess ensemble estimate of the state Xf is simply the collection of

the soil moisture state from K independent tRIBS-VEGGIE simulations at the time

of observation. The observing system which relates the soil moisture states to mi-

crowave brightness temperatures and radar backscatter (H7-(x)) is formulated in the

following chapter. Moreover, the specification of the observational error covariance

structure (R) is a property of the observing instrument and is detailed in the fol-

lowing chapter as well. Treatment of input uncertainty in Monte Carlo soil moisture

simulation with tRIBS-VEGGIE is dealt with in Chapters 5, 6, and 7.

In conclusion, one advantageous aspect of implementing the EnKF is that mini-

mal modifications to the model formulation are required. The primary modification
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to the tRIBS-VEGGIE code that is required in the construction of the soil moisture

data assimilation outlined here is the ability to output the state of the system and

restart the model with a new state vector retrieved from the Kalman update proce-

dure when the observation is available. The Kalman update is completely modular

to the tRIBS-VEGGIE modeling framework and could, in principle, be applied to any

soil moisture-evolving model whose state space can be recast in the manner shown

in equation (3.49).
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CHAPTER 4

FORMULATION OF THE

OBSERVING SYSTEM

This chapter details the formulation of two microwave observing systems that

serve to transform tRIBS-VEGGIE simulations of the near-surface moisture and en-

ergy state into predicted observations. As demonstrated in the previous chapter,

ensemble-based data assimilation depends on a mathematical construct to project

the state vector into the observation space to be compared with data. The first ob-

serving system is a passive microwave model based on black body radiative transfer

concepts. The second system introduced is a microwave radar system that models

the predicted backscattered energy at a sensor depending on the degree of wetness

of the reflecting soil. Effects of topography on the geometry of both observing sys-

tems, particularly as it affects the local incidence angle and polarization rotation, is

studied after outlining the system of equations used for each observing system. The

properties and sensitivity of each observing system are then investigated through a

series of numerical experiments. These experiments are designed to distill the sen-

sitivity of predictions of microwave brightness temperature and radar backscatter

to topographic factors that influence emission/reflection and on observing system

geometry.
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4.1 Passive remote sensing observing system

Emission of microwave radiation from the Earth's surface is modeled through

a layered single-scattering radiative transfer model [Kerr and Wigneron, 1995].

The predicted observation of brightness temperature, Tbp observed by the sensor at

polarization p is comprised of a component from a vegetated fractional area (fe)

and a component from the bare soil (1 - f,) as presented by Crow et al. [2005]

Tbp =c TS P ( Op +

To (1 - p) ( - exp co L))

-(1+rpexp( cos + ( - f)Tse (4.1)

where Ts is the soil temperature (K), ep is the emissivity of the soil (dimension-

less), 7, is the nadir vegetation opacity (nepers) at polarization p, OL is the local

incidence angle (radians), Tc and Ts are the canopy and soil temperatures (K),

w, is the single scattering albedo (dimensionless) at polarization p, and rp is the

local reflectivity of the soil (rp = 1 - ep) (dimensionless). The - p/ cos 0 L term in

equation (4.1) is a theoretical representation for the vegetation opacity, taking into

account the slant path through the vegetation layer Njoku and Entekhabi [1996]

originally formulated by Kirdiashev et al. [1979] and later derived using effective

medium theory by Wegmuller et al. [1995].

Vegetation opacity, rp, varies by plant type and is often modeled as a linear func-

tion of vegetation water content, V,, (kg m-2 ) in which the constant of proportion-

ality, bp, is a vegetation type-dependent opacity coefficient [Jackson and Schmugge,

1991; de Griend and Wigneron, 2004] that depends on polarization,
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T, = bV .c (4.2)

Because this work focuses on semiarid landscapes with natural grasses, vegeta-

tion water content is estimated through an empirical linear relationship between

V,, and Leaf Area Index (LAI) based on field data suggested by de Rosnay et al.

[2006] for semiarid grasses,

VWc = 0.37LAI + 0.123. (4.3)

The inputs to the radiative transfer model, Ts, Tc, w, V, (LAI), b, h, and 0

characterize the state of land surface soil and vegetation. These states are evolved

in the spatially distributed tRIBS-VEGGIE model, which takes as input hydromete-

orological forcings. The surface reflectivity, rp, is computed as the reflectivity of an

equivalent smooth surface, rs,, extinguished exponentially by roughness of the soil

surface as parameterized by h, which is linearly related to the root-mean-square

(rms) surface height,

rp = rsp exp(-h) (4.4)

The above formulation is meant to capture the effects of soil texture, vegetation

and microtopographic height variation on the reflectivity. The reflectivity of the

smooth surface, rs, is a function of the dielectic constant of the soil-air-water ma-

trix and the incidence angle, OL. The Fresnel equations give the reflectivity of the

smooth surface, rsp, at both the horizontal (p = h) and vertical (p = v) polarizations

[Kong, 1990]. For p = h,

2
cos OL - VEe -Sin 2 L

rsh = COS (4.5)
COS OL + e - sin 2 L

and for p = v,
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/ef - sin 2 0 L - Ee COS OL 2
rs -- (4.6)

r eff - Sin 2 L + Eeff COS (L

where Ee, is the effective dielectric constant of the soil-water-air medium. Es-

timation of the dielectric constant is also required for the active remote sensing

observing system and is discussed below.

4.2 Active remote sensing observing system

Active remote sensing of soil moisture with radar is a promising complement to

passive microwave radiometry [Dobson and Ulaby, 1986; Eom and Boener, 1986;

Wang et al., 1986; Engman, 1991; Evans et al., 1992; Fung et al., 1992; Oh et al.,

1992; Fung, 1994; Chen et al., 1995; Dubois et al., 1995; Altese et al., 1996; Shi

et al., 1997; Hoeben and Troch, 2000; Njoku et al., 2002; Narayan et al., 2006;

Thoma et al., 2006; Narayan and Lakshmi, 2008]. In the lower microwave range

of the electromagnetic spectrum ( 1 GHz) the amount of energy backscattered to

an observing sensor depends on the dielectric constant of the reflective soil media.

Its sensitivity to soil moisture was previously discussed. Satellite observations from

passive systems are of questionable use for hillslope-scale soil moisture estimation

because the resolution of radiometer pixels is typically of the order of 10's of kilo-

meters. Hillslope-scale soil moisture estimates based on brightness temperature

observations at these scales would require spatial disaggregation across many or-

ders of magnitude in scale. By contrast, relative to L-band microwave radiometers,

L-band microwave radar observations have much higher spatial resolutions [En-

tekhabi et al., 2004]. The National Aeronautic and Space Administration's (NASA's)

Soil Moisture Active-Passive (SMAP) mission, tentatively scheduled for launch be-

tween 2010-2013, will release observations of active microwave backscatter at spa-

tial resolutions of approximately 3 km. Single look backscatter observations at

resolutions of 1 km may also be available.
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The Integral Equation Model (IEM) [Fung, 1994; Altese et al., 1996; Chen et al.,

1995; Hoeben and Troch, 2000] provides a conceptual framework through which

the backscatter can be modeled with information about the radar sensor, the rough-

ness features of the area, and the near-surface moisture conditions. This model

is applicable for surfaces with small to medium roughness, parameterized by a

root-mean-square (rms) surface height o, and a correlation length L. Owing to

its sensitivity to roughness, the IEM is most applicable for sparsely vegetated sur-

faces [Dubois et al., 1995]. Roughness parameters are often normalized by the free

space wave number k to recast the parameterization in terms of ku and kL. The

wave number (k) is equal to 2ir/A, where A is the wavelength. The like polarized

(e.g., hh or vv) dimensionless backscatter coefficient o under these conditions is

expressed as,

o = 22 W() (2k, 0) (4.7)
j=1

where kz = k cos OL, kx = k sin L, and OL is the local incidence angle. Note

that equation (4.7) is valid for like polarized observations (i.e., pp = hh or vv).

The backscattered energy is often given in units of decibels [dB], in which UP [dB]

= 10 log10 aup. Throughout the remainder of this work, backscatter will be presented

in dB. The variable I is computed as,

3 = (2kz)j fppek 2  (kz) j [Fpp(-kx, 0) + Fpp(kx, 0)]
Ig3 = (2 kz fpe + - 2 (4.8)

and W (j ) ((, i) is the jthe power of the surface roughness spectrum. It is related

to the jth power of the surface roughness correlation function, p ((, J), through the

Fourier transform,

W ()0) - j 2 ,l -J1dldl. (4.9)

Appendix 2B of Fung [1994] provides several Fourier transform pairs for the
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functions p ((, ) and WOj ) ((, ). Here it is assumed that the roughness correlation

is an exponential function as in Fung et al. [1992]; Chen et al. [1995] and Altese

et al. [1996]. As pointed out in Fung [1994], although the exponential roughness

correlation is frequently used in practice, it has the theoretically undesirable prop-

erty of being undifferentiable at the origin. However, for practical applications, the

exponential correlation function can be thought of as an approximation to a more

complex function that is differentiable at the origin, examples of which are shown

in Fung [1994]. For some single parameter correlation function parameterized by

a correlation length L and of the form exp(-(|I/L), however, the jth power of the

roughness spectrum can be analytically written as,

W()(K) = () [1 + (4.10)

The above formulation also assumes that the roughness correlation function is

isotropic and the Fourier transform in equation (4.9) reduces to a 1-dimensional

transform. In equation (4.8) fp and F, are, respectively, the polarization-specific

Kirchoff and complementary field coefficients. Expressions given below are taken

from Fung [1994]. The Kirchoff coefficients are given by,

2Rll
f COS (4.11)

and

-2RI
fhh -= , (4.12)

where R1I and RI are the Fresnel reflection coefficients in the vertical and hori-

zontal polarizations, respectively. The Fresnel reflection coefficients are a function

of OL, the dielectric constant of the soil-water-air medium e, and are given by,
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E COS 0L -
RI =

E cos OL +

COS OL -

COS OL +

/E - sin2 OL
E - sin 2 OL

&E - sin 2 OL

& - sin 2 OL

The complementary field coefficients in the horizontally and vertically like-polarized

states can be computed, respectively, as:

F,, (-k, O) + F (k, 0) = 2sin 1 -COS (1 - R) 2

S 1-- OE - sin2 ROL

+ (i- (1 + RI) 2]

and,

Fhh (-k, O) + Fhh (k, 0) = sin2 L 4R - - (1 + R) 2

cos OL 1 E

4.2.1 Specification of the dielectric constant E

(4.16)

(4.15)

The dielectric constant (e) of the soil-water-air medium is related to the relative

proportions of soil, air, and water present in the matrix, and the dielectric prop-

erties dielectric properties of the individual constituents. In general, the dielectric

constant of a matrix depends on both real and imaginary components,

E = E' + jE", (4.17)

where the imaginary part e" represents the transmission loss factor, which can
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be significant in highly saline soils, particularly at low moisture contents Dobson

et al. [1985]. In estimating the dielectric constant the imaginary component is

often neglected, and a bulk "effective" dielectric constant eff is instead estimated.

In this work, two models are optionally used to compute the effective dielec-

tric constant of the variably saturated soil-air-water medium. The first model is

an empirical model based on laboratory experiments that expresses the effective di-

electric constant Eeff as a 3rd degree polynomial function of volumetric soil moisture

0 [m3/m3]. The model, proposed in Topp et al. [1980] is given as

Eef = 3.03 + 9.30 + 14602 - 76.703. (4.18)

Note that while this does not explicitly account for differences between distinct

soil types, it has been shown to be useful in most mineral soils. The second model

of the dielectric constant used here was outlined in Friedman [1998], and is for-

mulated based on the composite spheres model. Friedman's model is based on the

assumption that the soil can be described as an array of spherical inclusions that

are small with respect to the wavelength of an imposed electric potential gradient,

Eo, applied at infinity (Fig. 4-1). As such, these spherical inclusions are composed

of 3 concentric shells representing the air, solid, and water phases. Inclusions are

assumed to be identical in the relative thicknesses of each shell representing a phase

(phase-shell), although the absolute sizes of the inclusions can vary. Under these

assumptions, the effective dielectric constant of the composite sphere is derived in

Friedman [1998]. In Fig. 4-1 the volume fractions of the respective three concentric

phase-shells are,

R 3 - R 3

1= R 2(4.19)

R3 
4.20)

02- 2 3 3(4.20)R31
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Figure 4-1: Schematic diagram of the composite sphere concept. The composite

sphere consists of three concentric spherical shells, each with sizes defined by their

outer radii R, and dielectric constants defined by ei. Through effective medium

theory the dielectric behavior of the composite sphere can be represented by a single

effective dielectric constant seff when exposed to an electrical potential gradient E

applied at infinity.

and,

3 = -. (4.21)

The expression for the effective dielectric constant ceff of the sphere requires

knowledge of two of the volume fractions described above (02, and q3) and the

dielectric constant of each phase (es, 62, and E3), and is given by,

eff = E + ({3[(03 + 02)(-2 - 61)(262 + 63) - 03(L2 - 63)

*(2E2 + Ei)1l }/[(261 + E2)(2E2 + E3)

-2 (2 - 61)(62 - E3) - (0 3 + 0 2 )(E 2 - el)

• 3 + .2

*(22 + 63) + k3(62 - 63)(2E2 + 6). (4.22)
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Note that the because the above expression relies only on the volume fractions

and not the absolute volume of the concentric shells, estimation of eeff can proceed

with knowledge of the volumetric soil moisture and total porosity of the soil. The

ordering of the phases of the composite sphere can take 6 different configurations

depending on the medium assigned to each of the shells (i.e., air, water, or solid).

By convention, the three-phase configuration of a composite sphere is referred to

by describing the phases of the innermost to outermost shells. Friedman [1998]

investigated the six possible composite sphere configurations and concluded that

the water-solid-air (WSA), air-water-solid (AWS), and water-air-solid (WAS) con-

figurations lead to unreasonably low eff at high 0 when compared to corresponding

values of seff from the model of Topp et al. [1980]. Of the three configurations

for which Eeff agrees reasonable well with the model of Topp et al. [1980], Fried-

man [1998] argues that the solid-water-air (SWA) configuration, consistent with

water bound to solids at low moisture, and the air-water-solid (ASW) configura-

tion, consistent with a soil water sheet enveloping solids and small air pockets at

high moisture, are physically most consistent with hydrologic wetting-drying cycles.

Through an effective medium approximation, the effective dielectric constant of the

bulk medium is then estimated as a soil moisture weighted-average of the dielec-

tric constants for the two potential composite sphere configurations (i.e., ESWA and

EASW):

S[[fSWA (EASW - 2 swA) + f SW (EswA - 2EASW)]
2

e = [16
+ ESWAEASW

2
[fSWA (EASw - 2ESWA) + fASW (SWA - 2EASW)] (4.23)

4
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where fsWA = 1 - Se, fASW = Se, and S, is the effective soil saturation, defined

as Se = ( - OR)/(Os - OR) with Os and O)R representing, respectively, the saturation

and residual moisture contents of the soil [m3/m3 ].

What remains in the model outlined in Friedman [1998] is the determination of

the dielectric constant of the aqueous phase (Ew), solid phase (Es), and air phase

(EA). As pointed out in Friedman [1998], estimates of the dielectric constant based

on moisture alone tend to overestimate experimental measurements, because the

dielectric constant of water in thin films surrounding soil particles is less than that

of free water at the same frequency and temperature [Dobson et al., 1985; Dirksen

and Dasberg, 1993]. In Friedman [1998] this added complexity is dealt with by

assuming the water phase of each composite sphere is subdivided into neighboring

bound- and free-water shells. Both composite sphere configurations considered

(ASW, and SWA) in this dielectric model place the soil and water phases adjacently.

Therefore, the model treats the dielectric constant of the aqueous phase (Ew) as

continuously varying from a minimum value at the interface between the soil and

water phases to a maximum at the external boundary of the aqueous phase. The

value of EW is assumed decay exponentially as a function of the distance away from

the soil-water interface,

EW(Z) = Emin + (Emax - Emin)(1 - e-Ax), (4.24)

where 6 min is assumed to be 5.5, and A, is the decay parameter taken to be 108

[cm- 1]. The bulk value of ew for the entire water phase is taken as the harmonic

mean of equation (4.24) between the soil-water interface (x = 0) and the external

water layer boundary (x = d,),

w = dw - dx. (4.25)
EW dw Jo CW(X)

The upper limit of integration, d, [m], is the thickness of the entire aqueous

phase and is a function of 9, soil bulk density pb [km/m 3], and specific area of the
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solids SSA [m2/kg],

d = (4.26)
PbSSA

Performing the integration in equation (4.24), the value of Ew for the aqueous

phase of each composite sphere configuration can be computed directly through

EW dwEm (4.27)
d, + i n emax (emax-emin)e-Xwdw]' 

( 2

A W Emin

where Em is the complex dielectric constant of the free water in the medium.

Consistent with the assumptions outlined above, the imaginary part of the free

water dielectric constant is neglected, and ma,, in equation (4.27) is assumed to be

dominated by the real part, E'mx. Since pb and SSA vary between soil types, equation

(4.26) highlights how this model specifically incorporates information about the

soil type being considered, and therefore allows for systematic variation among soil

types in a way not encompassed in the model of Topp et al. [1980].

The real part of the dielectric constant of the free water phase e'x depends

on both frequency and temperature. According to the relaxation theory first pro-

posed by Debye [1929], the temperature and frequency dependence of E'm. can be

expressed as,

Ea (0, T) - e' (oo, T)El x(f, T) = elx(oc, T) + mx( T) - max((4.28c, T)
1 + (2 rf) 2  (4.28)

where e'ma. (oo, T) is the high frequency limit of the dielectric constant of water

(assumed to be 5.5 as in Friedman [1998]), e'ma(O, T) is the temperature-dependent

static (zero frequency) dielectric component of water, f is the frequency [Hz], and

T is the relaxation time of water (taken as 10- 11 s). The temperature dependence of

the static dielectric constant of water 'max(0, T) is computed through an empirical

relationship based on the temperature T ['C] Weast [1983],
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E'mx(0, T) = 78.54[1 - 4.579 x 10-3(T - 25)

+1.19 x 10- 5 (T - 25)2 - 2.8 x 10-'(T - 25)3]. (4.29)

To reiterate, in this implementation the dielectric model of Friedman [1998]

it is assumed that the imaginary part of the dielectric constant (e"), which rep-

resents a transmission loss factor, is negligible. However, as discussed in Dobson

et al. [1985] and Friedman [1998], the imaginary part of the moist soil dielectric

constant is sensitive to the ionic concentration within the aqueous phase. The as-

sumption of a negligible loss factor is, therefore, potentially restrictive in areas with

soils that are particularly nutrient-rich (e.g., heavily salinized soils, wetlands, some

irrigated lands, etc.). Procedures to estimate the imaginary part of the dielectric

constant exist in the remote sensing literature (e.g., Dobson et al. [1985]), and

future addition of a model to estimate E" would make the soil dielectric model out-

lined here more general. Incorporation of such a model would require introduction

of additional soil parameters related to the chemical reactivity of the soil to capture

salinity effects at low moisture contents.

To summarize estimation of the dielectric constant with the model proposed by

Friedman [1998]:

1. The maximum dielectric constant of the aqueous phase is computed at the

frequency and temperature of interest (equations 4.28 and 4.29).

2. The bulk dielectric constant of the aqueous phase is computed based on the

thickness of the water shell (equations 4.26 and 4.27).

3. Based on 0 and the total porosity, the volume fractions of each phase are com-

puted, and the dielectric constant for both composite sphere configurations

(ASW and SWA) is computed (equation 4.22).
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Figure 4-2: Effective dielectric constant versus degree of saturation for the model of
Topp [1980] (dashed line) and Friedman [1998] (solid line) for: (a) clay, (b) loam,
(c) loamy sand, and (d) sand soils.

4. The soil-moisture weighing functions for each composite sphere configura-

tions are computed and the bulk dielectric constant of the soil-water-air medium

are computed (equation 4.23).

The dielectric behavior of the two models outlined above is compared in Fig-

ure 4-2. As depicted, even though the model of Topp et al. [1980] contains no

explicit representation of soil textural variation, it reasonably well fits the more so-

phisticated model of Friedman [1998]. However, the Topp et al. [1980] model is

consistently below the Friedman [1998] for all soil types near saturation.
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4.3 Dependence of local incident angle on topography

At a location at which the emission of microwave radiation is modeled, R, the

position of an observing satellite relative to the reference location can be expressed

as a function of the azimuth ((s) and zenith (Js) angles from the reference to the

satellite (figure 4-3). By convention, (s is defined as the angle made between the

locally-horizontal line connecting R with true North and the locally-horizontal line

connecting R with the sub-satellite point (the point on the Earths surface directly

beneath the satellite), positive clockwise. 6s is the angle between a line originating

at R in the -g direction and the line connecting the R and the satellite. For a

sloping surface, the local incidence angle that the observing satellite makes with

the reference location is a function of the local topographic slope (av) and aspect

((v) (figure 4-3). By convention, (v is defined as the angle in the locally-horizontal

plane that the local direction of steepest descent makes with true North. av is the

local gradient with respect to the horizontal in the direction of steepest descent.

Following the work of Mitzler and Standley [2000] the local incidence angle, 0,

can be computed directly knowing (s, (v, Js, and av through the spherical law of

cosines,

cos OL = COS aV COS 6s + sin av sin 6s cos(s - v) (4.30)

Further, as depicted by Mitzler and Standley [2000], surface topography also

results in a rotation of the linear polarization by an angle o that can be calculated

as,

sin p = sin((s - () sin av/ sin OL. (4.31)

Following the formulation outlined in Miitzler and Standley [2000], the horizontally-

polarized reflectivity in the reference frame of the observing sensor, Rh, can be

determined as a function of the linear polarization rotation angle, W,
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Rh = Rh,j cos2 (p + Rv, sin 2 p.

Similarly, the vertically-polarized reflectivity in the observing sensor reference

frame, R,, can be determined as,

R, = Rv,l Cos 2 (p + Rh,l sin 2 cp. (4.33)

The reflectivities (R) in equations (4.32) and (4.33) are a function of the di-

electic constant of the soil-air-water matrix, Ceff and the local incidence angle, OL,

but are computed in a slightly different manner for the passive and active observing

systems. For the passive observing system Rh,j = rh and R,,, = rv, from equa-

tions (4.5) and (4.6), respectively. Similarly, for the active system Rh,l = R11 and

R,l = R± from equations (4.14) and (4.15), respectively.

At a locally-flat location (av = 00), OL = 6s, and the local incidence angle is

independent of the azimuth angle to the satellite, (s. Studies examining large areas

typically assume OL equals 6s, which is approximately equal to the off-nadir look

angle of the observing satellite (e.g., Crow et al. [2005]). Equation (4.30) describes

how the local incidence angle can be directly computed with variables that can be

obtained from rudimentary terrain analyses of widely available DEMs, such as the

Shuttle Radar Topography Mission dataset [Farr et al., 2007].

Hillslope-scale predictions of brightness temperature and radar backscatter can

be spatially aggregated to the ground resolution of the observing sensor by weighing

each pixel according to its contribution to the radiation received at the sensor. The

contribution of a pixel to the bulk observation at the ground resolution of the sensor

depends on the solid angle Q = A cos0/r 2, where A is the surface area of the

pixel, and r is the distance from the pixel to the radiometer antenna Matzler and

Standley [2000]. Within a single pixel at the sensor ground resolution, r will not

vary substantially and in this work is assumed uniform. Therefore, the predicted

observation of microwave brightness temperature or radar bacscatter observed at
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-9S

zenith angle to the satellite, Js.

the sensor (Tbp or ",, respectively) due to emission or reflection from the visible

pixels within a single satellite pixel can be computed as,

n

j=1Tbp = n (4.34)

j=1

in the case of the passive observing system, or

n

p j=n (4.35)

j=1

in the case of the active system. In equations (4.34) and (4.35) n is the number

of pixels within a single satellite pixel that are visible at given satellite azimuth

((s). It should be noted that the effects of-local viewshed on visible sky in modeling
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emission of microwave radiation from the surface are not considered. Incorporation

of viewshed effects on visible sky is a straightforward extension of the present work:

emission of microwave radiation is simply not modeled at computational elements

obscured from view of the satellite by surrounding terrain.

Determination of the local incidence and polarization rotation angles is predi-

cated upon knowledge of Ss and (s. For low Earth orbiting satellites, observations

are discrete but regularly occurring events that depend on characteristics of the

satellite such as orbital height, inclination, and footprint size and geometry. Hence,

determination of bs and (s requires simulation of the orbital mechanics of the ob-

serving satellite to detect the temporal occurrence of observation of a particular

point on the Earth's surface. When the occurrence of an observation is detected,

then 6s and (s can be computed knowing the relative positions of the point being

observed and the location of the satellite. Appendix A provides an outline of such

a simulation framework that can be used to determine when a location is being

observed and subsequently determine 6s and Cs.

4.4 Properties of the passive observing system

4.4.1 Passive observing system: Organization of hillslope-scale brightness.

temperatures

This section provides an analysis of the properties of the passive observing sys-

tem. The purpose of this analysis is to diagnose the sensitivity of the predicted ob-

servations to variation in factors affecting emission/reflection of microwave energy

and the topographic effects on observing geometry. As an experimental location for

the coupled hydrology-vegetation model, they used two synthetic landscapes. Both

domains were generated with a physically-based landscape evolution model [Tucker

and Bras, 1998; T'Icker et al., 2001b,a], which evolves local elevation as a function

of sediment influx and outflux. Local tectonic uplift and input of sediment eroded
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from upstream account for the local influx of sediment, and the export of sediment

is derived from local erosion. The local change in elevation is computed as the diver-

gence of sediment influx and export. Equilibrium topography was reached in each

of the domains when the volume of sediment input through tectonic uplift to the

watershed is balanced by the export of sediment from the watershed. The two sim-

ulated domains correspond to two different dominating erosional mechanisms. The

diffusive erosion terrain assumes that slope-dependent processes (e.g., soil creep)

are the primary mechanism of erosion locally, resulting in shallower slopes, longer

hillslopes and lower topographic relief (range in watershed elevation) (figure 4-

4(a)). The fluvial erosion terrain assumes that the primary mechanism of local

erosion is shear stress above some threshold imparted by surface runoff, resulting

in higher slopes, shorter hillslopes, and greater topographic relief (figure 4-4(b)).
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Figure 4-4: Two catchments used as computational domains for the tRIBS-VEGGIE

and generated by a physically-based landscape evolution model with (a) slope-

dependent diffusive erosion resulting in landscape less dissected by channels with

longer hillslopes and shallower slopes (average and standard deviation in slope is

0.231 m/m and 0.103 mi/m, respectively), and (b) overland flow-dependent fluvial

erosion resulting in more channel dissection of the landscape, shorter hillslopes,
and higher slopes (average and standard deviation in slope is 0.500 m/mn and

0.192 m/m, respectively). Black circles represent the channel network and are

proportional in size to upstream contributing area (km2). Black lines are eleva-

tion contours and are drawn at 10 m intervals in the diffusion domain, and 20 m

intervals in the fluvial domain.
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Ivanov et al. [2008b] use the diffusive erosion and fluvial erosion synthetic ter-

rains as the geometric constructs for several multi-year simulations to develop pat-

terns of soil moisture and vegetation biomass consistent with field-based observa-

tions. They confined their investigation to consider only the behavior of C4 grasses

and climatology consistent with the Sevilleta National Wildlife Refuge (SNWR). The

meteorological forcings consistent with SNWR were generated with the stochas-

tic weather generator of Ivanov et al. [2007]: hourly rainfall, temperature, pres-

sure, sky cloud-cover fraction, and relative humidity. From the simulated outputs

of Ivanov et al. [2008b], the following variables were used as input to the radia-

tive transfer model: soil moisture in the top 25 mm of the soil column (0), soil

temperature (Ts), canopy temperature (Tc), and LAI. Instantaneous values of the

land surface state inputs to equations (4.1), (4.3) and (4.18) are obtained from a

tRIBS-VEGGIE model simulation corresponding to a hypothetical midday on August

14 with no rain or clouds. Vegetation water content, V, was computed from equa-

tion (4.3) with the simulated LAI, and the dielectric constant from equation (4.18)

with the simulated soil moisture. The range of these variables for the two domains

is reported in Table 4-1.

In the semiarid-grassland considered, simulated fractional vegetation cover is

approximately 34%, maximum LAI is approximately 0.94, and maximum vege-

tation height is approximately 0.24 m. Undisturbed natural grasses are primarily

oriented vertically, which could lead to significant polarization effects. However,

several studies have found that these polarization effects are small in grasslands

similar to the ones considered here [Crow et al., 2005; Merlin et al., 2005; Vall-

Ilossera et al., 2005], and the polarization effects on T, by, and w, are therefore

neglected. However, it should be noted that Schwank et al. [2005] conclude that

anisotropic vegetation models are most appropriate in soil moisture retrieval algo-

rithms because of the anisotropic nature of real canopies. Importantly, in a series of

field experiments in forested areas Guglielmetti et al. [2008] concluded that signif-

icant canopy cover can significantly attenuate the moisture signal from the ground

surface.
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Table 4.1: Range of land surface state inputs to radiative transfer model for diffusive
and fluvial erosion domains.

Diffusive erosion Fluvial erosion
landscape landscape

Variable Mean Range Mean Range
Ts [K] 324.68 318.82-327.22 321.66 310.13-327.29
Tc [K] 314.77 311.48-316.32 313.01 306.67-316.43

fe [m 2/m 2 ] 0.342 0.311-0.378 0.337 0.265-0.390
0 [m3/m3 ] 0.0291 0.0287-0.0297 0.0291 0.0286-0.0299

LAI [m2/m 2 ] 0.799 0.711-0.904 0.783 0.586-0.940
h [-] 0.10
b [-] 0.10
w [-] 0.05

As a way of developing some intuition about the degree to which topographic

effects on incidence angle may impact modeled brightness temperatures, the sensi-

tivity of the modeled microwave brightness temperature to incidence angle is inves-

tigated. Using the spatial average values of Ts, Tc, f,, and LAI shown for the dif-

fusive landscape in Table 4.1 together with assumed values of effective saturation

of 0.2, 0.3, 0.5, 0.7 and 0.91 the horizontally and vertically polarized brightness

temperatures are computed at incidence angles varying from 0O to 900 off nadir

(figure 4-5(a)). Along with a histograms of incidence angles in the diffusive and

fluvial erosion domains produced by assuming (s = 1500 and 6s = 400 and com-

puting OL through equation (4.30) (figure 4-5(b)), the dependence of Ty on 9 L

gives a first order expectation of the range of hillslope-scale variation in brightness

temperatures.

The dependence of brightness temperature on incidence angle reveals that for

650 < L < 900, the brightness temperature decreases rapidly in the vertical polar-

ization as OL approaches 90" for surface conditions corresponding to mean values

in Table 4.1 (see figure 4-5(a)). Since Tbh decreases with increasing OL for given

surface states and OL less than approximately 830, hillslopes with low 9L would be

1Effective saturation, Se, is related to the volumetric moisture content 0 as Se = (0 - OR)/(OS -
OR), where Os and OR are the saturation and residual moisture contents, respectively. For the loam
soil considered here and in Ivanov et al. [2008b], it is assumed that Os equals 0.434 and OR equals
0.027
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expected to exhibit higher Tbh (figure 4-5(a)). At OL greater than approximately 850

for given surface state Tbh increases slightly as OL approaches approximately 880 and

then decreases again as OL approaches 900. However Tbh decreases with increasing

0 for all OL. By contrast, for given surface states Tb increases with increasing OL

to a maximum value of Tbv that occurs between values of OL between 650 and 800

depending on the surface state, and then decreases as OL increases toward a value

OL equals 900 (figure 4-5(a)). At OL greater than approximately 800 Tbv increases

with moisture at given OL, whereas at gL less than approximately 650 Tb, decreases

with increasing moisture at given OL*

Moreover, for 650 _< L < 900, increasing volumetric soil moisture is associated

with increasing Tbv. In the diffusive erosion domain, few hillslopes exhibit OL 2 650

(figure 4-5(b)) and Tb increases monotonically with 0 L in this domain for given

surface states. In the fluvial erosion domain, by contrast, a significant number of

hillslopes exhibit OL > 65' (figure 4-5(b)). Hence, for the assumed satellite position

the fluvial domain contains areas with 0 such that Tb, decreases with increasing

volumetric soil moisture (i.e., OL < 650) and areas with OL such that Ty increases

with increasing volumetric soil moisture (i.e., OL > 650).

In the diffusive erosion domain, few hillslopes exhibit OL > 650 (figure 4-5(b))

and the relationship between Tb, and OL in the diffusive domain is monotonic for

given surface states. In the fluvial erosion domain, by contrast, a significant num-

ber of hillslopes exhibit OL > 800 (figure 4-5(b)). Hence, for the assumed satellite

position the fluvial domain contains pixels with OL such that Tb decreases with in-

creasing 0 (i.e., OL < 650) and pixels with OL such that Tb, increases with increasing

0 (i.e., OL < 650).

The local incidence angle, OL, is computed with equation (4.13) at each com-

putational node in the domains given the local slope (av) and aspect ((v), and

assumed values for satellite azimuth (Cs) and satellite zenith (6s). In the following

spatially distributed examples the satellite zenith angle is assumed to be equal to

400, which is consistent with conceived soil moisture sensing platforms (e.g., Crow
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Figure 4-5: (a) Brightness temperature as a function of incidence angle in the hori-
zontal (dashed lines) and vertical (full lines) polarizations at moisture levels corre-
sponding to effective soil saturation of 0.2, 0.3, 0.5, 0.7 and 0.9, and (b) empirical
frequency distributions of incidence angle (OL), assuming (s = 1500 and Js = 400
for fluvial (full lines marked by squares) and diffusive (dashed lines marked by
diamonds) erosion domains.

et al. [2005]). Furthermore, a value of (s = 1500 is assumed, which is close to

the azimuth that would be encountered during the ascending limb of a soil mois-

ture sensing satellite in a Sun synchronous orbit. The assumed values of (s and 6s

imply that hillslopes with aspects oriented toward the observing sensor (South- to

Southeast-facing hillslopes in this case) possess the lowest values of OL within the

domain. Conversely, hillslopes with aspects oriented away from the sensor (North-

to Northwest-facing hillslopes) would possess highest values of OL*

For the two synthetic domains, spatially varying inputs to the radiative transfer

model represent instantaneous values of local Ts, Tc, V,,, h, and 0 simulated by

tRIBS-VEGGIE during a rain-free day in mid August. Again, the range of variabil-

ity of each state variable input to the radiative transfer scheme for both domains

is given in Table 4.1. The spatial organization in near-surface soil moisture, soil

temperature, canopy temperature, and vegetation height and abundance (as mod-

ulated by the effect of LAI on vegetation optical thickness) impacts the spatial

distribution of hillslope-scale brightness temperatures in a significant and consis-

tent manner (figure 4-6). In the diffusive erosion landscape, the range of modeled

145



Legend

dN*- 7mpeature P
i 34. 1 -30.77

S306 78 -308.77
I 308W7 -31.40

1 31.52- 31274
i312 5-314 43

1 314.39- 3174

S317.7 -31874
318.75 -319.77

NI

0 t25 250 508 750 1.0O
LIMM

0 125 250 500 750 1.000
I = Meam

(a)

0 91 250 100 78 1,0
MK=MCMMMMC=== UnO%

(b)

Lend
bdgh~wes Testperatwropq

125 " - 86
m8a868 22227M.. 28887

UZAs - St.225160-274,72
27473.293.90
293.21 - W3.63

I 3054-4100031m 0 1- 818
mlWl -s811

t031618-31.78

a 18 288 c&0M 70 .do.0

0 it$250 500 750 1,000

(d)

Figure 4-6: Spatial distribution of brightness temperature assuming (s = 1500 and
Ss = 400 with land surface states at each pixel evolved by the tRIBS+VEGGIE
model for (a) diffusion-dominated terrain in the horizontal polarization, (b) dif-
fusion dominated terrain in the vertical polarization, (c) fluvial erosion-dominated
terrain in the horizontal polarization, and (d) fluvial erosion-dominated terrain in
the vertical polarization.

brightness temperatures varies from approximately 224 to 302 K in the horizontal

polarization (figure 4-6(a)) and from approximately 298 to 320 K in the vertical

polarization (figure 4-6(b)). Computational pixels with West- and North-facing

aspects exhibit lower Tbh relative to South- and East-facing pixels. Alternatively,

South-and East-facing pixels tend to exhibit lower To than pixels facing North and

West. Similar patterns to those seen in the diffusive erosion domain can be seen in

the fluvial erosion domain, though the scale of spatial variation in modeled bright-
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ness temperatures is finer than in the diffusive erosion domain and the range of

variability in brightness temperature higher. There exist computational elements

within the fluvial erosion domain that cannot be observed because the local value

of 0 would be greater than 900 given the assumed Cs and 6s, and local values of av

and (v. In the fluvial erosion landscape, the range of modeled brightness tempera-

tures varies from approximately 121 to 317 K in the horizontal polarization (figure

4-6(c)) and from approximately 117 to 320 K in the vertical polarization (figure 4-

6(d)). Similar to the diffusive erosion domain, North- and West-facing hillslopes in

the fluvial erosion domain are associated with the lowest values of Tbh. Explaining

the spatial distribution of Tb in the fluvial erosion domain is more difficult since

the distribution of 0 within the domain results in areas where T increases with

0, Ts, and Tc and areas where Tb, decreases with increasing 0, Ts, and Tc. Spa-

tial patterns of hillslope-scale Tbh and Tbo in both domains are associated with both

topography-controlled variation on incidence angles and surface states.

Topographic controls on the distribution of incoming solar radiation lead to ten-

dencies of South- and Southeast-facing hillslopes to exhibit higher soil tempera-

tures, lower moisture and lower vegetation biomass (in the Northern hemisphere).

The tendency for lower moisture and higher soil temperatures in these areas would

lead to higher values of Tbh for given 0. On the other hand, North- and Northwest-

facing hillslopes are exposed to less incident solar radiation and therefore tend

to exhibit lower daytime soil and canopy temperatures, higher soil moisture, and

greater vegetation biomass than South-facing hillslopes. Therefore, topographic

gradients in surface states act to enhance North-South contrasts in hillslope-scale

Tbh compared with topographic effects on incidence angle alone for the assumed (s

and 6s.

To diagnose the relative impacts of spatial variability in surface states input to

the RTM for the assumed sensor sky position, Tbh and Tb are recomputed at each

computation node using the locally-derived value of 0 and c, but with the spatially-

averaged values of Ts, Tc, fe, 0, LAI, and h reported in Table 4.1. The maps of
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Figure 4-7: Spatial distribution of difference between simulated brightness temper-
atures using spatially-varied and spatially-averaged surface states assuming Cs =
1500 and 6s = 400 for (a) diffusive erosion terrain in the horizontal polarization,
(b) diffusive erosion terrain in the vertical polarization, (c) fluvial erosion terrain
in the horizontal polarization, and (d) fluvial erosion terrain in the vertical polar-
ization.

Tbh and Tb, computed with spatially-averaged RTM inputs are denoted T9 and Ts,

respectively. Denoting the brightness temperatures in both polarizations computed

from spatially-distributed RTM inputs (i.e., those presented in figure 4-6) as Tg

and T, respectively, figure 4-7 shows the impact of hillslope-scale heterogeneity in

surface states on hillslope-scale microwave radiation emission (i.e., (Ty - Ty) and

(Ta - Tg)). In the diffusive erosion domain, the impact of spatial heterogeneity in

the surface states results in values of (Th - Th) ranging from approximately -5.4
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to +2.3 K (figure 4-7(a)), while in the fluvial erosion domain spatial heterogeneity

leads to values of (T, - Ts) ranging from -25.0 to +5.5 K (figure 4-7(c)). West-

and North-facing pixels exhibit the lowest values of (T - Tgh) in both domains,

while in the fluvial erosion domain West-facing pixels demonstrate the lowest values

of (Tg~ - Tx). Conversely, South- and Southeast-facing pixels exhibit the highest

values of (Tb - Ts) in both the diffusive and fluvial erosion domains. Values of

(T - TC) range from approximately -5.7 to +2.4 K in the diffusive erosion domain

(figure 4-7(b)), and approximately -25.5 to +5.5 K in the fluvial erosion domain

(figure 4-7(d)). Pixels with aspects ranging West to North demonstrate the lowest

values of (Tb, - T) in the respective domains. In the fluvial erosion domain a few

North-facing pixels (primarily clustered around pixels with 0 > 900) exhibit positive

values of (Tgb - TV), suggesting such pixels possess high 9 associated with T that

increases with higher 0, and lower Ts, and Tc that predominate in these areas. It is

important to note that for this particular set of experiments, the spatial patterns in

(Tg - Tgb) and (Tab -T TV) in figure 4-7 likely arise due mostly to spatial variation in

soil and canopy temperature rather than soil moisture and optical thickness. For the

simulated conditions, near-surface soil moisture is relatively low and LAI ranges

from approximately 0.6 to 0.9.

4.4.2 Passive observing system: Sensitivity of aggregate brightness tem-

perature to satellite sky position

In the previous section significant hillslope-scale variation in microwave bright-

ness temperature was attributed to the effects of topography on both the spatial

organization of factors affecting emission and the angles describing the observa-

tional geometry. Here the sensitivity of spatially-aggregated brightness temperature

to satellite azimuth angle (cs) is assessed in order to diagnose the potential effects

of topography at the sensor.

The spatial distribution of horizontally- and vertically-polarized microwave bright-
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ness temperatures was computed through the RTM using the previously described

instantaneous surface states evolved by tRIBS-VEGGIE for both computational do-

mains. In this portion of the sensitivity analysis, it is assumed that the satellite

viewing angle (6s) is 400, while the azimuth angle to the satellite ((s) is allowed to

vary from 1' to 3600, in (s increments of 1'. Local incidence angle and polarization

rotation are computed through equations (4.30) and (4.31), respectively, at ev-

ery computational node in both the diffusive and fluvial erosion domains. For each

domain, this yields 360 spatial maps of horizontally- and vertically-polarized bright-

ness temperature derived from spatially distributed land surface states and denoted

Th and T ', respectively. Each of these hillslope-scale brightness temperature maps

are spatially aggregated, weighing each pixel according to its contribution to the ra-

diation received at the sensor, through equation (4.34).

For comparative purposes, two cases are considered in which brightness temper-

atures at the sensor are modeled assuming 0, Ts, Tc, and LAI are spatially uniform

and equal to the mean value illustrated in Table I for each domains. These two

cases are meant to capture potentially important hypothetical microwave emission

modeling scenarios within a consistent land surface modeling environment: (1) a

coarse-scale land surface model augmented with high-resolution (e.g., 30 m) digital

elevation data to encompass topographic effects on observational geometry, and (2)

a coarse-scale land surface model neglecting topographic effects on observational

geometry. In the first case, topographic effects on 0 and cp are included in modeling

the dependence of horizontally- and vertically-polarized brightness temperature at

the sensor on (s. These brightness temperatures modeled at the sensor are denoted

Th and TFv, respectively, and are computed by substituting TV for T' in the sum-

mation on the right hand side of equation (4.34). In the second case, topographic

effects are neglected 0 = Ss = 400 is assumed. The modeled brightness temper-

atures at the sensor, which does not vary with satellite azimuth ((s), are denoted

Tbh,flat and Tbv,flat, in this case.

For the diffusive erosion domain (e.g., rolling hills with relatively shallow slopes),
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Figure 4-8: Spatial mean values of brightness temperatures as a function of satel-
lite azimuth angle, for (a) diffusion-dominated terrain in the horizontal polariza-
tion, (b) diffusion dominated terrain in the vertical polarization, (c) fluvial erosion-

dominated terrain in the horizontal polarization, and (d) fluvial erosion-dominated
terrain in the Vertical polarization. (T - ) as a function of satellite azimuth an-
gle (cs), for (e) diffusion-dominated terrain in the horizontal polarization, (f) dif-
fusion dominated terrain in the vertical polarization, (g) fluvial erosion-dominated
terrain in the horizontal polarization, and (h) fluvial erosion-dominated terrain in
the vertical polarization.
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Tbh Tbh, Tb and Ty vary in a sinusoidal fashion with azimuth angle to the satellite

((s) (figures 4-8(a),(b)). This sinusoidal variation brightness temperature modeled

at the sensor with (s arises because the assumed value of 6s (400) is greater than

the maximum slope in the domain. For any value of (s this leads to a distribu-

tion of 0 within the diffusive erosion domain that leads to the inclusion of every

computational node in aggregation of the pixel-scale brightness temperatures. This

contrasts with the results from the fluvial erosion landscape (e.g., rugged hills with

relatively steep slopes), which exhibits a more variable relationship between aggre-

gated brightness temperatures and (s (figures 4-8(c),(d)). Because the value of bs

equals 400 is less than the maximum slope in the fluvial erosion domain, groups of

pixels depending on (s will exhibit 0 greater than or equal to the upper 900 limit.

At any value of (s, those pixels with 0 > 900 are not included in aggregation of

pixel-scale brightness temperatures because they cannot be observed by the sensor.

