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A rather complete solution for the fine-structure problem in the
oxygen molecule is given in the framework of the Born-Oppen-
heimer approximation. The reduction of the effect of the electronic
state on the fine structure to an effective Hamiltonian, involving
only the resultant electronic spin in addition to rotational and
vibrational quantum numbers, is demonstrated. In this Hamil-
tonian the parameters X and y measure the effective coupling of
the spin to the figure axis and the rotational angular momentum,
respectively. The contributions to these parameters which are
diagonal in electronic quantum numbers, namely A’ and 4/, are
cvaluated by using an expression for the electronic wave function
as a superposition of configurations. It turns out that N gives
almost all of A, whereas u’ gives only 4 percent of u. The second-
order contributions of spin-orbit coupling and rotation-induced
electronic angular momentum to A and g, and the electronic con-
tribution to the effective moment of inertia are related to each

other and to certain magnetic effects to be given later. This inter-
relation enables them all to be essentially evaluated experi-
mentally.

The effective Hamiltonian is diagonalized through terms in
(B/hw)* and the eigenvalues compared with the experimental
spectra. The fitting establishes the constants: p=252.67+0.05
Mc/sec; Ne=59 38620 Mc/sec; Ai=[Rd\/dR],=16 896150
Mc/sec; ho=[ (R2/2) (d2\/dR2) Jo= (542) X 10* Mc/sec; hest (0=0)
=19 501.574+0.15 Mc/sec. The transformation that diagonalizes
the Hamiltonian is given with respect to both Hund case (a) and
case (b) bases. These transformations are applied to matrix ele-
ments of Sz. The results are tabulated and applied to calculate
the exact intensity factors for spectral lines. This calculation shows
slight deviations from the usual case (b) results for allowed lines
and predicts quite sizeable intensities for the “forbidden” AK=2
lines.

I. INTRODUCTION

LTHOUGH the general principles are well estab-
lished, there exist few cases in which the Born-
Oppenheimer! approximation has been carried through
to give a complete solution for the eigenfunctions and
eigenvalues of a molecule. The recent publication of a
reasonably good and analytically convenient solution
for the *Z electronic ground state of O. by Meckler?
and the existence of precise microwave® and infrared*
data on the energy levels make the oxygen molecule a
particularly attractive one for study. Interest was
increased by the presence of a spin-dependent fine
structure which showed some discrepancies from earlier
theoretical predictions. To develop certain internal
theoretical relations between parameters, and because
of the great diversity of existing treatments, we shall
give a unified systematic treatment that incorporates
the new results and indicates their connection with
previous work. It is hoped that this treatment will
serve as an example that shows the relation between
the wave mechanical electronic theory and the tradi-
tionally matrix mechanical fine structure theory. It
will also show how far the calculation can be carried
in an actual case.
The over-all problem can be stated as that of deter-
mining the eigenvalues and eigenfunctions of the
Hamiltonian operator

=314 Vet T nuct o0+ FCas+IChts. (1)
In this 3C. is the electronic energy operator used by

* This work was supported in part by the Signal Corps, the Air
Materiel Command, and the Office of Naval Research.

T National Science Foundation Predoctoral Fellow.

! M. Born and J. R. Oppenheimer, Ann. Physik 84, 457 (1927).

2 A. Meckler, J. Chem. Phys. 21, 1750 (1953).

3 Burkhalter, Anderson, Smith, and Gordy, Phys. Rev. 79,
651 (1950).

*H. Bahcock and L. Herzberg, Astrophys. J. 108, 167 (1948).

Meckler which includes the electronic kinetic energy,
mutual repulsion energy, and the attraction to the
nuclei; ¥, is the Coulomb repulsion of the nuclei,
and Tae is the kinetic energy of the nuclei that can be
decomposed into vibration, rotation, and center-of-
mass motion; 3Cs is the spin-orbit energy, and 3 is
the spin-spin energy resulting from the magnetic dipole
interaction between the electronic spins; 3Cus is the
interaction of nuclear magnetic dipole and electric
quadrupole moments with their environment.

The eigenfunctions will be functions of space and
spin coordinates of the electrons, separation and angles
of orientation of the nuclei, and center-of-mass co-
ordinates of the molecule. In general, we would also
have nuclear spin coordinates entering, but since O'¢
has no spin these terms do not concern us here. Those
eigenfunctions must be antisymmetric on interchange
of electrons and symmetric on interchange of the O'
nuclei. The essence of the Born-Oppenheimer approxi-
mation is that we can express the total state function
to a good approximation as

V= ‘)[/elv‘vib\l/rot‘pmw sp in\l/tranay (2>

and that this approximation can be improved by use of
perturbation theory between functions of this sort.
In determining these functions, we can approximately
compute each ¥; by considering the ¥ ; corresponding to
other energy terms and coordinates to be fixed, or at
least reduced to parameters. Thus Meckler solved for
Yo by considering the nuclei fixed and neglecting the
terms Tnue, 3Cso, FCes, and ICnre. His result is an energy
E.(R) and an electronic wave function yei(r;s;|R),
with the internuclear distance R entering as a parameter
and with no dependence at all on the other “lower-
energy” coordinates.

In solving the rest of the problem, we should take
this E.(R) as the effective potential for vibration and
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use this Y. to evaluate such things as the spin-spin
coupling constants. In practice, we shall approximate
E.1(R) by a two-term power-series expansion about the
minimum. This is justified, since we are only concerned
with the two lowest vibrational levels. (For study of the
higher vibrational levels, more terms would have to be
taken or else recourse be made to a Morse curve or
other analytic approximation.®) Thus our vibrational
Hamiltonian is taken to be

chibz PR2/2M+%MQ’¢2R62£Z+ bgzy (3)

where £= (R—R,)/R., R. is the equilibrium internuclear
distance, and M is the reduced mass. The rotational
Hamiltonian is

Horor=N2/2MR?=B,(1—2t+32) N2, )

where N is the angular momentum of nuclear rotation
and B, is the reciprocal moment of inertia of the nuclei
at R,. The expansion in ¢ allows for the change in mo-
ment of inertia with centrifugal stretching and vibration.

The effect of 3Ce+3Css in determining the fine struc-
ture can be reduced (see Sec. II) to an effective
Hamiltonian,

scspinz %(xe+)\1£+k2?) (3822_ S2)+“9' S7 (5)

where S is the resultant electronic spin vector, and A
and u are spin coupling constants to be determined
from ye(r;,s;|R). The term in p will be seen to come
largely from the interaction of rotation-induced elec-
tronic angular momentum with the spin through the
spin-orbit coupling. We shall also see that the principal
part of the term in A comes from the diagonal spin-spin
energy in the electronic ground state. It is noteworthy
that if one tried to estimate X from the simple model of
two interacting spins with one concentrated at each
center the values obtained for A, and (A\i/A.) would
even have the wrong sign. Thus it is clear that our
more accurate calculation is necessary to explain the
observed behavior of A. In this calculation, exchange
effects, inclusion of ionic states, and the rapid change of
configuration mixing coefhcients with R play the leading
roles.

In (0%), we have =0, allowing only the one state,
VYnue spin=1. Thus there can be no hyperfine effects.
The translational motion of the center-of-mass is of
no interest to us here, but Yians would be simply a
plane wave satisfying appropriate boundary conditions.
This motion will be neglected throughout the rest of
the paper.

Our solution of the fine structure problem,

(chib+3cmt+3csp in™ E)‘l’v ibd’rot‘l/sp in™ 0, (6)

is by purely matrix methods. (Here, Yspin describes the
state of the resultant electronic spin that enters into

5 For details, see G. Herzberg, Specira of Diatomic Molecules
(D. Van Nostrand Publishing Company, Inc., New York, 1950),
Chap. II1.
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3Cspin-) The matrix components of the Hamiltonian are
readily obtained (see Sec. III) in a Hund case (a)
basis® characterized by the quantum numbers v, J, M,
S, and Z, where J is the total angular momentum of all
kinds, and Z=.,. This matrix is then diagonalized to
high approximation, yielding E(v,K,J) and the corre-
sponding eigenvectors. These eigenvalues E fit the
microwave results satisfactorily to their limit of ac-
curacy (approximately 1 in 10°), explaining the dis-
crepancy mentioned above. This fitting establishes the
constants A,, A1, and A, for comparison with the calcu-
lated values found in II. The eigenvectors are listed
with respect to Hund case (a) eigenfunctions and also
with respect to Hund case (b) eigenfunctions, in which
2 rather than S, is diagonal.

With these eigenvectors, the intensities of both
allowed and “forbidden” transitions are calculated in
Sec. IV. This reveals small corrections to the usual
Hund case () values for the allowed transitions, and
quite appreciable intensities for AK=2 transitions.
The latter are made possible by the breakdown of the
rotational quantum number & in the presence of the
spin-spin coupling energy.

II. DEDUCTION OF THE EFFECTIVE HAMILTONIAN

The coupling of angular momenta in molecules and
the general methods of establishing an effective fine
structure Hamiltonian have recently been reviewed by
Van Vleck.” The calculations of this section are an
application of those general methods to a specific case
which can be carried particularly far. Our choice of
angular momentum notation generally follows that
given by Van Vleck. One slight extension is the use of
N for the true instantaneous nuclear orbital angular
momentum. §= N-+L=J—S8 differs from N only by
“high-frequency” off-diagonal elements of the elec-
tronic orbital angular momentum. We shall introduce
K in Sec. III as the conventional label for the final
eigenfunctions; it has the magnitude of & for the pure
Hund (b) state which is dominant in the eigenfunction.

The basis functions in terms of which we shall de-
scribe the state of the molecule are products of the
form (2). In this form the Y. (r;8;| R) are solutions to
3¢, for the case in which the nuclei are not rotating
and are “clamped”’ a distance R apart. When the mole-
cule rotates, the coordinates r; are referred to the axes
fixed in the molecule, but the wave function still de-
scribes the system with respect to a fixed frame. The
Yvib are harmonic oscillator eigenfunctions of the inter-
nuclear distance R for the angular frequency of oscilla-
tion w.; the ¥4 are symmetrical top eigenfunctions
for a linear rotor with internal spin angular momentum.®

8 F, Hund, Z. Physik 36, 657 (1926). These coupling cases are
also discussed in reference 5, Chap. V.

77. H. Van Vleck, Revs. Modern Phys. 23, 213 (1951).

87, H. Van Vleck, Phys. Rev. 33, 467 (1929); F. Reiche and
H. Rademacher, Z. Physik 39, 444 (1926); 41, 453 (1927).
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As stated above, Yaue spin 18 trivial for 7=0, and Yans is
suppressed.

In the lowest order Born-Oppenheimer approxima-
tion, one takes a single product of these eigenfunctions
as the total eigenfunction and takes the diagonal value
of the complete Hamiltonian over it as the energy eigen-
value. This would give the sum of the unperturbed
electronic energy E,°, reasonable approximations to the
vibrational and rotational energy, the diagonal spin-
spin energy in A, and the small diagonal contribution
to u coming from the magnetic coupling of the elec-
tronic spins in the field of the rotating nuclei. However,
it fails to include any electronic spin-orbit effects
because the 32 ground electronic state has no net orbital
angular momentum,’ and it fails to account for the
coupling between electronic, vibrational, and rotational
motions such as centrifugal distortion. These latter
effects are found by going to a second-order
approximation,

A. First-Order Contributions

These terms are to be evaluated by finding the
diagonal values of the perturbative term over the elec-
tronic wave function. We start with the spin-spin con-
tribution to the parameter A, defined in (5), which
measures the effective coupling of the spin to the z
(internuclear) axis. '

Spin-Spin Contribution fo X

Since Van Vleck gives no formulas for the coefficient
A and since Kramers™ treatment is in terms of per-
mutation group theory rather than in the framework
of the usual determinantal method, we must develop
our result from the basic Hamiltonian,!!

Hos= 23:2 L(sj-se)rin®—3(s;-15) (si- rjk)]rj‘,:s, (N
>

where r;z=r;—1;. By simply expanding into com-
ponents and regrouping, this can be written

3%y sk
($55ky+SiySk)

Hpe=— 262 Z [
k>7 75k

3yinzsn 3zjk%5x

+ (Sjyskz+sizskv)+ (Sj'zsk:+sj»gk:)

rjks 5

Tik
3 x,-,ﬁ-— yJ‘,f 1 32_,’k2 - fjk2
+- —'—S—(Sn-?kz— SiySky) +5 E—

2 Tik 7jk5

X (355285 8- Sx) ] (8

? Of course, one could start with electronic eigenfunctions for
the problem including spin-orbit interaction. These, however,
could not have A,Z as good quantum numbers. As usual, all
magnetic-spin-coupling effects are neglected in Meckler’s solution.

©H, A. Kramers, Z. Physik 53, 422 and 429 (1929),

1'W. Heisenberg, Z. Physik 39, 514 (1926).
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The symmetry of the molecule causes all except the
last term to vanish when integrated over the electronic
state. All of these spin functions are of the forms which,
as Van Vleck points out, have matrix components pro-
portional to corresponding elements of S. (This can be
proved by direct multiplication of the matrix elements
of a vector of the type T.2) Thus all elements of
(35;.5%,—8;-8x) are proportional to those of (3572
—§2), and the proper dependence of the interaction on
S is shown. To evaluate ), it is convenient to compute
the diagonal element of 3C, for the state S,=Z=1, and
to note that the diagonal part of A is given by

A,(“E) = xe,'Jr'Alli"'l'XZ'Ez': %Ess( Z=1. (9)

The & dependence enters because . depends para-
metrically on R (or £).

