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Abstract

We present a simple 0(nm + n-^ log U) sequential algorithm for the

maximum flow problem with n nodes, m arcs, and a capacity bound of U

among arcs directed from the source node. Under the practical assumption

that U is polynomially bounded in n , our algorithm runs in time 0(nm +

n-^ log n). This result improves the current best bound of 0(nm log (n^/m),

obtained by Goldberg and Tarjan , by a factor of log n for non-sparse and non-

dei se networks without using any complex data structures.
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The maximum flow problem is one of the most fundamental problems

in network flow theory and has been investigated extensively. This problem

was first formulated by Ford and Fulkerson [1956] who also solved it using

their well-known augmenting path algorithm. Since then a number of

algorithms have been developed for this problem, as tabulated below. Here n

is the number of nodes, m is the number of arcs, and U is an upper bound

on the integral arc capacities.

# Due to Running Time

1 Ford and Fulkerson [ 1 956] 0(nm U)

2 Edmonds and Karp [1972] 0(nm2)

3 Dinic [1970] O(n^)

4 Karzanov [1974] OCn^)

5 Cherkaskyll977] ©(n^m^/^)

6 Malhotra, Kumar and Maheshwari [1978] O(n^)

7 Galil[1978] 0(n5/3m2.'3)

8 Galil and Naamad [1978] 0(nm log^ n)

9 Shiloach and Vishkin [1982] OCn^)

10 Sleator and Taijan [1983] 0(nm log n)

11 Tarjan[1984] OCn-"*)

12 Gabow[1985] O(nmlogU)

13 Goldberg [1985] OCn^)

14 Goldberg and Tarjan [1986] 0(nm log (n^/m))

Edmonds and Karp [1972] showed that the Ford and Fulkerson [1956]

algorithm runs in time 0(nm-^) if flows are augmented along shortest paths

from source to sink. Independently, Dinic [1970] introduced the concept of

shortest path networks, called layered networks, and obtained an O(n-m)

algorithm. This bound was improved to O(n^) by Karzanov [1974] who



introduced the concept of preflows in a layered network. A preflow is similar

to a flow except that the amount flowing into a node may exceed the amount

flowing out of a node. Since then, researchers have improved the complexity

of Dinic's algorithm for sparse networks by devising sophisticated data

structures. Among these contributions, Sleator and Tarjan's [1983] dynamic

tree is the most attractive from a worst case point of view.

The algorithms of Goldberg [1985] and of Goldberg and Tarjan [1986]

were a novel departure from these approaches in the sense that they did not

construct layered networks. It contains the essence of Karzanov's preflow

method but does not maintain layered networks. Their algorithm maintains

a preflow and proceeds by pushing flows to nodes estimated to be closer to the

sink. To estimate which nodes are closer to the sink, it maintains a distance

label for each node that is a lower bound on the length of a shortest

augmenting path to the sink. Distance labels are a better computational device

than layered networks since these labels are simpler to understand, easier to

manipulate, and easier to use in a parallel algorithm. Moreover, by cleverly

implementing the dynamic tree data structure, Goldberg and Tarjan obtained

the best computational complexity for sparse as well as dense networks.

Bertsekas [1986] recently developed an algorithm for the minimum cost flow

problem that simultaneously generalizes both the Goldberg-Tarjan algorithm

and Bertsekas [1979] auction algorithm for the assignment problem.

For problems with arc capacities polynomially bounded in n , our

maximum flow algorithm is an improvement of Goldberg and Tarjan's

algorithm and uses concepts of scaling introduced bv Edmonds and Karp

[1972] for the minimum cost flow problem and later extended by Gabow [1985]