Another important contrast between the diffusive and fluvial erosion terrains lies

in the amplitude of variability in aggregated brightness temperatures with (s. In the

horizontal polarization, Tbh varies from a low of about 283 K at Cs of approximately

400 to a maximum of approximately 288 K at approximately (s equal to 2200, a

range of 5 K in the diffusive erosion landscape (figure 4-8(a)). In the fluvial erosion

domain Tbh ranges from a low of around 284 K at (s equal to approximately 400,

and a maximum of approximately 292 K at (s equal to 1800, an amplitude of about

8 K for conditions of spatially varying surface states (figure 4-8(c)). In comparison,

the corresponding amplitude of variation Tb' is approximately 5 K (figure 4-8(c)).

The impact of spatial heterogeneity in surface states, as illustrated in the more

rugged domain by the difference between Th and Th (figure 4-8(c)) is close to the

sensitivity of the radiometer for many values of (s and greater than the sensitivity

of many operational and planned microwave radiometers at a few particular values

of (s [Kerr et al., 2001; Entekhabi et al., 2004].

The Tby in the diffusive erosion landscape exhibits a maximum of about 312 K

at Cs equal to approximately 400 and a minimum slightly more than 309.5 K at Cs
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equal to about 2200, corresponding to a range in aggregated Tby of approximately

2.5 K (figure 4-8(b)). By comparison, Tbv in the fluvial erosion domain exhibits a

range of approximately 3 K (slightly greater than the radiometer sensitivity), with

an approximate minimum of 292 K at (s near 3300 and an approximate maximum

of 295 K at near 1500 (figure 4-8(d)).

Comparing the modeled brightness temperatures at the sensor that include to-

pographic effects on incidence angle and polarization rotation (Tbh and Tb) to

the modeled brightness temperatures that neglect topographic effects on incidence

angle and polarization rotation, Tbh,flat is approximately 285.5 K in the rolling to-

pographic domain (figure 4-8(a)) and 282.5 K in the rugged topographic domain

(figure 4-8(c)). In the diffusive domain the value of Tbh,flat is approximately the

midpoint of variation in Tbh and Tbh with (s (figure 4-8(a)), while Tbh,flat is at least

1.5 K less than the minimum values of Tbh and Th in the fluvial domain (figure

4-8(c)). In the vertical polarization, Tbv,flat is more than 1 K higher than the maxi-

mum values of TZ and T in the diffusive domain (figure 4-8(b)) and at least 15

K higher than the maximum value of Tj in the fluvial domain (figure 4-8(d)).

The difference in modeled brightness temperatures observed at the sensor (T -

T and Ts'- Tv) as a function of (s is shown explicitly in figures 4-8 (e)- (h). These

plots highlight illustrates the impact of hillslope-scale organization in factors affect-

ing microwave emission at the observing sensor. The fluvial domain (figures 4-8(g)

and 4-8(h)) is more sensitive to hillslope-scale soil moisture, soil temperature, and

vegetation variation than is the diffusive domain (figures 4-8(e) and 4-8(f)). At

(s near 3300, sT is approximately 0.3 K lower than T b in the diffusive domain

(figure 4-8(e)), and T is approximately 1.5 K lower than Tb in the fluvial erosion

domain (figure 4-8(g)). Conversely, when the satellite is situated to the South of

the landscape ((s near 1500), Tv is warmer than T : approximately 0.3 K and 2.0

K in the diffusive (figure 4-8(e)) and fluvial (figure 4-8(g)) domains, respectively.

The Cs corresponding to the minimum and maximum values of (Tb - Tbh) are ac-

counted for by the hillslope-scale organization and correlation of soil moisture, soil
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temperature, and vegetation biomass. By contrast, Tb differs from Tbv by at most

about 0.25 K in the diffusive erosion domain (figure 4-8(f)) and (Tbv - T) is at a

maximum when at (s near 1300 and a minimum at (s near 3000. Meanwhile, T8 is

up to 2 K greater that and nearly 1.5 K lower than Tb in the more topographically

rugged domain (figure 4-8(h)). The non-symmetry in figure 4-8(h) about 0 K is due

to the fact that Tbv exhibits non-monotonic dependence on 0 when 0 is greater than

approximately 650.

Figure 4-8 depicts two important findings of this study: (1) the difference be-

tween Tbp and Tbp demonstrates the role of covariation in the land surface factors

affecting microwave emission at hillslope scales in the modeled brightness temper-

ature at the sensor, and (2) the difference between Tbp,flat and T illustrates the

impact of hillslope-scale topography on modeled brightness temperature at the sen-

sor vis-a-vis its influence on observational geometry.

4.4.3 Effects of hillslope-scale heterogeneity at the scale of planned ra-

diometers

The influence of hillslope-scale topography on local incidence angle over real

terrain is also studied. The case considered is a 43 x 59 km area within North-

central New Mexico, which contains the Sevilleta National Wildlife Refuge and

Long-term Ecological Research station. The DEM was obtained from the Sevilleta

Spatial Database (see http://sevilleta.unm.edu/data/archive/gis/), derived

from interferometric synthetic aperture radar at a resolution of 10 m square. Ele-

vation within the area ranges from 1403 to 2802 m msl.

Local incidence angle (OL) is computed through equation (4.30) at every DEM

cell within imposed 10, 25, and 40 km square windows meant to represent the

size of a single radiometer pixel based on the topographic slope (av) and aspect

(Cv) at each DEM cell and assuming (s = 1500 and 6s = 400. This is a simplifying

assumption, which could be relaxed by computing (s and Ss at each DEM pixel
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knowing the location of the sub-satellite point on the Earths surface and the orbital

altitude of the sensor. Empirical histograms of local incidence angle within each of

the three area-aggregations are then computed.

The empirical histograms shown in figure 4-9 illustrate that for each area-aggregation,

both slope and aspect control the distribution of incidence angle. The influence of

aspect on the histograms is reflected on frequency peaks in figure 4-9. Undoubtedly,

the fact that there are four peaks in the histogram of 9L arises because aspect angle

(cardinal direction of maximum gradient) can take only eight values on a rectan-

gular grid. However, the presence of a coherent topographic structure in any study

domain (such as the North-South oriented ridges present in the study areas) will

lead to distinct ranges of incidence angles that are encountered more frequently,

irrespective of the terrain model (i.e., regular grid spacing vs. irregular mesh). The

frequency at which particular ranges of incidence angles are encountered within the

area-aggregation does not change substantially with increasing spatial aggregation

(figure 4-9).

4.5 Properties of the active observing system

This section provides a sensitivity analysis of the properties of the active ob-

serving system. The sensitivity analysis begins with an investigation to determine

the sensitivity of L-band radar backscatter to both moisture content and a categor-

ical soil type in the two copolarized states (oah and oa). Sensitivity of microwave

backscatter to incidence angle and soil moisture for a particular soil type is then

studied. In addition to diagnosing the sensitivity of the predicted observations to

factors affecting emission/reflection of microwave energy and the topographic ef-

fects on observing geometry, the sensitivity of the active system to surface rough-

ness has been well-studied [Dobson and Ulaby, 1986; Wang et al., 1986; Evans

et al., 1992; Shi et al., 1997]. Therefore, a set of experiments to understand the

sensitivity of predictions of microwave backscatter to assumptions about surface
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Figure 4-9: Empirical frequency distributions of local incidence angles computed

from a 10 m digital elevation model for square domains of size 10 (full line marked

with diamonds), 25 (dashed line marked with squares), and 40 (dotted line marked

with circles) kmin, assuming a satellite azimuth angle of 1500 and a zenith angle of

40.

roughness is performed. Through experiments that use tRIBS-VEGGIE to simulate

a spatially varying soil moisture field, the role of topography in the organization

of hillslope-scale predictions of microwave backscatter is analyzed. The sensitivity

of spatially-averaged microwave backscatter predictions to satellite sky position is

investigated to determine the potential impact of hillslope-scale topographic varia-

tion at the scale of observation. Finally, the concept of temporal radar backscatter

change, which has been found to be related to the corresponding temporal moisture

change [Njoku et al., 2002; Narayan et al., 2006; Narayan and Lakshmi, 2008], is

briefly investigated to discern the degree to which topography may affect inference

of moisture change from temporal backscatter change.
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4.5.1 Active observing system: moisture and incidence angle sensitivity

To investigate the sensitivity of predicted L-band microwave backscatter to mois-

ture and soil properties, the IEM was used to simulate backscatter as a function of

a broad range of soil moisture values for four generic soil types: (1) clay, (2) loam,

(3) loamy sand, and (4) sand. The dielectric constant model used was that of

Friedman [1998], and the properties of the categorical soil types used in this ex-

periment are shown in Table 4-2. Each soil type is associated with particular values

of saturation moisture content (Os), residual moisture content (OR), bulk density

(Pb), and specific surface area (SSA). Values of Os and OR were taken from a sen-

sitivity analysis in Ivanov et al. [2008a,b]. The value of Pb was approximated by

assuming all solid materials had a specific gravity equal to quartz 2.65 and then

calculating pb = 2.65(1- Os) for each categorical soil type. SSA was estimated using

the pedotransfer function of Banin and Amiel [1969], which approximates SSA as

a function of the clay fraction of the soil as SSA = 5.78 x %clay - 15.064. Clay frac-

tions assumed for each soil type were 0.65 (clay), 0.20 (loam), 0.08 (sandy loam)

and 0.05 (sand). For each of the four soil types po is plotted against degree of

saturation (Se = (9 - OR)/(Os - OR)) in figure 4-9.

In both copolarized states, the amount of backscattered energy increases mono-

tonically with increasing moisture. As seen if figure 4-10, at values of S, above

approximately 0.6, the predicted radar backscatter does not differ substantially be-

tween soil types. By contrast, at low effective moisture contents (e.g., Se < 0.3)

there generally exists substantial variation predicted backscatter (in both copolar-

ized states) that is associated with differences in soil type. This between soil type

Table 4.2: Soil hydraulic parameters for each categorical soil type

Soil type Os [m3/m 3] OR [m3/m3 ] Pb [km/m 3] SSA [m2/kg]

Clay 0.385 0.090 1630 330.64
Loam 0.434 0.027 1500 100.54
Loamy sand 0.401 1587 1200 28.29
Sand 0.417 0.020 1545 13.84
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Figure 4-10: Backscatter coefficient o0 versus degree of saturation in the hh polar-
ization (top panel) and w polarization (bottom panel) for four soil textural classes.

variation in microwave backscatter suggested by the IEM at low moisture contents

is suggestive of a potential application of microwave backscatter data in sparsely

vegetated and dry areas (e.g., semiarid grasslands and deserts). Differences in

radar backscatter in similarly-vegetated and dry locations should, in theory be due

to differences in residual moisture content and soil roughness. This conclusion is

not, however, universally true as sand and loam soils exhibit very similar values of

ap across the entire range of effective saturation. It is important to note that in

this particular analysis the soil roughness has been treated identically between soil

types, with the rms surface height assumed to be o = 2.5 cm and the correlation

length assumed to be L = 10 cm. This is, however, not likely to be the case and

it is plausible that differences in characteristic roughness scales between soil types

could enhance differences in dry backscatter between soil type. Using microwave
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radar backscatter data as a way of potentially classifying soils in dry areas, there-

fore, depends on the relative impacts of residual moisture contents and roughness

on microwave backscatter, and the degree to which between soil type variation in

these soil parameters is distinct from within soil type variation.
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e=o
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6 = 0.

=0.
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Figure 4-11: Backscatter coefficient o versus local incidence angle OL in the: (a)

hh and (b) vv polarizations for an indicated range of volumetric moisture contents

0.

Potential impacts of topography vis-a-vis its effect on local incidence angle are

highlighted by plotting predicted microwave backscatter in the two copolarized

states as a function of local incidence angle OL and for a range of volumetric mois-
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ture contents, 0 (figure 4-11). The assumed soil type if figure 4-11 corresponds

to the loamy soil, whose parameters are displayed in Table 4.2. As illustrated in

figure 4-11, and consistent with the idea that backscatter is a measure of energy

received at a sensor, pop decreases monotonically as incidence angle increases. Be-

yond OL , 80, the backscattered energy decreases rapidly to values that are likely

below the detection limit of a radar receiving are therefore not shown. Although the

decrease in backscatter is monotonic as OL increases, in the vertically copolarized

state the relationship between acu and OL is more nonlinear than the corresponding

relationship between agh and OL. In the horizontally copolarized state, however,

the degree of nonlinearity in the relationship between c4 h and OL is a function of

the moisture content. As the soil becomes dryer, the ar7 h versus OL becomes more

nonlinear. Also of interest is how the dynamic range of Uap, that is the difference

between au, in the wettest and driest states, varies as a function of OL. As seen in

figure 4-11, the behavior of the dynamic range of uag versus OL is different in the

horizontally and vertically copolarized states. In the vertically copolarized state, the

dynamic range of auo increases as the incidence angle increases (figure 4-11b). Con-

versely, in the horizontally copolarization the dynamic range of Uah decreases as OL

increases (figure 4-11a). This is a potentially important characteristic of the active

observing system as it pertains to soil moisture estimation and observation in to-

pographically variable regions. It implies that in steeper portions of the landscape

that are associated with higher OL, horizontally copolarized observations are less

sensitive to variation in moisture relative to the vertically copolarized observations.

4.5.2 Active observing system: parameter sensitivity

As outlined above, the IEM requires specification of a roughness power spectrum

and associated correlation function. This portion of the chapter is dedicated to an

investigation of the sensitivity of predicted microwave backscatter observations to

surface roughness. Note that it is assumed in the literature that the roughness is a

property of the soil surface itself, although not necessarily a time-invariant property
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[Choudhury et al., 1979; Evans et al., 1992; Shi et al., 1997; Dobson and Ulaby,

1986; Wang et al., 1986]. Assuming a loam soil with characteristics presented in

Table 4.2, the parameters of the roughness power spectrum (a and L) are varied

from 1.0 < a < 10.0 cm and 5 < L < 50 cm. In an effort to diagnose the degree

to which the roughness effect on backscatter depends on soil moisture, a range of

volumetric moisture contents is assumed, from dry conditions (0 = 0.027 m3/m3 )

to wet conditions (0 = 0.434 m3/m3).

For a given soil moisture, the horizontally copolarized backscatter is more sen-

sitive to a than L (figure 4-12). For a given value of L, variation in a can cause

variation in ach of up to approximately 30 dB. For given values of a, however, vari-

ation in L is associated with variation in acxh of approximately 10 dB at most. As

figures 4-12(a)-(f) also indicate, the sensitivity of c;Th to moisture content increases

as soil moisture increases. For dry conditions, the sensitivity of a;'h to roughness

is approximately 20 dB at, while for wet conditions the sensitivity is closer to 30

dB. For a given value of a, increasing the moisture content tends to decrease the

sensitivity of ahh to L.

By comparison, the vertically copolarized backscatter is relatively more sensitive

to a and L than is the horizontally copolarized backscatter (figure 4-13). For a given

value of L, variation in a can cause variation in cr0, of up to at least 30 dB. Variation

in L results in a variation in au of approximately 10 dB at most, for given values

of u. Generally speaking, similar to the case for Uah, increasing the volumetric

moisture content tends to increase the sensitivity of ao to roughness (figures 4-

13(a)-(f)). Interestingly, however, as moisture increases the predicted backscatter

tends to become less sensitive to roughness, provided that a is below approximately

6 cm. In a similar fashion to a'h, increasing the moisture content tends to decrease

the sensitivity of o,u to L at given a.

This sensitivity analysis indicates that the microwave backscatter predicted by

the IEM is fairly sensitive to surface roughness. At a given moisture content, the

range of predicted values of au as a function of soil roughness parameters can be of
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Figure 4-12: Horizontally copolarized microwave backscatter (a'h) [dB] as a fune-
tion of the parameters of the assumed form of the surface roughness power spec-
trum: the surface rms height (o) on the x-axis and the linear correlation scale L on
the y-axis. Each plot corresponds to a different value of volumetric soil moisture:
(a) 0.027, (b) 0.100, (c) 0.200, (d) 0.300, (e) 0.400, and (f) 0.434 m3/ml.

similar magnitude to the range of dynamic range of predicted backscatter associated

with variation in soil moisture for given roughness conditions. In other words,

to diagnose the relative contributions of soil moisture and surface roughness to

microwave backscatter, either roughness or soil moisture must be accurately known.
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Figure 4-13: Vertically copolarized microwave backscatter (u',) [dB] as a function

of the parameters of the assumed form of the surface roughness power spectrum:

the surface rms height (a) on the x-axis and the linear correlation scale L on the

y-axis. Each plot corresponds to a different value of volumetric soil moisture: (a)

0.027, (b) 0.100, (c) 0.200, (d) 0.300, (e) 0.400, and (f) 0.434 m3/m3.

4.5.3 Active observing system: organization of hillslope-scale radar backscat-

ter

The diffusive erosion domain was used again to examine the spatial organiza-

tion of microwave backscatter modeled at the hillslope scale. Because the IEM is
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best suited to simulation of microwave backscatter in sparsely vegetated conditions,

bare soil conditions were assumed. The soil type used corresponds to a sandy loam

soil with On = 0.121 and Os = 0.535. For the bare sandy loam soil considered, a

648 hour tRIBS-VEGGIE simulation was performed and the spatial distribution of

soil moisture output every 72 hours (consistent with the revisit interval of planned

remote sensing satellites [Kerr et al., 2001; Entekhabi et al., 2004]) at 0900 lo-

cal time. Semiarid to arid hydroclimatic conditions (consistent with the Walnut

Gulch Experimental Watershed) were assumed. Hydrometeorological forcings to

the tRIBS-VEGGIE model over the 648 hours, beginning on a hypothetical July 1st,

were generated using the stochastic weather generator of Ivanov et al. [2007], with

alterations to generate precipitation using the modified Bartlett-Lewis precipitation

model (e.g., Rodriguez-Iturbe et al. [1987, 1988]). Modified Bartlett-Lewis param-

eters for Tucson were obtained from Hawk [1992], while the remaining parameters

for the stochastic weather generator were taken from Ivanov et al. [2007]. Initial

soil moisture conditions for this 648 hour simulation correspond to the soil moisture

state from the end of a tRIBS-VEGGIE spin-up simulation of the same 648 hour se-

quence of hydrometeorological forcings, which was itself initialized with a spatially

uniform soil moisture distribution of 10% effective saturation.

As mentioned in Chapter 2, the presence of vegetation is a potentially com-

plicating factor in retrieving soil moisture from microwave backscatter data (e.g.,

Dubois et al. [1995]). The change detection approach, however, argues that tempo-

ral change between successive microwave backscatter observations is due predomi-

nantly to changes in soil moisture [Njoku et al., 2002; Narayan et al., 2006; Narayan

and Lakshmi, 2008]. The current sensitivity analysis, therefore, seeks to examine

both: (1) the influence of the spatial distribution of soil moisture on hillslope-scale

microwave backscatter as predicted by the IEM in bare soil conditions during a

single observation, and (2) the degree to which temporal change in backscatter be-

tween two successive observations reflects temporal change in soil moisture during

the intervening time. Consistent with these dual objectives, the spatial distributions

of soil moisture at 216 and 288 hours into the simulation were used as input the
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microwave backscatter model. These time instances were chosen because they rep-

resent the soil moisture state at two successive potential observation times and span

a significant rainfall event. The snapshot of the spatial distribution of soil moisture

at 216 hours is toward the end of an approximately 180 hour drydown period, and

the soil is dry. During the 72 hour period between the two soil moisture snapshots

a sequence of rainfall events deliver approximately 12 mm of precipitation in a 10

hour period. Therefore the soil moisture conditions at 288 hours are comparatively

wet with respect to the conditions at 216 hours.

The hillslope-scale distribution of microwave backscatter is computed in both

the horizontally and vertically copolarized states for the dry (hour 216) and wet

(hour 288) soil moisture distributions. Similar to the analysis of modeled hillslope-

scale brightness temperatures above, the assumed value of satellite azimuth angle

((s) is 1500 and the assumed satellite zenith angle (Ss) is 400. Given the distri-

bution of incidence angles in the diffusive domain (figure 4-5(b)) and the generic

behavior of microwave backscatter as a function of local incidence angle (OL), a

relatively wide range of microwave backscatter can be expected at hillslope scales.

In contrast to the relationship between spatial patterns in brightness temperature in

different polarizations, because oe, decays with increasing OL for both copolarized

states the hillslope-scale organization of backscatter should be consistent between

polarizations. Specifically, North- and Northwest-facing hillslopes, which possess

higher OL at the assumed (s and Ss, would exhibit lower values of a;h and o-rO than

South- and Southeast-facing hillslopes with the same soil moisture. On the other

hand, because the microwave brightness temperature depends on both soil mois-

ture (which impacts emissivity) and soil temperature, while microwave backscatter

exhibits relatively little sensitivity to land surface temperature2, the impact of to-

pographic covariation in factors affecting reflection of incident microwaves may be

more important in the passive microwave observing system.

For the dry conditions (hour 216) aon varies from -61.7 to -14.2 dB (figure 4-

2The impact of temperature on microwave backscatter is the dependence of the static dielectric

constant of water on temperature in equation 4.29.
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Figure 4-14: Spatial distribution of backscatter coefficient assuming (s = 1500 and

5s = 400 with land surface states at each pixel evolved by the tRIBS-VEGGIE model

for (a) dry conditions in the horizontally copolarized state, (b) dry conditions in the

verically copolarized state, (c) wet conditions in the horizontally copolarized state,
and (d) wet conditions in the verically copolarized state. Note: intervals in the

legend are expressed as quantiles to better visualize spatial structure in backscatter.

14(a)) while o varies from -61.7 to -13.8 dB (figure 4-14(b)). By contrast, for the

wet conditions (hour 288) ah' varies from -61.4 to -13.3 dB (figure 4-14(c)) while

a,o varies from -61.0 to -12.9 dB (figure 4-14(d)). As expected, for both copolar-

ized states and hydrologic conditions considered, the hillslope-scale distribution of

microwave backscatter largely follows the expected trends discussed above. The

lowest simulated values backscatter coefficients are found on North- to West-facing

slopes (figure 4-14). It should be noted, however, that several relatively steep East-
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facing slopes in also exhibit relatively low backscatter, indicating that despite an

azimuth angle which is ostensibly favorable to viewing under the assumed values of

(s and 6s, that those portions of the terrain are sufficiently steep to exhibit relatively

large values of OL. It should also be noted that some of the modeled backscatter co-

efficients are possibly below the detection limit of the radar sensor, and therefore do

not contribute meaningfully to the observation at the satellite. Although it can be

argued that these pixels should be filtered from the spatial aggregation as presented

in equation (4.35), it is also true that the solid angle Q (weighting term in equation

(4.35)) corresponding to these pixels is small because these pixels are associated

with high OL. Hence, even when pixels with low uao caused by high OL are retained

in the aggregation, their contribution is likely insignificant for the diffusive domain.

For other domains, however, in which the hillslope length approach the ground

resolution of the sensor it is plausible that even the spatially aggregated predicted

microwave backscatter would be below the detection threshold of the sensor.

The hillslope-scale temporal backscatter change varies from approximately -0.6

to 1.8 dB in the horizontally copolarized state (figure 4-15(a)) and approximately

-0.2 to 2.3 dB in the vertically copolarized state over the three day interval (figure

4-15(b)). The precision of the 1.26 GHz SMAP radar is reported to be 0.85 dB

meaning that some of the backscatter change values shown in figures 4-15(a) and

4-15(b) are within the noise sensitivity of the radar sensor. The spatial pattern of

temporal backscatter change in the diffusive erosion landscape is reversed in the

horizontally and vertically copolarized states. In the horizontal copolarized state,

lower values of Aa4h are seen in the North- to West-facing hillslopes, while the

higher values of Acrh are observed in the South- and East-facing hillslopes (figure

4-15(a)). By comparison, lower values of Acr, are seen in the South- and East-

facing hillslopes, as well as in the valley bottoms, while the higher values of AU-V

are largely confined to North- to West-facing slopes (figure 4-15(b)). Defining the

total backscatter temporal changes as AUtota = AUh+AUa,', the complementary na-

ture of the spatial variability in AUo seen in figure 4-15(a) and AU, seen in figure

4-15(b) can be seen more clearly in figure 4-15(c). The lowest values of Autota are
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Figure 4-15: Spatial distribution of 3 day change in backscatter coefficient, encom-

passing a significant precipitation event, assuming (s = 1500 and 6s = 400 with
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largely seen in topographically convergent portions of the landscape: hollows and

valley bottoms (figure 4-15(c)). The highest values of Autotal, on the other hand,

are observed in the topographically divergent portions of the terrain: the ridges.

When the hillslope-scale distribution of Actotal is compared to the hillslope-scale

variation in the total moisture change between hours 216 and 288, it is seen that

LAtota largely follows the same pattern as the moisture change (figure 4-15(d)).

The areas of smallest temporal soil moisture change correspond mostly to the hol-

168

Legend
Ama (6km2)

* 006.015

S0.15-032

* 035- 073

* 0.75- 15

* 178-187
* &03-.55

DO* backszn wto"l (4dB)
1 4.20 -104

M I.05- ..3

l 1+0 - 11

115. 115

l 11 2.29

Legend
Area (km'2]

S0oo -o01

So01.5 32

* 035-073

* 075 11
* 178-167

6 303-385
Mohuume lM~ (rcm^3S]

ID-02O0 -0 02' 1
el 0 272 61275

- 00277- 00280

S0286 0 oo

0



lows in the landscape, particularly those at the heads of the valley network while

the areas of greatest temporal moisture change are the topographic ridges (figure

4-15(d)). However, it is important to notem that the values of moisture change in

the near surface during the 3 day interval are also relatively small, with moisture

change varying spatially from 0.026 to 0.029 m3/m3. An interesting contrast be-

tween Aatota and the temporal moisture change is in the valley network, where

Agtotai is consistently lower than in the surrounding hillslopes (figure 4-15(c)),

while the corresponding moisture change in the valley network is typically low but

more variable throughout the network (figure 4-15(d)). These results indicate that,

indeed, the temporal change in radar backscatter (as expressed via AUtotal) seems

to be driven mostly by chances in moisture. Moreover, the hillslope-scale distri-

bution of temporal backscatter change as captured by Aatotal largely captures the

corresponding temporal change in moisture. This provides some evidence, through

the relatively complex IEM, that the temporal change in backscatter between two

successive observations is closely related to the change in moisture, as has been

reported in the literature [Njoku et al., 2002; Narayan et al., 2006; Narayan and

Lakshmi, 2008].

4.5.4 Active observing system: sensitivity of aggregate backscatter to

satellite sky position

In a similar fashion to the passive observing system, the sensitivity of the backscat-

ter predicted at the sensor (i.e., spatially aggregated through equation 4.35) to the

satellite sky position are investigated. The spatial distribution radar backscatter

in both the horizontally- and vertically-copolarized states was computed through

the IEM using the previously described instantaneous near-surface soil moisture

conditions simulated by tRIBS-VEGGIE for the diffusion erosion domains at hours

216 and 288 of the simulation. Again, consistent with the HYDROS/SMAP sen-

sor characteristics the off-nadir satellite viewing angle (s) is assumed to be 40',

while the azimuth angle to the satellite (Cs) is allowed to vary from 1' to 3600, in
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(s increments of 10. Local incidence angle and polarization rotation are computed

through equations (4.30) and (4.31), respectively, at every computational node in

both the diffusive and fluvial erosion domains. The 360 spatial maps of a;h and uo

this process yields are aggregated to the 2 x 2 km domain. The spatially-aggregated

horizontally- and vertically-copolarized backscatter coefficients are denoted a g and

UaV,, respectively.

For comparative purposes, two cases are considered in which brightness temper-

atures at the sensor are modeled assuming 0 is spatially uniform and equal to the

mean value at hours 216 and 288 of the simulation. These two cases are meant to

capture potentially important hypothetical microwave emission modeling scenar-

ios within a consistent land surface modeling environment: (1) a coarse-scale land

surface model augmented with high-resolution (e.g., 30 m) digital elevation data

to encompass topographic effects on observational geometry, and (2) a coarse-scale

land surface model neglecting topographic effects on observational geometry. In

the first case, topographic effects on 0 and c are included in modeling the depen-

dence of horizontally- and vertically-polarized brightness temperature at the sensor

on Cs. These brightness temperatures modeled at the sensor are denoted j and

o t, respectively, and are computed by substituting the hillslope-scale backscatter

coefficients estimated with the spatially uniform value of 6 for 0-, in the summation

on the right hand side of equation (4.35). In the second case, topographic effects

are neglected OL = 6S = 40 is assumed. The modeled brightness temperatures at

the sensor, which does not vary with satellite azimuth ((s), are denoted "h,flat and
5aas, in this case.

For the dry conditions (hour 216 of the simulation), 5hh varies from a minimum

of approximately -30.9 dB at a Cs of approximately 400 to a maximum of approx-

imately -29.3 dB at (s ranging from approximately 1500 to 2800 (figure 4-16(a)).

By contrast, 6,v achieves a minimum of approximately -25.8 dB at a (s of around

400 and a maximum of approximately -29.3 dB at Cs ranging from approximately

1500 to 2800 (figure 4-16(b)). Under the wet conditions associated with hour 288
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Figure 4-16: For the dry conditions of hour 216 of the simulation, the predicted
backscatter at the observing sensor as a function of (s in the (a) horizontally and
(b) vertically copolarized domains. Plots show -0 (black solid line), -U" (gray
dash-dotted line), and wpa,,nt (black dashed line). The difference between -, and
-osa is shown for the (c) horizontally- and (d) vertically-copolarized states.

of the simulation, oh varies from a minimum of approximately -30.0 dB at a (s of

approximately 400 to a maximum of approximately -28.5 dB at (s ranging from ap-

proximately 1500 to 2800 (figure 4-17(a)). The corresponding values of "5, under

the wet conditions are a minimum of approximately -24.6 dB at a satellite azimuth

of about 400 and a maximum of approximately -23.7 dB at satellite azimuth angles

ranging from approximately 150' to 280' (figure 4-17(b)).

The difference between h and -Osa is maximized (in an absolute sense) at

(s of approximately 1500 for the dry conditions of hour 216 of the simulation,

although the range of variation in (h, - Dh' ) is small at all (s (figure 4-16(c)). The
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Wet case
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Figure 4-17: For the wet conditions of hour 288 of the simulation, the predicted
backscatter at the observing sensor as a function of s in the (a) horizontally and
(b) vertically copolarized domains. Plots show - (black solid line), va (gray
dash-dotted line), and -5p,flat (black dashed line). The difference between -0 and
-sap is shown for the (c) horizontally- and (d) vertically-copolarized states.

range of variability of (0h - ,O) is approximately 0.0240 dB at a minimum and

0.0265 dB at maximum (figure 4-16(c)). The behavior of (o, - -) as a function
of (s is similar to that of (, - -o,) (figure 4-16(d)). However, the range of

variability is slightly greater, with (i , - =O) exhibiting a minimum of slightly less

than 0.0290 dB and a maximum of less than 0.0305 dB (figure 4-16(d)). Similarly

small values of (h - 5,a) are also seen for the wet conditions of hour 288 (figure

4-17(c)). Under wet conditions (h - hh ) varies between about 0.0260 dB when

(s is approximately 320' and approximately 0.0285 dB when Cs is about 120'. For
the wet conditions the variation of ( - ~) as a function Cs is slightly different

than the corresponding relationship between (hh - 5,h) and (s. A maximum of
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("U -osa approximately equal to 0.0335 dB is achieved at (s of approximately

1000, while the minimum of about 0.0315 dB is realized at (s of approximately

270 .

Comparing backscatter values predicted at the sensor, and which include topo-

graphic effects on observation geometry (6h and -ha ) to the modeled brightness

backscatter that neglects topographic effects, Ah,flat is approximately -28.4 dB for

the dry conditions of hour 216 (figure 4-16(a)) and -27.9 dB for the wetter con-

ditions of hour 288 (figure 4-17(a)). For the dry conditions the value of ah,flat is

approximately 0.5 dB more than the maximum values of either hh or h (figure

4-16(a)), while vv,flat is approximately 3 dB less than both either :,, or o a (fig-

ure 4-16(b)). Similarly, for the wet conditions of hour 288 -h,at is approximately

0.5 dB more than the maximum values of either ah or ,, , and v,,,at is almost

3.5 dB less than both either 5, or o a (figure 4-17(b)). Figure 4-16 depicts two

important aspects of the active observing system: (1) hillslope-scale variation in

soil moisture is less significant than hillslope-scale topographic affects on observing

geometry in setting the predicted microwave backscatter observed at the sensor,

and (2) predicted microwave backscatter measured at the sensor are significantly

different when topographic effects on observing geometry are included, compared

to when the incidence angle is assumed equal to the satellite off-nadir look angle.

While the analysis of the sensitivity of backscatter at a spatial scale consistent

with observation to satellite viewing orientation would seem to indicate that the

impact of spatial heterogeneity in soil moisture is most pronounced when the sen-

sor views the landscape from either the Southeast or Northwest, the relatively small

magnitude of (Uh - 5h) suggests that these contrasts do not influence the obser-

vation at the scale of the sensor. Although topographic effects on the observational

geometry can lead to significant sensitivity of the observed backscatter to satellite

azimuth (as evidenced in figures 4-16(a) and (b)), the spatial organization of soil

moisture has comparatively less effect on aggregate backscatter (as seen in figures

4-16(c) and (d)). Given that the SMAP radar sensitivity is nominally 0.85 dB, the
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predicted microwave radar observations for bare soil conditions at the satellite sen-

sor do not materially vary when a spatial average value of soil moisture is used,

as long as the topographic effect on observing geometry at hillslope scales is pre-

served. This conclusion underscores a fundamental difference between the active

and passive microwave observing systems. Because it is formulated as a black body

radiative transfer problem, the modeling of emission of microwave energy from

moist soils in the passive observing system depends both on the soil moisture effect

on emissivity and the impact of surface energy balance on the physical tempera-

ture of the soil. The impact on microwave brightness temperature of the hillslope-

scale covariation of soil moisture and surface temperature tend to enhance topo-

graphic contrasts in brightness. In the Northern hemisphere for example, South-

and Southeast-facing hillslopes tend to exhibit lower soil moisture which tends to

increase emissivity, while also possessing a higher soil temperature which directly

enhances microwave brightness. Conversely, North- and Northwest-facing slopes

exhibit higher moisture which suppresses emission and lower physical temperatures

which also tends to decrease the brightness. The active observing system, by com-

parison, has only a weak dependence on temperature. Therefore, for bare soils the

spatial organization of microwave backscatter at hillslope scales will largely reflect

only the distribution of soil moisture at that scale and the influence of topography

on observing geometry, which (through equations 4.30 through 4.33) is a function

of the sky position of the satellite. The presence of vegetation, provided that the

spatial distribution of vegetation type and biomass exhibits some topographic de-

pendence, will undoubtedly influence the hillslope-scale distribution of microwave

radar backscatter. Moreover, hillslope-scale vegetation effects will also likely tend

to enhance topographic contrasts in radar backscatter as well. For instance, North-

and Northwest-facing slopes tend to have greater vegetation biomass (and in many

semiarid locations greater abundance of woody species) and higher soil moisture

contents. Both of these covarying factors tend to decrease backscattered energy.

The converse could be argued for South- and Southeast-facing slopes. Another de-

gree of complexity that is potentially important, but neglected here, is the role of
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hillslope-scale organization of roughness in the modeled microwave backscatter.

Little information exists that can be used to infer how roughness varies at hill-

sope scales and covaries with attributes of topography such as aspect and slope.

However, since backscatter is particularly sensitive to roughness, and because the

parametric representations of roughness are meant to capture microtopographic

variation, roughness is undoubtedly related to geomorphic processes responsible

for erosion and deposition of sediment on the landscape. Hence, characterizing

the hillslope-scale distribution of geomorphic process dominance would potentially

be helpful in constraining how the roughness that influences the microwave radar

observation varies at the same scale.

4.6 Conclusions

This chapter has outlined the formulation to two observing systems. The first is

a passive microwave observing system that takes the outputs of the tRIBS-VEGGIE

model and, given a satellite sky position in the form of an azimuth and zenith an-

gle, predicts the microwave brightness temperature at the observing sensor. The

second takes as input the spatial distribution of soil moisture simulated by the

tRIBS-VEGGIE model and (again depending on satellite sky position) predicts the

microwave backscatter measured at the receiving sensor. Both of these systems

share a dependence on topography that explicitly represents the effects of slope and

topographic aspect on the local incidence and polarization rotation angles. In the

following chapters, these observing systems will be used both to generate synthetic

observations of a hidden soil moisture state simulated by tRIBS-VEGGIE, and as the

observation operator that projects the ensemble of tRIBS-VEGGIE state vectors into

observation space during the data assimilation experiments. The development of

these observing systems involved several developments that are at the core of the

original contribution of this thesis work. Hence, some important implications of the

formulation of these observing systems are discussed in the conclusion.
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CHAPTER 5
MODELING

UNCERTAINTY IN

FORCINGS

5.1 Introduction

Hydrometeorological variables such as precipitation, incoming radiation, and

windspeed are the dynamic forcings that drive the temporal evolution of soil mois-

ture. For the real-time applications outlined in the introduction of the thesis, an

estimate of the current spatial distribution of soil moisture and a forecast of how

that distribution will change over some known or imposed time horizon (referred to

as the lead time or forecast window) are critical. Hence, the nature of the hydrom-

eteorological data required as input to hydrological models, such as tRIBS-VEGGIE,

in order to simulate the spatial distribution of soil moisture is twofold: (1) recent

historical hydrometeorological data are required to simulate the contemporary spa-

tial distribution of soil moisture, and (2) forecasts of the time evolution of hydrom-

eteorological variables required as input to the model are necessary to produce the

corresponding forecasts of the spatial distribution of soil moisture during the lead

time.

Both historical and forecast hydrometeorological data are subject to uncertain-

ties that are unique to each data source, which when interpreted by a hydrology

model leads to uncertainty in the simulated soil moisture. Assimilation of observa-

tional data in the form of microwave brightness temperature and radar backscatter
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serves to counteract the influence of uncertainty in hydrometeorologic drivers on

the simulated distribution of soil moisture. As outlined in Chapter 3, the Monte

Carlo-based data assimilation system employed in this work requires explicit treat-

ment of uncertainty in the hydrometeorological forcings required as input to the

tRIBS-VEGGIE model. The required forcings for tRIBS-VEGGIE include hourly: (1)

precipitation, (2) sky fractional cover or incoming solar radiation, (3) air temper-

ature, (4) dew temperature, and (5) wind speed. This chapter outlines the suite

of techniques used to treat uncertainty in these hydrometeorological forcings. For

the purpose of the following discussion, it is useful to broadly classify these drivers

into precipitation forcings and thermodynamic forcings (solar radiation, air and

dew temperature, and wind speed). Precipitation controls the rate and volume

of moisture input to the soil column, while the thermodynamic drivers affect the

evaporative demand of the atmosphere and the energy available for the evapora-

tion process. What follows is a discussion of the varying sources of uncertainty in

both historical and forecast hydrometeorological forcings. The modeling of precip-

itation uncertainty in space and time is then described. An outline of the treatment

of uncertainty in the thermodynamic forcings then follows. Finally, the treatment

of hydrometeorological forcings using the outlined techniques in the context of the

ensemble data assimilation system is discussed.

5.2 Sources of uncertainty

As discussed above, historical hydrometeorological data and quantitative weather

forecasts are necessary for a simulation approach to real-time applications that de-

pend on contemporary knowledge and forecasts of soil moisture at hillslope scales.

In this section, uncertainties in each kind of hydrometeorological data source are

briefly discussed.
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5.2.1 Uncertainty in historical data

Historical data are often retrieved from a network of meteorological stations,

such as the network maintained by the Federal Aviation Administration (FAA), or

archives of data from multiple networks like the one maintained by the National

Oceanic and Atmospheric Administration's (NOAA) National Climatic Data Center

(NCDC). These point-scale stations typically collect data related to precipitation,

winds peed, temperature, humidity, and solar radiation, at temporal resolutions

ranging from 5-minutes to daily. While these networks and archives are critical re-

sources for hydrologic modeling, they nevertheless introduce uncertainty into pre-

dictions of soil moisture when they are supplied to hydrological models as input.

The most basic form of uncertainty associated with these data is the instrument pre-

cision and accuracy. While an in-depth discussion of the data collection techniques

for the hydrometeorological variables of interest is beyond the scope of this thesis,

it is important to recognize that there is uncertainty associated with the instrumen-

tation used to collect these data. Details regarding the accuracy and resolution of

particular sensors are most often reported by the instrument manufacturer and/or

the maintainer of the station or network (e.g., see Brock et al. [1995] for a review of

the stations comprising the Oklahoma Mesonet), and to thoroughly treat the uncer-

tainty associated with measurements from a particular hydrometeorological station

it is necessary to ascertain the details of the station's instrument configuration. Fur-

thermore, when characterizing uncertainty in hydrometeorological variables from

automated data collection networks and/or archive meta-databases comprised of

information from multiple networks, there may be an additional layer complexity

associated with heterogeneity in sensor packages between stations. This implies

an added degree of caution and attention to detail that must be taken in assigning

uncertainty characteristics to historical hydrometeorological data.

As alluded to above, many historical weather station data have temporal resolu-

tions poorer than the one hour time-step required by models like tRIBS-VEGGIE.

Moreover, some rudimentary weather stations (particularly those in developing
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countries) may only report daily weather statistics or cumulative measures such

as minimum and maximum temperatures, cumulative precipitation, and dew tem-

perature at specified times. Employing these data for hydrologic simulation with

continuous hydrologic forecasting models like tRIBS-VEGGIE requires temporal dis-

aggregation of these data to hourly time scales. Temporal disaggregation schemes

can be either deterministic or stochastic, and produce hourly estimates of the re-

quired hydrometeorological variables through a blend of the the historical weather

data, climatic information, and the time of day. Using a mix of stochastic and de-

terministic techniques for a watershed in Texas, Debele et al. [2007] disaggregated

hydrometeorological observations of daily cumulative rainfall; daily maximum and

minimum air temperature; and daily average wind speed and humidity. Because

their daily historical data consisted of aggregated hourly data, they were able to

assess the accuracy of the various methods they employed. Because the evolution

of hydrometeorological variables at hourly timescales depends on micrometeoro-

logical and synoptic meteorological phenomena, these disaggregation methods are

inherently error prone. Thus, while temporal disaggregation of historical weather

observations to hourly timescales may in some instances be required for hydrologic

simulation, it will nevertheless introduce uncertainty into the hydrometeorologi-

cal forcings that will ultimately lead to uncertainty in the simulated soil moisture

distribution.

Another source of uncertainty in historical data from weather stations that is

particularly important in spatially distributed soil moisture simulation is associ-

ated with the lack of hydrometeorological information in portions of the watershed

that are spatially removed from weather stations. Computational pixels in tRIBS-

VEGGIE and similar spatially distributed simulation models require local estimates

of the required hydrometeorological variables in order to simulate the soil mois-

ture response. Yet, with a few notable exceptions corresponding to well-gauged

experimental watersheds, automated weather collection networks are relatively

sparse. Many techniques have been applied historically to estimate hydrometeo-

rological variables, particularly precipitation, at locations in a watershed that are
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relatively far from weather stations in the collection network. The most simple of

these techniques, assigns a location the hydrometeorological forcings of the nearest

weather station to every computational pixel in the watershed. This nearest neigh-

bor approach has the effect of discretizing the watershed into Thiessen polygons

that delineate the area of influence of each weather station. More complex algo-

rithms, such as Kriging and Artificial Neural Networks [Hung et al., 2008], have

also been applied to interpolate hydrometeorological conditions between weather

stations. Local hydrometeorological conditions are the result dynamically coupled

and nonlinear interactions between the land surface and atmosphere. Regardless

of the complexity of the interpolation procedure, statistically interpolated estimates

of hydrometeorological variables at locations between weather stations are almost

invariably in error. When the hydrologic simulation model experiences hydrome-

teorological forcings that are in error, the simulated distribution of soil moisture

correspondingly will be uncertain.

In addition to point-scale weather station data, remotely sensed observations

from spaceborne satellites and ground-based radar stations are becoming increas-

ingly useful as sources of spatially distributed historical hydrometeorological data.

For instance, the Advanced Microwave Sounding Unit-A (AMSU-A) and AMSU-B

sensors have been used to retrieve global atmospheric humidity and temperature

profile estimates [Rosenkranz, 2001], data from the Moderate Resolution Imag-

ing Spectroradiometer (MODIS) has been used to derive Photosynthetically Active

Radiation at the surface [Laake and Sanchez-Azofeifa, 2005], and the scatterom-

eter aboard the first European remote sensing satellite (ERS-1) has been used to

derive wind vectors [Freilich and Dunbar, 1993]. Quantitative precipitation es-

timation (QPE) receives much of the emphasis in remote sensing of hydromete-

orological phenomena. Both ground- and space-based techniques have been ex-

ploited for QPE, and the data that these instruments provide is widely used in the

hydrologic sciences. For instance, the NASA's Tropical Rainfall Measurement Mis-

sion (TRMM) provides both active and passive observations of rainfall in Tropical

latitudes. The TRMM 3B42 algorithm, in particular, provides a 3-hourly average
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precipitation estimate at spatial scales of 0.250 that combines passive and active

microwave observations from the TRMM satellite, infrared data from other satel-

lites, and rain gage data [Huffman et al., 1995]. The related Global Precipitation

Measurement (GPM) mission is scheduled to provide similar precipitation products

globally. Among remotely sensed precipitation data, ground-based Doppler weather

radar are among the most widely used in the United States. The National Weather

Service's (NWS) Next-Generation Radar (NEXRAD) network of doppler weather

radars provides data that can be processed into QPEs at temporal resolutions as

fine as 15 minutes and spatial scales of approximately 2 km [Grassotti et al., 2003].