The electronic wave function given by Meckler? is
expressed as a superposition of configurations,

o= ZMCH¢#7 (10)

where each ¢, is a determinant or linear combination
of determinants which is a spin eigenfunction with
S=1 and Z=0. The corresponding eigenfunctions for
¥ =1, obtained by applying S./V2 to Meckler’s eigen-
functions, have been given by Kleiner.® They are
more convenient here because the dominant configura-
tion is then a single determinant. The coefficients C,
are given for several values of R. Near the equilibrium
distance R,, one configuration (u=c) is dominant,
|C.| being of the order 0.97. The next largest has C,
of the order 0.1. Since the C’s are real, the diagonal

energy is simply
Eu=2 ywCuCpH . (11)

It is clear that we make an error of the order of only
one percent if we neglect terms that do not involve the
dominant configuration. Since other sources of error
are larger, we shall make some simplifications of this
kind. Our problem then is to compute the matrix
components of

_.262
2

2 &>

2
3ij"— rjk2

(12)

SipSk—tSi—Sky
Has=

28,,Sks—

fjk5 l_ 7

(where sj,=s5;,1s;,) between these configurations.
These matrix components are reduced to sums of
2-electron integrals in terms of single electron orbitals
by the usual methods developed by Slater.* The spin
part of (12) gives a factor of 4} depending on whether
the two spins involved are parallel or antiparallel.
Thus, in summing to get the diagonal elements, all
integrals involving paired spins cancel out. For the
diagonal element over the dominant configuration, for

12 E,. U. Condon and G. H. Shortley, The Theory of Atomic
Spectra (Cambridge University Press, London, 1951), p. 59 ff.

13W. H. Kleiner, Quarterly Progress Report No. 9, Solid-State
and Molecular Theory Group, Massachusetts Institute of Tech-

nology, July 15, 1953 (unpublished).
1 %);fe]rence 12, p. 171; J. C. Slater, Phys. Rev. 34, 1293 (1929).
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example, this leaves just

— B2 3218 — 11t
(GCBB)CCE Icc= - (ffx+*(1))(~*(2)‘_‘—'*“
4 712

X (Dx—(2)drudro— f f X (Dx_*(2)

3212 —~1y0

X (e @ndn ), (1)

T2

where x4 is Meckler’s notation for the 2pm,* symmetry
orbitals. The subtracted term is, of course, the exchange
integral. To evaluate the integrals, we insert Meckler’s
LCAO molecular orbital functions using Gaussian
atomic orbitals. As we shall see, these Gaussians make
it possible to evaluate the integral exactly. After some
reduction, (13) becomes

— 64g262b5K4
Hw=——3——— f f [71 sind; exp(—br,?) sinhdbRz, J*
™

X [r; sinf, exp(— brs?) sinhbRz, |*

Xsinz(qog—— (01) (32122—7122)/7125d7'1dT2. (14)
This resembles the classical average of the interaction
between two identical electron clouds, each of which is
concentrated in two toroids of charge encircling the
axis of the molecule at the two nuclei. The axis is a
nodal line and the perpendicularly bisecting plane is a
nodal plane because of the pr, nature of these x.
orbitals in which the unpaired spins are most apt to be
found. However, the factor sin?(ps— ¢;) gives a corre-
lation in position tending to concentrate the two inter-
acting electrons in perpendicular planes through the
axis. This correlation is a direct result of the exchange
integral and hence of the antisymmetry of the wave
function. Also noteworthy is the fact that there is a
large chance of both electrons being near the same
center. This is the result of having ionic states given
equal weight with nonionic states in a simple molecular
orbital treatment. The principal contribution to the
integral then comes when the two electrons are on the
same center [because (3z122—r12%)/r12% is large then’]
and in perpendicular planes. Also, viewed in this way,
the seemingly anomalous sign of N is explained. Thus
the characteristic distance of separation for the inter-
action is the afomic radius, not the internuclear
distance.

Evaluation of (14) is made possible by changing
variables to

E=1x10=11—13, & =x14xs,
N=Y12= Y1 Y, ﬁ=yrkw, (15)
{=212=21— 2, =242

p= P ii=rg,
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STRANDBERG

The integral then becomes

—_ 2ﬂ2K4b5 eXp(—‘sz)

273
Xff exp(*bpz)(‘gi:pz)(87'—5"7)2

X exp(—bp?)[coshbR¢’ — coshbR¢ Jrdrdr'.

IIcc=

(16)

If one replaces these Cartesian coordinates by cylin-
drical primed coordinates and spherical relative co-
ordinates, the integration can be carried out analyti-
cally. Power-series expansion is required for the last
integration. The result is'®

1 exp(—bR?
H..= g2 Ksr 4 —+ +2 exp(—3bR?)
30 15
exp(—bR?)
XS;(bRZ)—-———-——Sl(ltsz)], an
where
Sw=5 — (x) (18)
)= _— -
S35 2n s \2
and

K2=[1—exp(—bR%/2) T

We note that this is the product of a characteristic
energy g’8%* depending on the atomic scale factor &
times a dimensionless factor which is a function only
of bR?, that is, of the degree of overlap of the two atomic
orbitals. The latter is true, since exp(—bR?) is the
amplitude of one Gaussian orbital at the center of the
other. Computation shows that the dependence on bR*
is very weak. The total range R varying between zero
and infinity, is only 30 percent; and since the region of
interest is near a minimum, it is very nearly constant
there. Thus the principal dependence of H, on the
molecular wave function is on the degree of concentra-
tion of the afomic orbitals as measured by b3~(1/#%).
This result should be independent of the detailed
choice of wave function.

Kleiner® has noted that the Gaussians used by
Meckler give a very poor value for {(1/7°) because of
their failure to rise rapidly near r=0. In view of these
remarks, it seemed best to fit the b in the Gaussian to
give (1/7) for the atomic orbital equal to that com-
puted from the Hartree-Fock wave function of the
oxygen atom.!® This gave b=1.696, as opposed to the
value 5=0.8 (atomic units) chosen by Meckler from
consideration of overlap. Numerical results are given

15 Following Meckler’s notation we use J, K, L, and M to
denote normalization constants in electronic wave functions. No
confusion with the usual angular momentum quantum numbers
should result.

16 Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1939). A very useful analytic fitting as the sum of
three exponentials is given by P. O. Lawdin, Phys. Rev. 90, 120
(1953).
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with this higher value of b used in the b? factors, but in
the overlap factors, bR? has Meckler’s value.

Other matrix elements computed in a similar way are
given in Appendix A. Using these results, the numerical
values of the matrix components were evaluated for
R=2.236 and R=2.372 atomic units, corresponding to
bR?=4.0 and 4.5. These values bracket the equilibrium
distance R,=2.28. The coefficients C, were determined
for these same values of R by interpolating between
Meckler’s given values. The nonvanishing results are
given in Table I, with energies expressed in kMc/sec.
From these energies, the spin-spin contribution to A
was computed, and the results are compared with the
experimental values (obtained in Sec. IIT) in Table II.

In view of the crudeness of the Gaussian approxima-
tion, these calculated results must be considered un-
reliable despite the adjustment made in &. This is
illustrated by the fact that even for the Hartree-Fock
function (1/7*) is 29 percent less than the “experi-
mental value” obtained from the magnetic hyperfine
structure in OY%0' by Miller, Townes, and Kotani.'”
Although the uncertainty of interpretation of the latter
makes it unwise to make a further adjustment of b, it
does indicate that our calculation is apt to under-
estimate the true magnitude.

We thus conclude that the spin-spin interaction pro-
vides the major part of the coupling constant A. This
conclusion is supported by the estimation of the con-
tribution of second-order spin-orbit effects given later
in the paper.

Inspection of Table I reveals that the R dependence
of A, which determines \;, comes almost entirely from
the change in the configuration mixing coefficients C,,
the values of the matrix components being relatively
constant. Presumably this behavior would also hold if
a wave function constructed from better atomic orbitals
were used. This presumption is strengthened by the
fact that Ishiguro has obtained similar configuration
mixing coefficients in a treatment now in progress
using better orbitals.!® This mechanism for the change
in X again shows that a rather detailed examination of
the electronic wave function is necessary for explaining
the observed values of A.

TasLe I. Contributions to the spin-spin energy
as given in Eq. (11).

Combined Contribution to
i coefficient energy kMc/sec

bR2 4.0 4.5 4.0 4.5 4.0 4.5
Hee =Hee 27.656 27.286 0.9620 0.9526 26.606 25.992
Haea=Hys 20.370 20.148 0.0165 0.0210 0.335 0.423
Hea =Hey 39.434 38998 —0.2494 —0.2788 —9.820 —10.866
Hey=—Hen=—H: 186.22 191.10 0.0321 0.0436 5.974 8.324
23.095 23.873
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TasLE II. Comparison of calculated and experimental
values of N (kMc/sec).

Calc. Exp.
Ae 35.0 59.386
= (dN/dE). 19.6 16.90

Nuclear Contribution to u

Van Vleck’s” Eq. (37) gives the magnetic interaction
energy of an assembly of electron spins with each other
and with the electronic and nuclear orbital motions.
The only terms giving diagonal contributions in a ¥
state are the spin-spin energy evaluated above and the
terms having nuclear rather than electronic velocities
as factors. Separating out the latter, we have®

—gB Zg
5@1‘—""" Z

¢ K.grig

(19)

(4
3|:fﬂ<>< vi]-s;

The velocities and coordinates are measured in a fixed
frame but referred to gyrating axes. As Van Vleck
points out, it is permissible to replace vk by wXrx or
(R MR*) Xrg, since the difference between the true
nuclear angular momentum N and & is only the oscilla-
tory electronic orbital angular momentum which aver-
ages to zero in this sort of an interaction. We assume a
rigid nuclear frame, so the rx are constant vectors of
+1Rk, where % is a unit vector in the z-direction.
Also £.=0, since we have a diatomic molecule. Finally,
symmetry causes terms which are odd in x; or y; to
vanish. By using these facts, expansion of f/, in com-
ponents reduces to

—4Z 988~ i—R/2
.g_ﬂl[zzi_ / s].jl‘ﬁ.
A R Ui

3C =

(20)

ij"'

Here, Z is the atomic number, 4 is the atomic weight,
By is the nuclear magneton, and 7;¢ is |r;,—3RKk].

Matrix components of the bracketed operator are
reduced to single electron integrals by the method of
Slater.? Since {.=0, we have only terms in s, and s,,
which are both nondiagonal in £. Thus we seek ele-
ments that are diagonal in orbital quantum numbers
but off-diagonal in Z. Using Meckler’s* dominant
configuration ¢, namely, (I+1,)/VZ, for Z=0, and
Kleiner’s®® derived configuration ¢. for T=1, applica-
tion of the general methods yields

(cZ=0l3C1|cZ=1)
=—[ (x-B|3C1|x-c)+ (x+813C1 | x4) ].
V2

The single electron spin operators s, and s;, in 3¢, yield
contributions which are just 1/v2 times the matrix

17 Miller, Townes. and Kotani, Phys. Rev. 90, 542 (1953).
13 E. Ishiguro (unpublished).

¥ Correcting the trivial omission of r;x™ in his more general
Eq. (39).
2 Reference 12, p. 169.
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elements of S, and S,. Also, |x-|*>=|x4|% so that the
two orbital integrals can be combined. This reduces the

element to
(02:0“}01,62‘: 1)

—4Z gBf~ (
X+
A R

3—R/2

X+)9' S=u'®-8. (21)

f,'K3

This effective Hamiltonian form shows that this term
gives a cosine-like coupling of the spin in the magnetic
field of the rotating nuclei.

The final problem is to actually evaluate the co-
efficient u' by integration over the electronic x, orbi-
tals. To carry this out, we transform to spherical
coordinates about the nucleus at z=R/2. The integra-
tion then proceeds just as in the evaluation of the spin-
spin energy and leads to

—4Z gBBw~ 2
u= K’(

}
) exp(—bR?)

A R THR?
X [Ss(20R?) —§ exp(—bR?)S5(80R?)], (22)
where
w (8n+1) £\ "
Ss@)=2 :;m(g)- (29)

Noting that this depends on & only through the overlap
parameter bR? and not on the atomic scale factor &
separately, this should be evaluated by using Meckler’s
b=0.8 atomic unit, not the value obtained above by
fitting (1/#%). If this is done, the result is u'=+410.0
Mc/sec, compared to a total experimental value of
p=—252.7 Mc/sec. This shows that the magnitude of
the first-order contribution is only 4 percent of the
total value, the rest being from the second-order effects
of spin-orbit coupling discussed in the next section.

To make the physical nature of this first-order term
clear, we note that simply calculating the energy of the
electron spin in the magnetic field at one nucleus due
to the rotation of the other about it would give a
coupling constant of 2(Z/4)(g88~x/R* or about +8
Mc/sec. The increase in magnitude from 8 to 10 Mc/sec
is the result of distributing the electron over a region
of radius ~R/2, giving an increase in {(z—R/2)/7;x%).
From this picture, we see that the dependence of u” on
the detailed electronic wave function is of secondary
importance. Further, u’ makes only a small contribution
to u. Finally, there are no off-diagonal elements of 3¢,
between the dominant ¢, configuration and the others
in Meckler’s wave function. Thus any contributions
from the other configurations would be second-order
effects of the order of one percent of u’ or 0.1 percent
of u. In view of the other more serious sources of error,
it was not considered worth carrying this calculation
further in order to evaluate these corrections.

M. TINKHAM AND M. W. P.
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B. Second-Order Contributions
Perturbation of the Electronic State

As our first step in improving the zeroth-order eigen-
function and first-order energy, we find the modification
of the 3% ground state by spin-orbit and rotational
effects. We assume the conventional approximate form
AL-S for the spin-orbit coupling energy rather than
try to handle the rigorous microscopic Hamiltonian in
terms of coordinates, velocities, and spins of the in-
dividual electrons.?* The rotation-electronic coupling is
through the term —2BL-® in the rotational energy :2

Hror=BN?=B(R—L)?

=BR—2BR-L+B(L2+L2). (24)

This cross term is precisely the effective perturbing
term that appears in the electronic problem if the time-
dependent problem of motion with respect to a classi-
cally rotating set of force centers is reduced to finding
a wave function that is stationary with respect to the
rotating frame.® If we assume that electronic excited
states lie reasonably high, we can take account of these
effects by first-order perturbation theory with the

result that
(n] 4L-S—2BL-8|0)
Yo=y"— 0.
n E.—FE,

(25)

The indicated matrix elements are quadratures over
orbital functions. Since the operators S and & are
independent of the orbital wave functions, they may be
simply taken out and treated as numbers at this stage.
We note that elements of L, are diagonal in A and pro-
portional to A and thus vanish for the Z state with
which we are dealing. Further, in a field of axial sym-
metry, we have the relation*

(A|LyJAx1)=2i(A| L |A%1),

all other elements vanishing. Thus the perturbed *T
wave function has only = states mixed in, and the
mixing is proportional to the matrix elements of elec-

(26)

2 This rather phenomenological replacement is supported by
the considerable success it has had in application to molecular
spectra by Van Vleck [Phys. Rev. 33, 467 (1929)] and others. Tt
is theoretically insecure in that even for the one electron case the
form |-s is rigorous only in a central field. For the case of many
electrons, it is necessary to consider a form at least as general as
Z;ail;i- si to get the possibility of matrix elements between states
of different multiplicity [R. Schlapp, Phys. Rev. 39, 806 (1932)7.
Despite these objections, we adopt the assumption as the most
reasonable one-parameter form, since more rigorous calculation
with the exact interaction is precluded by computational difficulty
and the lack of reliable wave functions for excited states.

2 The B in this expression is the half reciprocal moment By
of the bare nuclei, the electronic contribution to the rotational
energy being given explicitly by the cross terms. To simplify no-
tation, we simply write B here. It is included in the quadrature
because it is still an operator. We would only neglect the higher
order effects of vibration on the electronic motion through the
rotation by replacing B by the constant B, without any £ de-
pendence.

28 G. C. Wick. Z. Physik 85, 25 (1933) ; Phys. Rev. 73, 51 (1948).

24 See reference 7, p. 219.
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tronic orbital angular momentum perpendicular to the axis.
(n|AL,|0)S,— (n|2BL,|0)&
Yr=vs— T - — @7
n=x g=x,y En'—'EO
Effect on Energy
Next we find the contribution of these perturbation terms to the energy. This is
F'=—% 3 [(n] AL,|0)S;~ (n] 2BLy|0)R,J[ (1| ALy [0)%Sp*— (n] ZBLa’PO)*Qo’*]' (28)
n gg’ E.—E,

Using the property (26) of the matrix elements of L,
we see that xy terms drop out, and this reduces to the
form

E'=3\N"[38.2~S(S+1)]

4+ Q- S— B"®+const, (29)
where
(n|AL;|0)]? | (n| BL:|0)|*
vy ALAOE Sy, 5 [IBEIOF
n E,.—E n E.—E,
30)
(0| AL;|n)(n| BL|0)
v’=4Re .
n E.—E,

These results are the same as those found by Hebb?
except for a factor of two stemming from the fact that
he counts each = state once whereas each appears twice
(as A==1) in our expression. The term in A" is the
second-order effect of the spin-orbit energy and turns
out to be small. The term in u'’ gives the spin-orbit
coupling energy to the electronic angular momentum
of the 7 states admixed by the rotation. B” lowers the
effective reciprocal moment of inertia from the nuclear
value, By, essentially by the addition of electronic
mass to the rotating frame.”

