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Abstract

In this report an attempt is made to summarize our knowledge of high-frequency

gas-discharge breakdown. The types of processes discussed include diffusion-

controlled, mobility-controlled, and electron-resonance breakdown, as well as break-

down phenomena in the presence of magnetic and dc electric field superimposed on the

high-frequency electric field.
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A. DIFFUSION CONTROLLED BREAKDOWN

I. Behavior of the Average Electron

1. General Considerations

In an ultra-high-frequency gas discharge breakdown, the primary ionization from

the electron motion is the only production phenomenon that controls the breakdown, and

for this reason it is the simplest type to consider. If one calculates the maximum

kinetic energy in the oscillatory motion of an electron at the minimum field intensities

for breakdown experimentally determined, one finds that this energy corresponds to

about 10- 3 volt. It is therefore obvious that the energy of oscillation is insufficient to

account for breakdown.

It is well known that a free electron in a vacuum under the action of an alternating

field oscillates with its velocity 90 ° out of phase with the field in the steady state, and

thus takes no power, on the average, from the applied field. The electron can gain

energy from the field only by suffering collisions with the gas atoms, and it does so by

having its ordered oscillatory motion changed to random motion on collision. The elec-

tron gains random energy, on the average, on each collision until it is able to make an

inelastic collision with a gas atom. The electron continues to gain energy in the field,

on the average, despite the fact that it may either move with or against the field. The

energy absorbed is proportional to the square of the electric field and hence independent

of its sign. The rate of gain of energy of the electron from the electric field E is

P = (-eEpVp)real/2. We may express the average drift velocity v in terms of the ac

mobility in the following way. Writing Newton's second law for the motion of the elec-

trons in the form

m (dv/dt) + (mvm)v = -eEp exp (jwt), (1.1)

the velocity may be determined as

v = -[e/(jwm + mvm)] Ep exp (jwt) (1.2)

and vm is the collision frequency for momentum transfer. Thus the ac mobility takes

the form , = -e/(jwm + mvm). We may write for the power absorbed by the electrons

from the ac electric field:

2E2 E 
= nenEe ___eE

2
= (1.3)P nelEreal mvm V +(12/2

This equation may be written in terms of an effective field Ee:

neZE 2

P m , (1.4)mym
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where E e is the effective field that would produce the same energy transfer as a steady

field and is given by

2
v

E = E2 m (1. 5)
e 2 2

v +(Q
m

The gas discharge breakdown occurs when the gain in electron density resulting

from ionization of the gas becomes equal to the loss of electrons by diffusion, recombi-

nation, or attachment. When the loss is by diffusion, the problem becomes simple. We

shall discuss this case first.

Diffusion occurs whenever a particle concentration gradient exists. The total flow

of particles out of a volume of high concentration may be written from ordinary kinetic

theory considerations as

r = - D Vn, (1. 6)

where D is the diffusion coefficient for electrons, n is the electron density, and is

the electron flow density in electrons per second per unit area.

We shall develop the breakdown conditions for a region bounded by walls that absorb

electrons. A radioactive source near the discharge tube provides a small amount of

ionization S in the tube. A detailed study of the build-up of the discharge is obtained

from considering the continuity equation for electrons

an/8t =v .n + S - V r (1.7)
1

or

an/at = DV2 n + v.n + S. (1. 8)
1

In Eq. 1.8 the term DV2 n describes the loss of electrons by diffusion. The term vin is

the rate of gain of electrons by ionization; S is the rate at which electrons are produced

by an external source. For the case of infinite parallel plates

an/at = D(a 2 n/ax2 ) + v.n + S. (1.9)

Assuming that the approach to breakdown is so slow in time that an/at may be neg-

lected,

-S = D(a8n/ax2 ) + n. (1.10)

This is a characteristic value problem which may be solved under the conditions that

S, D, and v i are uniform throughout the cavity and that the boundary condition on the

electron density is zero at the walls. Rigorous boundary conditions require the con-

centration to be small at a boundary and to extrapolate to zero outside the boundary at

*In this report vectors are indicated by double underline.
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a distance of the order of a mean free path. In the range of pressures to be considered,

the mean free path is very small compared to cavity dimensions, and the condition of

zero concentration on the cylinder walls is imposed. The solution of Eq. 1. 10 tells us

that the electron density just before breakdown, at any distance x from the median

plane between parallel plates of separation L, may be written

n = (4S/r) cos(rx/L)/[D(rr/L) 2 - vi]. (1.11)

Breakdown can be defined by the condition that the electron density goes to infinity,

which occurs when v. = D(Tr/L) 2
1 2 2

If we write vi/D = (r/L) = 1/A , for parallel plates, the quantity A is known as the

characteristic diffusion length and is very useful in describing the shape of the gas con-

tainer when discussing diffusion problems. One other example of a very useful boundary

condition is the case of a cylinder of height L and radius R, with flat ends. This

geometry leads to the relation that 1/ 2 = (/L) + (2.4/R) , where the diffusion to the

end plates is given by the first term on the right; the second term describes the dif-

fusion to the cylindrical walls.

2. Ionization Coefficients

Gas-discharge phenomena under the action of dc fields are often described in terms

of Townsend ionization coefficients. If one considers that electrons in a dc field create

a new electrons in a path one centimeter long in the field direction, the increase

of electrons, dn, produced by n electrons in a distance dx will be dn = an dx, and
Ox

n = ne , where n is the initial electron concentration. The quantity a is called the

first Townsend coefficient. This first Townsend coefficient may also be written as the

ionization produced by an electron falling through a potential difference of one volt

rather than traveling one centimeter. This coefficient is given the symbol 7r and is

related to a by T = a/E.

These Townsend first ionization coefficients may be given in terms of an "ioniza-

tion" collision frequency. Since a is the number of electrons produced by the colli-

sions of the primary electrons traveling one centimeter, one can write a = vi/v, where

Vi is the frequency of ionization, and v is the average drift velocity of the electrons in

the field. The average drift velocity v = IE |, and one may write a = vi/A.E or

= v i/E 2z. (2. 1)

By analogy with the first Townsend coefficient for dc ionization, where the electron

loss is controlled by mobility, we may define a coefficient for high-frequency dis-

charges, where the loss is by diffusion, as

=V/DE · (2.2)1 e
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From our previous discussion of diffusion we saw that at breakdown vi/D = 1/A 2 . Thus

we may measure the ac ionization coefficient by measuring the breakdown field in tubes

of known size, since r = l/A 2 E 2e.
e

There is a very close physical relation between the ac and the dc ionization coef-

ficients. If one divides Eq. 2.1 by Eq. 2. 2, there results the relationq / = D/pu. Town-

send showed that the ratio of D/L was a measure of the average energy of the electrons

and determined this average energy as a function of E/p experimentally. Thus, in prin-

ciple, one can determine from ,, or vice versa, from these Townsend-like measure-

ments. There is difficulty in carrying this out exactly, however, because the actual

values depend on the manner in which the averaging of the energy is carried out. Since

the electron energy-distribution functions are different for the ac and the dc cases, one

might expect mathematical complications to arise. However, in the two cases ' 2in

which distribution function calculations have connected the dc and ac ionization coeffi-

cient, very satisfactory results have been obtained.

3. Breakdown Fields

Typical of the behavior of the breakdown field at high frequency with changes in gas

pressure are the curves shown in Fig. 1. At first sight these curves look similar to

corresponding data taken with dc fields, that is, as the pressure is decreased the

breakdown field first decreases and then increases again at low pressures. In the low-

pressure region, the rising breakdown field with decreasing pressure in high-frequency

discharges corresponds to the increasing loss of efficiency in the transfer of energy

from the field to the electrons. We saw in the introduction that the electron only gained

energy insofar as it made collisions with the gas atoms and that between collisions it

oscillated out of phase with the field and hence gained no energy. Thus, as the pressure

is reduced, one must increase the field to make up for the loss of efficiency by just the

factor of the effective field given in Eq. 1. 5. In the high-pressure region, the reason

for the rising breakdown field with increasing pressure in high-frequency discharges is

the same as in the dc case. As the pressure increases, the electron mean free path

decreases, and the energy gained per mean free path decreases as the square of the

mean free path--as can be seen from Eq. 1. 4. Since at these high pressures, most of

the energy losses result from recoil losses in collision with the gas molecules, and the

average electron energy is practically independent of the pressure, the energy gain per

mean free path is proportional to the mean free path at constant E field. The field must

increase inversely proportionally to the mean free path, or directly proportionally to the

pressure. The minimum corresponds essentially to the point at which the frequency of

collision between electrons and gas atoms is equal to the frequency of the applied rf field.

Thus at low pressure, where the electron makes many oscillations per collision, its

1. S. Krasik, D. Alpert, A. O. McCoubrey, Phys. Rev. 76, 722 (1949).

2. L. J. Varnerin, S. C. Brown, Phys. Rev. 79, 946 (1950).
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behavior is governed by strictly ac considerations. At high pressure, where the elec-

trons make many collisions per oscillation, their behavior is the same as in a dc dis-

charge.

The remarkable feature of the breakdown curves, for those used to dc phenomena,

is the fact that the greater the electrode spacing, the easier it becomes to cause a

breakdown. This, of course, is a necessary result of the breakdown condition of the

balance between energy gained from the field and electron loss by diffusion. As the

electrode spacing becomes less, the diffusion loss becomes greater; therefore, the field

must increase to make up for the increased loss.

Curves of gas-discharge breakdown as a function of pressure are often plotted in dc

work as Paschen curves in which, for a particular gas, the breakdown voltage V is

found to be a function of pd independent of the magnitude of the electrode spacing d. The

same type of quantities may be introduced in the high-frequency case, where for the

breakdown voltage we write EA, the product of the field and the diffusion length, and for

pd we use pA. In the case of high-frequency phenomena we have one more variable than

for the dc case, namely, the frequency, and this may be introduced as the variable p,

where is the wavelength of the applied field. However, if we express the electric field

in terms of its effective value Ee, we can take care of the frequency variations. The

effective field is strictly correct only when vm is constant, but a similar equation would

be valid for different variations of vm with energy. With EeA (the breakdown voltage)

plotted as a function of pA, experimental results for ultra-high-frequency breakdown are

shown in Fig. 2.

The simplest gas to discuss theoretically is helium containing small admixtures of

mercury vapor. This mixture, which for convenience we call Heg gas, has the advan-

tage of acting as a gas of atoms without excitation levels. Helium has a metastable level

at 19. 8 volts, and transitions from this level to the ground state by radiation are forbid-

den. Since the metastable states have mean lives of the order of thousands of micro-

seconds, practically every helium atom which reaches an energy of 19.8 volts will

collide with a mercury atom and lose its energy by ionizing the mercury. Therefore,

each inelastic collision will produce an ionization, and the effective ionization potential

will be u i = 19. 8 volts. Furthermore, for Heg the collision frequency may be considered

constant, having a value v = 2.37 x 109p.

Although an accurate description of the breakdown measurements can be given theo-

retically only by taking into account the electron energy distribution, a physical picture

of the mechanisms involved can be seen qualitatively in the following way. Let us con-

sider a gas at high pressure. The power that goes into the electron from the electric

field is dissipated in elastic collisions between the electrons and the gas molecules. For

this case

eE 2 2m-
energy/collision = e - (3.1)

mv
m
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where is the average energy. From this we may calculate the electric field to be

=m 2m 1/211E (m u) ' 1/ v = 0.94 p(u) (3. 2)

for the case of Heg gas in which nearly all the loss goes into non-ionizing collisions.

Taking the average energy equal to one-third of the ionization potential, E = 2.4 p. It

can be seen that the high-pressure breakdown measurements of Fig. 1 tend to approach

this line at high pressures.

In the low-pressure region, the electrons make many oscillations per collision and

the breakdown field may be determined by equating the number of collisions to ionize to

the number of collisions to diffuse out of the tube. Since we are discussing Heg gas,

where all of the inelastic collisions are ionizing ones, let us consider that all of the input

power goes into ionization, and write

= eE 2 m (3.3)
Vi eu mu. v (3. 3)

eui 1m m + 'A'

The breakdown condition is v. D/A2 and substituting the value of the diffusion coef-
1 2

ficient D = Iv/3 we find v. = V/3A . If we multiply the numerator and the denominator

of this expression by the velocity, we obtain an expression in terms of the average energy
2 2

which we may set equal to the previous expression for vi, in which >> v m' to obtain

_2 eE2v
v m
v 2m (3.4)

3A 2v 231 v u.mo
m I

If we solve this expression for the electric field, writing in terms of X and

2i = mv2/e, we get

2rc 2 uU) (3. 5)E AXv ( i)
m

The ionization potential is 19. 8 volts, and we assume a very low pressure, where all of

the input power goes into ionization, and the average energy is of the order of the ioni-

zation potential. Calculating the electric field under these approximations leads to a

relation E = 1284/pA X, which agrees fairly well with the low-pressure measurements

shown in Fig. 1.

