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We develop a stochastic model of nonsynchronous asset prices based on sampling with

random censoring. In addition to generalizing existing models of non-trading our frame-

work allows the explicit calculation of the effects of infrequent trading on the time series

properties of asset returns. These are empirically testable implications for the variances,

autocorrelations, and cross-autocorrelations of returns to individual stocks as well as

to portfolios. We construct estimators to quantify the magnitude of non-trading ef-

fects in commonly used stock returns data bases, and show the extent to which this

phenomenon is responsible for the recent rejections of the random walk hypothesis.
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1. Introduction.

It has long been recognized that the sampling of economic time series plays a subtle

but critical role in determining their stochastic properties. Perhaps the best example

of this is the growing literature on temporal aggregation biases that are created by

confusing stock and flow variables. This is the essence of Working's (1960) now classic

result in which time-averages are mistaken for point-sampled data. More generally,

econometric problems are bound to arise when we ignore the fact that the statistical

behavior of sampled data may be quite different from the behavior of the underlying

stochastic process from which the sample was obtained. Yet another manifestation of

this general principle is what may be called the "non-synchronicity" problem, which

results from the assumption that multiple time series are sampled simultaneously when

in fact the sampling is nonsynchronous. For example the daily prices of financial

securities quoted in the Wall Street Journal are usually "closing" prices, prices at which

the last transaction in each of those securities occurred on the previous business day.

It is apparent that closing prices of distinct securities need not be set simultaneously,

yet few empirical studies employing daily data take this into account.

Less apparent is the fact that ignoring this seemingly trivial non-synchronicity can

result in substantially biased inferences for the temporal behavior of asset returns. To

see how, suppose that the returns to stocks i and j are temporally independent but

i trades less frequently than j for some reason. If news affecting the aggregate stock

market arrives near the close of the market on one day it is more likely that j's end-of-

day price will reflect this information than t's, simply because i may not trade after the

news arrives. Of course, i will respond to this information eventually but the fact that

it responds with a lag induces spurious cross-autocorrelation between the closing prices

of i and j. As a result, a portfolio consisting of securities i and j will exhibit serial

dependence even though the underlying data-generating process was assumed to be

temporally independent. Spurious own-autocorrelation is created in a similar manner.

These effects have obvious implications for the recent tests of the random walk and

efficient markets hypotheses.

In this paper we propose a simple stochastic model for this phenomenon, known

to financial economists as the "nonsynchronous-trading" or "non-trading" problem.

Our specification captures the essence of non-trading but is tractable enough to permit
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explicit calculation of all the relevant time series properties of sampled data. Since

most empirical investigations of stock price behavior focus on returns or price changes,

we take as primitive the [unobservable] return-generating process of a collection of

securities. The non-trading mechanism is modeled as a random censoring of returns

where censored observations are cumulated so that observed returns are the sum of all

prior returns that were consecutively censored. For example, consider a sequence of

five consecutive days for which returns are censored only on days 3 and 4; the observed

returns on day 2 is assumed to be the true or "virtual" returns, determined by the

primitive return-generating process. Observed returns on day 3 and 4 are zero, and the

observed return on day 5 is the sum of virtual returns from days 3 to 5. Each period's

virtual return is random and captures movements caused by information arrival as well

as idiosyncratic noise. The particular censoring [and cumulation] process we employ

models the lag with which news and noise is incorporated into security prices due to

infrequent trading. By allowing cross-sectional differences in the random censoring

processes we are able to capture the effects of non-trading on portfolio returns when

only a subset of securities suffers from infrequent-trading. Although the dynamics of our

stylized model is surprisingly rich they yield several important empirical implications.

Using these results we estimate the probabilities of non-trading to quantify the effects

of non-synchronicity on returns-based inferences, such as the rejection of the random

walk hypothesis in Lo and MacKinlay (1988a).

Perhaps the first to recognize the importance of nonsynchronous price quotes was

Fisher (1966). Since then more explicit models of non-trading have been developed by

Scholes and Williams (1977), Cohen, Maier, et. al. (1978, 1986), and Dimson (1979).

Whereas earlier studies considered the effects of non-trading on estimating betas in

the Capital Asset Pricing Model (CAPM), more recent attention has been focused

on spurious autocorrelations induced by nonsynchronous trading. 3 Our emphasis also

lies in the autocorrelation and cross-autocorrelation properties of nonsynchronously

sampled data and the model we propose extends and generalizes existing results in

several directions. First, previous formulations of non-trading require that each security

Day l'» return obviously depends on how many consecutive days prior to 1 that the security did not trade. If it traded
on day 0, then the day 1 return is simply equal to its virtual return; if it did not trade at but did trade at -1, then day
l's return is the sum of day and day l's virtual returns; etc.

2 See, for example, Cohen, Hawawini, et. al. (1983a,b), Dimson (1979), and Scholes and Williams (1977).

'See Atchison, Butler, and Simonds (1987), Cohen, Maier, et. al. (1979,1986), Lo and MacKinlay (1988a), and
Muthuswamy (1988).
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trades within some fixed time interval whereas in our approach the time between trades

is stochastic. Second, our framework allows us to derive closed-form expressions for

the means, variances, and covariances of observed returns as functions of the non-

trading process. These expressions yield simple estimators for the probabilities of non-

trading. For example we show that the relative likelihood of security i trading more

frequently than security j is given by the ratio of the t,j-th autocovariance with the

j, t'-th autocovariance. With this result, specification tests for nonsynchronous trading

may be constructed based on the degree of asymmetry in the autocovariance matrix

of the returns process. Third, we present results for portfolios of securities grouped by

their probabilities of non-trading; in contrast to the spurious autocorrelation induced

in individual security returns which is proportional to the square of its expected return,

we show that non-trading induced autocorrelation in portfolio returns does not depend

on the mean. This implies that the effects of non-trading may not be detectable in

the returns of individual securities [since the expected daily return is usually quite

small], but will be more pronounced in portfolio returns. Fourth, we quantify the

impact of time aggregation on non-trading effects by deriving closed-form expressions

for the moments of time-aggregated observed returns. Allowing for random censoring

at intervals arbitrarily finer than the finest sampling interval for which we have data lets

us uncover aspects of infrequent trading previously invisible to econometric scrutiny.

This also yields testable restrictions on the time series properties of coarser-sampled

data once a sampling interval has been selected. Finally, we apply these results to daily,

weekly, and monthly stock returns to gauge the empirical relevance of non-trading for

recent findings of predictability in asset returns.