for other network optimization problems. The bottleneck operation in the

straightforward implementation of Goldberg and Tarjan's algorithm is the

number of "non-saturating pushes" which is 0(n-^) . However, they reduce

the computational time to 0(nm log (n^/m)) by a very clever application of

the dynamic tree data structure. We show that the number of non-saturating

pushes can be reduced to 0(n^ log U) by using "excess scaling." Our

algorithm performs log U scaling iterations; each scaling iteration requires

O(n^) non-saturating pushes if we push flows from nodes with sufficiently

large excesses to nodes with sufficiently small excesses while never allowing

the excesses to become too large. Consequently, the computational time of

our algorithm is 0(nm + n^ log U). Under the reasonable assumption that

U = OCn*^^^^) (i.e., it is polynomial in n) , the algorithm runs in time

0(nm + rr log n) which improves the bound of Goldberg and Tarjan's

algorithm by a factor of log n for both non-sparse and non-dense networks,

i.e., networks for which m = OCn^-"^^) and m= Q (n^"^^) for some e with

< E < 1 . Moreover, our algorithm is easy to implement (and is much

more efficient in practice), since it requires only elementary data structures

with little computational overhead.

Our algorithm is computationally attractive even if U is not 0(n'^'^^)

and the arc capacities are exponentially large numbers. In this case, the

uniform model of computation, in which all arithmetic operations take 0(1)

steps, is arguablv inappropriate. It is more realistic to adopt the logarithmic

model of computation (as described by Cook and Reckhow [1973]) which

counts the number of bit operations. In this model, most arithmetic

operations take Odog U) steps than 0(1) steps.

Using the logarithmic model of computation and modifying our

algorithm slightly to speed up arithmetic operations on large integers , we



obtain an 0(nm log n + n- log n log U) algorithm for the maximum flow-

problem. The corresponding time bound for the Goldberg-Tarjan algorithm

is 0(nm log (n^/m) log U). Hence as U becomes exponentially large, our

algorithm surpa T^oldberg and Tarjan's algorithm by a factor of m/n in

the non-dense c: n other words, the relative worst case performance of

our algorithm i? "kingly superior as U increases in size. Our results on

this logarithmic moaei of computation will be presented in Ahuja and Orlin

[19S7a]

.

Our maximum flow algorithm is difficult to make "massively parallel"

since we push flow from one node at a time. Nevertheless, with d == f m/n1

parallel processors we can obtain an 0(n^ log Ud) time bound. Under the

assumption that U = ©(n"^'^^) , the algorithm runs in 0(n- log n) time, which

is comparable to the best available time bounds obtained by Shiloach and

Vishkin [19S2] and Goldberg and Tarjan [1986] using ?: ;7flrfl//f/ processors.

Thus, our algorithm has an advantage in situations for which parallel

processors are at a premium. Our work on the parallel algorithms will be

presented in Ahuja and Orlin [19S7b] .

1. Notation

Let G = (N, A) be a directed network with a positive integer capacity Ujj

for even,' arc (i, j) e A. Let n = INI and m = I A I . The source s and sink

t are two distinguished nodes of the network. We assume without loss of

generality that the network does not contain multiple arcs. We further

assume that for everv arc (i, j) e A , an arc (j, i) is also contained in A ,

possibly with zero capacity. Let U = max (UgJ.

(s, j)6 A



A flow is a function x: A —> R satisfying

S x^i - X Xjj = , forall i e N - {s, t}, (1)

{j:(i,i)6A} {j:(i,j)GA}

I x^t = V , (2)

{j: (j, t) e A)

< Xjj < u-j , for all (i, j) e A , (3)

for some v > . The maximum flow problem is to determine a flow x for

which V is maximized.

A -prcfloiv X is a function x: A —> R which satisfies (2) , (3), and

the following relaxation of (1):

I Xji - I Xjj > , for all i e N - {s, t}. (4)

{j: (j,i)€ A} {j; (i,j)e A}

The algorithms described in this paper maintain a preflow at each

intermediate stage.

For a given preflow x , we define for each node i g N - (s, t] , the

excess

e, = I Xjj - I Xjj

{j: (j.i)e A} {j: (i,j)e A}



A node with positive excess is referred to as an active node . The

residual capacity of any arc (i, j) e A with respect to a given preflow x is

given by rj: = - x^: + x- . The network consisting only of arcs with

positive residue > cities is referred to as the residual network. Figure 1

illustrates thest tions.



Network vsnth arc capacities.