4. Proper Variables

If a gas contained in a vessel is placed in an alternating electric field, for a certain

value of the electric field the gas will break down into an electrical discharge. This

breakdown field may be expressed as

Eb =E(ui, A, ,p), (4.1)

6



The term A has the units of length, and its appearance in explicit calculations also

involves various known dimensionless ratios describing the shape of the vessel. It is

customary to measure pressure in millimeters of mercury; the mean free path, which

is inversely proportional to pressure, is measured in centimeters. A relation between

pressure and mean free path is obtained by introducing the quantity, Pm, which is the

number of collisions per unit length at a pressure of 1 mm Hg. Thus, Pm may be

regarded as having the units of reciprocal length, even though this is not its true dimen-

sion.

Treating the breakdown problem dimensionally, there are five variables with but two

fundamental dimensions: volts and centimeters. This leads to three independent dimen-

sionless variables between which there is a functional relation. 1 It is often convenient

in physical problems to introduce variables that are not dimensionless but are, never-

theless, proper variables for dimensional analysis because the completely dimension-

less variables contain one or more physically invariant quantities that need not be

carried along in a practical discussion. There are a number of sets of such proper

variables in a gas discharge problem that may be transformed into one another, and

their relative convenience depends on the purpose for which they are to be used.

One very useful set of proper variables is

EA, pA, pX. (4.2)

The advantage of these variables lies in the fact that p, A, and X are the experimentally

independent parameters that determine the dependent variable E, the observed break-

down field.

Another set of proper variables that we shall use is obtained by dividing the first

variable by the second and obtaining

EA, E/p, p. (4. 3)

This set has the particular advantage, in a discussion of breakdown phenomena, that we

may define the ac ionization coefficient, C = 1/E 2 A2 , which is a function of E/p and pX.

For the cases of a dc field, or when the pressure is high, so that in an ac field the

electrons make many collisions per oscillation, the wavelength variation does not enter

as a significant variable. Breakdown can then be described by the other two variables,

such as EA and pA, as illustrated in Fig. 2.

5. Limits of Diffusion Theory

Certain basic assumptions are made in the calculations of breakdown as a balance

between the ionization rate and the loss of electrons by diffusion. We examine here the

limits which the assumptions place on the application of the theory to various experi-

mental conditions. 2 These limits can be discussed in terms of the proper independent

1. P. W. Bridgeman, "Dimensional Analysis," New Haven (1922), Chap. 4.

2. S. C. Brown, A. D. MacDonald, Phys. Rev. 76, 1629 (1949).

7
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variables, pA and pX. One can plot on the pA-pX plane the conditions for all breakdown

data for a single gas and derive limits in these variables which will define the applica-

bility of the diffusion theory.

At low frequencies, the experimental measurements of breakdown are always taken

in vessels whose dimensions are small compared to a wavelength of the exciting power.

For this case, the uniform field assumption may be very good. At very high frequen-

cies, there exists a limit to the size of the discharge tube consistent with the uniform

field assumption of the diffusion theory. This limit can be written in terms of the size

of vessel allowable to sustain a single loop of a standing wave of the electric field. The

relation between the parallel plate separation, the wavelength, and the diffusion length

may be written as

X L = rA. (5.1)2

Thus one arrives at a limit that can be written in terms of pX and pA as

pX = 2,r (pA). (5.2)

This limiting line is plotted in Fig. 3 and designated the Uniform Field Limit.

The diffusion theory will not apply if the electron mean free path becomes compa-

rable to the tube size. In the limiting case, this can be expressed as the mean free path,

I, being equal to A. The probability of collision, Pm, is equal to /pl . To plot this

condition in Fig. 3 we may write

pA = /Pm' (5.3)

The value of P is not a constant, but depends upon the electron energy. If we

assume that the average electron has an energy equal to one-third of the ionization

potential, the average electron energy would be 5 volts for hydrogen. Using meas-

ured values for the probability of collision in hydrogen for the average electron, we

get P = 49 (cm-mm Hg) 1 . With this value, we obtain the horizontal line in Fig. 3

marked Mean Free Path Limit.

Within the limits of experimental conditions in which diffusion theory adequately

explains the breakdown behavior, several different phenomena may occur. One of the

phenomenological changes that is important is the transition from many collisions per

oscillation of the electron to many oscillations per collision. This can be written as the

condition that vm = w, where vm, the collision frequency, is the ratio- of the average

velocity v to the mean free path, and is the radian frequency of the applied field.

Using a value of the collision frequency, vm = 5.93 X 109p, and putting this in terms of

the proper variables, we obtain

pX = 32. (5.4)

This relation is plotted in Fig. 3 as the dotted line marked Collision Frequency

Transition.

9
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We can calculate a line on the pA-pX plane corresponding to the minimum breakdown

field for any given container size. At low pressure we have seen that the break-

down field approaches the condition that E = 2 1rc(ui/3) 1/2/Akvm . For hydrogen,

v = 5. 93 X 10 p, u. = 15.4 volts, and we consider u = u.. This leads to a value ofm 1 1
E = 400/AXp. Using Eq. 3.2 for hydrogen leads to E = 5. 3 p. Eliminating the field

between these two equations will allow us to calculate the pressure at which breakdown

will occur most easily. In terms of the variables of Fig. 3 this leads to the equation

pX = 75 (5. 5)

This relation is plotted in Fig. 3 as the line marked Optimum Breakdown.

When the amplitude of the electron oscillation in the electric field is sufficiently

high, the electrons can travel completely across the tube and collide with the walls on

every half-cycle.

Integrating Eq. 1. 2, we obtain the displacement of the electron oscillation:

eEp exp(jwt)

= . (5. 6)
jw(jc + vm )m

The amplitude of the oscillation is

eEp /2 eEe

mT + m 
m

The limiting case on the diffusion mechanism in which all of the electrons will hit

the walls would be calculated by setting the oscillation amplitude equal to one-half of the

electrode separation. Thus, the oscillation amplitude limit becomes equal to

V/2 eEe L
Somwv 2 (5.7)mWv 2

Substituting X in terms ofw, v/l in place of vm, and /PPm for 1, we obtain

pk = (Irmc vPm) pL (5.8)

e mr (E/P)

Putting in numerical values and using the parallel plate relation that L = rA, one has

pX = O6. (5.9)

This equation can be solved numerically if the experimental values of the breakdown

field are available. Experiments of this sort have been carried out for parallel-plate

geometry with hydrogen gas, and numerical values can therefore be determined. This

10
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calculation yields the Oscillation Amplitude Limit of Fig. 3. On crossing the amplitude

of oscillation limit new mechanisms occur; they will be discussed in Chapter C.

II. Theories Based on the Boltzmann Transport Equation

a. High-Frequency Electric Fields

Up to this point we have discussed the phenomena associated with breakdown from

the point of view of the behavior of the average electron. This presents a simple physi-

cal picture of breakdown, but does not give us a reliable mathematical basis for theo-

retical prediction of the behavior of the gas. We therefore turn to a more exact

description of breakdown, restricting our discussion to those gases in which diffusion

is the sole loss mechanism for electrons. First let us work out a fairly simple solu-

tionI applicable to any gas and a wide pressure range, and then discuss the specific

problems that arise for individual gases.

6. Boltzmann Equation

When a high-frequency electric field, E = Ep exp(jwt), is applied to a gas, the veloc-

ity distribution F (, r) of the free electrons is determined by the Boltzmann equation:

(aF/at) = C - V r vF + V · eEF/m (6.1)-r = =

where C represents the effect of collision, and V r and V are the gradient operators

in configuration and velocity spaces. This equation is solved by expanding the distribu-

tion function in spherical harmonics in velocity space and in Fourier series in time2:

F = X E Fk Pl (cos ) exp(jkwt)

I k

= F O + v ·F + F1 exp(jwt)]/v. (6.2)
O = =O

All terms except the three indicated may be dropped 3 when the geometry, pressure, and

frequency fall within the limits discussed in Section 5. These limits require that the

mean free path be less than any dimension of the cavity, that the frequency be suffi-

ciently high so that the electrons do not lose appreciable energy between cycles, and

that the average motion of the electrons resulting from the action of the field and of

collisions be sufficiently small so that the field does not clear the electrons out of part

1. W. P. Allis, S. C. Brown, Phys. Rev. 87, 419 (1952).

2. For the mathematical details refer to W. P. Allis, "Motion of Ions and Elec-
trons, " Technical Report 299, Research Laboratory of Electronics, M.I.T., hereafter
referred to as Allis.

3. Allis, Eqs. 19.2, 23.1. For the justification for dropping F 1 see Allis, para-
graph preceding Eq. 24.12.

11
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of the tube in each half-cycle.

In evaluating the collision term it is convenient to replace the customary mean free

paths by the collision frequencies for momentum transfer, for excitation, and for ion-

ization defined by

vm = vpPm (0) (1 - cos 0) sinOdodb, (6.3)

= vPx, v = VPPi' (6. 4)

where Px and Pi are the experimentally defined probabilities of excitation of all levels

and of ionization, and Pm(0) is the probability of scattering into a unit solid angle

inclined at to the original direction. 1

If the temperature of the gas is negligible compared to that of the electrons, the

latter will lose a fraction 2m/M of their energy, per momentum transfer collision, to

recoil of the molecule with which they collide. The mass of the molecule is M and that

of the electron m. This fraction will be increased if there is appreciable transfer of

energy to rotation or vibration but here it is assumed to be negligible.

A collision producing electronic excitation differs from that producing recoil, rota-

tion, and vibration in that the colliding electron loses practically all of its energy

instead of a very small fraction of it. These processes are treated mathematically as

though fast electrons disappeared at the rate (v + vi)FO, and slow electrons appearedx 0
at the rate qF. Making use of these ideas in the evaluation of the collision term, intro-

ducing Eq. 6.2 into Eq. 6.1, and equating coefficients of similar time and angle functions

yields one scalar and two vector equations:

(v + v - q) F ° = -(v/3) F + (/v )
1 - - r =o

xaev/6m) F) 1 + (m/M) Vv 3F /av, (6.5)[_ P p real m 6.

v F = -vV F (6. 6)m=o =r o'

( m + jw) =F 1 (eEp/m) aF/av. (6.7)

7. Distribution in Space

The direct and alternating current densities,
0ofJ - e F1(4rv3/3)dv = eV rDn, (7.1)

1. In this article, vm is the same as Allis' vcl later simplified there to vc. See
Allis, Eqs. 27. 5-27. 8 and associated discussion.
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J1 = - eF 1 (4rv3 /3)dv = eEn, (7.2)

are fully determined by the components F1 and Fl of the distribution function. These

are, in turn, found to be derivatives of F o . Substitution of Eqs. 6.6 and 6.7 into

Eqs. 7. 1 and 7.2 serves to determine the diffusion and ac mobility coefficients in terms

of Fo:

00

nD = 4 v F 4rv2dv, (7. 3)3v o

4Tr eFo d v3
3 m o dv L) dv (7- 4)

The components F 1 and F 1 can be eliminated from Eq. 6. 5 by substitution fromo =1
Eqs. 6. 6 and 6. 7, and this yields the differential equation for Fo

0

(v + v. q)F = (v 2 /3vm) Vr o

+ (l/v 2 ) a [(eu/3m) vm v 2 (aFo/av + mvmv3F/M] /av. (7.5)

The energy, in electron volts, uc = eE /2mv + 2), which is introduced here, turns

out to be the average energy transferred from the field to an electron between collisions,

and VmUc is the power transfer. It is, in general, a function of the electron's energy

through the collision frequency vm, and it is also a function of the external parameters

E, p, and = 2rc/w. The power transfer has a maximum for v = w, and this corre-

sponds to the pressure for optimum breakdown. At pressures above this value, u c

varies as (Ep/p)2

The total excitation and ionization rates may be defined by

nvx = vxF 4rrv 2 dv, (7.6)

o

nVi viF 40v2dv, (7.7)

and, since every exciting collision yields one, and every ionizing collision two, slow

electrons, we have

00

qF0 4Tv 2 dv = n(V + 2 i) (7.8)

13
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Use is made of these relations in multiplying Eq. 7. 5 by 4rv2 dv and integrating over all

velocities. The term in brackets vanishes at both limits, and one obtains

nv. + V2 Dn = 0. (7. 9)

This is a diffusion equation and expresses the fact that at breakdown the ionization rate

equals the diffusion rate. For a uniform electric field (which will be the assumption

from here on), it has a solution which is everywhere positive only if i = D/A 2, where

A is a diffusion length. This may be called the breakdown condition,

8. Distribution in Energy

If the function F ° is assumed to be the product of a function n(x) of space and a func-
o

tion f(u) of the energy u, defined by u = mv2/2e, we can make use of Eq. 7. 9 to replace

V 2 Fo by -nf/A 2 and obtain the following equation for f(u):

(v v.-A2eu 2 du (8.1)i-+3m A) f= Zdu v /2u (Uc du c f) (8.1)

The terms on the left side represent the electrons leaving unit volume of phase space

through excitation, ionization, and diffusion, and their reappearance at low energy at

the rate qf. On the right are the terms attributable to energy gained from the field and

lost to recoil.