Since the actual matrix elements required cannot be
calculated in the absence of wave functions for the =
states, these sums cannot be evaluated from first
principles. However, to a reasonably good approxima-
tion these may be simplified by treating 4 and B as
constants rather than as functions of the configuration.
In particular, B can be considered to have the value
observed in the electronic ground state and the order
of magnitude of 4 can be estimated from the multiplet
separation of the r states. With 4 and B removed, all
the sums become the same, namely,

(n|L:10)* L(L+1)
T E.—FE, v

(31)

25 M. H. Hebb, Phys. Rev. 49, 610 (1936).

26 Tt is interesting to note that the diagonal value of He itself
is raised by precisely B” &2 due to the increased momentum of the
electrons with respect to the fixed frame. The nuclear energy is
lowered by 2B”' &2 because the added mass reduces its share of the
quantized total angular momentum. The net effect is the lowering
of energy quoted above.

The right member is merely symbolic, but if we use
Van Vleck’s “hypothesis of pure precession’? it could
be used to infer the characteristic energy separation
hv. This sum then becomes a single disposable pa-
rameter, and theoretical relations between the various
quantities become possible. This feature is greatly en-
hanced by the fact that the theory of the interaction
of the molecule with a magnetic field (to be given in a
subsequent paper) reveals two other experimentally
accessible quantities of this same form. By combining
all of these, a remarkably complete separation of effects,
with some internal checks, becomes possible.

C. Analysis of Resuits

If we now collect the terms that depend on other
than electronic coordinates, we have the effective
Hamiltonian for vibration, rotation, and spin orienta-
tion. It is

Hett=Pr?/2M+3MwlRE+bE
+BRM-IN352—S)+uf-S, (32)
where

B=By—B", A=N+)\", (33)

Because they enter in exactly the same form, X', A"/;
u, "5 and B, B” will be indistinguishable in the eigen-
values of this operator. They can be separated, however,
if one uses the results of the theoretical calculations and
of the Zeeman-effect experiments.

With the known experimental value of pu=pu'4u"
(see Sec. III), and the value of p’ calculated in the
previous section, we can determine u'’ to be —262.7
Mc/sec. Taking B=43.1 kMc/sec, this implies that
AL(L+1)/hv is —1.52X107% which is consistent with
reasonable values of 4, L{L+1), and /». In particular,
the minus sign checks with the plus sign for A in the
« states of Oyt according to Van Vleck’s general theory.?
Using the value 4 = —21 cm ™ indicated by the Zeeman-
effect studies, we find N’ to be 465 Mc/sec, leaving
58 920 Mc/sec of the experimental value to the first-
order spin-spin mechanism. This establishes the previ-
ous statement that the spin-spin contribution domi-
nates. In fact, the second-order contribution is so small
that errors in its estimation will not introduce much

p=ptu

27 See reference 8, p. 488.
28 See reference 8, p. 499.
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uncertainty in the correct value for the spin-spin part.
Therefore A serves as a reliable check on the quanity
of the wave function. The facts are that the calculated
value was 40 percent low even after adjusting b to
give a better approximation to the Hartree-Fock atomic
orbital near the nucleus, and it was 80 percent low
with Meckler’s choice of 8. We must conclude that
wave functions chosen to minimize the electronic
energy cannot be expected to give good results for a
quantity which has a dependence on coordinates that
differs from that of the electronic energy. On the other
hand, if a wave function did give a good result for A as
well as for the electronic energy, there would be grounds
for believing that it is a superior approximation to the
true eigenfunction.

Using the same values for B and L(L+1)/kv, we
compute B”=17.3 Mc/sec, which is a correction of 400
ppm (parts per million). The usual procedure of using
atomic rather than nuclear masses reduces this correc-
tion by 270 ppm, leaving 130 ppm. Since the experi-
mentally quoted values for B from infrared data are
presumed to be accurate to 10 ppm (being quoted to
1 ppm?), it is clear that this rather sizable correction
should be applied in inferring the internuclear dis-
tance from B, and the atomic masses. This correction
decreases the computed R by 65 ppm. Recalculation,®
using Herzberg’s value for (Berr). and the newly ad-
justed atomic constants, yields R,=1.20741; A.

III. SOLUTION OF THE FINE-STRUCTURE PROBLEM
A. Energy Levels and Spectrum

As outlined in Sec. I, our problem is to find eigen-
values and eigenvectors for the Hamiltonian operator
JC=3Cyib+TCrot+Hspin- Since we will solve this in a
Hund case (a) representation with ¢, J, M, S, and X
diagonal, we eliminate ® from (32) by noting that
®=J—S. This leads to

K= P/ 2M+3M0 2R 22+DE+BI+2AS 2
+@=2B)J- 8+ (B—p—3NS, (34)

where
B= Be(1 - 25+3£2)7

A=NeHMEHAE

The expansion of B to allow for the nonrigidity of the
molecule is well known. The first two coefficients in the
expansion of A have been estimated theoretically in
Sec. II but all three are treated as parameters to be
evaluated by fitting the experimental data. No £ de-

(35)

2 It is significant to note that the recommended lease-squares
fitted value of (Nk/c)}, which enters in the conversion, has in-
creased by 76 ppm between 1947 and 1952 [J. W. M. Dumond
and E. R. Cohen, Revs, Modern Phys. 20, 82 (1948) and 25, 691
(1953)]. By chance, this almost exactly cancels this new theo-
retical correction for the electrons. Thus it is clear that the last
decimal places of quoted values for R, are significant only when a
precise allowance can be made for the electronic contribution and
even then only to the limit of our knowledge of the fundamental
constants.
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pendence has been given u because the same value
sufficed for both »=0 and v=1 states as observed in
the infrared spectra® whereas a change in A was
required.

The required matrix components are (suppressing
quantum numbers in which the element is diagonal and

which have no effect on its value, and suppressing /) :

1 PN=7(+1),
(SZ]5.152)==2,
(JSZ|J-S|ISZNV=HJ(J+1)—-ZCE+ )}
X[S(S+H1)—2E+1) 105, 341+2%3, 5,
(0] £])= e[ (v+ 1)y, 041287, 1],
(0] 8|9 = (24 1)} (v+2) 8, py o+ (20+1)8,7,,
Fvi(v— 1), ,—2 ],
(0] 8]9") = [ (v+1)}(v+2) (v43) 1607, 043
+3(v+1)8,, p1+306,1, 51
+ o (o— D o— 2%, 3],

where e= B,/hw.=h/2MR 2w, and §,- , is the Kronecker
symbol. The elements of J-§ are obtained by noting
that J satisfies the “reversed” commutation relation’
in the gyrating frame and that J,=2 since V,=0.
Since S obeys ordinary commutation relations, we have
the result given above. The elements of £ and £ are
obtained by matrix multiplication of the familiar
matrix elements of £ for the harmonic oscillator.

Using these elements, the Hamiltonian matrix is
readily written explicitly. Since all elements are di-
agonal in J, M, and S, we can write the elements
simply as (22]3¢]v’Z’). Since the vibrational level
separation is so large, compared to rotational and spin
energies, we can apply the Van Vleck transformation
to reduce this matrix to an effective Hamiltonian
matrix for the structure within each vibrational level.!
Using

(36)

(=]3e] =) (o2 | 3¢ ] 02)
(12| Her| 2 )=— X ;
el E,—FL,

(37)

we obtain a 3X3 matrix between the T=4-1,0 states
for a given vibrational (and total angular momentum)
state. Including terms of order € these reduced ele-

% In some excited states, such as the 32, state, u Is an order of
magnitude larger than it is in the ground state, and its £ de-
pendence can no longer be overlooked [P. Brix and G. Herzberg,
Can. J. Phys. 32, 110 (1954)7]. Inclusion of this £ dependence
would involve no difficulty. However, for the high vibrational
states observed in the 3Z,~ state our simple approximation to the
vibrational potential would have to be greatly extended. We
avoid these accumulating complications by confining our treat-
ment to the ground state.

% E. C. Kemble, The Fundamental Principles of Quantum Me-
chanics (McGraw-Hill Book Company, Inc., New York, 1937).

# Detailed consideration shows that a somewhat more accurate
treatment in this case of the anharmonic oscillator is obtained by
replacing e=B,/hw, by &=DB/hwa, where hwn=Eo(v=1)
— Eo(v=0). This has been done in the numerical evaluations.
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ments are

w= (0J1| Hoe|vJ1) = B,J (J+1)
— e[ (8B—8\)J(J+1)+4BI(J+1)]

v=(0JO| Het|2J0) = — () + B, (4T +2)

— &[4B(J2+T+2)2+16BJ (J+1) (38)
F16M(J2+T+2)/3+41%/3B],
y=(2JO| Hete|vJ 1) =[J (J+ 1)/2
X {u—2B,+e[16B(1*+T+1)+8\/31},
g= (2J1| Hett| v —1)=— e8BJ (J+1),
where
By= B[ 1+ (2v-+1) Be+12b6B) ], )

Ao =Ae+ (20+1) (Na—6bEBN1).

We note that large vibration-dependent terms can be
taken out by defining v-dependent constants X, and B..
This is the first-order Born-Oppenheimer approxima-
tion. However, there are higher-order centrifugal dis-
tortion terms that cannot be eliminated in this way.
In these terms the distinction between B, and B, is
unnecessary and the subscripts are dropped. (Numerical
evaluation was actually made with the use of B,.) The
diagonal elements given here are such that the zero of
energy is
Fa(0)= e+ D,
— 30828 (hw.) "t (B*+0v+11/30)+ 3N, —u.  (40)

Application of the Wang® symmetrizing transforma-
tion to the Hamiltonian matrix with the elements (38)
vields a factored secular equation by separating sym-
metric and antisymmetric states. This allows an exact
solution, the eigenvalues being

E—E,(v)=w—¢g,

Yot {[(w—at2)/2F+27). (1)
The results can be stated concisely as
E(J=K)—E;(v)=w—s
= (B,+8e\1/3)K(K+1)—4B&K*(K+1)%, (42)

v (K)=E(J=K)—E(J=K- 1)=X\+p/2+B,(2K~— 1)
+4& B(— 4K+ 6K*—6K+2)
1+ (\/3) BK*+K+4-+)1/2B)]
[T AKNE-1)T, (43)
v (K)=E(J=K)— E(J=K+1)=\,+n/2— B,(2K+3)
+452[B(4K3+18K2+30K+ 18)
+(\/3)(BK2+5K+6+71/2B)]
+LE A(K+D"E+D), ()

1S, C. Wang, Phys. Rev. 34, 249 (1929); King, Hainer, and
Cross, J. Chem. Phys. 11, 27 (1943).
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Fic. 1. Comparison of theoretical and experimental depend-
ence of the sum »_(K)+».(K—2) on the rotational quantum
number K.

where
Ao=[(\oFu/2—B,)+€(8B416):/3+2\?/3B) I,
A1=[u—2B,+ (16 B+8\1/3) P+ (16 B+8\1)

X [\+u/2— B+e(8B+16),/3+2\2/3B],
Ag=e{32B[ (u—2B)+ &(16B+2)1/3)]
+&(8B+4n1)%,

(45)

J=0 is a special case in which the secular equation

reduces to a linear one. The results are

E(J=0, K=1)—Eo(v)=— 2\+u)
+2B,—4&(4B+8\/3+\?/3B)

A,=€256B

and

v (1) =2 ut+16e\AA2/12B].  (43)

These results are labeled using K as the rotational
quantum number to conform to the usual practice.
Because of the spin coupling, &2 is not a rigorous con-
stant of the motion, but K describes the dominant
value of f when the eigenfunctions are expanded in a
Hund case (b) representation. The fact that the state
function of (O'), must be totally symmetric on inter-
change of nuclei requires that only states with odd K
exist. This restriction does not exist with OO or
016018.

In fitting the spectrum it is useful to note that

v_(K)+ v (K=2)
=D\, ut-8e\ (K2— K+2-4A1/6B).
The precision with which this parabolic form fits the

experimental data is shown in Fig. 1. By considering
sums of this sort, one readily determines (2\,+p) and

(46)
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TasrLe ITI. Experimental spin coupling constants (Mc/sec).
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A,=59 3864-20
A1=16 8964-150
A= (5£2)X10*

Aoy="59 501.57=0.15
Aay= 59 730.00-£40
p=  252.67+0.05

A1 With these constraints, 4 and X, are separately fixed
by considering individual frequencies, using (43) and
(44). Because the results are so insensitive to B, &, and
w., the precise infrared values were used rather than
attempting a fitting from the microwave data. In
making the conversions, the velocity of light was taken
to be 2.99790X 10 cm/sec. Some of the derived con-
stants are By=43.1029 kMc/sec, b= —32.012 kMc/
sec, and e= B )/ fuwo1=0.92384X 103,

To determine X, it is necessary to use data from an
excited vibrational state. For this purpose, the infrared
data of Babcock and Herzberg* for the v=1 state of
(0'%), were fitted with (46) to determine A(1). This
fitting gave a result agreeing within its precision with
the value obtained by Babcock and Herzberg by fitting
the less accurate Schlapp* formula.

The results of all the fittings are tabulated in Table
III. The indicated errors in A are the statistically ex-
pected standard errors in the quoted mean values.

Table IV lists all of the microwave experimental
data?#5-37 and the theoretical frequencies computed by
the use of these constants and formulas (43) and (44).
The quoted fitting was made using the data of Burk-
halter ef al.? and of Gokhale and Strandberg,? neglecting
the apparently erroneous v_(25) and the wave-meter
measurements. Since then the data of Mizushima and
Hill*¢ has become available. It improves the previous
values of »._(1) and »_(25) and fills in some gaps in the
spectrum previously known only to wave-meter ac-
curacy. If Aoy and A, are determined by fitting this new
data with (46), the means agree with the above results
well within the standard error, but the standard errors
in the new data are twice as large as the old (which are
quoted above).

At this point, let us relate this solution with previous
ones. In the works of Kramers,® of Hebb,?® and of
Schlapp* the nonrigidity of the nuclear framework is
neglected. Thus e= B/hw=0. Further, all their results
are in error in that B must be replaced by (B—3u).
Kramers and Hebb both quote their results only to
first order in N\/B, but Hebb indicates the manner in
which the more exact solution using the radical is
obtained from the work of Hill and Van Vleck.®®
Schlapp gives the form with the radical. His solution
gave satisfactory agreement with the infrared data,
provided that different values of B and X\ were chosen
for excited vibrational states.

# R. Schlapp, Phys. Rev. 51, 342 (1937).

3% B, V. Gokhale and M. W. P. Strandberg, Phys. Rev. 84,
844 (1951).