Node 1 is the source. Node 4 is the

sink. (Arcs v»-ith zero capacities are not

shewn)

Network with a preflow x

The residual network with

residual arc capacities

Figure 1. Illustrations of preflow and residual network.



A distance function d: N—> Z"^ for a preflow x is a

function from the set of nodes to the non-negative integers . We say tliat the

distance function is valid if it also satisfies the following two conditions:

CI. d(t

C2. d(i; ') + 1 , for every arc (i, j) e A with r- > .

Our algorithm maintains a vaUd distance function at each iteration,

and labels each node i with the corresponding value d(i). The distance d(i)

is a lower-bound on the length of any path from node i to t in the residual

network. This fact is easy to demonstrate using induction in the value d(i).

If for each i, the distance label d(i) equals the minimum length of any path

from i to t in the residual netw^ork, then we call the distance label exact.

For example, in Figure 1(c), d = (0 , , , ) is a valid distance label, though

d = (3, 1, 2, 0) represents the exact distance labels.

We define the arc adjacency list A(i) of a node i e N as the set of arcs

directed out of the node i , i.e., A(i) : = {(i, k) e A : k e N}. Note that our

adjacency list is a set of arcs rather than the more conventional definition of a

list as a set of nodes.

All logarithms in this paper are assumed to be of base 2 unless stated

otherwise.
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2. The Preflow-Push Algorithms

The preflozv-push algorithms for the maximum flow problem

maintain a preflow at every step and proceed by pushing the excess of nodes

closer to the sink. The first preflow-push algorithm is due to Karzanov [1974].

Tarjan [1984] has suggested a simplified version of this algorithm. The recent

algorithms of Goldberg [1985] and Goldberg and Tarjan [1986] are based on

ideas similar to those presented in Tarjan [1984] but use distance labels to

direct flows closer to the sink instead of constructing layered network. We

thus call their algorithm the distance-directed preflow-push algorithm. In

this section, we review the basic features of this algorithm, which for the sake

of brevity, we shall simply refer to as the preflow-push algorithm. Here we

describe the 1-phase version of the preflow-push algorithm presented by

Goldberg [1987]. The results in this section are due to Goldberg and Tarjan

[1986].

All operations of the preflow-push algorithm are performed using

only local information. At each iteration of the algorithm (except at the

initialization and at the termination) the network contains at least one active

node, i.e., a (non-source) node with positive excess. The goal of each

iterative step is to choose some active node and to send its excess "closer" to

the sink, with closer being judged with respect to the current distance labels.

If excess flow at this node cannot be sent to nodes with smaller distance labels,

then the method increases the distance label of the node. The algorithm

terminates when the network contains no active nodes. The preflow-push

algorithm uses the following subroutines:
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PRE-PROCESS. On each arc (s, j) e A(s) , send u^: units of flow. Let

d(s) = n and d(t) = . Let d(i) = 1 for each iit s or t .

(Alternatively, the distance label for each node i ^^ s, t can be

detern^int a breadth first search on the residual network starting at

node t. )

SELECT. Select an active node i ^^ s, t (i.e., Cj > 0) .

PUSH(i). Select an arc (i, j) e A(i) with r^j > and d(i) = d(j) + 1.

Send 6 = min {e, , r^: } units of flow from node i to j.

We say that a push of flow on arc (i, j) is saturating if 5 = rjj ,

and non-saturating otherwise.

RELABEL(i). Replace d(i) by min{ dQ) +1: (i
, j) g A(i) and r,: > }.

Figure 2 contains the generic version of the preflow-push algorithm.

begin
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Figure 3 illustrates the steps PUSH(i) and RELABEL(i) as applied to

the network in Figure 1(a). Figure 3(a) specifies the preflow determined by

PRE-PROCESS. The SELECT step selects node 2 for examination. Since arc

(2, 4) has residual capacity r24 = 1 and d(2) = d(4) + 1 , the algorithm

performs a (saturating) push of value 5 = min{ 1, 1} units. The push

reduces the excess of node 2 to 1 . Arc (2, 4) is deleted from the residual

network and arc (4, 2) is added to the residual network. Since node 2 is still

an active node, it can be selected again for further pushes. The arcs (2, 3) and

(2, 1) have positive residual capacities, but they do not satisfy the distance

condition. Hence the algorithm performs RELABEL(2) ,and gives node 2 a

new distance d'(2) = min {d(3) + 1 , d(l) + 1) = min {2, 5} = 2 .