The excitation frequency vx sets in discontinuously at a potential ux so that it is

always necessary to divide the energy range into two parts and solve Eq. 8.1 for two

functions, fe and fxi' appropriate to the elastic and inelastic ranges and join them

at ux . On the other hand, since (v + vi) may generally be approximated by a con-

tinuous function, it is not necessary to join functions at u i . The method of solu-

tion appropriate to the two ranges is quite different, so that they must be discussed

separately.

9. Inelastic Range

When inelastic collisions are possible, they dominate all other collision processes

because of the large energy losses involved. Accordingly, the recoil and diffusion terms

may be left out of Eq. 8. 1. We may also neglect q in this range. The equation to be

solved is then

2(d/du)(vmuu3/2dfxi du) = 3(v x+ vi)u/2fxi. (9.1)

The conditions imposed on the solution are somewhat contradictory; we must choose

that solution that vanishes at infinity, but we want greatest accuracy just above ux, where

most of the excitations take place. The conventional asymptotic expansion does not

satisfy the second requirement without an unreasonable number of terms, and the WKB

14
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method diverges at ux , but we can use a somewhat similar approximation. Setting

U1/2f -s
u fxi e 

the equation for s is

s ! 2 - s - s'/2u - (s' + 1/2u)(d/du) n(v uc) = 3(vx + vi)/2vmucu._~~~~~~~~ _ 

(9.2)

(9.3)

An analytic approximation to the experimental data must now be substituted for Vmuc and

Vx + vi, and a power series in 1/u is substituted for s', the last term in the series being

reserved to obtain exact agreement at ux .

Knowing s, the average ionization frequency per electron is given by

Vi = 2r(2e/m)3/2

1u.

v.u /f .du,
1 X1 (9.4)

and the total inelastic frequency is given (see Eq. 10. 1) by

(V + i) = -(4r/3)(2e/m)3/2 U(vmu3/2dfi /du)
x 1 \Mc xl x

(9. 5)

The subscript indicates that the quantity in the parenthesis is to be taken at ux. Both of

these expressions contain an unknown normalization constant and so cannot be evaluated

as they stand, but their ratio,

x 23 m 3/2 dfxi

xi Vi c du x
1

v.u l/2fxdu,
1 xi

can be evaluated and has a physical meaning. Because one electron must leave the tube

for every one produced, l/i. is the average lifetime of a free electron from its libera-
1

tion at an ionization to its absorption at the walls; vx/ii is the average number of

excitations produced by an electron during its lifetime; and the number Nxi represents

the total inelastic collisions during an electron's free lifetime.

Because of the exponential nature of fxi' the number Nxi depends primarily

on exp(s x - si). From Eq. 9.3 it is seen that the main part of s' is given by

[3(Vx+ vi)/2vmucu]l/ which, when vm > w, is proportional to p/Ep. Accordingly, the

variation of Nxi with p/Ep is given very nearly by

Nxi = a exp(Pp/Ep)p

where a and are constants obtainable from Eq. 9.3.

(9.7)

1. For an equivalent approximation see Allis, Eq. 33. 5.
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10. Elastic Range

Below ux , the excitation and ionization frequencies are zero, but we must discuss
0

the appearance rate qF . In order to calculate it as a function of energy it is necessary

to take the product of the distribution function and the excitation function of each level

and shift the product down the energy scale by the energy of the particular level. Since

the excitation functions of allowed transitions have a sharp maximum just above the

excitation potential, the scattered electrons have very little energy. The excitation

functions of forbidden transitions have a maximum far above the excitation potential,

but there are a negligible number of electrons with sufficient energy to excite these.

Accordingly, most inelastically scattered electrons have very little energy, and no

appreciable error is made in assuming that q is a delta-function at zero energy.

Multiplying Eq. 8. 1 by 4rv2 dv gives the net rate of loss of electrons from the spheri-

cal shell of thickness dv. Integrating and making use of Eq. 7. 8 gives

v 2 4 4 v mv (U d f) (10.1)
.x 1v 3A2 M 3 cdu Me

where v + 2. is the rate of appearance of electrons at small velocities. The integralx 1
represents losses by diffusion of electrons of speeds between zero and v, and its value

at infinity would, by Eq. 7. 9, equal v.. The difference represents the rate at which elec-

trons pass the energy u in the upward direction in order to supply the inelastic proc-

esses occurring at higher energies. Equation 10. 1 was derived by Smitl directly from

this principle of balance between electrons going up in energy and the rate of inelastic

collisions; however, Smit includes the thermal energy of the gas but does not include

diffusion. In glow discharges the diffusion term is much larger than the thermal one.

At very low pressures the diffusion term is quite large, and one must solve the second-

order equation (8. 1) for fe; but in most cases the diffusion term is small and there is

then a great advantage in replacing the integral by an approximation such as

v 4 _ 3
V Vivmv

4r2 fV dv (10.2)
3A 2 vm (VV

This expression gives the full diffusion loss i at the velocity v0 , which corresponds to

the energy u (to be defined shortly), and the third power of the velocity was actually

found to be the best in the case for which extensive numerical calculations were made.

With this substitution, Eq. 10.1 becomes a first-order inhomogeneous equation. If we

define an energy variable w by dw = 3mdu/Mu c , the solution of the homogeneous part2 is

1. J. A. Smit, Physica 3, 543 (1936).

2. M. J. Druyvesteyn, F. M. Penning, Rev. Mod. Phys. 12, 87 (1940); H. Margenau,
Phys. Rev. 69, 508 (1946).
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fM = Aew. (10.3)

The solution of the complete equation for fe is

3 uf 3 (7 ) e-W w du -e =4-(Px 2i) w w3 - Vi 3mucm c

., (10.4)

which, at higher pressures, can be replaced by the simpler function

u °

fe 47r (x + vi) e ; ewdu/vmu cv (10

The constant of integration in both of these expressions appears as an energy u at

which the function fe crosses the axis when extended beyond ux. The meaning of this

energy is seen by noting that fe would be unchanged if the actual excitation and ioniza-

tion functions vx and vi were replaced at uo by delta-functions with the proper relative

magnitudes so that all inelastic collisions would take place at exactly that energy. Thus

uo is the equivalent single excitation potential. By this equivalence the diffusion should

also vanish above u and hence the integral (10. 2) must equal v i at v = v.

The potential u is determined by equating the logarithmic derivatives of fe and fxi

at ux. In general, the extrapolation u - ux is small, and when this is so a linear

extrapolation formula may be used. The first-order derivative may be eliminated from

Eq. 8.1 by the standard transformation

g = (vmuc) l/2u3/4ew/Zf. (10. 6)

Then g" = 0 when g = 0. The function g(u) has a point of inflection at u and may be

extrapolated linearly back to ux , giving

1 g In(VmU c) 1 3m (10
+ - + z s (10.7)

o0 x x 2 du x c

the whole right-hand side being taken at ux. When this extrapolation is valid, the effec-

tive excitation potential uo may be calculated from the inelastic function fxi alone.

11. Breakdown Equation

The diffusion coefficient D may be calculated by substituting fe and fxi in Eq. 7.3.

A negligible error is made by integrating fe from 0 to u and not using fxi, the dif-

ference being readily computed and shown to be small. Using Eq. 10. 4 we get

5(2e/2 u duo [(2
D = ()J feu3/Z du =u(x±i) +' i6] (11.1)3 ( e m E 2 x i i
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where 9 and 6 are two dimensionless functions of vo, and E is the rms value of the

electric field:

4 v 2y v e m ewdv, (11.2)
v m v v

ME 2 v 4 [e w - 1] dv. (11.3)
2 3 Vm

3muO( v ) 

The breakdown condition is then

A 2 E 2 /U2 = Nxi 9 + 6, (11.4)

where Eq. 9.6 or Eq. 9.7 can be substituted for the inelastic collision number.

This general outline for a theory of ac breakdown has been made specific by a

number of workers. For any particular gas, specific assumptions are made to render

the problem mathematically tractable. These assumptions will now be discussed briefly.

12. Hydrogen

For hydrogen gasl the collision frequency vm is nearly independent of energy and is

given by vm = 5. 9 x 10 9 p at all energies above 4 volts. The effective field Ee, defined

by Eq. 1. 5, is a constant, and in terms of this the average energy gain per collision is

uc= 5 X 10 5 (Ee/p)2 electron-volts.

When vm is constant the variable 2w/3 is the ratio of recoil loss to energy gain per

collision, the loss exceeding the gain if w is greater than 3/2. At the higher pressures

breakdown is observed for w i approximately 4, so that in these cases the electrons are

losing more energy to recoil, in the average, than they gain from the fieid, over most

of the energy range. There is a sufficient number of statistically lucky electrons, how-

ever, to overcome this handicap and reach the ionization potential, producing breakdown.

The integrals in Eqs. 11.2 and 11.3 can be evaluated in terms of incomplete gamma-

functions or, more conveniently, by the series

_ = 2m ) 3-2 ew 3/2etdtdw
2 o

V
m

2 2 (k 
4! (k+ )! wk (12.1)

Vm 0 (2k + 5) !
m +

6 3 m 2 4! 2 41 
2V 0 (2k + 5) 2k 7
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Ramienl has measured the excitation and ionization probabilities in hydrogen, and

his data can be represented by the functions

(Vx + vi)/v m = hou - h - h/u (12.2)

vi/v m = hi(u - ui), (12.3)

3 -1
with the constants u = 16.2 volts, h = 9.2 X 10 volt , u = 8.9 volts. The values

h ° = 8.7 x 10 3 volt and h 1 = 76 X 10 are in agreement with his data. Agreement

with the breakdown data could not, however, be obtained if the losses observed by

Ramien below 8.9 volts and ascribed to the excitation of vibrations were included in the

theory.

With the above inelastic collision functions we set

s = au - b lnu + c/u. (12.4)

The coefficients a and b are determined in the usual way for series near infinity,

2 1
a = 3h /2uc b = 3hl/4auc 4 (12. 5)

The coefficient c is used to obtain exact agreement at ux. This gives

3 9 1/2
c/ux = - b+ (2aux - b 16 (12. 6)

The approximation is then tested by substituting Eq. 12.4 with these constants in Eq. 9. 1

and solving for (v i + vx). This gives the theoretical excitation frequency for which

Eqs. 9.2 and 12.4 are the exact solution, and it must agree closely with the experimental

data for Px and Pi, particularly between ux and u i . Substitution of Eqs. 9.2 and 12.4

in Eq. 9.6 gives the number of inelastic collisions per electron:

x1 
N h aux -b+ zc/x (x) x exp[ a - c/UiUx)(Ui )] (12.7)

xi hi J(ui)

where

(k + + 1) (b-) (c/aui )

k=O 1=0 k (aui)k

This function agrees very well with the approximation (9.7) with a = 2, P = 71.7 volts/

cm-mm of Hg, for almost the whole range of the measurements. The limit Nxi = 2 as

p/E approaches zero comes from the near equality of h i and ho, so that at high energies

there are about equal numbers of excitations and ionizations. Introducing Eq. 12.4 into

Eq. 10. 7 we find the effective excitation potential from

1/(u- ux) = a - 3m/2Muc - (b +- 4 )/u x c/u 2x (12.8)
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Expressions 12. 1, 12. 7, and 12.8 may then be introduced in Eq. 11.4 to obtain a direct

comparison with the quantities measured at breakdown. The results are shown in

Fig. 4. The agreement is good over a wide range of pressure for several different

values of A and at two different frequencies.

