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ABSTRACT

Concurrent engineering initiatives and the closely related principle of front-loading
development processes - identifying and solving problems early rather than waiting for
traditional development and test processes to uncover them - have been shown to be
highly effective in improving product development performance. This often means
shifting to new experimentation technologies that can be used much earlier in the
development process than traditional technologies, delivering performance assessments
much faster. Thus problems within new design ideas are exposed much sooner, allowing
for cost-effective problem solving techniques without having to rewind significant parts
of the development process. Front-loading accelerates innovation by permitting new
ideas to be tested and refined faster than traditional techniques, allowing them to be
incorporated into products without the risks often associated with the use of unproven
ideas. Traditional methods might still be needed for fine-tuning a design, but new rapid-
feedback technologies have demonstrated their value when used within their limitations.

Front-loading has gained acceptance in many vehicle product development organizations,
but one field in which it has not yet been introduced for early-stage design assessments
and problem solving is air flow analysis. The earliest stages of design for a new vehicle
focus largely on the shape and character of the vehicle's surfaces, which in turn have a
significant influence on many aspects of the vehicle's performance. Thus the introduction
of new experimentation technologies like Computational Fluid Dynamics (CFD) requires
a great deal more consideration due to their impact on these critical early stages of
product development, but the value of these methods and changes can be demonstrated.
The resulting changes required in the development organization to support these methods
- including preservation of important creative processes and a pragmatic view of the
complexities of process change - are found to be complex but approachable given
suitable motivation, realistic mindset and a holistic view.
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1 Introduction
In the last 20 years automotive companies have been forced to make significant

changes in their product development processes to shorten development times, reduce

non-recurring engineering costs, and improve product performance for new car models.

Changes in customer preferences and new regulatory and market pressures have meant

that five- and six-year development timelines that had been common into the 1980s are

no longer sufficient to ensure a competitive position in the market. Competitive pressures

have required constant improvements in product quality without substantial increases in

price. In this environment leading companies have reduced their product development

timelines to as little as three years, and under continued pressure they are still searching

for new ways in which improvements can be made without sacrificing product quality or

performance.

Several management practices and new technologies have been key enablers for

these improvements. Concurrent engineering initiatives and the closely related principle

of "front-loading" the development process (identifying and solving problems early), and

the use of Computer-Aided Engineering (CAE) software have all been critical factors

without which many of these improvements would not have been possible. Previously,

much of automotive product development and testing was done sequentially, meaning

significant design problems were not identified until late in the program when they were

very costly or impossible to correct. Higher non-recurring engineering costs and missed

product performance goals were typically the result. Now, many major sources of cost

and schedule risk are identified as early as possible, and design and development teams

work in parallel to ensure these risks are addressed early when designs are still flexible

and changes can be made without the need to significantly rewind the development

process and incur the related costs. Expensive physical prototypes, which had previously

been required to identify and assess such problems, are generally not available in these

early phases of product development, so CAE tools have been crucial in identifying and

resolving many major problems without prototypes. Virtual decking (where component

interference problems are identified and solved) and crash worthiness testing through



computer simulation are two examples of major product development areas where CAE

tools have enabled solutions much earlier in the development process.

One important aspect of the automotive development process which still has

potential to yield significant development performance gains from early-stage problem

identification and resolution is that of aerodynamic analysis. The aerodynamic

performance of a ground transportation vehicle is often connected directly to traits that

govern its engineering and commercial success. Fuel mileage, handling, safety, noise

levels, and reliability all depend heavily on the design's interactions with the highly

complex flow of air around the vehicle and through its subsystems. Yet today,

aerodynamic analyses - including aeroacoustic and thermal management assessments -

are typically done late in the automotive design process in relation to other analyses that

are also critical to final product performance such as crash simulation. Prevailing

automotive development paradigms hold that aerodynamic analyses are performed after

much of the styling process has been completed, when it is very expensive or impossible

to change designs based on the results of computer simulations and experiments.

Computational Fluid Dynamics (CFD) technologies now exist that could be used

early in the design process. As with other simulation technologies, CFD solutions may

not provide the same level of fidelity as some traditional evaluation techniques. But when

used in the early phases of product development and combined with traditional

techniques in later phases, such technologies can provide important information at a time

when it can still be considered in important design decisions, thereby improving

performance of the product development organization (either by saving time or reducing

costs), improving product performance, or both. This thesis evaluates how CFD

technologies could be used and looks at major barriers to their adoption. It discusses

changes needed in both automotive product development processes and in the capabilities

of CFD software to enable use of CFD in the early phases of automotive design, and how

these changes can be achieved given the pragmatic considerations of complex large-scale

product development systems.

To explore these issues, we first compare and contrast CFD analysis with another

tool, crash simulation, which has been incorporated successfully into the early stages of



automotive development. In Chapter 2 we provide a general description of prevailing

automotive development processes in place today, to provide background and context for

the discussions that follow. In Chapter 3 we discuss the opportunities and value which

could be created when these new problem-solving methods, which are often useful much

earlier in the process but do not offer 100% of the fidelity of more traditional methods,

are employed very early in the product development process.

In Chapter 4 we apply these concepts to aerodynamic performance assessments

performed at automotive companies. The systemic nature of air flow problems in

automotive design is discussed, and requirements for CFD software for use in the early

phases of automotive design are detailed. Based on this information, in Chapter 5 we

explore the practical realities of changing the development process to use new problem

solving technologies, and approaches to overcoming these obstacles are explored. We

end with a brief conclusion summarizing the findings of the thesis.

1.1 Crash Simulation vs. CFD Simulation
Before discussing the details of the automotive development process and air flow

analysis, we review the impressive changes that have taken place in the last 20 years with

the introduction of crash simulation software into the automotive design process. A

number of useful similarities and differences can then be observed between crash

simulation and CFD simulation, which provide insights for the discussions that follow.

Crash worthiness is a vital quality attribute of a vehicle. Strict government test

regulations, high-profile press reports regarding safety problems, and increasingly public

safety information have a strong impact on quality perceptions and vehicle sales, giving

car makers little choice but to ensure their products will protect passengers as much as

possible in the event of a crash. Until the early 1990s, crash worthiness testing required a

large number of expensive physical tests. Crash tests could not be conducted until

structural prototypes were available, perhaps half way through the development process.

These prototypes were built, instrumented and destroyed in crash tests recorded by high-

speed cameras. If any problems were found - and problems are always found with new

designs - engineers analyzed the video footage, proposed solutions, and new prototypes

had to be built and crashed to test the solutions.



The introduction of crash simulation software in the 1990s significantly reduced the

cost of crash worthiness testing for companies that leveraged its capabilities effectively.

Some companies now mandate crash simulation of proposed designs before allowing

those designs to proceed into detailed engineering, and in some cases simulation has all

but replaced physical prototype crashing except for late-stage verification and

government-mandated tests. The introduction of this technology has been aided by many

factors:

* Crash worthiness is critical to a company's ability to market and sell the vehicle.

Selling an unsafe car is not an option, so any major problems must be solved no

matter how late it is found or how expensive it is to fix.

* Traditional testing and problem solving methods are very expensive for crash

worthiness. Since crash simulation does not require structural prototypes, it can

be done much sooner. Since it can be done quickly on large computers, many

more tests can be run to test solutions.

* Design changes that result from crash worthiness improvements tend to have a

relatively weak effect on the exterior shape of the vehicle since designers already

work within packaging and general proportion constraints. Thus crash simulation

can be done in parallel with other early design tasks with only minor impact on

the behavior of teams involved in those tasks.

* Crash simulation technologies provide insight into failure modes that are not

shown in physical tests, since failures occur in areas hidden from video cameras.

With this knowledge new design alternatives can be proposed and tested quickly

with new simulations.

Taken together, these factors provide a very compelling argument for using crash

simulation technologies early in the development process. Cost of implementation is

relatively low, and the benefits are significant. CFD analysis shares some of these

benefits, but it is different from crash simulation in several important ways:

Most changes designed to improve air flow around a car have a strong effect on

the exterior shape of the car or the design intent. Thus air flow improvements



usually affect work done by the vehicle's designers, making coordination with

designers and the associated process changes a key requirement of introducing

CFD analysis to the early-stage design process. CFD techniques cannot be done

in parallel with other design tasks because the changes that would result from

them may well have a significant impact on the behavior of other teams involved

in early-stage design tasks.

Although some aspects of air flow around a vehicle are important to the

customer's perception of quality, the connection to the company's ability to

market and sell the vehicle is relatively weak. Increasingly strict government

regulations and fluctuating energy prices are increasing the importance of

aerodynamic performance, but it has not yet reached the same level of awareness

as crash worthiness.

This comparison shows an important difference in the requirements associated with

introducing these technologies into the early phases of automotive development: because

CFD introduces the need for a more significant behavioral (process) change, a much

higher threshold must be met in order to justify its use. A compelling case has been made

for the use crash simulation due to its high impact and relatively low requirement for

behavioral changes, but this threshold has not yet been reached for CFD analysis. The

need to overcome such barriers is illustrated by Gourville, who explains that a high-

impact product is much easier to deploy if it requires only small behavior changes in the

development organization. If significant behavior change is required, a longer-term

deployment plan is needed [7]. As shown in Figure 1-1, both Crash Simulation and CFD

require a high degree of product change, but only CFD also requires a high degree of

behavior change.
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Figure 1-1: Capturing value from innovations
Adapted from Gourville, "Eager Sellers and Stony Buyers", Harvard Business Review [7].



2 Aerodynamic Analysis in the Automotive Product
Development Process
The development of an automobile is a highly complex process. Aside from inherent

complexity in the final product due to a large number of diverse subsystems and

components, vehicle development is heavily constrained by customer preferences,

government regulations, organizational capabilities, competitors' products, maintenance

requirements, budgets, and the physical laws of nature. Between the launch of a new

vehicle program and the completion of the last car to roll off the assembly line several

years later, an enormous number of problems will be solved within these constraints.