The pre-process step accomplishes several important tasks. First, it

causes the nodes adjacent to s to have positive excess, so that we can select

some node with positive excess. (Otherwise, the algorithm could not get

started.) Second, by saturating arcs incident to s , the feasibilit}' of setting

d(s) = n is immediate. Third, since d(s) = n is a lower bound on the length

of the minimum path from s to t , there is no path from s to t . Since

distances in d are non-decreasing (see Lemma 1 to follow), we are also

guaranteed that in subsequent iterations the residual network will never

contain a directed path from s to t, and so there can never be any need to

push flow from s again.
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d(3) = l

d(l) = 4
d(4) =

(a) Thv .'ork with a preflow after the pre-processing step.

d(3) = l

d(l) = 4 d(4) =

(b) After the execution of step PUSH(2

d(3) = 1

d(l) = 4 d(4) =

dt2) = 2

e = 1
-I

(c) After the execution of step RELABEL(2).

Fisurt 3. Illustriitioiis of Push and Relabel steps.
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In our improvement of the preflow-push algorithm, we need a few of

the results given in Goldberg and Tarjan [1986]. We include some of their

proofs in order to make this presentation more self-contained.

Lemma 1. The generic preflow-push algorithm maintains valid distance

labels at each step. Moreover, at each relabel step the distance label of a node

strictly increases.

Proof. First note that the pre-process step constructs valid distance

labels. Assume inducti\ el}^ that the distance function is valid prior to an

operation, i.e., satisfies the validity conditions CI and C2 . A push

operation on the arc (i, j) may create an additional arc (j, i) with r- > , and

an additional condition d(j) < d(i) + 1 needs to be satisfied. This validity

conditions remain satisfied since d(i) = d(j) + 1 by the property of the push

operation. A push operation on arc (i, j) might delete this arc from the

residual network, but this does not affect the validity of the distance function.

During a relabel step, the new distance label of node i is d'(i) = min{d(j) + 1:

(i, j) e A(i) and r- > 0) , which is consistent with the validity conditions.

The relabel step is performed when there is no arc (i, j) € A(i) with

d(i) = d(j) + 1 and r-: > . Hence,

d(i) < min{d(i) + l: (i, j) e A(i) and r- > 0} = d'(i) , thereby proving the

second part of the lemma.

Lemma 2. At any stage of the preflow-push algorithm, each node with

positive excess is connected to node s by a directed path in the residual

network.
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Proof. By the flow decomposition theory of Ford and Fulkerson [1962] ,

any preflow x can be decomposed with respect to the original net^vork G

into non-negative flows along (i) paths from source s to t, (ii) paths from s

to active nodes pi' and (iii) the flows around directed cycles. Let i be an

active node in th How x of G . Thus there must be a path P from s to i

in the flow decc tion of x . Then the reversal of P (P with the

orientation of each arc reversed) is in the residual network G', and hence

there is a path from i to s in G'.

Corollary 1. For each node i e N , d(i) < 2n.

Proof. The last time that node i was relabeled, it had a positive excess, and

hence the residual network contained a path of length at most n- 1 from i to s.

The fact that d^^ = n and condition C2 imply that dj < dg + n - 1 < 2n.

Corollary 2. The number of relabel steps is less than 2n'^ .

Proof. Each relabel step increases the distance label of a node by at least

one, and bv Corollarv 1 no node can be relabeled more than at most 2n times.

Corollarv 3. The number of saturating pushes is no more than nm .