The disagreement at low pressures results from neglecting the diffusion term in fxi

and to the approximations made in the formula for the effective excitation potential uo;

at these pressures the more exact confluent hypergeometric functions of Section 13

should be used.

13. Rigorous Theory for Constant Collision Frequency

The Boltzmann transport equation is usually developed in terms of the electron

velocity. However, for a constant collision frequency it is convenient to introduce the

dimensionless independent variable w of Eq. 10. 3 in the final differential equation.

The differential equation (8. 1) written for the variable w = 3mu/Mu c is

f"+ f' [1 + (3/2w)] + f [(A/w) - (uE/AEe) ] = 0,

(13.1)

A = - (M/2m)(vx + vi q)/v m

where uE = uc(M/3m). This equation is of second order. It has a pole of first order

at the origin, w = 0, and an essential singularity at infinity, w = o. Since Eq. 12.2 is

not valid for u < ux, we have to divide the energy scale at w = wx and to discuss sepa-

rately the integration of Eq. 13. 1 in the two regions.

In the elastic collision range, below wx , Eq. 13. 1 takes the form

f + f [1 + (3/2w) +]+ fe [(3/2w) - (uE/AEe)2] = 0. (13.2)

The solution in terms of confluent hypergeometric functions is

fe(w) [M(W ) + Cew /2 M 2 (w)] x exp[(gl)w/2]}CeN (13. 3)

where

M 1(w) = M(a:23:g) M() = M(a 1 ).
3 2 2 w) M 2 2

a = 3 (g-l)/g; g = 1 + 4(UE/AEe) 2,

and Ce d C eN are integration constants.

In the range of inelastic collisions between the electrons and the gas molecules, when

the electron energy lies above ux, Eq. 13. 1 may be written as

20
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f" + f [I1 + (3/2w)] - fxiG(w) = 0,

G (w) Ig2 _ 1)l/2 + ho Uc (M2 /6m 2 )

2 0 uc( 6 (13.4)

[ + Mh/2m ](l/w) - (3h 2 /2uc)(1l/w)

There exists only one asymptotic solution for Eq. 13.4 which fulfills the boundary condi-

tion that the distribution function shall vanish at infinity. It is

fxi(w) C= eNCi

where

[exp(-al)] X 1 + 'I 1
n=l r=1

p(r)/n (aow) ,

ao = [g + 6ho (UE/u

K = (M/2m) hl/a O , p(r)

; al = (a + 1);1 2 0~~~

1 -3h2/2u c - [K +
16 2

n
p(r) =p(1)p(2) ... p(n)

r=l

The integration constants C e and C i can be calculated by joining fe and fxi in value

and slope at w = wx. As a result of these processes we find

C e (WX)1 / 2 (Mlx/M2x)(T/To),

Ci = (1/2TM 2 xWxK + 1/4) exp[(ao+ + g) Wx/2 ] ,c i= I; + z1 

x° 

Ti o TO+
· i;·~·C,

x Pr
r=O

= -(1/w x )

-w)/W x - (ao- g)/2 - gM2x/MZx][(K
x

[g(M.x/M 2 x - Mlx/Mlx) - 1/2wx],

Po 1; Pr =Pr-1 (P(r)/raowx)

(13.6)

oo

Z rP r;
r=O

gM = aM 1 (w)/aw; gM? = aM 2 (W)/aw.
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The breakdown condition can be written, D = vi, where both the diffusion coef-

ficient and the ionization frequency terms depend on the distribution function. They are

calculated from

D = (2e/3mvm) uf*(u)du,

0
(13. 7)

00

Vi = hi vm(u - ui) f*(u)du
1

where f*(u)du = 4v 2 f(w)dv, this function being the fraction of electrons within the energy
1

limits u +_ du. In the elastic range, the diffusion integral can be represented by con-

fluent hypergeometric functions. In the inelastic range, we approximate the functions

by Taylor series around wi and wx .

Inserting D and vi in the breakdown equation yields a transcendental equation for

EeA and Ee/p which may be evaluated in the form

(M/m) (hi/ui) (Ci/Ce) (uE/a 1) wk3 /4Z exp(-alw1 )
/u3 xC X(1-+e)= 1,

3

1 + 2w2 CCN) (wex + ex/w)

= (2m/M) (ui/hi) [ai/(AEe)2] (ux/ui)k+3/4 X (D/i) exp [a 1 (w i x) ]

Z = Z B r); B(o) = (ux/ui) pn; (13.8)1 n (Ux/Ui)nPn
n, r=O

Bnr) B rl) [(r+l)/r][(k + - n - r)/(a wi)],

00oo

z = Z A ( r ) ;
ZD n n n

n, r= O

A(r ) = A ( r - 1) [(k + (7/4)- n - r)/(alwx)].

The quantity tJ may be neglected for Ee/p < 10 v/cm mm Hg. The first equation of

(13. 8) represents the ratio of the net number of electrons produced in the region u > uX

by ionization and diffusion to the number of electrons lost in the elastic collision range

u < ux by diffusion. This ratio must be equal to unity in a steady state.

The rigorous treatment for constant collision frequency has been applied to
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hydrogen and helium. 2 For hydrogen, use of the numerical values given under Eqs. 12.2
3 -1

and 12.3 yielded the agreement shown in Fig. 5. For helium 3 , h0 = 0.0175 volt

h= 0.665, and h2 = -6.6 volts in Eq. 12.2; and h = 5.48 x 10- volt 1 , with
1 h2 volt with

u i = 24. 5 volts, in Eq. 12.3. The excitation potential ux was taken as 19.9 volts to

allow a simple step approximation for the initial part of the excitation function. These

values lead to the theoretical line, which is compared with experiment, in Fig. 6.

14. Impure Helium

Considerable simplification of the theory presented here results if no excitation need

be considered. Such a case is realizable if small amounts of mercury vapor are added

to helium, the gas we named Heg in Section 3. This synthetic gas adds the simplification

of no excitation to the simplification of a constant collision frequency, and one may use

it to test the validity of some of the mathematical assumptions necessary in obtaining

the solutions previously discussed. The magnitudes of two effects have been thus tested:

(a) the result of the overshoot in energy due to the fact that the most probable energy at

excitation is higher than the excitation energy; and (b) the magnitude of the error intro-

duced by the assumption of constant v n, where even for helium this is not true at lowm 4
energies. For the mathematical details involved see a paper by MacDonald and Brown;

the magnitudes of these effects are illustrated in Fig. 7. The excellence of the agree-

ment between the theory and experiment for this simple case is demonstrated in Fig. 8.

It should be emphasized that although various experimental conditions have been set up

to render mathematical manipulation easy, no adjustable parameters appear in the

theory.

15. Neon

The high-frequency gas-discharge breakdown in neon has also been studied in

detail. 5 In this gas, instead of the collision frequency being considered constant, a

constant mean free path is the approximate assumption. The constant mean free path

case is considerably more complicated than those previously described, and the distri-

bution functions were calculated separately for the regions of low pX and high pX, corre-

sponding to (v/l)2 << and (v/) 2 >> w. The reader is referred to the original paper 5 for

the derivations of the appropriate equations the results of which are as follows.

In the low pX region, the breakdown condition gives an equation for calculating the

breakdown electric field in the form

1. A. D. MacDonald and S. C. Brown, Phys. Rev. 76, 1634 (1949).

2. F. H. Reder and S. C. Brown, Phys. Rev. 95, 885 (1954).

3. H. Maier-Liebnitz, Z. Physik 95, 499 (1935).

4. A. D. MacDonald and S. C. Brown, Phys. Rev. 75, 411 (1949).

5. A. D. MacDonald and D. D. Betts, Canadian J. Phys. 30, 565 (1952); 32,
812 (1954).
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Ahio [eYi (l+D+DyiEi (yi)]

{2xx[CIo(x) - Ko()] - 4(xx) /
2 Z 1 (X) + 4 + A(s2 /r 2 )[e - DE i(-yx)] }

(15.1)

1
Here, h i is the ionization efficiency fitted to Maier-Liebnitz's data as

V.

v =hi(u - uo) = 4.48 x10 (u - 21.5).
m

The mean free path assumption is written as

I = 1/10p;

the other quantities are defined as follows:

x = us = u (1 30. 

y

( 636 2

412= ur == mr u j,

2
PYiD=-

- (3-s-t)y + 4;
= [16

EX (pA)2

Z1 (x) = K1 (x) /2 + CIl (x)1/2 where K1 and I are first-order Bessel functions of

imaginary argument.

K2 (x)1/2 -K 1 (x 1 / 2

K l(x) 1 / z + CI1 (x)1/2

K1 (x) + C 1 (x)

(x) 1/2 e-Y (l/y + D/y 2 )

2r (x)1/2 [y2 + (+D)y + 2D]

D + y 2

y

S

and Ei(-Yi) is the exponential integral

e-t/t dt,

i

499 (1935).
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tables of which are available in Jahnke and Emde. 1 The subscripts i and x refer to

ionization and excitation.

In the high pX region, the breakdown is predicted by

-az.
1 6B h e (15.2)

l2 a 2.L 2 {x [Mz(Zx) + FW 2 (x)] - F/6 + (B/a) e 

h 0. 90 x 10 - .= 1.62 (1E)

2 30.2
z = u (E) /1 2 3 . 4 ; 6 = 30.8

(pA) '

P =4 Z( P ); =2 (1/1+4p/ 2 ) ,

d
dz Ml(z) + (a-i) Ml(z)F = z
d
-dz W1 (z) + (a-) W,(z)

B = e(a-) [M l (z) + FWl(z)]

where the notation Ml(z) holds for the confluent hypergeometric function M(6; 1; z), with

a similar notation for the second solution.

Equations 15. 1 and 15.2 are implicit expressions for the breakdown electric field

as a function of pressure, container size, and frequency of applied field. The breakdown

fields are computed in practice by successive approximations. Breakdown curves for

neon, both experimental and theoretical, are shown in Fig. 9.

b. The Effects of Nonuniform Fields

16. Cylinders of Arbitrary Length

The differential equation and boundary condition that lead to the breakdown field

strength are obtained from the continuity requirement on the electrons. The equation

resulting from Eqs. 2.2 and 7.9 is

V2Z + EZ2 = 0, (16.1)

where the electron diffusion current density potential ip is given by = Dn, and 

is the high-frequency ionization coefficient. The boundary condition that be zero

on the walls of the discharge cavity is sufficiently accurate. The electric field appears

1. E. Jahnke and F. Emde, "Functionentafeln,' Leipzig (1933).

2. M. A. Herlin and S. C. Brown, Phys. Rev. 74, 1650 (1948).
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explicitly in Eq. 16. 1 because it varies with position in the cavity. On the other hand,

pX is constant throughout the cavity. The electric field in an arbitrary cavity is given

in the form E = Eof(x, y, z), where Eo is the maximum value of the electric field, and

f is a geometrical factor obtained from a solution for the field distribution within the

cavity as an electromagnetic boundary value problem. The value of f is unity at the

maximum field point. The degree of excitation of the cavity is expressed by Eo, and

the relative field distribution through the cavity is independent of the excitation. The

boundary value problem of finding a nonzero solution to Eq. 16. 1, with the boundary

condition that qJ be zero on the cavity walls, leads to a characteristic value of E o, which

is the breakdown field at the maximum field point.

Integration of Eq. 16. 1 is simplified by the use of an approximation to the ionization

coefficient. This approximation expresses the ionization coefficient as the simple ana-

lytic function

= to (E ()o (E) 2 (16.2)

where CO is the value of the ionization coefficient at the maximum field point. The

quantity k is introduced for mathematical convenience in the following equations. It has

the dimensions of reciprocal length, and appears multiplied into the radius variable

below. The quantity (P-2) is obtained as the slope of the versus E/p plot on a loga-

rithmic scale at the point Eo/p. This approximation gives accurate results because it

is correct where the ionization is high, is inaccurate only where the ionization is low,

and therefore has little effect on the solution of the equation.