Uncertainties arising from remotely sensed hydrometeorological data typically

fall into two varieties: (1) uncertainties associated with the spatial and temporal

resolution of remotely sensed products, and (2) uncertainties associated with in-

version algorithms that retrieve estimates of hydrometeorological variables from

geophysically observable quantities. Like data from point-scale weather stations,

remotely sensed hydrometeorological products often are associated with spatial

and temporal resolutions that are inconveniently coarse from the perspective of

hillslope-scale soil moisture modeling. While the hydrometeorological informa-

tion provided by weather station data is highly localized, each pixel of a remotely

sensed hydrometeorological product is representative of spatially-averaged condi-

tions within that pixel. In many circumstances, the coarse resolution of such prod-

ucts tends to smooth out important sub-pixel variability. The 0.250 and 3 hr resolu-

tion of the TRMM 3B42 product is a prime example. The spatial resolution of 3B42

may smooth out significant spatial variability in rainfall rates in areas of steep to-

pography associated with orographic forcing, while the temporal resolution of the

product may smooth rainfall rates associated with short-duration, high-intensity

convection-dominated rainfall. These smoothing tendencies may hide potentially

important spatiotemporally localized extreme rainfall that would substantially af-

fect localized soil moisture conditions. As in the case of interpolation of weather

station data, spatial and temporal disaggregation of remotely sensed products will

introduce errors in the hydrometeorological forcings, leading to uncertainty in the
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simulated soil moisture response.

Retrieval from the geophysically observed quantities leads to significant uncer-

tainties in the remotely sensed estimates of hydrometeorological variables. As the

above outline of current and planned remote sensing products indicates, microwave

microwave, visible, and infrared technologies are commonly used to observe hy-

drometeorological phenomena. Similar to the remotely sensed soil moisture data

discussed in Chapter 2, approximate empirical or physically-based retrieval algo-

rithms are used to estimate relevant hydrometeorological variables from obser-

vations of observable quantities like brightness temperature, backscatter, Doppler

shift, and reflectance. Of particular importance in hydrological modeling is the un-

certainty in the transformation of radar and radiometer data into QPEs. While the

sources of uncertainty associated with ground-based weather radar are often dis-

tinct from satellite retrieval uncertainties (e.g., ground clutter, the orientation of the

radar, storm, and watershed, etc.) [Sharif et al., 2002; Borga et al., 2006], previous

work investigating QPE retrieval errors have revealed that it is not uncommon for

precipitation estimates from NEXRAD reflectance data to be in error by a factor of

2 or more [Sharif et al., 2004]. In a study using a mesoscale meteorological to gen-

erate a synthetic true rainfall field together with a stochastic radar simulator, Sharif

et al. [2002] showed that uncertainties of this magnitude can have substantially in-

crease error in predicted hydrological variables, such as discharge when propagated

through a simulation model. Because rainfall serves as a mass balance input con-

straint on the hydrologic system, it receives significant attention in the treatment of

uncertainties in this chapter.

5.2.2 Uncertainty in weather forecasts

To issue forecasts of the spatial distribution of soil moisture out to some lead

time in the future, it is necessary to have quantitative predictions of the hydrom-

eteorological variables required by a simulation model over the same period of

time. From a physically-based perspective, the coupled nature of the land surface
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and atmosphere should suggest a modeling framework that captures coevolution

of the land surface and atmospheric states during the forecast window. While the

high-dimensionality of simulation models like tRIBS-VEGGIE makes such a frame-

work computationally expensive, significant effort is underway to couple tRIBS-

VEGGIE to the Weather Research Forecasting (WRF) model. In absence of such a

framework, it is necessary to use quantitative weather forecasts to directly force a

simulation model. Forecasting centers such as the European Center for Medium

Range Weather Forecasting (ECMWF) and the National Center for Environmen-

tal Prediction (NCEP) in the United States provide quantitative ensemble forecasts

with 10 days lead time. It is important to note that these forecast products are

associated with a particular suite of coupled land-ocean-atmosphere models and

that using forecast hydrometeorological variables to force a different land surface

model, such as tRIBS-VEGGIE, implies a degree of conceptual mismatch that may

lead to uncertainties in the predictions of the hydrological variables of interest. Fur-

thermore, the need to produce sometimes global forecasts based on a network of

current and recent-past hydrometeorological observations implies that the spatial

resolution of forecast products are often too coarse to resolve spatial variability in

hydrometeorological variables that may be significant in terms of hillslope-scale soil

moisture prediction (e.g., ECMWF forecasts have a 40 km resolution in space [Pers-

son and Grazzini, 2005]). The more significant source of uncertainty in numerical

weather forecasts arises due to the nonlinear and chaotic nature of the atmosphere,

which is sensitively dependent to uncertainty in initial conditions. Hence, sub-

stantial uncertainty in hydrometeorological forecasts is often encountered at longer

lead times, that may translate to significant uncertainty in simulated soil moisture

and discharge response when propagated through a simulation model. The uncer-

tainty is quantitatively represented by many forecasting centers (such as ECMWF

and NCEP) through ensemble forecasts, and individual ensemble replicates are fre-

quently made available in addition to quantitative metrics of ensemble consensus

and uncertainty. Spatial disaggregation of coarse forecast products will introduce

additional uncertainties beyond the inherent uncertainties associated with the non-
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linear chaotic nature of the weather models.

5.3 Modeling uncertainty

The goal of this portion of the work is to capture some degree of the conceptual

uncertainties outlined above by employing relatively simple quantitative tools that

can quickly produce ensembles of the hydrometeorological variables required as

input to tRIBS-VEGGIE at hourly timescale.

To represent uncertainty in the hydrometeorological forcings, three stochastic

models are used. Emphasis is placed on representing uncertainty in the spatiotem-

poral character of rainfall because it imposes significant constraints on soil mois-

ture. Two coupled stochastic models are used to model temporal and spatial un-

certainty in precipitation. The first is the Modified Bartlett-Lewis (MBL) model

that generates time series of hourly point-scale rainfall. The second is a stochas-

tic cascade model that is used both to introduce noise into the point-scale rainfall

generated with the MBL model and to disaggregate it in space. The third model is

a stochastic weather generator developed by Ivanov et al. [2007], which is used to

simulate point-scale thermodynamic drivers at hourly timescales required by tRIBS-

VEGGIE. Because the thermodynamic variables derived by the stochastic weather

generator are conditioned on the hourly occurrence of rainfall, the hydrometeoro-

logical forcings simulated by this suite of stochastic models is completely internally

consistent. That is, the occurrence of rainfall in any given hour impacts the corre-

sponding thermodynamic drivers in well-defined ways. Figure 5-1 presents a flow

chart of how these models are used to simulate uncertain hourly hydrometeorologi-

cal forcings. Brief introductions to each of these models follow below. This hydrom-

eteorological uncertainty modeling framework is applied extensively in Chapter 7

in an set of experiments designed to diagnose the relative contributions of uncer-

tainty in the forcings and soil parameters required by tRIBS-VEGGIE to uncertainty

in the simulated soil moisture state. Several different scenarios in which these
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stochastic models are used to simulate ensembles of uncertain hydrometeorological

inputs to tRIBS-VEGGIE will be described there.

1. Modified Bartlett-Lewis
rainfall simulator

Figure 5-1: A schematic representation of how 3 stochastic models are used to
generate uncertain hydrometeorological forcings for the tRIBS-VEGGIE model. The
Modified Bartlett-Lewis model is used to generate time series of hourly rainfall.
This hourly rainfall time series is then input to the multiplicative cascade model
which is used both to perturb point scale data and to disaggregate the MBL-derived
rainfall series in space. The MBL-derived rainfall time series is also given as in-
put to the stochastic weather generator of Ivanov et al. [2007] to derive stochastic
thermodynamic forcings required as input to tRIBS-VEGGIE.

5.3.1 Modeling uncertainty: Modified Bartlett-Lewis model

The MBL model stochastically partitions time into rain and non-rain events. The

arrival of storm events is treated as a marked Poisson process [Rodriguez-Iturbe

et al., 1988, 1987], and the time between successive storm events are assumed
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independent and exponentially distributed, and parameterized by a storm arrival

rate, A. During a finite window of time after the beginning of a storm event, the

MBL approach models the arrival of individual storm cells. For a particular storm

event, this window of time of cell-genesis is of a random duration that follows

an exponential distribution, parameterized by the rate parameter y. Individual

cells arrive independently, and the time between the arrival of successive cells is

random and exponentially distributed, with a rate parameter /3. Individual storm

cells are of random duration and intensity. Both cell duration and intensity are

mutually independent and are assumed to follow exponential distributions. Cell

durations are parameterized by the rate parameter r, while storm cell intensity is

parameterized by the mean intensity, p,. The average rainfall rate during some

finite interval (i.e., one hour) is the integral of the active storm cell intensities

during that interval, normalized by the duration of the interval. Figure 5-2 is a

schematic representation of the Bartlett-Lewis storm-cell arrival concept for one

storm event. Individual cell and integrated storm intensities are shown.

A considerable amount of effort has gone into estimation of parameters of the

MBL model from historical rain gauge data. While a detailed overview of parame-

ter estimation techniques for the MBL model is not given here, the work of Islam

et al. [1990] provides a detailed assessment of parameter estimation techniques as

well as relevant statistical metrics that can be used to estimate and validate pa-

rameters. Hawk [1992] performed an analysis of weather stations throughout the

continental United States, and provides estimates of the MBL parameters for each of

these weather stations. Consistent with the semiarid and arid conditions to which

tRIBS-VEGGIE is best suited, the MBL parameters for Tucson International Airport,

Arizona (IATA code TUS) estimated by Hawk [1992] are used for point-scale rainfall

generation.
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Figure 5-2: A schematic representation of the Bartlett-Lewis storm cell concept. The
storm outline is shown black dashed lines, while individual storm cells are outlined
in gray. The arrival of a storm event (black circle) is followed by the arrival of
individual cells (gray hollow x's) during some finite window of random duration
during which cell birth may occur. The total instantaneous rainfall intensity at any
time during the storm is the summation of intensities of the active cells at that time
(gray lines).

5.3.2 Modeling uncertainty: stochastic multiplicative cascade

The multiplicative cascade model used here was originally developed by Man-

dlebrot [1974] to model intermittent turbulent fields, and was later adopted by

others (e.g., Schertzer and Lovejoy [1987]; Over and Gupta [1996]; Menabde et al.

[1997] and Menabde et al. [1999]) to parsimoniously reproduce much of the mul-

tiscaling phenomena often observed in radar reflectance data. The underlying as-

sumption of these multiplicative cascades is the validity of the assertion that tur-

bulence is a phenomenologically self-similar cascade of energy across at least a
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range of scales [Richardson, 1922; Schertzer and Lovejoy, 1987]. While some have

attempted to provide a rigorous theoretical grounding for many variations of the

multiplicative cascade framework (e.g., Lovejoy and Mandlebrot [1985]; Schertzer

and Lovejoy [1987]; Over and Gupta [1996]; Deidda [2000], others argue that the

strongest reasoning for use of a cascade downscaling process is the fact that em-

pirically it seems to reproduce observed variations in radar-rainfall data [Menabde

et al., 1997].

The version of the multiplicative cascade used here is the same as the one out-

lined in Menabde et al. [1999],Menabde et al. [1997] and Ferraris et al. [2003]. It

partitions the rainfall volume, 7ro, in a square pixel of linear dimension L into rain-

fall volumes within four square pixels with linear dimension L/2 and volumes 7ri.

This cascade process repeats J times, leaving 4' square pixels with linear dimension

L/2J. At cascade step J, the volume in any (i) of the 4 child pixels at step J of the

cascade, iri(J), is given by,

J

7r,(J)= Wk(j)(5.1)
j=1

A schematic representation of the multiplicative cascade process is shown in

Figure 5-2. In this implementation of the multiplicative cascade, the multiplicative

weight at step j of the cascade and at a child pixel indexed by i, Wk(3 ), takes one of

two values, W1 or W2, occurring with probability p and (1 - p), respectively. These

weights depend on a set of parameters and the cascade step j:

W, = [1 + (wl - 1)2- j ]  (5.2)

occurs with probability p, while

W2 = [1 + ( 2 - 1 ) 2
- jh] (5.3)

occurs with probability (1 - p). The parameters wl, w2 and h in equations (5.2)
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i(J) = ' Wk(1)Wk(2)Wk(3) ... Wk(J)

Ll

Figure 5-3: A schematic representation of application of the mutiplicative cascade

model used in this work to spatial disaggregation of rainfall. The volume rainfall at

some spatial pixel indexed by i in the jth step of the cascade, 7ri, is the cumulative

product of the volume of rainfall at the coarsest scale of the cascade, 7ro and the j

random weights, Wk(j) realized at each step in the cascade.

and (5.3) are estimated from radar rainfall images in a way that preserves some sta-

tistical attributes of the data. In particular, it is common to aggregate radar rainfall

images to coarser scales, and then use the cascade to downscale back to the na-

tive resolution using a broad range of parameter combinations (e.g., Ferraris et al.

[2003]). There are some theoretical arguments that suggest the parameter h should

be close to 1/3 [Menabde et al., 1997]. Otherwise, parameters are typically fit on

the basis of the degree to which the downscaled rainfall images reproduce first-

and second-order statistics, as well as fractal dimensions of the observed data. Con-

straints on the parameters can be found to ensure that the multiplicative cascade is

mass conservative in the ensemble sense. This means that the spatial pattern of a
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given rainfall image can be changed using the multiplicative cascade disaggregation

process without changing the spatial average precipitation volume. Ensemble-sense

mass conservation requires that the expectation of the weights be unity,

E [W] = 1. (5.4)

Expanding the expectation based on the binary definition of the weights outlined

above, gives,

E [W] = pW1 + (1 - p)W2 = 1, (5.5)

and substituting the definitions of W1 and W2 above into equation gives,

E[W] =p [1 + (wl - 1 )2 -h] + (1 -p) [1 + (w2 - 1) 2
- j h] = 1. (5.6)

Rearranging the terms in this expression, it is straightforward to show that for

equation 5.4 to be true the parameters w, and w2 must be related to the probability,

p, of weight W1 occurring in the following way,

1 p
2 = wl (5.7)

1-p l-p

Imposing a mass balance constraint, therefore, eliminates one parameter (either

wl or w2), reducing the number of independent parameters to three (wl or w2, h,

and p). Consistent with the findings of Menabde et al. [1997], the parameter h

is assumed to be 0.3. Because the spatial extent of the watersheds considered is

relatively small (e.g., approximately 10 km) the remaining independent parameters

of the cascade (wl and p)are tuned based on heuristic criteria that seeks to ensure

that a broad range of multiplicative weights could be realized at any given simulated

radar pixel. The values of the parameters used are shown in Table 5-1.

The values of the multiplicative weights W1 and W2 at each step of the cascade,
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Table 5.1: Parameters of the multiplicative cascade
.Parameter Value

J 5
h 0.3
p 0.6
wl 0.4
w2 1.9

for j = 1, 2... 5 are graphically depicted in Figure 5-4. The multiplicative weight

that determines the rainfall volume in the it h pixel of the downscaled radar field at

J = 5 steps into the cascade will be the product of one of the two multiplicative

weights chosen through a random draw (with W1 occurring 6 times in 10) at each

step of the cascade. The maximum multiplicative weight that can be realized in this

procedure, which occurs if W2 is drawn at each step of the cascade, is approximately

7.50. The minimum realizable weight is approximately 0.12.

To generate a single ensemble replicate of spatiotemporally varying rainfall over

a watershed, the MBL model is used to generate a time series of rainfall at one hour

intervals, and the multiplicative cascade model is used to partition the hourly rain-

fall volume in space. The cascade model is also employed in this thesis to introduce

uncertainty into the rainfall time series generated by the MBL model for point-scale

and small catchment scale simulations. Using the a time series of simulated rainfall

derived from the MBL model, a time series of multiplicative weights, equal in length

to the rainfall time series, is generated using the multiplicative cascade with the pa-

rameters shown in Table 5-1. The noise-corrupted point-scale time series of rainfall

is the hour-by-hour product of the rainfall and the multiplicative weight. For the

data assimilation experiments in this thesis, an ensemble of spatiotemporally vary-

ing rainfall is generated by: (1) generating a synthetic true time series of rainfall

simulated by the MBL model, (2) perturbing the true rainfall time series using the

multiplicative cascade, and (3) spatially disaggregating the perturbed rainfall time

series in space using the multiplicative cascade, and (4) repeating steps (2) and

(3) until the desired ensemble size is achieved. This procedure assumes that the

initiation of storm events is relatively well known at the watershed scale, while the
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rainfall volumes are the primary source of uncertainty in rainfall data. What fol-

lows is a discussion of the simulation of the remainder of the hydrometeorological

forcings required as input to tRIBS-VEGGIE.

5.3.3 Modeling uncertainty: thermodynamic forcings

As described in the introduction to this chapter, uncertainty in the thermody-

namic forcings of the hydrologic system leads to uncertainty in the atmospheric

evaporative demand, thereby affecting uncertainty in soil moisture. This section

provides a brief description of the stochastic weather generator formulated by Ivanov

et al. [2007], to which the interested reader is referred for additional details. The

original implementation of the weather generator began by simulating hourly pre-

cipitation using the Poisson Rectangular Pulse stochastic point-scale rainfall model,

which is similar to but simpler than the MBL model. This was modified slightly

so that hourly rainfall data simulated by the MBL model discussed above could be

used as input to a stochastic weather generator. The weather generator simulates

the time evolution of sky cloudiness fraction, conditioned by the hourly rainfall time

series, using the stochastic model of Curtis and Eagleson [1982]. Based on the Ju-

lian day and hour being simulated, the sky position of the Sun is calculated and the

amount of incoming solar radiation at the top of the atmosphere is determined. The

amount of solar radiation in two frequency bands (visible and near-infrared) is then

computed as a function of the solar radiation input to the top of the atmosphere and

atmospheric attenuation factors that are a function of the cloudiness fraction and

precipitable water in the atmospheric column. Air temperature is computed as the

sum of a deterministic term that depends on an estimate of the incoming long-

wave radiation and a stochastic perturbation term that follows a first-order Markov

process. Dew temperature is simulated on a daily basis and is a function of the min-

imum air temperature during the day and an estimate of the evaporative fraction

during the day. Some assumptions about potential evaporation rates are required

to estimate the daily evaporative fraction and the interested reader is referred to
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the work of Ivanov et al. [2007] for further detail. Wind speed is simulated as a

first-order autoregressive process, taking into account the positive skew in the dis-

tribution of hourly wind speeds typically observed. To ensure consistency with the

parameters of the MBL model, the parameter estimates that Ivanov et al. [2007] de-

rived for Tucson International Airport (TUS) in Tucson, Arizona are used to simulate

the thermodynamic forcings.

The stochastic weather generator is used in this work to ensure that all ther-

modynamic forcings are self-consistent, and consistent with the rainfall forcings.

More broadly, the approach to modeling uncertainty in the hydrometeorological

forcings required as input to the tRIBS-VEGGIE model is substantially less complex

than using a numerical weather prediction model to generate ensembles of rainfall

fields, and adequately captures dynamics of spatiotemporal evolution of rainfall for

relatively small watersheds.
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CHAPTER 6 MODELING

UNCERTAINTY IN SOIL

PROPERTIES

As described in Chapter 3, the EnKF retrieves an estimate of the "first guess"

state error covariance matrix directly from the ensemble of model simulations.

Along with the observational error covariance matrix, this ensemble estimate of

the state error covariance matrix estimate determine the gain, and therefore the

relative contributions of the model and observation in the updated state estimate.

Inadequate treatment of uncertainty in the model and its inputs can result in first

guess error covariance estimates that are unrealistically low. As a consequence, the

state update machinery of the EnKF interprets an artificially low state error covari-

ance as a high model confidence, leading to a relative mistrust of the observations

and minimal propagation of information from the observations to the model fore-

cast. This idea is shown diagrammatically in figure 6-1. In this representation, as

the ensemble replicates are propagated forward they tend to converge to a relatively

limited area in state space, which represents an attractor state of the system (figure

6-1). The ensemble state error covariance approximated from this relatively small

area of state space will correspondingly small. Although the ensemble of predicted

observations may be substantially different than the data, thus implying significant

innovations, the unrealistically small approximation of the state error covariance

will limit the amount of information in the observations propagating back to the

state.
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Figure 6-1: A schematic representation of unrealistically low model error result-
ing from inadequate representation of sources of uncertainty in the model and its
forcings.

The particular worry in the context of ensemble data assimilation with the

tRIBS-VEGGIE model specifically, and all dynamic soil moisture models generally, is

unrealistically small error covariance in the soil moisture state arising from unreal-

istic or inadequate representation in either the hydrometeorological forcings or the

model itself. Model uncertainties can be further subdivided into several additional

categories: (1) loss of fidelity to the physical processes of moisture redistribution

associated with model abstraction and formulation of the governing equations, (2)

simplification, spatiotemporal discretization, and parameterization of the govern-

ing equations, and (3) imperfect characterization and knowledge of the properties

of the heterogeneous and anisotropic porous media.

The latter of these model uncertainties has been the topic of a significant amount
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of research in hydrologic science literature. The thrust of the majority of these ef-

forts has been to efficiently estimate the soil properties in parameter specification

and calibration exercises. Early employed Kalman Filtering procedures, augment-

ing the state vector with some of the model parameters1 , to simultaneously estimate

the model state and parameters. This approach to parameter estimation, commonly

referred to as automatic calibration, should ideally converge to the best parameter

and state estimate through tontinued assimilation of observations. Hino [1973]

applied the Kalman Filter to estimate the ordinates of the unit hydrograph for a

lumped basin discharge model for which sequential observations were available. Ki-

tanidis and Bras [1979] investigated the stability of parameters estimated through

a Kalman filtering framework with increasing numbers of observations. In an in-

teresting investigation of structural model errors, Restrepo-Posada and Bras [1982]

used a three linear reservoir model to generate synthetic observations of discharge

and then used the augmented state vector approach to estimate the parameters for

a two linear reservoir model as a way of investigating the effects of structural model

error.

More recently, a substantial body of work has been devoted to global optimiza-

tion approaches (see e.g., Duan et al. [1992]; Gupta and Sorooshian [1994]; Yapo

et al. [1998]; Boyle et al. [2000]). These global optimization approaches, which

minimize an often multi-objective cost function that penalizes deviations between

predicted observations and data to arrive at some pareto-optimal parameter es-

timate, may be advantageous when using complex and high-dimensional hydro-

logic models because augmented state vector approaches may be relatively more

computationally expensive. Vrugt et al. [2004] demonstrated the feasibility of es-

timating soil hydraulic properties for a distributed model in an agricultural water

district through an inverse modeling framework using observations of plot-scale tile

drainage. Minasny and Field [2005] also used inverse modeling with Generalized

Likelihood Uncertainty Estimation (GLUE) to estimate soil hydraulic properties and

their uncertainty with observations of evaporation. The idea underlying the param-

1see Schweppe [1973] and Gelb [1974] for a review of state augmentation
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eter estimation portion of the combined parameter-state estimation problem is that

the model can be used to solve for the parameter set that minimizes estimation

errors between model outputs and observations.

Uncertainty in soil properties has increasingly received attention in ensemble-

based soil moisture data assimilation. For instance, Margulis et al. [2002] and

later Dunne and Entekhabi [2006] introduce random variation in soil hydraulic

and vegetation properties between ensemble replicates as a way in including ef-

fects of parameter uncertainty. Vrugt et al. [2005] attempt to exploit the strengths

of both data assimilation and global optimization strategies to estimate hydrologic

model states and parameters in an ensemble-based framework that they term si-

multaneous optimization and data assimilation (SODA). Further, Moradkhani et al.

[2005] investigated a particle filtering approach, a form of ensemble-based data

assimilation, to address the problem of the combined state and parameter estima-

tion problem for a lumped conceptual hydrology model. Hence, in ensemble-based

hydrologic data assimilation, the importance of representing uncertainty in model

parameters is being increasingly recognized.

This chapter, therefore, deals with the treatment of the uncertainty in soil hy-

draulic and thermal properties (SHTPs). The goal is not to perform parameter es-

timation, but rather to ensure that uncertainty in SHTPs is represented sufficiently

well to ensure that ensemble estimates of the state error covariance are not unrealis-

tically low. Extension of this work to parameter estimation will, however, be briefly

discussed as a potential future research objective in the concluding chapter of the

thesis. It is a straightforward heuristic exercise to deduce a simple, yet feasible,

case in which failure to represent uncertainty in SHTPs may lead to an unrealisti-

cally low estimate of the soil moisture state error covariance in an ensemble-based

data assimilation system. Specifically, using a single set of SHTPs to characterize a

particular soil type in an ensemble tRIBS-VEGGIE simulation would imply a single

constant value for residual moisture content, OR. Assuming that the timing and du-

ration of rainfall events is well known, but storm-event volumes and rainfall rates
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uncertain, the timing of wetting and drying cycles would be similar across all of the

ensemble replicates. During storm events the uncertainty in soil moisture, partic-

ularly in the near-surface where it is most related to remotely sensed geophysical

observations, would be controlled largely by the variance in rainfall rates and vol-

umes. Immediately after rainfall cessation, uncertainty in soil moisture will begin

to decrease as individual ensemble replicates dry at rates that are dictated by the

soil moisture content at the end of the storm, vis-a-vis the dependence of hydraulic

conductivity on soil moisture. As the drying cycle progresses, the uncertainty in

soil moisture will asymptotically approach zero because each ensemble replicate is

parameterized by the identical residual moisture content. Hence, for circumstances

in which the arrival and duration of storms is well known but the precipitation vol-

umes and rates are uncertain, and to the extent that the model is parameterized

by some residual moisture content that constitutes an absolute minimum value of

soil moisture, toward the end of each drying cycle the uncertainty in soil moisture

will be small. This conceptual argument is demonstrated through a single point-

scale tRIBS-VEGGIE ensemble simulation in figure 6-2. With a single set of SHTPs,

well-known rainfall timing and duration, and uncertain rainfall rates and volumes,

the variance in near-surface (i.e., top 10 cm) soil moisture increases during rainfall

events and decays to a small value as the drying cycle progresses (figure 6-2).

An argument can be made that low soil moisture uncertainty is consistent with

the physical expectation of very little near-surface moisture toward the end of a dry-

ing cycle, irrespective of the soil. However, while that argument may be more phys-

ically realistic, the underlying criticism reflects potential deficiencies in the model

abstraction and parameterization. Moreover, the potentially most important role

the residual soil moisture parameter plays in hydrologic simulation is to affect the

infiltration rate at the beginning of the storm. Finally, the residual moisture content

parameter is meant to capture the fact that most natural soils do retain some small

amount of moisture in pore spaces not connected to the continous pore-network,

such as intra-aggregate spaces, even under intense natural drying conditions [Hillel,

1998].
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Figure 6-2: Results of a tRIBS-VEGGIE 100 member "open loop" ensemble sim-
ulation in which uncertainty in rainfall timing and duration, and SHTPs are not
represented. Rainfall rates are simulated for each rainfall replicate using the mul-
tiplicative approach outlined in Chapter 5. Shown are the: (a) ensemble standard
deviation of rainfall used to force the ensemble of simulations, (b) time series of en-
semble mean soil moisture (black line) [m3/m3] and the time series of one ensemble
standard deviation above and below the ensemble mean (gray area) [m3/m3], and
(c) the time series of the ensemble standard deviation in soil moisture [m3/m3 ].

The remainder of this chapter begins with a general introduction to the treat-

ment of parameter uncertainty. First the concept of random sampling is presented,

followed by an overview of the Latin Hypercube sampling (LHS) algorithm. A sim-

ple conceptual example that generates a finite number of samples of two uncer-
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tain parameters that are required as input to an unspecified model is employed

to demonstrate the implications of each sampling scheme. The impact of the ran-

dom and LHS techniques are then compared and contrasted through the use of two

simple, but illustrative models that again require two uncertain parameters as in-

put. The Restricted Pairing (RP) technique, which augments the benefits of the LHS

approach with correlation control, is then introduced. The application of the RP

technique to sampling the SHTPs required as input to tRIBS-VEGGIE is then out-

lined, along a meta-analysis of a widely-used SHTP database to establish marginal

distributions and among-parameter correlations. A detailed analysis of implications

of the RP algorithm as applied to sampling of the SHTPs on ensemble soil moisture

simulation with tRIBS-VEGGIE concludes the chapter.

6.1 Random sampling

For reasons discussed in Chapter 2 and above, Monte Carlo techniques are pow-

erful for uncertainty analysis and data assimilation when the model being used is

nonlinear, and/or of high state dimension. Under these circumstances analytical un-

certainty or sensitivity analyses are often labor intensive or numerically unstable.

Highly nonlinear models may also demonstrate sensitive dependence to input pa-

rameters, and depending on the application it may be desirable to identify regions

of the parameter or state space that, when input to the model, have significant

consequences to model outputs. Therefore, in Monte Carlo application the way in

which uncertain parameters are sampled is of significant importance.

The most elementary technique for obtaining an ensemble of uncertain model

inputs is to repeatedly sample each of the uncertain input variables from its ap-

propriate marginal distribution through random number generation until some

desired sample (ensemble) size is reached. Suppose that some arbitrary model,

y = f(II, x), produces a vector of outputs y as a generally nonlinear function of a

vector of input parameters II and some input state vector x. Further suppose that
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the input parameter vector II is a collection of uncertain inputs,

II =- [11, 112 , H-3 , H 4 ,..., IIn] (6.1)

Assume that the uncertain variables, IIj, are independent of one another so

that the marginal behavior of the IIj are completely specified by their respective

marginal distributions,

(6.2)

Let the desired ensemble size consist of m samples of each of the n uncertain

parameters (i.e., an ensemble consisting of m replicate samples of the input vector

HI). The ensemble of input parameter vectors is obtained by sampling sampling

each of the n marginal distributions (D) m times. For example, assume that the n

marginal distributions of the fII uncertain parameters follow a gaussian distribution

with mean j and variance ?r. The algorithm used to generate m samples of the

n-dimensional input parameter vector II can be summarized as follows:

Algorithm 1:

For i=l...m

For j=l...n

1. Generate a number u from U[0,1]

2. Obtain 11id by solving -'(u,pj,~j),

where (.) is the inverse of the normal

distribution with parameters uLj and a2

End

End

To demonstrate one of the potential implications of this most elementary pa-
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rameter sampling scheme, a simple example to sample m = 5 pairs of uncertain

model parameters, H = [U, V], is shown in figure 6-3. The variable U is assumed

to be gaussian distributed with p = 5 and a = 2.5 (figure 6-3(a)), while V is as-

sumed to be uniformly distributed on [-10,10] (figure 6-3(b)). Figures 6-3(a) and

(b) are illustrated in a manner to underscore the commonly-used random number

generation techniques used to sample the respective parameter replicates (e.g., see

Press et al. [1992]). Specifically, for each input parameter and sample a random

deviate uniformly distributed on the interval [0,1] was generated and assumed to

be a realization of the appropriate cumulative density function (cdf), which was

then inverted either analytically or through some numerical approach to obtain the

corresponding realization of the parameter U or V. The location of these input

pairs [Ui, Vi] in the joint parameter space illustrate the possibility that the paired

random samples of Ui and V can cluster within a relatively confined portion of the

parameter space (figure 6-3(c)).

Hence, in this example where the number of samples is relatively small, the

sampled parameters to be input to the arbitrary model, y, do not characterize well

the full range of plausible values each respective parameter can take. In the limit

of a large m, the histogram of the sampled variables U and V would reasonably

well reproduce the marginal distribution from which they were drawn (Du and

Dv, respectively), and the feasible region of parameters would be more broadly

represented. However, the degree to which the structures of the marginal distri-

butions are well-preserved and the feasible parameter space well-represented by a

finite number of samples generally diminishes as the sample size decreases. For the

input variable U in particular, at small m the sampled values are likely to cluster

in the vicinity of the mode of U using the outlined random sampling approach.

More generally, at small sample sizes there is no a priori guarantee that the feasi-

ble parameter region will be broadly represented when using random sampling as

outlined here. In Monte Carlo-based uncertainty assessment and data assimilation

this random sampling technique is potentially problematic when: (1) the computa-

tional costs of the model limit the sample size of uncertain inputs that can feasibly
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Figure 6-3: An example of random sampling applied to generation of two uncer-
tain model input parameters. Random values corresponding to probabilities are
sampled from a uniform distribution on [0,1], and then mapped to corresponding
variable values through the cdf of the marginal distributions of the uncertain inputs.
(a) U is sampled from a normal distribution with p = 5 and o-u = 2.5, (b) V is
sampled from a uniform distribution on [-10,101, and the values of U and V are
paired to arrive at the m = 5 samples of II.

be simulated, and/or (2) low probability realizations of model input parameters

can cause model outcomes that are of high consequence. The following section de-

tails the Latin Hypercube approach to sampling uncertain model inputs, which was

developed precisely to cope with these two conditions.developed precisey to cope with these two conditions.
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6.2 The Latin Hypercube sampling algorithm

Latin Hypercube sampling (LHS) is a technique to sample uncertain inputs from

their respective marginal distributions in a manner that ensures that the marginal

distribution of each input variable as broadly sampled as possible given a limited

sample size, while maintaining some degree of randomness [Helton and Davis,

2003]. In this manner LHS was developed to ensure that in a Monte Carlo uncer-

tainty analyses, a model would experience parameter values that are of low prob-

ability, but (depending on the nature of the model) potentially high consequence.

The LHS algorithm originated in the need for reliable and consistent Monte Carlo-

based uncertainty assessments of nuclear reactors, an application for which low

probability model outcomes are of disproportionately high supposed consequence

[McKay et al., 1979]. More recently, the use of LHS has found its way to landscape

ecology [Xu et al., 2005] and groundwater hydrology modeling applications [Gwo

et al., 1996; Sohrabi et al., 2002].

The thrust of the LHS algorithm is to provide a numerical framework which sam-

ples the marginal distributions of the uncertain model parameters, Dj , as broadly

as possible while maintaining some degree of randomness, subject to the constraint

of sampling the Dj only m times. The algorithm achieves this by partitioning the

cdf representing the marginal distribution of variable IIj into m distinct and non-

overlapping subspaces of equal probability mass and subsequently sampling one

value of IIj from each of the m subspaces. Again suppose that m samples of the n

uncertain parameters that follow gaussian distributions parameterized by a mean

13 and variance a are to be generated. The LHS algorithm provides for sampling m

replicates of the n-dimensional input parameter vector II in the following manner:

Algorithm 2:

1. Partition the range of probabilities [0,1] into

m subspaces of equal intervals
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For i= 1...m

For j= 1...n

2. Generate a number u from a distribution

that is uniform over the interval of

the ith of m subspaces

3. Obtain lij by solving -1 (u, j, o.),

where 4(.) is the inverse of the normal

distribution with parameters ,j and ?

End End

4. Randomly permute the m random samples for each

of the n input parameters.

To compare and contrast LHS with random sampling, consider again the exam-

ple from the previous section in which m = 5 replicates of the uncertain parameter

vector II = [U, V] are sampled, assuming U is normally distributed with t = 5 and

a = 2.5 and V is assumed uniformly distributed on the interval [-10,10]. As illus-

trated in figures 6-3(a) and (b), the cdfs of U and V are partitioned into 5 distinct

and non-overlapping subspaces, each with a probability mass of 1/5 = 0.2. Within

each of these subspaces, a random number uniformly distributed between the lower

and upper probability bounds within the subspace is generated, and the underlying

values of U and V obtained by inverting the appropriate cdf (figure 6-4(a) and (b)).

The 5 samples of U and V are then paired randomly to avoid systematic associa-

tion of low/high probability values of U with low/high probability values V (figure

6-4(c)). The LHS scheme in effect partitions the joint parameter space into boxes

from which values are drawn, its construction ensuring that at least one pair will

be drawn from each of the m = 5 strata. Comparing figures 6-3 and 6-4, the input

vectors H = [U, V] sampled using the LHS technique are drawn more broadly from
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Figure 6-4: A simple example using LHS to generate uncertain model inputs: (a)
U is sampled from a normal distribution with p = 5 and a = 2.5, (b) V is sampled
from a uniform distribution on [-10,10], and (c) the values of U and V are paired
randomly to arrive at the m = 5 samples of x.

the two marginal distributions, Du and Dv. As a consequence, any sensitivities of

the model outputs y to less frequently occurring parameter values are more likely

to be captured when the input parameter vectors II are generated using the LHS

technique when the sample size m is small. Moreover, as will be demonstrated in

the following section, input parameter vectors constructed using LHS lead to more

reproducible probabilistic behavior in the model outputs when limitations on the

sample size exist.
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6.3 Example: A comparison of LHS and Simple Random Sam-

pling

In this section the LHS and random sampling techniques are compared in terms

of the reproducibility of cdfs from outputs of two different models. In this com-

parison the two models are each nonlinear mathematical relationships that contain

thresholds and were used in a similar analysis by Helton and Davis [2003]. The first

model is a monotonic function and requires two parameters II = [U, V] as input,

while the second model is a non-monotonic function of the input parameter vector

II. For this example, the marginal distributions for U and V are the same for both

model 1 and model 2. U is assumed to be uniformly distributed on the interval

[1.0, 1.5], while V is assumed uniformly distributed on [0.0, 1.0]. The impacts of

sample size, m, are also investigated in an attempt to diagnose the limitations on

each sampling technique. Sample sizes considered for both models are m = 25, 50,

and 100. To compare each sampling technique on the basis of consistency in the

probabilistic behavior of the model outputs (fi(U, V) and f 2(U, V)), both sampling

technique were repeated ten times for each model and the cdfs of the model outputs

estimated using the Weibull plotting procedure.

6.3.1 Model 1: Monotonic with thresholds

The first model used is a monotonic function in II = [U, V], with thresholds.

The model is nonlinear in the input parameters, with quadratic and cross-product

terms. The formula for this mode is given as:

fl(U, V) = U + V + UV + U2 + V 2 + Umin [exp(3V), 10] (6.3)

Again, U is assumed to be uniformly distributed on [1.0, 1.5], while V is as-

sumed uniformly distributed on [0.0, 1.0]. Realizations of the uncertain inputs

II = [U, V] are generated using the LHS algorithm for m = 25, 50 and 100. The
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m realizations of II are then input to model 1 and the cdf of the output computed

using the Weibull plotting formula. This process is similarly repeated, instead using

the random sampling approach to generate the m realizations of H. This process of

generating m realizations of II, inputting them to model 1, and estimating the cdf

is repeated ten for both sampling techniques.

(a) (b)
1.0 1.0

LH S size 25
0.8 0.8

0.6 0.6

0. 0.2 0.2
0.0Random size 25

0 10 20 30 0 10 20 30
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0.8 0.8

0.6 0.6

ig 0.4 0.4

- 0.2 0.2
A. 0Random size 100

0 10 20 30 0 10 20 30
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Figure 6-5: Comparison of cdfs computed with output of the monotonic model: (a)
LHS-derived parameters with m = 25, (b) random sampling derived parameters
with m = 25, (c) LHS-derived parameters with m = 50, (d) random sampling
derived parameters with m = 50, (e) LHS-derived parameters with m = 100, and
(f) random sampling derived parameters with m = 100.

The LHS-derived parameters clearly lead to more reproducible cdfs from the

model output for m = 25 and 50 (figures 6-5(a)-(d)). However, the contrast in cdf

reproducibility between the LHS and random sampling approaches diminishes as

m increases further (figure 6-5(e),(f)). For m = 25, generating parameters using

random sampling leads to discrepancies of up to 0.3 in the cdf estimated from the
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model output, even using this relatively simple monotonic model with thresholds

(figure 6-5(b). The corresponding discrepancy in the estimated value of the cdf in

the case of LHS-derived parametersis substantially smaller (figure 6-5(a)). Further-

more, even when m = 100 there remains substantial dispersion in the cdf computed

from the model output when the parameters were sampled using the random sam-

pling scheme (figure 6-5(f)). By contrast, at m = 100 LHS-generated parameters

lead to significantly more consistent cdfs, even clarifying some of the more subtle

structures in the cdf hidden at smaller m (i.e., the break in slope at approximately

fi (U, V) = 16) (figure 6-5(e)). Hence, even in circumstances in which computa-

tional burden does not necessarily limit the size of m, the LHS may provide some

benefit when it is necessary to finely resolve the probabilistic behavior of the model

predictions. However, the more noticeable benefit of the LHS algorithm is that the

cdf of the model output is more reproducible at smaller m when uncertain input

parameters are generated using LHS.

6.3.2 Model 2: Non-monotonic with thresholds

The second model used is non-monotonic in H = [U, V], and also contains

thresholds. Having both quadratic and cross-product terms, this model is also non-

linear in model inputs. The marginal distributions and analytical techniques out-

lined for model 1 above, are also used for model 2. Model 2 is formulated in the

following manner:

f 2(U, V) = U + V + UV + U2 + V 2 + Ug(V) (6.4)

where,

h(V) = (V - 11/43)- 1 + (V - 22/43)- 1 + (V - 33/43) - 1

g(V) = h(V) if Ih(V)I < 10

g(V) = 10 ifh(V) 10
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g(V) = -10 if h(V) < -10.

(c) (d)

(e) (1)

0 20 40 -20 0 20
t = f2(U,V) f = f2(U,V)

Figure 6-6: Comparison of cdfs computed with output of the non-monotonic model:
(a) LHS-derived parameters with m = 25, (b) random sampling derived parameters
with m = 25, (c) LHS-derived parameters with m = 50, (d) random sampling
derived parameters with m = 50, (e) LHS-derived parameters with m = 100, and

(f) random sampling derived parameters with m = 100.

As was the case with the monotonic model, in the case of the non-monotonic

model the LHS approach leads to reproducible model cdf, even at m = 25 (fig-

ures 6-6(a),(b)). Apparent at m = 100, the non-monotonicity and non-linearity

of model 2 leads to three regimes in the structure of its cdf (figures 6-6(e),(f)).

Non-exceedance probability rises relatively quickly at low values of f2, and then

rises less quickly at moderate f2. At approximately f2 = 15, the non-exceedance

probability again increases rapidly with increasing f2. For all m, the cdfs estimated

from the model outputs derived from LHS-generated input parameters capture bet-
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ter the three regimes in the cdf of f2 (figures 6-6(a), (c), (e)). For m = 25, the cdfs of

model outputs derived from parameters generated using random sampling exhibit

differences of between 0.3 and 0.5 over a broad range of values of f2(U, V) (figure

6-6(b)). In contrast, the corresponding difference in non-exceedance probability

in cdfs estimated from outputs of model 2 produced with LHS-derived inputs is

comparatively smaller (figure 6-6(a)). Substantial variation in the cdfs of model 2

output exist even at m = 50 when the inputs are derived from the random sampling

approach (figure 6-6(d)). Compared with m = 50, at m = 100 variation in cdfs esti-

mated from model outputs is substantially reduced when the inputs are generated

using random sampling (figure 6-6(f)). However, this reduction in cdf variation

at high m still does not lead to the level of reproducibility achieved when model

inputs are generated using LHS (figure 6-6(e)). Similar to the conclusion for model

1, analysis using this slightly more complex non-monotonic, non-linear model with

thresholds reveals that LHS-derived parameters lead to more reproducible cdfs in

model output, which are capable of illuminating distinct regimes in the cdf of the

model output, at much smaller m than parameters generated through random sam-

pling.

6.4 Control correlation among uncertain model inputs

There may be physical reasons to suspect or empirical data to suggest that un-

certain parameters required as input to a model are correlated, or are otherwise not

independent. As is frequently the case the n-dimensional joint probability distribu-

tion exactly characterizing the joint behavior of the n input parameters may not

be known or accessible. Although fully characterizing the joint behavior between

the n input parameters may be infeasible, it may be nevertheless useful to impose

correlation among the m samples of the n input parameters.