These problems cover a wide range of fields and expertise: defining targets for product

attributes such as fuel efficiency, handling characteristics, seating capacity, and noise

levels to position the product favorably in the market; choosing the most appealing

designs for all customer-visible features; developing each of the vehicle's systems to

deliver their slice of functionality; etc. Many of these problems must also be addressed

for each subsystem in a cascade that gets progressively finer in detail until each

component of the vehicle has been defined, manufactured, delivered, assembled, and

supported throughout its life cycle.

This chapter presents a brief generalization of the automotive product development

process as it relates to aerodynamic analysis, along with a number of typical problems

that arise throughout the process. This description is distilled from several sources,

including Thomke [19, 21], Thomke and Fujimoto [22], and interviews with a number of

current and former employees from four auto development companies. Note that although

the major elements outlined in this description are present in each company's

development process, the specific execution of the process can be quite different.

These differences include, for example:

* the amount of overlap between phases

* the level of involvement of key stakeholders in earlier phases of the process

* the level of flexibility in revising the details established in a phase once that

phase has been completed



These differences are highlighted, especially where they have a significant impact on

communication and problem-solving processes.

2.1 A Brief Overview of Air Flow/Design Interaction

There are three key categories of air flow interactions with a car's design:

* aerodynamics

* aeroacoustics

* thermal management

Although these categories share some common attributes, each of them has different

drivers, requires different levels of expertise to address, and is generally handled by a

different part of the development organization. They are described separately here to

examine their differing roles and influences, and to serve as a basis for the discussions

that follow. Note that some types of air flow assessments, such as "internal" flows seen in

ducting systems, are not included in these categories. These other areas involve still

different drivers and areas of expertise, and are managed by different development teams

within the organization. We focus on the three categories above since they are sufficient

to inform our discussion within the context of early-stage automotive development.

Aerodynamics

When most people think about air flow around a moving object, aerodynamics is

what they are thinking of. An object displaces air as it moves, and in the process complex

patterns of air movement are created. The interactions of the object with the air, the

resulting motion of air, and the forces imposed by the air on the object all fall under the

umbrella of aerodynamics.

The shape of a vehicle defines its aerodynamic qualities. Thus decisions that

establish that shape, which generally take place in the earliest phases of automotive

design, have a direct impact on all of the performance attributes affected by

aerodynamics. A partial list of these performance attributes includes:



* The vehicle's drag, which has a strong influence on its fuel efficiency and

acceleration performance. Drag is a direct result of how aerodynamic forces are

distributed on a vehicle's forward- and backward-facing surfaces.

* The vehicle's lift, which has a strong influence on its handling and stability,

especially at high speeds.

* Soiling: the tendency of water, mud, and snow to accumulate on windows, air

intakes, or other areas where such foreign materials can result in quality or

maintenance problems.

A number of driving conditions must also be considered, in particular driving speeds

ranging from idle to the vehicle's maximum speed and wind conditions ranging from

quiescent to strong side winds.

Targets relating to some of these performance attributes are assigned at the

beginning of the vehicle program. In particular, a target for fuel efficiency is established

early, often as part of a company's requirement to meet government-mandated fleet

targets. Handling characteristics are typically a cornerstone attribute for the car's target

market. Meeting these targets is a complex process that relies heavily on the vehicle's

aerodynamics and subsystems, including its power train, suspension, and chassis.

Aerodynamics also has a direct relationship to many other key engineering activities.

For example forces acting on the hood, doors and body panels determine how these

components must be designed and attached to limit deformation. One interview subject

relayed a story where late in the design of a car, testers found that when driving at high

speeds, forces acting on the door caused the door to deform so much that it separated

from seals designed to isolate the cabin from outside air flow and noise. The resulting

"red alert," as he put it, resulted in design changes which, although they were minor,

were still costly due to the late stage in which they had to be implemented and the

increase in materials costs of every vehicle built over its production lifetime.

Aeroacoustics
Aeroacoustics is a specialized area of Noise, Vibration and Harshness (NVH), a

department responsible for ensuring that a vehicle's occupants do not experience



excessive amounts of noise or vibration while in a car. Undesirable noise and vibration

are generally perceived by occupants as signs of poor vehicle quality, and excessive wind

noise is one of the most frequent consumer complaints in the highly influential J.D.

Power and Associates initial quality survey [9]. Special attention is normally given to

noise and vibration experienced by the car's owner, who is usually assumed to be the

driver but who in some cases may also be in the rear seat, as in some high-end models.

The "acoustic package" of a car is established early in its development and provides

a general description of the auditory experience of a car's occupants. In many cases this

means providing an environment that is as quiet as possible, although for some vehicles -

in particular high-performance vehicles marketed to driving enthusiasts - special

attention is given to tuning the sound of the engine and exhaust system to appeal to those

drivers. Sound and noise from many sources must be accounted for in developing the

car's acoustic package, including the engine, exhaust, ambient noise (e.g., traffic), tires,

fans, and noise generated by the rush of air over the car. Broadly speaking, aeroacoustics

deals with identifying noise sources caused by the flow of air over the vehicle, and

propagation of sound - whatever the source - through air and into the passenger

compartment. Sound generated by the movement of air over a car is normally subdivided

into two types, since the basic physical phenomena and problem-solving expertise can be

quite different:

* "Wind noise" generally refers to sound created by any rapidly-oscillating flow

patterns caused by interaction of the air with the moving vehicle's surface. Due

to the complexities of turbulent air flow, such oscillating flow patterns can be

created in many ways even by simple shapes. For shapes with complex curvature,

small gaps between surfaces (as between the door and front fender), and

appendages like side mirrors, these oscillatory flow patterns are nearly

impossible to entirely avoid.

* "Buffeting" is primarily related to open windows and sunroofs. Here, oscillations

in air flow patterns interact with an opening of the passenger cabin. At certain

frequencies these oscillations will resonate within the cabin, creating a loud and

sometimes painful noise. This mechanism is identical to Helmholtz resonance,



which is often heard when blowing on the top of an empty bottle. An example of

such a problem on a real vehicle is described later in Section 4.1.1.

Once noise sources have been identified, assessing the impact of that noise source on

an occupant's ear requires assessing the propagation of sound through air and vehicle

structures. Then, depending on the actual sound experienced by the driver and the

vehicle's targets, measures might be taken to moderate the noise heard by the driver.

These measures might include modifying the shape of the vehicle's surfaces to reduce

noise generation or adding expensive parts - commonly special door seals and laminated

window glass - to reduce transmission of noise into the cabin.

Because of the complexity involved with the physics of turbulent air flow and the

propagation of sound, aeroacoustics typically requires a very high level of training and

expertise. Currently, such work is done primarily by specialized experts who have

Ph.D.'s in related fields.

Thermal Management

The design and engineering of a vehicle includes a number of critical thermal

management issues that must be addressed:

* Heat generated by the engine must be dissipated. Coolant is streamed through the

engine to absorb heat, then run through a radiator where the heat is dissipated

into air that is also passing through the radiator.

* Hot combustion products from the engine must be channeled through the exhaust

system. This system, consisting of a series of tubes and emission control devices,

ejects those gases through the exhaust pipe, and has components which

commonly reach several hundred degrees Celsius.

* The environmental controls require distribution of warm and cold air into the

passenger cabin. These controls generally use heat from the engine for warm air,

and cool air is provided by an air conditioner, including a heat-releasing

condenser, typically placed in front of the radiator.

* Air that enters the engine compartment through the grille or other openings

typically runs through the condenser, radiator, and other heat exchangers (oil



coolers, etc.). It might then pass over hot engine and exhaust components,

absorbing more heat. As this hot air propagates, it will in turn heat any other

components it comes into contact with, including plastics, electronics, fuel lines,

fluid reservoirs, etc. Such components must either be designed to withstand such

temperatures or be kept cool, perhaps by isolating them from the hot air.

A vehicle's brakes typically use friction to slow a vehicle, which convert all of

the car's kinetic energy into thermal energy. Most of this thermal energy is

absorbed by brake disks, which must then be cooled quickly to insure proper

operation in demanding environments.

Finally, all of these factors must be considered for each combination of engine and

vehicle configuration, which may number in the tens, over an extremely challenging

range of driving conditions:

* Ambient temperatures ranging from very cold (e.g., polar latitudes during winter)

to very hot (equatorial latitudes during summer)

* Driving speeds ranging from idle to the car's maximum speed (e.g., on the

Autobahn in Germany)

* Driving loads ranging from long, steep declines (challenging for heat dissipation

from brakes) to long, steep inclines while pulling a trailer (challenging for heat

dissipation from engine and exhaust)

In nearly all of these situations, all of this heat must be dispersed into air in such a

way that the heated air does not itself cause problems. Although there are exceptions

(thermal radiation can play a significant role in cooling very hot exhaust and brake

components), proper management of air flow through the engine compartment and

around other components is critical to ensuring a vehicle's robustness and safety.

Thermal management has one critical factor that distinguishes it from aerodynamics

and aeroacoustics: failure to account for it thoroughly in the development of a vehicle is a

major source of risk for development cost, warranty cost, and safety. While aerodynamics

and aeroacoustics targets are relatively "soft," missing thermal management targets,



which may involved overheating and component or system failure, frequently requires

costly late-stage design changes, maintenance costs, and recalls.

2.2 Development Process Overview
In general, the phases of the product development process common to most auto

manufacturers are Product Selection, Concept Development, Engineering, and Production,

as shown in Figure 2-1. Within and between these phases, the details of a product are

refined. This refinement continues at some level through to the end of the product's

production. Even after a vehicle has been in production for some time, changes might be

made in the manufacturing facility in an effort to reduce costs and improve quality. As

we will see, some of these changes can effectively override important design decisions

made earlier in vehicle development and have a significant impact on product

performance.