36 M. Mizushima and R. M. Hill, Phys. Rev. 93, 745 (1954).

37 Anderson, Johnson, and Gordy, Phys. Rev. 83, 1061 (1951).

38 E. L. Hill and J. H. Van Vleck, Phys. Rev. 32, 250 (1928).
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The precise microwave measurements of Burkhalter
et al.? revealed substantial deviations from the Schlapp
formulas. In particular, the sum »_(K)+»,. (K—2) was
not constant as predicted by the Schlapp formula (our
(46) with ¢=0), but increased with'K. Burkhalter
obtained a reasonable fit by empirically adding 6K
+aK (K+1)~% to Schlapp’s v_(K), leaving v, (K) un-
changed. Gokhale® considered the effect of centrifugal
distortion on B, but assumed X and x independent of R.
Thus he failed to obtain a theoretical explanation for the
deviations. He did, however, correct the confusion be-
tween B and B— 3y, as did all succeeding workers.

Miller and Townes® reviewed the problem, and fitted
the spectrum satisfactorily by making both B and X in
their formulas depend on K through centrifugal distor-
tion correction terms proportional to K(K--1). Their
formulas are

v (K) =K+ (2K —1)(B— )

~[N— (B~ u)+ (2K — DB~ b}
() =N —n(K+1) = (2K+3) (B—1)

+ V2N (B— )+ QK+3)2(B— )

Tasre IV. Comparison of experimental and calculated frequencies
in Mc/sec for (O%), fine-structure transitions.

(47)

Experimental
Burkhalter Gokhale and Mizushima and
et al2 Strandberg® Hille Calculated
v (K)
1 56 265.1 56 265.2+0.5 56 265.640.6 56 264.7
3 58 446.2 58 446.3+£0.4 58 446.2+0.2 56 446.9
5 596100 50501.44£0.2 59 5915
7 604361 60433.4£0.2 604355
9 611204 61149.6+02  61151.3
11 61 800.2 61 799.8+0.4 61 800.9
13 62 411.7 62412.940.8 62413.8+0.4 62411.9
15 629704 62 996.61:0.2 62 998.5
17 63 568.3 63 567.240.2 63 568.7
19 64 127.6 64 128.0+0.8 64 127.6
21 64 678.9 64 678.2£0.2 64 678.2
23 65 2204 65 224.24-0.8 65 222.7
25 65 7704 65 762.6
v_(K)
1 118745.5° 118 750.540.5 118 750.7
3 62 486.1 62 486.2+0.4 62 487.24-04 62 486.7
N 60 306.4 60 308.0£0.2 60 306.1
7 59163.4 59 164.2+0.2 59 163.4-+0.2 59 164.0
9 58 324.0 58 324.940.3 58 323.2+0.1 58 323.6
11 57 612.0 57612304 57611.4+0.2 57 612.1
13 56 968.7 56970.84-0.4 56 967.8
15 56 362.8 56 364.24-0.5 56 364.0+0.4 56 363.1
17 55784.1 55784.60.4 55783.6
19 55220.8 55221.60.4 552215
21 54 672.5 54 671.6
23 54 130.0 54129.44-0.4 54 130.9
25 53 592.2 53599.44+0.8 53 597.3

» See reference 3.

b See reference 35.

¢ See reference 36.

d Wave-meter reading.
¢ See reference 37.

® B, V. Gokhale, Ph.D. thesis, Massachuset ts Institute of Tech-
nology, 1951 (unpublished).
«©§ L. Miller and C. H. Townes, Phys. Rev. 90, 537 (1953).
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Since these formulas are derived from a secular equa-
tion connecting several K states, the values of B and
A are not well defined and this procedure is not rigorous.
Further, it fails to give a value for d\/dR, and it fails
to provide the single Hamiltonian (for all K) needed
in deriving diagonalizing transformations preparatory
to introducing other perturbations. Finally, while this
work was being completed, Mizushima and Hill*® have
published a treatment that takes account of centrifugal
distortion under the adiabatic approximation but as-
sumes a harmonic vibrational potential. This treatment
fails to provide a value for A, or A2, and does not give
the diagonalizing transformation. Thus the present
treatment verifies Mizushima and Hill’s general results
and gives somewhat more information about the mole-
cule. The closeness of fit to the experimental data is
about equal to that of the methods of Miller and
Townes and of Mizushima and Hill.

B. State Functions

We now obtain the 3X3 diagonalizing matrix which
expresses the eigenvectors of the matrix (38) in the
Hund case () representation. Our eigenvalues as given
by (41) are inserted into the matrix equation

{Hoit— [E+Eo(v) [}¢ =0,
where
w oy 3

H = ly x yJ .
z 0y w
The quantities @, x, ¥, and z are matrix elements de-

fined in (38). The result of solving this equation is the
transformation matrix:

To=Yr=i—t1, ¥YE~7, YE=T41)

(48)

=—1 ay —1/\/2 cJ
= 0(VZe;, 0 —V2as|, (49)
1las 1/\/2 cr

where
cr=2"Ya,;=2"% 2+,
r=[E—E,(v)—w—z x| jmgs1.

These coefficients are listed in Table V for the states
occurring in (O'),.

For comparison, we note that if oxygen were a rigor-
ous example of Hund’s case (b), in which K=8 is a
good quantum number, the transformation could be
obtained by simply diagonalizing the operator {2
=J2+482—2]J-8. If this is done, the result is of the
same form but with

1/T4+1y? 1/ 7y}
aJ,=—( )7 CJ,=~( )‘
2\T+1 2\J+3

4 Note that his A is related to ours by (\)a=4e&(\;) 7. Also
note that he has apparently omitted a numerical factor of 2 in
going from his Eq. (17b) to (18). As a result, his value for (d\/
dR), is inconsistent with ours.

(50)

(1)
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TaBLE V. Transformation coefficients of eigenvectors. as and
cs give Os eigenvectors with respect to Hund (a) basis, and aj’
and ¢, give Hund (b) eigenvectors with respect to Hund (a)
basis, by use of Eq. (49). bs and ds express O, eigenfunctions with
respect to Hund (b) basis by Eq. (54).

J as s as’ '’ bs ds
2 0.480462 0.518803 0.547723 0.447214 0.990351 0.138582
4 0.489369 0.510410 0.527046 0.471404 0.997059 0.076638
6 0.492680 0.507214 0.518874 0.480384 0.998594 0.053009
8  0.494413 0505525 0.514496 0.485071 0.999178  0.040530
10 0.495480 0.504480 0.511766 0.487950 0.999462  0.032813
12 0.496202 0.503769 0.509902 0.489898 0.999620 0.027569
14 0.496723 0.503256 0.508548 0.491304 0.999717 0.023776
16 0.497117  0.502867 0.507519 0.492366 0.999782  0.020902
18  0.497424 0.502562 0.506712 0.493197 0.999825 0.018652
20 0.497671 0.502318 0.506061 0.493865 0.999858 0.016842
22 0497873 0.502117 0.505525 0.494413 0.999881 0.015355
24 0.498042 0.501950  0.505076 0.494872 0.999900 0.014112
26 0.498185 0.501808 0.504695  0.495261 0.999914  0.013057

Using this latter transformation, we may transform
(48) to a Hund case (b) basis. The result is

fK=J—1{a 0 9
Heffz J {0 6 0 ) (52)
J+1l6 0 «

where
a=B,J(J— 1)—2)\,,——{—+uf— 62[43.]2(1— 1)2
2741
8 JU—1 4N T
St s —1521+1]’
B=B,J(J+1)~&J (J+1)[4BJ (J+1)— (8/3)A],

1
1*#(1 +1)
8 (J+1)(J+2)
—62[4B(J+1)2(J+2)2+—A1~—~—*
32U+t
402 (J+1)]
3B 27+

J+
'Y=Bv(-]+1)(]+2)—2)\vzj

_DuHY
2741

{20+ e[ (HT+1D)+N/6B]}. (53)

This matrix is of course identical to that which would
have been obtained if the entire problem had been set
up in terms of Hund’s case (b) instead of (a).?

The transformation which gives the oxygen eigen-
vector, characterized by K, with respect to the Hund ()
basis, characterized by &, is found to be

K=J—-1J J+1

K=7-1 by 0 dy
T,®=(T/Ty= T 0 1 0, (59
J+1l—d;s O bs

2 This has been verified with the use of the case (b) matrix
elements given by J. H. Van Vleck [Revs. Modern Phys. 23, 213
(1951), p. 2227). The effective Hamiltonian matrix in Mizushima
and Hill’s manuscript (reference 36) gives somewhat different
coefficients for \;. His error seems to have arisen in subtracting
a 2\, treated as independent of &, from the diagonal elements.
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TaBLE VI. Matrix elements of the direction cosines.?

J' = J-1 J J+1
1211 RACTE L vu+nr {T+DLT+D @I+
(J0|®r:|JQ) (- Q [T+1)—a]
(0| ®r | T = £i(JQEr, | TR £HUTFOUFO-D} T+ -Q@EDF  FILUE+D)£0+2) P
(JM|®z,|T' M) Lr— M7 M [T+12— M2

UM |®x,| ML) =Fi(IM |y |J'ME1) [ (JFM)VFM -} LT+ -MM£1)]} FITEM+)TEMA2) P

» In wave mechanical language, these elements are simply integrals of the cosine of the angle between the space-fixed F axis and the gyrating g axis, over
the symmetric top eigenfunctions specified by (JQM [J'Q'M’). Since these angular eigenfunctions are completely determined by the angular momenta,
these rather obscure integrals can be replaced by a matrix algebraic deduction from the commutation relations. In this deduction one finds that the ele-

ments of $r, may be factored in the form

(JOM | @5t | J'X M) =T | ®|T) (TQ|DFer | T'QY (T M pFro| T'M"),
where @ is J: and M is Jz. With our phase choice [which follows that of Condon and Shortley rather than that of Cross, Hainer, and King, J. Chem.

Phys. 12, 210 (1944), for example], the factors are as tabulated.

where
bJ =2 (aJdJI+CJC],) = 1,

(55)
dy=2 (CJGJ’_' GJCJ,) = [3 (J+%)]_l

These coefficients are also given in Table V. From these,
it is clear that oxygen eigenvectors approach Hund
case (b) eigenvectors as J becomes very large. This
was to be expected since the rotational splittings in-
crease as J, whereas the spin-spin energy which breaks
down the case (b) coupling is constant.

IV. LINE INTENSITIES

Because of its homonuclear symmetry, no electric
dipole transitions are possible in oxygen. The existence
of a magnetic dipole moment of two Bohr magnetons
makes magnetic dipole transitions allowed, and in fact
quite intense. The perturbative Hamiltonian inducing
transitions in an absorption experiment is

H=-g%6S Hi=—uH.

A well-known analysis® shows that for well-separated
lines the absorption coefficient a is given by

e e
{127) y
T T (0wt e Bl

where N is the number of molecules per unit volume,

e—E,’/kT

(56)

Qai5=

M
(IMSZ|Sz| IMSZ)=—,
J(J+1)

wis is the matrix element of the magnetic dipole mo-
ment, 7 '=2xAw, E; is the energy of the jth state, and
the sum over » is the usual partition sum. Since « is
proportional to |us;|? it is proportional to |(Sz)s;|? if
the magnetic vector of the incident rf radiation is
polarized along Z. By the isotropy of field-free space we
know that when summed over the orientational de-
generacy quantum number M,

Tl Sx)il? =X | (S¥) 2=l (S2)i] %

Thus all of the necessary information for the general
case is obtained by evaluating the simplest of these,

namely,
Zu| (Sz)is]*

In this, of course, 7, j indicate the final and initial
states, each characterized by quantum numbers J, K.

To compute the matrix elements of Sz (where Z is
a space-fixed coordinate) from the known elements of
S in the gyrating (g) axes we use the known direction
cosine matrix elements in the equation

Sz=2_®26S,- (57)

These direction cosine matrix elements are given in
Table VI with the phase conventions we have used.
Noting that =3 for our A=0 state, we find the follow-
ing elements for Sz in a Hund case (a) representation.

M{TUT+D-ZCED PSS+ -]

(JMSZ|Sz| IMSZ+1)=

27(J+1) ’ 58)

(I =2 (- M)}

(JMSZ|Sz|J—1, MSZ)=

T(4J2—1)}

(JMSZ|Sz|J—1, MSZ1)=

+[(P=M)(JF)JFZ-DPSS+H)-=CExE1) T

2J (472—1)}

#7J. H. Van Vleck and V. F. Weisskopf, Revs. Modern Phys. 17, 227 (1945).
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The (J|J+1) elements of Sz are found by using the
Hermiticity of the matrix. These elements must now
be transformed to the basis which diagonalizes the
unperturbed (field-free) Hamiltonian. Then the off-

Tt 0 |/Sew S 0 O
T S Su S 0
T-1S,T= Ts! 0 Su S S
0 0 Sz Ss
0

In these expressions, 7'y and S, are 3X3 matrices.

Carrying out the indicated matrix multiplication,
we find the following matrix elements of the form
(KJM|Sz|K'\J M):

(K,J=K
8 ) s

(K,K,M|Sz|K,K,M)= -
J(J+1)

)

gx’
ZGJM
U+
ay g(K, J=K+1)
[261% ]= M
U+

(K, K+1, M|Sz| K, K+1, M)=

g.°
—2csM
J+1n)}
[2‘1]_ ¢y ]=g(K,J=K—-1)M
T+ 8°
(J—=1,7, M|Sz|J+1,], M)

(K, K—1, M|Sz|K, K—1, M)=

3

612—-(1«./2

agcy
= M[ } :|=h-’M7
JU+D) JU+DHD
(J~=2,T—1,M|Sz|J, T, M)

(60)

(¢ ) Cr—1

NF (-1t

-0 ]=AJ_1<12—M2>*,

GROUND STATE 949
diagonal elements will give the transition probabilities
between the actual eigenfunctions. Since these matrix
elements are not diagonal in J, our transformation T's
must be extended as follows:

To 0
T,
T,
0 T,
T Swlo ToeiSul: 0
T1SwTo ThlSuTy T7'8wT,
= 0 T‘_)—'ISHTI T2-1522T2 (59)
0 0 T371S53T,
J—1,T—=1, M|Sz\J—1,], M)
1 M)[ ¥4 ] By
= , — S J —_ ,
Nr T+t
(J,J~1, M|Sz\J, J, M)
fu M)[C’“+ o | Crr(JP— )}
= y e = J—1 —_— ,
Nt (J-1}
(J—1,J—1, M|Sz|J+1,J, M)
J
=, M) [—— ]=DJ<JZ—M2)*,
Ot (J+1
where
22— (2—M) P
suan=| ]
J(4J2—1)
with the special case
(1,0,0|52|1,1,0)= —[2(1— M) P=Co(1— ML (60")

If we insert the tabulated values of a; and c¢s, we
obtain the proper transformed matrix elements, whereas
if we insert ¢,/ and ¢;/ we get the matrix elements for
Sz in a pure Hund case (b) system. In the latter case,
inspection of @’ and ¢’ shows that all (K|K’) elements
of Sz vanish if K’# K. This is not true using ¢ and c.
Thus our precise calculation has revealed the possi-
bility of AK=2 transitions. Also, the formulas for
AK =0 transitions differ from Hund (3), especially for
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TaBLE VIL Linc intensities: (K’ J/ | K" J'") =3 Zy | (K'T'M|Sz|K"J"M) |~
I(K, K+1|K, K) I(K, K~1[K, K) IK, K|K+2, K+1) I(K, K+11K+2, K+ I(K, K+1]K+2, K+2)
K Exact Case (b) Exact Case (b) Exact Exact Exact
1 2.452 2.500 2.000 2.000 0.006110 0.3924 0.1280
3 6.710 6.750 6.539 6.667 0.005045 0.2128 0.06343
5 10.80 10.833 10.736 10.800 0.003874 0.1466 0.04175
7 14.85 14.875 14.82 14.86 0.003109 0.1119 0.03103
9 18.88 18.90 18.86 18.89 0.002589 0.09043 0.02466
11 22.90 22.92 22.88 2291 0.002216 0.07607 0.02046
13 26.91 26.93 26.90 26.92 0.001937 0.06561 0.01749
15 30.92 30.94 30.92 30.93 0.001720 0.05770 0.01527

low J. For precise work, as in inferring line breadths
from calculated intensity and observed signal strength.
these corrections should be made.