In Section 2 we present our model of non-trading and derive its implications for

the time series properties of observed returns. Section 3 reports corresponding results

for time-aggregated returns and we apply these results in Section 4 to daily, weekly,

and monthly data. We discuss extensions and generalizations and conclude in Section

5.

4 For example, Scholes and Williams (1977, footnote 4) assume that "All information about returns over days in which
no trades occur is ignored." This is equivalent to forcing the security to trade at least once within the day. Muthuswamy
(1988) also imposes this requirement. Assumption Al of Cohen, Maier, et. al. (1986, Chapter 6.1) requires that each
security trades at least once in the last JV periods, where TV is fixed and exogenous.
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2. A Model of Nonsynchronous-Trading.

Consider a collection of N securities with unobservable "virtual" continuously-

compounded returns /2,
(
at time t, where t = 1, . .

.
, N. We assume they are generated

by the following stochastic model:

Ri t
= m + fiiAt + tn i=l,...,N (2.1)

where At is some zero-mean common factor and e# is zero-mean idiosyncratic noise

that is temporally and cross-sectionally independent at all leads and lags. Since we

wish to focus on non-trading as the sole source of autocorrelation we also assume that

the common factor At is independently and identically distributed, and is independent

of t
lt _ic for all i, t, and k.

In each period t there is some chance that security i does not trade, say with

probability Pj. If it does not trade its observed return for period t is simply 0, although

its true or "virtual" return R±
t

is still given by (2.1). In the next period t + 1 there is

again some chance that security i does not trade, also with probability p^. We assume

that whether or not the security traded in period t does not influence the likelihood of

its trading in period t + 1 or any other future period, hence our non-trading mechanism

is independent and identically distributed for each security i. If security t does trade

in period t + 1 and did not trade in period t we assume that its observed return R9. , -

at t + 1 is the sum of its virtual returns Rit+i, Riti and virtual returns for all past

consecutive periods in which i has not traded. In fact, the observed return in any period

is simply the sum of its virtual returns for all past consecutive periods in which it did

not trade. That is, if security i trades at time t + 1, has not traded from time t — k to

t, and has traded at time t — k — 1, then its observed time t + 1 return is simply equal

to the sum of its virtual returns from t — ktot + 1. This captures the essential feature

of non-trading as a source of spurious autocorrelation: news affects those stocks that

trade more frequently first and influences the returns of thinly traded securities with a

lag. In our framework the impact of news on returns is captured by the virtual returns

These strong assumptions are made primarily for expositional convenience; they may be relaxed considerably. See
Section 5 for further discussion.

This assumption may be relaxed to allow for state-dependent probabilities, i.e., autocorrelated non-trading; see the
discussion in Section 5
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process (2.1), and the lag induced by thin or nonsynchronous trading is modeled by

the observed returns process R°
t

.

To derive an explicit expression for the observed returns process and to deduce its

time series properties we introduce two related stochastic processes:

Definition 2.1. Let 6
lt
and X^

t
(k) be the following Bernoulli random variables:

{1
with probabihty pt

with probability 1 — pt

Xit
(k) = {l-6it)6it_16it_2

---6
it_k , k >

1 with probability (1 — Pi)p^

(2.2)

t

with probability 1 — (1 — Pi)p

(2.3)

Xit (0) = l-6it (2.4)

where it has been implicitly assumed that {6^} is an independently and identically

distributed random sequence for i = 1, 2, . .
.

, N.

The indicator variable 6^ t
is unity when security i does not trade at time t and zero

otherwise. X{
t
(k) is also an indicator variable and takes on the value 1 when security i

trades at time t but has not traded in any of the k previous periods, and is otherwise.

Since pt is within the unit interval, for large k the variable X{
t
(k) will be with high

probability. This is not surprising since it is highly unlikely that security i should trade

today but never in the past.

Having defined the X^
t
(kys it is now a simple matter to derive an expression for

observed returns:

5.4 - 5 - 4.89



Definition 2.2. The observed returns process R°
t

is given by the following stochastic

process:

K = T, X^ k)^t-k » = 1,...,JV. (2-5)

A:=0

If security t does not trade at time t then 6± t
= 1 which implies that X^

t
(k) = for all

it, thus R°. =0. If t does trade at time t, then its observed return is equal to the sum

of today's virtual return iEtt and its past kt
virtual returns, where the random variable

kt is the number of past consecutive periods that i has not traded. We call this the

duration of non-trading and it may be expressed as:

(2.6)

Although Definition 2.2 will prove to be more convenient for subsequent calculations,

kt may be used to give a more intuitive definition of the observed returns process:

Definition 2.3. The observed returns process R°
t

is given by the following stochastic

process:

kt

K = E^t-* * = !,•••.N. (2.7)

k=o

Whereas expression (2.5) shows that in the presence of non-trading the observed returns

process is a [stochastic] function of all past returns, the equivalent relation (2.7) reveals

that R°
t
may also be viewed as a random sum with a random number of terms. To

7 This is similar in spirit to Scholes and Williams (1977) subordinated stochastic process representation of observed

returns, although we do not restrict the trading times to take values in a fixed finite interval. With suitable normalizations

it may be shown that our non-trading model converges weakly to the continuous-time Poisson process of Scholes and
Williams (1976). From (2.5) the observed returns process may also be considered an infinite-order moving average of

virtual returns where the MA coefficients are stochastic. This is in contrast to Cohen, Maier, et. al. (1986, Chapter 6)

in which observed returns are assumed to be a finite-order MA process with non-stochastic coefficients. Although our
non-trading process is more general, their observed returns process includes a bid-ask spread component; ours does not.
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see how the probability pt
is related to the duration of non-trading consider the mean

and variance of kf.

i -Pi

(i - p*Y'

VarM = /t _, 2
•

(
2 -9

)

If pt
= A then security t goes without trading for one period at a time on average;

average; if pt
= | then the average number of consecutive periods of non-trading is

3. As expected, if the security trades every period so that pt
= 0, both the mean and

variance of kt are identically zero.

In Section 2.1, we derive the implications of our simple non-trading model for the

time series properties of individual security returns and consider corresponding results

for portfolio returns in Section 2.2.

2.1. Implications for Individual Returns.

To see how non-trading affects the time series properties of individual returns we

require the moments of R°
t
which in turn depend on the moments of X^

t
{k). To conserve

space we summarize the results here and relegate their derivation to the Appendix:

Proposition 2.1. Under Definition 2.2 the observed returns processes {R°
t }

(i =

1, . .
.