Product ConceptSelection Development Engineering o ProductionSelection Development

Kickoff Styling Freeze

Increasing Design Detail

Figure 2-1: Generalized Product Development Process

For our purposes we will focus on development phases in which important design

decisions are made. The Product Selection phase is primarily a marketing activity and

involves review of corporate strategy and selection of a target market for a new vehicle. It

is not discussed here as it is outside the scope of this study and it defines the constraints

within which the remaining product development process functions.



Although the phases are described separately below, in practice there will generally

be some amount of overlap, especially in companies that have implemented concurrent

engineering initiatives. The degree of actual overlap between these phases has a

significant impact on performance of the teams involved, which we shall discuss in later

sections.

2.2.1 Concept Development
In Concept Development corporate strategy and goals are translated into a specific

product concept or concepts to be developed in later phases. Starting from a high-level

view of the target market and product goals, a design studio prepares 10-20 concepts for a

vehicle that are expected to satisfy those goals. The range of concepts is deliberately

planned to provide a wide variation of styles. Some will be incremental improvements on

existing models while others focus on entirely new shapes and ideas. Over time a

competitive process is used to refine the initial set of concepts and narrow the design

options to a few popular "themes." After another round of assessments and refinements, a

winning theme is then selected, minor changes are made, and the surface is "frozen."

This process is illustrated in Figure 2-2.

A notable exception to this process of narrowing design ideas down to a single

"winning" concept is Toyota, which has been described as deferring final styling

decisions until as late as the 2 nd full-vehicle prototype [16], long after the concept

development phase has ended in other companies. This characteristic is also present in

other phases: in general there is a great deal more overlap and interaction between phases

at Toyota relative to its competitors.

Clay models are the first prototypes created in the development process and play an

important role in the design selection process. As noted in 2002 by Chris Bangle, Head of

Worldwide Design at BMW, "Every car you see out there was sculpted by hand. ...

[Machines] reproduce it, but the originals are all done by hand."[3] Although more digital

design tools are used now than in 2002, the main elements of the process remain similar.

In the earliest stages of product development most design proposals and discussions focus

on sketches, drawings and paintings created by designers. Many of these are eliminated

early and are never evaluated for their engineering, performance, or manufacturing



viability. Small-scale clay models are created for several promising concepts to provide a

tangible basis for collecting feedback, after which several more concepts are eliminated.

10-20 Concepts Small-Scale
Sketches, Paintings Clay Models

Filter--- N

Final-- Filter- Refinements
Full-Scale
Clay Models Frozen DesignClay Models

Figure 2-2: Concept Development Selection Process

After another round of refinements full-scale clay models are created for the

surviving candidates and painted so realistically that "an inexperienced observer could

not tell a finished 1:1 clay model from a real car."[21] These are used as the basis for a

final series of refinements before a winning concept is chosen. At this point the surface is

"frozen." Construction of a full-scale clay model may cost up to US$200,000 and

typically takes a month to build. Several such models are generally required during this

phase. If the model is to be used for aerodynamic testing in a wind tunnel, the addition of

realistic underhood geometry may increase costs to $500,000.

Concept Development is focused primarily on the aesthetic or emotional appeal of

the design, reflecting a belief that the auto industry is in some important ways a fashion

industry with complex performance attributes. Designers and senior management are

most interested in the appeal of the car to the target market. Engineering information is

used in the evaluation process of proposed concepts to the extent to which it is available,

but the availability of engineering information varies widely among auto makers and

areas of expertise. For example some auto makers now require results from crash



simulations to be available as part of the concept selection process, before the surface of

the vehicle can be frozen. Since crash worthiness is now a highly regulated and visible

feature of the final product, establishing the safety of a design early is critical to avoid

rewinding the development process and making changes to improve passenger protection.

This is a key example of "front-loading" the development effort, which we will explore

in more detail in Chapter 3. Other types of engineering information, including the

interaction of proposed designs with the air flow around the vehicle and through its

subsystems, are not as readily available in this phase.

2.2.2 Engineering
In the Engineering phase goals and the chosen concept for a vehicle are evaluated

and developed into a completed product design. This phase is often split into "Advanced

Engineering," which works more closely with designers and focuses on system-level

design issues, and "Product Engineering," which focuses on component-level design.

Freezing a design means that the customer-visible surfaces of the car may no longer

be changed, initially because those surfaces are the result of a lengthy design process that

is costly to rewind, and later because other resource and tooling commitments proceed

assuming those surfaces are not changing. These surfaces are produced by stamping

presses that cost tens to hundreds of millions of dollars and two or three years to build.

They can handle small changes, but changes more than a few millimeters require the

process to be restarted, incurring new costs for rush orders to make up for lost time. Thus

once the surface of a design is frozen, any problems found in the Engineering phase must

generally be solved without changing the customer-visible surfaces of the car, though the

extent to which this rule applies varies between companies. In the words of one interview

subject, "Once the surface is frozen, it takes an act of God to change it." Others

commented that changes are very difficult after the surface freeze, but that divine

intervention is not always necessary. Such high barriers for altering parts of the design

once it has been frozen further constrain an already challenging problem to be solved by

engineers, and can add significant cost as problems must often be solved by adding parts

that might otherwise not have been necessary.



A common example of a part that must be added or modified to resolve problems

found in the Engineering phase of development is laminated glass. This expensive

variation of the glass in a vehicle's doors reduces the transmission of wind noise into the

passenger compartment. Complex interactions between the shape of a vehicle and air

flowing over that shape often result in vortices that generate noise. This noise can

penetrate the cabin through windows, door seals and other seams unless measures are

taken to reduce or eliminate it. Since wind noise is one of the most frequent consumer

complaints in quality surveys, car makers look closely at the tradeoff between added cost

and reduced noise. Reducing this noise may mean making small changes in the shape of

exterior surfaces, or adding laminated glass and special-purpose seals to a door to

attenuate the noise. Such problems are rarely understood well enough to influence a

design before it is frozen, so adding parts or sacrificing cabin noise targets are often the

only options available to engineers. Even minor changes are disallowed, as illustrated by

one former Noise, Vibration and Harshness engineering manager, who described a

situation where making a two millimeter change in the radius of the A-pillar (the

structural member between the windshield and the front door) was needed to reduce noise

levels in the cabin by two decibels. The change was rejected because it was already too

late: too much work had already been done to change the design, and tooling

commitments had already been made.

Structural prototypes are built during the Engineering phase. These functional

prototypes represent the actual structure of the evolving design, as opposed to early clay

prototypes which can be used only for assessing the exterior surface shape. At a cost that

can exceed $1 million for a prototype, these models are an important step in the

verification and testing of the design. Prototypes are typically built in at least two stages,

with later stages reflecting a more mature state of the design. In most companies all

prototypes must be destroyed soon after mass production of the vehicle has begun. Thus

any costs not recovered by exposing problems through testing on a prototype before

production begins are not recoverable.



2.2.3 Production
In Production the necessary tools, supply networks, assembly procedures, and other

factors required to mass-produce the final design are completed. Actual production of the

vehicle begins, and generally continues with only minor changes for three to five years,

depending on the model. The transition from Engineering to Production is a stressful part

of the development process during which many problems are identified, investigated, and

corrected. Final prototypes are built and undergo extensive testing, in the course of which

many of these problems are found. Changing existing parts of the design is nearly

impossible at this stage due to the very high associated costs of changing tooling and

related parts, so most problems must be addressed by adding parts to the final assembly.

As mentioned previously, changes to a vehicle's design do not end after it has

transitioned to production. New solutions to problems relating to part and assembly costs

are constantly being investigated, sometimes with unintended consequences on

performance. An interview subject who until 2008 was a vehicle NVH manager at a

major auto company described a typical example where a door seal was modified long

after a vehicle production run had begun. The modification was motivated by cost

reductions, since it required a simpler process during assembly. It was tested at the plant,

but testing focused primarily on the effort required to close the door, an important

measure of the seal's design and an easily measured quantity at the plant. The impact of

the design change was not evaluated for its impact on wind noise transmission into the

cabin. It was not until customer complaints increased that a problem with the change was

found and its source identified.

2.3 Prototypes
Although CAE tools have reduced or eliminated the reliance on prototype testing for

some things, prototypes remain important for identifying, understanding and solving

issues that arise in the design and engineering of vehicles. With respect to air flow in

particular, prototype testing is important for aerodynamics and is critical for

aeroacoustics and thermal management.

There are generally two types of prototypes used during the development process:

clay prototypes made during concept development and the early phases of engineering,



and structural prototypes made during the engineering phase. (Figure 2-3) Clay

prototypes can be used for limited aerodynamics testing, but since they do not yet have

many important subsystems the fidelity of these tests is not high. They generally cannot

be used for aeroacoustics or thermal management testing due to missing subsystems and

dependence on physical properties of the materials used in a production vehicle.

+---Clay Prototypes---
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Figure 2-3: Prototype availability

Structural prototypes, as mentioned previously, are built by hand to reflect the

"current" state of the vehicle's design at the time they are built. They are frequently used

for a variety of air flow experiments. In some cases design information might not be

available for some subsystems, so a certain amount of improvisation - most commonly

substituting components from an earlier model of the vehicle - takes place.

Prototype testing is not always a reliable or predictive problem-solving experience.

The fidelity with which prototypes represent actual production vehicles is often

questioned due to several factors:

* They are hand-built. The process of assembling a vehicle by hand differs

significantly from the process used in a factory. In particular, if two parts must be

positioned relative to one another with a very small margin for error in order to

prevent a problem, a hand-built prototype will likely reflect this attention while

production vehicles may not.



* When information is not yet available for a component, substitute components

might be used, or the component may be excluded entirely.

* The design is evolving even as the prototype is being built. As a result, by the

time the prototype is completed some of its value as a basis for experiments has

been lost.

* Details of a design might not be reflected in the prototype, or subtle changes will

be made for purposes of building or testing the model that are not believed to

affect performance, when in reality they may have a significant impact. Since

such changes are often not documented, their effect is not understood until much

later, when higher-fidelity prototypes or preproduction vehicles are tested.