The diagonal elements give the weak field g factors
for the Zeeman effect. These also differ appreciably
from the vector model results calculated with the
assumption of pure case (4) coupling.# The numerical
values are given in Table VII, but further discussion
will be deferred to a subsequent paper giving a complete
treatment of the interaction with a magnetic field.

To calculate the total intensity, we sum the squared
matrix elements over the degenerate M states and
multiply by 3 to include the 3 equivalent spacial
directions. This results in an intensity factor I defined by

IK"J"|K'TY=3u|(K'J"'"M|Sz|K'J'M)|% (61)
The sum is readily evaluated explicitly using the fact
that

J

z

M=—J

JI+1)27+1)
M=

The results have been tabulated in Table VIII for
J <16, and the Hund (b) result*® has been given for
comparison when it is not zero. Evidently the differ-

TasrLe VIII. Matrix elements of Sz with respect to the basis in
which the field-free problem is diagonal.#

K gK,K—1)/g g(K,K)/g¢ g(K, K+1)/gs

1 0.5000000 0.483997

3 —0.317330 0.0833333 0.247357

5 —0.197357 0.0333333 0.165797

7 —0.141987 0.0178571  0.124612

9 —~0.110723 0.0111111 0.0997945
11 —~0.0907038 0.00757576  0.0832115
13 --0.0768013 0.00549451  0.0713505
15 ~0.0665888 0.00416666  0.0624471
17 ~0.0587707

J hy As By Cry Dy

2 0.114371 ~0.0349195  0.285889  0.249546  0.04000515
4 0.0343857 —0.0113202 0.163182 0.147276 0.01254283
6 00163845  —0.00553032 0.112209  0.1041814  0.00595644
8 0.0095616 —0.00326702 0.0853207 0.0805423  0.00346085
10 0.0062568 ~0.00215461  0.0687875 0.0656293  0.00225829
12 0.0044164 —0,00152705 0.0576082  0.0553697  0.00158879
14 0.0032823  ~0.00113872  0.0495493  0.0478813  0.00117839
16 0.0025354 ~0.00088177 0.0434660 0.0421754  0.00090875

» These elements are given in Eq. (60) as the product of a J-dependent
factor and a simple factor depending on both J and M. The J-dependent
factors are tabulated here. In these, gs is the algebraic electronic spin g
il'acttl)r, ~2.00229, and g(K,J) is the algebraic g factor of the K,J energy
evel.

“R. M. Hill and W. Gordy, Phys. Rev. 93, 1019 (1954).
4% J. H. Van Vleck, Phys. Rev. 71, 413 (1947).

ences are at most a few percent for the transitions
allowed in Hund case (4). However, the predicted
intensities for the “forbidden” AK=2 lines is a com-
pletely new result, which can be checked when radiation
of sufficiently high frequency is available. The skirts
of these lines will give some effects at lower frequencies
if the transmission is through oxygen (or air) at
atmosphere pressure.

We can write the frequency of a Ky — K42 transi-
tion in terms of the frequency difference

v(K1,, Ki+2)=E(J=K=K,4+2)-E(J=K=K))
and the frequencies of the 5-mm lines as follows:
V7, It 7=k = VK, k42— V- (K+2).
vs, 5y r=k41=VE, k42— V—(K+2)+v, (K).

V7, 741 J=K+1= VK, K+t v (K).

(62)

Making an analytic approximation to the I (K" J”|K'J’)
and using Eq. (56), one finds the following approximate
results at 300°K, assuming the same line breadth
parameter as in the millimeter spectrum:

0, J41; J=K= 0.046 (J+ 1)-%V210~108_0'0069K (K+1),

4.2]1521(10¢0-0089K (K+1) (63)

QJ, J; J=K41

QJ, J41; J=K41= 1.4.]_11/210‘106‘0'0069[( (K-H)‘

In these, « is the value when v=v;; and » is expressed
in kMc,sec. As particular examples, the three lowest
frequency lines are K=1 - 3 lines predicted to lie at
368 522 Mc/sec, 424 787 Mc/sec, and 487 274 Mc/sec.
The absorption coefficients are calculated to be 0.44
X 1078, 38105, and 17X 10~ cm™, respectively.

APPENDIX A. MATRIX ELEMENTS OF SPIN-SPIN
HAMILTONIAN

By the same methods used in Sec. II, the following
matrix elements between configurations may be com-
puted. We let bR*= A, for simplicity.

H..=H.=g8b2Kn}

X {1/304€68/15+ 263845, (A) — ¢35, (44)},
Hu= Hf/= gzﬁzb%ZL‘i?r—%

X {1/30+¢3/15— 2673875, (A) — L2, (44)},
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Hoo=H ;= g8 LK 3{1/15+¢251(44)},
Hyw=Hup=H.=H;=0,
Huyy=Hyy=H,.=Hy,=Hoy=Hyy=Hio~Hy =0,
H,y=—Ho=—H.i=2"'ReH.r= g0\ KLM (2r)%e™*

X {(e?/15)[A+ BA'— BE+1—35¢74/14]

— (B+AY (E+AYHS:1(44)

—4[A+AY2B— E) Je*/451(4) — 35:(44)
~1(3A14- 2B+ E)S,(4A)

+4A-H(AMH-2B— E)et455(A)+31A725,(44)).
In these,

Sa(x) =2

)

n=1 135
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(2n)(2n—1)

Sle)= ( )Hl 3.5.. (2n+5)(”)"

Sulm)= ( ) =ay 321;(%(2;1:;5)(96)"'

and the constants B, E, J, L, and M are as defined by
Meckler.? In evaluating H., the terms in ¢ and xo
giving orthogonality to the 1s orbitals have been
dropped as negligible to allow integration by our artifice
(which requires a common Gaussian factor for all
orbitals). We note that all of the elements have the
same sort of dependence on 4 and dR?2=A, the A de-
pendence turning out to be rather slight.

Interaction of Molecular Oxygen with a Magnetic Field*

M. TinkaaMi AND M. W. P. STRANDBERG
Department of Physics and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received June 9, 1954)

The dominant interaction of O with a magnetic field is through
the electronic spin magnetic moment. However, a precise com-
parison with experiment of the results of calculating the micro-
wave paramagnetic spectrum, assuming only this interaction,
shows a systematic discrepancy. This discrepancy is removed by
introducing two corrections. The larger (approximately 0.1
percent, or 7 gauss) is a correction for the second-order electronic
orbital moment coupled in by the spin-orbit energy. Its magnitude
is proportional to the second-order term g’ in the spin-rotation
coupling constant. The smaller (approximately 1 gauss) is a
correction for the rotation-induced magnetic moment of the
molecule. Since the dependence of this contribution on quantum
numbers is quite unique, this coefficient can also be determined
by fitting the magnetic spectrum. A total of 120 X-band and 78
S-band lines were observed. The complete corrections have been
made on 26 lines with a mean residual error of roughly 0.5 Mc/sec.
This excellent agreement confirms the anomalous electronic
moment to 60 parts per million (ppm) and also confirms the
validity of the Zeeman-effect theory.

N a previous paper! (referred to as TSI), we gave a
rather complete and precise treatment of the
eigenvalues, eigenvectors, and transition intensities of
the oxygen molecule in field-free space. Using this work
as a foundation, we now give a similarly complete and
precise treatment of the perturbations produced by a
magnetic field. The dominant interaction will, of course,
be that between the electronic spin magnetic moment
and the external field; namely,

=—g.%6S-H. (1

* This work was supported in part by the Signal Corps, the
Air Materiel Command, and the Office of Naval Research.

t National Science F oundation Predoctoral Fellow.

1 M. Tinkham and M. W. P. Strandberg, preceding paper
[Phys. Rev. 97, 937 (1955)].

mt

A new result is the rotational magnetic moment of —0.25+0.05
nuclear magnetons per quantum of rotation. Knowledge of this
moment allows the electronic contribution to the effective moment
of inertia to be determined. Making this correction of 65 ppm,
and using the latest fitting of the universal atomic constants,
the equilibrium internuclear distance is recomputed to be R,
=1.207414+0.00002 A. We can also deduce that the magnitude
of N, the second-order spin-orbit contribution to the coupling of
the spin to the figure axis, is 465450 Mc/sec, or less than one
percent of the total coupling constant A.

Theoretical intensities of a number of the microwave transitions
are calculated and successfully compared with experiment over a
range of 100 to 1 in magnitude. It turns out that AM =0 transitions
are over a hundred times weaker than the Al =41 transitions
and thus are too weak to observe. Also, J breaks down as a
quantum number in the presence of a magnetic field. This allows
AJ = =2 transitions to comprise roughly half of all lines observed.

Accordingly, the effects of this perturbation on the
eigenvalues and eigenvectors is first determined to high
accuracy. It is then found necessary to introduce the
small effects of spin-orbit coupling and rotation-induced
moments as additional perturbations to fit the precise
experimental data. The fitting evaluates certain sums
of matrix elements which are important in interpreting
the field-free parameters A and u. Incidentally, the fit
may also be considered to confirm the theoretical
anomalous moment of the electron to =60 parts per
million (ppm). Selection rules and intensities will also
be discussed and compared with experiment. It turns
out that AM==1, 0 transitions are allowed, but the
AM =0 lines are at least 100 times weaker than the
AM==1.
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I. INTERACTION OF ELECTRONIC SPIN WITH
EXTERNAL FIELD

A. Eigenvalues

If we define the direction of the external field to be
the Z direction, then the matrix of our perturbed
Hamiltonian is that of?

3C=5€0+C§Cm=3(30—g3’.3H52, (2)

where g,°=—2.00229, 8 is the Bohr magneton, H is
the magnitude of the applied field, and 3C; is the field-
free Hamiltonian treated in TSI. Matrix elements of
Sz in the basis which diagonalizes the field-free problem
have been given previously [TSI Eq. (60) and Table
VIII]. Noting that there are AK=42, 0 as well as
AJ =1, 0 elements, we find that 3C,,, does not factor
into smaller submatrices which can be diagonalized
exactly. If O, were a rigorous example of Hund’s case
(b) in which X is a good quantum number, there would
be no AK=+2 elements and the problem would be
factored into 3)X 3 submatrices, one for each value of K.
This factored form is the starting point taken for
further approximations in the treatment of Schmid,
Budé, and Zemplén,® but is completely inadequate for
our purposes. Although it is a better approximation,
Henry’s method! is also too inaccurate.

Hu=(K—1|%|K—1)=—v_(K)—g(K, K— )MBH

TINKHAM AND M.

W. P. STRANDBERG

The matrix of the complete Hamiltonian has the
form:

0 0 0
xx0 000
K—Z' xxx x200 0 0
! Oxx xx20
Oxx xx20 000
K 0 00x =xxzx x00 O (3)
000 Oxx =220
| Oxx xx20
K+2!0 0 00x =x2zzx=x
: 000 O=x=x

tk 0 0

Since the energy separation between rotational levels
is large compared to the magnetic perturbation, the
dominant effect will come from the elements diagonal
in K. The effects of elements which are off-diagonal in
K may be reduced to the diagonal (in K) by the Van
Vleck transformation.®® The resulting (J|3C|J’) ele-
ments for the effective 3X3 Hamiltonian matrix for
the Kth rotational level are:

Hyp=(K|3|K)=—¢(K,K)MBH+

Hy= (K+1[3¢|K+1)=—v (K)—g(K, K+1)MBH

D[ (K—1)*—M?] hx_2M?
+ (g,°)%6°H?,
(4K—-2)B—v_(K) (4K-2)B+[g(K—~2,K—1)—g(K, K—1)]8BHM
A K—12 (K?_ M?) (gse)2B2H2 DK+12[(K+ 1)2 — MQ] (gac)2B2H2
(4K—2)B (4K+6)B ’
s 22 ALY @

14K +6)B—[g(K+2, K+1)—g(K, K+ 1) JMBH  (4K+6)B+r, (K)

hg_1Ad g M (K*— Mﬁ)!(gse)%q{?

Hyp= (KMCIK—I)="Ckﬂl(Kz“‘Mz)}gsaﬁHA{_

)

(4K—2)B

hgp DM (K4-1)"— M*JH (g, )82 H?

Hy= (K|3| K+1)= — B[ (K+1)2— M2 }ig,"8H —

Hy=(K—1]3|K+1)=0.

7

(4K+6)B

2Our systematic notation is to use superscripts e and # to distinguish electronic and nuclear contributions, and we use
subscripts s, I, v to distinguish spin, spin-orbit, and rotation. All g-factors have the appropriate sign so that w=ggJ; for
example, that of the electron is a negative number. To conform to conventional usage we denote the magnetic field by H but
give numerical values in gauss, the units of magnetic induction.

3 Schmid, Budé, and Zemplén, Z. Physik 103, 250 (1936).

*A. F. Henry, Phys. Rev. 80, 396 (1950).
S E. C. Kemble, Fundamental Principles of Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1939).

¢ To get sufficient accuracy here, we use some energy denominators corrected to first order. This procedure is readily justified if
the elements are derived by the method of continued fraction reduction. The error remaining from the reduction is then definitely

less than 1 Mc/sec for all cases of interest.
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In the diagonal elements we have suppressed the
common term BK(K-+1). The secular equation is

Hn—E Hy 0
ng IIzQ‘—E Hgg =0 (5)
O H23 HZH—E

The complex dependence of the elements on parameters
makes a straight numerical solution the most attractive
procedure. For this purpose, the continued fraction
forms are most useful. They are

Hy
FEi=Hy;—
H22_E1—.H232/(H33——E1)
and (6)
H232 H122
Ey=Hot + .
Ez—-Hgs Ez—Hll
20
-
M:=2
6l M=0
] M=3
M-t
12l I
| Xx-BAND  s-BAND
— M=-2
4
J=3 0
H(kg)
-4_
Ms-3
-8k
%)
w
w
~
&)
b3
x
w
M=
M=-I
M:0
-62.486 +
H(kg)
M:-2
M=
AN
M2 M=-3

Fic. 1. Magnetic splitting of the K =3 energy levels.
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Fig. 2. Magnetic splitting of the K=35; J =4,6 energy levels.

The expression for E; is obtained from that for E, by
interchanging the subscripts 1 and 3. These equations
are exact equivalents of (5) and not a perturbation
approximation. If the roots are well separated, con-
vergence to the desired root on iteration is rapid. If
two roots are close together, convergence is slow.