The electric field in the TM0 1 0 -mode cylindrical cavity is given by the expression

E = EoJo(2.405r/R). (16. 3)

It depends on the radial coordinate only, which allows the differential equation,

Eq. 16. 1, to separate. Separation results in = A sin (rz/L)q (r), where A is a con-

stant, L is the length of the cylindrical cavity, z is the axial coordinate, and is a

function only of r, determined from the differential equation

r dr ( + E - (2 )/(L )] 0. (16.4)

The approximation of Eq. 16.2 and the electric field of Eq. 16. 3 substituted in Eq. 16.4

lead to the equation

d dr 2 2J 24O1r drd )+ k J (2.405r/R) - (r )/(L 2 ) (16.5)

It is difficult to find an analytic solution to this equation. A good approximation is

obtained by expressing the Bessel function as the first two terms of its power series.

This approximation is also accurate where the ionization is high and fails only where it
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is low. Equation 16. 5 then becomes

Id (rd) + {k [1 - (r2 )/(b2)] - (r2)/(L2)} d= 0, (16.6)

where

b = 0.831R/() 1/ 2 (16.7)

is the radius at which the ionization goes to zero under the assumptions given above.

The ionization function in Eq. 16.6 is negative beyond r = b, which is not physi-

cally correct. Accordingly, the ionization is set equal to zero from r = b to r = R.

Equation 16.6 is used in the range 0 < r < b, and in the range b < r < R the equation

rdr d )- q b 2 = 0 (16.8)
r dr dr 2

is applied. The ionization function employed here is compared with the actual ionization

function in Fig. 10. They are identical near r = 0, where the ionization is high. The

error in the approximation becomes positive as r increases; negative, as it approaches

the radius b. Beyond r = b, the ionization drops rapidly to zero and is approximated

by the value zero. The boundary conditions on are that it be zero at r = R and that

its derivatives and value match at r = b.

The solution of Eq. 16. 6 is

= exp(- -)M[(2o - 1)/(4cr), lox 2 , (16.9)

where

= 1/kb (1 2 2)

x = [1 (w2 )/(k 2 L 2 )L1/2kr

and M is the confluent hypergeometric function. The second solution is omitted because

it has a singularity at the origin. The solution of Eq. 16.8 is

j = iH(l ) (iirr/L) - KJo(irr/L), (16. 10)

where K is a constant of integration. It is chosen to make equal to zero at the point

r = R, and it is thus a function of the ratio R/L.

The Bessel function in Eq. 16. 10 is an exponentially increasing function of r; the

Hankel function is an exponentially decreasing function of r. Therefore, K is zero when

R/L is infinity. The exponential decrease in electron density in the region where the

ionization rate is very small, and assumed to be zero, is a result of diffusion to the end

plates of the cavity. If R/L is not infinite, the negative exponentially increasing Bessel

function term provides the extra decrease in electron density which causes it to go to
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zero at the finite cavity radius. Numerical computation of the relative magnitudes of

these two terms shows, however, that for a wide range of the ratio R/L, the value of K

is very small and the contribution from the Bessel function term is correspondingly neg-

ligible. Thus, for R/L greater than 0. 5, the Bessel term may be neglected. The range

below 0. 5 may be computed if the Bessel term is retained. The numerical computations

were performed only for R/L > 0. 5, so that the results presented here are applicable

to cavities whose heights are smaller than their diameters. This increase in the cover-

age of the range of R/L is a substantial gain over the coverage of the parallel-plate

treatment, for which R/L should be greater than 15.

The solutions given in Eqs. 16.9 and 16. 10 should each be written with another con-

stant of integration which appears as a multiplying constant. This constant is not written

because the matching condition may be satisfied by making the ratio 4'/ equal on both

sides of the matching point r = b. The multiplying constant cancels in the ratio. The

resulting equation is a transcendental equation for the breakdown field:

(cr -1 1
1 iE(ix, (Xr M(6W· i, Y) (16.11)

o M , 1, yo

where x = 1rb/L, and yo = kb.

Equation 16. 11 may be solved for kb as a function of kL. The results are most con-

veniently written by expressing (/kL) 2 = A 2 as a function of b/L. This plot is shown
e

in Fig. 11. Parallel-plate breakdown requires that k = ir/L, so that the ordinate

approaches unity for large b/L. If the tube is long or the slope of the ionization coef-

ficient curve is large, b/L is small; and a larger value of k, and therefore electric

field, is required for breakdown, relative to the value that would be required with

a uniform field. The procedure used in finding E begins with a plot of 5 versus E/p.

Assume a value of E e/p, read P and e from the plot, and compute A e. From this

we determine Ee = (e)/2/Ae and compute the corresponding p = Ee/(Ee/p). We can

then determine E from Ee, p, and X. Agreement between the calculated electric field

in a TM010-mode cavity and measured values for Heg gas is shown in Fig. 12.

17. Spherical Containerl

The electric field in the lowest electric mode in a spherical cavity may be given by

Er =Eo(2 ) cos o j1 (2.75r/a), (17.1)

E =Eo(. 75r) sin dr [(2. 75r/a) j (2. 5r/a)], (17.2)

E =0,

1. A. D. MacDonald and S. C. Brown, Canadian J. Research 28, 168 (1950).
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where r, 0, and are the spherical coordinates, a is the radius of the sphere, and jl

is the first-order spherical Bessel function.

It is seen that the electric field depends on both r and 0 the introduction of which

makes Eq. 16.1 inseparable. However, in breakdown, we are interested only in the

energy transfer from the field to the electrons so that we need take into account only the

magnitude of the field at a given point. Near the center of the cavity, where the field,

and therefore the ionization, is high, the magnitude of the electric field is approximately

spherically symmetric. If we assume that the electric field may be expressed as the

average of these values over the whole of the cavity, we may write

E = Eo[l - (r/a) 2 ]. (17.3)

This is a good approximation to the average electric field except near the boundaries,

where it does not matter.

The assumption that the electric field is independent of 0 and makes 4q independ-

ent of these variables. Therefore, with the assumption of Eq. 16.2, we may write

Eq. 16. 1 as

21 dr r- + k E) = 0, (17.4)

and introducing the value of E from Eq. 17. 3, we have

2 d r + [ - (r/a)z ] = 0. (17. 5)
dr dr/

We expand the term in r/a by the binomial theorem and drop powers of (r/a) greater than

2. This makes an appreciable error only near the boundaries, where again the accuracy

of the method is unimportant. Then

d2 + 2 dP 2 22

2= 2+ + k (1 - I2r2)+ = °, (17.6)dr2 r dr
where p2 = P/a 2 ; 1/p. is the radius at which the ionization goes to zero under the assump-

tions given above. Beyond 1/pL these assumptions lead to a negative , which is not

physically correct, so we set = 0 for r > 1/p.

For mathematical convenience, we transform to a dimensionless independent vari-
2

able and let kr 2 = x; the equation (17. 6) becomes

d2 2x d- x 0 ; x<
dx2 p. x(17.7)dx 2 dx

We transform the dependent variable by letting

4 = e/2 g

and
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d2 g +-(23 1) ag= (17.8)
dx2 dx

where

3 k
a = - _ -

4 4[p'

Equation 17.8 is the equation for the confluent hypergeometric function in param-

eters 3/2 and a. The second solution is not allowed by the boundary condition, and

therefore

1= e M(; 23; x), (17.9)

where we designate by 071 that part of d/ for which r is less than l/p., or x is less than

k/pt. When x is less than k/p., , is zero, and the differential equation (16. 1) becomes

d (x3/2 dA)= 0

of which the solution is

2 C ix-) '1 j. (17.10)

where x = ka and is determined by the condition that 42 shall be zero on the

boundary; C is an arbitrary constant. We must match the solutions of Eqs. 17.9 and

17. 10 at the point where r = 1/p., and therefore

Lb I 4I*1 *2

$1 $2

which gives us

2/3 aM(a. + 1; 5/2; xl) 1 1

/2 (17.11)
M(u.; 3/2; xi) 2 xi[() -2

where

= ka
z k/ pl/Z'

Equation 17. 11 relates a (the radius of the cavity), (determined from the slope

of the , curve), and k, which is inversely proportional to the characteristic diffusion

length. The equation may be written in the form

2/3 aM(a + 1; 5/2; y) -

L M(a; 3/2; y) 2 y = 1 x12)

where
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3 -y ka =4 IY= /4 and x =1/2

Equation 17. 12 is an equation in which the left side is a function of ka/p / 2 only, and the

right side is a function of P1/2 only. Therefore it is a simple matter to find ka as a

function of P. For the case of a uniform field, the characteristic diffusion length in a

sphere is a/wT, and inspection of Eq. 16. 1 indicates that for a uniform field, k = r/a. We

can now consider k as a measure of the effective radius of the discharge for diffusion;

ka/T is then A/Ael where A is the characteristic diffusion length as determined by

the geometry of the container, and Ale is the effective characteristic diffusion length.

Equation 17. 12 is solved numerically and plotted in a fashion similar to that of Fig. 11.

In Fig. 12 are plotted the theoretical values of E as a function of p for a spherical

cavity for Heg gas, using the calculated values of Ae. Agreement with experiment is

also shown.

18. Coaxial Cylinders

The value of ,E2 as a function of position in the discharge cavity is obtained, and

from the electric field as a function of position, we have

E = (V/r lnb/a) sin rz/L,

where V is the "voltage" at the center of the coaxial cavity, a and b are the inner and

outer conductor radii, L is the length of the cavity, and r and z are the radial and

axial space coordinates. This expression applies to a cavity a half-wavelength in length,

which was used experimentally.

The expression given above for the electric field is a function of two space coordi-

nates and leads to a nonseparable differential equation. This difficulty can be avoided

by choosing an inner conductor radius which is small compared to the length L, which

is a half-wavelength. Since the electric field in the region near the center conductor

does not vary much with distance along the conductor, the conditions of infinite length

are approached. We may consider the field to be given by the formula

E = V/r ln(b/a), (18. 1)

from which ,E2 is computed as a function of position. To this approximation Eq. 16. 1

is a second-order linear differential equation in r only.

Equations 16. 1, 18. 1, and 16.2 now combine into

d J + : ,a (18.2)

dr r dr r

whose solution is

1. M. A. Herlin and S. C. Brown, Phys. Rev. 74, 910 (1948).
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(= zo 2 ka() /2( (18.3)

where Z is a Bessel function of zero order. The boundary condition that 4 = 0 at r = a
o

and r = b leads to the following transcendental equation expressing the breakdown con-

dition

J(x) N[(b/a) l/2(2)x] - Jo(b/a) /2(P 2)x] No(x) = 0, (18.4)

where

2 , /z(-2)
= 2 ka() (18. 5)

Roots of this equation are tabulated, giving x as a function of (b/a)1/2(- 2) . Multi-

plying x by (b/a)l/2( 2), gives [2/(3-2)] ka as a function of (b/a) / 2(P-2) .

The agreement between theory and experiment is illustrated in Fig. 13 for the break-

down between coaxial cylinders in air.

c. Effects of a Superimposed DC Field

19. Breakdown in Hydrogen

Solutions for the energy distribution function of electrons in a gas show a very close

similarity between the distribution functions under the action of ac and of dc fields. 1, 2

This similarity makes it possible to modify the ac distribution function theory for break-

down to take account of the superposition of a dc field and thus to predict the behavior

of breakdown with both fields acting.

The gas in a cavity will break down when the losses of electrons to the walls of the

cavity are replaced by ionization in the body of the gas. When an ac field alone is

applied, electrons are lost by diffusion. When a small dc sweeping field is applied,

electrons are lost both by diffusion and mobility. The breakdown condition can be for-

mulated mathematically by a consideration of these processes.

The dc flow of electrons r is given by

r= -nILEdc - DVn. (19.1)

When the electrons that are lost are replaced by new ones resulting from ionization, we

have

V -r = vin. (19.2)

If the divergence of Eq. 19.1 is equated to vn, and Edc is directed along the z-axis,

we obtain

1. T. Holstein, Phys. Rev. 69, 50 (1946).

2. L. J. Varnerin and S. C. Brown, Phys. Rev. 79, 946 (1950).

35



.2nE de + V.2 d ( ) n = o. (19.3)
D/u az D(19.3)

Equation 19. 3 can be solved readily for a cylinder of axial height L and axial coordi-

nate z, radius R, and radial coordinate r.