Because of these factors engineers know that the prototype is not a production

vehicle and may not consider problems observed with the prototype to be "real." Two

interview subjects involved with wind noise described situations in which a problem was

observed with a prototype, but since "the prototype is not representative," and since a

highly intricate physical mechanism dependent on fine details of the car's construction

was required to cause the problem, the observer did not feel it would be an issue in

production vehicles with their associated subtle changes. In both cases the observation

was wrong. One of these interview subjects said this was not an isolated incident and

quoted a senior manager as saying "nothing happens only once," meaning if a problem is

found and not solved, it will return. Conversely, experienced engineers know that some

problems truly are specific to the prototype and will not be found in production, and

fixing all of them is also an expensive and time consuming process.

The issue of engineering confidence in the fidelity of a prototype has profound

implications for the engineering design process, especially for a highly complicated

physical phenomenon like air flow that does not lend itself to intuitive insight. Since the

genesis of many such problems requires subtle interactions between many components,

they are difficult to measure and more difficult to unravel into root causes, especially

with conventional experimental measurement tools. Similar to crash analysis, where

simulation technologies provide the ability to look deep inside a problem that video



recordings of prototype crashes might not show, CFD technologies expose information

which makes such analyses and a higher level of understanding possible.

A final complication with prototypes is that they often appear too late to enable cost-

effective solutions to the problems that they expose. For structural prototypes in

particular, many key design attributes might already have reached a level of maturity that

changing them is too costly. This was emphasized by the head of vehicle integration at a

major American auto maker who noted, "There's nothing worse than looking at a lousy

prototype and knowing that there's not a thing I can do about it."

2.4 Summary
The successful development of a vehicle requires establishing an aesthetically

appealing design for its shape and developing, among many other things, a number of

systems that involve complicated interactions with the air flowing around the vehicle and

its components. The development process that has evolved for most car makers can be

broadly considered as consisting of three overlapping phases: Concept Development,

Engineering and Production. Through these phases the requirements of aesthetic appeal

and product performance are reconciled with each other, normally by establishing general

physical appearance during Concept Development, then identifying and solving problems

relating to air flow in the Engineering phase, often through prototype testing.

This process appears to leave a lot of value creation potential on the table. By

deferring many key problem solving processes until long after many problems are

introduced, solving these problems becomes much more expensive than it might

otherwise be. In Chapter 3 we explore ways in which front-loading the development

process can accelerate innovation and product development by using new experimental

technologies to identify and solve problems much earlier than is often possible with

traditional technologies. We then return in Chapter 4 to see how application of these

methods to air flow analysis might be applied in the automotive product development

process.



3 Value of Front-Loading Problem-Solving
Product development is primarily a problem-solving process. While developing a

vehicle, problems must be solved that require a wide range of talents from marketing, art

and design, many fields of engineering, and so on. The information required to solve

these problems is rarely available from the outset, and many of the problems are

uncovered only as the development process unfolds.

In Experimentation Matters, Stefan Thomke shows that the ways in which an

organization goes about solving such complex problems through experimentation can

strongly affect the performance of the development organization [21]. He highlights a

number of factors that contribute to improved Research and Development (R&D)

performance, in particular by focusing on the positive impact experimentation has on

learning in the development organization.

Within and between development phases, product details are refined. In many cases

this creates a paradox: early refinements are done with less information about

downstream development requirements and product performance consequences, but they

often have far-reaching implications for both. This well-documented phenomenon

[21,25] emphasizes the value of early information and is a primary motivation for many

systems and concurrent engineering initiatives. In this chapter, which draws heavily on

work from Thomke[21] and Terwiesch, Loch, DeMeyer [11], we explore the nature of

these effects and begin to examine how they affect aerodynamics analysis in the

automotive product development process.

3.1 Experimentation and Knowledge Creation
Experiments are designed to fill gaps in knowledge. If a problem is posed for which

solutions are not readily available, an experimental program is typically planned to

understand the principles at work and ultimately provide a solution. Consider for example

the problem of determining the look of a new vehicle. What should the vehicle look like

and what attributes should it have to be visually appealing to the target market,

conformant to government regulations, within the organizational capabilities to cost-

effectively develop and manufacture, etc.? It simply is not possible to provide a useful



answer to this question. Too many parameters are in play, some tangible and many

intangible. In this case, a large-scale experimental program involving designers and other

experts steeped in the traditions of artistic expression and car design must be conducted

to explore the available options and choose a design. This is the primary purpose of the

Concept Development phase described in Section 2.2.1.

Experiments are useful only if they provide results in a timely and cost effective

manner. If experimental results cannot be obtained quickly enough, the development

organization has three key options:

* It can defer decisions until necessary experiments can be conducted and

evaluated.

* It can make decisions based on whatever information is available, and schedule

verification tests - another kind of experiment - for a later date.

* It can alter experimentation techniques to provide faster feedback.

The first two options have important cost and risk ramifications. Deferring decisions

is often not an option, since existing experimental technologies may take weeks or

months to complete and decisions may be required within hours or days during critical

stages of development. Making decisions based on incomplete information implies that

the risk of a poor decision is not eliminated. Studies show that in automotive

development the cost of correcting a problem increases by a factor as high as ten for each

development phase downstream of where the problem is introduced [18]. (Figure 3-1)

When risks associated with design decisions are recognized early these costs can be

managed through parallelization in the design process, assuming the costs of keeping

multiple design options open are not too high [16]. If those costs are too high, new

experimentation technologies capable of providing earlier and faster feedback, if they are

available, appear to be a natural choice for informing early-stage design decisions. But

introducing such technologies often has its own challenges. In automotive development,

traditional methods are typically based on physical tests of prototypes and as such are

assumed to provide only highly accurate test information (an assumption we will revisit



later). New rapid-feedback technologies generally take the form of software that

implements mathematical models of the physical effects being investigated.
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Figure 3-1: Value of early information

These software packages require information that is generally available much earlier

in the development process, before costs associated with prototype production have been

incurred. The accuracy of a solution and the time required for the computer simulation to

run are both dependent on the model used in the software and the resources (both human

and computer) dedicated to the problem. But even in the best of situations, the new

method might achieve 80% (for example) of the accuracy of established methods, making

wholesale replacement of established methods impossible and reinforcing arguments that

only the established methods are sufficiently reliable for product development purposes.

It should be noted that "80% accuracy" can mean several different things:

* It provides numerical solutions that are within 80% of the actual values.

* It provides precisely correct solutions for 80% of the parameters being evaluated



For 80% of the simulations run it provides precisely correct values for all of the

parameters being evaluated.

Usually it will be a combination of these, though this will depend on the technology.

Regardless, in the worst cases, organizations have found that adopting new

technologies with the goal of reducing costs have found that costs actually increase, since

decision makers do not trust the results of the new techniques and require that the older,

more expensive techniques be used to verify results of the new techniques. Not only are

costs not reduced by using the new method in place of the old method, perversely more

costs are incurred with the old method to verify the new method's results.

Looking more closely, we find that the belief in the need for traditional verification

of tests run with new technologies is often flawed. While the new technology may have

lower fidelity in comparison to existing methods, the increased rate at which the new

methods provide information makes them very useful in informing decisions that cannot

wait for feedback from slower and more costly established methods. Eventually as the

development process progresses, the rate and cost at which the new methods deliver

useful information will no longer exceed that of the established method. At this point, the

older method is more cost effective and a switch is in order. By combining appropriately

both the old and new methods as complements to each other, the entire process is

optimized. (Figure 3-2)

An interesting example of this mechanism in action can be seen by returning to the

example of crash simulation technologies. Twenty years ago, nearly all crash experiments

were done with prototypes and preproduction vehicles which had to be custom-built

during vehicle development and then destroyed in the test. Although models and test

dummies were heavily instrumented, a limited amount of information about actual failure

modes could be recovered from these tests, even from reviewing high-speed video

recordings.

In the 1990s, computer simulations began to be used much more frequently as

software models improved and processor speeds increased. In addition to allowing for

rapid test iterations without prototypes, failure modes could be easily analyzed using

simple analysis techniques by "replaying" the simulated crash as slowly as needed.
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Figure 3-2: Combining old and new technologies to leverage both
Adapted from Stefan Thomke, Experimentation Matters, Ch. 5.

Today, according to one interview subject, crash simulations have improved to the

point that their results are assumed to be correct. Only a few tests are now performed on

actual vehicles, and "surprises" - failure modes not observed in simulation - are very rare,

even on models that earn a "five-star" safety rating. This is in contrast to using older

methods, which for one four-star car model required 120 crash tests of physical

prototypes and production vehicles whose cost ranged from C450,000 at the beginning of

development to C5,000 for production vehicles. While crashing a certain number of

preproduction and production vehicles may always be required to fulfill regulatory

testing requirements, the most expensive tests which involve early-stage prototypes and

the associated longer iteration times have effectively been eliminated by the more

progressive front-loaders in the industry.

3.2 Influence of Rapid Feedback on Ability to Innovate
An equally important effect of rapid experimentation technologies is the potential it

creates to test and evaluate ideas that previously would not otherwise have been possible
because of the time involved and the expense incurred. When forced to work with

incomplete information, decision makers might choose a conservative path that offers
little risk or a more innovative path that may require additional costs and delays as



problems with the new ideas are found and solved downstream. By providing a means of

obtaining feedback early, many more new ideas can be proposed, evaluated and refined

without significantly increasing risk in downstream development efforts. (Figure 3-3)
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Figure 3-3: Early feedback enables innovation
Adapted from Stefan Thomke, Experimentation Matters, Ch. 5.