, N) are covariance-stationary with the following first and second moments:

E[R°
t ]

= m (2.10)

Var[^] = of + -^-
Mt
2

(2.11)
1 - Pi
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,2„n-
iifp

t

n
for i = j,n>0

Cov[l&J$ +il ]
=

^ (1
_
p, )(1

_
pj) r2„n

(2.12)

r%pTWj<>W fori*j,n>

Corr[J$,2$+n ] =
2
^^ff 2

,
»>0 (2.13)

*? + r^x

where a
t

2 = Varf-R^] and o l
y = Var[A

( ]

From (2.10) and (2.11) it is clear that non-trading does not affect mean of observed

returns but does increase its variance if the security has a non-zero expected return.

Moreover, (2.13) shows that having a non-zero expected return induces negative serial

correlation in individual security returns at all leads and lags which decays geometri-

cally. That the autocorrelation vanishes if the security's mean return /J
t

is zero is an

implication of nonsynchronous-trading that does not extend to the observed returns of

portfolios.

Proposition 2.1 also allows us to calculate the maximal negative autocorrelation for

individual security returns that is attributable to non-trading. Since the autocorrelation

of observed returns (2.13) is a non-positive continuous function of pr , is zero at p^ = 0,

and approaches zero as pt
approaches unity, it must attain a minimum for some p, in

[0,1). Determining this lower bound is a straightforward exercise in calculus hence we

calculate it only for the first-order autocorrelation and leave the higher-order cases to

the reader.

Corollary 2.1. Under Definition 2.2 the minimum first-order autocorrelation of the

observed returns process {R°
t
} with respect to non-trading probabilities p, exists, is

given by:

Min Corr[J&,i£+1 ]
= - (- ^ll, ) (2.14)

iPi)
lt tt+l

V l + v^lfcl /
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and is attained at:

(2.15)
l + \/2~|£

t |

where £, = A*t'/°t- Over all values of p^ G [0, 1) and f, G (
— oo, +oo), we have:

Inf Corr[/$,J$+1 ]
= -i (2.16)

which is the h'iziit of (2.14) as |ft-| increases without bound, but is never attained by

finite fr
.

The maximal negative autocorrelation induced by non-trading is small for individual

securities with small mean returns and large return variances. For securities with small

mean returns the non-trading probability required to attain (2.14) must be very close

to unity. Corollary 2.1 also implies that non-trading induced autocorrelation is mag-

nified by taking longer sampling intervals since under the hypothesized virtual returns

process doubling the holding period doubles jz
t
but only multiplies o

x
by a factor of

\[2~
. Therefore more extreme negative autocorrelations are feasible for longer-horizon

individual returns. However, this is not of direct empirical relevance since the effects of

time aggregation have been ignored. To see how, observe that the non-trading process

of Definition 2.1 is not independent of the sampling interval but changes in a nonlinear

fashion. For example, if a "period" is taken to be one week, the possibility of daily

non-trading and all its concomitant effects on weekly observed returns is eliminated by

assumption. A proper comparison of observed returns across distinct sampling intervals

must allow for non-trading at the finest time increment, after which the implications

for coarser-sampled returns may be developed. We shall postpone further discussion

until Section 3 where we address this and other issues of time aggregation explicitly.

Other important empirical implications of our non-trading model are captured

by (2.12) of Proposition 2.1. For example, the sign of the cross-autocovariances is

determined by the sign of /?,•/?,-. Also, the expression is not symmetric with respect
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to i and j: if security t always trades so that p, = 0, there is still spurious cross-

autocovariance between R+
t
and i2,t+n , whereas this cross-autocovariance vanishes if

p. = irrespective of the value of p,. The intuition for this result is simple: when

security j exhibits non-trading the returns to a constantly trading security i can forecast

j due to the common factor A( present in both returns. That j exhibits non-trading

implies that future observed returns R°t+n will be a weighted average of all past virtual

returns R]t+n_^ [with the X.t+n (kys as random weights], of which one term will be the

current virtual return RJt
. Since the contemporaneous virtual returns i?^ and R]t are

correlated (due to the common factor), R^
t
can forecast R°t+n . The reverse however

is not true. If security t exhibits non-trading but security j does not [so that py = 0],

the covariance between R°
t
and R^t+n is clearly zero since R°

t
is a weighted average of

past virtual returns R^t-k which is independent of Rjt+n by assumption.

The asymmetry of (2.12) yields an empirically testable restriction on the cross-

autocovariances of returns. Since the only source of asymmetry in (2.12) is the proba-

bility of non-trading, information regarding these probabilities may be extracted from

sample moments. Specifically, denote by R% the vector [R\
t
R%

t
• • • R%

t
\' of observed

returns of the ./V securities and define the autocovariance matrix Tn as:

Tn = E\{R°
t
-n){R?+n -n)'\ , M e E[R?] (2.17)

Denoting the t,j-th element of Tn by 7t
y(n) we have by definition:

,..(„, =
('-")'' -^'ft^^. (2.18)

L ViVj

If the non-trading probabilities p%
differ across securities Tn is asymmetric. From (2.18)

it is evident that:

"An alternative interpretation of this asymmetry may be found in the causality literature, in which Rft
is said to

"cause" R°
t

if the return to i predicts the return to j. In the above example, security •' "causes" security j when ;' is

subject to non-trading but t is not. Since our non-trading process may be viewed as a form of measurement error, the fact
that the returns to one security may be "exogenous" with respect to the returns of another has been proposed under a
different guise in Sims (197<, 1977).
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(*V
. (2,9)

1ji[n) \Px

Therefore relative non-trading probabilities may be estimated directly using sample

autocovariances f n . To derive estimates of the probabilities pt
themselves we need

only estimate one such probability, say pi, and the remaining probabilities may be

obtained from the ratios (2.19). A consistent estimator of p\ is readily constructed

with sample means and autocovariances via (2.12).

2.2. Implications for Portfolio Returns.

Suppose we group securities by their non-trading probabilities and form equally-

weighted portfolios based on this grouping so that portfolio .4 contains A*a securities

with identical non-trading probability pa , and similarly for portfolio B. Denote by R°
t

and R%
t
the observed time-i returns on these two portfolios respectively, thus:

Kt = =-£K > « = «,». (2-20)
Nk

fefc

where IK is the set of indices of securities in portfolio k. Since individual returns are

assumed to be continuously-compounded RK t is the return to a portfolio whose value is

calculated as an unweighted geometric average of the included securities' prices. The

time series properties of (2.20) may be derived from a simple asymptotic approximation

and are given in:

Proposition 2.2. As the number of securities in portfolios A and B (denoted by Na

and iVj respectively) increases without bound the following equalities obtain almost

surely:

'The expected return of such a portfolio will be lower than that of an equally-weighted portfolio whose returns are

calculated as the arithmetic means of the simple returns of the included securities. This issue is examined in greater

detail by Modest and Sundaresan (1983) and Eytan and Harpar (1986) in the context of the Value Line Index which until

recently was an unweighted geometric average.
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oo

R°K
a=s -

fMK + (1 - p«)/5« $>«A*-* (2-21)

A:=0

where:

** s ]J-5> • '«
s F^ A"

(2<22)

for /c = a, 6. The first and second moments of the portfolios' returns are given by:

E\R°Kt \
= Mic = £(*«*] (2-23)

.0
1 a2 I ! ~~ Vk \ 2

Var[i&] S ft^-ZLjoi (2.24)

Cov[J&,J&+n ]
£ /^(^-^p^ ,

n>0 (2.25)

Corr[i&,J&+n ]
^ p

n
K , n>0 (2.26)

Cov[J&,Jfc+n ]
S iL^KL_wL^a 2

p
n

(2 .27)
1 - PaPfc

where the symbol "=" indicates that the equah'ty obtains only asymptotically.