Proof. Suppose that arc (i, j) becomes saturated at some iteration (at

which d(i) = d(j) + 1). Then no more flow can be sent on (i, j) until flow is

sent back from
j to i (at which d'(j) = d'(i) + 1 > d(i) + 1 = d(j) + 2); This flow

change cannot occur until d(j) increases by at least 2. Thus by Corollary 1

arc (i, j) can become saturated at most n times, and the total number of arc

saturations is no more than nm. (Recall that we assume that (i, j) and (j, i)

are both in A , so the number of arcs in the residual network is no more

than m . ) K
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Lemma 3. The number of non-saturating pushes is at most Zn-^m.

Proof. See Goldberg and Tarjan [1986] .

Lemma 4. The algorithm terminates with a maximum flow.

Proof. When the algorithm terminates, each node in N - {s, t) has zero

excess; so the final preflow is a feasible flow. Further, since the distance

labels satisfy the conditions CI and C2 and d(s) = n , it follows upon

termination the residual network contains no directed path from s to t .

This condition is the classical termination criteria for the maximum flow

algorithm of Ford and Fulkerson [1962] .

The potential bottleneck operation in the preflow based algorithms due

to Karzanov [1974] , Tarjan [1984], and Goldberg and Tarjan [1986] is the

number of non-saturating pushes, which dominates the number of saturating

pushes for the following reason: The saturating pushes cause structural

changes - they delete saturated arcs from the residual network. This

observation leads to a bound of 0(nm) on the number of saturating

pushes —no matter in which order they are performed. The non-saturating

pushes do not change the structure of the residual network and seem more

difficult to bound. Goldberg [1985] reduced the non-saturating pushes to

0(n-^) by examining the nodes in a specific order, and Goldberg and Tarjan

[1986] reduced the average time per non-saturating push by using a

sophisticated data structure. In the next section we show that by using scaling,

we can dramatically reduce the number of non-saturating pushes to

0(n2 log U)

.
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3. The Scaling Algorithm

Our maximum flow algorithm improves the generic preflow-push

algorithm of Section 2, and uses "excess scaling" to reduce the number of

non-saturating pushes from O(n-m) to 0{rr log U) . The basic idea is to

push flow from active nodes with sufficiently large excesses to nodes with

sufficiently small excesses while never letting the excesses become too large.

The algorithm performs K = flog U1 + 1 scaling iterations. For a

scaling iteration, the excess-dominator is defined to be the least integer A that

is a power of 2 and satisfies ej < A for all i e N . Further , a new scaling

iteration is considered to have begun whenever A decreases by a factor of 2.

In a scaling iteration we assure that each non-saturating push sends at least

A/2 units of flow and the excess-dominator does not increase. To ensure that

each non-saturating push has value at least A/2 , we consider only nodes

with excess more than A/2 ; and among these nodes with large excess, we

select a node with minimum distance label .

We show that after at most 4n- non-saturating pushes, the

excess-dominator decreases by a factor of at least 2 and a new scaling iteration

begins. After at most K scaling iterations, all node excesses drop to zero and

we obtain a maximum flow.

In order to select an active node with excess more than A/2 and with a

minimum distance label among such nodes, we maintain the lists

LIST(r) : = (i e N : ej > A/2 and d(i) = r) for each r = 1, . . . , n-1 . These

lists can bo maintained in the form of either a linked stack or a linked queue

(sec, for example, Aho, Hopcroft and Ullman [1974]), which enables insertion
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and deletion of elements in 0(1) time.) The variable level indicates the

smallest index r for which LIST(r) is non-empty.

As per Goldberg and Tarjan, we use the following data structure to

select efficiently the eligible arc for pushing flow out of a node. We maintain

with each node i a list, A(i) , of arcs directed out of it. Arcs in each list can be

arranged arbitrarily, but the order once decided remains unchanged

throughout the algorithm. Each node i has a current arc (i, j) which is the

current candidate for pushing flow out of i. Initially, the current arc of node i

is the first arc in its arc list. This list is examined sequentially and whenever

the current arc is found to be ineligible for pushing flow, the next arc in the

arc list is made the current arc. When the arc list is completely examined,

we say that the next arc is null. At this point, the node is relabeled and the

current arc is again the first arc in its arc list.