This effect on an organization's ability to innovate when using front-loaded

development processes that include CFD analysis was prominent in the efforts of Team

New Zealand's entry into the 1995 America's Cup yacht races [8]. Faced with much

larger opponents but constrained to a budget of $20 million by its limited resources,

Team New Zealand chose to build and test two yachts, as other teams did. But through a

continuous program of rapid feedback experimentation, led by experienced yacht

designers that involved physical models, the two competition yachts, as well as an

estimated 5,000 to 10,000 CFD simulations, many changes were made to the two yachts,

including over 50 changes made to the keel alone. New Zealand easily won the right to

compete in the finals without even having to compete in the final qualification heats.

They won the final best of nine series 5-0, an unprecedented margin of victory.

To make the most of rapid feedback and test new ideas, an organization must be

capable of performing and processing experiments quickly without becoming overloaded.



This requires careful planning and a balance of both people and computer resources. The

addition of the technology itself is not enough. Without sufficient expertise and computer

power to use that technology effectively, it still cannot provide needed information on a

timely basis. Team New Zealand, for example, had a closely integrated team with

computer resources very close to their design and test facilities, iterating the design right

on the dockside. This team met nearly continuously to review results from both CFD and

physical tests, select new ideas to investigate, and kick off new simulations to be

reviewed several hours later.

Assessments of how much expertise and computing power is appropriate for a given

technology may not be straightforward. In several interviews conducted, stress was

placed on the need to simplify software interfaces to the point at which design and

engineering generalists, who are readily available in development organizations, can

quickly adapt to and use the new technologies. Critically, solutions that require highly

specialized skills - which typically means engineers with Ph.D.'s in specific fields of

study - hamper efforts as people with those skills become a scarce resource. Two

interview subjects highlighted this effect in stories about initiatives to replace an

established experimentation technique with another technique that superficially appeared

to be cheaper. In both cases the initiatives failed because it had been determined that

adopting the new product required hiring a stable of highly specialized experts.

Computing power must also be carefully planned to insure that it does not become a

scarce resource. If new technologies are to be used to improve overall development

performance, it must be possible to quickly design, run, and analyze the results of an

experiment. Established queueing theory shows that once a scarce resource reaches

approximately 70% to 80% utilization, the time spent waiting for that resource increases

significantly and non-linearly. In this case, if the resources required to run simulation

experiments - such as computing capacity or availability of experts required to perform

highly specialized experiments - are planned to match expected capacity for those

resources, waiting times will be very high and the ability to provide rapid feedback is lost

[20]. (Figure 3-4) Thus planning and budgets must reflect a need for a certain amount of

additional capacity relative to the average planned capacity in order to realize the full

benefits of introducing a rapid-feedback technology.
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Figure 3-4: Waiting time for a resource increases dramatically at high utilitizations.
Adapted from Stefan Thomke, "Enlightened Experimentation" [20]

3.3 Summary
Rapid-feedback experimentation technologies offer a great deal of promise for

improving product development performance. When used correctly they enable a

problem-solving paradigm that identifies and fixes problems early, eliminating the need

to spend a great deal more money fixing problems when they are found much later in the

development process, or sacrificing on product goals because they cannot be fixed

without rewinding too much of the development process.

If accompanied by the right type of organizational changes, rapid feedback testing

also enables new innovation capabilities. The ability to test new ideas quickly provides a

powerful vehicle by which innovations can be proven without incurring the risks and

costs associated with running a limited number of tests early or deferring assessments to a

later phase of product development. But to take full advantage of this promise

development organizations must adapt to integrate experimentation capabilities into the



early phases of product development. They must be able to quickly define, run, analyze

and process the results of experiments, and begin new experiments as needed.

These kinds of organizational changes are very difficult, especially for long

established and very large companies. Team New Zealand was able to organize this way

from the beginning, but for an existing organization to change in this way is a much more

difficult transition. In Chapter 5 we investigate the practical realities associated with

making these kinds of changes. First we will take a look at the implications of rapid

feedback testing for air flow analysis in automotive product development, then consider

these implications in our discussions on organizational change.



4 Application to Automotive Aerodynamics Analysis
Compared to many types of engineering information that are used in the

development of a car, aerodynamics and its many influences introduce a number of

special complications. The complexity inherent in the physics of turbulent fluid flow

makes all but the most crude of predictions inaccessible to human intuition for real

problems, and nearly all fluid flows of interest in the automotive development process are

turbulent. Yet the way in which air flows around a car and through its subsystems has a

significant impact on the performance of the final product: fuel efficiency, noise levels,

safety, handling, and reliability all have traits that depend directly on successfully

managing air flow. Thus one of the most important levers available for reaching product

goals - alteration of the car's outer surface - is removed once the design is frozen and

that surface can no longer be changed.

In this chapter we review some the ways in which air flow is unique relative to other

engineering information, and what this means for the need to assess its behavior early in

the development process. We build on the information in Chapters 2 and 3, then review

the advantages associated with incorporating air flow simulation technologies into the

early phases of automotive product development and discuss changes needed in software

implementations of these technologies to enable this use.

4.1 Systemic Nature of Air Flow as an Engineering Problem
The flow of air around a complex shape has a number of characteristics that

complicate its management as an engineering problem. Chief among these problems are

its resistance to intuitive reasoning for most "real" problems, and its tendency to produce

non-local effects: an interaction with one part of a vehicle often has a significant

influence at a distance on air flow interactions with other seemingly unrelated parts of the

vehicle. Air flow creates highly unpredictable relationships between vehicle components

that would not otherwise be related, and these relationships in turn can have a major

impact on the performance of the vehicle as a whole. Thus changes to the design could

also either create or destroy these interactions (which may either be beneficial or

detrimental) in a way that is equally unpredictable by intuition.



The impact of these variable relationships can be demonstrated with a variable-based

Design Structure Matrix (DSM), as shown in Figure 4-1. A DSM is a useful tool for

developing an understanding of relationships between the components of a system, and is

often used during product development to ensure that dependencies are accounted for

properly as the system and its components are being designed. In this simple example,

there are 20 components or design parameters that might each represent a design attribute

- the shape of the hood, radius of the A-pillar, size and shape of the grille, etc. An "X"

indicates that the variable in that row has a strong dependence on the variable identified

in the column. A dot indicates a weak dependence. Once the DSM has been created, these

dependencies are analyzed to optimize development plans across all components.

Figure 4-1: Air flow may create unpredictable component dependencies



In the presence of air flow, however, this process may fail to recognize important

dependencies between components, shown with question marks. Without this information

development plans proceed assuming these relationships do not exist, potentially

resulting in new problems that may not be discovered until testing is well under way. To

illustrate this complexity and explore its consequences for automotive product

development we will look at a concrete example in detail and then discuss the primary

drivers for improving air flow characteristics for a vehicle.

4.1.1 Example: A-Pillar Vortex Noise
We start with an example that was relayed to me several years ago by a senior

aerodynamicist at a major auto company. The subject of the example is the interaction

between a prominent air flow feature on most vehicles - the so-called A-pillar vortex -

and an open driver's side window. The A-pillar is the first of three structural members

that connect the main body of a vehicle to its roof. The A-pillar is between the windshield

and the front door, the B-pillar is between the front and rear doors, and the C-pillar is

between the rear door and the rear windshield. (Figure 4-2)

As a car moves down the road at normal driving speeds, air that approaches the side

of the front windshield is deflected up and to the side. A number of factors affect the

result of this deflection, but a prominent result is the creation of a vortex - a tube of

spinning air - that usually starts at the bottom of the A-pillar and gradually moves higher

as it propagates down the side of the car. If you have ever noticed a roughly horizontal

line of water on the outside of your window while driving in the rain, this is a result of

the A-pillar vortex holding water up as gravity pulls it down on the glass. Through a

number of mechanisms not directly relevant to this discussion, this vortex is often a

significant source of noise for the occupants of a vehicle. In this example, if the driver's

side window was left open while driving at moderate speeds, this vortex interacted with

the open space of the window and the B-pillar (at the back of the open window) to create

a very loud noise within the cabin. This is an example of the buffeting phenomenon

described in Section 2.1. If any other windows or the sunroof were also open, this noise

did not occur.



Figure 4-2: A-pillar vortex illustration
Image courtesy of Exa Corporation

The problem was not found during development and testing of the vehicle. It soon

became a common complaint among buyers of the vehicle, creating a minor crisis for the

aerodynamics team. After reproducing the problem on the road, engineers found that by

simply placing two fingers one centimeter through the open window just in front of the

B-pillar, the problem went away. This solution is not practical for production vehicles,

but the point is that a small change far away from the origin of the A-pillar vortex

corrected the problem. Both the problem and the result of those two fingers were not

effects that lend themselves to intuitive problem solving. An experienced aerodynamicist

would certainly be aware that the vortex would be present and might cause problems, but

he could not know about many of the other complex air flow issues that might occur.

Imagine now how the development process for this vehicle likely progressed. The

problem was fundamental to the shape of the car, and required an open window to



observe. Thus without simulation technologies providing feedback during the Concept

Development phase, even in the best case the problem with the design could not have

been identified until long after it had been frozen. Wind tunnel tests on clay models

would not be sufficient since the effect requires an open window. Structural prototypes

might have shown the problem, but only if expensive acoustic analyses were done with

an open window. In this most optimistic scenario, the problem would still have been

costly to fix at this stage (likely with a change to the door mirror, which has a strong

influence on the behavior of the A-pillar vortex). In a more pessimistic scenario, if the

problem had been found much later in the development process but before production

had begun, it might have been necessary to choose to ship the vehicle as-is and live with

the problem rather than incurring the associated costs and delays to correct it. One

interview subject stressed that decisions to sacrifice a product target because a problem

was identified late and could not be fixed before start of production are not as uncommon

as many customers would like to believe.

4.1.2 Aerodynamics
The influence that a design's shape has on the vehicle's aerodynamics may be the

easiest to understand intuitively. What is often not well understood is the sensitivity of

aerodynamic performance to even seemingly small changes in shape. Even for very

simple shapes, a minor change in the shape of a vehicle component has the potential to

dramatically change the resulting air flow, which in turn would result in a major change

to the aerodynamic performance of the shape [1]. These complexities are compounded

when working on actual vehicle shapes with complex curvature and hundreds of distinct

components, many of which are developed by separate teams.