From (2.23) we see that observed portfolio returns have the same mean as that of its

virtual returns. In contrast to observed individual returns, R°
t
has a lower variance

asymptotically than that of its virtual counterpart Rat since:
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a v- r
a v- r

= Ma + 0a*t (2.29)

where (2.29) follows from the law of large numbers applied to the last term in (2.28).

Thus Var[iZa (]
= /J^, which is greater than or equal to Var[i?°

t ].

Since the non-trading induced autocorrelation (2.26) declines geometrically ob-

served portfolio returns follow a first-order autoregressive process with autoregressive

coefficient equal to the non-trading probability. In contrast to expression (2.12) for

individual securities the autocorrelations of observed portfolio returns do not depend

explicitly on the expected return of the portfolio, yielding a much simpler estimator

for pK : the n-th root of the n-th order autocorrelation coefficient. Therefore we may

easily estimate all non-trading probabilities by using only the sample first-order own-

autocorrelation coefficients for the portfolio returns. Comparing (2.27) to (2.12) shows

that the cross-autocovariance between observed portfolio returns takes the same form

as that of observed individual returns. If there are differences across portfolios in

the non-trading probabilities the autocovariance matrix for observed portfolio returns

will be asymmetric. This may give rise to the types of lead-lag relations empirically

documented by Lo and MacKinlay (1988b) in size-sorted portfolios. Ratios of the

cross-autocovariances may be formed to estimate relative non-trading probabilities for

portfolios since:

Cov[R°
at , R°bt+n ] ± f ph ^

Coy[R
bv

R°at+n } \ Pa

Moreover, for purposes of specification testing these ratios give rise to many "over-

identifying" restrictions since:

laKi{n)lKlK2 {n) lK2K3 {n)--- lKr_ lKr {n) lKrb {n) (

p

b \
n

7/c 1
a(n)7K2 /c 1

{n)lK3 K 2
(»)•• T/c r /c r_ t

{n)lbKr (n) V Pa
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for any arbitrary sequence of distinct indices /ci, k-2, ..., icr , <* # b, r < Np , where

Np is the number of distinct portfolios and iKiKj {n) = Cov[R%.
t
,R%.t+n ]. Therefore,

although there are N% distinct covariances in Tn the restrictions implied by the non-

trading process allow only Np(Np + l)/2 free parameters.

3. Time Aggregation.

The discrete-time framework we have so far adopted does not require the speci-

fication of the calendar length of a "period." This generality is more apparent than

real since any empirical implementation of Propositions 2.1 and 2.2 must either im-

plicitly or explicitly define a period to be a particular fixed calendar time interval.

Furthermore, once the calendar time interval has been chosen the stochastic behavior

of coarser-sampled data is restricted by the parameters of the most finely sampled pro-

cess. For example, if the length of a period is taken to be one day then the moments

of observed monthly returns may be expressed as functions of the parameters of the

daily observed returns process. We derive such restrictions in this section. Towards

this goal we require the following definition:

Definition 3.1. Denote by R°
T {q)

the observed return of security i at time r where

one unit of r-time is equivalent to q units oft-time, thus:

*?M = E R°f (3-1)

t=(r-l)q+l

The change of time-scale implicit in (3.1) captures the essence of time aggregation. We

then have the following result:

Proposition 3.1. Under the assumptions of Definitions 2.1-2.3, the observed returns

processes {R°
T (q)} (i = 1, . .

.
, N) are covariance-stationary with the following first and

second moments:
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E[R°
T {q)\ = qm (3.2)

, 2pAl-vq
) ,

Cov[
r̂ (g),^T+n ( 9 )] = -£p? ^ 73T- •

n>0
(
3 -4

)

c-«(f).* #.(.)] = -
g(1:; )

,; 2ft (
1-^ -

»>° m

oori^w^^w] =
(1^P7

j)^y^ri)?+1

(^g)

2

*' ^ J ,
n > . (3.6)

wnere fc
= Mt/^f

Although expected returns time-aggregate linearly, (3.3) shows that variances do not.

Due to the negative serial correlation in R°
t
the variance of a sum of these will be

less than the sum of the variances. Time aggregation does not affect the sign of the

autocorrelations in (3.5) although their magnitudes do decline with the aggregation

value q. As in Proposition 2.1 the autocorrelation of time-aggregated returns is a non-

positive continuous function of pt
on [0,1) which is zero at pt

= and approaches

zero as pt
approaches unity, hence it attains a minimum. To capture the behavior of

the first-order autocorrelation we plot it as a function of pt
in Figure 1 for a variety

of values of q and f . As a guide to an empirically plausible range of values for £

consider that the ratio of the sample mean to the sample standard deviation for daily,

weekly, and monthly equally-weighted stock returns indexes are 0.09, 0.16, and 0.21
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respectively for the sample period from 1962 to 1987. 10 The values of q are chosen to

be 5, 22, 66, and 244 to correspond to weekly, monthly, quarterly, and annual returns

since q — 1 is taken to be one day. Figure la plots the first order autocorrelation

p\{p) for the four values of q with £ = 0.09. The curve marked a
q = 5" shows that

the weekly first-order autocorrelation induced by non-trading never exceeds -5 percent

and only attains that value with a daily non-trading probability in excess of 90 percent.

Although the autocorrelation of coarser-sampled returns such as monthly or quarterly

have more extreme minima, they are attained only at higher non-trading probabilities.