The roots E,, E,, and E; have been evaluated to
+10 Mc/sec at H=4, 8, and 12 kilogauss for most M
states for K <13. The results have been plotted against
H by graphical interpolation.” Some examples are shown
in Figs. 1 and 2. The small g-factors for J=K states
[roughly —2/K(K+1)] make their splittings very
small, only three cases being as wide as 9400 Mc/sec
for fields under 12 kilogauss. Thus most attention can
be concentrated on the J=K=+1 levels. For K2 3, the
families of curves are all quite similar. (The K=1
curves are simpler, since the J=0 and J=2 levels are
widely separated.) For H less than a few hundred
gauss, the splittings closely resemble the linear Zeeman
splitting predicted by the field-free g-factors (TSI,
Table VIII). At very high fields the Paschen-Back effect

7 The numerical results and more graphs are given in the Ph.D,
thesis of M. Tinkham, Massachusetts Institute of Technology,
1934 (unpublished).
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Fic. 3. Mixing coefhicients of the J components in the
K =3, M=0 state of lowest energy.

sets in and we approach the limiting case of a com-
pletely decoupled spin. Then there must be (2K4-1)
levels corresponding to each of M s=1, 0. That this
tendency is observed becomes clear if we note by
inspection of the graphs that all the (2K+1) levels
from J=K are asymptotically going to Ms=1 except
the M = —K level, which goes to M s=0. Similarly the
(4K+2) sublevels from J=K=1 provide (2K+1) of
Mg=—1, 2K of Ms=0, and the single M=K+41
sublevel of Ms=1. These numbers check the proper
limiting behavior. Even at fields as low as 8 kilogauss
there is a marked tendency for the set of Ms=—1
levels to split off into a bundle of nearly parallel lines
of slope equal to g,%3. In the intermediate region, which
is of most interest, we find the characteristic repulsion
of levels of the same M and the accompanying strong
curvature.

From these curves the approximate values of H for a
given resonant frequency v (energy level separation)
may be found to an accuracy of about 4100 gauss.
This is close enough to identify many lines of the
spectrum if full use is made of experimental information
on K and AM. However, to give a secure identification
and to check the theory in detail, each line must be
calculated individually.

This calculation was made by computing the position
(to #=0.5 Mc/sec) of both levels involved in the transi-
tion for two values of H separated by 200 gauss and
centered about the approximately correct field, deter-
mined graphically. If the transition frequency is then
expressed as

v(H)=v(Ho)+(dv/dH)(H— Hy), (M

the two calculated points fix v(Ho) and dv/dH. This
formula allows the calculated resonant field for any
given experimental frequency to be determined to
approximately =40.5 gauss, since the curvature can be
shown to be small over a region of a hundred gauss.
The value of dv/dH is also necessary to interpret
linewidth measurements at constant frequency and to
make corrections for various perturbations to be con-
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sidered later. The values of H for the experimental »,
and the value of dv/dH at that H, are given for many
lines of the spectrum in Tables I and IIT.

B. Eigenvectors

From the form of (3) it is evident that only M is a
good quantum number in the presence of a magnetic
field, since, in principle, ¢/l J’s and K’s are mixed.
However, the principal mixing is between the three J
values corresponding to one K. The admixture of other
K states is small and could be treated by perturbation
theory. In the worst case this amounts to only about a
one percent mixing amplitude even at 10 kilogauss.
Since this is too small to have any serious effect on any
of our subsequent calculations, we neglect these effects
and only compute the transformation between the
field-free and final eigenfunctions within a given K
rotational triplet.

This transformation matrix is made up of the eigen-
vectors of the matrix equation corresponding to (5),
and it is written

r=17r=2 r=3
J=K—1(Uy Upp Uy

Uk= J=K Uy Uz Uss|. 8
J=K+1{Un Usp Usn

In this, r denotes the new eigenfunctions but signifies
no constant of the motion except the energy. The
elements U, are defined by

lf?r 12,“1711

ljlr 1112

Ha;,
-
IZT—-II33

l}3r

L’?r

and normalization.

Examples plotted in Figs. 3 and 4 show two typical
cases. In Fig. 3 we see the distortion of the K=3, M =0
state which starts as /=2 at zero field. At a field of 6
kilogauss the amplitude of J=4 has risen to 0.35, and
that of J=23 has risen to 0.24, These figures show the
substantial breakdown of J as a quantum number

10

2
Uit

Fic. 4. Mixing coefficients of the J components in the
K =3, M= -1 state of lowest energy.
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under a magnetic field. This makes all AM =41, 0
transitions “allowed,” regardiess of the principal or
original value of J, provided the field is moderately
strong. We will later see that the majority of the
observed X-band transitions are of this field-allowed
type. Figure 4 shows the more unusual case of two
levels which attempt to cross each other but, instead,
repel. At the point of closest approach the J’s are
completely mixed, and as the levels move apart again,
the dominant J’s are found to have interchanged. Since
the strong mixing dies out rapidly, there is seldom any
doubt as to which J is dominant in an eigenstate for a
given field. We will use J in this sense throughout the
paper rather than use the less suggestive 7 notation
introduced for the purpose of setting up the transfor-
mations U. The correct sense of J will always be clear
from the context.

Numerical values for the transformation coefficients
for a number of cases required in later parts of the
calculation are given in Table VII. Inspection of this
table shows how universal is the large degree of mixing.

II. CORRECTIONS FOR ROTATIONAL MAGNETIC
MOMENT AND ELECTRONIC ORBITAL
MAGNETISM

When the results of the calculations of Sec. I are
compared with experiment (Tables I and III), a
systematic discrepancy of the order 0.1 percent is
obvious. Since this was far beyond the expected error
of either theory or experiment, it was assumed to be
caused by neglect of these corrections. When the cor-
rections treated in this section are made, the agreement
is within the accuracy of the experiment and calcu-
lations, namely of the order 450 ppm.

The straightforward and universally sound method
of handling perturbative terms of this sort is simply to
write down all matrix components of the energy in a
convenient basis and then to eliminate the elements
which are off-diagonal in electronic quantum numbers
by the Van Vleck transformation.’ For a case as simple
as the diatomic molecule which we treat, however, the
same results can be obtained without complication by
using a shortcut method which gives a much clearer
picture of the physical nature of the interactions. This
second approach is followed here. Either method yields
an effective Hamiltonian matrix involving fine structure
quantum numbers only. The lowest-order contributions
to the energy are then found by application of the
transformation (within the fine structure levels) which
diagonalizes the Hamiltonian 3Co—+3Cs.

In TSI we noted that the spin-orbit coupling and
the rotation-electronic interaction mixed = states into
the 2 electronic orbital state as follows:

(n] ALy [0)S, — ("’] 2BL l )&y

yr=y:"— 2, 2 vl
n=w ¢'=z1,y E,—E,
(10)

WITH FIELD 955

The first-order electronic orbital angular momentum
along the gth gyrating axis is then seen to be

(0] Ly|n) (n] AL, | 0)S, +comp. conj.
n,g’ En—'EQ

(0 Ly{n) (5] 2BL, | 0) R -+ comp. conj.

n,g’ E.—E,
=—(gl’Sg+g,.’.Qg)(1—59’z), (11)
where
OlL, AL,I0
s rey Ol GALO)
n E,—E,
and (12)
Ol L. BL.|0
ey O EAD@IBLI)
n En'—EO

In making this reduction we have used the facts that
with axial symmetry the elements of L, and L, differ
only by a phase of =4 [ TSI, Eq. (26)] and that elements
of L, vanish for a Z state. In the general case of lower
symmetry the g’s are not just diagonal tensors, but
have the structure (g,),, for example. Then L, would
be a sum of terms over g’. The general case of rotation-
induced moments has been treated in detail by Eshbach
and Strandberg.®

To obtain the interaction of this electronic orbital
angular momentum with the external field, we project
it onto the space-fixed Z-axis by using the direction
cosine® matrix elements $z,:

Lz=Y ®z,L,. (13)
7

For our case, the matrix elements of this product
operator which are diagonal in electronic quantum
numbers between total state functions whose electronic
part is (10) may be shown to be the same as those
obtained by simply taking the product of the diagonal
elements of L, given in (11) and the elements of &z,
for the case A=0. These ®,, elements are the same as
those used® in TSI to project .S, onto Z. Combining
(11) and (13),

Lz=—g 2 ®z,5,—8° > q)Zaﬁ.'a

g=x,4 g=I,Y.2
=—g° X 92,5,— Rz (14)
g=rxr,y

The second sum may be extended to include g=s=
because &, is zero. This is more convenient, since it
gives rise to the simple expression §z. Noting that S.
and S, are purely off-diagonal in X, whereas S, is

8 J. R, Eshbach and M. W. P. Strandberg, Phys. Rev. 85, 24
(1952).
9 See TSI, Table VI.
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- purely diagonal, we can write (14) as®

(UMZ|Ly| M) = — g, (JMZ| Rz| J' M)

—(1—=6s z')gze(JME[SzIJ/MZ’). (15)

Before computing the effect of this electronic orbital
angular momentum on the magnetic energy, let us
note that elementary considerations show that the
magnetic moment of the rotating nuclei in a homo-
nuclear diatomic molecule is simply

Zm

rn=”_“95 rﬂ @- 16
wr=— =g 8 (16)

Again, the general asymmetric top has been treated by
Eshbach and Strandberg.? If we combine this with the
electronic rotation-induced moment —gL,=g, 88, we
have a total rotational moment

wr=u"4u = (g"+2)88=g.08%. an

We now compute the energy contributed by the
interaction of this total rotational moment with the
external field. It is

Hmr= "‘grﬁHﬁ‘z

M 1is, of course, a known good quantum number. For
this small correction term we need only to use the
diagonal value of Sz, (Sz), in the representation in
which the sum of 3Cy and the interaction of the spin
moment with the external field is diagonal. We note
that the eigenenergy is given by the diagonal elements
of 3¢y and Sz in this representation as

E\={3Co)— g:BH{Sz) .
Thus, to first order,
(Szhy=—(1/g.B)(OE/0H) 3. (19)

The total first-order energy shift caused by the rota-
tional moment is then

<C‘Cmr>M= - grBII[M+ (1/gxeﬁ) (aE/aII) .‘l]'

Accordingly, the change in frequency for a transition
from M—M+AM is

(20)

Av = {3 arsa 3t —(HComr) s
=—gBH[AM(1/g.8)(dv/dh)], (21)

where dv/dH=d(Epyanu—Ey)/dH is known from
previous calculations (Eq. 7). The corresponding change
in H required to maintain the fixed experimental

10 Tt might appear anomalous that this argument does not also
apply to eliminate (Z|2) elements of ®z. The reason is that ®
and ® both operate in the relative coordinate domain, making
®z,8; a true matrix produce in which (Z|Z) elements are gener-
ated from the (Z{Z41)(Z41!Z) elements. Since S, operates
only on internal coordinates, in the case of S we have a simple
product and no such elements can be generated.
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resonance frequency is
AH, g,[ £:°8AM 1]
dv/dl) 1

H g

(22)

Let us now take account of the energy of the spin-
orbit induced orbital angular momentum in (15). From
that equation

(JMZ|3pi| ' MZ£1)
=—gBH(IMZ|Sz| ' MZ+£1). (23)

All other elements vanish. This clearly has a different
form from the rotational interaction (18) or from the
principal spin interaction 3Cm,. Thus all three will be
experimentally separable. The first step in evaluating
the contribution of (23) to the energy is to find the
transformed elements in the basis which diagonalizes
the field-free Hamiltonian 3Co. This is done by using
the transformation matrices 7'; in the method of TSI
Eq. (59). However, the results differ somewhat from
TSI Eq. (60) since the (Z[3C.i[Z) elements vanish.
This transformed matrix (KJM [3Cn:|K'J'M) has ele-
ments K'=K, K+2 and J'=J, J+1. For the reasons
given in section I-B, we may neglect all except K'=K
elements. These are written as (J|3C.i]J’) in the
following :

= (K—1|3u|K—1)
= —g?BH (—d4ax_1cx 1M K(K—1)]4,
3Co0= (K |3mi| K)=0=3C13= (K—1|3Cmi| K+1),
FCsz= (K+1|3Cm:| K+1)
= —gBH (4agricx M) /[(K+1)(K+2) ]},
3Cra=(K—1|3Cm| K)
2(K+1)(K2— M)}
— H[ K (4K*—1) ] b
Haa= (K |3Cmi| K+1)
2K[(K41)2— M?]
(K+1)[4(K+1)2—1]
with the special case
(1,0,0/3C]1,1,0) = +gBH[F(1— M%)}

In these, as and ¢, are the transformation elements of
T given in Table V of TSI. They are both approxi-
mately % for all J.

From these elements we may note that the magnitude
of the total g-factors (diagonal matrix elements) of the
J=K=+1 levels are increased by (roughly) the fraction
g:%/g.%, whereas those of the /=K levels are unchanged.
The off-diagonal elements are also increased, but in a
different ratio. From these observations it is clear that
if g;°/g.¢ is positive (as it turns out to be), this inter-

(24)

!
= —ngH{ } CK+1,
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action will tend to shift the resonance to lower fields.
However, to investigate the effect rigorously we must
transform (J|3Cm:|J’) to the basis which diagonalizes
JCme+3C. This is done with the transformation U
given in II-B. The result is

(T,JC"!I’ T) = (U_lgcmlU)rr
=U,201142U+1,U3.3C1s
+2U 2, Us3Cos+ Us*3as. (25)

The shift in the calculated magnetic field to maintain
the same resonant frequency is then

AH;= — (dV/dH)_IE(‘r']Gle] 7")-— (‘r (JC,,,II ‘r)] (26)

In view of the difficulty of making these corrections,
they have only been computed for 27 examples. These
results are tabulated in Tables I and III. Clearly the
agreement with experiment is satisfactory.

III. COMPARISON WITH EXPERIMENT
A. Experimental Method

Since the apparatus used will be described more fully
elsewhere, only a brief sketch is given here. The micro-
wave arrangement uses a Pound-Zaffarano! feedback
circuit to stabilize the klystron frequency to the reso-
nant frequency of the cavity containing the oxygen gas
sample. This cavity is situated between the poles of a
magnet the field of which is monitored by a flip coil.
This flip-coil voltage is compared with a controllable
fraction of the output of a small reference generator
driven by the same shaft. The error signal is used in a
feedback circuit to stabilize the field. The field is then
slowly swept by using a geared down synchronous
motor to vary the helipot which controls the comparison
voltage. The stability is within a fraction of a gauss.

Upon this slowly sweeping field is superposed a 50-cps
modulation, adjustable from 0 gauss to 80 gauss, peak
to peak. It is also feedback-stabilized to eliminate phase
and amplitude shifts with changing dc fields and hence
changing properties of the iron core. Provided the
modulation amplitude is small compared to the line-
width, this will produce a 50-cps component propor-
tional to dx”’/dH (the derivative of the imaginary part
of the sysceptibility) in the power absorbed in the gas,
and hence in the reflection or transmission coefficient
of the cavity. This modulated microwave power is
detected with a crystal (or bolometer). The resulting
50-cps signal is amplified in a low-noise amplifier and
converted to dc in a phase-sensitive detector which
uses a Brown converter as the synchronous device. The
output is recorded on a strip chart recorder. A block
diagram of the apparatus is given in Fig. 5. (The
bolometer bridge is, of course, absent when a crystal
detector is used. This was the case for all measurements
except those of absolute intensity.)