Suppose the m samples of the n uncertain input parameters Ilij are collected

into an m x n mnatrix, II,
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Ii 11 12 ... 1n

I i21 I22 ... 2n (6.6)

1Im1 IIm2 ... flmn

The goal is to sample the IIj in a way that the correlation structure of the matrix

H approximates an n x n correlation matrix C, which is known a priori. The re-

stricted pairing (RP) method, first proposed by Iman and Conover [1982], provides

a straightforward way to sample uncertain input parameters from their respective

marginal distributions using LHS, while imposing a desired correlation structure on

the ensemble of realizations of the uncertain inputs, II. The underlying objective

of the RP algorithm is to "rearrange" the elements of II within each column so that

its correlation structure approximates C. The elements of the matrix C represent

correlation coefficients between any two of the input parameters IIj,

C1 1  C12  ... Cln

C = 21 22 ... (6.7)

n Cn2 ... Cnn

The two most common ways of expressing correlation between two variables are

through the Pearson correlation coefficient and the Spearman rank correlation coef-

ficient. Both the Pearson correlation coefficient and the Spearman rank correlation

coefficient take values between -1 and 1. For any two variables, denoted xl and x2,

the Pearson correlation coefficient represents the strength of a linear relationship

between x, and x2. A negative Pearson correlation coefficient implies an inversely

linear relationship between the variables. Alternatively, the Spearman rank corre-

lation coefficient measures the strength of a monotonic relationship between the

variables xl and x2. Similarly to the case for the Pearson correlation coefficient, a

negative value of the Spearman rank correlation coefficient indicates an inversely
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monotonic relationship between xl and X2. Mathematically, the Pearson correlation

coefficient between the variables x1 and x2 can be computed as,

122 1 =1 1/2 m - 1/2 (6.8)

( - 21 ) ( -i2 X)
i=1 i=1

where,

fi = xi, and,
m

i=1

m
2 xi 2. (6.9)

i=1

In a similar fashion, the Spearman rank correlation coefficient between the vari-

ables xl and x2 can be computed as follows,

m

Z(R(xii) - R(x1))(R(Xi 2) -R(X))

2 -= 1/2 - 1/2 (6.10)

[ (R()) - R(X))2 - R())2

i= L i=1

where the operator R(.) denotes the rank transformation of the argument, tak-

ing values from 1... m in ascending order, and R(xl) = R(x2) = (m + 1)/2.

The RP algorithm as presented below represents a mathematical framework to

perform the rearrangement of the elements of H, to achieve a correlation structure

that approximates the a priori known Spearman correlation matrix C. The algo-

rithm begins by constructing the m x n matrix, V whose columns contain the m van

der Waerden scores,

216



r-'(1/(m+ 1)) (1/(m + 1)) ... -1(1/(m + 1))

V= (I-1(2/(mn + 1)) ()-'(2/(m + 1)) ... )-1(2/(m + 1)) (6.11)

-l(m/(m + 1)) 1(m-l /(m + 1)) ... -l(m/(m + 1))

where 5-1 (.) is the inverse operator of the standard normal distribution. The

elements of the n identical columns of V are standard normal variates with proba-

bility i/(m + 1) for i = 1, 2, 3,..., m. The algorithm then proceeds as follows:

1. By column, randomly permute the elements of V to arrive at the matrix V*

2. Using the above equation, compute the Spearman rank correlation matrix

imposed by the random permutation in step 1, Rvv.

3. Compute the n x n lower triangular matrix Q as the Cholesky factorization of

the square symmetric, positive definite matrix Rvv. The Cholesky factoriza-

tion solves Rvv = QQT.

4. Compute the n x n lower triangular matrix P, through the Cholesky factoriza-

tion of the known matrix C, such that C = PPT.

5. Compute the n x n matrix S = PQ-1, where Q-1 is the inverse of matrix Q.

The matrix S is a linear operator that has the effect of removing the correlation

structure of Kvv and replacing it with that of C.

6. Now construct the m x n matrix S* = VST. The matrix S* now has approxi-

mately the desired Spearman rank correlation structure of C.

7. Transform the standard normal variates contained in S* back into normalized

ranks (i.e., variables ranging in values from 1/(m + 1) to m/(m + 1)) by op-

erating on each element with the forward operator of the standard normal

distribution, 4(.). Denote this matrix V**.
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8. By column, invert the appropriate marginal distributions with the elements of

V** as the arguments to arrive at the m x n matrix I*. The matrix HI* contains

the m-dimensional ensemble of realizations of the n uncertain inputs to the

model and has a Spearman rank correlation structure that is approximately

C. That is, the m rows of HI* are realizations of the inputs to the model, that

in an ensemble-sense are described by the rank correlation structure in C.

While both random sampling, LHS, and RP assume that the marginal distribu-

tions Dj are known, the RP algorithm additionally requires information about the

among parameter correlation, in the form of the matrix C. The Spearman cor-

relation matrix C is ideally based on a statistical analysis of databases containing

information about the parameters. More generally, the algorithm will produce cor-

related parameters sampled using LHS for any valid (i.e., square, symmetric, and

positive definite) correlation matrix C. The example below will demonstrate that

care must be exercised in establishing the marginal distributions of the IIj and the

correlation matrix C, because the parameter marginal distributions (Dj) together

with the imposed correlation (C) impact the joint behavior between the parame-

ters.

6.4.1 Example: Implementation of the RP algorithm

As discussed above, the restricted pairing algorithm first suggested by Iman and

Conover [1982] provides a means of inducing a desired rank correlation among

samples of uncertain input parameters. In this example, 1000 realizations of two

uncertain parameters of an arbitrary model are generated. These two parameters

will be denoted as X1 and X 2 in this example. The variable X 1 is assumed to be

normally distributed with zero mean and unit variance and X2 is assumed to be

uniform on the interval [-4,4]. Using the RP algorithm as enumerated above, the

RP algorithm employs the Spearman rank correlation matrix to project a random

permutation of the inverse van der Waerden scores (which themselves are standard
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normal variates) into a space with the desired correlation structure. The elements

of the resulting matrix are then mapped to the standard normal cdf, and through

inverting the appropriate marginal distributions of X1 and X2, a matrix of m = 1000

samples of the n = 2 inputs with the desired correlation structure is obtained.

For illustrative purposes, six off-diagonal Spearman rank correlation coefficients,

Ox1x, = 0.00, 0.25, 0.50, 0.90, and 0.99, are assumed.

(a) Rank corr. 0.00
4.2 .

0.8

4 ..

A.] :'

-3.3 -2 -0.7 0.7 2

(c) Rank corr. = 0.50

0.8

-0.8

-3.3 -2 -0.7 0.7 2 3.3

(e) Rank corr.= 0.90
4.2

2.5

-2.5-4.2

-3.3 -2 -0.7 0.7 2 3.3
X : Normal wth Mean = 0 and Var = 1

4.2

2.5

0.8

-0.8

-2.5

(b) Rank corr.= 0.25

S. 7.

- -. ,: .•:,
'I.

-4.
-3.3 .-2 -0.7 0.7 2 3.3

(d) Rank corr. = 0.75
4.2

2.5

0.8

-0.8

-2.5

-4.2"
-3.3 -2 -0.7 0.7 2 3.3

(f) Rank corr. 0.99
4.2

2.5

0.8

-0.8

-2.5

-4.2
-3.3 -2 -0.7 0.7 2 3.3
X, : Normal with Mean = 0 and Var = 1

Figure 6-7: One thousand random draws of two random variables, X which is as-
sumed normal with zero mean and unit variance and X2 which is assumed uniform
on [-4,4]. The restricted pairing algorithm is used to impose a Spearman correla-
tion coefficient between X1 and X2 of (a) 0.00, (b) 0.25, (c) 0.50, (d) 0.75, (e)
0.90, and (f) 0.99.

At small values of Cxtx2 , little correspondence between X1 and X2 is seen (fig-
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ure 6-7(a)). As Cx x2 increases, the monotonic nature of the correlation between

X 1 and X2 becomes more apparent (figures 6-7(b), (c), and (d)). At high values of

CxIx 2 (e.g., CX1 X 2 = 0.90 and 0.99), a non-linear relationship between between X1

and X 2 is evident, whereas at lower values of Cx x 2 the use of a linear relationship

to describe the tendency of the behavior between X1 and X2 is not entirely implau-

sible. The nature of the relationship between X1 and X2 at high Cxx 2 is imposed

entirely by the assumed marginal distributions of X, and X2.

An important implication of this simple example is that caution must be exer-

cised when selecting the n marginal distributions of the input parameters to ensure

that when possible, the assumed marginal distributions and correlation matrices

reproduce the structure of observed tendencies between individual pairs of param-

eters. Stated differently, because of the use of the Spearman correlation matrix in

the RP algorithm, the algorithm itself only imposes monotonic correlation rather

than a more restrictive form of correlation (e.g., linear as with Pearson's correlation

matrix). Hence, while the RP algorithm ensures monotonic relationships at given

correlation levels between input parameters, poor selection of the marginal distri-

butions of input parameters may result in misrepresentation of the nature of the

monotonicity between any pair of input parameters.

6.5 Applying the RP algorithm to ensemble-based soil moisture

estimation

LHS and RP have been shown to be useful tools to generate ensembles of un-

certain input parameters under constraints of limited sample size. In the context

of ensemble soil moisture data assimilation, limitations on sample size arise from

the numerical complexity of the tRIBS-VEGGIE model and the computational bur-

den associated with Monte Carlo integration of tRIBS-VEGGIE. Moreover, there is

some physical reason to suspect that infrequently occurring SHTPs may have im-

portant consequences for the dynamics of soil moisture. For example, loamy soils
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with very low saturated hydraulic conductivity may be encountered infrequently

but are of high consequence to soil moisture and runoff generation, because they

easily saturate, where they occur. Furthermore, process ecohydrology models such

as tRIBS-VEGGIE require parameters that ideally represent physical attributes of the

soil column or are directly measurable. There is also some physical justification to

believe that SHTPs may be correlated to each other. For example, residual moisture

content is always less than saturation moisture content and total porosity. Hence,

the benefits of the RP and LHS algorithms outlined above make these techniques

attractive as a means of generating SHTPs for tRIBS-VEGGIE ensemble simulations.

The added difficulty of implementing the RP algorithm to generate SHTP inputs for

tRIBS-VEGGIE lies in the need to characterize the marginal behavior of the input

parameters and establish their correlation structure.

This section details the application of the RP methodology to generate the SHTPs

required as input to tRIBS-VEGGIE. It is important to note here that once a single

realizations of the parameters required for simulation with tRIBS-VEGGIE are sup-

plied to the model, they remain static during the entire simulation. However, the

SHTPs vary across the ensemble and each ensemble replicate has a different re-

alization of the required SHTPs. It is further assumed throughout that the only

a categorical soil texture (e.g., loam, sand, etc.) is reliably known about the sys-

tem being modeled. What follows is a brief description of the SHTPs required by

the tRIBS-VEGGIE model. Following this description, efforts to define appropriate

marginal distributions and estimate Spearman correlation matrices for 9 categor-

ical soil types through a statistical analysis of a widely used soil meta-database is

discussed. After discussion of soil database meta-analysis, a series of numerical ex-

periments using tRIBS-VEGGIE are undertaken to investigate the sensitivity of the

statistical behavior of soil moisture ensembles to both the technique used to sam-

ple the SHTPs (i.e., random sampling versus RP) and ensemble size. Specifically,

similarly to the previous examples, the reproducibility of ensemble soil moisture

statistics is studied as the ensemble size as well as the SHTP generation technique

changes.
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6.5.1 Summary of soil parameters required as input to tRIBS-VEGGIE

The process mechanisms represented in tRIBS-VEGGIE that depend on SHTPs

are briefly described here: infiltration of precipitation in variably saturated soils,

ground heat flux, and bare soil latent and sensible heat fluxes. Infiltration of water

into the soil is modeled using a one-dimensional Richards equation for a sloped

surface that allows for lateral gravitational drainage. The lower boundary con-

dition of the model is a flux boundary condition, consistent with the assumption

of significant depth to the saturated zone in the semiarid environment for which

the model is currently most applicable. Moisture in the finite element soil column

can vary between the input residual volumetric moisture content (m3/m3), OR, and

the volumetric moisture content at saturation (m3/m3 ), Os. tRIBS-VEGGIE uses

the Brooks-Corey model [Brooks and Corey, 1964] to characterize the relationship

between volumetric moisture content, 0, hydraulic conductivity, K(O), and soil ma-

tric potential, (0). The Brooks-Corey parameterization requires specification of a

hydraulic conductivity at saturation [cm/hr], Ks, the pore distribution index pa-

rameter (dimensionless), Ap, and the air entry pressure [mm], Ob.

Ground heat flux in the tRIBS-VEGGIE model is calculated through the method

outlined by Wang and Bras [1999], which is based on a numerical solution to the

one-dimensional heat diffusion equation with constant heat diffusivity. The solution

to the heat diffusion equation proposed by Wang and Bras [1999] is based on the

recent history of soil surface temperatures, and requires specification of the volu-

metric thermal conductivity and heat capacity of the soil. Both the thermal conduc-

tivity and heat capacity depend on the moisture state at the time of calculation, and

therefore require specification of soil-specific thermal parameters as input. Com-

putation of the soil heat capacity is moisture-dependent linear combination of the

input heat capacity of the soil solid materials, Cs,solids (Jm-3 K-1), Os, the heat capac-

ity of liquid water, and the moisture state in the near-surface. Moisture-dependent

calculations of thermal conductivity in tRIBS-VEGGIE are based on the method sug-

gested by Farouki [1981] and require specification of the thermal conductivity of
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the dry soil (Jm-'s-1 K-1), ks,dry, and saturated soil (Jm-ls-'K-1), ks,sat.

Latent and sensible heat fluxes from the bare soil in tRIBS-VEGGIE are com-

puted through a resistance formulation, in which independent resistances to latent

and sensible heat flux are calculated. The gradient between air temperature and

soil skin temperature drives sensible heat flux, while the gradient between atmo-

spheric humidity and air humidity in the near-surface pore space drives latent heat

flux. Humidity in the pore spaces near the soil surface, in turn, depends on the

soil skin temperature. In this formulation, the latent heat flux depends on the soil

matric potential and moisture state in the near-surface, and on the input param-

eters Os and O.R It should also be noted, that sensible and latent heat fluxes also

indirectly depend on the soil thermal properties outlined above due because each

flux component depends on the soil skin temperature.

The SHTPs required as input to the tRIBS-VEGGIE model and considered as

uncertain in the present study are summarized in Table 6.1.

Table 6.1: Soil hydraulic and thermal properties required by tRIBS-VEGGIE

Symbol Description
Ks Hydraulic conductivity at saturation [mm/hr]
OR Residual moisture content [m3/m3]
Os Saturation moisture content [m3/m3]
A, Brooks-Corey pore distribution index [dimensionless]

kb Brooks-Corey air entry pressure [mm]
ks,dry Thermal conductivity of dry soil [J/(msK)]
ks,sat Thermal conductivity of saturated soil [J/(msK)]

Cs,solids Volumetric heat capacity of soil solids [J/(m3 K)]

6.5.2 Meta-analysis of a soil database

The soils data used in this study are a meta-database from 3 soil surveys [Rawls

and Brakensiek, 1985; Ahuja et al., 1989; Leij et al., 1996]. These data have pre-

viously been analyzed by Schaap and Leij [1998], and underlie the ROSETTA soft-

ware issued by the U.S. Department of Agricultures Salinity Laboratory. This meta-
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database contains 2134 analyzed records, 1309 of which posses a measurement of

saturated hydraulic conductivity (Ks). The parameters measured for each record

are summarized in Table 6.2. Note that the meta-database used by Schaap and Leij

[1998] present parameter values for the van Genuchten-Mualem soil water reten-

tion curve, whereas the tRIBS-VEGGIE model requires Brooks-Corey parameters.

Rawls et al. [1993], however, provides equations expressing equivalence between

the parameters of the van Genuchten and Brooks-Corey soil water retention func-

tions. Furthermore, the meta-database used by Schaap and Leij [1998] does not

contain values of Cs,soids, ks,sat, and ks ,dry. Therefore, Cs,solids and ks,dry are esti-

mated given the sand and clay fraction in the meta-database using an empirical

relationship presented Bonan [1996], and ks,sat is computed as a function of ks,dry

and Os using an empirical relationship presented by Peters-Lidard et al. [1998].

While Cs,solids and ks,dry are fit to beta distributions, they are perfectly anticorre-

lated with one another. Because ks,sat depends on ks,dry and Os, no distribution is

fit.

Table 6.2: Parameters in the metadatabase of Schaap and Leij [1998]

Parameter Description
% Clay Percent clay by mass [percent]
% Sand Percent sand by mass [percent]
% Silt Percent silt by mass [percent]

Pb Bulk density - not used [g/cm3 ]
Ks Hydraulic conductivity at saturation [mm/hr]
OR Residual moisture content [m 3/m 3 ]
0s Saturation moisture content [m 3/m 3]
a van Genuchten fitting parameter [dimensionless]
n, van Genuchten fitting parameter [dimensionless]

Each record was assigned to a soil textural class based on its reported sand, silt

and clay fraction. The number of records within each textural class ranges from

3 (silt) to 334 (sandy loam) and is shown in Table 6.3. Of the 1309 records with

Ks data, 9 textural classes are represented by at least 20 records and are set apart

for further analysis. In our analysis of these 9 textural classes we assume that the
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within-class ranges of parameter values and correlation structure characterize the

ensemble behavior of each textural class. In light of this assumption, within each of

the 9 selected textural classes we fit marginal distributions to each parameter and

computed the Spearman correlation matrices, as required to generate uncertain

replicates of the SHTPs necessary to simulate soil moisture with the tRIBS-VEGGIE

model.

Table 6.3: Summary of soil textures in database

Soil texture

Clay
Sandy clay
Silty clay
Sandy clay loam
Silty clay loam
Clay loam
Sandy loam
Loam
Silt loam
Sand
Loamy sand
Silt
Total

Number of records
in database

94
10
29

181
92
142
514
252
327
342
141
10

2134

Number of records
with Ks data

63
8
14

135
42
56

334
119
135
277
123
3

1309

We assumed that the log-transformed hydraulic conductivity data is normally

distributed based on previous studies of hydraulic conductivity distributions. Fur-

ther, the residual moisture content (OR) data exhibited a significant number of

records possessed On equals zero. We treated the marginal distribution of On as a

mixed discrete-continuous distribution, with an atom of probability at 0 with mass

equal to the empirical frequency of occurrence of On = 0, and a two-parameter

beta distribution for non-zero values of OR. Initial candidate distributions for the

remainder of the parameters (Os, Ap, /b, ks,dry, ks,sat, Cs,solids) were the gamma, two

parameter beta, and exponential distributions. The chosen distribution for each

parameter was based both on the significance of computed Kolmogorov-Smirnoff

(KS) goodness-of-fit statistics and visible comparison between the fit marginal dis-
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tributions and empirical histograms of each parameter. According to these criteria,

the two-parameter beta distribution was chosen to represent the uncertainty in the

remaining parameters. In the context of the soil properties considered here, the

beta distribution is particularly advantageous because it is defined over a finite in-

terval and can therefore constrain parameters to realistic values. The method of

moments was used to estimate the beta distribution parameters a and b. Param-

eter estimates of the fit marginal distributions values for each soil property in the

9 textural classes of the database are given in Appendix B. Computed Spearman

rank correlation matrices for each of the 9 considered textural classes are shown

in Appendix B. Figure 6-8 depicts an example of fit marginal distributions plotted

together with the empirical histograms of Brooks-Corey air entry pressure by soil

textural class.

6.5.3 Ensemble behavior of the sampling method

To isolate the impact of SHTP uncertainty, the simulations presented here were

conducted at the spatial scale of a single element (e.g., point). We also seek to

assess the influence of SHTP uncertainty on soil moisture ensemble behavior in-

dependently of vegetation effects. Thus, unvegetated conditions are assumed. To

contrast the two SHTP sampling techniques in the context of ensemble soil mois-

ture modeling, we present the results of a single experiment in figure 6-9. Us-

ing each SHTP sampling algorithm independently, 100 combinations of soil pa-

rameter inputs to tRIBS-VEGGIE were generated. The near-surface soil moisture

(top 10 cm) response during a 1000 hr period was then simulated, assuming ini-

tial soil moisture conditions corresponding to 10% effective saturation (defined as

Se = [0 - OR]/[Os - OR] = 0.10). Both ensembles were subjected to the same hy-

drometeoroloigcal forcings and the rainfall (figure 6-9(a)). The ensemble mean

soil moisture response appears virtually identical for the two SHTP sampling ap-

proaches (figure 6-9(b),(c)). However, several soil moisture replicates evolved with

random sampling-generated soil parameters appear to be physically unlikely (fig-
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Figure 6-8: Histograms of Brooks-Corey air entry pressure and fit trial distributions
for (a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e) sandy loam,
(f) loam, (g) silt loam, (h) sand, and (i) loamy sand.

ure 6-9(c)). Specifically, a few replicates seem to saturate after the first rainfall

event and remain saturated throughout the rest of the simulation. Furthermore,

some replicates evolved with random sampling-generated soils demonstrate large

increases in near-surface soil moisture during interstorm periods, an implausibly

large sensitivity to evaporative forcing (figure 6-9(c)).

The ensemble standard deviation in soil moisture, a measure of soil moisture un-

certainty, generally responds similarly in time (figure 6-9(d)). However, ensemble

standard deviation is higher for the experiment in which soil parameters were gen-

erated using the random sampling approach. This is because the random sampling

algorithm generates soil parameter combinations that lead to physically implausible

soil moisture behavior in the context of the tRIBS-VEGGIE model. The overarching
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Figure 6-9: The time evolution of: (a) rainfall used to drive the tRIBS-VEGGIE
model, (b) soil moisture in the top 10 cm [m3/m3 ] for the simulations in which
SHTPs were generated using the RP technique, (c) soil moisture in the top 10 cm
[m 3/m 3 ] for the simulations in which SHTPs were generated using the random
sampling technique, and (b) the standard deviation in soil moisture [m3/m 3]. In
(b) and (c), gray lines depict individual ensemble replicates while the black line
depicts the ensemble mean. In (d) the gray dotted line shows ensemble in which
SHTPs were generated using random sampling while the black solid line indicate
the ensemble in which they were generated using the RP technique.
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objective of this portion of the work is to investigate the degree to which the ensem-

ble estimate of mean and variance in near-surface soil moisture vary depending on:

(1) the technique by which SHTP uncertainty is represented and, (2) the number

of samples or size of the ensemble. To this end, adequate assessment of the sensi-

tivity of each sampling technique to ensemble size requires producing sufficiently

many ensemble first- and second-order statistics, across a range of ensemble sizes,

to quantify estimator variances. We vary the ensemble size, K, geometrically from

24 to 210 (i.e., from 16 to 1024 replicates). In this set of simulations we consider

three soil textures: loam, sandy loam, and clay. For each ensemble size (K) and

soil textural class we generate 20 independent ensemble parameter combinations,

each consisting of K SHTP combinations, using both the RP and random sampling

techniques. Each replicate in all of the simulations is subjected to the same hy-

drometeorological forcings for a period of 1000 hrs, and the soil moisture state is

not constrained to observations at any point during the simulation (i.e., soil mois-

ture ensemble simulations are open loop). The rainfall time series used to drive

the model is the same time series depicted in figure 6-9(a). Initial soil moisture

conditions again correspond to 10% effective saturation. This set of simulations

yields 20 time-evolving ensemble estimates of mean and variance in near-surface

soil moisture for each ensemble size, K.

Figure 6-10 depicts the time evolution of 20 estimates of ensemble mean (fig-

ure 6-10(a)) and ensemble standard deviation (figure 6-10(b)) soil moisture, each

computed over 64 replicates 2. For this particular ensemble size, ensemble mean soil

moisture is estimated consistently using either RP or random sampling to generate

SHTPs input to the model (figure 6-10(a)). However, the estimate of ensemble

standard deviation in soil moisture varies when random sampling is used to sam-

ple SHTPs, to a greater extent than the estimate of ensemble standard deviation

in soil moisture when RP is used, for this ensemble size (figure 6-10(a)). This

suggests that, for this particular ensemble size (64), the estimate of ensemble soil

moisture variance is sensitive to the particular combination of soil parameters sam-

2 Similar plots for the other ensemble sizes considered are provided in Appendix B
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Figure 6-10: The time evolution of: (a) soil moisture in the top 10 cm [m3/m3],
and (b) the standard deviation in soil moisture [m3/m3]. Gray dashed lines show
ensembles in which SHTPs were generated using random sampling while black solid
lines indicate ensembles in which SHTPs were generated using the RP technique.

pled when random sampling is used to generate the soil parameters required by

the model. In the context of ensemble data assimilation, the goal is to achieve the

minimum number of SHTP samples (ensemble replicates) for which the ensemble

statistics, particularly mean and variance, are independent of the actual parameter

values used. We are therefore interested in the consistency with which ensemble

soil moisture mean and variance are estimated as the ensemble size changes.

For each ensemble size, a sample variance in the ensemble estimates of mean

and variance in soil moisture is computed from the 20 independent ensembles.

Specifically, the relevant statistics are,
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N / 1N
2 (#(t))= N- (t) - i (t) (6.12)

i=1 i=1

and,

1 N N 2
82 (I(t))= N o(t) - E oi (t) (6.13)

i=1 i=1

where N = 20 ensembles, and Oij(t) is the soil moisture for replicate k (1 < k <

K) of ensemble i (1 < i < N = 20) at time t. In equation 6.12 ~Oi (t) is the estimate

of the mean soil moisture for ensemble i at time t, and is defined as,

K

/e (t) = E Ok (t). (6.14)
k=l

Similarly, in equation 6.13 &2 (t) is the estimate of the standard deviation in soil

moisture for ensemble i at time t, and is defined as,

S(t) = (Ok (t) - f (t))2 . (6.15)

k=1

In theory both s2 (0e(t)) and s2 (e (t)) should be zero for infinitely large ensem-

bles, regardless of how the uncertainty in the parameters is represented. That is,

if the multi-dimensional joint distribution of SHTPs was represented in perfect de-

tail, then there would be no variance in the estimate of any soil moisture statistic.

At small ensemble sizes, however, s2 ( e(t)) and s2 (A0(t)) can both be apprecia-

bly different from zero. For given hydrometeorological forcings, the rate at which

s2 (fte(t)) and s 2 (^ (t)) decrease as ensemble size increases can highlight tradeoffs

between computational burden due to increased ensemble size and the associated

decrease in the variance of the ensemble estimates of mean and variance in soil

moisture. Comparing the values of s2 (eO(t)) and s2 (^ (t)) for the RP and random

sampling approaches to representing SHTP uncertainty at a given ensemble size
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and during different times in the wetting-drying cycle can demonstrate the poten-

tial benefits of more careful treatment of parameter uncertainty under ensemble

size constraints.
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Figure 6-11: At 750 hours O(just after cessation of rainfall) the top row of plots
shows the standard deviation in the ensemble mean soil moisture estimate across
20 ensembles as a function of ensemble size for (a) loam, (b) clay, and (c) sandy
loam soils. The bottom row shows the standard deviation in the ensemble estimate
of standard deviation in soil moisture across 20 ensembles as a function of ensemble
size for (d) loam, (e) clay, and (f) sandy loam soils.

The behavior of s2 (Ao (t)) versus ensemble size (figures 6-11(a)-(c)) and s2 (&(t))

(figures 6-11(d)-(f)) versus ensemble size are shown at t = 771 hr into the simula-

tion. This point in the simulation corresponds to a significant rain event. For all soil

textures, using RP to generate soil parameters input to tRIBS-VEGGIE yields a lower

value of s2 (e2(t)) (figures 6-11(a)-(c)) at all ensemble sizes. When comparing the

techniques, the difference in s2 (lo(t)) is greatest at the smallest ensemble size, and
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is relatively insignificant at K = 1028. Although s2 (f0 (t)) is relatively low at the

minimum ensemble size (16) when RP is used to sample SHTPs, it decreases only

modestly as ensemble size increases. Similarly, using RP to generate soil parame-

ters input to tRIBS-VEGGIE yields a lower value of s2 (& o(t)) at all ensemble sizes for

all soil textures (figures 6-11(d)-(f)). The difference in s 2 (&o(t)), when comparing

the two techniques, is again greatest at the smallest ensemble size, but is small by

ensemble sizes of K = 512 for clay and sandy loam soils, and K = 256 for loam

soils. When using random sampling to generate soil parameters, doubling or qua-

drupling the ensemble size from the minimum 16 yields much more consistency in

the estimate of ensemble mean and variance in soil moisture.

Similar results during a significant dry spell in the rainfall record (t = 1000

hr) are shown in figure 6-12. Conclusions are largely the same, however, note

that at K = 16 for clay soils using random sampling-generated soil parameters

actually results in a lower value of s2 (Uo(t)) when compared to using RP-generated

parameters (figures 6-12(d)-(f)). This may be an issue of sampling error as only 20

independent ensembles were used to compute s 2 (Ao (t)) and s 2 (& (t)).

To conclude this section, the results indicate that when computational resources

limit the size of the soil moisture ensemble, using a sampling technique that: (1)

samples low probability but potentially high consequence combinations of soil pa-

rameters, and (2) imposes correlation known or believed to exist among those pa-

rameters can potentially result in more consistent estimation of ensemble mean and

variance in soil moisture. This conclusion is of importance to the hillslope-scale soil

moisture data assimilation addressed in this thesis, and more broadly Monte Carlo

simulation with models like tRIBS-VEGGIE. It demonstrates that careful attention

to the way in which uncertainty in the SHTPs required as input to tRIBS-VEGGIE is

represented can lead to a significant reduction of computational burden. This re-

duction in computational costs is realized because when generating realizations of

the uncertain SHTPs the first- and second-order ensemble statistics (i.e., those used

in the Kalman update step) can be consistently reproduced at lower ensemble sizes
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Figure 6-12: At 100 hours (during a significant dry-down) the top row of plots
shows the standard deviation in the ensemble mean soil moisture estimate across
20 ensembles as a function of ensemble size for (a) loam, (b) clay, and (c) sandy
loam soils. The bottom row shows the standard deviation in the ensemble estimate
of standard deviation in soil moisture across 20 ensembles as a function of ensemble
size for (d) loam, (e) clay, and (f) sandy loam soils.

when SHTPs are generated using RP, compared with when they are generated using

random sampling. Further implications of the findings presented in this chapter are

discussed in the concluding chapter of the thesis.
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CHAPTER 7

SENSITIVITY ANALYSIS

OF SOIL MOISTURE

An important component of this thesis seeks to understand the relative impact

of the sources of uncertainty in soil moisture prediction, particularly uncertainty

arising from imperfect measurement or forecast of hydrometeorological processes

and inadequate knowledge about soil hydraulic and thermal properties (SHTPs),

on soil moisture predictability. Understanding the degree to which uncertainty in

the forcings and parameters of a model independently propagates to the state and

observable quantities related to the state informs the economic construction of data

assimilation systems. Specifically, it may possible to decrease computational burden

by neglecting uncertainty in particular forcings or parameters to which predictibility

of soil moisture is fairly insensitive. Because microwave observations are sensitive

to moisture only in the few centimeters near the surface, the impact of uncertainty

in hydrometeorological and parameter uncertainty on near-surface soil moisture

is of particular interest in this thesis. This chapter details a series of numerical

experiments designed constitute a sensitivity analysis to quantitatively assess the

degree to which uncertainty in hydrometeorological forcings and SHTPs propagate

to the soil moisture state.

Through analysis of a suite of point-scale Monte Carlo experiments, the rela-

tive impact of uncertainties in precipitation forcings, thermodynamic forcings (sky

cloud cover fraction, air and dew temperature, solar radiation, windspeed), and
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SHTPs on soil moisture uncertainty are investigated. Each Monte Carlo experiment

corresponds to a particular and potentially realistic scenario of assumptions regard-

ing treatment of uncertainty in the precipitation forcings, thermodynamic forcings,

and SHTPs. As such, these point-scale experiments are designed to test multiple

hypotheses regarding the predominant sources of uncertainty in local soil moisture

predictability. From this series of point-scale Monte Carlo experiments, conclusions

about the relative impacts of the targeted sources of uncertainty on the temporal

evolution of uncertainty in soil moisture are drawn, which are used to set the treat-

ment of uncertainty in the remainder of the thesis. Based on these conclusions,

a Monte Carlo experiment is performed to assess the spatial distribution of uncer-

tainty in soil moisture at particular instances in time during the simulations in a

semiarid to arid experimental watershed.

This chapter is organized first to focus on the point-scale exercises to determine

the impacts of the targeted sources of uncertainty on soil moisture predictability,

then on the spatially distributed assessment of soil moisture uncertainty.

7.1 Point-scale soil moisture temporal sensitivity

The goal of the point-scale sensitivity analysis is to diagnose which of the poten-

tially uncertain model inputs (the thermodynamic forcings, precipitation forcings,

and SHTPs) most significantly influences uncertainty in soil moisture. A suite of

scenarios is designed to assess the nature of and degree to which uncertainty in

each of the identified model inputs impacts soil moisture uncertainty. These sce-

narios represent realistic assumptions about sources of input uncertainty in which

uncertainties in thermodynamic forcings, precipitation, and SHTPs are considered

both together and independently of one another. Comparing the soil moisture re-

sponse to the assumed conditions for each scenario provides insight into the model

inputs to which soil moisture is most sensitive, which is instructive in construc-

tion of the data assimilation system. For each scenario, this approach requires an
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ensemble of hydrometeorological forcings in which the thermodynamic forcings

are consistent with the precipitation forcings (e.g., precipitation is associated with

cloudiness, which, in turn, impacts incoming solar radiation and air temperature).

Hence, the stochastic weather generator discussed in Chapter 5 is used to derive

thermodynamic forcings based on realizations of point-scale rainfall simulated from

the Bartlett-Lewis rainfall simulator also introduced in Chapter 5. Uncertainty in

SHTPs is represented using the Restricted Pairing approach outlined in Chapter

6, and throughout the point-scale sensitivity analysis the soil texture is assumed

to be a loam. Below is a detailed discussion about the prevailing assumptions re-

garding the sources of model input uncertainty and the corresponding soil moisture

response for the scenarios considered.

7.1.1 Scenario 1: Deterministic hydrometeorological forcings, determin-

istic SHTPs

A 30-day realization of hourly hydrometeorological forcings is simulated us-

ing the MBL rainfall model and the stochastic weather generator [Ivanov et al.,

2007], with MBL and weather generator parameters corresponding to those de-

rived for Tucson International Airport, Arizona, USA by Hawk [1992] and Ivanov

et al. [2007], respectively. These forcings are chosen to represent the synthetic

observations of hydrometeorological variables at a hypothetical weather station in

Walnut Gulch Experimental Watershed (WGEW), Arizona, USA in July. A single set

of SHTPs, assuming a loam soil, is chosen randomly from an ensemble of loam SHTP

sets generated using the Restricted Pairing (RP) methodology discussed in Chapter

6 to describe the soils at the hypothetical weather station. This realization of the

hydrometeorological forcings and SHTPs (referred to here as the "observed" forc-

ings and parameters) are supplied as input to the tRIBS-VEGGIE model to establish

an "observed" soil moisture response against which an ensemble of soil moisture

responses, simulated under the varying combinations of forcing and parameter un-

certainty that characterize the scenarios below, can be compared. The initial soil
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moisture was assumed to be 10% effective saturation (Se).
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Figure 7-1: Simulated observed (a) rainfall [mm/hr], (b) sky cover fraction [dimen-
sionless], (c) air (solid lines) and dew (dashed lines) temperature [C], (d) wind
speed [m/s], (e) incoming solar radiation [W/m 2], and (f) soil moisture response

[m3/m 3] during the 30 day simulation

Figure 7-1 depicts the observed hydrometeorological forcings and corresponding

soil moisture response in the top 10 cm of the soil column as simulated by tRIBS-

VEGGIE. In the simulated forcings there are essentially two periods of rainfall. The

first is a relatively small event with an intensity slightly less than 2 mm/hr approx-
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imately 45 hours after the beginning of the simulation (figure 7-1(a)). The second

storm event occurs at approximately 300 hours into the simulation, with rainfall

rates varying from approximately 2 mm/hr to 4 mm/hr during an approximately

40 hour period of time, with some intermittency (figure 7-1(a)). Interestingly, in

addition to the two rainfall events, during which there is persistent cloudiness, there

are two periods of fair weather overcast conditions from approximately 100 to 120

hours and again from approximately 180 to 230 hrs, as well and periods of fair

weather overcast from approximately 490 and 550 hours into the simulation (fig-

ure 7-1(b)). As would be expected, periods of overcast conditions are frequently

associated with depressed air temperatures (figure 7-1(c)), higher relative humidity

as seen by the distance between the air and dew temperatures (figure 7-1(c)), and

decreased incoming solar radiation (figure 7-1(d)). Based on the observed SHTPs,

the soil moisture in the top 10 cm primarily responds to the rainfall events (figure

7-1(e)). Soil moisture in the near surface increases during the first approximately

100 hrs of the simulation, reflecting the anomalously high (negative) bubbling head

and low pore distribution index that characterize the soil properties drawn as the

observation.

7.1.2 Scenario 2: Uncertain rainfall, deterministic thermodynamic forc-

ings, uncertain SHTPs

In this scenario, uncertainty in SHTPs and the hourly rainfall volumes observed

during the 30 day time series are assumed to predominate as sources of uncertainty

in the soil moisture predicted by tRIBS-VEGGIE. To represent uncertainty in the

rainfall forcings, an ensemble of rainfall time series (64 replicates) was obtained

by repeatedly and independently perturbing the observed rainfall forcings gener-

ated in Scenario 1 using the multiplicative cascade model described in Chapter 5.

Uncertainty in SHTPs was represented using the Restricted Pairing (RP) technique

described in Chapter 6 to generate an ensemble of soil parameters (64 replicates)

required as input to tRIBS-VEGGIE, assuming a loamy soil. Thermodynamic forcings
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in this experiment correspond to the observed thermodynamic forcings described in

Scenario 1, and are treated as invariant across the ensemble. Note that the outlined

treatment of rainfall uncertainty implicitly assumes that the timing and duration of

rainfall observed at the hypothetical gauge is accurate. Hence, across the ensemble

of soil moisture responses to the applied rainfall forcings, it is expected that the

temporal occurrence of wetting and drying events will be consistent while the mag-

nitude of the response will be governed by: (1) the amount of rainfall input to the

soil column, and (2) the rate at which the soil (given antecedent moisture condi-

tions) can infiltrate or evaporate water given the observed atmospheric conditions.

The ensemble mean near-surface soil moisture response, as estimated across an

ensemble of tRIBS-VEGGIE simulations, gradually increases to a value of approxi-

mately 0.15 m3/m3 after the beginning of the simulation, achieving an equilibrium

after approximately 100 hrs (figure 7-2(f)). Ensemble mean near-surface soil mois-

ture responds to a cluster of rainfall events at approximately 280 hrs and decays

gradually back to an equilibrium by approximately 400 hrs into the simulation (fig-

ure 7-2(f)). The uncertainty in the predicted soil moisture response, as measured

by the ensemble standard deviation in near-surface soil moisture, is also shown as a

shaded band encompassing one ensemble standard deviation above and below the

ensemble mean in figure 7-2(f). Ensemble standard deviation in near-surface soil

moisture gradually increases to about 0.10 m3/m3 after the beginning of the simu-

lations, and basically remains constant after approximately 120 hrs (figure 7-2(f)).

The occurrence of rainfall at approximately 280 hrs diminishes ensemble standard

deviation in soil moisture slightly, but increases gradually as the soil dries out (fig-

ure 7-2(f)). Note that the diurnal nature of the atmospheric forcings are evident as

mild undulations in the ensemble mean near-surface soil moisture, as well as the

region encompassing the ensemble mean plus and minus one ensemble standard

deviation (figure 7-2(f)).

The results presented in figure 7-2 suggest that uncertainty in SHTPs is the pre-

dominant source of uncertainty in the soil moisture predicted by tRIBS-VEGGIE in
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Figure 7-2: Simulated (a) ensemble standard deviation of rainfall [mm/hr], (b)
observed sky cover fraction [dimensionless], (c) observed air (solid lines) and dew
(dashed lines) temperature [oC], (d) observed wind speed [m/s], (e) observed in-
coming solar radiation [W/m 2], and (f) ensemble mean (black line) and range of
one standard deviation in each direction outside the ensemble mean (green area)
near-surface soil moisture response .[m3/m3] during the 30 day simulation.

response to the uncertain forcings and parameters supplied as input. This is evi-

denced by the fact that the uncertainty in soil moisture associated with the initial

conditions (of 10% effective saturation) is nearly as large as the uncertainty at the

end of the simulation and at the end of the drying cycle which ends with initiation
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of rainfall at approximately 280 hrs (figure 7-2(f)). This uncertainty in predicted

soil moisture response in the presence of uncertain SHTPs after significant time has

elapsed since the end of rainfall can be understood as an imperfect knowledge of

the residual moisture content of the assumed loamy soil. This uncertainty in resid-

ual moisture content also impacts the initial response of the soil to rainfall as well

as bare soil evaporation, since the uncertain residual moisture content to which the

soil relaxes during extended drying periods directly impacts the hydraulic conduc-

tivity (whose parameters Ks, Ap, and ?b are also uncertain).

7.1.3 Scenario 3: Uncertain hydrometeorological forcings, uncertain SHTPs

Scenario 3 treats rainfall and thermodynamic forcings, as well as the SHTPs

required as input to tRIBS-VEGGIE, as uncertain. The rainfall ensemble developed

for Scenario 2 and described above is used as the rainfall forcing in this experiment.

Uncertain thermodynamic forcings are obtained by supplying each of the 64 rainfall

replicates from Scenario 2 as input to the stochastic weather generator, leading to

an ensemble of thermodynamic forcings comprised of 64 replicates. SHTPs input to

tRIBS-VEGGIE in this experiment are those generated for an assumed loamy soil in

Scenario 2.

Figure 7-3 depicts the generated hydrometeorological forcings and ensemble

soil moisture response simulated by tRIBS-VEGGIE. Again, there are two periods of

time associated with rainfall, a relatively short event with a relatively small variance

in rainfall rate occurring approximately 48 hrs into the simulation, and a longer-

lasting sequence of rain events with more significant variance in hourly rainfall

rates that occurs beginning at approximately 280 hrs into the simulation (figure

7-3(a)). While rainfall occurs the ensemble mean sky cover fraction is unity (figure

7-3(b)). In the ensemble mean sense, fair weather skies are mostly clear, although

sky cover fraction through the ensemble of thermodynamic forcings simulated by

the stochastic weather generator range from completely clear to overcast conditions

at all times during the simulation (figure 7-3(b)). The ensemble behavior of the sky
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cover fraction process is reflected in the corresponding time series of simulated in-

coming solar radiation, which shows fairly broad spread about the ensemble mean

incoming solar radiation (figure 7-3(e)). The temporal occurrence of rainfall is the

only mechanism that appreciably alters the ensemble mean solar radiation during

the simulation period (figure 7-3(e)). The simulated ensemble mean air temper-

ature mostly follows expected climatological trends, decreasing somewhat when

rainfall occurs (figure 7-3(c)). Uncertainty in air temperature is presented in the

light gray area in figure 7-3(e), which encompasses the area within one ensemble

standard deviation above and below the ensemble mean hourly air temperature,

closely follows the diurnal temperature cycle. Uncertainty in dew temperature is

presented in the dark gray area in figure 7-3(e), encompassing the area within one

ensemble standard deviation above and below the ensemble mean hourly dew tem-

perature 1, is fairly narrowly distributed about the ensemble mean dew temperature.

The ensemble mean wind speed (figure 7-3(d)) is essentially constant at slightly less

than 5 m/s, while the ensemble standard deviation in wind speed is approximately

2.5 m/s (figure 7-3(d)). The stochastic weather generator of Ivanov et al. [2007]

treats the wind speed as a first-order autoregressive process with a random initial

condition, which is reflected in the lack of temporal structure in the behavior of the

simulated ensemble wind speed.

Interestingly, the ensemble soil moisture response simulated by tRIBS-VEGGIE

for this scenario of hydrometeorological forcings and SHTPs is virtually indistin-

guishable from the ensemble soil moisture response simulated for Scenario 2. This

suggests that any additional uncertainty in the soil moisture response arising due to

the addition of uncertainty in the thermodynamic forcings is negligible when com-

pared to uncertainty in soil moisture arising from imperfect quantification of the

SHTPs required by tRIBS-VEGGIE.

'The stochastic weather generator of Ivanov et al. [2007] simulates only a daily dew temperature
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Figure 7-3: Simulated (a) ensemble standard deviation of rainfall [mm/hr], (b)
ensemble mean sky cover fraction [dimensionless] (black) and range (light gray
area), (c) air and dew temperature [OC], (d) wind speed [m/s], (e) incoming solar
radiation [W/m 2], and (f) near-surface soil moisture response [m/m 3 ]. In (c)-
(f), ensemble means are in black and areas encompassing one ensemble standard
deviation above and below the mean in light gray. In (c), mean dew temperature
[oC] is the black line dark gray shaded area encompassing one standard deviation
above and below the mean.
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7.1.4 Scenario 4: Deterministic rainfall, uncertain thermodynamic forc-

ings, uncertain SHTPs

This scenario attempts to isolate the impact of uncertainty in thermodynamic

forcing independently of uncertainty in the rainfall forcing. Therefore, the rain-

fall forcing used in this scenario is treated as deterministic and corresponds to the

observed hourly rainfall time series generated in Scenario 1. The uncertain thermo-

dynamic forcings generated with the stochastic weather generator of Ivanov et al.