Also, time-aggregation need not always yield a more negative autocorrelation as is

apparent from the portion of the graphs to the left of, say, p = .80; in that region, an

increase in the aggregation value q leads to an autocorrelation closer to zero. Indeed as

q increases without bound the autocorrelation (3.5) approaches zero for fixed pt , hence

non-trading has little impact on longer-horizon returns. The effects of increasing £ are

traced out in Figures lb and c. Even if we assume £ = 0.21 for daily data, a most

extreme value, the non-trading induced autocorrelation in weekly returns is at most -8

percent and requires a daily non-trading probability of over 90 percent. From (2.8) we

see that when pt
= .90 the average duration of non-trading is 9 days! Since no security

listed on the New York or American Stock Exchanges is inactive for two weeks (unless

it has been de-listed), we may infer from Figure 1 that the impact of non-trading for

individual short-horizon stock returns is negligible.

To see the effects of time aggregation on observed portfolio returns, we define the

following:

Definition 3.2. Denote by R%T (q) the observed return of portfolio A at time r where

one unit of t -time is equivalent to q units oft-time, thus:

rq

R°aT (q) = £ R°at (3.7)

t=(r-l) 9+l

where R£
t

is given by (2.20).

""These are obtained from Lo and MacKinlay (1988b, Tables la,b,c).
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Applying the asymptotic approximation of Proposition 2.2 then yields:

Proposition 3.2. Under the assumptions of Definitions 2.1-2.3, the observed portfo-

lio returns processes {R° T (q)} and {R%
T {q)}

are covariance-stationary with the following

first and second moments as Na and iVj increase without bound:

E[R°KT {q)\ = qnK

Var[J£r (9 )]
=

Cov[R°KT(q),RKT+n (q)] ±

CoTT[R°KT (q),R°KT+n (q )}
±

Q ~ 2Pk
1-P%
1 ~ Pk

q(l - pi) - 2pK (l - p%)
'

pK
H

K o-x , n >

n >

(3.8)

(3.9)

(3.10)

(3.11)

C v[R°aT (q),R°bT+n (q)} = <

Pa(lVa)(l-pt)
2
+Pt (l-p^)(l-Pa)

2

q (1-Pa)(l-P4 )

i

—

—

-* for n =
1-PaPh

(1-Pa)(l-Pt)
l-PaP6 1-P6

nq-q+1p?-^0a b*i

(3.12)

for n >

for k = a, b, q > 1, and arbitrary portfolios a, b, and time r.

Equation (3.11) shows that time aggregation also affects the autocorrelation of observed

portfolio returns in a highly nonlinear fashion. In contrast to the autocorrelation for

time-aggregated individual securities, (3.11) approaches unity as pK approaches unity

hence the maximal autocorrelation is 1.0. To investigate the behavior of the portfolio

u Muthuswamy (1988) reports a maximal portfolio autocorrelation of only 50 percent because of his assumption that
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autocorrelation we plot it as a function of the portfolio non-trading probability p in

Figure Id for q = 5,22,66, and 55. Besides differing in sign, portfolio and individual

autocorrelations also differ in absolute magnitude, the former being much larger than

the latter for a given non-trading probability. If the non-trading phenomenon is extant

it will be most evident in portfolio returns. Also, portfolio autocorrelations are mono-

tonically decreasing in q so that time aggregation always decreases non-trading induced

serial dependence in portfolio returns. This implies that we are most likely to find ev-

idence of non-trading in short-horizon returns. We exploit both these implications in

Section 4.

4. An Empirical Analysis of Non-Trading.

Before considering the empirical evidence for non-trading effects we summarize the

qualitative implications of the previous sections propositions and corollaries. Although

virtually all of these implications are consistent with earlier models of nonsynchronous-

trading, the sharp comparative static results are unique to our general framework. The

presence of nonsynchronous-trading:

1. Does not affect the mean of either individual or portfolio returns.

2. Increases the variance of individual security returns [with non-zero mean]. The

smaller the mean, the smaller is the increase in the variance of observed returns.

3. Decreases the variance of observed portfolio returns when portfolios consist of se-

curities with common non-trading probability.

4. Induces geometrically declining negative serial correlation in individual security

returns [with non-zero mean]. The smaller the mean [in absolute value], the closer

the autocorrelation is to zero.

each stock trades at least once each day.
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5. Induces geometrically declining positive serial correlation in observed portfolio re-

turns when portfolios consist of securities with a common non-trading probability,

yielding an AR(l) for the observed returns process.

6. Induces geometrically declining cross-autocorrelation between observed returns of

securities :' and j which is of the same sign as
t 0j. This cross-autocorrelation is

asymmetric: the covariance of current observed returns to i with future observed

returns to j is generally not the same as the covariance of current observed re-

turns to j with future observed returns to i. This asymmetry is due solely to the

assumption that different securities have different probabilities of non-trading.

7. Induces geometrically declining positive cross-autocorrelation between observed re-

turns of portfolios A and B when portfolios consist of securities with common

non-trading probabilities. This cross-autocorrelation is also asymmetric and is due

solely to the assumption that securities in different portfolios have different proba-

bilities of non-trading.

8. Induces positive serial dependence in an equally-weighted index if the betas of the

securities are generally of the same sign, and if individual returns have small means.

9. And time aggregation increases the maximal non-trading induced negative auto-

correlation in observed individual security returns, but this maximal negative au-

tocorrelation is attained at non-trading probabilities increasingly closer to unity as

the degree of aggregation increases.

10. And time aggregation decreases the non-trading induced autocorrelation in ob-

served portfolio returns for all non-trading probabilities.

Since the effects of nonsynchronous-trading are more apparent in securities grouped

by non-trading probabilities than in individual stocks, our empirical applications uses

the returns of twenty size-sorted portfolios for daily, weekly, and monthly data from

1962 to 1987. We use size to group securities because the relative thinness of the

market for any given stock has long been known to be highly correlated with the stock's
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total market value, hence stocks with similar market values are likely to have similar

non-trading probabilities.
12 We choose to form twenty portfolios to maximize the

homogeneity of non-trading probabilities within each portfolio while still maintaining

reasonable diversification so that the asymptotic approximations of Proposition 2.2

might still obtain.
13

In Section 4.1 we derive estimates of daily non-trading probabilities

using daily, weekly, and monthly autocorrelations, and in Section 4.2 we consider the

impact of non-trading on the autocorrelation of the equally-weighted market index.

4.1. Daily Non-Trading Probabilities Implicit In Autocorrelations.

Table 1 reports first-order autocorrelation matrices Ti for the vector of five of

the twenty size-sorted portfolio returns using daily, weekly, and monthly data taken

from the Center for Research in Security Prices (CRSP) database. Portfolio 1 con-

tains stocks with the smallest market values and portfolio 20 contains those with the

largest.
14 From casual inspection it is apparent that these autocorrelation matrices are

not symmetric. The second column of matrices are the autocorrelation matrices minus

their transposes and it is evident that elements below the diagonal dominate those

above it. This confirms the lead-lag pattern reported in Lo and MacKinlay (1988b).