11 R, V. Pound, Rev. Sci. Instr. 17, 490 (1946); F. P. Zaffarano
and W. C. Galloway, Technical Report No. 31, Research Labora-

tory of Electronics, Massachusetts Institute of Technology, 1947
(unpublished).
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F16. 5. Block diagram of the apparatus.

All precise measurements of the magnetic field are
made by using proton resonance, the frequencies being
measured with a BC-221 frequency meter accurate to
=440 ppm by comparison with the M.LT. frequency
standard. The flip-coil arrangement gives readings
accurate to a few gauss under normal operating condi-
tions. Precise frequency measurements were made by
beating the klystron frequency with harmonics of the
M.IT. frequency standard. Other frequency measure-
ments were made with a calibrated wave meter.

The X-band measurements were made with the use
of three different cavities. A TEg cylindrical cavity
with Qy of the order 35000 was used for the highest
sensitivity exploration. A much smaller TEy; rec-
tangular cavity was used for the precise measurements
to minimize errors caused by field inhomogeneity by
allowing smaller pole separations. Finally, a TEiu
cylindrical cavity was used in conjunction with special
microwave plumbing to produce a circularly polarized
radiation field in the cavity. This field is set up by
exciting the two degenerate orthogonal modes 90° out
of phase. This field configuration gives pure circularly
polarized radiation only along the axis.!* Averaging H*
over the cavity, 52 percent is circular in one sense,
4 percent is circular in the other, and 44 percent is axial.
Comparison of the spectra observed with the two senses
of rotation relative to the static magnetic field unam-
biguously separates AM =1, 0 transitions.

The rotational quantum number K of the states
involved in a transition can be determined by a com-
parison of the relative signal strengths of various lines
at room temperature and at 78°K if we note that the
Boltzmann factor is given by exp[—BK(K+1)/kT]
and if we assume that all line widths change in the
same proportion. The well-known difficulty of making
reproducible intensity measurements limits the accu-
racy of this determination to a mean deviation in K

12 The fact that divH =0 makes this true for any configuration.

With TM modes the energy would be equally divided between
the two circular senses when averaged over the entire cavity.
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TasLE L. Results on precisely measured X-band lines. The first column gives the observed magnetic field for resonance at the experi-
mental frequency 9476.75 Mc/sec. The second column gives the resonance field calculated on the assumption that only the electronic
spin moment is present. The spin-orbit correction AH; was made by using the value gi#= —0.00294 determined by a least-squares fit.
The correction for rotation-induced magnetic moment AH, was made with gr= —0.25m /M. The values of dv/dH give the rate of change
of the resonance frequency with field in the vicinity of the observed values H, ». The calculated intensity factors listed in column 8
are the values of 4| (KJM |Sx|KJ'M’) |2 exp(—BK (K+1)/kT) at T=300°K. The experimental results are signal strengths at optimum
modulation expressed in arbitrary units. Provided the frequency widths of all lines are essentially equal, the latter should be proportional

to the calculated (integrated) intensities.

FExperi-
Experi- Spin only, Corrections ) ) N mxg:ﬁl;]
mental H calculated H (gauss) Residual error Transition dv/dH Calculated signal
(gauss) (gauss) AH1 AHr (gauss) (Mc/sec) K J M (Mc/gauss)  intensity strength
1402.1 1404.2 3 2—4 23 3.88 0.003
2342.4 2345.1 3 2—4 1-2 2.36 0.031
3552.8 3558.5 3 42 —3—-2 3.73 0.041
4155.0 5 6—4 —3—-2 0.135 0.12
4502.0 7 8—6 —3—-2 0.14
3158.0 5165.0 3 4—2 —1—--2 2.70 0.043
5264.4 5271.2 —8.1 1.1 —-0.2 —-0.3 3 2—4 1—0 1.33 0.034 0.024
5353.2 5360.4 5 4—6 1-2 1.84 0.37
5583.8 5586.4 —-2.2 —0.1 0.3 0.5 1 1 —1-0 1.96 0.741 0.78
5768.5 5771.3 -85 —04 -01 -0.1 3 2—4 0—1 1.33 0.404 0.48
5977.8 5986.0 —8.3 —0.1 —-0.2 —0.5 3 4—2 —2——1 2.30 0.425 0.48
5999.3 6006.8 —8.0 1.0 0.5 0.9 5 6—4 —1-—=2 1.88 0.060 0.034
6087.5 6094.7 —-70 —0.2 0.0 0.0 1 2 12 1.74 1.21 1.34
6509.3 6517.7 —82 —-04 —-0.2 —04 5 6—4 —2——1 1.74 0.545 0.57
6684.1 6692.4 7 8—6 —2——1 1.52 0.55
6710.2 6718.6 —-7.7 —=0.6 0.1 0.1 1 2 0—1 1.42 1.50 1.45
7019.6 7029.2 11 10—-12 3—4 2.14 0.21
7063.8 7072.9 9 8—10 2—-3 2,01 0.26
7254.3 7262.9 —8.8 —0.5 -0.7 -0.9 1 2 —1-0 1.33 1.24 1.15
73549 7 6—8 1-2 0.78
7513.3 7502.9 —9.0 1.3 -0.1 —-0.1 3 2 0——1 1.77 0.351 0.31
7885.9 7892.9 5 4—6 1-0 1.72 0.26
8026.9 8036.8 13 1214 3—4 2.10 0.36
8097.0 8106.1 5 4—6 0—1 1.72 1.15
8266.0 82719 —7.9 1.5 -0.3 —-0.5 5 4 0——1 1.76 0.285 0.43
8575.2 8582.6 —-7.3 —04 —03 —0.6 3 4 —1-0 1.68 1.39 1.36
8639.3 7 8—6 —1-0 1.03
8704.8 8711.3 7 6 1-0 1.80 0.20
8729.4 8737.4 —7.0 —0.4 0.6 1.0 5 6 —1-0 1.73 1.26 1.24
8813.8 8821.7 7 8 0—1 1.82 1.11
8965.9 8972.6 9 8 1-0 1.80 0.092
9001.6 9009.8 11 12 0—1 1.72 0.61
9030.6 9038.2 9 10 0-1 1.81 0.84
9604.2 9618.0 —13.2 -0.7 —0.1 —0.1 3 4 3—4 1.30 0.859 0.84
104503 3 3 ~3——2 0.542 0.43
1074943 10739.5 5.8 3.5 2.8 1.3 1 1 0—1 0.483 0.241 0.20

from the true value of roughly 0.8. Since only odd
integral values of K are allowed, this still gives a very
useful restriction.

The S-band measurements were made with a TM gy
cylindrical transmission cavity fed through %-inch
coaxial line. In the Pound-Zaffarano" circuit a hybrid
ring (“rat race”) was used in place of the magic Tee
used with the X-band wave-guide arrangement.

B. Results

Table I shows the results of the precise measurements
and calculations for 36 X-band lines. The experimental
field values should be accurate within roughly =460
ppm. (The last two readings at highest fields had to be
made with the flip coil since the field exceeded the
range of our proton probe.) In the second column are
given the values of H for resonance if only 3C., were
effective. The next two columns give the corrections
AH,; and AH, calculated with (22) and (26). In making

the corrections there are two parameters, g and g°
These were fitted by least squares (omitting the inaccu-
rate high field line) with the results that g,=—(1.42
+0.22)X10* and g,°= —(2.9420.05)X 102 The re-
sidual errors are tabulated both in field and frequency
units. These are of course related by the dv/dH factor
tabulated in a later column. The agreement is well
within the accuracy of the calculation and measurement
of H.

Since the accurate calculation of even the uncorrected
H is very tedious, it was desirable to try to identify as
many of the other observed lines as possible by other
means. In Table IT we list the positions of 84 additional
lines (at X band, but at 9430 Mc/sec rather than the
9476.75 Mc/sec of Table I). For each of them we list
the K determined from the temperature dependence of
the relative intensity and the AM determined by use
of circular polarization. When these data in conjunction
with the graphical plots of E(H) mentioned in Sec. 1
permitted a reasonably secure identification, the com-
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TasBLE II. Survey of other X-band lines at 9430 Mc/sec. The accuracy of H is roughly 40.05 percent unless stated to the contrary.
K was determined from the temperature dependence of the intensity. AM was determined by use of circular polarization. Then an
attempt was made to identify lines completely by using a graphical plot of E(H). If this failed, AM was recorded as (+) or (—) ac-
cording to whether AM =41 or —1. The signal strength has the same scale factor as in the table of precisely measured lines.

Experimental I/ Transition Signal Experimental H Transition Signal
(gauss) K J M strength (gauss) K J M strength
1914 5 46 45 0.006 7560 13 1412 0——1 0.031
2005 7 86 —6——3 0.006 7588 215 (+) 0.055
2059 9  10-8 —6—-—35 0.012 7649 13 1412 —1-0 0.27
2210 3 2—4 21 0.004 7871 (+) 0.10
2215 5 64  —5-—4 0.010 7969 11 1210 0——1 0.072
2465 5 4—6 34 0.019 7999 (+) <0.06
2917 5 64  —4—-3 0.032 8089 11 1012 23 0.40
3141 11 +) 0.034 8120 11 12-10 —1-0 0.47
3177 7 856 —4—--3 0.021 8163 15 (+) 0.030
3194 7 6—8 45 0.065 8178 11 10-12 32 0.109
3269 9  10-8 —4—-3 0.059 8303 15 (+) 0.036
3418 5 46 23 0.069 8359 7—-9 (-) 0.19
3687 <9 (=) £0.01 8371 +) <0.03
3715 11-13 (+) 0.031 8391 9 8107 127 0.63
3759 9 (+) 0.051 8403 9 1058 —1-0? 0.76
4048 7 68 34 0.082 8424 (+) 0.18
4192 13 (+) 0.030 8652 >15 (+) 0.11
4264 9—11 (+) 0.050 8663 (+) 0.02
4347 11 12510 —=3—-2 0.072 8671 >13 (+) 0.16
4541 9 1058 —3--2 0.11 8739 13 12 1-0 <0.04
4645 213 (+) 0.029 8753 13 1214 23 0.21
4725 13 (+) 0.052 8777 13 14 0—1 0.24
4901 213 (+) 0.052 8813 (+) 0.22
4978 11 (+) 0.099 8833 11 10—12 21 0.011
5063 >13 (+) 0.035 8841 13 1214 23 0.011
5370 >1 (+) 0.075 8000 11 10—12 152 0.67
5427 7 68 23 0.315 8919 11 (=) 0.070
5638 9 810 3—4 0.34 8934 11 10 10 0.042
5746 (+) 0.038 9017 (+) 0.11
5891 11 10—12 45 0.16 9044 15 (+) 0.19
6100 11 1210 —2——1 0.025 9052 215 (+) 0.14
6165 13 (+) 0.13 9074 13 (+) 0.18
6255 11 (+) 0.28 9087 13 1214 1—-2 0.43
6328 7 86 —1—--2 0.080 9103 13—-15 (=) 0.06
6445 13 (+) 0.113 9135 >15 (+) 0.06
6558 9 1058 —2--—1 0.39 9150 >15 (+) 0.16
6724 213 +) 0.050 9200 >13 (+) 0.08
7018 >13 (=) 0.126 9238 >15 +) 0.06
7076 <1t (+) <0.06 1139050
7093 9 810 32 0.06 1199050
7395 >15 (+) 0.097 1209050
7541 >15 (+) 0.031 12870450

plete specification of the transition is given. In this
manner, an additional 37 lines were identified.

We note that a majority of the transitions are ones
in which J changes by ==2. These are allowed in the
presence of the magnetic field, and theoretical intensities
will be calculated in a subsequent section. Henry’s*
failure to consider the possibility of transitions of this
sort accounts for his ability to identify only 6 lines of
the total of 41 observed by Beringer and Castle.’® The
superior sensitivity of our sweep technique to the
point-by-point technique of Beringer and Castle is
demonstrated by our ability to measure 120 lines in the
spectrum. The weakest observable lines are over a
hundredfold weaker than the strongest lines of the
spectrum at room temperature, and the range is
1000:1 at 78°K.

In Table IIT are listed the results of exact calculations
for 34 S-band (2987 Mc/sec) lines and the corresponding

12 R. Beringer and J. G. Castle, Jr., Phys. Rev. 81, 82 (1951).

experimental values. This table corresponds to the
X-band results in Table I. Because of the uncertainty
in the magnetic field over the large S-band cavity,
these results are not as reliable as the X-band data.
However, the magnitudes of the AH, corrections are
enough larger to provide some additional check on the
choice of g,. To give somewhat better agreement here,
the value chosen was shifted from — (1.424:0.22) X10~*
to —(1.35:£0.30)X10"*. This of course leaves the
X-band agreement essentially unchanged.

Table IV lists the positions and signal amplitudes of
43 more S-band lines. Since neither K nor AM was
determined experimentally, it was impossible to identify
any of these from the E(H) curves.

IV. DISCUSSION OF RESULTS

In Table V we collect parameters of the oxygen
molecule which have become known or have been made
more precise as a result of the work described in this
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TaBLE III. Identified lines of the S-band spectrum. The first column gives the observed magnetic field for resonance at the experi-
mental frequency of 2987.0 Mc/sec. Limits of error are estimated to be £0.06 percent. The other columns have the same significance
as in the X-band table. The “signal amplitudes’ are simply proportional to the deflections in a sweep made with constant amplitude

magnetic field modulation.

i- i . Corrections i
m%fl?:flg Caslg:ﬂa(é:}f H (gauss) Residual error Transition dv/dH R§§‘,§;¥"
(gauss) (gauss) AH AH, (gauss) (Mc/sec) K J M (Mc/gauss)  amplitude
1977.6 1977.9 —-0.4 —0.1 ~0.2 —0.3 1 1 —1-0 1.62 0.4
2091.0 2093.5 —~2.4 —0.1 0.0 0.0 1 2 1-2 1.50 0.8
2162.3 2165.3 —~2.6 —0.1 0.3 0.4 1 2 0-1 1.40 1.0
2239.1 2241.7 —-2.8 —0.2 ~0.4 —0.5 1 2 —1-0 1.31 1.0
2333.3 2336.8 —~3.1 —-0.2 0.2 0.2 1 2 —2—-—1 1.20 0.3
2343 2348.5 1 1 01 1.14 0.3
2652 2651.8 3 42 —1-5-2 2.20 0.2
2887 2889.7 3 2 0--—1 0.92 0.2
3039 3040.5 3 42 —2—-—1 2.06 0.3
3372 3376.0 3 2 —1--2 1.01 0.3
3633 3638.7 —8.1 1.2 —-1.2 -0.8 3 2 1-0 0.68 0.2
3701 3703.6 —3.4 —0.5 —-1.3 —1.2 3 4 —1-0 0.90 0.6
3751 3755.6 3 4 34 0.90 0.4
3854 3857.6 —4.4 0.9 0.1 0.1 5 4 0——1 1.14 0.3
3945 3950.9 —49 —0.6 04 0.3 3 4 23 0.81 0.5
4167 4173.8 3 4 1-2 0.71 0.2
4218 42229 5 6 —1-0 1.06 0.3
4379 4383.9 7 6 1-0 1.15 0.1
4613 4620.0 3 4 0—-1 0.52 0.3
4681 4683.9 5 4 —-3——4 0.71 0.3
5030 5043.8 3 4 —~3—-2 0.49 0.4
5066 5075.1 5 4 —2—--3 0.58 0.3
5146 5155.3 3 4 —4——-3 0.48 0.2
5177 5183.8 S 6 56 0.70 0.3
5455 5472.5 3 4 —2——1 0.42 0.1
5482 5491.7 N 6 45 0.61 0.2
5827 5835.5 S 6 3—4 0.53 0.3
5965 5976.3 —12.8 3.1 1.6 0.6 5 4 —1--2 0.39 0.2
6017 6026.4 7 6 —5——6 0.58 0.1
6276 6286.1 -89 —-2.1 —0.9 —-0.4 5 6 23 0.44 0.4
7190 7196.1 9 8 —7—-8 0.52 0.1
7510 7520.4 9 10 910 0.55 0.1
8210 8217.1 11 10 ~0——10 0.48 0.1
9235 9248.1 9 10 6—7 0.33 0.3

paper and in TSI. The system of interrelations which
enable these parameters to be determined from the
experimental data and compared with the theory are
discussed in this section.