[2007] for Scenario 3 are used again in this ensemble scenario to represent the

uncertainty in the thermodynamic forcings input to tRIBS-VEGGIE. The uncertain

SHTPs used in this scenario correspond to the ensemble of soil parameters gener-

ated with the RP methodology outlined in Chapter 6 and used to parameterize an

assumed loam soil in Scenario 2 and Scenario 3.

The rainfall used to drive the tRIBS-VEGGIE model in this scenario is shown in

figure 7-4(a), and is identical to the rainfall forcing shown in figure 7-1(a). The un-

certain thermodynamic forcings supplied as input to tRIBS-VEGGIE in this scenario

are depicted in figures 7-4(b)-(e), and are identical to the corresponding thermody-

namic forcings used in Scenario 3 shown in figures 7-3(b)-(e). Again, the simulated

near-surface soil moisture response to the assumed conditions for this scenario is

remarkably similar to the results shown for Scenarios 2 and 3 (figure 7-4(f)). This

again underscores the conclusion that imperfect knowledge of the SHTPs required

to parameterize the soil column most greatly impacts the uncertainty in the simu-

lated near-surface soil moisture response.

7.1.5 Scenario 5: Uncertain rainfall timing, uncertain thermodynamic

forcings, uncertain SHTPs

This scenario investigates the degree to which the uncertainty in the simulated

near-surface soil moisture response to uncertain hydrometeorological forcings is

sensitive to a prevailing assumption in Scenario 2 through Scenario 4: that the
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Figure 7-4: Simulated (a) observed rainfall [mm/hr], (b) ensemble mean sky cover
fraction [dimensionless] (black) and range (light gray area), (c) air and dew tem-
perature [oC], (d) wind speed [m/s], (e) incoming solar radiation [W/m 2], and
(f) near-surface soil moisture response [m3/m3]. In (c)-(f), ensemble means are in
black and areas encompassing one ensemble standard deviation above and below
the mean in light gray. In (c), mean dew temperature [oC] is the black line dark
gray shaded area encompassing one standard deviation above and below the mean.

timing and duration of rainfall events is relatively well constrained. Therefore, in

this scenario rainfall exhibit arrival rates, durations, and rainfall intensities known

only in a statistical sense through the parameters of the MBL model estimated for
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Tucson, AZ by Hawk [1992]. Conceptually, this would correspond to modeling soil

moisture in a location with either no or extremely sparse monitoring of hydrometeo-

rological variables, or using hydrometeorological forcings simulated by a numerical

weather prediction model at lead times long enough that the forecast exhibits little

to no accuracy regarding the occurrence of rainfall.

To simulate the rainfall forcings in this scenario, the MBL model is used to gen-

erate an ensemble (with 64 replicates) of completely independent hourly rainfall

time series of 30 days in duration 2. Thermodynamic forcings corresponding to each

to each simulated hourly rainfall time series were obtained by supplying the rainfall

time series to the stochastic weather generator. In this scenario, the assumed uncer-

tain SHTPs correspond to those used in Scenario 2 through Scenario 4 generated

by the RP technique for assumed loamy soil conditions.

As depicted in figure 7-5(a), this scenario is associated with uncertain rainfall

that occurs at nearly all times of the simulation period. This is reflected in the

corresponding thermodynamic forcings shown in figures 7-5(b)-(e). Through the

ensemble, cloud sky cover fraction ranges from completely clear conditions to com-

pletely overcast at all times during the simulation (figure 7-5(b)). The ensemble

mean of the simulated air temperature reflects the the climatological diurnal cy-

cle, while the area encompassed by one ensemble standard deviation above and

below the ensemble mean captures the ensemble variability in rainfall rate at any

given time (figure 7-5(c)). The lack of substantial temporal variation in the ensem-

ble mean dew temperature and the associated area encompassing one ensemble

standard deviation above and below the ensemble mean reflects the primacy of cli-

matology on air humidity at any given time (figure 7-5(c)). Similar to Scenarios

3 and 4, the ensemble behavior of wind speed again reflects the first-order autore-

gressive process treatment of wind speed in the weather generator (figure 7-5(d)).

The treatment of uncertainty in rainfall in this scenario has a pronounced affect

on the simulated incoming solar radiation (figure 7-5(e)). Because rainfall occurs

2As opposed to Scenario 2 and 3 in which the rainfall ensemble was constructed by perturbing

the observed rainfall forcings simulated for Scenario 1 using the multiplicative cascade.
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Figure 7-5: Simulated (a) ensemble standard deviation of rainfall [mm/hr], (b)
ensemble mean sky cover fraction [dimensionless] (black) and range (light gray
area), (c) air and dew temperature [oC], (d) wind speed [m/s], (e) incoming solar
radiation [W/m 2], and (f) near-surface soil moisture response [m3/m3 ]. In (c)-
(f), ensemble means are in black and areas encompassing one ensemble standard
deviation above and below the mean in light gray. In (c), mean dew temperature
[oC] is the black line dark gray shaded area encompassing one standard deviation
above and below the mean.

within the ensemble at nearly every time during the simulation, the ensemble mean

incoming solar radiation is suppressed, relative to the simulated incoming solar ra-
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diation in Scenarios 3 and 4 (figure 7-5(e)). Furthermore, this broad uncertainty

in the occurrence of rainfall and sky cover fraction at all times of the simulation

leads to relatively little temporal variation in the daily maximum ensemble mean

incoming solar radiation(figure 7-5(e)). The broad uncertainty in sky cover fraction

at all times during the simulation and described above also leads to an uncertainty

in incoming solar radiation that is correspondingly broad at all daytime hours of

the simulation (figure 7-5(e)). As one might expect, the corresponding simulated

near-surface soil moisture response to this scenario of forcings and SHTPs leads to

an ensemble behavior relatively devoid of temporal structure (figure 7-5(f)). With

little consensus within the rainfall ensemble about the temporal occurrence of rain-

fall, the associated ensemble near-surface soil moisture response, as depicted by the

ensemble mean and the area encompassing one ensemble standard deviation above

and below the ensemble mean, provides virtually no reflection of the occurrence of

individual rainfall events (figure 7-5(f)). The only temporal structure evident in

figure 7-5(f), are the mild undulations associated with the diurnal cycles of incom-

ing solar radiation and air temperature that influence soil moisture through the

atmospheric evaporative demand.

It is important to note that the treatment of the uncertainty temporal occurrence

of rainfall is at the opposite extreme of the assumptions made in the previously con-

sidered scenarios. While those scenarios treat the arrival and duration of rainfall

events as perfectly known with uncertain hourly rainfall volumes, this scenario as-

sumes the arrival, duration, and temporal intensities of storms are known only in a

climatological sense. In reality, when simulating a spatially distributed soil moisture

response to historical or forecast rainfall events, a more fair treatment of uncer-

tainty in hydrometeorological forcings probably lies in between these two extreme

assumptions. For instance, in simulating the spatial distribution of soil moisture

response to historical data, there are likely periods during which there is significant

confidence in the lack rainfall occurrence, while uncertainties in the timing and

duration of rainfall events can arise from inadequate spatial resolution of rainfall

products or errors in radar-rainfall retrieval algorithms. Similarly, in simulating a
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spatially distributed soil moisture response to a numerical weather forecast, par-

ticular mesoscale phenomena (e.g., anti-cyclonic high pressure systems) are likely

to be associated with weather forecasts that exhibit significant confidence in the

non-occurrence of rainfall. On the other hand, significant uncertainty can exist in

the temporal arrival of rainfall-producing phenomena (e.g., cyclonic lows), even

though the forecast may exhibit a strong consensus that such an event is likely to

occur.

7.1.6 Additional scenarios 2A-5A: deterministic SHTPs

A corresponding set of scenarios was designed to deduce the degree to which

uncertainty in the rainfall and thermodynamic forcings lead to uncertainty in the

near-surface soil moisture response simulated by tRIBS-VEGGIE in the absence of

uncertainty in SHTPs. The goal of these additional scenarios was to verify the

conclusions reached above that inadequate knowledge of the soil parameters re-

quired as input to tRIBS-VEGGIE is the most significant source of uncertainty in the

simulated near-surface soil moisture. For Scenarios 2A-5A, treatment of the un-

certainty in the thermodynamic and rainfall forcings for each scenario matched the

corresponding assumptions made in Scenarios 2-5, except that the observed SHTPs

generated for Scenario 1 were used and were treated as deterministic. Results from

this suite of scenarios (comparisons between Scenarios 2 and 2A through Scenar-

ios 5 and 5A are shown in Appendix C) indicate that uncertainty in the near-surface

soil moisture simulated by tRIBS-VEGGIE, as measured by the ensemble standard

deviation, in response to uncertain hydrometeorological forcings exhibits relatively

little uncertainty as long as uncertainty in SHTPs is neglected. While these results

do indicate that the uncertainty in soil moisture as simulated by tRIBS-VEGGIE is

more sensitive to uncertainty in thermodynamic forcings than uncertainty in hourly

rainfall volumes (when the timing and duration of rainfall is assumed well known;

Scenarios 2A-4A), the uncertainty in the soil moisture response when SHTPs are

treated as deterministic is insignificant relative to the above scenarios in which
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SHTPs are assumed uncertain.

7.1.7 Conclusion to point-scale sensitivity analysis

The results of this point-scale sensitivity analysis are important in the context

of the data assimilation problem this work addresses. As described in Chapter 6,

because the ensemble Kalman Filter uses an estimate of the variance retrieved from

an Monte Carlo-derived ensemble representation of the model state, unreasonably

low estimates of variance in the state (soil moisture in this case) is associated with

artificially high confidence in the model estimate. This can lead to relatively little

propagation of information from the observations to the model states, potentially

causing the filter to diverge from the true state. This point-scale sensitivity analysis

suggests that adequately characterizing uncertainty in the SHTPs required as input

to tRIBS-VEGGIE is critical to avoid the problem of unreasonably low variance in

the ensemble estimate of the state.

It is important to note at this point that while imperfect knowledge of the soil

parameters is seemingly the dominant source of uncertainty in the simulated soil

moisture response to hydrometeorological forcings, in the scenarios outlined above

representing uncertainty in the forcings (rainfall and thermodynamic) results in lit-

tle additional computational burden. In these scenarios because of the relatively

simple stochastic models used to generate the forcings for tRIBS-VEGGIE the only

burden incurred arises from the additional storage needed to record the simulated

stochastic hydrometeorological forcings, which is typically not the limiting compu-

tational resource. However, in ensemble simulation and data assimilation scenarios

in which the hydrometeorological forcings are represented via a physically-based

numerical weather prediction model, computational burden associated with gener-

ation of the forcings may be substantial. These results seem to indicate that in such

scenarios, emphasis on adequately characterizing uncertainty in SHTPs is most crit-

ical in efforts to adequately represent the spatiotemporal structure of uncertainty in

soil moisture.
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Because of the relatively small burden of representing the uncertainty in the

hydrometeorological forcings, and in order to maintain a degree of realism consis-

tent with the data available to characterize the parameter and hydrometeorological

forcings input to tRIBS-VEGGIE, uncertainty in SHTPs, rainfall, and thermodynamic

forcings are explicitly represented in the remainder of the experiments in this thesis.

7.2 Spatially distributed soil moisture uncertainty

This section describes an ensemble open loop experiment in which uncertainty

in SHTPs, rainfall, and thermodynamic forcings are explicitly modeled. The purpose

of this experiment is to diagnose the ways in which landscape features, particularly

the spatial organization of soil units and topography, contribute to uncertainty in

soil moisture. Below is a description of the experimental setup, assumptions, and

statistical analyses used to perform this sensitivity analysis. Following this descrip-

tion, the results of the spatially distributed soil moisture sensitivity analysis are

presented, and the implications for the data assimilation problem addressed by this

thesis are discussed.

7.2.1 Description of watershed and assumptions of experiments

This spatially distributed sensitivity analysis is set in the Walnut Gulch Exper-

imental Watershed (WGEW) in Tombstone, Arizona, USA. Established by the U.S.

Department of Agriculture (USDA) in 1958, WGEW is approximately 150 km2 in

area, and is located at a transition between the Chihuahuan and Sonoran deserts

Moran et al. [2008]. The semiarid watershed is associated with a mean annual

temperatures of 17.7 .C, while mean annual precipitation is 312 mm Moran et al.

[2008]. The North American Monsoon System (NAMS) brings approximately 60%

of the mean annual precipitation in the months of July through September, and

summertime rainfall events tend to be localized and of high intensity Moran et al.
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[2008].

Recommendations of Vivoni et al. [2005] were followed to fit an efficient Trian-

gulated Irregular Network (TIN) mesh from a U.S. Geological Survey 30 m Digital

Elevation Model for the WGEW area using the ArcInfo Geographic Information Sys-

tem (GIS) package developed by ESRI. Attempts to delineate floodplain features

following the techniques used by Vivoni et al. [2005] revealed little discernable

floodplain structure, and the final TIN mesh is comprised of 19,447 computational

nodes.

Legend Kloern s
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Figure 7-6,: Map of assumed soil textures in the Walnut Gulch Experimental Wa-

tershed (WGEW) in Arizona, USA. The spatial distribution of soil units is provided

from the Soil Survey Geographic (SSURGO) database.

The spatial distribution of soil units (i.e., areas of relatively homogeneous soil

texture) was obtained from the Soil Survey Geographic (SSURGO) database main-

tained and published by the USDA. Investigation of the surface soil textural classes

in WGEW as recorded in the SSURGO database reveals several soil textural classes

outside of the nine classes used in development of the Restricted Pairing (RP)-based

SHTP generation technique described in Chapter 6..The majority of SSURGO tex-

tural classes within WGEW that do not strictly conform to one of the nine classes

found in the database from which uncertain SHTPs are frequently only slightly

different from one of the nine classes. For instance, one of the non-conforming
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soil textural classes found in the SSURGO database for WGEW is a "stony sandy

loam." While the distinction between a "stony sandy loam" and a sandy loam may

be important in the context of the soil hydrology, in order to facilitate the use of

the RP-based SHTP generation scheme the non-conforming soil textural classes in

the SSURGO database for WGEW were reclassified to one of the nine soil textu-

ral classes found in the database from which the RP-based scheme was derived.

When possible, the non-conforming SSURGO soil was reclassified to the textural

class most similar to one of the nine classes. Hence, a "stony sandy loam" would be

reclassified as a "sandy loam." Figure 7-6 provides a spatial map of the reclassified

soil units. Using the RP-based SHTP sampling scheme, 1024 potential realizations

of the soil parameters required as input by tRIBS-VEGGIE were generated based

on the assumed soil unit map shown in Figure 7-6. In generating the ensemble of

SHTPs, soil units sharing a textural class but distinct in their spatial location were

treated as independent to reflect the fact that individual soil units and complexes in

the SSURGO database represent regions sharing relatively homogeneous pedogenic

origins and processes. Hence, in any particular realization of SHTPs obtained from

the RP-based sampling scheme, it is very unlikely that two soil units bearing the

same textural class would also share the same parameter values.

To obtain an ensemble characterization of hydrometeorological forcings that is

internally consistent, the stochastic approach to generating hourly hydrometeoro-

logical forcings for the tRIBS-VEGGIE model described in Chapter 5 is used in this

sensitivity analysis. The simulated hydrometeorological forcings correspond to the

month of August because, being associated with the presence of the NAMS, it is crit-

ical in the annual water budget in the semiarid WGEW. In this sensitivity analysis,

it is assumed that both the rainfall and thermodynamic forcings are uncertain. Be-

cause WGEW is extensively monitored, it is reasonable to assume that the temporal

arrival of rainfall events is relatively well known. Consistent with these assump-

tions, the Modified Bartlett Lewis model is used to generate a single time series of

hourly rainfall forcings over a period of 27 days for WGEW. The stochastic multi-

plicative cascade is then used both to perturb this simulated hourly rainfall time
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Figure 7-7: Simulated (a) ensemble standard deviation of rainfall [mm/hr], (b) en-
semble mean sky cover fraction [dimensionless] (black) and range (light gray area),
(c) air and dew temperature [°C], (d) wind speed [m/s], and (e) incoming solar
radiation [W/m 2]. In (c)-(e), ensemble means are in black and areas encompassing

one ensemble standard deviation above and below the mean in light gray. In (c),
mean dew temperature [oC] is the black line dark gray shaded area encompassing
one standard deviation above and below the mean.

series and to disaggregate the hourly rainfall pulses in space. Consistent with the

availability of NEXRAD radar-rainfall products over WGEW, the assumed spatial

resolution of the disaggregated hourly rainfall pulses in 4 x 4 km [Klazura and

Imy, 1993]. There are six periods of rainfall during the 27 day-long simulation,

and hourly rainfall volumes are associated with substantial variability through the

ensemble (figure 7-7(a)). There is one large rainfall at approximately 550 hrs into
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the simulation with an ensemble mean rainfall rate of approximately 42 mm/hr

and an ensemble standard deviation of approximately 50 mm/hr (figure 7-7(a)).

The range of simulated hourly rainfall totals were qualitatively compared against

historical rainfall data published for WGEW [Goodrich et al., 2008] and found to

be in reasonable agreement.

The stochastic weather generator is used to simulate the 1024 realizations of

the thermodynamic forcings by supplying each of the 1024 realizations from the

ensemble of hourly rainfall time series as input. Simulated rainfall events are, as

expected, associated with overcast conditions in the ensemble mean sense and the

stochastic weather generator produces a broad diversity of fair weather cloudiness

conditions (figure 7-7(b)). Rainfall occurrence is associated with a depression in

both the ensemble mean and maximum air temperatures, although there is broad

ensemble variability in air temperatures throughout the simulation (figure 7-7(c)).

As expected, the ensemble mean wind speed exhibits virtually no temporal struc-

ture and a skew toward lower wind speeds, consistent with the treatment of hourly

wind speeds in the weather generator (figure 7-7(d)). The temporal dynamics of

incoming solar radiation during rain-free days reflects the ensemble mean behavior

of fair weather cloudiness, with the ensemble mean exhibiting a bias toward the

higher end of the simulated range of incoming solar radiation (figure 7-7(e)). Con-

sistent with the occurrence of rainfall and the associated overcast conditions, during

rainfall the ensemble mean and maximum values of incoming solar radiation are

suppressed (figure 7-7(e)).

The initial conditions for each replicate of the 1024 replicate open loop sensitiv-

ity analysis were derived from a 240 hr open loop "spin up" simulation. For each

realization of the spin up, one realization of SHTPs was paired with a corresponding

realization of hydrometeorological forcings. Initial soil moisture conditions for the

spin up were set to 10% effective saturation throughout WGEW, and each realiza-

tion of the spin up forced with the final 10 days (240 hr) of the simulated hydrom-

eteorological forcings. Maintaining the pairing between realizations of SHTPs and
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hydrometeorological forcings assigned for the spin up, each replicate of the sensi-

tivity analysis experiment was then initialized with the corresponding soil moisture

distribution at the end of the 240 hr spin up simulation, and forced with the full

27 days (648 hrs) of stochastic hydrometeorological forcings. Although vegetation

is a potentially important part of the water cycle in WGEW, bare soil conditions

are assumed in this sensitivity analysis. Obtaining realistic spatial distributions of

multiple plant functional types that are consistent with and reflect the uncertainty

in SHTPs through simulation with VEGGIE remains a significant challenge. More-

over, although it would be an attractive alternative to using the dynamic vegetation

model to simulate vegetation states, obtaining estimates of the spatial distribution

of the vegetation state from remote sensing data is the subject of ongoing research

that is beyond the scope of this thesis work. This sensitivity analysis is neverthe-

less a useful exercise for examining the relative influence of soils, topography, and

hydrometeorological forcings on uncertainty in the spatial distribution of soil mois-

ture.

7.2.2 Results and discussion: first- and second-order behavior

This section describes the results of the open loop sensitivity analysis experiment

for WGEW. In the context of the soil moisture data assimilation problem addressed

by this thesis, of principal importance is the ensemble behavior of the full state

vector (soil moisture at all computational nodes and layers in the model), and of soil

moisture in the near-surface and throughout the soil column at temporal intervals

and local times consistent with revisit times of planned satellites such as SMOS and

SMAP. The appropriate temporal interval and local time of consideration, therefore,

is assumed to be 72 hrs at 9 A.M., respectively.

257



Legend

Mean soil moisture
0.1303 -0.1533
0.1534 -0.1788

___Kilometers - 0.1789- 0.2029
S 4 8 12 16 0.2030 -0.2341

0 2342 - 0.3629

(a)

Legend

St dev. soil moisture

0.0509 - 0.0532

0.0533 - 0.0700
_Kilometers 00701 - 0.0842

S 4 8 12 16 0.043- .0896
0.0897 -0.1363

(b)

Legend

CV soil moisture
0.2943 - 0.3406

0 3407- 0.3514
_Kilometers 3515-0.3736

0 4 8 12 16 0.3737- 0.4037
2 0 4038- 0.6136

(c)

Figure 7-8: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in near-surface soil moisture at 144 hrs into the 1024 replicate
open loop simulation.
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Figure 7-9: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-

cient of variation in profile soil moisture at 144 hrs into the 1024 replicate open

loop simulation.
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Integrating the ensemble soil moisture state over particular depths allows for

visualization of the spatial distribution of the sample statistics describing the first-

and second-order behavior of the ensemble. Because L-band microwave remote

sensing platforms are sensitive to soil moisture in approximately the top 10 cm,

it is useful to investigate the dominant components in near-surface soil moisture

anomalies. Furthermore, the soil moisture integrated over the entire soil column

provides a metric that facilitates visualization of the spatial distribution of moisture

in the unsaturated zone throughout the WGEW.

At 144 hours into the simulation, near-surface ensemble mean soil moisture in

WGEW largely reflects a combination of the heterogeneity in soil types, as well as

the spatial organization of the channel and valley network (figure 7-8(a)). The

channel network is mostly associated with higher ensemble mean near-surface soil

moisture (figure 7-8(a)). The spatial variation in soil types results in sharp contrasts

in the ensemble mean near-surface soil moisture predicted by tRIBS-VEGGIE (figure

7-8(a)). The spatial distribution of ensemble standard deviation in near-surface soil

moisture also largely follows contrasts associated with soil type heterogeneity and,

to a lesser extent, topography (figure 7-8(b)). Interestingly, soil types associated

with higher ensemble mean near-surface soil moisture also seem to be associated

with higher ensemble variance in near-surface soil moisture. Visualizing the spatial

distribution of the ensemble coefficient of variation, which is produced by normal-

izing the ensemble standard deviation by the ensemble mean, leads to a much more

prominent depiction of the role of topography in ensemble variation in near surface

soil moisture, with the channel and valley bottoms being associated with the highest

values of coefficient of variation in the watershed (figure 7-8(c)). This suggests that

while soil type heterogeneity imposes significant spatial variation in ensemble first-

and second-order statistics, for a given soil type topography plays the predominant

role in the uncertainty in near-surface moisture. Spatial distributions of ensemble

mean, standard deviation, and coefficient of variation in near-surface soil moisture

for all other time 72 hr time intervals in the open loop simulation largely conform

to the conclusions discussed here and are shown in their entirety Appendix C.
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The ensemble mean profile-integrated soil moisture, by constrast, reflects a com-

bination of the heterogeneity in soil types and topography, although the role of to-

pography is more pronounced in this case (figure 7-9(a)). Similar to the ensemble

mean near-surface moisture, the channel network is associated with higher ensem-

ble mean profile soil moisture (figure 7-9(a)). Again sharp contrasts associated

with heterogeneity in soil types can be seen in the spatial distribution of ensemble

mean profile soil moisture simulated by tRIBS-VEGGIE (figure 7-9(a)). Similarly,

the spatial distribution of ensemble standard deviation in profile soil moisture also

largely follows contrasts associated with soil type heterogeneity and topography,

with higher ensemble variance in profile soil moisture associated with channel and

valley bottoms (figure 7-9(b)). The ensemble coefficient of variation shows the a

distinct topographic impression, with channel and valley bottoms being associated

with the higher values of coefficient of variation in the watershed (figure 7-9(c)).

Again, the spatial distribution of ensemble mean, standard deviation, and coeffi-

cient of variation in profile-integrated soil moisture for all other time 72 hr time

intervals in the open loop simulation bear similar patterns to those described here

and are presented in Appendix C.

One interesting commonality between the near-surface and profile-integrated

soil moisture distributions shown in figures 7-8 and 7-9, respectively, lies in the

observation that channel and valley bottoms are typically associated with higher

ensemble variance in soil moisture. This is likely a result of the uncertainty in

soil hydraulic properties, particularly residual and saturation moisture content and

saturated hydraulic conductivity. At topographic highs (i.e., ridgelines), uncertain

rainfall is partitioned into infiltration and runoff at uncertain rates that depend on

the soil textural class and the uncertain antecedent moisture. Because of the lateral

redistribution and runon mechanisms in tRIBS-VEGGIE, both runoff and infiltrated

water be redistributed downslope, to a topographically lower pixel that is also ex-

posed to uncertain incoming rainfall and uncertain soil moisture conditions. In

this manner, topography has the effect of amplifying uncertainty in precipitation,

runoff, and lateral redistribution in a downstream direction, resulting in higher
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ensemble variance in the topographic lows of the domain. While this reasoning

may be valid for semiarid regions in which the water table is at significant depth

beneath the surface and channels are mostly ephemeral, in more humid regions

groundwater-surface water interaction would curtail this amplification. This is be-

cause the downslope boundary condition of saturated conditions would limit the

amount of upslope runoff that could re-infiltrate downslope and suppress subsur-

face lateral redistribution.

7.2.3 Results and discussion: rank and empirical orthogonal functions of

moisture anomalies

Another important facet of this sensitivity analysis, particularly in the context of

the EnKF, is the rank of the ensemble approximation of the state error covariance

matrix, Pe. The rank of Pe can be computed directly by finding the nonzero singular

values of the matrix containing the soil moisture state anomalies. The left singular

vectors associated with the nonzero singular values represent the linearly indepen-

dent modes within the matrix of ensemble soil moisture anomalies. Therefore, if

the rank of Pe is smaller than the minimum of either the state dimensionality (N) or

number of ensemble replicates (K), the covariance structure of the state space can

be captured by fewer ensemble replicates and Pe is said to be rank deficient. Col-

lecting the K ensemble replicates of the N-dimensional state vector into a matrix

8 and subtracting the matrix O, which contains N copies of the ensemble mean

gives a matrix of soil moisture state anomalies, 8. Performing a singular value

decomposition on 6 leads to,

= USV T, (7.1)

in which the N x N matrix U contains the left singular vectors or empirical or-

thogonal functions (EOFs), S is the N x K diagonal matrix containing the singular

values, and the K x K matrix V contains the right singular vectors. The nonzero
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Figure 7-10: Rank versus ensemble size at (a) 0 hrs, (b) 72 hrs, (c) 144 hrs, (d)
216 hrs, (e) 288 hrs, (f) 360 hrs, (g) 432 hrs, (h) 504 hrs, (i) 576 hrs, (j) 648 hrs
into the simulation.

singular values of e contained on the diagonal of the matrix S are the square roots

of the corresponding eigenvalues of the matrix e6T _ Pe [Strang, 1986]. Sim-

ilarly, the EOFs contained in the matrix U are the eigenvectors of the matrix Pe

[Strang, 1986]. Hence, the columns of U contain correspond to spatial mappings

of the eigenmodes that describe the ensemble of soil moisture anomalies, while the

squares of the corresponding nonzero singular values are proportional to the vari-

ance described by each singular vector. For the WGEW system under consideration,

the size of the state vector is 194,470 x 1 (19,447 pixels with 10 soil layers each),

and N will, for all practical purposes, always be greater than the ensemble size
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Figure 7-11: Spectrum of singular values (a) 0 hrs, (b) 72 hrs, (c) 144 hrs, (d) 216
hrs, (e) 288 hrs, (f) 360 hrs, (g) 432 hrs, (h) 504 hrs, (i) 576 hrs, (j) 648 hrs into
the simulation.

(K). Thus, the maximum rank of e is K. However, should the rank of E plateau at

some ensemble size K less than 1024, it would imply that O possesses fewer than

1024 degrees of freedom and that the variance in O could be explained by the first

rank(E) singular vectors (EOFs).

The rank of the matrix O was determined for ensemble sizes, K, ranging from

16 to 1024 by factors of 2 at every 72 hrs during the simulation. Rather than

performing additional ensemble simulations for K less than 1024, K state vector

replicates were sampled from among the full 1024 replicates at each time interval
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and the rank of E determined using the rank function in MATLAB3 . For ensemble

sizes up to 512, this process of sampling from among the full 1024 replicates to

compute the rank of e was repeated 20 times, and the average rank over those 20

repetitions computed. For every time interval during the 72 hour simulation, the

rank of 8 was found to increase linearly and with a slope of 1 with K (figure 7-10).

This implies that the methods used to introduce uncertainty into the predicted soil

moisture state (perturbation of hydrometeorological forcings and soil parameters)

are such that the ensemble representation captured in 8 is of full rank, through

the largest ensemble considered (1024 replicates). Furthermore, it suggests that

the total variance captured through an ensemble representation of soil moisture,

up to at least 1024 replicates, is limited only by the computational resources to add

ensemble replicates.

To diagnose an economic ensemble size (i.e., one that minimizes computational

resources while maximizing the variance captured by the ensemble representation

of uncertainty in soil moisture), it is useful to investigate the singular value spec-

trum. As stated above, the squared nonzero singular values of E are equal to the

nonzero eigenvalues of the ensemble approximation of the state error covariance

matrix, and are proportional to the relative variance explained by the correspond-

ing EOF/eigenvector. At each 72 hour interval, the cumulative percent variance

explained versus singular value number shows that approximately the first 50 EOFs

dominate the description of the variance in soil moisture anomalies since the cu-

mulative percent variance explained is at or near 90% at singular value numbers of

approximately 50 (figure 7-11).

Visualizing the cumulative percent of variance explained as a function of time

and in response to the uncertain rainfall forcings reveals that at least 80% of the

variance in soil moisture anomalies is captured by the first 50 EOFs at all times, and

at least 88% of the variance is explained by the first 100 EOFs (figures 7-12(e) and

(f)). Interestingly, the rainfall event at approximately 220 hrs results in a decrease

3MATLAB computes the rank of matrix A by computing the number of singular values above
some threshold close to zero.

265



C 100
E 50

,C- 50h .I
I l, I, 11

U) 0 100 200 300 400 500 600
(b) First singular vector

7

0 100 200 300 400 500 600
(c) First 10 singular vectors

0 100 200 300 400 500 600
(d) First 20 singular vectors

> 65

0 100 200 300 400 500 600
(e) First 50 singular vectors

S85[

>880

0 100 200 300 400 500 600

Time [hr]

Figure 7-12: Time evolution of (a) the standard deviation in the hourly rainfall
forcings, and the cumulative variance in soil moisture anomalies explained by the:(b) first EOF, (c) first 10 EOFs, (d) first 20 EOFs, (e) first 50 EOFs, and (f) first 100

EOFs.

in the soil moisture anomaly variance explained by the first 10 EOFs, while the

first EOF is relatively insensitive to the rainfall forcings (figures 7-12(c) through

(f)). A closer inspection of the variance in soil moisture anomalies explained by the

first four EOFs reveals that they capture approximately 9%, 7%, 7% and 5% of the

variance in soil moisture anomalies at all times, respectively (figure 7-13). While

the variance explained by the first EOF seems to increase slightly in response to
rainfall forcings (figure 7-13(a)), EOFs 2-4 demonstrate little sensitivity to rainfall

forcings (figure 7-13(b) through (e)).
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Figure 7-13: Time evolution of (a) the standard deviation in the hourly rainfall
forcings, and the variance in soil moisture anomalies explained by the: (b) first, (c)
second, (d) third, and (e) fourth EOFs.

Integrating the ensemble soil moisture state over particular depths and perform-

ing a singular value decomposition on the column-integrated soil moisture anoma-

lies also allows for visualization of the spatial distribution of the EOFs, and inves-

tigation of the amount of variance described by those EOFs. Therefore, it is useful

to consider soil moisture anomalies in the the top 10 cm as well as integrated over

the entire soil column. The first 20 EOFs cumulatively account for at least 84%

and 85% of the variance in near-surface and profile soil moisture anomalies, re-

spectively (figure 7-14(d)). The first 50 EOFs, by contrast capture at least 92% and

267



10 (a)

I
50

0 100 200 300 400 500 600
(b) First singular vector

0 100 200 300 400 500 60010
0 100 200 300 400 500 600

(d) First 10 singular vectors

o o 72 , , , -- = _..__> X720 100 200 300 400 500 600(d) First 20 singular vectors

0 100 200 300 400 500 600
(e) First 50 singular vectors

7 96

M 940 100 200 300 400 500 600(f) First 100 singular vectors94% of the variance in near-Nearsurface and pProfile

• 94 -
0 100 200 300 400 500 600

Time [hr]

Figure 7-14: Time evolution of (a) the standard deviation in the hourly rainfall
forcings, and the cumulative variance in near surface (blue lines marked with stars)
and profile-integrated (red lines marked with squares) soil moisturess sevanomalies ex-
plained by the: (b) first EOF, (c) first 10 EOFs, (d) first 20 EOFs, (e) first 50 EOFs,
and (f) first 100 EOFs.

94% of the variance in near-surface and profile soil moisture anomalies, respec-

tively (figure 7-14(e)). Interestingly, the first 10 EOFs describe 6% less variance in

near-surface soil moisture anomalies at the end of the simulation, steadily declining

relative to the beginning of the simulation (figure 7-14(c)). This suggests that the

first 10 EOFs become less powerful descriptors of the variance in near-surface soil

moisture anomalies as the simulation progresses. Similar, albeit less severe, trends

are observed in both variance explained in near-surface and profile soil moisture
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integrated (red lines marked with squares) soil moisture anomalies explained by
the: (b) first, (c) second, (d) third, and (e) fourth EOFs.

anomalies as a function of time in figure 7-14. Investigating the first four EOFs

of near-surface and profile-integrated soil moisture reveals that the first two EOFs

of near-surface soil moisture anomalies are somewhat sensitive to rainfall occur-

rence, where as the first two EOFs of profile-integrated soil moisture anomalies are

relatively insensitive to rainfall (figure 7-15(b) and (c)). The first EOF of profile-

integrated soil moisture anomalies describes approximately 14% of the variance,

while the second, third, and fourth describe approximately 12%, 10%, and 8% of

the variance, respectively (figures 7-15(c)-(d)). By contrast the first four EOFs of
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near surface soil moisture anomalies describe approximately 12%, 10%, 8% and

8% of the variance in the ensemble (figures 7-15(c) through (e)). At maximum,

the first EOF of near-surface soil moisture anomalies describes approximately 14%

of the variance in the ensemble and is associated approximately with the rainfall

event that occurs at 220 hrs (figure 7-15(b)). The second EOF of near surface soil

moisture anomalies describes at maximum 12% of the variance in the ensemble at

0 hrs, and almost 12% again at 500 hrs, perhaps in response to the rainfall event

that occurs at approximately 480 hrs (figure 7-15(c)).
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Figure 7-16: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface

soil moisture anomalies at 144 hr into the simulation. They explain 12, 10, 8.3, and

8.3 percent of the variance in soil moisture, respectively.

The spatial distribution of the first four EOFs of near-surface soil moisture anoma-
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lies is shown in figure 7-16. The first near-surface soil moisture anomaly EOF

(which describes 12% of the variance in near-surface soil moisture anomalies)

largely reflects the spatial distribution of soil types in WGEW. There does, how-

ever, appear to be a nearly vertical line in the North-central portion of the water-

shed, which corresponds to the boundary a rainfall grid pixel and would suggest

that rainfall also influences near-surface soil moisture anomalies (figure 7-16(a)).

The second EOF of near-surface moisture anomalies, which describes approximately

an additional 10% of the variance, also reflects spatial heterogeneity in soil types,

but suggests a significant topographic influence, as well (figure 7-16(b)). The

third near-surface soil moisture anomaly EOF largely depicts soil type heterogeneity

throughout WGEW, although interestingly the region in the North-central portion

of the watershed that seems to indicate an influence of spatial heterogeneity in

rainfall in the first EOF again depicts some behavior worth noting (figure 7-16(c)).

In particular, there seems to be an area with a nearly East-West oriented southern

boundary and North-South oriented western boundary which possesses a stronger

topographic influence relative to surrounding areas of the same soil textural class

(figure 7-16(c)). The fourth EOF of near-surface soil moisture anomalies is almost

entirely reflective of the spatial distribution of soil types in WGEW (figure 7-16(d)).

The corresponding spatial distribution of the first four EOFs of profile-integrated

soil moisture anomalies is shown in figure 7-17. The first EOF of profile-integrated

soil moisture anomalies represents a fusion of soil type heterogeneity and topogra-

phy (figure 7-17(a)). For a given soil type, topography appears to be the dominant

control on the first EOF of profile moisture anomalies (figure 7-17(a)). The second

EOF of profile moisture anomalies provides a similar depiction of a mix between

topography and soil type heterogeneity (figure 7-17(b)). As noted in the first and

third EOFs of near-surface moisture anomalies, the second profile moisture anomaly

EOF seems to exhibit a sharp North-South oriented boundary in the North-cental

portion of the watershed at the approximate location of the rainfall grid footprint

(figure 7-17(b)). To the west of this boundary, topography seems to exert signif-

icant influence in the second profile moisture anomaly EOF relative to the region
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to the east of the boundary, despite a similarity in soil type (figure 7-17(b)). This

is suggestive that rainfall in this vicinity of the watershed may exert an important

control on both near-surface and profile-integrated soil moisture anomalies. The

third EOF of profile-integrated moisture anomalies again reflects both soil type and

topographic heterogeneity, with topographic influence on profile moisture anoma-

lies being more significant in the eastern portion of the watershed (figure 7-17(c)).

Topography plays a significant role in describing profile-moisture anomalies cap-

tured by the fourth EOF, except in the area encompassed by the soil type in the

South-central portion of the watershed.
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Figure 7-17: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile-

integrated soil moisture anomalies at 144 hr into the simulation. They explain

14.2, 12, 10.2, and 8.5 percent of the variance in soil moisture, respectively.

272



As a caveat to the EOF analysis presented here, the marked influence of several

distinct factors (e.g., soil type and topography) in a single EOF suggests that the

ensemble of moisture anomalies is not perfectly separable through a linear decom-

position such as SVD. This reflects, in part, the fact that the ensemble of moisture

anomalies captured in this open loop experiment arises from a nonlinear set of

processes. Spatial distributions of the first four EOFs of near-surface and profile-

integrated soil moisture anomalies for all other time 72 hr time intervals in the

open loop simulation are mostly similar to those presented here for hour 144 of the

experiment are presented in Appendix C.
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CHAPTER 8 ASSIMILATION

EXPERIMENTS AND

RESULTS

Experimental setup and results of three attempts to assimilate synthetic L-band

microwave observations into tRIBS-VEGGIE are presented and discussed in this

chapter. The three experiments reported here span a range of assumptions, and are

designed to explore the performance and limitations of a data assimilation system,

the core of which is the ensemble Kalman Filter (EnKF), to estimate the soil mois-

ture state at hillslope scales modeled by tRIBS-VEGGIE. The first and most simple

experiment explores assimilation of synthetic measurements of L-band microwave

brightness temperature for soil moisture estimation at a single, flat computational

element. This experiment seeks to demonstrate that assimilation of L-band mea-

surements into the tRIBS-VEGGIE model is possible. The second experiment con-

siders assimilation of coarse-scale brightness temperatures, assumed to represent a

watershed-averaged measurement, for estimation of moisture at hillslope scales in

a moderately rough topographic setting of uniform soil texture. This experiment is

a demonstration that disaggregation of coarse-scale microwave brightness tempera-

ture measurements to hillslope scales, by conditioning on the model physics through

the EnKF approach, is feasible. The final and most computationally demanding ex-

periment investigates the assimilation of synthetic microwave radar measurements,

at 3 km resolution, for estimation of soil moisture at hillslope scales in the Wal-

nut Gulch Experimental Watershed (WGEW). This final case represents the most
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plausible combination of factors that would be encountered in an operational or

applied setting. Specifically, the WGEW is associated with spatial heterogeneity in

soil type, rainfall, and topography, while the synthetic observations derived for the

experiment are similar to anticipated products from NASAs forthcoming Soil Mois-

ture Active-Passive mission. In this final experiment multiple notionally true soil

moisture states (and therefore sequences of observations) are considered. The use

of multiple plausible true realized moisture conditions (and corresponding observa-

tions) allows for a range of behavior in the soil parameters and hydrometeorologi-

cal forcings used to derive the true soil moisture states and observations. Repeating

the EnKF experiment with multiple sequences of observations derived from corre-

sponding multiple potential true moisture realizations allows for assessment of the

robustness of the EnKF machinery for hillslope-scale soil moisture estimation.

It is important to discuss an important experimental tool that is employed in

each experiment. The use of Observing System Synthetic Experiments (OSSEs),

in which the hydrological model is subjected to arbitrary realizations of the hy-

dromterological forcings and parameterized by a single set of soil properties to

generate a notionally true state and (through the measurement equations) obser-

vations, is motivated by two important factors. First, there are presently no space-

borne L-band microwave brightness temperature or backscatter observations, ne-

cessitating the use of the OSSE approach. Second, because the tRIBS-VEGGIE model

is used in these OSSEs to generate the true state and observations, the performance

of the EnKF can be assessed by the ability of the filter to retrieve the synthetic

notionally true state and is independent of any structural model or observational

errors or bias. The following sections of this chapter outline the experimental setup

and assumptions that underly each data assimilation experiment, and present the

associated results.
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8.1 Experiment 1: Pixel-scale moisture estimation

8.1.1 Setup and assumptions

This first data assimilation experiment is designed to ascertain whether L-band

microwave measurements would add value in estimation of the soil moisture state

as simulated by tRIBS-VEGGIE under the most ideal of conditions. In this experi-

ment, synthetic observations of L-band microwave brightness temperature are used

to update the moisture state at a single, flat computational pixel that is comprised

of 9 finite element layers.

A 27-day notionally true soil moisture state was simulated using tRIBS-VEGGIE

by driving the model with the hydrometeorological forcings simulated for Scenario

1 of the point-scale sensitivity analysis described in Chapter 7 and providing as

input a set of soil hydraulic and thermal properties (SHTPs) for an assumed loam

soil drawn at random from an ensemble of soil parameter sets generated with the

Restricted Pairing (RP)-based sampling scheme. Bare soil conditions are assumed

in the true soil moisture, and throughout the pixel-scale estimation exercise. As

a reminder to the reader, the time series of thermodynamic variables was simu-

lated using the stochastic weather generator of Ivanov et al. [2007], conditioned on

the input time series of hourly rainfall volues simulated with the Modified Bartlett-

Lewis stochastic model. The seasonal and geographic context of these simulated

hydrometeorological forcings is the month of July at the Tucson International Air-

port, Arizona, USA. Simulation begins at 0900 local time on July 1, and ceases at

0900 local time July 31.

Consistent with an approximate revisit time of NASA's forthcoming SMAP satel-

lite, the microwave brightness temperature observing system outlined in Chapter

4 was used to simulate brightness temperature observations in both the vertical

and horizontal polarization every 72 hrs at 0900 local time based on the instan-

taneous true near-surface soil moisture simulated by tRIBS-VEGGIE. The assumed

satellite sky position, consistent with the planned SMAP radiometer observing the
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computational domain during the ascending limb of an orbit, is an azimuth angle

(s) of 150' and an off-nadir look angle 6s of 40'. Since the single pixel is flat, in

this experiment the sensor off-nadir look angle is equivalent to the local angle of

incidence, OL. The results are nine observations of the horizontally- and vertically-

polarized L-band brightness temperature, the first occurring on July 4 at 0900 local

time and the final observation occurring on July 31 at 0900 local time.
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Figure 8-1: (a) True rain during experiment, (b) horizontally, and (c) vertically
polarized microwave brightness temperature measurements simulated with the ob-
serving system developed in Chapter 4. Simulated observations based on the true
state are shown as red squares, while the perturbed true observations are shown as
blue circles.

It is assumed the instrument noise is additive and Gaussian, and that the er-

rors in observation in the horizontal and vertical polarization are uncorrelated. The

noise level in each polarization is zero mean and has a variance of 16 K2, the re-

quired sensitivity of the SMAP radiometer. These assumptions define the structure

of the observational error covariance matrix (R) in the EnKF algorithm. The simu-

lated true brightness temperature observations are perturbed onde with noise con-

sistent with these assumptions to yield a set of simulated perturbed observations

(figure 8-1).
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In the data assimilation experiment, it is assumed uncertainty arises from both

inadequate knowledge of the SHTPs and uncertainty in the hydrometeorological

forcings required as input to tRIBS-VEGGIE. The 64-member ensemble of hydrom-

eteorological forcings used in Scenario 3 of the sensitivity analysis described in

Chapter 7 are used to drive the tRIBS-VEGGIE model for the nine EnKF analysis

cycles. Similarly, a 64-member ensemble of soil parameters generated with the

RP-based algorithm for an assumed loam soil in Chapter 7 is used to parameter-

ize the soil during the assimilation experiment. In this ensemble data assimilation

experiment, each realization of the hydrometeorological forcings is paired to a cor-

responding realization of the soil parameters.