That the returns of large stocks tend to lead those of smaller stocks does support the

hypothesis that nonsynchronous-trading is a source of correlation. However, the mag-

nitudes of the autocorrelations for weekly and monthly returns imply an implausible

level of non-trading. This is most evident in Table 2 which reports estimates of daily

non-trading probabilities implicit in the weekly and monthly own-autocorrelations of

Table 1. For example, using (3.11) of Proposition 3.2 the implied daily non-trading

probability of a weekly autocorrelation of 46 percent for portfolio 1 is estimated to be

77.9 percent. 15 Using (2.8) we estimate the average time between trades to be 3.5 days!

12 This is confirmed by the entries of Table 3's second column and by Foerster and Keim (1989).
13 The returns to these portfolios are continuously-compounded returns of individual simple returns arithmetically av-

eraged We have repeated the correlation analysis for continuously-compounded returns of portfolios whose values are

calculated as unweighted geometric averages of included securities' prices. The results for these portfolio returns are

practically identical to those for the continuously-compounded returns of equally-weighted portfolios.
14 We report only a subset of five portfolios for the sake of brevity; the complete set of autocorrelations may be obtained

from the authors on request.
I& Standard errors for autocorrelation-based probability and non-trading duration estimates are obtained by applying

the "delta" method to (2.8) and (3.11) using heteroscedasticity- and autocorrelation-consistent standard errors for daily,

weekly, and monthly first-order autocorrelation coefficients. These latter standard errors are computed by regressing

returns on a constant and lagged returns, and using Newey and West's (1987) procedure to calculate heteroscedasticity-

and autocorrelation consistent standard errors for the slope coefficient [which is simply the first-order autocorrelation
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The corresponding daily non-trading probability is 86.2 percent using monthly returns

implying an average non-trading duration of 6.2 days.

For comparison Table 2 also reports estimates of the non-trading probabilities

using daily data and using trade information from the CRSP files. In the absence

of time aggregation own-autocorrelations of portfolio returns are consistent estimators

of non-trading probabilities, hence the "Daily" entries in Table 2 are simply taken

from the diagonal of the autocovariance matrix in Table 1. For the smaller securities,

the point estimates yield plausible non-trading durations, but the estimated durations

decline only marginally for larger-size portfolios. A duration of even only a third of a

day is much too large for securities in the second largest portfolio. More direct evidence

is provided in the column labelled pK , which reports the average fraction of securities

in a given portfolio that do not trade during the last trading day of the month.

This average is computed over all month-end trading days in 1963 and from 1973 to

1987. The period between 1963 and 1973 is omitted due to trading-status reporting

errors uncovered by Foerster and Keim (1989). Comparing the entries in this column

with those in the others shows the limitations of non-trading as an explanation for

the autocorrelations in the data. Non-trading may be responsible for some of the time

series properties of stock returns but cannot be the only source of autocorrelation.

4.2. Non-Trading and Index Autocorrelations.

Denote by R^
t
the observed return in period t to an equally-weighted portfolio of

all N securities. Its autocovariance and autocorrelation are readily shown to be:

Cov\R°mt ,R°mt+n }
= -^- (4.1)

Corrfi^iC+J = -^ (4.2)

coefficient of returns].
16 This information is provided in the CRSP daily files in which the closing price of a security is reported to be the

negative of the average of the bid and ask prices on days when that security did not trade. See Foerster and Keim (1989)
for a more detailed account. Standard errors for probability estimates based on the fraction of no-trades reported by CRSP
are derived under the assumption of a temporally i.i.d. non-trading process {£,(}; the usual binomial approximation yields

VP«(1 — Pk)/NkT as the standard error for the estimate pK where NK is the number of securities in portfolio k and T is

the number of daily observations with which the non-trading probability pK is estimated. For our sample and portfolios,

N«T fluctuates about 20,000 (192 daily observations, 105 securities per portfolio on average).
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where r o is the contemporaneous covariance matrix of R° and i is an TVxl-vector of

ones. If the betas of the securities are generally of the same sign and if the mean

returns to each security is small, then R^
t

is likely to be positively autocorrelated.

Alternatively, if the cross-autocovariances are positive and dominate the negative own-

autocovariances the equal-weighted index will exhibit positive serial dependence. This

may explain Lo and MacKinlay's (1988a) strong rejection of the random walk hypoth-

esis for the CRSP weekly equal-weighted index which exhibits a first-order autocorre-

lation of 30 percent.

With little loss in generality we let N = 20 and consider the equally-weighted port-

folio of the twenty size-sorted portfolios, an approximately equal-weighted portfolio of

all securities. Using (3.6) of Proposition 3.1 we may calculate the weekly autocorrela-

tion of R^
t
induced by particular non-trading probabilities and beta coefficients. This

is done in Table 3 using four different estimators of daily non-trading probabilities

and two different sets of betas. The first row corresponds to index autocorrelations

computed with the non-trading probabilities obtained from the fractions of negative

share prices reported by CRSP. The first entry .014 is the implied first-order autocor-

relation of the equal-weighted index assuming that all twenty portfolio betas are 1.0,

and the second entry .018 is computed under the assumption that the betas decline

linearly from /?i = 1.5 to /?2o = 0-5. The next three rows report similar implied auto-

correlations with non-trading probabilities estimated from daily, weekly, and monthly

autocorrelations using (3.11). The largest implied first-order autocorrelation for the

weekly equal-weighted returns index is 7.5 percent. Using direct estimates of non-

trading yields an implied autocorrelation of less than 2 percent! These magnitudes

are still considerably smaller than the 30 percent autocorrelation reported by Lo and

MacKinlay (1988a). Taken together, the evidence in Sections 4.1 and 4.2 provide little

support for nonsynchronous-trading as an important source of spurious correlation in

the returns of common stock.
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5. Extensions and Generalizations.

Despite the simplicity of our model of nonsynchronous-trading we hope to have

shown the richness of its implications for observed time series. Although its immediate

application is to the behavior of asset returns, the stochastic model of random cen-

soring may be of more general relevance to situations involving randomly cumulative

measurement errors. Moreover, this framework may be extended and generalized in

many directions with little difficulty, and we conclude by discussing some of these here.

We mention them only in passing since a more complete analysis is beyond the scope

of the present study, but we hope to encourage further research along these lines.