Testing on clay and structural prototypes still plays a prominent role in identifying

and solving problems with vehicle shapes. As we saw in Chapters 2 and 3, this limits the

product development process in several ways:

* Prototypes are often not representative of the actual design in consideration. This

can lead to false conclusions or loss of confidence in the test results.

* Reliance on prototype testing early in the process makes testing of new ideas

much more expensive, since they must first be built into prototypes. Thus many



ideas may be discarded due to perceived risk without being evaluated for their

potential for beneficial impacts on product performance.

Prototype construction is typically a long, expensive process. Waiting until

prototypes are available to perform tests delays problem identification and

resolution.

A new experimentation technology like CFD capable of delivering quick feedback to

design ideas would address each of these issues. It represents the actual shape under

consideration and is capable of performing tests much earlier and faster than prototype

testing, accelerating tests for innovative new ideas and enabling early problem solving.

4.1.3 Aeroacoustics
Aeroacoustics shares all of the advantages described above for aerodynamics.

However, the practical realities of aeroacoustics analysis actually provide a more

compelling case for identifying and solving potential problems early in the development

process. Problems in aeroacoustics can be very sensitive to minor changes in the shape of

a vehicle. But because of this sensitivity, reliable physical testing is often not possible

even with initial structural prototypes, which may have slightly simplified geometry,

missing door seals, and substituted components that heavily influence the noise heard in

the passenger cabin. Since meaningful testing might not be possible until the second

generation of structural prototypes is built, any problems that might be found are much

more difficult to address.

Another factor in physical testing techniques which is especially difficult for

aeroacoustics is the decomposition of the noise heard by occupants into constituent

sources. Reducing noise requires an understanding of its origins, and traditional

experimentation methods offer little insight into these origins. CFD technologies offer the

potential to identify these sources and inform noise mitigation decisions with information

not available from existing techniques.

4.1.4 Thermal management

Thermal management is also tied closely to aerodynamics. It particular, the shape of

the vehicle's front structure and the nature of air flow around the car affects the amount



of air that will pass through the cooling package (radiator, condenser, other heat

exchangers and fan) and over the rest of the engine. But as with aeroacoustics, thermal

management poses a number of challenges for product developers.

While the exterior surfaces of a vehicle are relatively simple to define, most thermal

management problems deal with much more complicated shapes and more complex

component interactions. The engine and dozens of its associated components, fans, and

the surrounding structures add up to a chaotic air flow environment that can be very

challenging to study experimentally. Brake cooling and other thermal management

problems deal with similar factors. When combined with concerns about prototype

fidelity and the importance of thermal management in controlling development costs,

warranty risks and safety issues, early-stage problem solving with CFD offers the

potential for dramatic improvements in product development performance.

4.2 Requirements for CFD Software

For any technology to be viable in front-loading automotive product development, a

number of important requirements must be satisfied in actual product development

settings. To emphasize a point made in several interviews, it is not enough to fulfill these

requirements in idealized settings and then assume that they will be satisfied when

integrated into real product development environments where change is constant and

flexibility is essential. Here we look at the primary requirements for any such technology,

with a special emphasis on CFD Software.

4.2.1 Accuracy
First and foremost, the technology's results must be useful as a predictive tool in

evaluating the relevant attributes of performance for a design when employed by capable

users. In Section 3.1 we saw that when the technology's limits are known, operating

within those limits assists the development team in evaluating their ideas and

understanding problems at a time when identifying and fixing those problems is relatively

inexpensive.

With respect to CFD, accuracy requirements depend largely on the specific area in

which problem identification is needed. For all areas it should provide a means to



compare multiple design variations for their relative effects on key performance

attributes:

* Aerodynamics: drag and lift; air flow patterns

* Aeroacoustics: wind noise sources; noise propagation characteristics; noise levels

heard by occupants

* Thermal Management: distribution of temperature in air after heating from

engine, radiator, exhaust, brakes, etc.; surface temperatures on parts heated by air

As we have seen, in some cases CFD simulation can be used to advance a design to a

certain stage, at which point traditional physical testing systems should take over. An

example of this was described in an interview where the optimal angle of a spoiler at the

rear of a car needed to be established. While CFD had been useful in the development

process, it was found that performing a parametric study on the spoiler in a wind tunnel

could be done much faster, since the only result needed was the force acting on the

spoiler for each angle. Rather than run a series of simulations, a short wind tunnel test

program was performed instead.

4.2.2 Rapid Turnaround Time
The ability to run and analyze experiments on a time scale that is useful to

developers is critical for any technology to be useful in front-loading the development

process. It must be usable much earlier in the process than traditional technologies and it

must be fast enough to evaluate proposed solutions more quickly, thus enabling product

developers to receive feedback on a proposed design before it changes significantly and

thereby realize the technology's benefits. During Concept Development, several

interview subjects noted, designs evolve continually based on whatever information is

available. If results from CFD assessments are available before the next major round of

modifications to the design, they might be considered. There is no value in receiving

results of these assessments after several more changes have been made to the model.

This begs the question, how quickly must the experiment run in order to be useful

during the early stages of design? If we accept the statement that the results of an

experiment have no value if they are not available before the design is modified, then the



answer naturally depends on the rate at which the design is evolving. This rate varies over

time. In the first meetings after a project is kicked off, designs (such as they are at this

stage) undergo radical "changes" every few minutes. In this scenario anything less than

real-time feedback, as one might get by interactively working with experienced designers

and engineers, is not useful. In the final meetings of Concept Development, the general

concept has been selected and only minor, carefully-vetted changes are being proposed

and evaluated before the design is frozen. These final design changes take place at a

much slower rate, and tend to be more limited in their impact on the look of the vehicle.

Here, more time is available to perform experiments on change proposals before the next

change is made, but by this time most key design decisions have already been made:

problems found and solved here will already be much more expensive or impossible to

address. Thus the question of how fast experiments must be able to run to provide timely

feedback depends on where you are in the development process.

The turnaround time for an experiment can be decomposed into three components:

* Setup: the amount of time required to prepare the experiment. In the context of

CFD analysis, this includes the amount of time to transfer geometric information

from wherever it is stored - assumed here to be another CAE system - and define

the conditions in which the experiment is to be conducted. As with many

experimental techniques this process is likely to take longer the first time the

experiment is run. Incremental changes are generally much faster.

* Run: the amount of time required to run the experiment. For CAE simulation

techniques, this is the amount time required for the simulation to run. This time

can usually be reduced by running the simulation on many computers

simultaneously.

* Analyze: the amount of time required to analyze the results of the experiment and

choose next steps.

In an interview a former head of design for one of the "Big Three" auto makers in

the U.S. stated that although real-time feedback would be ideal, delivering simulation

results overnight would be sufficient to enable a daily analyze-set-run test cycle for early

problem identification and solution during Concept Development. Slower results would



typically not be useful as designs change too much over, say, a two-day window.

"Overnight" refers only to the time required to run the simulation. Thus to be most useful

in such an environment, the setup and analysis times would need to be short enough -

perhaps an hour or less - to not interfere with this daily cycle.

4.2.3 Simplified Interfaces and Standard Practices
As mentioned in Section 3.2, the accessibility of a technology to a large pool of

product developers is important in front-loading scenarios in order to eliminate

bottlenecks introduced by involvement of rare and highly specialized people. This

sentiment was echoed in several interviews. If extreme specialization is needed to use the

technology, it is not suitable for providing feedback in a constantly evolving, dynamic

development process.

A requirement closely related to both simplified interfaces and accuracy is the need

for standard or "best" practices in order to provide accurate results. Two interview

subjects highlighted this as an important factor in the success of crash simulation and a

current concern with CFD simulation in general. In particular, if the quality of the results

varies among equally experienced and knowledgeable practitioners, the technology's

value in providing robust feedback will be suspect. Templates, "push button" solutions

and consistency in problem-solving techniques across the development process were all

cited in interviews as crucial for integration of CFD into earlier stages of product

development.

4.2.4 Robust Integration into Comprehensive CAE Environment
The importance of a fully digital process was emphasized in an interview with the

former chief of design at an American auto maker who had been a champion of digital

vehicle development technologies. He said that changing the development process to use

CFD technologies early in the development process "means you have to move to a total

digital process so you can work with the whole system." Relying on physical models and

clay, he noted, means that by the time you scan the shape into CAD, run a simulation and

analyze results, the clay model will have changed so much that the results of the test will

be useless.



Aside from the need to move to a digital process, the transition of geometric

information between the CAD/CAS and CFD software systems must be fast and efficient

to enable the daily analyze-setup-run cycle referred to earlier in Section 4.2.2. This need

for a very short setup time when starting from raw CAD data has traditionally been a

challenge for CFD software, which often requires time-intensive manual simplifications

to the CAD data before it can be used. The need for such simplifications appears to

disqualify packages that require them from use in these daily experimentation cycles.

4.3 Summary
The complexity of air flow introduces a number of complications into the automotive

design process, largely because design changes can have unpredictable consequences that

are only exposed through experimentation. Air flow creates dependencies between

components and design changes that might otherwise be unrelated.

The reliance on prototypes for performing these experiments makes problem-solving

difficult, but newer CFD technologies offer promise in front-loading the development

process and reducing the dependence on prototypes. To fill this promise, CFD codes must

fulfill requirements of accuracy, easy of use, speed of solution, and smooth integration

with other CAE packages used for defining and storing the vehicle's evolving design.