To recapitulate, the state vector in this first data assimilation experiment con-

sists of the 10 soil moisture values at the boundaries of the 9 finite element layers

of the soil column at the single computational pixel. Initial conditions for the EnKF

experiment correspond to the moisture state at the end of a 27-day ensemble simu-

lation.

An open loop (OL) ensemble simulation was also performed, assuming the same

pairing between realizations of the hydrometeorological forcings and soil parameter

sets as the data assimilation experiment, as well as the corresponding initial con-

ditions. This OL experiment provides an ensemble soil moisture simulation during

the same 27-day period that is independent of any observational data, since no data

assimilation is performed in the OL experiment. Therefore, the OL ensemble is ef-

fectively a "worst case" scenario, against which the ability of the EnKF procedure to

retrieve the true soil moisture state through assimilation of brightness temperatures

can be assessed.

8.1.2 Pixel-scale results

Results of the OSSE for the single-pixel computational domain demonstrate the

usefulness of the EnKF approach for estimating soil moisture in the near surface
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(i.e., top 10 cm of the soil column) (figure 8-2) and in the entire profile (figure

8-3). Sequential assimilation of the brightness temperature observations reduces

the ensemble standard deviation in the estimate of near-surface soil moisture, rela-

tive to the open loop simulation (figure 8-2(b) and (c)). In contrast to the filtered

estimate, which benefits from ingesting observations, the ensemble standard devi-

ation of the open loop estimate remains relatively unchanged during the duration

of the experiment (figure 8-2(c)). Furthermore, assimilation of successive bright-

ness temperature observations reduces the actual error in the filtered estimate of

soil moisture, as measured by root-mean-square error (RMSE) relative to the true

soil moisture time series (figure 8-2(d)). More specifically, sequential assimilation

of the observations leads to increasingly improved near-surface moisture estimates,

as evidenced by the gradual reduction in RMSE throughout the course of the ex-

periment (figure 8-2(d)). The OL ensemble, on the other hand, largely exhibits the

same RMSE in near-surface moisture throughout the simulation (figure 8-2(d)). At

the end of the experiment, the RMSE in near-surface moisture of the OL ensemble

is approximately twice that of the filtered estimate (figure 8-2(d)). Both the EnKF

and OL estimates of near-surface soil moisture have relatively small bias, however,

the occurrence of rainfall acts to increase bias in the near-surface soil moisture es-

timate (figure 8-2(e)). Although difficult to see, assimilation of observations leads

to an immediate, although relatively small, decrease in soil moisture bias (figure

8-2(e)).

Turning to estimation of moisture throughout the soil column, although assim-

ilation of the synthetic observations leads to a significant improvement in the esti-

mate of soil moisture in the profile relative to the OL estimate, substantial improve-

ment in the profile moisture estimate only occurs through sequential assimilation

over several analysis cycles (figure 8-3). Initially, the true profile soil moisture is

greater than the ensemble mean plus one ensemble standard deviation for both the

OL and EnKF estimates (figures 8-3(b) and (c)). However, sequential assimilation

of brightness temperature observations gradually improves the RMSE of the EnKF

estimate of profile moisture, while the RMSE of the OL estimate effectively remains
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the same throughout the simulation (figure 8-3(d)). The improvement in the EnKF

estimate can also be seen through the gradual reduction in the bias of the EnKF es-

timate, which contrasts with a relatively unchanging bias in the OL estimate (figure

8-3(e)).

It it interesting to note that while the RMSE in the EnKF estimate decreases

through sequential assimilation of brightness temperatures, the ensemble standard

deviation of the EnKF estimate remains relatively constant throughout the exper-

iment (figure 8-3(d)). At the beginning of the simulation, the fact that the EnKF

standard deviation in profile moisture is substantially smaller than the EnKF RMSE

in moisture estimate is a reflection of the fact that the estimate is initially biased.

Hence, when the estimate of soil moisture is biased, then the ensemble standard

deviation is a poor measure of error in the estimate, while the ensemble standard

deviation is reasonable measure of estimator error when the underlying estimate is

unbiased. In addition to the uncertainty associated with rainfall input, the difficulty

in constraining bias in actual application of a soil moisture data assimilation sys-

tem lies in the inability to adequately measure all of the outgoing moisture fluxes

in a watershed. This will be discussed in more detail in the conclusion, with spe-

cial emphasis paid to assimilation of discharge as a mass balance constraint on the

assimilation system.

While this relatively simple pixel-scale experiment relies on a fairly contrived

set of assumptions, it is nevertheless a valuable heuristic exercise to explore the

impact of assimilation of measurements related to only near-surface variables on

estimation of moisture throughout the entire profile. These results seem to suggest

that, in the context of a hydrological process model, near-surface observations are

of potential benefit to efforts to retrieve moisture in the entire profile. It should be

pointed out, however, that the results of the pixel-scale experiment discussed above

should not be construed as a general statement on assimilation of near-surface mea-

surements for profile moisture estimation. Rather, for the particular combination of

soil parameters drawn at random from an ensemble of possible parameter sets to
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Figure 8-2: (a) True rain during experiment together with ensemble mean (solid
black line), area encompassed by one standard deviation above and below the mean
(gray area) and true (dashed black line) soil moistures for the (b) EnKF and (c) OL
experiments. (d) Ensemble standard deviation of the EnKF (solid black line) and
OL (dashed black line) ensembles and the RMSE of the EnKF (solid gray line) and
OL (dashed gray line) estimates; and (e) the absolute value of the bias in the EnKF
(solid black line) and OL (dashed black line) estimates. Observation times are
indicated as solid black open circles on the x-axis of (e).

serve as the true soil parameters, the profile moisture content was reasonably well-

retrieved by assimilation of near-surface brightness temperatures. Hence, a more
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Figure 8-3: (a) True rain during experiment together with ensemble mean (solid
black line), area encompassed by one standard deviation above and below the mean
(gray area) and true (dashed black line) soil moistures for the (b) EnKF and (c) OL
experiments. (d) Ensemble standard deviation of the EnKF (solid black line) and
OL (dashed black line) ensembles and the RMSE of the EnKF (solid gray line) and
OL (dashed gray line) estimates; and (e) the absolute value of the bias in the EnKF
(solid black line) and OL (dashed black line) estimates. Observation times are
indicated as solid black open circles on the x-axis of (e).

concise conclusion to this exercise would assert that, depending on the true soil

parameters, assimilation of microwave brightness data can potentially be beneficial
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in estimating the profile-integrated soil moisture.

8.2 Experiment 2: moisture estimation in a synthetic watershed

8.2.1 Setup and assumptions

This experiment represents an intermediate level of complexity in terms of spa-

tial heterogeneity. The computational domain used in this experiment is a syn-

thetic topographic field generated by a physically based landscape evolution model

[Tucker and Bras, 1998; Tucker et al., 2001b,a], and corresponding to a slope-

dependent diffusive erosion mechanism. It is the same computational domain (re-

ferred to as the diffusive domain) used to demonstrate the properties of both the

active and passive microwave observing systems in Chapter 4. The domain is char-

acterized as having relatively shallow slopes, long hillslopes, and topographic relief

that is significant but not extreme. The square domain is 2 x 2 km and contains

2401 active and approximately equally spaced computational nodes. At each of

these computational nodes, 10 volumetric soil moisture states are modeled at the

boundary of 9 discrete layers in the tRIBS-VEGGIE model. The watershed is as-

sumed to be associated with a single soil textural class. While this computational

domain is a simplified test bed, it offers greater complexity than the element do-

main considered above due to: (1) the additional process complexity associated

with the potential for lateral sub-surface moisture redistribution, and (2) the in-

crease in scale of the watershed and dimensionality of the associated state vector.

In similar fashion to the pixel-scale domain considered in the first experiment, a

single 27-day notionally true soil moisture state was simulated using tRIBS-VEGGIE

by driving the model with the hydrometeorological forcings simulated for Scenario

1 of the point-scale sensitivity analysis of Chapter 7. Values of the SHTPs for this

true simulation for an assumed sandy loam soil were drawn at random from an

ensemble of soil parameter sets generated with the RP sampling scheme. Bare soil
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conditions are again assumed in the simulation to develop the synthetic true soil

moisture state, as well as in the ensemble data assimilation exercise. The simulation

begins at 0900 local time on July 1, and ceases at 0900 local time July 31.

Synthetic microwave brightness temperature observations were again simulated

based on the synthetic true soil moisture state using the passive observing system

developed in Chapter 4. Simulated brightness temperatures in both the vertical and

horizontal polarization were derived based on the instantaneous hillslope-scale dis-

tribution of soil moisture and temperature every 72 hrs at 0900 local time. Contin-

uing with the assumption from the pixel-scale experiment, the satellite sky position

is characterized by assumed values of azimuth angle ((s) equal to 1500 and an off-

nadir look angle 6s equal to 400. Based on equation 4.34 and the local topographic

conditions, the hillslope-scale distribution of simulated brightness temperatures is

aggregated to the watershed scale.

(a)
4-

0 100 200 300 400 500 600 700

(b)
230

260 o 0]
24o 0 O

220- 0
2001

0 100 200 300 400 500 600 700

(c)

§ S s

260[ 0 0 Simulated true obs.
0 Simulated noisy obs.

0 100 200 300 400 500 600 700
Time (hr]

Figure 8-4: (a) True rain during experiment, (b) horizontally, and (c) vertically
polarized microwave brightness temperature measurements simulated with the ob-
serving system developed in Chapter 4. Simulated observations based on the true
state are shown as red squares, while the perturbed true observations are shown as
blue circles.

Instrument noise is assumed again to be additive and Gaussian, and observa-
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tional errors in the horizontal and vertical polarization are assumed uncorrelated.

Assuming the observational errors are zero mean and have a variance of 16 K2, the

simulated true brightness temperature observations are perturbed once with noise

consistent with these assumptions. This yields a set of watershed-scale simulated

perturbed observations, shown together with the simulated true brightness temper-

ature observations in figure 8-4.

Uncertainty in the hillslope-scale distribution of soil moisture is again assumed

to arise from both inadequate knowledge of the SHTPs and uncertainty in the hy-

drometeorological forcings. The 64-member ensemble of hydrometeorological forc-

ings used in Scenario 3 described in Chapter 7 and in the pixel-scale experiment

above are used to drive the tRIBS-VEGGIE model for the nine EnKF analysis cycles.

Spatial variability in rainfall over the synthetic watershed is assumed to be negli-

gible, and hourly rainfall pulses are uniformly distributed in space. A 64-member

ensemble of the set of soil parameters required by tRIBS-VEGGIE is generated using

the RP-based algorithm for an assumed sandy loam soil. Again, each realization of

the hydrometeorological forcings is paired to a corresponding realization of the soil

parameters.

The state vector in this data assimilation experiment consists of the 10 soil mois-

ture values characterizing the surface-normal soil moisture profile at each of the

2401 computational pixels in the diffusive erosion domain. Thus, the state vector

for each ensemble replicate is 24010 by 1. The initial state vector for each replicate

during the assimilation exercise was determined in a similar fashion to the initial

state in the pixel-scale assimilation experiment. Because the size of the state vector

is much larger than the number of observations at each analysis, this experiment

tests the suitability of the EnKF to disaggregate the watershed-scale observations

of brightness temperature by conditioning on the model physics, as embodied in a

matrix containing an ensemble characterization of the soil moisture state.

Like the pixel-scale experiment, an open loop (OL) ensemble simulation was to

derive a "worst case" scenario, against which the performance of the EnKF estimates
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of hillslope-scale soil moisture can be compared.

8.2.2 Synthetic domain results

As seen in Figure 8-4, the fourth analysis cycle, which ends at 288 hr into the

simulation is associated with a series of rainfall pulses. The rainfall event depresses

the synthetic brightness temperatures approximately 25 K in the horizontal polar-

ization and approximately 20 K in the vertical polarization, relative to the synthetic

observations at hour 216. On the other hand, the final analysis cycle concludes at

648 hr into the simulation during a significantly long drying event. Results from

these two analyses are discussed in detail here. Full graphical depictions of ev-

ery analysis in the assimilation experiment are omitted here for brevity, but shown

unabridged in Appendix D.

The EnKF estimate of the hillslope-scale distribution of profile-integrated soil

moisture for the fourth analysis cycle (288 hr) shows a significant topographic sig-

nature, with channel and valley bottoms exhibiting higher moisture and topograph-

ically divergent areas (ridge lines) exhibiting the lowest moisture content (figure

8-5(a)). It should be noted, however, that there is not a large range of variability

in ensemble mean profile moisture content throughout the watershed. The spa-

tial variability of the EnKF mean near-surface moisture content, on the other hand,

shows a wider range of variability in moisture content (figure 8-5(b)). Volumetric

moisture content in the near surface, because of the relatively recent occurrence

of rainfall, is substantially higher in the near surface compared with the profile av-

erage. Spatial patterns in EnKF mean near-surface soil moisture content are also

largely organized around topographic gradients, with channels and valley bottoms

exhibiting higher wetness (figure 8-5(b)). In contrast to the spatial distribution of

EnKF mean profile-integrated moisture, however, topographically divergent areas

are not the locations with the lowest EnKF mean near-surface soil moisture. Rather,

the regions associated with the lowest ensemble mean near surface soil moisture

are the locations with the largest slope within the domain (figure 8-5(b)). This
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observation may underscore the role of lateral subsurface moisture redistribution

as a constraint on the spatial distribution of ensemble mean near-surface mois-

ture content. The spatial distribution of the standard deviation in profile-integrated

moisture content bears a striking resemblance to the spatial distribution of ensem-

ble mean profile moisture content (figure 8-5(c)). Areas of topographic conver-

gence are associated with higher local variance in profile-integrated soil moisture,

while areas of topographic divergence are associated with the lowest local variance

in profile-integrated moisture content (figure 8-5(c)). The range of variability in

the local ensemble standard deviation in profile-integrated moisture is relatively

narrow, highlighting an additional similarity with the spatial pattern of ensemble

mean profile moisture. While the spatial patterns of ensemble mean and variance

in profile-integrated moisture content appear quite similar, the spatial distribution

of variance in near-surface moisture content is markedly different from the corre-

sponding pattern of ensemble mean near-surface moisture (figure 8-5(d)). Further-

more, although the variance of in near-surface moisture content is generally greater

than the corresponding value of variance in profile-integrated moisture, the spatial

structure is similar. Topographically divergent areas tend to exhibit lower values of

ensemble variance in near-surface moisture content, while the channel and valley

bottoms exhibit the highest values of near-surface moisture ensemble variance in

the landscape (figure 8-5(d)). The steepest portions of the domain seem to be as-

sociated with moderate to high values of variance in near-surface moisture (figure

8-5(d)).

At the conclusion of the final analysis cycle (648 hr), after a significant amount

of time has passed without rainfall, the spatial distribution of EnKF mean profile-

integrated moisture is largely organized around topographic variability (figure 8-

6(a)). Again, channel and valley bottoms are associated with higher EnKF mean

profile moisture, while topographically divergent areas are associated with lower

moisture (figure 8-6(a)). The profile-integrated moisture content at this analysis

is also higher, and exhibits a greater range of variability than the spatial distri-

bution of EnKF mean profile moisture at the fourth analysis cycle (figure 8-5(a)).
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Figure 8-5: Analysis output, cycle 4 (288 hr). (a) Ensemble mean profile moisture,
(b) ensemble mean near-surface moisture, (c) ensemble standard deviation profile

moisture, (d) ensemble standard deviation near-surface moisture. To maximize

contrast, intervals are shown as quantiles.

The range of variability in the spatial distribution of EnKF mean near-surface mois-

ture is, by contrast with the results from the fourth analysis, more similar to the

profile-integrated moisture values (figure 8-6(b)). This indicates that the near-

surface, because of a significantly long period without rain, is not substantially

dissimilar from the remainder of the profile. The spatial variation of EnKF mean

near-surface moisture is similar in spatial structure to the corresponding distribu-

tion in near-surface moisture at the fourth analysis. Specifically, topographically

289



convergent areas exhibit higher EnKF mean near-surface moisture, while areas with

steeper slopes tend to be associated with lower near-surface moisture content (fig-

ure 8-6(b)). Topographic ridge-lines as areas of the lowest values of EnKF mean

near-surface moisture seem to be more prominent during the final analysis, when

compared to the fourth analysis cycle (figure 8-6(b)). In a pattern that is sim-

ilar to the fourth analysis cycle, the spatial pattern of EnKF standard deviation

in profile-integrated moisture content is similar to the distribution of EnKF mean

profile moisture content (figure 8-6(c)). The spatial pattern of EnKF variance in

near-surface moisture, while organized along topographic gradients, exhibits an in-

teresting spatial structure. Similar to the spatial pattern in near-surface variance

at the fourth analysis cycle, the channel and valley bottoms exhibit higher variance

in near-surface moisture (figure 8-6(d)). However, steep and West-facing. slopes

exhibit moderate variance in near-surface moisture content while South- and East-

facing slopes exhibit much lower values of variance in near-surface moisture (figure

8-6(d)). This pattern bears some resemblance to patterns of incoming solar radia-

tion, particularly in the morning when the Sun is low in the Eastern sky, and could

potentially be related to the spatial pattern of evaporation.

The notion that, in semiarid locations in particular, the greatest ensemble vari-

ance in soil moisture could be associated with the topographically convergent areas

within the landscape was discussed in the context of the spatially distributed sen-

sitivity analysis outlined in Chapter 7. It was argued there that this could be a

result of the uncertainty in soil hydraulic properties, particularly residual and satu-

ration moisture content and saturated hydraulic conductivity. The rationale posits

that at topographically divergent areas (i.e., ridgelines), uncertain rainfall is parti-

tioned into infiltration and runoff at uncertain rates that depend on the soil textural

class and the uncertain antecedent moisture. Further, the lateral redistribution and

runon mechanisms in tRIBS-VEGGIE lead to an uncertain amount of runoff and

infiltrated water being redistributed downslope, to a topographically lower pixel.

This pixel, in turn, is also exposed to uncertain incoming rainfall and uncertain soil

moisture conditions. This topographic amplification of uncertainty in precipitation,
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Figure 8-6: Analysis output, cycle 9 (648 hr). (a) Ensemble mean profile moisture,

(b) ensemble mean near-surface moisture, (c) ensemble standard deviation profile

moisture, (d) ensemble standard deviation near-surface moisture. To maximize

contrast, intervals are shown as quantiles.

runoff, and lateral redistribution in a downstream direction results in higher ensem-

ble variance in the topographic lows of the domain. This reasoning is inextricably

bound to the fact that moisture redistribution in the subsurface and runon on the

surface are parameterized as slope-dependent processes in tRIBS-VEGGIE, which

results in areas of topographic convergence exhibiting a higher ensemble mean soil

moisture content. Hence, while the topographic variation of a watershed may pro-

vide some qualitative insight into the spatial distribution of hillslope-scale moisture
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content, the amplification of uncertainty in moisture by topography correspond-

ingly decreases the predictability in areas of topographic convergence. Again, this

rationale may hold for semiarid regions in which the water table is at significant

depth beneath the surface and channels are mostly ephemeral, in more humid re-

gions groundwater-surface water interaction would tend to reduce amplification of

uncertainty by topography. In humid areas, downslope boundary conditions would

correspond to saturation, thereby limiting the amount of upslope runoff that could

re-infiltrate downslope and suppressing subsurface lateral redistribution in the un-

saturated zone.

At the fourth analysis cycle, the EnKF estimate of profile-integrated and near-

surface soil moisture is less error prone than the OL estimate, relative to the syn-

thetic true state. The maximum RMSE in the EnKF estimate of profile-integrated

moisture content is approximately 0.085 [m3/m] (figure 8-7(a)), whereas the cor-

responding maximum RMSE in the OL estimate is approximately 0.102 [m3/m3 ]

(figure 8-7(c)). Furthermore, the minimum RMSE in the OL estimate of profile-

integrated moisture is approximately 0.084 [m3/m3] (figure 8-7(c)), which is equiv-

alent to the greatest RMSE in the EnKF estimate of profile moisture content. In both

the EnKF and OL cases, the highest RMSEs occur in the channel and valley bottoms

(figures 8-7(a) and (c)). Similar conclusions can be reached for the estimate of

soil moisture in the near-surface. The highest RMSE in the EnKF estimate of near-

surface moisture is approximately 0.056 [m3/m3 ] (figure 8-7(b)), while the lowest

RMSE in the OL estimate is approximately 0.057 [m3/m 3] (figure 8-7(d)). Again

topographically convergent areas exhibit the highest values of RMSE, while topo-

graphically divergent areas exhibit the smallest RMSE values (figures 8-7(b) and

(d)).

At the ninth analysis, which corresponds to the end of the experiment, it re-

mains apparent that the EnKF estimate of profile-integrated and near-surface soil

moisture is less error prone than the OL estimate, as measured by the RMSE rel-

ative to the synthetic true state. The maximum RMSE in the EnKF estimate of
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Figure 8-7: RMSE relative to truth, analysis cycle 4 (288 hr). (a) EnKF profile

moisture, (b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-

loop near-surface moisture. To maximize contrast, intervals are shown as quantiles.

profile-integrated moisture content is approximately 0.072 [m3/m3 ] (figure 8-8(a)),

whereas the minimum RMSE in the OL estimate is approximately 0.080 [m3/m3]

(figure 8-8(c)). The spatial structure of RMSE errors appears nearly identical for

both the EnKF and OL simulations. The channel and valley bottoms exhibit the

greatest RMSE, while the surrounding hillslopes exhibit the smallest (figures 8-7(a)

and (c)). Interestingly, in terms of the profile-integrated estimate both the EnKF

and OL estimates show a strong contrast in RMSE between channels and hillslopes.

The highest RMSE in the EnKF estimate of near-surface moisture at the end of the
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Figure 8-8: RMSE relative to truth, analysis cycle 9 (648 hr). (a) EnKF profile
moisture, (b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-
loop near-surface moisture. To maximize contrast, intervals are shown as quantiles.

experiment is approximately 0.056 [m3/m 3 ] (figure 8-7(b)). By comparison, the
lowest RMSE in the OL estimate is approximately 0.057 [m3/m3] (figure 8-7(d)).
Again topographically convergent areas exhibit the highest values of RMSE, while
topographically divergent areas exhibit the smallest RMSE values (figures 8-7(b)
and (d)).

Of particular interest in this.spatially distributed data assimilation exercise is
how the new information contained in the observations is distributed across the
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Figure 8-9: Analysis cycle 4 (a) percent change in profile moisture ensemble mean,

(b) percent change in near-surface moisture ensemble mean, (c) percent change in

profile moisture ensemble standard deviation, (d) percent change in near-surface

moisture ensemble standard deviation. To maximize contrast, intervals are shown

as quantiles.

landscape through the EnKF update process, and the sensitivity of the analysis to

sharp changes in the observations (such as the depression in the brightness temper-

ature at fourth analysis cycle). The EnKF update increased the ensemble mean in

the estimate of profile-integrated soil moisture by anywhere from 9 to 12.7 percent

at the fourth analysis (figure 8-9(a)). The change in the ensemble mean near-

surface moisture estimate as a result of the EnKF update was substantially greater,
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ranging from 16.3 to 19.2 percent (figure 8-9(b)). In both cases, the largest analysis

increments are found in the channel and valley bottoms (figures 8-9(a) and (b)).

Because the EnKF update increased the mean near-surface and profile-integrated

moisture everywhere in the watershed, the observations act to add moisture to the

ensemble. This addition of moisture through assimilation of the watershed-scale

brightness temperature may reflect some combination of the nature of the true soil

properties and hydrometeorological forcings. For instance, a true precipitation that

is large relative to the ensemble behavior of the uncertain rainfall forcings may lead

to greater soil moisture in the true state. Additionally, the true soil properties may

be such that infiltration capacity is greater than the ensemble mean behavior.

Investigating the reduction in the local ensemble variance due to the EnKF up-

date reveals a substantial decrease in the EnKF estimate of variance in profile-

integrated moisture content, reflecting improved confidence in the profile-integrated

moisture estimate (figure 8-9(c)). The largest decreases in local variance conform

to the organization of valleys and channels in the watershed, while the smallest

decreases are found largely in areas with the largest topographic slope or areas of

topographic divergence (figure 8-9(c)). On the other hand, the local variance in

near-surface moisture actually increases between 4.5 and 5.7 percent due to the

EnKF update (figure 8-9(d)). The increase in the local ensemble variance in near

surface moisture underscores the fact that the EnKF, unlike the Kalman Filter from

which it originated, may not always result in a reduction of uncertainty in all states

because the assumptions of linearity and Gaussianity that underlie the Kalman up-

date may not be met in an ensemble framework. While difficult to reconcile with

the corresponding decrease in variance in the EnKF profile-integrated moisture esti-

mate, it is important to recognize that the near-surface moisture is computed using

the top 3 soil moisture states of the profile. Hence this modest increase in local

variance is confined to roughly 30% of the state space.

At the end of the simulation, during a prolonged drying period, the EnKF is

nevertheless useful in correcting errors in both near-surface and profile-integrated
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Figure 8-10: Analysis cycle 9 (a) percent change in profile moisture ensemble mean,

(b) percent change in near-surface moisture ensemble mean, (c) percent change in

profile moisture ensemble standard deviation, (d) percent change in near-surface

moisture ensemble standard deviation. To maximize contrast, intervals are shown

as quantiles.

estimates of soil moisture. The update is associated with a modest increase in the

ensemble mean estimate of profile moisture (figure 8-10(a)), while being associated

with both increases and decreases in the ensemble mean estimate of near-surface

moisture (figure 8-10(b)). Increases in mean profile-integrated moisture associated

with the update range from approximately 3.7 to 8.3 percent, with channel and

valley bottoms being the locations with the largest increases in the ensemble mean
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profile moisture (figure 8-10(a)). Ensemble mean near-surface soil moisture in-

creases in the valley bottoms across the update step, while mean near-surface mois-

ture decreases in areas of topographic divergence and steep slope (figure 8-10(b)).

During this prolonged drying episode the spatial pattern of changes in ensemble

mean near-surface moisture due to the update may reflect the differences between

the ensemble and true behavior of moisture redistribution, potentially revealing to

some degree the nature of the true soil properties.

The EnKF update reduces the local variance in both profile-integrated and near-

surface soil moisture estimates (figures 8-10(c) and (d)). The reduction of local

variance due the update ranges from 8.9 to 15.3 percent for the profile moisture es-

timate and 1.5 to 20.7 percent for the near-surface moisture estimate. In both cases,

the areas of topographic convergence are associated with the greatest decrease in

local soil moisture variance.

While this spatially distributed experiment, like the pixel-scale experiment be-

fore it, relies on assumptions that are fairly restrictive compared with actual con-

ditions, it conveys some important implications for hillslope-scale moisture estima-

tion through data assimilation. First, with a model that represents the processes

responsible for moisture redistribution in the landscape, identification of plausible

sources of uncertainty in the modeled soil moisture state, and an adequate repre-

sentation of that uncertainty, the EnKF approach seems promising as a mechanism

for translating geophysically observed quantities from one scale to modeled-soil

moisture states at another. Second, the local variance in soil moisture, particu-

larly the profile-integrated estimate, is not always decreased. Because the EnKF

approach employs an ensemble-based estimate of the covariance structure in the

update step, it can be sensitive to sampling errors associated with small ensem-

ble sizes. In particular, spurious correlations (particularly at depth within the soil

column) that occur because of a relatively small ensemble sizes could potentially

result in analysis increments that, while small, are in the opposite direction of the

true moisture. When considering the profile-integrated moisture state, erroneous
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analysis increments are amplified because deeper soil layers are associated with

greater thickness in the tRIBS-VEGGIE computational mesh. Hence, while errors

in the volumetric moisture state at depth may be relatively small, they may repre-

sent a substantial error when integrated over their respective soil layer thickness.

Although this may be a shortcoming of a Kalman-like update step, it is tempered

by the ease with which the EnKF can be implemented and the improvement in the

estimate that is more frequently observed. Furthermore, this shortcoming could

conceivably be overcome with no changes to the current framework by using larger

ensembles.

As with the pixel-scale experiment, it should be noted that these results reflect

the particular combination of soil parameters drawn at random to serve as the true

soil parameters. For the set of parameters and forcings chosen to represent truth

in this experiment, the EnKF approach appears beneficial in reducing the error in

the estimate of both profile-integrated and near-surface moisture content. Further-

more, the following experiment makes an effort to account for potential variation

in the true parameters and forcings.

8.3 Experiment 3: moisture estimation in WGEW

8.3.1 Setup and assumptions

This final experiment seeks to establish the most realistic set of assumptions for

an effort to estimate soil moisture at hillslope-scales through assimilation of mi-

crowave observations. The setting considered is the Walnut Gulch Experimental

Watershed, maintained by the US Department of Agriculture, and employed for the

spatially-distributed sensitivity analysis performed in Chapter 7. This experiment

extends hillslope-scale data assimilation to an environment exhibiting: (1) topo-

graphic variability, (2) soil textural class heterogeneity, and a spatial extent large

enough to exhibit spatial variability in (3) rainfall and (4) radar backscatter obser-
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vations.

Because the conclusions of the first two experiments are somewhat specific to

a single realization of the true soil moisture state, as simulated by tRIBS-VEGGIE

under the influence of a particular combination of SHTPs and hydrometeorological

forcings, this experiment considers four potential realizations of the soil moisture

state. Therefore, four 27-day realizations of the true soil moisture state were sim-

ulated using tRIBS-VEGGIE for four different combinations of hydrometeorological

forcings and SHTPs. A description of a reclassification of soil textural categories

to facilitate the use of the RP procedure to generate stochastic realization of the

soil parameters require by tRIBS-VEGGIE was described in Chapter 7. The spatial

boundaries of soil units (i.e., areas of relatively homogeneous soil texture) were ob-

tained from the Soil Survey Geographic (SSURGO) database maintained and pub-

lished by the USDA and the distribution of reclassified soil textures shown in the

previous chapter (figure 7-6). Values of the SHTPs for each of the four true simula-

tions, constrained to the spatial organization of reclassified soil textures shown in

figure 7-6, were drawn at random from an ensemble of soil parameter sets gener-

ated with the RP sampling scheme. Bare soil conditions are again assumed in this

final data assimilation experiment. Hydrometeorological forcings for the synthetic

true simulations were obtained by simulating an additional four realizations based

on the 1024 realizations of hydrometeorological forcings used for the WGEW sen-

sitivity analysis in the previous chapter. Specifically, the stochastic multiplicative

cascade is used both to perturb the four simulated true hourly rainfall time series

and to disaggregate hourly rainfall pulses to a 4 x 4 km grid overlaid upon the

watershed. The four time series of hourly simulated rainfall are supplied as input

to the stochastic weather generator to derive four corresponding time series of ther-

modynamic forcings. The ensemble average behavior of the hydrometeorological

forcings was shown in figure 7-7. The true simulations begin at 0900 local time on

August 1, and cease at 0900 local time August 31.

Four time sequences of L-band (1.26 GHz) microwave radar backscatter obser-
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Figure 8-11: Average observations across the four candidate observations in the

(a) horizontally-copolarized state at the third analysis (216 hr), (b) vertically-

copolarized state at the third analysis (216 hr), (b) horizontally-copolarized state at

the sixth analysis (432 hr), and (d) vertically-copolarized state at the third analysis

(432 hr).

vations are simulated at 72 hr intervals based on the synthetic true soil moisture

states at 0900 local time using the active observing system developed in Chapter

4. Simulated radar backscatter in both the horizontally- and vertically-copolarized

states was simulated at each computational pixel in WGEW and resampled to a 3

x 3 km grid, consistent with the anticipated resolution of the SMAP level 1 radar

product. Continuing with the assumptions from the previous two experiments, t
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it is again assumed that the satellite azimuth angle ((s) equals 1500 and the off-

nadir look angle 6s equals 40'. Allowing for the presence of radar pixels not falling

completely within WGEW, the spatial resampling of synthetic observations to the

3 km square grid reveals that WGEW is intersected by 30 pixels. Hence, the syn-

thetic radar backscatter observations of WGEW based on the true states in both the

horizontally- and vertically-copolarized states produces 60 observations every 72

hrs. Since there are four candidate true realizations of the true distribution of soil

moisture, there are correspondingly four time sequences of synthetic observations.

Following the planned specifications of the SMAP radar instrument, the noise is

assumed to be additive and Gaussian, and observational errors in the horizontally-

and vertically-copolarized are assumed uncorrelated. Observational errors are as-

sumed to be zero mean, with a variance of 0.252 dB2, below the anticipated preci-

sion of the SMAP radar. Each observation in the collection of synthetic observations

based on the four true moisture states is perturbed once with noise consistent with

these assumptions. This yields a synthetic, gridded, L-band radar product at a spa-

tial resolution of 3 km and with a temporal revisit interval of 72 hrs. The third

analysis (216 hr) occurs amidst a substantial rainfall event, while the sixth analy-

sis (432 hr) occurs during an extended drying episode, providing a two different

wetness regimes that will provide a useful contextual contrast throughout discus-

sion of this data assimilation experiment. The average observation across the four

candidate observations in both the horizontally- and vertically-copolarized states is

shown in figure 8-11 for both the third and sixth analysis. Average observations

across the four candidate sets of observations are shown for the other 7 analysis

cycles in Appendix D.

For each of the four candidate sequences of observations, the EnKF estimation

procedure was applied with an ensemble size of 256 replicates. The SHTPs for the

ensemble are the first 256 of the 1024 soil parameter sets for WGEW generated for

the sensitivity analysis in the previous chapter. Similarly, the time series of hydrom-

eteorological forcings for the ensemble are the first 256 of the 1024 realizations
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of hydrometeorological forcings simulated with the stochastic rainfall and weather

models for the spatially distributed sensitivity analysis in the previous chapter. Fi-

nally, the initial conditions for the 256 replicates of the EnKF experiments are the

same initial conditions for the first 256 of 1024 initial conditions for the sensitivity

analysis in the previous chapter. Across the four EnKF experiments, the paired real-

izations of hydrometeorological forcings and soil parameters are maintained. Thus,

between the four experiments only the observations differ.

Similar to the previous experiment, the state vector in this synthetic experiment

is much larger than the number of observations: 194,470 by 1 for the state vector

compared with 60 by 1 for the vector of observations. Hence, this experiment

also tests the suitability of the EnKF to disaggregate the coarse observations to

hillslope scales by conditioning on the model physics. This experiment, however,

encompasses a much broader range of spatial variability due to the heterogeneity in

soil textural classes, rainfall, and radar backscatter observations than the previous

experiment which considered only spatial variability in topography.

In this final data assimilation experiment, the OL ensemble used to character-

ize the "worst case" hillslope-scale soil moisture estimation scenario is the 1024-

replicate ensemble simulation used in the sensitivity analysis in the previous chap-

ter.

8.3.2 Results: spatially distributed

As discussed above, the third and sixth analyses (216 and 432 hrs into the simu-

lation, respectively) provide a contrast in overall wetness regimes, and are the focus

of the discussion here. The unabridged results from all 9 analyses is presented in

Appendix D.

At the third analysis (216 hr), which is temporally concurrent with a signifi-

cant rainfall event, the EnKF mean profile-integrated soil moisture reflects an inter-

play between soil type heterogeneity and topography (figure 8-12(a)). The average
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EnKF mean profile moisture estimate varies between 0.09 and 0.33 [m3/m3 ], and

while soil type heterogeneity is the most powerful descriptor of the profile mois-

ture content (see figure 7-6 for the distribution of soil types), topography seems

to be the most important factor in describing spatial variability in the EnKF profile

moisture estimate within a particular soil type (figure 8-12(a)). By comparison, av-

erage near-surface ensemble mean soil moisture ranges from 0.15 to 0.40 [m3/m3],

reflecting the coincident occurrence rainfall throughout the watershed (figure 8-

12(b)). Spatial heterogeneity in soil types again explains the most marked con-

trasts in the near-surface moisture average EnKF estimate, but spatial variability in

rainfall plays a significant role in the variability of EnKF mean near-surface mois-

ture within soil types (figure 8-12(b)). This is evidenced in figure 8-12(b) as the

square features in the Northwest and North-central portions of WGEW. Topogra-

phy also plays a minor role in explaining the spatial heterogeneity in EnKF mean

near-surface moisture, particularly in the Western-most and Southwestern portions

of the watershed (figure 8-12(b)).

Throughout the WGEW, the EnKF estimate of profile-integrated moisture is rela-

tively accurate, with more than half of the watershed exhibiting an average RMSE 1

in profile moisture of 0.06 [m3/m 3 ] or less (figure 8-12(c)). Consistent with the

second EnKF experiment, the channel and valley network tends to be associated

with higher average RMSE, although the spatial pattern of average RMSE in profile

moisture estimates also exhibits a dependence on soil type heterogeneity (figure

8-12(c)). The average accuracy of the EnKF estimate in near-surface soil moisture,

on the other hand, is comparatively better than the profile-integrated estimate. The

majority of the watershed exhibits an average RMSE of 0.04 [m3/m3 ] or less, and

all but a few pixels exhibit average RMSE in the near-surface moisture estimate of

0.07 [m 3/m 3 ] (figure 8-12(d)). Again, topographically low portions of the water-

shed seem to be associated with highest RMSE in the near-surface estimate (figure

8-12(d)).

1The term average RMSE is meant as the spatial distribution of local RMS errors averaged across
each of the four EnKF experiments.
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Figure 8-12: At the third analysis (216 hr), the average across the four sets of

synthetic observations of the: (a) analysis ensemble mean of profile-integrated soil

moisture, (b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in

the profile-integrated estimate of soil moisture, and (d) RMSE in the near-surface

estimate of soil moisture.

During the sixth analysis (432 hrs into the simulation), which is occurs during

an extended drying episode, the average EnKF estimate of profile-integrated mois-

ture content ranges from approximately 0.08 to 0.36 [m3/m 3] throughout WGEW

(figure 8-13(a)). Spatial heterogeneity in soil textural classes is the most impor-

tant factor influencing the spatial distribution of the EnKF ensemble mean profile

moisture. However, the channel network, particularly in the lower part of WGEW
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Figure 8-13: At the sixth analysis (432 hr), the average across the four sets of
synthetic observations of the: (a) analysis ensemble mean of profile-integrated soil
moisture, (b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in
the profile-integrated estimate of soil moisture, and (d) RMSE in the near-surface
estimate of soil moisture.

is associated with higher average ensemble mean profile moisture contents. In
the sandy loam soil that encompasses a majority of the area in the Northwestern

quadrant of WGEW in particular, the channel network is associated with substan-
tially higher moisture contents than the surrounding terrain (figure 8-13(a)). In the
near-surface, the EnKF mean estimate averaged across the four analyses is strongly
organized around spatial heterogeneity in soil types, and exhibits the same range
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of values as the profile moisture estimate (figure 8-13(b)). It is interesting to note

that despite the extended drying period, there remains some evidence of the impact

of spatial heterogeneity in rainfall, as evidenced by the vertical line in the North-

central portion of the watershed (figure 8-13(b)).

The EnKF estimate of profile-integrated moisture is again relatively accurate

after the sixth analysis, with a substantial portion of the watershed exhibiting an

average RMSE in profile moisture of 0.07 [m3/m3 ] or less (figure 8-13(c)). Within

certain soil types, such as sandy loam soil that encompasses much of the Northwest

part of the watershed, topography plays a secondary role in explaining the spatial

distribution of averaged RMSE in the EnKF profile moisture esitmate. Comparing

the average RMSEs in the EnKF profile moisture estimate, there are some localized

soil types that seem to exhibit large RMS error at both analysis cycles, exhibiting

RMSE values of up to 0.23 [m3/m3 ] (figure 8-13(c)). Investigating spatial pattern

in average RMSE in the near-surface EnKF moisture estimate reveals a reasonably

high degree of accuracy throughout much of the watershed (figure 8-13(d)). The

majority of the watershed is associated with average RMS errors in the near-surface

moisture estimate of 0.04 [m3/m3] or less, with topography being the most obvious

factor that describes spatial patterns in average RMSE (figure 8-13(d)). Channels

are again associated with the highest average RMSE values.

Critically important assessing the performance of the EnKF as a means of hillslope-

scale moisture estimation in this experiment is the accuracy of the EnKF estimates

of relative to the corresponding estimates from the OL simulation. One useful way

to visualize the relative performance of the EnKF and OL estimates of moisture is

to plot the spatial distribution of the ratio of average EnKF RMSE to average OL

RMSE. Values of this metric that are less than unity indicate locations of the wa-

tershed where the EnKF provides a more accurate estimate of the true moisture

state than the OL estimate. During the third analysis, the EnKF estimate of profile

integrated moisture is modestly outperforming the OL estimate (figure 8-14(a)).

Variation in topography and soil textural class seem to be equally important in
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Figure 8-14: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture estimate at the third analysis

(216 hr), (b) near-surface soil moisture estimate at the third analysis (216 hr),
(c) profile-integrated soil moisture estimate at the sixth analysis (432 hr), and (d)

near-surface soil moisture estimate at the sixth analysis (432 hr).

describing the spatial distribution of relative performance, with channels and val-

ley bottoms seemingly being locations in which the accuracy of the EnKF estimate

of profile-integrated moisture is substantially better than the OL estimate. In the

near-surface, by contrast, at the third analysis the EnKF estimate is substantially

outperforming the OL estimate in much of the watershed (figure 8-14(b)). In much

of the watershed, the EnKF RMSE in near surface moisture is less than 32 per-
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cent of the corresponding OL RMSE. However, contrary to the pattern in profile

moisture performance, in terms of the near-surface moisture the channel network

seems to be associated with only minor outperformance or slight underperformance

of the EnKF estimate (figure 8-14(b)). Moreover, as seen in figure 8-14(b), some

relatively localized soil types tend to be associated with EnKF RMS errors in near-

surface moisture that are not substantially better than the corresponding OL RMS

errors. Moreover, a slight imprint of the rainfall grid can be seen in the relative ac-

curacy of the EnKF and OL estimates of near-surface soil moisture (figure 8-14(b)).

This reflects the ability of the EnKF update scheme to effectively correct errors in

precipitation by assimilation of observations related to near-surface moisture. At

the sixth analysis, which is associated with relative dry conditions, the performance

of the EnKF estimate of profile-integrated moisture, inferred from the ratio of the

average EnKF RMSE to the average OL RMSE, only marginally outperforms the OL

estimate in much of the watershed (figure 8-14(c)). While soil type heterogene-

ity accounts for some of the contrast in relative performance, in this analysis the

EnKF profile-integrated moisture estimate interestingly seems to be more accurate

in the channel and valley network, in a similar fashion to the third analysis cycle

(figure 8-14(c)). In the near-surface, the EnKF is again substantially more accurate

at predicting the true distribution of soil moisture at the sixth analysis cycle (figure

8-14(d)). In much of the watershed, the average EnKF RMSE of the near-surface

moisture estimate is less than or equal to 29 percent of the average OL RMSE (fig-

ure 8-14(d)). Like the corresponding results at the third analysis, the channels and

valley bottoms along with some relatively localized soil types seem to be the only

locations where the EnKF is only marginally more accurate or slightly less accu-

rate in predicting the true near-surface moisture state at the sixth analysis (figure

8-14(d)). Results from both the third and sixth analyses, along with other analysis

results displayed in Appendix D, seem to indicate that the EnKF approach produces

substantially better estimates of near-surface soil moisture than the OL approach.

Furthermore, using the EnKF to assimilate observations of microwave backscatter

often leads to moderately more accurate estimates of profile-integrated soil mois-
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ture. While channels and valley bottoms are areas of the watershed in which the

EnKF performs best relative to an OL estimate of profile soil moisture, they also co-

incide with areas of the watershed in which the EnKF performs worst in estimation

of near-surface moisture, relative to the OL estimate.
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Figure 8-15: The local average bias in the EnKF estimate for the: (a) profile-

integrated soil moisture estimate at the third analysis (216 hr), (b) near-surface soil

moisture estimate at the third analysis (216 hr), (c) profile-integrated soil moisture

estimate at the sixth analysis (432 hr), and (d) near-surface soil moisture estimate

at the sixth analysis (432 hr).

The bias in the EnKF estimate also provides an important measure of the per-

formance of the data assimilation system. As mentioned in the interpretation of
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results from the first experiment, the ensemble variance in the EnKF estimate of

soil moisture may be a poor reflection of actual estimation error if the estimate is

biased.