It is a simple matter to relax the assumption that individual virtual returns are

independently and identically distributed by allowing the common factor to be autocor-

related and the disturbances to be cross-sectionally correlated. For example, assuming

that A( is a stationary AR(l) is conceptually straightforward although the computa-

tions of the Appendix become somewhat more involved. This specification will yield

a decomposition of observed autocorrelations into two components: one due to the

common factor and another due to non-trading. Allowing cross-sectional dependence

in the disturbances also complicates the moment calculations but does not create any

intractabilities. Indeed, generalizations to multiple factors, time series dependence

of the disturbances, and correlation between factors and disturbances are only limited

by the patience and perseverance of the reader; the necessary moment calculations are

not intractable, merely tedious.

We may also build dependence into the non-trading process itself by assuming that

the 6tt 's are Markov chains, so that the conditional probability of trading tomorrow

depends on whether or not a trade occurs today. Although this specification admits

compact and elegant expressions for the moments of the observed returns process space

limitations will not permit a complete exposition here. However, a brief summary of

its implications for the time series properties of observed returns may suffice: (l)

Individual security returns may be positively autocorrelated, portfolio returns may be

negatively autocorrelated [But these possibilities are unlikely given empirically relevant

parameter values.]; (2) It is possible [but unlikely] for autocorrelation matrices to be

17 However, some form of cross-sectional weak dependence must be imposed so that the asymptotic arguments of the

portfolio results still obtain. Such assumptions have been used by Chamberlain (1983), Chamberlain and Rothschild

(1983), and Wang (1988) in generalizing the Arbitrage Pricing Model.
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symmetric; and (3) Spurious index autocorrelation induced by non-trading is higher

[lower] when there is positive [negative] persistence in non-trading. Our initial hope was

that property (3) might be sufficient to explain the magnitude of index autocorrelations

in recent stock market data. However, several calibration experiments indicate the

degree of persistence in non-trading required to yield weekly autocorrelations of 30

percent is empirically implausible. Interested readers may refer to Lo and MacKinlay

(1988c) for details.

One final direction for further investigation is dependence between the non-trading

and virtual returns processes. If virtual returns are taken to be new information then

the extent to which traders exploit this information in determining when [and what] to

trade will show itself as correlation between jR,
£
and 6]t . Many strategic considerations

are involved in models of information-based trading, and an empirical analysis of such

issues promises to be as challenging as it is exciting. However, if it is indeed the case

that autocorrelation in returns is induced by information-based non-trading, in what

sense is this autocorrelation spurious? Our premise is that non-trading is a symptom

of institutional features such as lagged adjustments and non-synchronously reported

prices, and our empirical results show that this is of little practical relevance. But

if non-synchronicity is purposeful and informationally motivated then the subsequent

serial dependence in asset returns may well be considered genuine, since it is the result

of economic forces rather than mismeasurement. Although this is beyond the purview

of the current framework it is nevertheless a fascinating avenue for future research and

may yield an explanation for the recent empirical findings.
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Appendix

Proof of Proposition 2.1:

To derive (2.10)-(2.13), we require the corresponding moments and co-moments

of the Bernoulli variables X^
t
(k). From Definition 2.1 it follows that:

E[Xtt (k)} = (l- ft )P* (Al.l)

E[Xl{k)\ = (l-p
t
)p* (A1.2)

for arbitrary i, t, and k. To compute E[X{
t
(k)X^t+n (l)}, recall from Definition 2.1 that:

Xit{k)Xtt+n {l) = (1 - ta)4t-i • • • Sit-k •
I
1 - Sit+n) 5it+n-l " ' * ^tt+n-/ (^1-3)

If / > n then E[Xlt (k) X^t+n (l)\ = since both 6lt and 1 — 6t( are included in the

product (.41.3), hence the product is zero with probability one. If / < n, it may readily

be shown that the expectation reduces to (l — pz )

2
p , hence we have:

f
(1 - pt )

2
p^

+l if/<n.
E[X

tt
(k)Xlt+n (l)} = I (A1.4)

{ if / > n.

From Definition 2.2, we have:

oo

E[R°
t ] = Y, E l

XM^t-k} = J^E&itWWRit-k] (A1.5a)

k=0 k=0
OO

= m^Tii -p^ = nt
[Ai.bb)

k=0
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where the second equality in (.41.5a) follows from the mutual independence of Xlt (k)

and Rxt-k- This establishes (2.10). To derive (2.11) we first obtain an expression for

the second uncentered moment of R°
t

:

m-t
2

}
= e

oo

Yt
Xit{k)Rit-kY.X^l)Rit-l

Jfc=0 /=0

(,41.6a)

= J2 E l
X?tWRl-k] + 2^^2E\Xit{k)Xit (l)Rit. kRit_ l ]

(AIM)
k=0 k < I

fa? +«?)£(*-«)*? +
Jfc=0

2£E ^[^t(*)^t(0] • £[**-**.-*-*] Ml.6e)

Jb < I

m,
2
+ A + 2ED 1 -p.)p'k

2
+*-')

Jb < I

where 6(x) = \ .,
^

v '
I 1 if i =

(A1.6d)

oo oo

Jb=0/=Jfc+l

(A1.6e)

jb=o V /=o

(A1.6/)

£[#o 2i

it J

„ 2 ~2 o..2 Pt

Pt

[Al.&g)

This yields (2.11) since:

Var[J$] = £[i£ 2
] E2

[ t̂
]

= ^2 o.. 2 Pi
(A1.7)
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The autocovariance of R°
t
may be obtained similarly by first calculating the uncentered

moment:

E
l
R

°t
Rit+n\

= E £ Xit{k)Rit.k £ X*ht(03&+*-l

£E E[Xit{k)Xit+n{l)Rit_kRit+n.l ]

fc=o /=o

OO 00

Y,E E[Xtt (k)Xtt+n (l)} ElRu-kRit+n-!]
k=0 1=0

oo n — 1

ED 1 " P.-)
2
*?
+
^tet-Jfc^t+n-j]

fc=0 /=0

(A1.7a)

(A1.76)

[Al.lc)

{Al.ld)

E
\

R
°t
Rit+n\

oo n—

1

A;=0 /=0

^
2 (i-pD (A1.7e)

Note that the upper limit of the /-summation in (A1.7d) is finite, which follows from

(A1A). Also, (A1.7e) follows from the fact that {.ft^} is an i.i.d. sequence and the

only combinations of indices k and / that appear in (A1.7d) are those for which Rn-k

and R±t+n_i are not contemporaneous, hence the expectation of the product in the

summands of (A1.7d) reduces to ^ in {A1.7e). The autocovariance (2.12) then follows

since:

Cov[J$,J$+J = £[«+„] " E[R?
t
]E[R?t+n]