5 Practical Realities of Process Change
Most managers will agree readily that solving problems early is better than solving

them later. The specific mechanisms of how and why front-loading the development

processes improves product development performance, both in cost and time to market,

might not be thoroughly understood, but it is relatively straightforward for managers to

understand that earlier is better. So if technologies are available for solving problems

early in the development process, why would they not be adopted? In this chapter we

explore this question, look at how it has been addressed in successful transitions, and

what might be necessary to motivate a similar transition for the inclusion of air flow

information in the early product development phases of an automotive company.

The most significant factor affecting the adoption of major changes in the product

development process is organizational culture, which we define here to be the unstated

behavioral norms operating within an organization and governing its actual behavior.

This sentiment is prominent in the literature [10,15,21,25,26] and was expressed strongly

by several interview subjects, all of whom have spent more than a decade in the

automotive industry. As one put it, "culture eats process every time."

A useful illustration of this cultural difference was described in an interview of a

former staff member at a European auto maker. This company had two design studios

that fed into the same engineering organization. The two studios, which were responsible

for different brands within the same parent company, had very different relationships

with the engineering division. One brand had a reputation for cars with aerodynamic

shapes and its designers were more focused on aerodynamic performance. They actively

engaged the engineering organization seeking feedback and improvements. Designers in

the other studio, who did not have this focus on aerodynamic performance, were

described as being "very tough - almost kings. Their designs are art that should not be

changed." Unfortunately, information is not readily available to establish the impact of

this difference on downstream product development performance. But the difference

between these two design studios working with the same engineering organization

highlights the range of resistance one might find when attempting to front-load the design

process to include engineering evaluations of early designs.



Sections 5.1 to 5.4 look at a number of issues relating to organizational culture as

extracted from the literature and interviews. We begin by recognizing the primacy of the

creative process in the concept development phase of automotive design. The critical

product of this phase is an aesthetically appealing design, which would not be possible

without this creative process. We then seek to identify and understand the hidden

behavior norms that are present, and build a rational argument for implementing process

change without stifling the creative process. Section 5.5 discusses high-level

considerations for instituting major process change, and Section 5.6 reviews factors that

have been found to be important in successfully implementing such changes.

5.1 Perception of Impact on Creative Process
The aesthetic appeal of a vehicle is among its most important qualities for

commercial success. It plays a significant role in differentiating a car from competing

products by attracting potential buyers to favor one vehicle over another. For most buyers

the car's external appearance is the first thing they see. The adage "you never get a

second chance to make a first impression" was made more specific in one interview,

which stressed that buyers may never know about a car's excellent performance if it does

not first provide the right degree of visual appeal. A beautiful car, on the other hand, will

at least get a second look. Thus it becomes critical to have both visual appeal and good

performance, since well-performing cars will fare better in a second look than poorly

performing ones. But the car must get that second look.

Because of the importance of visual appeal, emphasis is placed on the development

of a car's look during the early phases of product development. This in turn requires a

great deal of creativity and expertise. The current paradigm involving highly trained

designers and modelers has evolved to express this creativity primarily through clay

models, whose physical presence allows for visual evaluations of proposals that many

believe are more realistic than computer-generated visualizations. Thus shifting to a

primarily digital vehicle development process, previously raised in Section 4.2.4 as a key

factor in enabling early-stage air flow assessments of new designs, threatens to disrupt

the key mechanisms by which new designs are evolved and assessed. Computer Aided



Styling (CAS) solutions have been gaining moderate traction in some companies due to

the front-loading effects they promote [21], but the focus is still primarily on clay models.

The addition of air flow assessment technologies in this process poses a further

significant new challenge. Adding evaluation criteria based on engineering performance,

it is often argued, constrains the flexibility of designers in ways which limit creativity and

may foster "cookie cutter-style cars" [24], or otherwise detract from what is

fundamentally a creative process through the use of engineering (generally read as "non-

creative") metrics. It is felt that groundbreaking design ideas should be explored for a

time without consideration of their engineering implications in order to foster the creative

process and yield popular, attractive designs for next-generation vehicles.

Interestingly, most of the comments about constraining design flexibility are in

response to questions specific to the use of CFD technologies in evaluating designs. But

the specific use of CFD should in fact be irrelevant: the constraint is applied by

incorporating awareness of air flow characteristics into a design, regardless of the

technique used to create that awareness.

As with any complex design process, addition of new evaluation criteria that were

not previously available should indeed provide better information by which design

decisions are made. This is one of the key benefits of front-loading. To the extent that this

new information results in decisions that would otherwise have been made differently, it

does add new constraints to the process. But factual information supporting the belief that

such constraints yield unappealing styles is not readily available, and an understanding of

the design process does not appear to support it. Nearly everyone involved in the process

- even engineering managers and staff - appear to agree with the critical importance of a

design's aesthetic appeal, so it seems unlikely that it would be subordinated by

engineering performance information during early-stage design evaluations even if

perfect real-time information were available. Thus the question becomes, would the

addition of air flow information, with its attendant front-loading effects, to the design

selection process change design decisions to such an extent that creative new design ideas

would be suppressed?



This seems unlikely for precisely the same reason that air flow analysis is so difficult,

as described in Chapter 4: it is typically impossible to predict the effect of a particular

design feature on air flow without testing it, and the same design feature might yield very

different results depending on other aspects of the design. Without a formal evaluation of

design ideas, it is difficult to support arguments of suppressing a design alteration.

5.2 Organizational Interfaces

A vehicle's shape plays an important role in its ability to meet engineering

performance goals. But there is often a sharp division between designers and engineering

staff who are ultimately working to develop the same product, and these divisions can

create barriers to problem solving [2,21]. Some of these divisions result from the

practical limitations of current experimental methods. If meaningful performance

information can be acquired only from testing on structural prototypes that are not

available until long after Concept Development has completed, involving engineers in

early-stage design is difficult to justify. Often, however, these separations are artificial.

For example, a prominent factor explaining negative reactions designers often have

to early-stage engineering performance assessments was raised in several interviews:

engineering assessments of designs are often interpreted as judgments of the design rather

than simply being additional information to be used in a larger, more informed

assessment framework. Dialogues between designers and engineers are described as

infrequent and difficult at best, with designers feeling that the results of their creative

efforts are being challenged by dispassionate assessments incapable of recognizing the

real value of artistic appeal and engineers feeling that designers are aloof and too willing

to push problematic designs off on engineers to solve the problems.

Both views may have an element of truth, but they also appear to reflect a lack of

trust and empathy often corrected naturally by closer collaboration and a focus on solving

problems at the system level rather than deferring decisions [2]. This was supported in an

interview with a former chief of design, who related a story about a small vehicle

development team that included members from many different disciplines: design,

engineering, marketing, and production. In this team, design and engineering staff who



previously had not gotten along well were able to coordinate efficiently on a new design.

This effect is a key goal of concurrent engineering initiatives.

Another more subtle effect is found, however, when introducing new technologies

which require a high degree of expertise to leverage. If a new technology is sufficiently

complex, specialists are often required to make good use of it. The unexpected side-effect

of such an interface is a forced separation between information and the people who need

it. Thomke provides an illustration of this effect in the use of CAD/CAE technologies,

where firms in the U.S. had up to 2.3 CAD specialists per engineer, compared to 0.3 in

Japan [21]. The Japanese firms were using much less sophisticated CAD technologies,

but their engineers were able to make much better use of these simpler technologies

without specialists. As a result they were able to experiment more and solve problems

more efficiently than their American counterparts. This requirement for simple interfaces

to new experimentation technologies further supports the findings in Section 4.2.3, which

found that accessibility of CFD technologies without also requiring high degrees of

specialization in its practitioners was an important requirement for their adoption in the

early phases of automotive development.

5.3 Evaluation and Incentives
A key element of process change resistance was highlighted in several interviews,

including one who put it plainly: "Look, designers know that at the end of the day the

product has to perform. But they are graded on the visual appeal of the design." He went

on to say that although each engineering team tends to believe that their particular area of

expertise is most important - after all, this is how the engineers are graded - the designer

must look at the complete vehicle and be responsible for attracting initial attention from

buyers.

Thus incentives to coordinate and solve system-level problems early are often not

aligned for design and engineering staff working on the same product. This tends to be

especially true in the early stages of development, when coordination between teams

often means exchanging information which may not be precise due to rapidly changing

designs. Terwiesch, Loch and De Meyer explore this effect in some detail with important

findings [18] that teams are often reluctant to share early information for two reasons: the



information does not yet meet the team's precision requirements for sharing it; and those

that share information earliest must often spend the most time making changes to the

design to accommodate changes requested by those that see the information. Thus by

waiting longer to share information about proposed designs, the logic goes, teams can

satisfy their ingrained preference to provide only accurate information - and not expose

the fact that their early information has flaws - by incorporating as much information as

possible from prior stages of the design process.

An incentive mechanism that plays a large role in front-loading initiatives is

reflected in this illustration. Emphasis is often placed on providing accurate information

in one's own area, and not on coordinating with the larger organization to converge on

final robust designs earlier at the expense of providing less accurate information and

having to rework portions of the design. This larger coordination effort is effectively an

experimental process, where information is provided on a best-available basis even

though it is incomplete. This exposes evolving details in the information, and thereby the

conflicts within those details can as a result be addressed much earlier and more cost-

effectively than would be possible if all parties waited for the availability of as-perfect-

as-possible information. A key conclusion of this study is to ensure each team's

incentives are aligned with the broader goals of organizational learning, problem solving

and product development performance. Incentives and evaluations must be based on

contributions to learning and front-loading and not on providing incomplete or inaccurate

information early.

5.4 Adaptation to Digital Visualization
As we have seen, the automotive concept development process is highly focused on

visual information, and physical artifacts - drawings, paintings, and clay models - figure

prominently in how this information is communicated between designers and decision

makers. They provide a natural, intuitive mechanism by which designs are created,

reviewed, refined, filtered and communicated [2,19]. Their creation draws on long

traditions of artistic expression that have played a central role for designers charged with

creating new styles for upcoming vehicles [21].