During the third analysis, the absolute value of bias in the estimate of the profile-

integrated moisture content, averaged across the four EnKF experiments, is less

than 0.04 [m3/m3 ] in approximately half of WGEW and less than 0.07 [m3/m3] in

much of the remainder of the watershed (figure 8-15(a)). It should be pointed out

that in figure 8-15(a) the sandy loam soil occupying much of the watershed in the

Northwestern part of the watershed associated with values of average bias between

0.04 and 0.07 [m3/m3], which is potentially problematic since the average ensem-

ble mean soil moisture at the same analysis tends to be low. On the other hand,

the average bias in the near-surface EnKF moisture estimate at the third analysis is

less than 0.02 [m3/m 3 ] in the vast majority of WGEW, and less than 0.03 [m3/m 3 ]

in much of the rest of the watershed (figure 8-15(b)). It is interesting to note that

there a faint topographic signature in the spatial organization of the average bias,

as well as a faint signature of the rainfall grid (figure 8-15(b)). The average bias in

the estimate of the profile-integrated moisture at the sixth analysis is less than 0.07

[m3/m 3 ] throughout much of the WGEW, while the maximum average value of bias

is approximately 0.16 [m3/m 3] (figure 8-15(c)). In the North-central and Northeast

portion of the watershed, there is a moderate topographic signature in the spatial

organization of average bias in the profile moisture estimate. Channel and valley

bottoms seem to be associated with some of the more moderately-high observed

values of average bias in the estimate of profile moisture (figure 8-15(c)). In this

sixth analysis, as in the third analysis, the sandy loam soil occupying much of the

Northwestern portion of the watershed exhibits a moderate level of average bias.

Turning to the average bias in the EnKF estimate of near-surface soil moisture at the

sixth analysis cycle, the vast majority of the watershed is associated with values less

than or equal to 0.02 [m3/m 3 ] (figure 8-15(d)). The few areas of the watershed

that are associated values of average bias that are on the moderate to high end of

the observed range fall mostly along the channel network (figure 8-15(d)).
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The spatial patterns of average bias in both profile-integrated and near-surface

EnKF estimates reveal underscore a few important conclusions. First, consistent

with previously discussed results related to the spatial patterns in the average EnKF

ensemble mean and average estimator error, the EnKF estimation procedure is more

reliable in estimation of the true near-surface rather than profile-integrated soil

moisture. Second, the average value of bias in the estimate of profile-integrated

soil moisture largely follows the spatial pattern of soil textural classes, with some

secondary influence associated with topographic variability.

8.3.3 Results: pixel-scale soil moisture dynamics

Beyond the EnKF estimate of the spatial distribution of soil moisture and the

estimator error at times of observations, it is important to consider the soil moisture

dynamics during the forecast step between observation times. To investigate these

effects, two pixels within WGEW were selected for monitoring during the EnKF

experiment (figure 8-16). These pixels correspond roughly to the spatial location of

two intensively monitored sites within the WGEW, the Lucky Hills site (pixel 3378)

and the Kendall site (pixel 4496). It should be underscored here that the pixel-

scale results presented here are only diagnostics, and no additional assimilation or

processing was performed at these sites.

The soil moisture dynamics during the entire 27-day EnKF experiment are pre-

sented, as an example, for the first set of synthetic radar backscatter observations 2.

At pixel number 3378, the true soil moisture is anomalously high during most of the

simulation period, but somewhat low at the first analysis cycle. As can be seen in

figure 8-17(b), the EnKF update step tends to both reduce the ensemble variance in

the near-surface soil moisture estimate, as well as move the ensemble mean behav-

ior toward the true near-surface moisture content. The EnKF update is capable of

producing fairly large analysis increments at this location, in response to the assim-

ilated observations. During the forecast step, as expected, the ensemble variance

2 Results for the remaining three observations are shown in Appendix D
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Figure 8-16: Locations of the two observation pixels within WGEW in the EnKF sim-
ulations. Pixel 3378 corresponds roughly to the location of the Lucky Hills exper-
imental site, and pixel 4996 corresponds approximately in location to the Kendall
experimental site.

tends to increase and the estimate becomes more biased as time elapses beyond the

analysis (figure 8-17(b)). This is due to a combination of factors, among which are

a combination of true parameters that lead to anomalously high true near-surface

moisture contents during the experiment. Nevertheless, the EnKF update relatively

well forces the ensemble estimate of near surface moisture toward the observation.

On the other hand, the EnKF update does little to cause the ensemble estimate of

the profile-integrated moisture content toward the true profile moisture (figure 8-

17(c)). To evidence, at the fourth analysis (360 hr), the EnKF update leads to an

increase in the ensemble mean estimate of profile moisture, when the true profile-

integrated moisture content is actually substantially below the prior estimate. This

seems to indicate that while the EnKF update of soil moisture in the near-surface

tends to push the ensemble estimate toward the true near-surface moisture (on

which the observations are based), this can occur at the expense of accuracy in the

profile-integrated estimate of moisture content.

Turning to pixel 4996 (approximately the location of the Kendall experimental
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Figure 8-17: Example of the pixel-scale behavior near the Lucky Hills experimental
site during one of four EnKF experiments, showing the (a) time series of spatially-
averaged rainfall during the simulation, (b) the ensemble mean (solid black line),
area within one standard deviation of either side of the mean (grey area), and true
(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid
black line), area within one standard deviation of either side of the mean (grey
area), and true (dashed black line) profile-integrated soil moisture.

site), again the true soil moisture evolution is anomalously high (figure 8-18(b)).

Consistent with the results at pixel 3378, the EnKF update significantly reduces

the ensemble variance in the near-surface soil moisture estimate, and moves the
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ensemble mean toward the true near-surface content. Large analysis increments

at this location, in response to the assimilated observations, are again seen during

the update, and the ensemble variance and estimator bias tend both to increase

as the time since the last analysis increases (figure 8-18(b)). At this pixel, the

quality of the ensemble estimate of the profile-integrated moisture content seems

unresponsive to assimilation of the radar backscatter observations based on the true

near-surface moisture content (figure 8-18(c)). In particular, the update at analyses

2 through 7 actually increases the profile-integrated moisture content, despite the

fact that the true soil moisture content is lower than the ensemble mean estimate

during that same period of time (figure 8-18(c)). In keeping with the results from

pixel 3378, this seems to indicate that while the EnKF update moves the near-

surface estimate toward the truth, this does not generically hold true for the profile-

integrated moisture content.

Observations of the pixel-scale moisture dynamics reveal some interesting impli-

cations of the data assimilation system posed here. Specifically, while assimilation

of quantities related to the near-surface soil moisture may dramatically increase

the accuracy in the estimate of the near-surface soil moisture, it can also induce or

increase the bias in the profile integrated moisture content. As alluded to in the sec-

ond data assimilation experiment and above, bias in the estimate of water stored in

the unsaturated zone is problematic in applying data assimilation concepts such as

the one employed here for applications where the total mass of water in the system

is critical, such as irrigation scheduling and landslide prediction. For example, in

scheduling application of irrigation water based on an estimate of soil water deficit

retrieved from a soil moisture data assimilation system similar to this one, using the

ensemble mean estimate of profile-integrated moisture content from figure 8-18(c)

would lead to a potentially severe under-prediction of soil water deficit. Similarly,

using that same ensemble estimate of profile moisture content in a slope stability

analysis would potentially lead to erroneously high pore pressures and correspond-

ingly low safety factors. Such a scenario could conceivable lead to a false-alarm

landslide prediction, which would be associated with societal costs ranging from
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Figure 8-18: Example of the pixel-scale behavior near the Kendall experimental

site during one of four EnKF experiments, showing the (a) time series of spatially-

averaged rainfall during the simulation, (1) the ensemble mean (solid black line),

area within one standard deviation of either side of the mean (grey area), and true
(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid

black line), area within one standard deviation of either side of the mean (grey

area), and true (dashed black line) profile-integrated soil moisture.

lost productivity to "disaster fatigue." Without, additional constraints on the soil

moisture data assimilation system, such as assimilation of discharge observations

that would impose a strong constraint on the ensemble mass balance, or better es-
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timating the soil hydraulic and thermal properties, it is reasonable to suspect that

the estimate of moisture in the unsaturated zone retrieved from an assimilation sys-

tem like that posed here may be deficient for purposes of applications. Additional

constraints such as these would potentially also lead to more accurate (i.e., less en-

semble variance and bias) near-surface moisture estimates during the forecast step

of the EnKF procedure. Assimilation of discharge and parameter estimation will

be highlighted as areas of potentially important future research in the concluding

chapter.
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CHAPTER 9

DISCUSSION AND

CONCLUSIONS

This final chapter summarizes the primary original contributions of the the-

sis work to soil moisture remote sensing and data assimilation. This if followed

by an outline of a few potential areas for future research that could are immedi-

ately related to the reasearch findings of this thesis. The chapter concludes with

a brief argument for the importance of applications as a potential verification tool

for hillslope-scale soil moisture data assimilation systems such as the one proof-of-

concept version formulated in this thesis.

9.1 Contribution

Stated simply, the primary original contribution of this thesis work is the con-

struction and demonstration through a series of synthetic experiments of a data

assimilation system to estimate the hillslope-scale distribution of soil moisture us-

ing a process hydrology model and L-band microwave measurements from space.

The findings presented in the previous chapter demonstrate that the data assimila-

tion approach followed here can lead to an improvement in the predicted distribu-

tion of soil moisture, particularly in the near-surface environment, that is manifest

through a reduction in the error relative to a series of synthetic true states, and a

reduction in the bias of the ensemble mean estimate. Moreover, it was shown that
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the EnKF update resulted in soil moisture information gain at the hillslope scale,

despite the fact that the observations were associated with a much coarser spatial

scale. In one of the most realistic synthetic experiments to date in hillslope-scale soil

moisture estimation, it was demonstrated that L-band microwave radar backscatter

observations at a spatial resolution of 3 km substantially improve the estimate of

near-surface soil moisture at hillslope scales in the Walnut Gulch Experimental Wa-

tershed when assimilated using the EnKF. Average values of RMSE in near-surface

soil moisture across four observations representing four potentially true soil mois-

ture distributions are substantially lower when observations are assimilated using

the EnKF, compared with an open loop (OL) estimate. Furthermore, assimilation

of observations leads to a reduction in the bias, averaged across the four sets of

observations, at the time of the analysis. The spatial structure of estimator error

reveals varying influence due to soil type heterogeneity, topography, and (when it

occurs) rainfall. These results suggest that, at the time of the analysis, assimilation

of observations can assist in identifying errors in the hydrometeorological forcings

(particularly the spatial distribution of rainfall) and soil parameters. The success

of the data assimilation system was the result of three critical preconditions being

met:

1. Identification of the factors contributing to uncertainty in soil moisture predic-

tion at hillslope scales, which allowed for development of effective means for

explicitly modeling the uncertainty in the soil properties and hydrometeoro-

logical forcings required as input to the hydrological model. In particular, the

application of the Restricted Pairing sampling algorithm was shown to reduce

estimator variance in first- and second-order ensemble soil moisture statistics

at small ensemble sizes.

2. The tools developed for representing the uncertainty in the parameters and

forcings facilitated a thorough investigation of the of the spatiotemporal sen-

sitivity in soil moisture in the near-surface and throughout the profile arising

from uncertainty in the hydrometeorological forcings and inadequate knowl-
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edge of the soil parameters.

3. Formulation of an L-band microwave observing system that captured the het-

erogeneity in factors affecting emission/reflection of microwave energy simu-

lated by the model as well as the role of topography on the observing geometry

was a critical component of the data assimilation approach.

The contributions associated with and implications of each of these precondi-

tions are elaborated in greater detail below.

9.1.1 Modeling uncertainties in forcings and parameters

Chapters 5 and 6 of the thesis were devoted to outlining the methods by which

uncertainty in the hydrometeorlogical forcings (Chapter 5) and inadequate knowl-

edge of the hydraulic and thermal properties of the soil within a watershed were

explicitly modeled in the ensemble data assimilation framework (Chapter 6).

To summarize Chapter 5, the hydrometeorological forcings were subdivided

into rainfall and thermodynamic drivers. The temporal evolution of hourly rainfall

was modeled using the Modified Bartlett-Lewis (MBL) approach, which stochas-

tically generates storm arrivals and the associated intrastorm cellular structure of

the storm. A stochastic multiplicative cascade was used both to perturb the hourly

rainfall volumes and disaggregate them in space to spatial resolutions consistent

with operational weather radars (i.e., NEXRAD). The stochastic weather generator

of Ivanov et al. [2007] was used to derive the hourly time series of thermodynamic

drivers (air and dew temperatures, wind speed, sky cover fraction, and incoming

solar radiation) based on a time series of hourly rainfall simulated by the MBL

model. This approach, which combined three computationally inexpensive stochas-

tic models, is used to generate ensembles of the hydrometeorological inputs to the

tRIBS-VEGGIE model that were completely internally consistent.

In Chapter 6, a stochastic approach was outlined to generate ensembles of the

soil hydraulic and thermal properties (SHTPs) that characterize the hydrologic be-
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havior of the soil in the tRIBS-VEGGIE model. The methodological construct is

based on a Latin Hypercube (LH)-based sampling strategy. The LH approach en-

sures that, given the marginal behavior of a parameter, values of the parameter

associated with low probability of occurrence but potentially high consequence to

the model outputs are represented, even at small sample sizes. The so-called Re-

stricted Pairing (RP) approach extends the LH approach to allow for correlation

control among the parameters. The RP algorithm was applied to stochastically gen-

erate the soil hydraulic and thermal properties to the tRIBS-VEGGIE model. The

soil database of Schaap and Leij [1998] was partitioned into categorical soil textu-

ral classes, based on the USDA classification scheme. Within each textural class, soil

parameters were subjected to a statistical analysis to estimate the rank correlation

among the parameters and assign marginal distributions to each parameter based

on its empirical histogram. A series of pixel-scale experiments was performed to

investigate the behavior of soil moisture ensembles in which the soil parameters

were generated using the RP approach and compared to corresponding ensembles

in which the soil parameters were randomly sampled from their respective marginal

distributions. Ensemble experiments were repeated a number of times for varying

ensemble sizes to determine the stability of the ensemble estimates of mean and

variance in near-surface soil moisture. It was found that the soil moisture ensem-

bles modeled with soil parameters obtained using the RP algorithm converged to

stable estimates of the ensemble first- and second-order statistics at much smaller

ensemble sizes than the correspond soil moisture ensembles associated with the

simple random sampling approach. Moreover, because soil moisture ensembles

simulated with parameters derived from the simple random sampling approach con-

tained some ensemble members that exhibited hydrologically unlikely behavior, the

ensemble variance was generally higher compared with the ensembles derived with

soil parameters generated by RP. This behavior was verified over a range of soil

textural classes. The principal benefit of the RP-based sampling approach for soil

moisture data assimilation using the EnKF is the ability to achieve low variance in

the estimates of first- and second-order ensemble statistics at relatively small sam-
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ple sizes. Stated another way, careful attention to the way in which uncertain soil

parameters are sampled can result in substantial computational saving associated

with reducing the ensemble size without a corresponding increase in sampling er-

ror. This implication is of immense importance when formulating data assimilation

systems with models possessing high state dimension and/or extensive numerically

complexity, such as tRIBS-VEGGIE. As such, application of the RP algorithm for

sampling soil properties is a relatively novel, but potentially powerful, way of im-

proving the economics of a hillslope-scale soil moisture data assimilation system as

it relates to computational demands.

9.1.2 Spatiotemporal factors affecting uncertainty in soil moisture

The methods for representing uncertainty in the hydrometeorological forcings

and soil hydraulic and thermal properties outlined in Chapter 5 and 6 facilitated

the detailed uncertainty analysis in Chapter 7. The sensitivity analysis was subdi-

vided into investigation of the temporal evolution of uncertainty at the point-scale

under varying assumptions about factors contributing to uncertainty in soil mois-

ture and investigation of the spatial features underlying the spatial distribution of

soil moisture and its associated uncertainty. Both of these investigations were con-

ducted through open loop ensemble simulation.

Important implications for hillslope-scale soil moisture data assimilation were

identified as a result of the point-scale sensitivity analysis. In particular, the point-

scale sensitivity analysis suggests that representing uncertainty in the SHTPs re-

quired as input to tRIBS-VEGGIE is critical to avoid problems associated with un-

reasonably low variance in the ensemble estimate of the soil moisture state. Fur-

ther, while imperfect knowledge of the soil parameters was the dominant source of

uncertainty in the ensemble soil moisture response to forcing, representing uncer-

tainty in hydrometeorlogicalal forcings is associated with little additional computa-

tional burden because of the relatively simple nature of the stochastic models used

to generate the forcings. However, computational demands may be substantial in
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situations in which the hydrometeorological forcings are derived from a physically-

based numerical weather prediction model. Results of the point-scale sensitivity

analysis seem to indicate that in such scenarios, adequate attention should be paid

to characterizing uncertainty in SHTPs. In the data assimilation experiments sum-

marized in Chapter 8, uncertainty in SHTPs, rainfall, and thermodynamic forcings

are explicitly represented because of the relatively small burden of modeling uncer-

tainty in the hydrometeorological forcings, and to maintain a degree of realism in

acknowledging the uncertainty in available hydrometeorological data.

The spatially distributed sensitivity analysis revealed that, given uncertainty in

both the hydrometeorological forcings and SHTPs, the mean near-surface soil mois-

ture largely reflects a combination of the heterogeneity in soil types, as well as the

spatial organization of the channel and valley network. As might be expected, the

channel network is mostly associated with higher values of ensemble mean near-

surface soil moisture. Soil type heterogeneity and, to a lesser extent, topography,

also account for much of the spatial distribution of ensemble standard deviation

in near-surface soil moisture. Locations of higher ensemble mean near-surface soil

moisture tend to be associated with higher ensemble variance and when visualizing

the corresponding distribution of ensemble coefficient of variation leads, the role of

topography in the spatial distribution of the standard deviation relative to the en-

semble mean is much more prominent. The highest values of the local coefficient of

variation in the near-surface moisture are seen in the channel and valley bottoms.

In both the near-surface and profile-integrated soil moisture distributions, channel

and valley bottoms are typically associated with higher ensemble variance in soil

moisture. This is likely a result of the uncertainty in soil hydraulic properties. As

discussed in Chapter 7, topography tends to amplify uncertainty in precipitation,

runoff, and lateral redistribution in a downstream direction, resulting in higher en-

semble variance in the topographic lows of the domain. This reasoning may be

valid for semiarid regions where the water table is at significant depth and chan-

nels are mostly ephemeral. Although the current version of tRIBS-VEGGIE is not

capable of capturing such behavior, groundwater-surface water interactions would
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potentially curtail this amplification in more humid regions because a saturated

downslope subsurface boundary condition, for instance, would limit the amount of

upslope runoff that could re-infiltrate downslope and suppress subsurface lateral

redistribution.

An analysis of empirical orthogonal functions (EOFs) in near-surface and profile-

integrated moisture content revealed that much of the variance explained by the

ensemble of moisture anomalies can be captured with fewer than 50. The spatial

patterns associated with several EOFs were found to represent a complex interplay

between spatial variability in soil types, topography, and rainfall. The marked influ-

ence of several distinct factors (e.g., soil type and topography) seen in several EOFs

suggests that the ensemble of moisture anomalies are not perfectly separable using

a linear decomposition. This is a result of the fact that the ensemble of moisture

anomalies captured in the open loop sensitivity analyses arise from a nonlinear set

of processes governing the redistribution of moisture across the watershed.

9.1.3 Formulation of the L-band microwave observing systems

Chapter 4 outlined the formulation of passive and active L-band microwave

observing systems. The passive microwave system takes the soil moisture and tem-

perature outputs of the tRIBS-VEGGIE model and, given a satellite sky position in

the form of an azimuth and zenith angle, predicts the microwave brightness tem-

perature at the observing sensor. The second takes as input the spatial distribution

of soil moisture simulated by the tRIBS-VEGGIE model and (again depending on

satellite sky position) predicts the microwave backscatter measured at the receiving

sensor.

One innovation in the development of these systems is the explicit representa-

tion of topography, as captured by the topographic slope and aspect, on the local

incidence and polarization rotation angles. This work in particular carries some im-

portant implications for soil moisture remote sensing that are summarized here. On
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an individual hillslope topography affects the amount of solar radiation received,

therefore impacting local soil moisture conditions, temperature conditions, and

dominant vegetation. Moreover, the topographic patterns in soil moisture and in-

coming solar radiation induce correlated patterns in vegetation biomass, water con-

tent and height Ivanov et al. [2008a,b, 2007] which enhances topographic contrasts

in the surface states that control emission and reflection of microwave radiation.

Hillslope-scale topography also controls the incidence angle and polarization rota-

tion required to capture topographic effects in modeling the microwave brightness

temperature and radar backscatter at the sensor. Significant variation in modeled

hillslope-scale brightness temperatures and radar backscatter are generally a result

of variation in: (1) soil moisture and temperature, (2) vegetation water content,

height, and temperature, and (3) local incidence angle and polarization rotation

associated with topography. At the sensor, modeled microwave observations are

sensitive to the satellite azimuth angle and zenith angle because the histogram of

hillslope-scale incidence angles reflects both the distribution of slopes and aspects

within the observation area and the location of the satellite with respect to the ob-

servation area at the time of observation. The magnitude of this sensitivity is a

function primarily of the degree of topographic ruggedness (or smoothness).

The work outlined in Chapter 4 in formulation of the observing systems is of

importance for applications that require modeling surface microwave emission in

areas of non-negligible topographic variation, particularly development of soil mois-

ture retrieval algorithms, soil moisture data assimilation, and geostatistical tech-

niques for disaggregation of brightness temperature observations to hillslope scales.

9.2 Future research

While this work represents an important and original contribution to the field of

hydrologic estimation, the findings also serve to identify some significant challenges

that still need to be addressed. The most obvious challenge that this thesis high-
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lights as deserving additional research effort is in reducing the bias in the estimate

of the profile-integrated estimate of soil moisture.

One explanation for the observation of bias in the profile-integrated moisture

estimate in WGEW during the entire experiment is that the experiment is not long

enough to assimilate a sufficient number of microwave observations and simulate

sufficiently many wetting-drying cycles to allow the profile moisture EnKF mean to

converge to the true profile moisture value. Because integrating moisture content

over the entire soil profile tends to dampen hydrologic fluctuations in the near-

surface, there may be little correlation between moisture contents in the deeper

portion of the profile and the predicted observations at the analysis. A lack of cor-

relation between deeper moisture contents and the predicted observations would

lead to smaller analysis increments, or increments in the opposite direction of the

true profile moisture. Therefore, performing the sequential estimation procedure

over a longer period of time may result in a profile-moisture estimate that eventu-

ally moves toward the true profile moisture value.

Another way to better constrain soil moisture estimates throughout the entire

profile would be to develop methods for assimilating point-scale observations. Wa-

ter content reflectometers and tensiometers are just examples of technologies that

can accurately and continuously provide information about soil moisture through-

out the profile. These observations are highly localized, however, and due to fine-

scale heteorgeneity in soil properties they may not be representative of an entire

tRIBS-VEGGIE pixel. Therefore, assuming that the point-scale observations consti-

tute direct observations of the tRIBS-VEGGIE state at the pixel may be misleading.

The problem, therefore, is to find an effective observing system that can translate

pixel-scale quantities to point-scale predicted observations. One way of approach-

ing this problem would be to imbed a hydrologic model of much higher spatial

resolution (centimeters) within the tRIBS-VEGGIE pixel,. tRIBS-VEGGIE would sup-

ply the boundary conditions to the high-resolution model, which would then evolve

states and fluxes at spatial scales more similar to that of the point-scale observa-
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tions. Although such a multi-scale modeling approach is an attractive way to in-

tegrate models and data from across a wide range of spatial scales, the fine-scale

model embedded within the tRIBS-VEGGIE model pixel would likely have a com-

putational burden on the order and possibly significantly greater than the hillslope-

scale EnKF effort pursued in this thesis. This is particularly true if the fine-scale

model would have to be run in an ensemble model Therefore, while potentially

promising, the computational burdens associated with this approach are currently

prohibitively expensive.

Bias in the profile-integrated moisture content is largely a result of the model er-

ror associated with the uncertainty in the soil hydraulic and thermal properties that

persists throughout the simulation. As discussed in Chapter 2, there is a historical

recognition that an important source of error in data assimilation frameworks arises

from the error in the model structure and in the parameters required as input to the

model. Neglect of model error can lead to unrealistically low ensemble approxima-

tions of the state error covariance and/or lead to bias in the estimate. The Restricted

Pairing approach to stochastic generation of soil parameters outlined in Chapter 6

was implemented to address the first of these pitfalls. However, as was seen explic-

itly in the previous chapter in the WGEW experiment, assimilation of radar obser-

vations led to substantial improvement in prediction of near-surface moisture while

at the same time giving biased estimates of the profile-integrated soil moisture. As

was seen in the temporal soil moisture dynamics at the pixel-scale, the ensemble

mean near-surface soil moisture diverged from the true near-surface soil moisture

as time elapsed after the model was re-initialized with the analyzed soil moisture.

The profile moisture content was often seen moving in the opposite direction of the

true profile-integrated moisture content. A significant reason for these findings are

that the uncertainty in the SHTPs persists during the experiment and information

contained in the observations does not propagate to the parameters, as well as the

state.

Augmenting the parameters to the state during the analysis would allow the ob-
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servations to better constrain the uncertainty in soil parameters, while only marginally

increasing the dimension of the state vector. The increase in the size of the state

vector associated with parameter augmentation would be equal to the product of

the number of soil types in the domain and the number of parameters to be up-

dated. Supposing, saturation and residual moisture content, saturated hydraulic

conductivity, and the Brooks-Corey parameters are assumed to be the variables most

responsible for uncertainty in soil moisture, the increase in the size of the state vec-

tor for WGEW due to soil hydraulic properties would only be 41 x 5 = 205. In

assimilation of radar backscatter observations, it should be noted that the predicted

observations are particularly sensitive to the parameters of the surface roughness

correlation function, the rms height and correlation length. It may also be benefi-

cial, therefore, to augment the two roughness parameters for each soil type, which

in WGEW would add an additional 82 elements to the state vector, for a cumulative

addition of 287 variables. Given that the soil moisture state vector is approximately

90 times this value, the added expense in the update step is rather paltry. State aug-

mentation has been shown in the literature to be beneficial in estimation of both

the states and parameters with lumped hydrological models, through assimilation

of discharge observations (e.g., Hino [1973] and Kitanidis and Bras [1979]). More

recently Vrugt et al. [2005] incorporated the strengths of both global optimization

techniques and data assimilation into a single framework to simultaneously esti-

mate the states and parameters of a lumped hydrological model.

However, a significant drawback of augmenting the states with the SHTPs in

assimilation of microwave observations of quantities reflecting soil moisture near

the surface is the physical reality that often surface soil properties can differ sub-

stantially from parameters in the rest of the soil column. The current implemen-

tation of tRIBS-VEGGIE does not generally handle vertically heterogeneous soils,

and therefore any soil parameters updated based on assimilation of observations of

near-surface phenomena may not reduce the bias problem seen here. Another po-

tentially powerful way of addressing the issue of parameter uncertainty as it affects

the estimate of moisture in the unsaturated zone is to assimilate discharge, which
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imposes a strong constraint on the system. In particular, the Ensemble Kalman

Smoother (EnKS) could potentially be applied to update historical states and pa-

rameters based on current observations and predictions of discharge. Unlike most

smoothing algorithms the EnKS does not require a backward model, requiring only

the EnKF estimates during the smoothing window. A physical argument can be

made that the length of the smoothing window should be related to measures of

travel time, such as time of concentration, in the watershed under study. The EnKS

has already been applied successfully in soil moisture estimation by Dunne and

Entekhabi [2006], who used the EnKS approach to improve estimates of moisture

content and energy flux. In a similar fashion to Dunne and Entekhabi [2006], the

EnKS could also be used to update historical estimates of the soil moisture state

based on current observations of microwave brightness temperature and backscat-

ter. Because the application of the EnKS is a relatively straightforward extension

of the EnKF estimation procedure pursued here, it is a reasonable near-future out-

growth of this research.

The data assimilation experiments considered only bare soil conditions. In

WGEW, and many semiarid areas more generally, vegetation plays an immensely

important role in the dynamics of soil moisture in the near-surface and throughout

the profile, and may even be a dynamic link between groundwater and the at-

mosphere. However, vegetation also complicates the modeling of radar backscatter

based on the surface moisture conditions. As discussed in Chapter 4, previous work

[Narayan and Lakshmi, 2008; Narayan et al., 2006; Njoku et al., 2002] has shown a

monotonic relationship between the change in successive backscatter observations

and the change in soil moisture over the same interval in areas with significant veg-

etation cover. Assimilation of temporal L-band radar backscatter change represents

one potentially simple way of extending the hillslope-scale data assimilation sys-

tem formulated here to areas with significant vegetation cover. At the first analysis,

the predicted observation of radar backscatter at the current analysis step and at

the initialization are computed based on the radar observing system based on the

moisture state at the current analysis and initialization, and the temporal change

330



in predicted backscatter computed. With the temporal change in backscatter ob-

servations, the EnKF estimation machinery is used to update the temporal moisture

change. The analysis increment of temporal moisture changes are all assigned to

the analysis moisture state at the current analysis step. Using the nonlinear ecohy-

drology model, the analyzed soil moisture state is propagated forward to the next

analysis cycle. The predicted observation of radar backscatter at the current anal-

ysis step on the forecast moisture state and at the previous analysis based on the

analyzed moisture state are computed based on the radar observing system. Again

the EnKF procedure is used to update the temporal moisture change based on the

temporal change in backscatter observations, and the increments assigned to the

analysis moisture state at the current analysis. This procedure to assimilate values

of temporal change in radar observations is a relatively straightforward extension

of the current data assimilation system, requiring very little additional code devel-

opment.

9.2.1 The importance of applications

At present, there are no L-band measurements to allow for application of the

data assimilation estimation procedure outlined in this thesis in any real context.

Furthermore, the fact that there are no current data or foreseeable data sources that

could serve to quantitatively validate the hillslope-scale soil moisture estimates de-

rived from the EnKF procedure pursued in this thesis necessitates other approaches

to verification. Applications are one potentially important and viable way to provide

some degree of forecast verification. The applications discussed in the introductory

chapter require an estimate of the soil moisture state as input to some geoprocessing

routine to yield a forecast with some actionable information. For instance, a land-

slide prediction scheme would take the EnKF soil moisture estimate as input and

provide a spatial mapping of landslide risk over some immediate time horizon that

could be acted upon. Alternatively, an irrigation scheduling system may take the

EnKF moisture estimate to produce a map of required irrigation application depths
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based on a spatially distributed assessment of rooting depth-integrated soil water

deficit. And while the additional geoprocessing of the soil moisture estimate re-

quired for the particular application can itself introduce uncertainties, an improved

estimate of soil moisture state arising from assimilation of remotely sensed data

nevertheless improves the quality of the actionable data. The verification of the

hillslope-scale soil moisture state estimate obtained from assimilation of available

microwave data, therefore, lies in the quality of the decisions made based on the

actionable data derived from the forecast. A reasonable objective of hillslope-scale

data assimilation problems like the one addressed in this thesis is to enhance the

utility of the data derived from the estimate of the moisture state in the context of the

decision support systems associated with particular applications. This objective leads

to an iterative process of calibration in which decision-makers provide feedback,

often in the form of soft data, to modelers and forecasters in an effort to improve

the quality of the forecasts of both the state (e.g., reducing RMSE and bias) and of

the decision variables of interest derived from the state estimate (e.g., 95% chance

of landslide in location 'A, 75% slow-go conditions on path 'C' to target).
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APPENDIX A

DETERMINING

OBSERVATION TIME

This appendix provides an expansion of the observing system that determines

when a location on the Earth's surface is under observation based on the orbital

characteristics of the satellite carrying the sensor. As demonstrated in "Chapter 4:

Formulation of the observing system," the local incidence angle of a particular lo-

cation can be calculated directly through the spherical law of cosines provided that

the following are known: (1) the local topographic slope, (2) the local topographic

aspect, (3) the azimuth angle to the subsatellite point, and (4) the zenith angle from

the locally vertically up direction to the satellite. The first two parameters must be

calculated from a map of the terrain. However, the second two depend on the mo-

tion of the satellite with respect to the area being observed. The satellite azimuth

((s) and zenith (6s) angles can be determined directly by knowing the latitude and

longitude of the site at which microwave energy emission is being modeled (lR, nR),

and the latitude and longitude of the sub-satellite point (lss, qss). The sub-satellite

point is the point on the surface of the Earth below the satellite at nadir. Knowing

(lR, OR) and (iss, qss), the azimuth angle to the satellite can be computed directly

from the spherical law of sines as follows:

sin ((s) = sin(ss- R), when Iss > IR and ss > 'R (A.1)
sin(y)
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sin (s - )

sin (s - )( 3x 2

sin(ss - OR) , when lss > IR and Css _ OnR
sin(7)

sin(Iss - IR)
= n(y) , when Iss < lR and kss < OR

sin(qss - R)
sin( - ) when 1ss < lR and Oss > nR
sin( )

haversin (7) = haversin (qss - OR)

+ cos (Oss) cos (OR) haversin (Iss - IR)

(A.2)

(A.3)

(A.4)

(A.5)

where the haversine formula is given as,

haversin7 = sin 2 (7) (A.6)

Applying the law of sines to the triangle connecting the satellite sky position

(S), the site being observed (R), and the center of the Earth (E), the zenith angle

of the satellite, s can be computed,

sin (7r - 6s)

Ap +z

where AP is the Authalic

nominal satellite altitude.

sin y

A2 + (Ap + z) 2 - 2Ap(Ap + z) cos 7

radius of the Earth (approximately ), and z is the

Satellite sky position can be determined by solving equations 4.9-4.15 when

the proximity of S and R is such that the R is within the viewing footprint of

the satellite. What remains in determining the satellite sky position coordinates

(Cs and 6s) is calculating the time evolution of the subsatellite point (1ss, 4ss)

relative to some space-time datum , referred to as the nodal crossing. The datum

is specified by the time at which the subsatellite point intersects a given latitude
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and longitude (often the intersection of the equator and Prime Meridian) during an

ascending (South to North) pass. The time evolution of the subsatellite point can

be modeled using a simple model of satellite orbital kinematics. Prior to describing

the orbital kinematics model, the following are assumptions made to simplify the

orbital model and make it conform to characteristics of planned and conceived soil

moisture observing satellites:

1. The satellite is Sun-synchronous, Low Earth Orbiting, and in a nearly circular

orbit

2. The sensor is conically scanning

3. Each time step of the orbital simulation corresponds to an instantaneous sen-

sor scan, which can be approximated as a circular band on the surface of the

Earth, centered at the subsatellite point. The width of the scanning band is

determined by the half-power beam width (HPBW) of the sensor

4. The watershed being modeled is sufficiently small that if the point is within

the scanning band, the entire watershed is observable

The inclination angle and orbital period of the satellite determine its orbital

kinematics. The angle of inclination, defined as positive counter-clockwise from the

equator, of the satellite is computed by solving,

3J2 G-Ma2a-7/2 cos i
Js = e (A.8)

2

for i. In the above Qs is the mean angular speed at which the Earth orbits the

Sun, J2 is the dynamical form factor of the Earth to account for its non-sphericity,

GM is the gravitational constant-Earth mass product, ae is the equatorial radius of

the Earth, and a is the semi-major axis of the satellite. As a consequence of the

Sun-synchronous orbit assumption, i will be between 7r/2 and ir (i.g., retrograde)

and the motion of the satellite will be from East to West relative to the surface of

the Earth. The orbital period of the satellite, P, is calculated as,
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Pa= 2 3Ja 1 - 3 cos2 e2)s2 (A.9)
GM2 4a2  (1 +e 2 J

where the only additional parameter introduced is the satellite eccentricity, e,

which is zero as per the circular orbit assumption. For near-circular orbit the longi-

tude of the subsatellite point is,

Iss = 7r + QEt - 2rno (A. 10)

where t is the time since nodal crossing, QE is the mean angular speed of the

rotation of the Earth about its axis, and no is the number of orbits made since nodal

crossing.

The latitude of the subsatellite point at time t, is then calculated as,

sin Oss = sin p sin i. (A. 11)

From the law of sines the angle p can be determined as follows:

sin _ sin(2rt/P)
(A.12)

sin(ir/2) - cos(7r - i) cos(r/2) + sin(w - i) sin(Tr/2) cos(27t/Pn)

Equations 4.16 through 4.20 describe the time evolution of the subsatellite point

(Iss, Oss) at time t after the satellite nodal crossing. Figure 4-2 demonstrates an

example of the evolution of the subsatellite point for more than 3 orbits. The char-

acteristics of the satellite modeled correspond to those of the Hydrosphere State

Mission satellite (HYDROS).

A site R is observed when,

Rinner YAp, and,
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Satellite kinematic simulator to obtain look times, azimuth and zenith
relative to watershed, given sensor platform characteristics: baseline HYDROS

S'U*W IOnv" tOW e 5Ow 4T W oW UIV W 1 n5SUW oW 4S59"E W 0oE 6s O O 1 E n 01 1W

Figure A-i: An example of the time evolution of the subsatellite point after a nodal
crossing at the intersection of the equator and Prime Meridian. The time interval
between points is 60 s, and the characteristics of the satellite were chosen based on
the HYDROS satellite.

Router _ yA, (A.13)

where Ri,,nner is the great circle distance along the surface of the Earth connecting

the subsatellite point with the inner concentric ring of the scanning band, and Router

is the great circle distance from the subsatellite point to the outer concentric ring of

the scanning band. The great circle distances Ri,,nner and Router are related to their

respective are angles (Pinner and Poter) made between the subsatellite point, the

Earth center, and the inner and outer edges of the scanning band through,

Rinner = ApPinner, and

Router = Appouter. (A.14)

In turn, Pinner, and potur are calculated as,
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Pinner

Pouter

T - ( sin-

= (- Ap sin-1 ( + (A.15)

The additional parameters are properties of the sensor: 0 is the half power beam

width (HPBW), and w is the off-nadir look angle.

The following summarizes the algorithm by which equations 4.16 through 4.23

are used to determine the satellite sky position given by (s and 6s:

1. Calculate the evolution of the subsatellite (iss, qss) point after a nodal cross-

ing (equations 4.16-4.20)

2. Compute the great circle distance between R and the subsatellite point and

compare with Rinner and Router (equations 4.21-4.23)

3. If the point R is within the scanning swath of the sensor, calculate (s and Ss

(equations 4.9-4.15)
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ANALYSIS OF SOIL
APPENDIX B HYDRAULIC AND

THERMAL

PROPERTIES

In this appendix, results of the statistical analysis of the soil property meta-

database aggregated by Schaap and Leij [1998]. The first section presents the de-

scriptive statistics and Spearman correlation matrices of each variable used in the

restricted pairing sampling algorithm presented in Chapter 6. The second section

displays the histogram of each soil property by categorical soil type along, with can-

didate parametric probability distribution functions (pdfs) fit to the data for each

variable and soil class. The parameters of pdf used in the restricted pairing stochas-

tic sampling algorithm are also presented in tabular format.

B.1 Descriptive statistics and Spearman correlation matrices

The following two tables show the sample means (Table B.1) and standard de-

viations (Table B.2) for each of the 8 variables in the analysis, displayed according

to their associated soil textural class. Tables B.3-B.11 present the Spearman corre-

lation matrices for the 8 variables in the analysis by soil textural class.
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Table B.1: Sample means of soil hydraulic and thermal parameters by soil texture
Soil Pb Ks On Os hb p s,solids ks,dry

texture [kg/m 3 ] [mm/hr] [m 3/m 3] [m 3/m 3] [mm] [-] [J/(m 3K)] [J/(msK)]
Clay 1393.301 52.120 0.099 0.467 -1533.641 0.206 2301672 4.826

Sandy clay loam 1592.740 22.565 0.058 0.382 -1222.309 0.304 2205654 7.023
Silty clay loam 1356.167 12.178 0.088 0.476 -2640.397 0.591 2323871 4.318

Clay loam 1456.428 19.419 0.065 0.440 -1803.798 0.337 2258334 5.818
Sandy loam 1541.871 47.176 0.039 0.386 -683.103 0.458 2166725 7.913

Loam 1413.496 28.872 0.058 0.439 -1461.720 0.500 2212161 6.874
Silt loam 1418.978 29.504 0.060 0.436 -3309.559 0.852 2256133 5.868
Sand 1535.267 491.091 0.047 0.375 -335.457 2.286 2136393 8.607

Loamy sand 1535.528 120.768 0.045 0.388 -544.689 0.720 2151145 8.270

Table B.2: Sample standard deviation of soil hydraulic and thermal parameters by soil texture
Soil Pb Ks OR 0s hb Ap Cs,solids ks,dry

texture [kg/m 3 ] [mm/hr] [m3/m 3 ] [m 3/m 3] [mm] [-] [J/(m 3K)] [J/(msK)]

Clay 230.102 217.340 0.118 0.078 2155.694 0.184 33338 0.763
Sandy clay loam 177.396 50.032 0.072 0.065 1886.965 0.392 13668 0.313
Silty clay loam 119.964 16.224 0.093 0.080 3109.640 0.797 25533 0.584

Clay loam 200.095 36.869 0.079 0.069 3838.874 0.335 15498 0.355
Sandy loam 177.939 97.492 0.045 0.066 920.202 0.429 13225 0.303

Loam 228.629 73.177 0.058 0.091 1976.410 0.472 20068 0.459
Silt loam 139.294 61.671 0.053 0.057 3172.784 0.812 49803 1.139
Sand 129.888 865.189 0.023 0.058 221.717 1.590 4880 0.112

Loamy sand 198.677 160.830 0.034 0.072 748.416 0.628 6311 0.144



Table B.3: Spearman rank correlation matrix: Clay
Pb Ks OR Os hb p Cs,solids ]s,dry

Pb 1.0000 -0.3535 0.0576 -0.9283 -0.0980 0.1161 -0.6286 0.6286
Ks -0.3535 1.0000 0.2605 0.2441 0.2792 0.0860 0.0864 -0.0864
OR 0.0576 0.2605 1.0000 -0.0569 0.0462 0.6854 -0.1560 0.1560
Os -0.9283 0.2441 -0.0569 1.0000 0.1385 -0.1687 0.6091 -0.6091
hb -0.0980 0.2792 0.0462 0.1385 1.0000 -0.4253 -0.1561 0.1561
A, 0.1161 0.0860 0.6854 -0.1687 -0.4253 1.0000 -0.1159 0.1159

Cs,solids -0.6286 0.0864 -0.1560 0.6091 -0.1561 -0.1159 1.0000 -1.0000

ks,dry 0.6286 -0.0864 0.1560 -0.6091 0.1561 0.1159 -1.0000 1.0000

Table B.4: Spearman rank correlation matrix: Sandy clay loam
pb Ks OR Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.3606 0.0037 -0.7250 -0.0624 -0.1838 -0.2078 0.2078
Ks -0.3606 1.0000 0.0603 0.1487 0.3299 0.1840 -0.0492 0.0492
OR 0.0037 0.0603 1.0000 0.1262 -0.0709 0.6979 0.0134 -0.0134
Os -0.7250 0.1487 0.1262 1.0000 0.1139 0.2661 0.2297 -0.2297
hb -0.0624 0.3299 -0.0709 0.1139 1.0000 -0.3177 0.0405 -0.0405
Ap -0.1838 0.1840 0.6979 0.2661 -0.3177 1.0000 -0.2365 0.2365

Cs,solids -0.2078 -0.0492 0.0134 0.2297 0.0405 -0.2365 1.0000 -1.0000
ks,dry 0.2078 0.0492 -0.0134 -0.2297 -0.0405 0.2365 -1.0000 1.0000



Table B.5: Spearman rank correlation matrix: Silt clay loam
Pb Ks OR Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.5562 -0.0753 -0.8222 0.0300 -0.2506 -0.4207 0.4207
Ks -0.5562 1.0000 0.1651 0.6593 0.3810 0.1309 0.3025 -0.3025
OR -0.0753 0.1651 1.0000 0.0678 -0.1218 0.7703 -0.2841 0.2841
Os -0.8222 0.6593 0.0678 1.0000 0.2345 0.1783 0.3585 -0.3585
hb 0.0300 0.3810 -0.1218 0.2345 1.0000 -0.4609 -0.0541 0.0541
A, -0.2506 0.1309 0.7703 0.1783 -0.4609 1.0000 -0.2247 0.2247

Cs,solids -0.4207 0.3025 -0.2841 0.3585 -0.0541 -0.2247 1.0000 -1.0000
ks,dry 0.4207 -0.3025 0.2841 -0.3585 0.0541 0.2247 -1.0000 1.0000

Table B.6: Spearman rank correlation matrix: Clay loam
Pb Ks OR Os hb Ap Cs,solids  ks,dry

Pb 1.0000 -0.5097 0.1570 -0.5277 -0.0714 0.0510 -0.0760 0.0760
Ks -0.5097 1.0000 -0.0890 0.5644 0.2041 -0.0710 0.0135 -0.0135
On 0.1570 -0.0890 1.0000 0.1217 -0.1388 0.7402 0.0963 -0.0963
Os -0.5277 0.5644 0.1217 1.0000 0.1216 0.0968 0.5062 -0.5062
hb -0.0714 0.2041 -0.1388 0.1216 1.0000 -0.6002 0.0835 -0.0835
A, 0.0510 -0.0710 0.7402 0.0968 -0.6002 1.0000 0.1270 -0.1270

Cs,solids -0.0760 0.0135 0.0963 0.5062 0.0835 0.1270 1.0000 -1.0000.
ks,ry 0.0760 -0.0135 -0.0963 -0.5062 -0.0835 -0.1270 -1.0000 1.0000



Table B.7: Spearman rank correlation matrix: Sandy loam

Pb Ks On Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.3823 0.0427 -0.8055 0.0367 -0.1542 0.1081 -0.1082
Ks -0.3823 1.0000 0.0998 0.3671 0.2823 0.1829 -0.2155 0.2156

On 0.0427 0.0998 1.0000 0.1391 -0.1929 0.7434 0.2061 -0.2061

Os -0.8055 0.3671 0.1391 1.0000 0.0288 0.2429 0.0298 -0.0297
hb 0.0367 0.2823 -0.1929 0.0288 1.0000 -0.4145 -0.2801 0.2801
AP -0.1542 0.1829 0.7434 0.2429 -0.4145 1.0000 -0.0631 0.0631

Cs,solids 0.1081 -0.2155 0.2061 0.0298 -0.2801 -0.0631 1.0000 -1.0000

ks,dry -0.1082 0.2156 -0.2061 -0.0297 0.2801 0.0631 -1.0000 1.0000

Table B.8: Spearman rank correlation matrix: Loam

Pb Ks OR Os hb p Cs,solids ks,dry

Pb 1.0000 -0.3739 -0.0284 -0.8266 -0.1940 -0.0922 -0.3052 0.3052
Ks -0.3739 1.0000 -0.1342 0.4363 0.3554 -0.1555 0.0269 -0.0269

OR -0.0284 -0.1342 1.0000 0.0550 -0.3097 0.7255 0.1132 -0.1132

Os -0.8266 0.4363 0.0550 1.0000 0.2055 0.1090 0.3377 -0.3377

hb -0.1940 0.3554 -0.3097 0.2055 1.0000 -0.6283 -0.0688 0.0688

AP -0.0922 -0.1555 0.7255 0.1090 -0.6283 1.0000 -0.0344 0.0344

Cs,solids -0.3052 0.0269 0.1132 0.3377 -0.0688 -0.0344 1.0000 -1.0000
ks,dry 0.3052 -0.0269 -0.1132 -0.3377 0.0688 0.0344 -1.0000 1.0000



Table B.9: Spearman rank correlation matrix: Silt loam
Pb Ks OR Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.4467 0.0866 -0.6324 -0.3667 0.0471 0.1121 -0.1119
Ks -0.4467 1.0000 -0.2958 0.1741 0.4105 -0.2229 -0.2709 0.2708
OR 0.0866 -0.2958 1.0000 0.2227 -0.3049 0.6924 0.2680 -0.2680
Os -0.6324 0.1741 0.2227 1.0000 0.3832 0.0701 0.1453 -0.1455
hb -0.3667 0.4105 -0.3049 0.3832 1.0000 -0.5970 -0.0650 0.0649
A, 0.0471 -0.2229 0.6924 0.0701 -0.5970 1.0000 -0.0736 0.0734

Cs,solids 0.1121 -0.2709 0.2680 0.1453 -0.0650 -0.0736 1.0000 -1.0000
ks,dry -0.1119 0.2708 -0.2680 -0.1455 0.0649 0.0734 -1.0000 1.0000

Table B.10: Spearman rank correlation matrix: Sand
Pb Ks OR Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.1894 -0.0230 -0.7050 0.0389 0.0375 0.0935 -0.0935
Ks -0.1894 1.0000 0.0335 -0.0413 0.5915 0.4088 -0.1936 0.1936
O9  -0.0230 0.0335 1.0000 -0.0080 0.0695 0.2114 0.1502 -0.1501
Os -0.7050 -0.0413 -0.0080 1.0000 -0.1480 -0.2530 -0.1108 0.1107
hb 0.0389 0.5915 0.0695 -0.1480 1.0000 -0.0757 0.1719 -0.1720
A,  0.0375 0.4088 0.2114 -0.2530 -0.0757 1.0000 -0.2957 0.2959

Cs,solids 0.0935 -0.1936 0.1502 -0.1108 0.1719 -0.2957 1.0000 -1.0000
ks,dry -0.0935 0.1936 -0.1501 0.1107 -0.1720 0.2959 -1.0000 1.0000



Table B.11: Spearman rank correlation matrix: Loamy sand
Pb Ks OR Os hb Ap Cs,solids ks,dry

Pb 1.0000 -0.3344 0.1674 -0.8058 0.0629 -0.0251 0.1087 -0.1087
Ks -0.3344 1.0000 0.2080 0.3008 0.5620 0.3927 -0.0721 0.0721
OR 0.1674 0.2080 1.0000 -0.1078 0.0164 0.6740 0.2264 -0.2264
Os -0.8058 0.3008 -0.1078 1.0000 0.0313 -0.0511 0.1094 -0.1094
hb 0.0629 0.5620 0.0164 0.0313 1.0000 -0.1449 0.0209 -0.0209
Ap -0.0251 0.3927 0.6740 -0.0511 -0.1449 1.0000 -0.1518 0.1518

Cs,solids 0.1087 -0.0721 0.2264 0.1094 0.0209 -0.1518 1.0000 -1.0000
ks,dry -0.1087 0.0721 -0.2264 -0.1094 -0.0209 0.1518 -1.0000 1.0000



B.2 Histograms and distribution parameters

Comparing the empirical histograms with candidate parameterized pdfs, Pb, OR,

Os, hb, Ap, Cs,solids, and ks,dry were found to behave most closely to the two-parameter

beta distribution while log Ks was found to be well approximated by a normal dis-

tribution. Additionally, there are a substantial number of records with OR = 0, and

therefore the marginal behavior of OR was modeled as a mixed discrete-continuous

distribution. This mixed distribution places an atom of probability at OR = 0 with

a mass estimated empirically from the fraction of records with OR = 0, while the

distribution of OR conditioned on OR > 0 is modeled as a two parameter beta distri-

bution.