By separation of variables,

n = M(r)N(z),

we obtain two equations

2 2
VrM +k2M = O,

d2N dc dN 1 2
d2 D/l dz +D k1N = 0, (19.4)

dz \D 1

where k 1 is the separation constant, and Vr is the two-dimensional Laplacian in the

plane perpendicular to z. The solutions are

M = const. J(klr), (19. 5)

N = const. sin(r/L)z exp(-IpEdcZ/2D), (19.6)

where k = 2. 404/R, and J is the zero-order Bessel function. The exponential repre-

sents the deformation of the sine caused by the sweeping of electrons. This solution is

subject to the condition

vi/D = /Ac, (19. 7)

where dc defines a modified diffusion length given by the relation

l/AC = 1/A2 + [Edc/(2D/kL)] 2 (19.8)

For this case, the characteristic diffusion length is given by

1/A 2 = (/L) 2 + (2.404/R) 2. (19.9)

The only difference between the breakdown condition (19. 7) in the ac-dc case and the

pure ac case is the substitution of a modified diffusion length Adc for the characteristic

diffusion length A. Note that the modified diffusion length of a cavity is smaller than

the characteristic diffusion length. A cavity whose electron losses are increased by a

dc sweeping field is equivalent to a smaller cavity without a sweeping field.

Using the proper distribution function theory to calculate breakdownl and the modi-

fied diffusion length presented here, a theoretical breakdown curve for an (E/P)dc of

12 volts/cm has been obtained. The effect of superimposing a dc field on an ac field

1. L. J. Varnerin and S. C. Brown, Phys. Rev. 79, 946 (1950).
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is illustrated in Fig. 14.

d. Effects of a Superimposed Magnetic Field

The breakdown of gases by high-frequency electric fields in the presence of a con-

stant magnetic field has been studied by Townsend and Gill;l by A. E. Brown;2 and by

Lax, Allis, and S. C. Brown. 3 As in the case of strictly ac field breakdown, two

approaches are available: the average electron theory and the distribution function

theory. As there are advantages to each, both will be used. In Section 20, the average

electron theory is given. In this method the orbit of a free electron in the assumed

fields is computed first, and from this one computes the displacement and the energy

gain in the time T = t - to elapsed since a collision. These quantities are then averaged

over the phase of the ac field at the time to of the last collision, over the direction in

space of the velocity after the collision, and over the free time up to the next collision.

The result is the mean-square displacement and energy gain of the average electron

between collisions. One can then discuss an average electron from its initial low energy

until it ionizes a gas atom or diffuses out of the tube. The condition for breakdown is

that these two final achievements shall be equally probable. This method has the advan-

tage that each step in the analysis has a direct physical meaning.

In Section 21 the Boltzmann transport equation is expanded in spherical harmonics

in space and in Fourier series in time. There results a differential equation for the

distribution function, which is integrated. Most of the properties of a discharge follow

directly from a knowledge of the distribution function.

20. Average Electron Theory

Consider the motion of an electron between collisions under the influence of a uni-

form electric field along the x-axis, E = Ep exp(jwt), and a uniform and constant mag-

netic field B along the z-axis. The equation of motion is then

F = -eE - ev X B = my. (20.1)

The solution of this equation is the sum of a general and a particular integral, which

correspond to the superposition of a random circular helical motion and a plane elliptical

motion. For the helical motion, whose axis is along the magnetic field, the velocity is

vix = (a + jb) exp(jwbT)

vly = (b - ja) exp(jwbT) (20.2)

Vlz = C

1. J. S. Townsend and E. W. B. Gill, Phil. Mag. 26, 290 (1938).

2. A. E. Brown, Phil. Mag. 29, 302 (1940).

3. B. Lax, W. P. Allis, and S. C. Brown, J. Appl. Phys. 21, 1297 (1950).
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and oscillates at the cyclotron frequency wob = eB/m. The helical motion contains the

three arbitrary constants; the energy of this motion is constant and is given in electron-

volts by

2my 2 2 2
_u = m a + b + c (203)

U= 2e e 2

For the elliptical motion, the velocity is

eE
v P J2 exp(jwt)VZx m 2 2

o - Ob (20.4)

eEp b

V2y m 2 2 exp(jwt)
o - Ob

and oscillates at the frequency of the applied field.l The kinetic energy of this motion

is uniquely determined by the magnitude and frequency of the applied field and is given

by

p ( + 1 + 2 cos 2ct (20. 5)
u2 8m 2 2 (20.5)

X b)' (w+Z cb) b +

The total energy u = (m/2e)(v 1 + v 2 )2 will contain cross-product terms u 1 2 which are

important but rather lengthy to write down. Their value will be given later. The three

constants, a, b, c, of the helical motion are determined by the velocity v = 1 (T=0) +

V2 (t = to) immediately after a collision. Since the time T has been used in Eq. 20. 2,

we have simply

eE
p co sin(jwto)ox+ m 2 2

o - Ob

b=v eEp ob (20. 6)
oy m 2 2 cos(joto)

- Ob

c = v
oz

It is noted that the elliptical motion exhibits a resonance at frequencies near the

cyclotron frequency. Exactly at this frequency, Eqs. 20.4 no longer hold, and the solu-

tion corresponds to a spiral; as collisions interrupt the motion it will not be necessary

to use this singular solution.

From the velocities one obtains the displacements xl, y, Zl' x2 , Y2 by integration.

From these the mean displacements <x1> , etc., can be calculated, but these all

1. Allis, Eqs. 3.2 and 3.4.
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vanish on averaging over orientations of vo, which is assumed isotropic, and over col-

lision times to. In the average, an electron stays where it is in a high-frequency dis-

charge.

We are interested, however, in the mean-square displacements <x 21 >, (y2 >,

<z2> because these lead to the diffusion coefficient. One finds that the cross-product

terms such as <Xlyl> all vanish when averaged.

2 2 a +b
X1 + yl = 2 2 (1 - coswObT)

~ b

2 2 2
Z1 = C T (20. 7)

Averaging over orientations and times to, one finds that

2

a2 > = <b2 > = c2 > = ; <ab> = 0. (20. 8)

The cross terms between the helical and elliptical motions also vanish, but terms

<x2> and <y2> do not vanish. However, these terms represent the mean-square dis-

placements from mobility in the applied ac field and are not wanted in calculating the

diffusion.

The average of a quantity X over the free times Tm = 1/v m between collisions is,

by definition,

XX exp(- Vm T) md. (20.9)

0

Applying this to the quantities in Eqs. 20. 7 and defining the diffusion coefficients in

terms of the mean-square displacements, we obtain1

<xl> 2

D =D =
yy xx 22T 3 ( v

D = v2/3 m- (20. 10)

This definition of the diffusion tensor is of necessity symmetric. We shall see later

that there are skew-symmetric terms which the random-walk definition cannot give.

Diffusion along the z-axis is not altered by the magnetic field, but in the plane at right

angles to the field it is reduced in the ratio v b + 2 ). For a given collision fre-
quency, the diffusion coefficient is proportional to the energy of the electrons in their

1. Allis, Eq. 13.8.
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helical motion.l

The mean energy gain between collisions is best obtained by considering the power

input to an electron P = -eE · . Since the velocity v2x is out of phase with the field,

the corresponding power P 2 into this motion is zero in the average, and only the power

P1 need be considered, where

P 1 = -eEp cos ot(a cosbT - b sinwobT), (20. 11)

and the constants a and b are given by Eqs. 20. 6. In averaging over orientations of

the initial velocity the terms in vo drop out. Averaging over t o yields

e2E 2 sin( + b)T sin( - b)T 1
P- 4mP L + (20. 12)

4mX W+ 'b a)- b

from which the average energy is obtained by integrating with respect to T from 0 to T.

eE 2 - cos( + b)T 1 - cos( - cb)T
p _(20_13 1)<U1 2 > 4m ( + b )2 ( - b ) 2 13)

Averaging this quantity over collision times gives the mean energy gain between

collisions:

eE 2 eE 2

u 1 e (20.14)
c L4m (w wb 2 + vb)2 (- b mv2

o+fib) + m - b) + v m

This is a fundamental quantity in this theory. At low pressures (vn - 0) we see that

it approaches twice the mean energy u 2 of the elliptical motion of an electron, and in

no case does it exceed this. At higher pressures, many collisions per oscillation, the

energy u loses its meaning, and the collision energy becomes eE/2mv . One can use

Eq. 20.14 to define an effective field Ee which is the root-mean-square field at high

pressure. This concept is useful when the collision frequency vm is independent of

velocity because this single function takes into account the effects of frequency and mag-

netic field on the energy.

At low pressures the effective field has a maximum at resonance with the cyclotron

frequency, as shown in Fig. 15.

The electrons produced by ionization have initially very little energy, but this

increases by steps of uc until the energy reaches a value ui, at which ionization occurs.

This is above the ionization potential V i by an amount which we shall neglect. Excita-

tions are disregarded in the following simple theory. The number N of free times for

ionizing is N = ui/uc when vm is constant.

The electrons thus double their number by ionization every N collisions, and unless

1. A more complete discussion of this is given in Allis, section 13.
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some equally effective process exists which removes electrons their number will

increase exponentially. In most cases, diffusion to the walls of the discharge tube is

the balancing process. In absence of the magnetic field, the random-walk theory gives

the mean-square distance A2 = N1Z/3 reached in N free paths of mean-square length
2 , so that if the average electron reaches the wall in a distance A the diffusion process

will just balance ionization. This is the condition for breakdown, and we can write it

Uc < 2> <v2 >
U i 3A2 3A2 2 2 (20. 15)

m

where A is now a length characteristic of the discharge tube.

If there is a magnetic field, uc will be altered according to Eq. 20. 14. At the same

time the random-walk theory must be altered to take into account the curved paths

between collisions. This may be done by appropriately decreasing I or increasing A.

We shall adopt the latter procedure and denote the new length by A e. Its value will be

given later.

When the mean free path is much smaller than Ae, the intercollision energy gain uc

is correspondingly smaller than the ionization potential. From Eq. 20. 15 we see that

breakdown should occur at the same effective field if the ratio of the mean free path to

the effective diffusion length is the same; that is, the effective field for breakdown is

a function of pAe only.

Combining Eqs. 20.14 and 20.15 we get an expression similar to Eq. 3.3:

uu22 i
e = 2 (20. 16)

e

Experimental data for breakdown in Heg are shown in Fig. 16. This resonance

effect of the magnetic field and the high frequency are removed by using the effective

field.

In order to test Eq. 20. 10 for the diffusion coefficient, breakdown was studied in a

flat cylindrical cavity whose length was very short compared to the radius. With the

magnetic field placed transverse to the axis most of the diffusion has to take place per-

pendicular to the magnetic field and hence will show the full reduction. By Eq. 20. 10,

the mean square of the distance traveled by an electron is proportional to the diffusion

coefficient D, and therefore the effective diffusion length A e appropriate to infinite

parallel plates is

2 2

A2
_ 'b + Vc 2 (20. 17)

Vmvm

The effect of a magnetic field is to make the dimensions of the cavity at right angles to

the field appear larger to an electron. By Eq. 20. 16 this should reduce the effective
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field for breakdown in the same proportion.

However, Eq. 20. 16 does not correspond with experiment except when used for com-

parative purposes. Equation 20. 14 and the random-walk theory give the number of free

times for the average electron to ionize and reach the wall, respectively. But in a dis-

charge it is the faster-than-average electron that ionizes and the more-mobile-than-

average electron that leaves the tube, and these are not the same electron. The mean

free path method must therefore fail in predicting quantitative breakdown, and the fail-

ure should be worst when there are many collisions and therefore the greatest deviations

from the mean.

21. Boltzmann Theory

Introducing the magnetic field into the Boltzmann transport equation, Eq. 6.1, gives

eEF

1O3(Fo vF3- 1 a v e
v m3v =

F 0 +vVF eBXFo 0 (21. 2)

aF0

1 e o e 1
(v + j) F 1 - E - B X = 0.

These are the necessary equations for handling breakdown problems, which represent

steady state conditions for the electcons. Equations 21.2 are applicable for any orien-

tation of E and B. We shall consider only those cases in which they are perpendicular

or parallel to each other.