The algorithm can be described formally as follows:
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procedure MAX-FLOW;

begin

PRE-FROCESS;

K: = ' log U1 ;

for k = to K do

begin

A = 2^^-'^

for each i e N do if e, > A/2 then add i to LIST(d(i));

level : = 1 ;

while level < 2n do

if LIST(level) = o then level: = level + 1

else

begin

select a node i from LIST(level);

PUSH/RELABEL(i)

end;

end;

end;
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procedure PUSH/RELABEL(i);

begin

found: = false ;

let (i, j) be the current arc of node i;

while found = false and (i, j) ^ null do

if d(i) = d(j) + 1 and r- > then found: = true

else replace the current arc of node i by the next arc (i, j);

if found = true then

begin {push}

push min{ej , rjj , A - ej units of flow on arc (i, j) ;

update residual capacities and the excesses;

if (the updated excess) e^ < A/2 , then delete node i

from LIST(d(i));

if j
;t s or t and (the updated excess) e; > A/2 , then

add node j to LIST(d(i)) and set level: = level - 1;

end

else

begin (relabel)

delete node i from LIST(d(i));

update d(i): = min{d(j) + 1 ; (i, j) e A(i) and r- > 0} ;

add node i to LIST(d(i)) and let the current arc oi

the node be the first arc of A(i);

end;

end:
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4. Complexity of the Algorithm

In this section , we show that the distance-directed preflow-push

algorithm with scaling correctly computes a maximum flow in

0(nm + n-^ log I" ne.

Lemma 5. The ithm satisfies the following two conditions:

C3. Each non-saturating push from a node i to a node j sends at

least A/2 units of flow.

C4. Ko excess increases above A . (i.e., the excess-dominator does

not increase subsequent to a push.)

Proof. For ever)' push on arc (i, j) we have ej>A/2 and e: < A/2 , since

node i is a node with smallest distance label among nodes whose excess is more

than A/2, and d(j) = d(i) - 1 < d(i) by the property of the push operation. Hence ,

by sending min {e^ , r- , A - e; ) > min {A/2 , r-) units of flow, we ensure that

in a non-saturating push the algorithm sends at least A/2 units of flow.

Further, the push operation increases e; only . Let e': be the excess at node
j

subsequent to the push. Then e': = e.+ min { A/2 , r- , A - e; } < e.+ A - e; < A .

All node excesses thus remain less than or equal to A .

While there are other ways of ensuring that the algorithm always

satisfies the properties stated in the conditions C3 and C4, pushing flow

from a node with excess greater than A/2 and with minimum distance

among such nodes is a simple and efficient way of enforcing these conditions.

With properties C3 and C4, the push operation may be viewed as a

kind of "restrained greedy approach." Property C3 ensures that the push



9?

from i to j is sufficiently large to be effective. Propert}' C4 ensures that the

maximum infeasibility of flow conservation never exceeds A during an

iteration. In particular, rather than greedily getting rid of all its excess, node i

shows some restraint so as to prevent e: from exceeding A. (It is possible

that the maximum excess increases during a push. In particular, if the

maximum excess is between A and A/2 , it may increase to A.)

Keeping the maximum excess as low as in C4 may be very useful in

practice as well as in theory. Its major impact is to "encourage" flow excesses

to be distributed fairly equally in the network. This distribution of flows

should make it easier for nodes to send flow towards the sink. (Alternatively,

if a number of nodes were to send flow to a single node
j , it is likely that

node j would not be able to send the accumulated flow directly to the sink;

much of the excess of node j would have to be returned from where it came.)

Lemma 6. If each push satisfies conditions C3 and C4, then the number

of non-saturating pushes per scaling iteration is at most Srr-

.

Proof. Consider the potential function F = ^ ej d(i) .

i€ N

The initial value of F is bounded by 2n- A because ej is bounded by A and

d(i) is bounded by 2n . When the algorithm examines node i , one of the

following two cases must apply:
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Case I. The algorithm is unable to find an arc along which flow can be

pushed. In this case no arc (i, j) satisfies d(i) = d(j) + 1 and Tj: > and the

distance label of 1e i goes up by 5 > 1 units. The increase in F is thus

bounded by 5: Since the initial value of d(i) and all its increases are

bounded by 2n, i le increases in F due to relabelings of nodes are bounded by

2n2A .