B.2.1 The beta distribution and parameter estimation

The probability density function for a random variable x that follows a two-

parameter beta distribution can be analytically written as,

xa- 1(1 - x)b - 1

B(a, b)

where the beta function B(a, b) is a normalization that insures that the beta

distribution pdf integrates to unity, and is given by,

B(a, b) = ta-(1 - t)b-ldt. (B.2)

The parameters of the beta distribution are estimated from the method of mo-

ments,

a = - 1 , (B.3)
v

and
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b = (1 - ) -
v

In the above z and v are the sample mean and variance of the data, respectively,

and can be estimated as,

(B.5)
N

i=1

and

1
N-l

N

i=1

(B.6)

where N is the number of records.

B.2.2 Data and analysis results

Table B.12: Beta distribution parameters: Bulk density [kg/m 3]
a b Minimum Maximum

value value
Clay 1.973 0.904 724 1700
Sandy clay loam 5.774 1.190 490 1820
Silty clay loam 3.312 1.347 710 1760
Clay loam 2.742 2.721 1050 1660
Sandy loam 7.591 3.604 640 1970
Loam 4.713 2.335 492 1870
Silt loam 5.565 2.360 780 1690
Sand 5.641 5.210 1070 1965
Loamy sand 3.869 1.364 700 1830
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Figure B-1: Histograms of bulk density and fit trial distributions for (a) clay, (b)
sandy clay loam, (c) clay loam, (d) silty clay loam, (e) sandy loam, (f) loam, (g) silt
loam, (h) sand, and (i) loamy sand.
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Figure B-2: Histograms of log of saturated hydraylic conductivity and fit trial dis-
tributions for (a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e)
sandy loam, (f) loam, (g) silt loam, (h) sand, and (i) loamy sand.

Table B.13: Gaussian distribution parameters: Log saturated hydraulic conductivity
[log(mm/hr)]
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S

Clay 1.667 2.333
Sandy clay loam 1.705 1.962
Silty clay loam 1.082 2.544
Clay loam 1.281 2.170
Sandy loam 2.813 1.514
Loam 1.669 2.093
Silt loam 1.984 1.847
Sand 5.431 1.440
Loamy sand 3.830 1.587
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Figure B-3: Histograms of residual moisture content and fit trial distributions for
(a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e) sandy loam, (f)
loam, (g) silt loam, (h) sand, and (i) loamy sand.

Table B.14: Beta distribution parameters: Residual moisture content [m3/m 3 ]
a b Minimum Maximum Probability

value value OR = 0
Clay 0.496 0.384 0.000001 0.300 0.413
Sandy clay loam 0.770 1.844 0.000001 0.300 0.348
Silty clay loam 0.546 1.222 0.000001 0.289 0.268
Clay loam 0.534 0.552 0.000001 0.252 0.286
Sandy loam 1.134 2.654 0.000001 0.206 0.362
Loam 1.413 3.815 0.000001 0.300 0.286
Silt loam 1.128 1.487 0.000001 0.182 0.237
Sand 3.074 4.228 0.000003 0.118 0.061
Loamy sand 2.496 3.972 0.000001 0.153 0.228
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Figure B-4: Histograms of saturation moisture content and fit trial distributions for
(a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e) sandy loam, (f)
loam, (g) silt loam, (h) sand, and (i) loamy sand.

Table B.15: Beta distribution parameters: Saturation moisture content [m3/m 3 ]
a b Minimum Maximum

value value
Clay 0.949 1.921 0.358 0.687
Sandy clay loam 1.656 7.467 0.285 0.820
Silty clay loam 1.400 3.621 0.335 0.712
Clay loam 2.169 4.576 0.323 0.797
Sandy loam 3.483 8.559 0.234 0.760
Loam 2.696 5.613 0.247 0.838
Silt loam 2.496 2.695 0.300 0.584
Sand 3.355 5.267 0.232 0.600
Loamy sand 3.017 5.049 0.2201 0.670
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Figure B-5: Histograms of Brooks-Corey air entry pressure and fit trial distributions
for (a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e) sandy loam,
(f) loam, (g) silt loam, (h) sand, and (i) loamy sand.

Table B.16: Beta distribution parameters: Brooks-Corey air entry pressure [mm]
a b Minimum Maximum

value value
Clay 0.311 2.170 -10.00 -12150.67
Sandy clay loam 0.282 2.759 -10.00 -13089.01
Silty clay loam 0.138 1.941 -10.00 -27100.27
Clay loam 0.445 2.395 -14.50 -16778.52
Sandy loam 0.359 2.771 -10.10 -5878.89
Loam 0.330 2.175 -21.02 -10964.91
Silt loam 0.607 2.058 -10.01 -14492.75
Sand 1.293 5.183 -32.60 -1548.95
Loamy sand 0.315 2.126 -10.01 -4149.38
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Figure B-6: Histograms of Brooks-Corey pore distribution index and fit trial dis-
tributions for (a) clay, (b) sandy clay loam, (c) clay loam, (d) silty clay loam, (e)
sandy loam, (f) loam, (g) silt loam, (h) sand, and (i) loamy sand.

Table B.17: Beta distribution parameters: Brooks-Corey pore distribution index
[dimensionless]

a b Minimum Maximum
value value

Clay 0.505 2.463 0.040 1.018
Sandy clay loam 0.378 3.615 0.022 3.011
Silty clay loam 0.400 1.296 0.030 1.328
Clay loam 0.306 2.332 0.040 4.790
Sandy loam 0.622 4.468 0.063 3.295
Loam 0.540 2.407 0.055 2.480
Silt loam 0.596 2.190 0.029 3.881
Sand 1.066 3.448 0.211 9.000
Loamy sand 0.758 2.879 0.026 3.355
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Table B.18: Beta distribution parameters: Volumetric heat capacity [J/(m3 K)]
a b Minimum Maximum

value value
Clay 0.923 1.230 2250381.0 2369994.7
Sandy clay loam 1.247 1.451 2181290.1 2234012.5
Silty clay loam 0.990 1.371 2234183.5 2291770.5
Clay loam 1.294 1.736 2279619.2 2383245.7
Sandy loam 2.060 2.115 2137028.9 2197206.2
Loam 2.676 2.916 2162802.1 2265952.3
Silt loam 1.808 2.324 2156617.9 2384055.1
Sand 1.316 1.858 2128000.0 2148240.4
Loamy sand 2.889 2.020 2132794.8 2163974.8

Table B.19: Beta distribution parameters: Dry thermal conductivity [J/(msK)]
a b Minimum Maximum

value value
Clay 1.230 0.923 3.263 6.000
Sandy clay loam 1.451 1.247 6.375 7.581
Silty clay loam 1.371 0.990 5.053 6.371
Clay loam 1.736 1.294 2.960 5.331
Sandy loam 2.115 2.060 7.217 8.593
Loam 2.916 2.676 5.644 8.004
Silt loam 2.324 1.808 2.942 8.145
Sand 1.858 1.316 8.337 8.800
Loamy sand 2.020 2.889 7.977 8.690

B.3 Time evolution of ensemble statistics for various ensemble

sizes

Figures B-7 through B-13 depict the time evolution of 20 estimates of ensemble

mean (figures B-7(a) through B-13(a)) and ensemble standard deviation (figures

B-7(b) through B-13(b)) of soil moisture for varying ensemble sizes ranging from

16 ensemble replicates (figure B-7) through 1024 replicates (figure B-13). In these

figures, solid black lines indicate ensemble simulations in which SHTP uncertainty

was represented using the Restricted Pairing (RP) approach, while grey dashed lines

indicate ensemble simulations in which SHTP uncertainty was treated with simple

random sampling (SRS). Note that generally as the ensemble size increases, ensem-
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ble mean and standard deviation in soil moisture are more consistently estimated.

However, the ensemble statistics from the experiments that used the RP approach

to sample the soil parameters are more consistent at lower ensemble sizes, relative

to experiments that used SRS to generate realizations of the soil parameters.

(a) K = 16 replicates
A4-. A

E
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= 0.2

E 0.1

(U
U.U

,0.20

0.16

0.12

• 0.08

wu 0.04

0 200 400 600 800 1000

/,., ~ s
1c '~ '~

- I 1J2I+

1000

Time [hr]

Figure B-7: For twenty 16 member ensembles, the time evolution of: (a) soil mois-

ture in the top 10 cm [m 3/m 3 ], and (b) the standard deviation in soil moisture

[m3 /m 3 ]. Gray dashed lines show ensembles in which SHTPs were generated using

random sampling while black solid lines indicate ensembles in which SHTPs were

generated using the RP technique.
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(a) K = 32 replicates
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Figure B-8: For twenty 32 member ensembles, the time evolution of: (a) soil mois-
ture in the top 10 cm [m3/m 3], and (b) the standard deviation in soil moisture
[m3/m 3]. Gray dashed lines show ensembles in which SHTPs were generated using
random sampling while black solid lines indicate ensembles in which SHTPs were
generated using the RP technique.
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(a) K = 64 replicates
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Figure B-9: For twenty 64 member ensembles, the time evolution of: (a) soil mois-

ture in the top 10 cm [m 3/m 3], and (b) the standard deviation in soil moisture

[m 3/m 3 ]. Gray dashed lines show ensembles in which SHTPs were generated using

random sampling while black solid lines indicate ensembles in which SHTPs were

generated using the RP technique.
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(a) K = 128 replicates
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Figure B-10: For twenty 128 member ensembles, the time evolution of: (a) soil
moisture in the top 10 cm [m 3/m 3], and (b) the standard deviation in soil moisture
[m3/m 3 ]. Gray dashed lines show ensembles in which SHTPs were generated using
random sampling while black solid lines indicate ensembles in which SHTPs were
generated using the RP technique.
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(a) K = 256 replicates
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Figure B-11: For twenty 256 member ensembles, the time evolution of: (a) soil

moisture in the top 10 cm [m 3/m 3], and (b) the standard deviation in soil moisture

[m 3/m 3 ]. Gray dashed lines show ensembles in which SHTPs were generated using

random sampling while black solid lines indicate ensembles in which SHTPs were

generated using the RP technique.
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(a) K = 512 replicates
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Figure B-12: For twenty 512 member ensembles, the time evolution of: (a) soil
moisture in the top 10 cm [m3/m3], and (b) the standard deviation in soil moisture
[m3/m3]. Gray dashed lines show ensembles in which SHTPs were generated using
random sampling while black solid lines indicate ensembles in which SHTPs were
generated using the RP technique.
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(a) K = 1024 replicates
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Figure B-13: For twenty 1024 member ensembles, the time evolution of: (a) soil

moisture in the top 10 cm [m3/m 3 ], and (b) the standard deviation in soil moisture

[m3/m3]. Gray dashed lines show ensembles in which SHTPs were generated using

random sampling while black solid lines indicate ensembles in which SHTPs were

generated using the RP technique.
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APPENDIX C SENSITIVITY ANALYSIS

OF SOIL MOISTURE

(EXPANDED)

This appendix represents an unabridged presentation of the graphical results

from spatially distributed soil moisture sensitivity analysis presented in Chapter 7.

This appendix is split into three sections. The first section displays the results from a

suite of point-scale sensitivity analyses. For each ensemble of hydrometeorological

forcings developed for Scenarios 2-5 in Chapter 7 of the thesis, the near-surface

soil moisture response is simulated under the assumption of deterministic soil hy-

draulic and thermal properties. These corresponding sets of sensitivity analyses

are referred to as Scenarios 2A-SA. As outlined in the thesis, Scenarios 2-5 are

related to Scenarios 2A-5A in the following manner: Scenario 2A uses the same

hydrometeorological forcings as Scenario 2, but assumes the soil properties are

fixed through the ensemble, etc. Figures C-1 through C-4 compare the time evolu-

tion of near-surface soil moisture for each hydrometeorological forcings scenario.

The second and third sections depict results of the spatially distributed sensi-

tivity analysis performed with Walnut Gulch Experimental Watershed. The second

section shows results related to the near-surface (top 10 cm) soil moisture, while

the third depicts results related to the profile-integrated soil moisture. Within each

section dedicated to results of the spatially distribute sensitivity analysis, graphical

results are subdivided into two subsections. The first subsection presents the first-

and second-order statistics (ensemble mean, standard deviation, and coefficient of
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variation) of the ensemble soil moisture distribution at each 72 hr interval of the

simulation. The second subsection presents the first 4 empirical orthogonal func-

tions (EOFs) at each 72 hour interval of the simulation, obtained through a singular

through a singular value decomposition of a the matrix containing the ensemble of

soil moisture anomalies at each time 72 hr interval. The percent variance explained

by each of the four EOFs shown is indicated in the figure caption.

C.1 Point scale results

(a) Scenario 2
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Figure C-1: Ensemble soil moisture response to the hydrometeorological forcings
developed for Scenario 2 for: (a) stochastic soil hydraulic and thermal properties
generated with the Restricted Pairing-based approach, and (b) deterministic soil
hydraulic and thermal properties. The solid black line in each plot represents the
ensemble mean, while the grey shaded area encompasses one ensemble standard
deviation above and below the ensemble mean soil moisture response.
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(a) Scenario 3
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Figure C-2: Ensemble soil moisture response to the hydrometeorological forcings

developed for Scenario 3 for: (a) stochastic soil hydraulic and thermal properties

generated with the Restricted Pairing-based approach, and (b) deterministic soil

hydraulic and thermal properties. The solid black line in each plot represents the

ensemble mean, while the grey shaded area encompasses one ensemble standard

deviation above and below the ensemble mean soil moisture response.
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(a) Scenario 4
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Figure C-3: Ensemble soil moisture response to the hydrometeorological forcings
developed for Scenario 4 for: (a) stochastic soil hydraulic and thermal properties
generated with the Restricted Pairing-based approach, and (b) deterministic soil
hydraulic and thermal properties. The solid black line in each plot represents the
ensemble mean, while the grey shaded area encompasses one ensemble standard
deviation above and below the ensemble mean soil moisture response.
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(a) Scenario 5
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Figure C-4: Ensemble soil moisture response to the hydrometeorological forcings

developed for Scenario 5 for: (a) stochastic soil hydraulic and thermal properties

generated with the Restricted Pairing-based approach, and (b) deterministic soil

hydraulic and thermal properties. The solid black line in each plot represents the

ensemble mean, while the grey shaded area encompasses one ensemble standard

deviation above and below the ensemble mean soil moisture response.
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C.2 Spatially distributed near-surface soil moisture results

C.2.1 First- and second-order moments
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Figure C-5: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in near-surface soil moisture at 0 hrs into the 1024 replicate open
loop simulation.
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Figure C-6: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-

ficient of variation in near-surface soil moisture at 72 hrs into the 1024 replicate
open loop simulation.
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Figure C-7: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in near-surface soil moisture at 144 hrs into the 1024 replicate
open loop simulation.
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Figure C-8: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-

cient of variation in near-surface soil moisture at 216 hrs into the 1024 replicate

open loop simulation.
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Figure C-9: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in near-surface soil moisture at 288 hrs into the 1024 replicate
open loop simulation.
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Figure C-10: Ensemble (a) mean,
ficient of variation in near-surface
open loop simulation.

(b) local standard deviation, and (c) local coef-
soil moisture at 360 hrs into the 1024 replicate
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Figure C-11: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in near-surface soil moisture at 432 hrs into the 1024 replicate
open loop simulation.
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Figure C-12: Ensemble (a) mean,
ficient of variation in near-surface
open loop simulation.

(b) local standard deviation, and (c) local coef-
soil moisture at 504 hrs into the 1024 replicate
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Figure C-13: Ensemble (a) mean,
ficient of variation in near-surface
open loop simulation.

(b) local standard deviation, and (c) local coef-
soil moisture at 576 hrs into the 1024 replicate
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Figure C-14: Ensemble (a) mean,
ficient of variation in near-surface
open loop simulation.

(b) local standard deviation,
soil moisture at 648 hrs into

and (c) local coef-
the 1024 replicate
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C.2.2 Spatially distributed empirical Orthogonal Function (EOF) analysis

Legend Legend

-0.0153- 0.0077 -0.0119 --.0056
1 -0.0076 --0.0068 0055- -O.044

Kilometers -. 0oo7- -o.oo1 Kilometers -.0043 --o0.0030
0 4 8 12 16 -0.00oo -. 00oo4o 0 4 8 12 16 -0.0029- -0.0016

i .0.0039 - -0.0011 -0.0015 - 0.0208

(a) (b)

S7 Legend Legend
sV3 SV4

-0.0140o - .0048 i 0.0153 -- 0.oo003
.0.0047-.0.0016 -0 0037 -. 0015

Kilometers -o0017 .0003 Kilometers o004 -0o.0040 4 8 12 16 .ooo4-oo0059 0 4 8 12 16 ooW00s -. 0029
00ooo-0.0170 0.0030- 00o210

(c) (d)

Figure C-15: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface
soil moisture at 0 hr into the simulation. They explain 13.5, 12, 8.6, and 8.2 percent
of the variance in soil moisture, respectively.
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Figure C-16: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface

soil moisture at 72 hr into the simulation. They explain 12.3, 10.1, 8.6, and 8.3

percent of the variance in soil moisture, respectively.
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Figure C-17: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-
surface soil moisture at 144 hr into the simulation. They explain 12, 9.8, 8.6, and
8.4 percent of the variance in soil moisture, respectively.
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Figure C-18: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface

soil moisture at 216 hr into the simulation. They explain 14.1, 10.1, 8.6, and 7.9
percent of the variance in soil moisture, respectively.
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Figure C-19: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface
soil moisture at 288 hr into the simulation. They explain 12, 9.8, 8.7, and 8 percent
of the variance in soil moisture, respectively
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Figure C-20: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface

soil moisture at 360 hr into the simulation. They explain 12, 9.8, 8.7, and 8 percent
of the variance in soil moisture, respectively.
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Figure C-21: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface
soil moisture at 432 hr into the simulation. They explain 12, 9.8, 8.7, and 8 percent
of the variance in soil moisture, respectively.
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Figure C-22: The (a) first, -(b) second, (c) third, and

surface soil moisture at 504 hr into the simulation. The

7.8 percent of the variance in soil moisture, respectively.
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Figure C-23: The (a) first, (b) second, (c) third, and (d) fourth EOFs of near-surface
soil moisture at 576 hr into the simulation. They explain 11.5, 10.5, 8.7, and 7.8percent of the variance in soil moisture, respectively.
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Figure C-24: The (a) first, (b) second, (c) third, and

surface soil moisture at 648 hr into the simulation. The

7.9 percent of the variance in soil moisture, respectively.
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C.3 Profile soil moisture results

C.3.1 First- and second-order moments
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Figure C-25: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in profile soil moisture at 0 hrs into the 1024 replicate open loop
simulation.
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Figure C-26: Ensemble (a) mean, (b) local standard deviation, and (c) local coeffi-
cient of variation in profile soil moisture at 72 hrs into the 1024 replicate open loop
simulation.
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Figure C-27: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 144 hrs into the 1024 replicate open
loop simulation.
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Figure C-28: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 216 hrs into the 1024 replicate open
loop simulation.
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Figure C-29: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-

ficient of variation in profile soil moisture at 288 hrs into the 1024 replicate open

loop simulation.
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Figure C-30: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 360 hrs into the 1024 replicate open
loop simulation.
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Figure C-31: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 432 hrs into the. 1024 replicate open
loop simulation.
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Figure C-32: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 504 hrs into the 1024 replicate open
loop simulation.
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Figure C-33: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 576 hrs into the 1024 replicate open
loop simulation.
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Figure C-34: Ensemble (a) mean, (b) local standard deviation, and (c) local coef-
ficient of variation in profile soil moisture at 648 hrs into the 1024 replicate open
loop simulation.
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C.3.2 Empirical Orthogonal Function (EOF) analysis
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Figure C-35: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 0 hr into the simulation. They explain 14.5, 12, 10.2, and 8.5 percent
of the variance in soil moisture, respectively.
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Figure C-36: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 72 hr into the simulation. They explain 14.3, 12, 10.1, and 8.3 percent
of the variance in soil moisture, respectively.

400



Legend Legend
svi SV2

1-0.0313 -0.0047 -0.0099 -..0002

S.0046- 0.002 -0.0001 -OO 0.0006

Kilometers I .4-o oo-.0017 Kilometers .0oo00 -0.0021

0 4 8 12 16 -o.oo0016- -o.ool 0 4 8 12 16 o.oo22 -o0.0034

S -o.o0oo- 0.000 ooo 0.0035- 0.0274

(a) (b)

Legend Legend

S-o.03O 0.0011 -0.0281O.00007

Kilometers 0.0027 -0.0043 ,Kilometers 0.0019- 0.00310.0012 0 0026 0 0008 00018

0 4 8 12 16 io.0044- o.oo0097 0 4 8 12 16 0.0032- 0.0039

S 0.0098- 0.0245 0.0040- 0.0179

(c) (d)

Figure C-37: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil

moisture at 144 hr into the simulation. They explain 14.1, 12, 10.1, and 8.3 percent

of the variance in soil moisture, respectively.
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Figure C-38: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 216 hr into the simulation. They explain 14, 12, 10.1, and 8.3 percent
of the variance in soil moisture, respectively.

402



Legend

S -0.0292- -0 0068

m -0.0067 -- 0.0031
,Kilometers m .0.0030...0022

0 4 8 12 16 -0o.oo21 -0.oot0015
-0.0014 -0.0007

(a)

Legend

-0.0271 -0.0033

-0.0032- -0.0015
Kilometers 0-014.0.0000ooo

0 4 8 12 16 0.ooo0001-0.0017
So.o0018- 0.0139

(b)

9 Legend 
Legend

SV3 

sV

0.0111- 0.0012 40140 -. 0.0050
0.0013- 0.0025 0.0049- -0.0032

,Kilometers .002 -0.0041 Kilometers 0 0031 -.00013
0 4 8 12 16 0.0042 -00092 0 4 8 12 16 -0.0012 - -0.0005

o.oo93 -0.0222 - 0004 - 0.0301

(c) (d)

Figure C-39: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 288 hr into the simulation. They explain 14, 12, 10.1, and 8.3 percent
of the variance in soil moisture, respectively.
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Figure C-40: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 360 hr into the simulation. They explain 14, 12, 10.1, and 8.3 percent
of the variance in soil moisture, respectively
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Figure C-41: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 432 hr into the simulation. They explain 14, 12, 10.2, and 8.3 percent
of the variance in soil moisture, respectively.
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Figure C-42: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil
moisture at 504 hr into the simulation. They explain 13.9, 12, 10.2, and 8.5 percent
of the variance in soil moisture, respectively.
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Figure C-43: The (a) first, (b) second, (c) third, and (d) fourth EOFs of profile soil

moisture at 576 hr into the simulation. They explain 14.1, 12, 10.1, and 8.5 percent

of the variance in soil moisture, respectively.

407



Legend
1 -0.0206--0.0097

-0.0096- -0.0052
Kilometers -0oos0051 --0.0oo03

0 4 8 12 16 -0.0037- -.0029
-0.0028- -0.0002

(a)

9 Legend
SV2

-0.0232 -0.0013M -0.002 - .oo03

ilometers o.00- 0.0015
0 4 8 12 16 0.00oo - 0.0037

0.0038 - 0.0176

(b)

SLegend Legend

-00167 --0.007 -0304 -- 0.0006
-0o869 --0.oo38 -0.o0005- .000ooKilometers -0.0037--0.0022 .,Kilometers 0.0007 - 0.00250 4 8 12 16 -0.0021 --0.0009 0 4 8 12 16 o.002 -o.0052

- -0.0008- 0.0211 , 0.0053- 0.0145

(c) (d)

Figure C-44: The (a) first, (b) second, (c). third, and (d) fourth EOFs of profile soil
moisture at 648 hr into the simulation. They explain 14, 12, 10.1, and 8.5 percent
of the variance in soil moisture, respectively.
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APPENDIX D
DATA ASSIMILATION

EXPERIMENTS

(EXPANDED)

This appendix provides expanded graphical results of the spatially-distributed

data assimilation experiments described in Chapter 8.

D.1 Expanded results: assimilation of brightness temperature

data

D.1.1 Estimator error
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Figure D-1: RMSE relative to truth, filter-forecast cycle 1. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-

surface moisture
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Figure D-2: RMSE relative to truth, filter-forecast cycle 2. (a) EnKF profile moisture,

(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-

surface moisture
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Figure D-3: RMSE relative to truth, filter-forecast cycle 3. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-
surface moisture
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Figure D-4: RMSE relative to truth, filter-forecast cycle 4. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-

surface moisture
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Figure D-5: RMSE relative to truth, filter-forecast cycle 5. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-
surface moisture
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Figure D-6: RMSE relative to truth, filter-forecast cycle 6. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-

surface moisture
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Figure D-7: RMSE relative to truth, filter-forecast cycle 7. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-
surface moisture
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Figure D-8: RMSE relative to truth, filter-forecast cycle 8. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-

surface moisture
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Figure D-9: RMSE relative to truth, filter-forecast cycle 9. (a) EnKF profile moisture,
(b) EnKF near-surface moisture, (c) open-loop profile moisture, (d) open-loop near-
surface moisture
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D.1.2 Analysis outputs

Legend
Analysis mean m Im'3]

0 0792. 0 079
wi. 0.0799 0 803
o0 0804 0 0811

i0 0612 0.023
0 0824 0 0841
0 0642 0 W9

A." IhnMA2I
S006.015

* 016.032
* 033-073
* 074.J 15
* 1t8 18

Legend

Analysis etd. dev. [mA3/mA3]
oi 0.0412 - 0.0417
W 0.0418 - 0.0423
1 0.0424 - 0.0437
I 040438 - 0.0457
M 0.0458- 0.0496

o0.0497 - 0.0550
Area [km^A2

* 0.06-0.15
* 016-0.32
* 0.33.0.73
* 0.74-1.15
* 1.16-1.87
* 1.88-3.85

Legend
Analysis mean (m^31/m3]
AM 0.1182 - 0.1203
i1i 0.1204 - 0.1210
W 0.1211 - 0.1217

S 0.1218 - 0.1225
M 0.1226 - 0.1258
M 0.1259.- 0.1308

Area (kmA2]
* 0.06-0.15
* 0.16-0.32
* 0.33-0.73
* 0.74-1.15
* 1.16-1.87
* 1.88-3.85

Legend

Analysis std. dev. [mA3/mA3]
:£M 0.0513-0.0517
lli 0.0518 - 0.0519

M 0.0520 - 0.0524
W 0.0525 - 0.0532

0.0533 - 0.0558
M 0.0559 - 0.0596
Area [km^2]

* 0.06-0.15
* 0.16-0.32
* 0.33-0.73
* 0.74-1.15
* 1.16-1.87
* 1.88-3.85

Figure D-10: Analysis output, filter-forecast cycle 1. (a) Ensemble mean profile
moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-
tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-11: Analysis output, filter-forecast cycle 2. (a) Ensemble mean profile
moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-
tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-12: Analysis output, filter-forecast cycle 3. (a) Ensemble mean profile

moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-

tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-13: Analysis output, filter-forecast cycle 4. (a) Ensemble mean profile
moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-
tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-14: Analysis output, filter-forecast cycle 5.
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(a) Ensemble mean profile

moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-

tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-15: Analysis output, filter-forecast cycle 6. (a) Ensemble mean profile
moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-
tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-16: Analysis output, filter-forecast cycle 7. (a) Ensemble mean profile

moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-

tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-17: Analysis output, filter-forecast cycle 8. (a) Ensemble mean profile
moisture, (b) ensemble mean near-surface moisture, (c) ensemble standard devia-
tion profile moisture, (d) ensemble standard deviation near-surface moisture
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Figure D-18: Analysis output, filter-forecast cycle 9.
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D.1.3 Change across the update
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Figure D-19: Filter-forecast cycle 1 (a) percent change in profile moisture ensemble
mean, (b) percent change in near-surface moisture ensemble mean, (c) percent
change in profile moisture ensemble standard deviation, (d) percent change in near-
surface moisture ensemble standard deviation
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Figure D-20: Filter-forecast cycle 2 (a) percent change in profile moisture ensemble

mean, (b) percent change in near-surface moisture ensemble mean, (c) percent

change in profile moisture ensemble standard deviation, (d) percent change in near-

surface moisture ensemble standard deviation
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Figure D-21: Filter-forecast cycle 3 (a) percent change in profile moisture ensemble
mean, (b) percent change in near-surface moisture ensemble mean, (c) percent
change in profile moisture ensemble standard deviation, (d) percent change in near-
surface moisture ensemble standard deviation
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Figure D-22: Filter-forecast cycle 4 (a) percent change in profile moisture ensemble

mean, (b) percent change in near-surface moisture ensemble mean, (c) percent

change in profile moisture ensemble standard deviation, (d) percent change in near-

surface moisture ensemble standard deviation
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Figure D-23: Filter-forecast cycle 5 (a) percent change in profile moisture ensemble
mean, (b) percent change in near-surface moisture ensemble mean, (c) percent
change in profile moisture ensemble standard deviation, (d) percent change in near-
surface moisture ensemble standard deviation
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Figure D-24: Filter-forecast cycle 6 (a) percent change in profile moisture ensemble

mean, (b) percent change in near-surface moisture ensemble mean, (c) percent

change in profile moisture ensemble standard deviation, (d) percent change in near-

surface moisture ensemble standard deviation
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Figure D-25: Filter-forecast cycle 7 (a) percent change in profile moisture ensemble
mean, (b) percent change in near-surface moisture ensemble mean, (c) percent
change in profile moisture ensemble standard deviation, (d) percent change in near-
surface moisture ensemble standard deviation
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Figure D-26: Filter-forecast cycle 8 (a) percent change in profile moisture ensemble

mean, (b) percent change in near-surface moisture ensemble mean, (c) percent

change in profile moisture ensemble standard deviation, (d) percent change in near-

surface moisture ensemble standard deviation
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Figure D-27: Filter-forecast cycle 9 (a) percent change in profile moisture ensemble
mean, (b) percent change in near-surface moisture ensemble mean, (c) percent
change in profile moisture ensemble standard deviation, (d) percent change in near-
surface moisture ensemble standard deviation

436



D.2 Expanded results: assimilation of radar backscatter data in

WGEW

D.2.1 Synthetic observations

0 3 6 = 9 =12Kilometers
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Figure D-28:
horizontally-

Legend Legend
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and (b) vertically-copolarized states at the first analysis (72

09Kilometers
0 3 6 9 12

in the (a)
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Figure D-29: Average observations across the four candidate observations in the (a)

horizontally- and (b) verticall-copolarized states at the first analysis (144 hr).
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Figure D-30:
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Figure D-31: Average observations across the four candidate observations in the (a)
horizontally- and (b) vertically-copolarized states at the fourth analysis (216 hr).
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Figure D-32: Average observations across the four candidate observations in the (a)

horizontally- and (b) vertically-copolarized states at the fifth analysis (360 hr).
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Figure D-33: Average observations across the four candidate observations in the (a)
horizontally- and (b) vertically-copolarized states at the sixth analysis (432 hr).
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Figure D-34:
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Figure D-35: Average observations across the four candidate observations in the (a)
horizontally- and (b) vertically-copolarized states at the eight analysis (576 hr).
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Legend Legend
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Figure D-36: Average observations across the four candidate observations in the
(a) horizontally- and (b) vertically-copolarized states at the ninth and final analysis
(648 hr).
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D.2.2 Analysis results
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Figure D-37: At the first analysis, the average across the four sets of synthetic
observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-
integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of
soil moisture.
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Figure D-38: At the second analysis, the average across the four sets of synthetic

observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,

(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-

integrated estimate of soil moisture, and
soil moisture.

(d) RMSE in the near-surface estimate of
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Figure D-39: At the third analysis, the average across the four sets of synthetic
observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-
integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of
soil moisture.
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Figure D-40: At the fourth analysis, the average across the four sets of synthetic

observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-

integrated estimate of soil moisture, and
soil moisture.
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Figure D-41: At the fifth analysis, the average across the four sets of synthetic
observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-
integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of
soil moisture.

Legend
Soil Moisture [m^31m^3]

w 0.0821 - 0.1359
M 0.1360 - 0.1518

I 0.1519-0.1845
0. 1846- 0.2343

S0.2344 - 0.3603

0 4 8 12 16/ilometers

446



Legend
Soil Moisture [m^31m^3]

= 0.0827 -0.1144
=I 0.1145 - 0.1460

0.1461 -0.1568
m 0.1569-0.1882

0.1883- 0.3580

0 4 8 12 1
6"ilometers

Legend
Soil Moisture [m^3/m^3]

m 0.0821 - 0.1291

M 0,1292- 0.1514

S0.1515 -0.1801
1 0.1802 - 0.2330

M0.2331 -0.3570

0 4 8 12 1
6ilometers

(a) (b)

Legend Legend

<RMSE> EnKF <RMSE> EnKF

S0.0652 -0.1060 
0.0420 - 0.0761

0.1061 -0.149 i 0.0762 - 0.1103

0.1470 -0.1879 0 .1104 -0.1445

S0.1880 -0.2288 = 0.1446 - 0.1787

0 4 8 12 
1
,ilometers 0 4 8 12 1 ilometers

(c) (d)

Figure D-42: At the sixth analysis, the average across the four sets of synthetic

observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-

integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of

soil moisture.
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Figure D-43: At the seventh analysis, the average across the four sets of synthetic
observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-
integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of
soil moisture.
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Figure D-44: At the eighth analysis, the average across the four sets of synthetic

observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,

(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-

integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of

soil moisture.

449
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Figure D-45: At the ninth analysis, the average across the four sets of synthetic
observations of the: (a) analysis ensemble mean of profile-integrated soil moisture,
(b) analysis ensemble mean of near-surface soil moisture, (c) RMSE in the profile-
integrated estimate of soil moisture, and (d) RMSE in the near-surface estimate of
soil moisture.
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D.2.3 EnKF average RMSE relative to OL average RMSE

<RMSE> EnKF I <RMSE> OL

M 0.3586 - 0.5083
M 0.5084 - 0.6580

M 0 6581 - 0.8076

0.8077 - 0.9573
M 0.9574 - 1.1069

0 4 8 12 
1 iometers

<RMSE> EnKF I <RMSE> OL

MR 0.1211 - 0.3358
M 0.3359 - 0.5505
EB 0.5506 - 0.7652

0.7653 - 0.9800
0.9801 - 1.1947

0 4 8 12 l
1

ilometers

Figure D-46: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates

at the first analysis.
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Figure D-47: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates

at the second analysis.
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Figure D-48: The local ratio of average RMSE from the EnKF estimate to the OL
estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates
at the third analysis.
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Figure D-49: The local ratio of average RMSE from the EnKF estimate to the OL
estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates
at the fourth analysis.
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Figure D-50: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates

at the fifth analysis.
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Figure D-51: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates

at the sixth analysis.
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Legend
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Figure D-52: The local ratio of average RMSE from the EnKF estimate to the OL
estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates
at the seventh analysis.
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Figure D-53: The local ratio of average RMSE from the EnKF estimate to the OL
estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates
at the eighth analysis.
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Figure D-54: The local ratio of average RMSE from the EnKF estimate to the OL

estimate for the: (a) profile-integrated soil moisture and (b) near-surface estimates

at the ninth analysis.
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D.3 Bias in EnKF estimates

0
Legend
I<BIAS>I
M 0.0000 - 0.0365
M 0.0366 - 0.0731

I 0.0732 - 0.1096
M 0.1097 - 0.1462

0.1463 - 0.1827

0 4 8 12 lfilometers

(a)

Figure D-55: The local average bias
integrated, and (b) near-surface soil m
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Figure D-56: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the second analysis.
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Figure D-57: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the third analysis.
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Figure D-58: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the fourth analysis.
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Figure D-59: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the fifth analysis.
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Figure D-60: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the sixth analysis.
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Figure D-61: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the seventh analysis.
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Figure D-62: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the eighth analysis.
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Figure D-63: The local average bias in the EnKF estimate for the: (a) profile-
integrated, and (b) near-surface soil moisture estimate at the ninth analysis.
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D.3.1 Pixel-scale diagnostic results
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Figure D-64: Example of the pixel-scale behavior near the Lucky Hills experimental

site during first of four EnKF-experiments, showing the (a) time series of spatially-

averaged rainfall during the simulation, (b) the ensemble mean (solid black line),
area within one standard deviation of either side of the mean (grey area), and true

(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid

black line), area within one standard deviation of either side of the mean (grey

area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-65: Example of the pixel-scale behavior near the Lucky Hills experimen-
tal site during the first of four EnKF experiments, showing the (a) time series of
spatially-averaged rainfall during the simulation, (b) the ensemble mean (solid
black line), area within one standard deviation of either side of the mean (grey
area), and true (dashed black line) near-strface soil moisture, and (c) the ensem-
ble mean (solid black line), area within one standard deviation of either side of the
mean (grey area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-66: Example of the pixel-scale behavior near the Lucky Hills experimen-

tal site during the second of four EnKF experiments, showing the (a) time series

of spatially-averaged rainfall during the simulation, (b) the ensemble mean (solid

black line), area within one standard deviation of either side of the mean (grey

area), and true (dashed black line) near-surface soil moisture, and (c) the ensem-

ble mean (solid black line), area within one standard deviation of either side of the

mean (grey area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-67: Example of the pixel-scale behavior near the Lucky Hills experimen-
tal site during the fourth of four EnKF experiments, showing the (a) time series
of spatially-averaged rainfall during the simulation, (b) the ensemble mean (solid
black line), area within one standard deviation of either side of the mean (grey
area), and true (dashed black line) near-surface soil moisture, and (c) the ensem-
ble mean (solid black line), area within one standard deviation of either side of the
mean (grey area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-68: Example of the pixel-scale behavior near the Kendall experimental site

during the first of four EnKF experiments, showing the (a) time series of spatially-

averaged rainfall during the simulation, (b) the ensemble mean (solid black line),
area within one standard deviation of either side of the mean (grey area), and true

(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid

black line), area within one standard deviation of either side of the mean (grey

area), and true (dashed black line) profile-integrated soil moisture.

465

n

---

---

V-



100-

50

0 "' I I
0 100 200 300 400 500 600

0.4

0.3

1 0.2

0.1

0
0 100 200 300 400 500 600

(c)
0.4

Ens. st. dev - Ens. mean ---True

0.3

0.2
E

0.1

0 O 00 2 00 400 5 b 600O
Time [hr]

Figure D-69: Example of the pixel-scale behavior near the Kendall experimental
site during the second of four EnKF experiments, showing the (a) time series of
spatially-averaged rainfall during the simulation, (b) the ensemble mean (solid
black line), area within one standard deviation of either side of the mean (grey
area), and true (dashed.black line) near-surface soil moisture, and (c) the ensem-
ble mean (solid black line), area within one standard deviation of either side of the
mean (grey area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-70: Example of the pixel-scale behavior near the Kendall experimental site

during the third of four EnKF experiments, showing the (a) time series of spatially-

averaged rainfall during the simulation, (b) the ensemble mean (solid black line),
area within one standard deviation of either side of the mean (grey area), and true

(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid

black line), area within one standard deviation of either side of the mean (grey

area), and true (dashed black line) profile-integrated soil moisture.
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Figure D-71: Example of the pixel-scale behavior near the Kendall experimental site
during the fourth of four EnKF experiments, showing the (a) time series of spatially-
averaged rainfall during the simulation, (b) the ensemble mean (solid black line),
area within one standard deviation of either side of the mean (grey area), and true
(dashed black line) near-surface soil moisture, and (c) the ensemble mean (solid
black line), area within one standard deviation of either side of the mean (grey
area), and true (dashed black line) profile-integrated soil moisture.
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