Integrating the first expression of Eq. 21.2 over velocity space in spherical coordi-

nates, the second and fourth terms vanish at the limits. The first term gives the total

production rate of electrons, vin, from ionization. This is because excitations merely

withdraw fast electrons to replace them by slow ones, whereas ionizations add an extra

electron. The third term gives the divergence of the flow vector r

00

r 4-r Fv 3dv (21.3)

so that

nv i = V. r (21.4)

Solving the second expression of Eq. 21.2 for F 1 , we find

1. Allis, Section 24, expecially Eqs. 24. 5 to 24. 8.
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2
v + * + r x

v m :=b=b mob (21.5)
v 2 2 VF , b (e/m)B (21.5)
m v + bm b

which we substitute in Eq. 21.3 and, assuming that F can be written as a product

n(x,y, z)fo(v), we find that r is proportional to Vn but not necessarily in the same

direction. Accordingly, it is possible to define a diffusion coefficient which is a tensor:

ri = jDij aj; i, j = x, Z. (21.6)

If the magnetic field is taken along the z-axis, D.. is given bylj

00

D. =0 fii 0

Vm nab
2 2 2 2 0

Vm + b Vm + Ob

Wb Vm
2 2 2 2

Vm + b Vm + Wb

0 0 1
m

4 4
4 Trv dv. (21.7)-

This expression reduces to the ordinary coefficient D = <v 2 /3vm> with no magnetic

field, b = 0. It is equivalent to Eq. 20. 10 except that the present tensor has skew-

symmetric terms that were not obtained by the random-walk definition.

Substituting in Eq. 21. 4, we obtain the diffusion equation

2 2 2n
D a+D an+ D a in =n 0 (21.8)
xx x2 yy ay2 zz 2 12

which determines the spatial distribution of the electrons. One can use the normal dif-

fusion coefficient D if lengths are expanded at right angles to the magnetic field in the

ratio (v2 + 2)1/2/v

The solution of this equation depends on the boundary conditions. One must define

an effective diffusion length A e for the whole cavity which takes into account these

expansions:

2
1 (7xV1) Vm 1
A 2 + 2 + (21. 9)

e x y m b z

The effect of the magnetic field is equivalent to expanding the cavity in the ratio

2 + b)1 /2/vm in all directions perpendicular to the magnetic field.

1. Allis, Eqs. 30.3 to 30.7.
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The distribution function F is obtained by eliminating Eo and E from Eqs. 21.2.
01 

In this way one obtains Eq. 8. 1, in which A is replaced by Ae, and E by Ee (defined in

Eq. 20. 14. It follows that all of the breakdown data should plot on a single curve when

Ee is plotted against Ee/p. This is shown in Fig. 17. This exact law is, however,

of very limited applicability. The effective quantities Ee and Ale depend on vm, which

is a function of the electron's energy. It is therefore impossible, in general, to make

the effective values the same at all of the energies, as the law requires. For helium

and hydrogen the collision frequency vm is very nearly constant, so that the effective

values are significant.

To study the effect of the magnetic field on diffusion alone, the electric and magnetic

fields are oriented in the same direction; and in order to reduce diffusion along the mag-

netic field it is necessary to perform the experiment in a cavity whose height is greater

than the radius. In such a cavity the electric field may no longer be considered

uniform, and a correction to the computations must be made in a manner shown in

Section 16. In the presence of the longitudinal magnetic field the equivalent diffusion

length of the cylinder, from Eq. 21.9, is

2

12 2 = m 2 2.405)2 (I) 2 (21. 10)

Ae Vm + Wb

Using this and the nonuniform field correction to the Boltzmann theory one obtains the

agreement with experiment shown in Fig. 18. This result confirms the predicted effect

of the magnetic field upon diffusion.

The breakdown measurements shown in Fig. 16 were made in a flat cavity with the

magnetic field transverse to the axis. The effect of the latter is to require the solution

of the diffusion equation in an elliptical cylinder whose diffusion length is then given by

1 m /7X1 2. 05I 1/2.405 z

A2 V+ W [L) +2(R )]2(R) (21. 11)
e m b+

Using this and the nonuniform field correction gives the theoretical curves shown in

Fig. 19.
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B. ELECTRON ATTACHMENT CONTROLLED BREAKDOWN

22. Breakdown in Air

The continuity equation for electrons introduced in Eq. 1.8 can be written in a more

general form:

an vin - vn + S (22.1)at x e

where ve is any loss mechanism. If, in addition to the diffusion loss, electron attach-

ment is also observed, ve, the frequency of loss, may be given as

ven = van - DV n, (22.2)

where va is the frequency of attachment.

In Eq. 22. 1, the external production rate, S, will be considered as introducing a

residual electron density no , so that the continuity equation becomes

ant = in (Van n- DV 2 n) (22.3)

with the initial condition that at t = 0, n = n.

For those experiments that are available for testing a simple average electron

theory of high-frequency breakdown in air, it is a good assumption to take the diffusion

as occurring between two parallel plates separated by a distance L. The density con-

figuration is then of the form cos(ux/L), and to a first approximation the term V 2n can

be replaced by (-rZn/L). Equation 22. 3 becomes

an- i V - ) n = yn. (22.4)at i a 2

The solution for Eq. 22.4 is n = no exp(yt). For breakdown, y = 0, and

2D r
Vi= Va+ -- (22. 5)

The ionization frequency may be determined from a knowledge of the Townsend first

ionization coefficient a, and the ac drift velocity v:

Vi= Lav= aLdcEe, (22.6)

2 2where E e is defined by Eq. 1.3. If v >> Wc, Ee is equivalent to the rms value

of the high-frequency field. Although the collision frequency may be a function of the

average electron energy, an average value of collision frequency may be used as an
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B,MAGNETIC FIELD IN GAUSS

Fig. 19. Breakdown of helium at a pressure of 1 mm Hg in a cylindrical cavity.
Solid line is obtained from the Boltzmann theory; points are experimental
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approximation. Mobility measurements in air by Nielsen , and Riemann 2 may be used

to determine ,u though the definition of the ac mobility:

(e/m) vm

1= 2 2 
V + m

These data yield a value of vm for air of 4.3 109 p. The pressure must be greater than

20 mm Hg at a 10-cm wavelength and greater than 70 mm Hg at a 3-cm wavelength in

order for the effective field to be equivalent to the rms field.

The attachment frequency may be determined from a knowledge of the number of

electrons attached per electron in a path of one centimeter, which is represented by P,

and the ac drift velocity. The ratio of the diffusion coefficient to the mobility is given

by (D/,u) = 2Uav/3 where uav is the average electron energy in electron volts, and the

numerical constant depends on the electron distribution function. The value of 2/3 is

correct for a Maxwellian velocity distribution.

The condition for breakdown becomes:

2
a_+ 2 av (22. 7)
P P 3 (Ee/)(L) 2

The quantities a/p, /p, and uav are all functions of Ep and depend upon the energy

distribution function. Measurements of Harrison and Geballe 3 in air yield experimental

values of a/p and P/p as a function of E/p. The average electron energy as a function

of E/p is given by Healey and Reed. 4

The solid line in Fig. 20 shows Ee/P as a function of pL as predicted by Eq. 22.7.

Measurements of Herlin and Brown 5 at 3000 Mc/sec with the distance varying from

0. 635 cm to 0. 158 cm and the pressure varying from 70 mm Hg to 2 mm Hg are shown.

Measurements of Pim6 at 200 Mc/sec with the distance varying from 0. 08 cm to 0.06 cm

and the pressure varying from 760 mm Hg to 160 mm Hg are also given. The experi-

mental results of these observers agree well among themselves but differ from the theo-

retical curve by as much as 10 per cent. These data were taken by breaking down the

gas at the highest pressure possible, for a given set of experimental conditions,

reducing the pressure incrementally by pumping, breaking it down again, and so on.

Thus, any breakdown products formed at one stage might be present at any subsequent

1. R. A. Nielsen, Phys. Rev. 50, 950 (1936).

2. W. Riemann, Z. f. Physik 122, 216 (1944).

3. M. A. Harrison and R. Geballe, Phys. Rev. 91, 1 (1953).

4. R. H. Healey and F. W. Reed, "The Behaviour of Slow Electrons in Gases, "
Sydney (1941).

5. M. A. Herlin and S. C. Brown, Phys. Rev. 74, 291 (1948).

6. J. A. Pim, Proc. Inst. Elec. Eng. 96, Part III, 117 (1949).
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breakdown. The data marked "pure" were taken by introducing fresh air for each meas-

urement. The air was pumped to the desired pressure and only one breakdown initiated.

The system was then pumped to 10 j. Hg or below, and the procedure was repeated for

the next pressure. Breakdown impurities (such as the oxides of nitrogen) remaining in

the gas were thus reduced between readings by a factor of about 104. Data collected in

this way are shown in Fig. 20 and agree much better with the theory of Eq. 22. 7.

23. Breakdown in Oxygen

The breakdown condition of Eq. 22. 7 may also be solved for oxygen, since we have

the measurement of a/p and P/p for oxygen from the work of Harrison and Geballe.1 A

theoretical plot of Ee/p as a function of pL for 02 is shown in Fig. 21. Microwave

measurements in oxygen at 3000 Mc/sec are also shown, with L = 0. 635 cm and over a

range of pressures from 70 to 2 mm Hg. In calculating the value of E e from Eq. 1. 5,

the value of vm was obtained from the mobility measurements of Nielsen and Bradbury 2

and the relation for the ac mobility. This value of vm is 3. 5 x 10 p.

1. M. A. Harrison and R. Geballe, Phys. Rev. 91, 1 (1953).

2. R. A. Nielsen and N. E. Bradbury, Phys. Rev. 51, 69 (1937).
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C. MOBILITY-CONTROLLED BREAKDOWN

24. Behavior of the Average Electron

When the amplitude of the electron oscillation in an electric field is sufficiently high,

the electrons can travel completely across the tube and collide with the walls on every

half-cycle. If this can occur, the loss of electrons will be controlled by this mobility

motion, and the breakdown field will depend upon the amplitude of the electron oscilla-

tion 1 , 2as given by Eq. 5. 8. This equation gave the oscillation amplitude limit for dif-

fusion. On crossing this limit from the diffusion side, a new loss mechanism occurs.

The electrons collide with the walls so that the electric field necessary for causing

breakdown rises abruptly. This is illustrated 2 in Figs. 22, 23, and 24. Referring to

these figures, breakdown to the left of the sharp discontinuities is diffusion-controlled.

At that wavelength of the ac field corresponding to the amplitude of oscillation limit for

diffusion, electrons are lost by colliding with the walls, and the breakdown field must

be sharply increased to make up for this new loss. The breakdown field in the mobility-

controlled region is a function of the type of material of which the walls are composed,

as we would expect.

In contradistinction to the low-pressure type of secondary emission-controlled

breakdown (the electron resonance breakdown, discussed in Chapter D) this high-

pressure case is very much a function of the type of gas. This is evident from Eq. 1.2,

since the velocity of the oscillating electrons is mobility-controlled, and the mobility

is a function of the type of gas. The dependence of the amplitude of oscillation on the

electron mobility provides a good substantiation of the factors controlling the critical

conditions for crossing the amplitude of oscillation transition. Let us illustrate by

taking the case in hydrogen where the drift velocity of electrons is approximately linearly

proportional to E/p. This should predict that the critical electric field at the transition

value should be proportional to the gas pressure. This is found to be approximately the

case by Gill and von Engel, as illustrated in Fig. 25.

One of the most striking characteristics of the mobility-controlled breakdown is the

fact that after the electron oscillation amplitude is greater than the tube dimensions --

that is, after all the electrons are lost to the walls -- breakdown is still observed. This

is illustrated in Figs. 22 to 24 by the measured breakdown fields on the longer wave-

length side of the oscillation amplitude transition. These data also show that the longer

the wavelength of the applied ac field, the more easily the discharge starts. The obser-

vation that it is such a strong function of the frequency of the electric field requires the

effect to be associated with charged particles. The fact that the electrons are being lost

1. J. Thompson, Phil. Mag. 23, 1 (1937). S. Githens, Jr., Phys. Rev. 57, 822
(1940).

2. E. W. B. Gill and A. von Engel, Proc. Roy. Soc. 197A, 107 (1949).
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Fig. 22. Breakdown in neon for a flat-ended cylindrical tube 3. 55 cm in length
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Fig. 23. Breakdown in nitrogen for a flat-ended cylindrical tube 3. 55 cm in length
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Fig. 24. Breakdown in hydrogen for a flat-ended cylindrical tube 3. 55 cm in length
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Fig. 27. Breakdown in hydrogen at a pressure less than 0. 1 Hg
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every half-cycle to the walls suggests that the only particles left to account for this

increase in ionization must result from the positive ions.