Case 2. The algorithm is able to identify an arc on which flow can be

pushed and so it performs either a saturating or a non-saturating push. In

either case, F decreases. Moreover, each non-saturating push sends at least

A/2 units of flow to a node with smaller distance label with a corresponding

decrease in F of at least A/2 units. Since the initial value of F plus the

increases in F cannot exceed 4n-^ A , this case cannot occur more than 8n-^

times. (A more careful analysis leads to a bound of 4n'^ . )

Theorem 1. The procedure Max-Flow performs ©(n-^ log U) non-saturating

pushes.

Proof. The initial value of the excess-dominator A is 2'"^°S ^ "1 < 2U . By

Lemma 5 , the value of the excess-dominator decreases by a factor of 2 within

8n- non-saturating pushes and a new scaling iteration begins. After 1 + flog

U 1 such scaling iterations, A < 1 and by the integrality of the flows e^ =

for all i e N - {s, t}. The algorithm thus obtains a feasible flow, which by

Lemma 4 must be a maximum flow.
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Theorem 2. The complexity of the maximum flow algorithm is

0(nm + n^ log U) .

Proof: The complexity of the algorithm depends upon the number of

executions of the while loop in the main program. In each such execution

either a PUSH/RELABEL(i) step is performed or the value of the variable

level increases. Each execution of the procedure

PUSH/RELABEL(i) results in one of the following outcomes:

Case 1. A push is performed. Since the number of saturating pushes are

0(nm) and the non-saturating pushes are Oirr log U) , this case

occurs 0(nm + n^ log U) times.

Case 2. The distance label of node i goes up. By Corollary 2, this outcome

can occur 0(n) times for each node i. Computing the new distance

label requires examining arcs in A(i). Since each arc in A is

examined 0(n) times, the total effort for all of the 0(n-^) distance

increases is 0(nm) .

Thus the algorithm calls the procedure PUSH/RELABEL(i) 0(nm + n^ log U)

times. The effort needed to find an arc to perform the push operation is 0(1) plus

the number of times the current arc of node i is replaced by the next arc in A(i).

After I A(i) I such replacements for node i. Case 2 occurs and distance label of node

i goes up. Thus, the total effort needed is Zj 2n lA(i)l = 0(nm) times

iG N

plus the number of PUSIi/RELABEL(i) operations. This is clearly
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0(nm + n- log U). The lists LIST(i) are stored as linked stacks and queues,

hence addition and deletion of any element takes Oil) time. Consequently,

updating these lists is not a bottleneck operation. Finally, we need to bound

the number of increases of the variable level. In each scaling iteration, level is

bounded above by 2n - 1 and bounded below by 1. Hence its number of

increases per scaling iteration is bounded by the number of decreases plus 2n .

Further, level can decrease only when a push is performed and in such a case it

decreases by 1. Hence its increases over all scaling iterations are bounded by the

number of pushes plus (2n log U), which is again 0(nm + n-^ log U) .

5, Refinements

As a practical matter, several modifications of the algorithm might

improve its actual execution time without affecting its worst case complexity.

We characterize the modifications as one of the following three types:

1. Modify the scale factor.

2. Allow some non-saturating pushes of small amount.

3. Try to locate nodes disconnected from the sink.

The algorithm in the present form uses a scaling factor of 2, i.e., it

reduces the excess-dominator by a factor 2 in the consecutive scaling

iterations. However, in practice it might be better to scale the excess-

dominator by some other fixed integer factor P > 2. The excess-dominator

will be the least power of P that is no less than the excess flow at any node,

and property C3 becomes
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C3'. Each non-saturating push from a node i to a node j sends at least

A/p units of flow.

The procedure maxflow can easily be altered to incorporate the P scale

factor by letting LIST(j) = (i: d(i) > A/p }. The algorithm can be shown to

run in 0(nm + pn-^ logo U) time. Clearly, from the worst case point of view

any fixed value of P is optimum. The best choice of the value of P in

practice should be determined empirically.