= -nitf- (^1-8)

The calculation for the cross-autocovariance between R°. and R°. . differs only in that
it jt+n J

the common factor induces contemporaneous cross-sectional correlation between the

virtual returns of securities i and j. Using the fact that:
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EiRit-kRjt+n-t] = HHj + ftl/oJ'P -k-n) (Al.9)

then yields the following:

E
l
R

°t
Rjt+n\

= E
oo

E Xit(k)Rit-k • E*it+»(0fy+»-/
k=0 1=0

EE E[Xit{k)Xjt+n{l)Rit.kRjt+n-l]

k=0 1=0

oo oo

E £^[*it(*)] • £[Xyt+n (/)] • ^[ JR,-
£
_

A:
i2yf+„_ I ]

A:=0 i=0

oo oo

EB 1 -*^ 1-^ •

fc=0 /=0

fi^- + PiPjo\0{l -k-n)

[Al.Ba)

{Al.Sb)

[Al.Sc)

(A1.8d)

fc=0 i=0

oo oo

E E(! - W)P*(1 - Pj)p
l

jPi0j°lO{l -k-n) (Al.Be)

k=0 1=0

oo

k=0

oo

W*j + (l-ft)(l-py)/3t
-/?ya5PyE(ftP>)* C^ 1 -^)

Jfc=0

^Wt^yt+J
(1-Pi)(l-Pj) flia 2 nwj + —rzr^-.

—Wi°Wi
A VxVj

[AIM)
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where the cross-sectional independence of the non-trading processes has been used to

derive (A1.8c). This yields (2.12) since:

Cov[/$,l$+B ]
= E[R°

t
R°t+n ]

- EiR?
t
]E[R°jt+n ]

(Al.9a)

(l-p
t
)(l-p

; ) 2 n

1 - PiP3

(A1.96)

Proof of Proposition 2.2:

By definition of R°
t

, we have

Rat

i 1

°°

-V,
iela

Na
iela k=o

Jt=0 V ° t'G^a /

= E
k=o l " iel,

"° .6/a

(A2.1a)

(A2.16)

(A2.1c)

The three terms in (A2.1c) may be simplified by verifying that the summands satisfy

the hypotheses of Kolmogorov's strong law of large numbers, hence:

£- X «**(*) - E
-Va

is/a

ji-£ «xft(4)
"-$• o (A2.2a)

t'e/a
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(A2.2b)

J- E **-***(*) E
iVa

KE/a

. (A2.2c)

From Definition 2.1 we have:

j- E M*(*)
^a

tG/a

= (1 - pa)PaHa , V-a = TfE **» (^2.3o)

F" E ft*i*(*)
iva

t'e/

= (1 " Pa)pJ/3a , Pa = ^ E ft (
A2 "36

)
iVa

lG/a

£ j- E ^t-fc^-tC*)
A^a ;

e/a

= (A2.3c)

Substituting these expressions into (A2.1c) then yields (2.21):

CO

R°at
a=S ' na + (1 - pa )/?aE At-ifcpJ

Jfc=0

(A2.4)

To compute the cross-autocovariance between the two portfolio returns, we use (A2.4):

Cov[R°at ,R°bt+n }
£ (l-p.)(l-«)W*
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OO oo

{A2.5a)

= (1 - pa )(l - P b )0a b Y, ^Cov[A £_ fc
,A£+n_;] PJP^2.56)

jfc=0 /=0

oo oo

A:=0 /=0

= (l-pa)(l-p fc )^a /36a2p^^(pap6 )

J

jfc=0 i=0

(A2.5d)

Cov[Rat , Rbt+n \
- — axp b

1 PaPb
(A2.5e)

where the symbol '=' indicates that the equality obtains only asymptotically.

Proofs of Propositions 3.1 and 3.2:

Since the proofs consist of computations virtually identical to those of Propositions

2.1 and 2.2, we leave them to the reader for the sake of brevity.
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Table 1

Sample first-order autocorrelation matrix Fi for the 5xl-subvector \R1 R£ R\ R\b R^o]' of observed returns

to twenty equally-weighted size-sorted portfolios using daily, weekly, and monthly stock returns data from

the CRSP files for the period 31 December 1962 to 31 December 1987, where portfolios are rebalanced

monthly. Only securities with complete daily return histories within each month were included in the daily

and monthly returns calculations. R% is the return to the portfolio containing securities with the smallest

market values and iZ^o *s *ne return to the portfolio of securities with the largest. There are approximately

equal numbers of securities in each portfolio. The entry in the t-th row and j-th column is the correlation

between R°
t
and R?t+1 . To gauge the degree of asymmetry in these autocorrelation matrices, the difference

fj — fj is also reported.

Ti fi - fi

Daily





Table 2.

Estimates of daily non-trading probabilities implicit in 20 weekly and monthly size-sorted portfolio

return autocorrelations. Entries in the column labelled "pK " are averages of the fraction of securities

in portfolio k that did not trade on the last trading day of the month, where the average is computed

over month-end trading days in 1963 and from 1973 to 1987 [the trading-status data from 1964 to

1972 were not used due to errors uncovered by Foerster and Keim (1989)]. Entries in the "Daily"

column are the first-order autocorrelation coefficients of daily portfolio returns, which are consistent

estimators of daily non-trading probabilities. Entries in the "Weekly" and "Monthly" columns are

estimates of daily non-trading probabilities obtained from first-order weekly and monthly portfolio

return autocorrelation coefficients, using the time aggregation relations of Section 3 [q = 5 for

weekly returns and q = 22 for monthly returns since there are 5 and 22 trading days in a week and

a month respectively]. Entries in columns labelled ".£?[&]" are estimates of the expected number of

consecutive days without trading implied by the probability estimates in column to the immediate

left. Standard errors are reported in parentheses; all are heteroscedasticity- and autocorrelation-

consistent except for those in the second column.

K





Table 3.

Estimates of the first-order autocorrelation pm of weekly returns of an equally-weighted

portfolio of twenty size-sorted portfolios [which approximates an equally-weighted port-

folio of all securities], using four different estimators of daily non-trading probabilities:

implied daily non-trading probabilities from first-order autocorrelations of daily, weekly,

and monthly returns to an equal-weighted index, and the average fraction of negative

share prices reported by CRSP. Since the index autocorrelation depends on the betas of

the twenty portfolios it is computed for two sets of betas, one in which all betas are set to

1.0, and another in which the betas decline linearly from (3\ = 1.5 to /?20 = 0-5.

Estimator of pt



Wk] '39









Date Due

WAR 4m
3 « 199?

Lib



II

3 1050 00Sb7281 8