Gill and von Engel used their data in hydrogen to prove that the breakdown beyond

the amplitude of oscillation transition was controlled by the positive ion mobility. The

amplitude of the oscillation of the velocity obtained from Eq. 1.2 is

peEeEp v/2 eEe
vmax 1 * (24.1)

2 2 y m vmm*(w + v2m Vm

where m is the mass of whatever particle is effective in controlling the discharge. If

breakdown occurs when the maximum velocity has reached a constant value v, which is

a reasonable assumption when the electrons are produced by secondary emission from

the walls, we may write

e 2 E 2 = (m*) 2 vZ( 2 + Vm), (24.2)

and E2 plotted against 2 should be a straight line. This is illustrated for the data of

Gill and von Engel for hydrogen in Fig. 26.

For any pressure, the straight lines are seen to cut the E-axis at a point Eo where

w = 0. Here eE = m vv m , but since (e/m v m ) = p, the mobility, we have the possi-

bility of identifying the particles by determining what values of e/m lead to the correct

relation between E and w at the various pressures measured in Fig. 26. The e/m*

ratio for the molecular hydrogen ion agrees better than one would expect from the ele-

mentary nature of the analysis, and leaves little doubt that the ion mobility is the con-

trolling mechanism on the long wavelength side of the oscillation amplitude transition.

In this region, therefore, the loss of electrons at the walls resulting from their large

oscillation amplitude is more than replaced by the secondary electron emission by posi-

tive ion bombardment of the walls, and the breakdown field is shown to decrease as the

wavelength increases.
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D. SECONDARY ELECTRON RESONANCE BREAKDOWN

25. Behavior of the Average Electron

Many studies have been made of high-frequency breakdown in regions outside that

controlled by diffusion. If the pressure is low, the mean free path becomes long com-

pared with the containing vessel, and ionization in the gas becomes highly unlikely. A

number of workers have studied this case and have shown that the secondary emission

of electrons by direct bombardment of the walls can cause a breakdown to occur. Not

only is the magnitude of the electric field important, but the phase of the electron

motion with respect to the field has a governing effect. Under optimum conditions, the

electron motion must be in phase with the field. Thus, an electron starting across the

gap between the walls should collide with the walls and release secondary electrons just

as the electric field passes through zero. The reversed electric field accelerates the

secondary electrons back across the gap. The electric field must be of such a value

that the transit time across the gap shall be equal to one-half cycle of the ac field. In

this way the secondary electrons formed by the initial electron become primary elec-

trons for the next half-cycle to form another group of secondary electrons, with the

optimum conditions again requiring that the secondaries be formed just as the field

reverses its direction.

It is obvious that a breakdown does not require the optimum conditions to occur, and

there is a fairly broad region of fields and frequencies over which such a phenomenon

may be observed. It should be apparent that for any one frequency, breakdown should

be possible in a bounded region between two values of the field corresponding to too little

or too much acceleration of the electrons to maintain the proper phase relations.

Because this type of breakdown relies for its electron multiplication on the secondary

emission of electrons from the walls, the breakdown field is independent of the type of

gas but very dependent on the nature of the walls of the vessel in which the discharge

takes place.

With this introduction, let us turn to a more quantitative description of the problem.

The motion of an electron acted on by a sinusoidally varying electric field of peak value

Ep and radian frequency X is described by the equation

m(dv/dt) = eEp sin(wt + ), (25.1)

where is the phase angle of the secondary-emission electrons, and we here neglect

any collision effects between the electrons and gas atoms. For simplicity, let us assume

that all electrons have one-half-cycle transit times between the walls and integrate

Eq. 25. 1 over this half-cycle transit time. We get for the arrival velocity

v = v + (2eEp/mw) cos , (25.2)

where v is the component in the direction of the electric field of the velocity of
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emission of the secondary electrons. Integrating again, evaluating over the one-half-

cycle transit time, and setting the distance of electron travel equal to the tube wall

separation L gives the transit equation

L = v/w + (eEp/mo2 )(r cos 4 + 2 sin ). (25.3)

Solving this equation for the electric field, we obtain

X L - rv o

Ep (e/m)(T cos 4 + 2 sin 4) (25.4)

Let us assume that the ratio between the electron arrival velocity and the electron emis-

sion velocity is a constant, (v/vo) = k, so that we may combine Eqs. 25.2 and 25.4 to

give

2eE cos4
v k 1 '(25.5)

mo

and

E = L- m/e, (25. 6)
P

where

k + 1 T cos + 2 sinc. (25. 7)k - 1 Os + 2sin4.

If we combine Eqs. 25. 5 and 25. 6, writing the velocity in terms of the electron arrival

energy u given by eu = mv2/2, we obtain a frequency

(k-1) ( 1eu)1/2 (25.8)
f = krL cos 8 (2 5-8)

Furthermore, for a given experiment at fixed and fixed d the minimum electric field

in Eq. 25. 6 occurs for a maximum . Maximizing ) with respect to the phase of the

emitted electrons, 4, gives

=tan (k +1) () (25. 9)

It is an unfortunate fact that we do not have available the necessary information on

the fundamental processes involved in these considerations to substitute values of the

parameters in Eqs. 25. 6, 25. 7, 25.8, and 25.9 to obtain a numerical solution. We

therefore have to use them as semiempirical relations to calculate this breakdown

region.

Hatch and Williams have made fairly extensive measurements to which we may fit

these equations. Their data are shown in Fig. 27. Data on the lower branch of the

curve were taken by increasing the electric field strength until breakdown occurred. By

suddenly applying a high field and then lowering it slowly, the upper breakdown curve

1. A. J. Hatch and H. B. Williams, J. Appl. Phys. 25, 417 (1954).
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Fig. 28. Theoretical calculation of breakdown for 3-cm electrode separation,
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was observed. Equation 25.6 fits the nearly straight line segment a-b in Fig. 27 when

( = 6.6. Using this empirically fitted value for (c in Eqs. 25. 7 and 25. 9 we find that

for this case k = 3, = 18 ° . If we continue to assume that k is constant, we may obtain

a family of straight lines of slope 2 on a log-log plot of Ep versus frequency for different

values of . Such a plot is shown in Fig. 28. The resonance line A-B for = 18 ° corre-

sponds to the segment a-b of Fig. 28. The resonance line C-D in Fig. 28 for -= -56 °

corresponds to the segment c-d of Fig. 27.

From Eq. 25. 8 a frequency may be determined for each value of corresponding

to a particular electron arrival energy u. The value of the arrival energy which most

nearly corresponds to the experimental curve is u = 60 ev. This is the section B-C of

Fig. 28. In Fig. 29 are compared the results of this theory with the experimental meas-

urements of Hatch and Williams.

A fair amount of self-consistency is evidenced by the various studies of this

type of secondary electron resonance breakdown. Hatch and Williams found k = 3,

-56° q S< 18°, and u = 60 ev. Danielsson assumed k = o (v = 0), 0° 4 90 ° , and

found u = 80 ev, Henneburg, Orthuber, and Stendel 2 calculated 0° 1< 32. 5, assuming

zero electron-emission energy. Gill and von Engel 3 found k = 4, u = 90 ev, and the cut-

off occurred at - 58°. Their treatment did not include a second limiting value of .

These values of k and u are not inconsistent with known secondary electron-emission

energies and yields.

Most observers have not taken their data in such a way as to measure the upper

branch of the breakdown curve. The common experimental method is to raise the

voltage until the tube breaks down at a given frequency. In this case the data take the

form shown in Fig. 30, in which the vertical segment of the curve is termed a cut-off.

Such a condition corresponds to point C of Fig. 28. This cut-off frequency may be cal-

culated from Eq. 25. 8 by using the upper breakdown phase angle u:

f = u / eu)1/2 (25. 10)co kwL cos u 8m

For a constant k, u, and u, this takes the form

f = (constant)/L, (25.11)
co

where for any particular case the constant may be obtained by fitting to the data.

A collection of measured values for the cut-off frequency, fco' as a function of the

reciprocal electrode separations, (1/L) is plotted 4 in Fig. 31. It seems obvious that

1. U. Danielsson, Diplomarbeit K. Techn. Hochschule, Stockholm (1943).

2. W. Henneburg, R. Orthuber, and E. Stendel, Z. tech. Phys. 17, 115 (1936).

3. E. W. B. Gill and A. von Engel, Proc. Roy. Soc. 192A, 446 (1948).

4. Other workers cited in this section and C. Gutton, Compt. Rendu 178, 467
(1924); C. Gutton, H. Gutton, Compt. Rendu 186, 303 (1928); H. Gutton, Ann. Phys.
13, 62 (1930).

58



60

50

0

(n
I

w

40

30

20

10

1u 4 8 12 16 20
WAVE LENGTH (METERS)

24 28

Fig. 30. Breakdown field strength as a function of wavelength for flat-ended
cylindrical tubes 3 cm and 6 cm long with axes parallel to the field
for hydrogen at a pressure of 1 Hg

u)

0

CDW
oz
W
a
W
X

ILI

so02

w

Ii
CL.

0I-
0

RECIPROCAL OF ELECTRODE SEPARATION (CM-')

Fig. 31. Summary of cut-off frequencies versus reciprocal electron separation
from data of several observers.

A Gutton
m Gill and von Engel

* Hatch and Williams
Solid line, cut-off law, f = 79/Lco

59

'C

B

I I I I I I
PA I I I I , E I

- -------------- ----------------



Eq. 25. 11 is verified by these data.

The breakdown voltage at cut-off is

u(k- 1)2 u
Vco 2 2 (25. 12)

co2k cos u

Thus the breakdown voltage at cut-off is independent of electrode separation and applied

frequency. For fixed k and u', Eq. 25. 12 may be written as

Vco = (constant) u (25. 13)

where the constant may be determined empirically.
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E. SUMMARY OF HIGH-FREQUENCY BREAKDOWN MECHANISMS

26. The pA-pX Plane

Many experimenters have studied the breakdown of a gas discharge at various fre-

quencies and in various different geometrical arrangements. Most workers have

obtained breakdown data in hydrogen and several have included in their reports sufficient

detail for determining the parameters p, X, and A. When these parameters are known,

the data may be plotted in the pA-pk plane of Fig. 3. Two general experimental methods

of collecting data have been used. The breakdown measurements reported in Chapter A

were taken with the frequency constant with a given electrode separation and with a

varying pressure. Such a technique results in data in which a single run would plot as

a line at 45 ° on the pA-pX plane. The extent of the measurements taken in hydrogen,

presented in Chapter A, are plotted in this way in Fig. 32. The breakdown curves

reproduced in Chapters C and D were taken by varying the frequency at a given pres-

sure and electrode separation. These data will therefore plot as horizontal lines on the

pA-pX plane, and the measurements discussed in Chapters C and D are thus indicated

on Fig. 32. It is clear from this figure that data exist which cross the various limits

and regions discussed throughout this entire article, and it is therefore important to

correlate the data of various workers to determine whether or not, for a single gas, an

over-all picture may be arrived at.

27. The pA-pX-EA Surface

In our discussion of proper variables in Section 4 we arrived at the variables pA,

pX, and EA from dimensional analysis considerations, and therefore these variables

should not be restricted to any particular breakdown mechanism. All breakdown data

taken for a given gas should fall in a single pA-pX-EA surface. This is shown for

hydrogen in Fig. 33, constructed from the actual data reported in the literature. Not

only do all of the data fall on a single surface, but insofar as the work of different

experimenters overlaps on the illustrated surface, their measurements agree within

the accuracy of drawing such a model.

Figure 33 has been drawn to summarize the sections of this article. Regions 1 and

2 were discussed in Chapter A, particularly in Sections 3 and 12. Region 1 corre-

sponds to the high-pressure data for hydrogen illustrated in Fig. 2. In Region 2 the

effective field defined by Eq. 1. 5 is significant. The rising curve along the optimum

breakdown line for increasing A results, for example, from the nonuniform field effects

discussed in Section 16, and illustrated in Fig. 11. Region 3 is described in Chapter C;

Region 4, in Chapter D.

A similar pA-pk-EA surface could be drawn for different gases and for the super-

imposed dc and magnetic field of Sections c and d by substituting for the geometrical

A the appropriate effective A discussed in these sections.
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