Our algorithm as stated selects a node with ej > A/2 and performs a

saturating or a non-saturating push. We could, however, keep pushing the

flow out of this node until either we perform a non-saturating push of value

A/2 or reduce its excess to zero. This variation might produce many

saturating pushes from the node and even decrease its excess below A/2.

Also, the algorithm as stated sends at least A/2 units of flow during

every non-saturating push. The same complexity of the algorithm is obtained

if for some fixed r > 1 , one out of every r > 1 non-saturating pushes sends

at least A/2 units of flo\v.

One potential bottleneck in practice is the number of relabels. In

particular, the algorithm "recognizes" that the residual network contains no

path from node i to node t only when d(i) exceeds n - 2 . Goldberg [1987]

suggested that it may be desirable occasionally to perform a breadth first

search so as to make the distance labels exact. He discovered that a judicious

use of breadth first search could dramatically speed up the algorithm.
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An alternative approach is to keep track of the number n^ of nodes

whose distance is k. If n^, decreases to after any relabel, then each node

with distance greater than k is disconnected from the sink in the residual

network. (Once node j is disconnected from the sinks, it stays disconnected

since the shortest path from j to t is nondecreasing in length.) We would

avoid selecting such nodes until all nodes become disconnected from the

sink. At this time, the excesses of active nodes are sent back to the source.

6. Conclusions and Summary

Our improvement of the distance-based preflow-push algorithm has

several advantages over other algorithms for the maximum flow problem.

First, our algorithm is the most efficient algorithm for the maximum

flo\s' problem under the reasonable assumption that U is polynomially

bounded in n . (We can relax this assumption on U if we modify the

algorithm slightly and adopt the more realistic logarithmic model of

computation as discussed in [19S7a]. )

Second, our model has several intuitively appealing features that are

not guaranteed in other preflow-push methods. We always try to push flo^v

from a node with a large excess. (Gabow's scaling version of Dinic's

algorithm always selects an augmentation along a path with a large capacity.)

This feature accounts for much of the efficiency of his method. Also, we

never allow too much excess to accumulate at a node. In addition, our

algorithm relies on verv simple data structures with little computational
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overhead. This feature contrasts dramatically with the algorithms that rely

on dynamic trees.

Third, our algorithm is a novel approach to combinatorial scaling

algorithms. In the previous scaling algorithms developed by Edmonds and

Karp [1972] , Rock [1980] , and Gabow [1985] , scaling involved a sequential

approximation of either the cost coefficients or the capacities and

right-hand-sides, (e.g., we would first solve the problem with the costs

approximated by c/2^ for some integer T. We would then reoptimize so as

to solve the problem with c approximated by c/2'^~^ . We would then

reoptimize for the problem with c approximated by c/2^~^, and so forth.)

Our scaling method does not fit into this standard framework. In Ahuja and

Orlin[1987a], we describe an alternate framework for scaling algorithms

which includes all of the previous scaling algorithms as well as the algorithm

described here and >he algorithms of Goldberg and Tarjan [1987] for the

minimum cost flow problem, and the algorithms of Gabow and Tarjan [1987]

for the assignment and related problems.

Fourth, our algorithm appears to be quite efficient in practice. In

Ahuja and Orlin [1987c], we empirically test a number of different algorithms

for the maximum flow problem. The algorithm presented here appears from

preliminary results to be comparable to the best other maximum f\o\v

algorithm for a range of distributions. In addition, our algorithm involves

only simple data structures so that it is relatively easy to encode.
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Fifth, our algorithm can be implemented efficiently on a parallel

computer with a small number of parallel processors. In particular, suppose

that d = m/n , and that log U = O(log n). Then our algorithm runs in

0(n-^ log n) time on a parallel random access machine (PRAM) using only

d parallel processors. This time bound is comparable to the time bound

achieved by Goldberg and Tarjan [1986] using n parallel processors. Thus we

introduce a n/d improvement in utilization of computational resources. In

addition, our model of computation is less restrictive. These results are

discussed in Ahuia and Orlin [1987b].
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