Virtual design techniques require a significant transition in tools, activities, processes,

and technologies. While some auto makers are transitioning to such tools for some

vehicles [4,6,12,17], interviews reveal that clay prototypes are still used heavily in the

concept development process. The virtual tools do not currently provide the kind of real-

time, visually realistic, and tactile feedback required to properly convey the many cues of

a design with the same fidelity as a realistically-painted clay model. In this way

Computer Aided Styling software is similar in nature to other front-loading technologies

that may not provide 100% of the fidelity of existing problem-solving techniques, but are

still useful in identifying and solving some problems early. The use of CAS software at

BMW for front-loading is discussed by Thomke [19].

5.5 Process Change
Even without the larger cultural issues discussed above, large-scale process change is

very difficult. Studies show many complex interactions in process change, and important

dynamic aspects of implementing change in the constant pressure to remain productive

during the transition period must be managed to ensure success. This section draws on

work from Repenning and others [13,14,15] to explore the nature of process changes -

and how such initiatives succeed or fail - through system dynamics models.

The models developed by Repenning, et al. account for a number of factors often not

considered when discussing process change. In particular, they account for the fact that

process change is a fundamentally dynamic process. One does not throw a switch one day

and begin using the new process:

* Workers often resist new policies, and resources must be assigned to ensure the

new process is sound, educate workers and management about its benefits, and

build the capabilities required in the new process. This takes time and resources,

which are then unavailable for working on projects.

* Typically, projects are already under way using the old process. Even if the new

process is to be used only on new projects, the same resources must typically be

allocated among both old and new projects. But the increased efficiency or

performance of the new process is most often the result of front-loading, which

implies more front-end work for new projects, and thus more resources. Old



projects must still get finished without the benefit of the front-loaded

development. If more resources are required for the new process, how are old

projects to be completed on time? This "worse before better" dynamic -

productivity initially suffers, then improves as old tasks are completed and the

benefits of the new process are realized - is often misunderstood by managers.

* Early indications of the new process often give managers a premature sense of

failure. The result is often firefighting: increasing pressure to complete tasks that

are behind schedule due to higher initial resource requirements of the new

process are completed as quickly as possible, even if some steps of the process

(new or old) must be skipped. Such rushed tasks often force rework - either in

themselves or other tasks - which in turn require additional resources to address.

* Eventual gains in productivity also give managers a premature sense of success.

If gains are not partially reinvested in new capabilities developed by the process

improvements, the capabilities degrade over time. Eventually work load

increases again, workers begin taking shortcuts, rework increases, and soon

firefighting is in full swing.

Due to these effects and others, a thorough understanding of the product

development ecosystem and its dynamics is critical to provide a credible framework

within which the process can be permanently and efficiently improved. Resources to

support the changes and build associated capabilities within the development

organization must be allocated, and the actual process of implementing the change must

be carefully managed. This is explored in more detail in the next section, where success

factors in process change are detailed.

5.6 Success Factors
Success in implementing process change requires overcoming a number of high

barriers. Cultural factors and human nature, new capabilities introduced by new processes,

and the dynamic evolution of any process that involves the complexities of human

interaction must all be considered and addressed to enact meaningful long-term changes.

There are three factors that have been found to be most important in ensuring this

success:



o A compelling case

* Committed leadership

* Management awareness of the dynamics of process change

5.6.1 A Compelling Case

Clearly, a legitimate sense of importance and urgency is required to institute a major

change to a company's vital product development process. As the former chief of design

quoted earlier noted, "you have to have one hell of a compelling argument for making

this kind of change."

Automotive design is a high-stakes commercial enterprise run by intelligent, creative,

and ambitious people. Any proposal for a significant change to that process must be able

to withstand their scrutiny and demonstrate its value. As noted in Chapter 1, this value

was easy to recognize for crash simulation due to the relatively minor changes required in

the concept development process. But for air flow analysis and CFD, the associated effect

on the design process is more significant. When and how this argument will be

sufficiently compelling is unclear, but there are already some indications that it is taking

shape. Competitive pressures are high in the automotive industry and some auto makers

are already shifting to no-prototype development models, though the use of CFD in front-

loading the development process and improving innovation before designs are frozen is

not taking place. Also, as this is being written a global economic crisis has been

unfolding for more than six months, which has pushed some high-profile automakers to

the brink of bankruptcy. The role this crisis is having in motivating a fundamental shift in

product development to reduce costs through process improvements remains to be seen,

but any such shift seems likely to benefit arguments that favor rapid-feedback digital

design technologies.

Once early adopters demonstrate success in improving development performance

through the use of early-stage air flow analysis, the compelling case will be much easier

to make to other manufacturers. Since process change at this scale may take a significant

amount of time to fully deploy, however, early adopters might expect an initial buffer



period in which they will enjoy first-mover advantages, while lagging competitors adapt

to the new competitive necessity of improved development performance.

5.6.2 Committed Leadership

Company leadership must have confidence in major process changes, and once they

have this confidence they must be committed to seeing those changes implemented in

order to realize the long-term gains. Aside from believing in the compelling arguments

for making the change, they must understand the complexities of process change and how

it needs to be managed [15].

This may sometimes mean forcing issues, either by requiring a new technology to

prove its value or by requiring the use of a technology whose value has already been

proven [21,23]. Chris Bangle, for example, describes having to force CAS advocates to

prove its value: "Gentlemen, either this puppy pays within three months, or forget it, I'm

going to sell the whole thing down the river. [19]" This ultimatum resulted in the

eventual adoption of the technology by modelers, who work with designers in defining

the actual 3-D surfaces envisioned by designers. Thomke also describes an example

relating to new drug discovery technologies. Here, managers at Eli Lilly had to restrict

chemists' access to traditional, expensive screening capabilities until after they had used

a newer, relatively inexpensive but lower-fidelity technique [21].

5.6.3 Management Awareness of the Dynamics of Process Change
Finally, management needs to understand the dynamic aspects of large-scale process

change, ensure a realistic transition plan is in effect, and be ready to make changes as

necessary to support old and new projects during the transition. A more complete set of

recommendations can be found in Repenning, et al. [14], and Thomke [21].

* Assign resources to process improvement, and ensure that these resources do not

revert to project work. If additional resources are not available, do not invest in

new tools and processes.

* Be aware of "tipping point" behaviors. Initial productivity will usually decrease

once new process implementation has begun. Only after projects begun under the

old process are complete will actual productivity improve.



Align incentives to promote early problem identification and solution. Sharing

information early is valuable even though it is incomplete. Reward early problem

identification practices rather than provision of accurate, but late, information.



6 Conclusion
The use of new experimentation technologies like CFD for air flow analysis in the

early stages of automotive design offers significant promise in boosting development

organization performance, but the changes required to implement these new technologies

are not simple and the environmental attributes needed for change are not all yet in place.

The highly complex nature of the end products and capital-intensive nature of the

automotive industry result in high stakes for process change. Both the rewards and risks

can be significant. But the value of front-loading the development process has been

demonstrated. Crash simulation and virtual decking have both significantly shortened

development times by front-loading the automotive development process, and CFD has

been demonstrated to significantly improve development performance in other fields.

One of the most significant complications in introducing CFD to early-stage

automotive design is the intrinsic conflict created by introducing engineering

performance feedback into a concept development process that has traditionally been

focused primarily on creativity. Changes required by other new experimentation

technologies like crash simulation have been relatively independent of the aesthetic

qualities of a car, so they have been more readily accepted. This is not the case with air

flow performance information, which has a close connection to aesthetic qualities and

suggests new constraints within which the concept development process would need to

evolve.

Making such a change requires sufficient motivation and careful consideration of

how the creative process can be preserved in the presence of a major shift in approach

and emphasis on software-based tools while also ensuring that the benefits of front-

loading are realized. Strong motivation is required in order to overcome relatively high

resistance to process change. Pressure will likely continue building from new competitive

and economic factors until organizations begin adopting CFD. Unrolling such a process

would be done gradually, first with a pilot program before a broader implementation.

This is itself a type of front-loading: first run the experiment, learn from it, and modify

the approach based on this knowledge before continuing. We will see how it evolves

from there, and how long it takes to reach this point.



Future Work
A number of questions and issues were raised while conducting the research for this

thesis that are either not addressed or only briefly touched upon here. So in the fine

tradition of identifying future work topics rather than trying to write more fully about

them in a thesis, here are some of those issues and initial thoughts.

* Two interview subjects expressed concern about the possible long-term loss of

deep aerodynamics expertise if companies were to widely adopt CFD in place of

traditional experimentation techniques. The thinking here is that if the process is

made too simple, experts will no longer have to develop their own deep internal

understanding of the subject, and thus will not be as valuable in providing the

type of real-time feedback that even the fastest computer solutions cannot deliver.

This concern is ironic given the concerns expressed by others about requiring too

much expertise in the process, but seems interesting regardless. One might argue

- and some have claimed - that CFD actually boosts such expertise, since it

makes plain many complex phenomena that are difficult to observe and

understand physically, resulting in fewer false conclusions and better cause-and-

effect understanding.

* A broader spectrum of interview subjects would likely allow for a more general

treatment of some subjects discussed in this thesis. All interviews were with

current and former employees of U.S. and European auto makers. Asian auto

makers in general and Japanese auto makers in particular are known for using

development processes that differ from their Western counterparts, so a deeper

comparison of these practices would likely provide new insights.

* Significant organizational process change in the presence of cultural, managerial

and technical factors described in this thesis could be expanded into an entire

thesis by itself.

* In Experimentation Matters, Stefan Thomke includes some front-loading

mechanisms that are not addressed here. These include project- to-project

learning as a means of not repeatedly encountering the same problems (the

ultimate example of early problem solving) and shifting experimentation



capabilities to users of a product rather than retaining exclusive control over

those capabilities. Although not directly germane to this thesis, these concepts

might play an important role for the network of organizations (auto companies

and suppliers, CFD companies, etc.) considering implementing the kind of

process change discussed here.
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