A. Source of Results
Direct Experimental Resulls

The spin coupling constants A, Aqy, A1, and u were
determined directly by fitting the field-free spectrum
with the theoretical formulas derived in TSI. The
quantities A, and \. follow immediately from the theory
presented there, and may be considered on firm ground.
Similarly, g, and g;° were determined by fitting the
microwave spectrum in the presence of a magnetic field,
under the assumption that g,°=—2.00229. On these
quantities the quoted errors are the expected standard
errors in a least-squares fit.

Derived Results

To separate the various physical mechanisms con-
tributing to the parameters, we use the assumption
(discussed in TSI) that the spin-orbit coupling param-
eter A and the reciprocal moment of inertia B can be
treated as constants in the sums of matrix components

which enter in the theory. Denoting the common factor
2al (0| L. n)|?/(E.,—Ey) by L(L+1)/hv, and taking
B=1.44 cm™, one may readily deduce values for A/,
N w, W, A, L(L+1)/hv, xu—r, and R, (as corrected
for electronic contributions to B) from the above direct
experimental results. These results are also tabulated.
The quoted errors reflect only the errors in the direct
experimental results. No attempt has been made to
allow for the error introduced by our theoretical
assumption.

Calculated Results

Finally, we also list the values for A/, A{, &/, and
xdia Which were obtained by direct calculation, using
Meckler’s expression for the molecular oxygen wave
function. The method of calculation of N and u' is
given in TSI. No limit of error was assigned to these
quantities for lack of any sound manner of estimation.

B. Discussion of Individual Results
Rotational Moment

A key to unraveling the entire problem experi-
mentally was the fact that our precise Zeeman-effect
measurements and theory have allowed us to determine
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the rotational g-factor g, defined in Eq. (17). Ad-
mittedly, the measurement is not of high accuracy,
since it is based on small shifts superposed on the
enormously larger splittings caused by the full Bohr
magnetons of electron spin moment. Still, there is
enough data to give reasonable assurance.

The magnitude and even the sign of g. are rather
unexpected. It is well known that in H. the elec-
trons make almost no contribution to g,, leaving g,
=+0.883m/M =0.883¢,”.4 As another example,® OCS
has g.= —0.025m/M. There appear to be no examples
of so large a negative g-factor as the —0.25m/M which
we find in O, in any of the molecules previously studied.

Tt is of interest to compare the oxygen result with
the resulting moment if the electronic charge cloud
merely rotated rigidly with the nuclei. One can readily
show that in this case, we have

. Z T Axdtzd
S T AR

27
where z is the internuclear axis and R is the internuclear
distance. These one-electron averages (x?-2?2) are
readily carried out with the use of Meckler’s molecular
orbitals (MO’s) made up of Gaussian atomic orbitals
(AO’s). A simple integration shows that these Gaussian
AO’s have a value of (r*) which agrees with that of the
Hartree-Fock atomic wave function'® within 10 percent.
This indicates that fora calculationof this type Meckler’s
MO’s should give reasonably close approximations to
the true values. The results are given in Table VI for
each orbital. If we assumed that the electrons in all
orbitals moved rigidly with the molecule, the resultant
£-° would be —0.758m/ M, and g, would be —0.258m/M.
This only slightly exceeds the experimental value. The
agreement would still be within the experimental error
and the error due to the wave functions if one assumed
that the eight inner 1s and 2s electrons moved with
unhindered precession about their nuclei, simply can-
celling nuclear charge, while the eight outer 2p electrons
moved rigidly. This is a more reasonable semiclassical
model, since it is the asphericity of the charge distri-
bution which causes it to rotate with the molecule.!s

Viewed in terms of the rigorous quantum-mechanical
picture, the unusually large g,° is probably a result of
the fact that p orbitals, which would tend to have larger
angular momentum matrix elements than s orbitals,
are prominent in oxygen. This effect might be antici-
pated'” by noting that the atomic correspondence at
large R is to atomic P states, whereas in H, it is to
S-states.

W N. J. Harrick and N. F. Ramsey, Phys. Rev. 88, 228 (1952).

16 Hartree, Hartree, and Swirles, Trans. Roy. Soc. (London)
A238, 229 (1939). A very useful analytic approximation is given
by P. O. Lowdin, Phys. Rev. 90, 120 (1953).

16 G. C. Wick, Phys. Rev. 73, 51 (1948).

17 §. H. Van Vleck, The Theory of Electric and Magnetic Suscepti-
bilities (Oxford University Press, London, 1932), Chap. X.
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TaBLE IV. Survey of other S-band lines. The first column gives
the observed magnetic field for resonance at the experimental
frequency of 2987.0 Mc/sec. The limit of error is estimated to be
+0.06 percent. The signal amplitude column has the same
significance as in Table IIT.

Signal

Experimental H 1
amplitude

(gauss)

2493
2743
2826
3159
3187
3398
3423
3440
3529
3587
3608
3830
4086
4322
4339
4436
4456
4493
4522
4713
4761

4819
6421

6481

6827
6937

7047

7083

7281

7320
7748
7828
7987

8010
8318
8401

8450
8485
8576
8612
8750
8876
9090
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Spin-Orbit Coupling

The other key in the solution was the experimental
measurement of g With X .| (0| L.1n) |3/ (E.—Eo)
evaluated from g,°, this gives us the spin-orbit coupling
parameter A4, and hence the second-order spin-orbit
contribution N\ to the parameter A\. As is clear from
the table, A’ is less than 1 percent of A. Thus, even if
this evaluation of N\’ has a serious fractional error, we
are still assured that the first-order spin-spin contri-
bution, X', is the overwhelming one. This makes X,
and A,/ firmly known quantities the calculation of
which would serve as a test for the quality of a proposed
electronic wave function. Since the calculation of TSI
gave only 60 percent of ./, it is clear that the Gaussian
MO’s are not too good an approximation (even when
adjusted as described there). On the other hand, the
calculated N\, is roughly 16 percent too high. This is
really as good agreement as one could expect.
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TaBLE V. Parameters of the oxygen molecule as determined in this work. As explained in the text, the quoted errors are standard
errors based on least-squares fits of the experimental data. They include no estimates of the theoretical errors in the assumed interrela-

tions and thus are not necessarily limits of error.

Numerical value

Symbol Explanation Experimental Calculated
Ao Dett(2=0) 59 501.5734:0.15 Mc/sec
A Nett(=1) 59 73040 Mc/sec
Ae PUREES) Wid 59 386+20 Mc/sec
Ao spin-spin part 58 920460 Mc/sec 35000 Mc/sec
| (n]AL:]0) [
r! 1y — 465450 Mc/sec
»  E,—E,
A [R(@\/dR)]. 16 8964150 Mc/sec
N [R(dN'/dR)], 19 600 Mc/sec
Az LR2d2\/dR?], (542)X 10t Mc/sec
M wtp —252.67+£0.05 Mc/sec
e spin-nuclear part 14 Mc/sec 10.0 Mc/sec
(0|AL.|n)(n|BL,|0)
u’ p> (—2544-4) Mc/sec
n E,.—E,
(0] Lz |n) (n| AL;|0)
£ el —m— —(2.9440.05)X 1073
n E,—E,
gr g +g. —(1.354:0.30) X 10™= — (0.2540.05)m/M
g (Z/A)(m/M) 2.72X1074=0.500m /M
(0] Lz | n) (| BL, | 0) )
£° —4Re ¥ ——-— —~ (4.12£0.3)X10™4= — (0.75£0.05)m/ M
n E.—E,
R, 1.20741£0.00002A
L(L+1) | (O] Lz|n)|?
S (7.1£0.5) X105 /cm™
hy i E,.—Eo
4 spin-orbit coupling parameter —(214£2) cm™
— N
Xdia Z(r) —29.5% 1078 cm?/mole
6met ¢
4N | (0| Ls|n)|?
XH-F - P — (24.6:£1.7)X 107¢ cm3/mole
3 » E.,—FE
Xorb Xdia+XxH-F —(4.941.7)X 107¢ cm3/mole
Xspin 2No(g,9)%6%/3kT 1.003/T cm3/mole

From g,° we directly find u”, using the relation
©'’=2Bg,*. This second-order interaction of the rotation-
induced orbital angular momentum with the spin gives
essentially the entire spin-rotation coupling constant u,
leaving 144 Mc/sec for the first order u’. Direct
calculation of u' (see TSI) gave 10.0 Mc/sec, and
appeared insensitive to detailed choice of wave function.
Since the experimentally deduced value is the difference
of two large numbers, this agreement is reasonably

good. A more informative check is to compare u”
computed as above with the value obtained by sub-
tracting the reliably computed u’ from the experimental
u. These results check to within 3.5 percent. Since the
standard deviation in the least-squares fit is only 1.7
percent, this indicates that an error of the order of 1 or
2 percent may be introduced in removing B from the
summation and giving it its value in the ground elec-
tronic state. This is a reasonable magnitude of error
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since a more detailed examination shows that the
expected error is of the same order of magnitude as the
effect of zero-point vibration, which is 0.6 percent in O,.
It does not seem possible to make any equally simple
estimate of the error introduced by removing 4 from
the sum of matrix elements, nor, lacking a reliable
calculated value for N, can we check it experimentally.
The error is no doubt greater with 4 than with B, but
our partial check is still encouraging.

Another viewpoint would be to assume from the
start that g;°= (u—u’)/2B. In this, B and u are known
from the field-free spectrum, and g’ is easily calculated
to good accuracy. Thus g,° is determined a priori. Since
the contributions of g, to the spectrum are small and of
a distinctive form they are easily eliminated. The only
free parameter then left for the Zeeman spectrum is g,
the electron spin g-factor. Our excellent agreement of
theory and experiment then demonstrates that this has
the theoretical value'®* —2.0023 with a precision of 60
ppm (parts per million). This precision is two orders of
magnitude less than that obtained by Koenig, Prodell,
and Kusch!®® with atomic hydrogen. It is also an order
of magnitude less than that of Abragam and Van Vleck?
in their interpretation of the data on the atomic oxygen
Zeeman effect taken by Rawson and Beringer. Never-
theless, it is a reassuring check that there is no unex-
pected difficulty in treating the case of two coupled
spins in a molecular, as opposed to an atomic, environ-
ment.?

Susceptibilities

Starting with a general formula of Van Vleck,!” the
molar susceptibility of a diatomic molecule with elec-
tronic spin S but no diagonal orbital angular mo-
mentum is seen to be

X:Xspin+x H——F+Xdia

Valg PES(SH) Ve 0| Li|w)]:
3kT T30 % R—F
Noe2
———2(r®. (28)
ome? i

Evidently the first term is dominant since k7T<<(E,— E,)
in most cases and the diamagnetic term is always small.
It is still of some interest to know the magnitudes of
the temperature-independent terms, however, in making
detailed comparison of precise experimental data with
the theory. The x4ia is easily calculated from Meckler’s
wave function, and the expected accuracy is again

18 R. Karplus and N. M. Kroll, Phys. Rev. 77, 536 (1950).

% Koenig, Prodell, and Kusch, Phys. Rev. 88, 191 (1952).

% A. Abragam and J. H. Van Vleck, Phys. Rev. 92, 1448 (1953).

2 E. B. Rawson and R. Beringer, Phys. Rev. 88, 677 (1952).

# These orders of magnitude are indices of the increasing
difficulty of the problem as one proceeds from the simplest atom
to a more complex atom, and finally to a molecule. For a mo-
lecular problem, our agreement is quite satisfactory.
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TaBLe VI. Integrals over oxygen molecular orbitals. The
occupation numbers apply to the lowest-energy configuration
(Meckler’s ¢.). R is the internuclear distance, z is the internuclear
axis, and r is measured from the center of mass of the molecule.

Meckler  Occupation (x2+-22) (X101

Orbital notation number (R/2)2 cm?

15 oy ©s 2 1.02 0.375
1s oy Xs 2 1.02 0.375
25 o, o 2 1.36 0.585
25 oy Xo 2 1.69 0.710
2p0, @0 2 1.96 0.800
2pou Xo 0 2.62 1.038
2p it ox 4 1.61 0.760
2p X+ 2 1.87 0.855

moderately good because the function r* puts no
particular weight on the detailed behavior near the
nucleus. The results are given for each orbital in Table
VI. The high-frequency paramagnetic contribution
x#-r 1s evaluated by using the value for L(L+1)/hv
determined from g,%. These two contributions nearly
cancel, the diamagnetic term slightly exceeding the
paramagnetic one. This remainder provides a correction
of 5X107% cm®/mole to the spin susceptibility, which
is 3.42X10% cm®*/mole at T=20°C. This correction is
small compared to the spread in the experimentally
obtained values, but might be useful in explaining small
departures from Curie’s law. Since it is definitely too
small a correction to explain the deviation found by
Woltjer, Coppoolse, and Weirsma,'” that deviation
must be ascribed to experimental error.

V. LINE INTENSITIES

A. Theory

It is easily verified that the 1/Q increment caused by
absorption in a gas-filled cavity is equal to 4rx” or to
¢/w times the absorption coefficient a of the gas for a
plane wave of suitable polarization. Further, in these
Zeeman-effect studies all degeneracies are lifted, so
there is no summation over M states. The standard
analysis® then yields

( 1 ) 47rw1\'| w)ul? !
— = Mr)isl )
T O > L

where | (u.):;|? is the average squared matrix element of
2.°8S, or (| g.°8H.;-S;;|2/(H ,/», S\ being the component
of S along H,,. Also 77 is 2xrAv, Av being the frequency
half-width at half-power absorption. Eliminating NV by
using the ideal gas law, approximating the partition
sum by its classical value* 3kT/2B, and setting w=w,,
we find the maximum absorption to be

1 32r Bty e BER+DIT
(a)n‘—; (Av/P)  (kT)3

2 J, H. Van Vleck and V. F. Weisskopf, Revs. Modern Phys.
17, 227 (1945).

% J. C. Slater, I'ntroduction to Chemical Physics (McGraw-Hill
Book Company, Inc., New York, 1939}, p. 139.

e~ EilkT

(29)

[ (S)iil2 (30)
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TasLE VII. Table of field-dependent transformations Ug.
H H
K J M (kilogauss) Ur Usr Usr K if (kilogauss) Usr U:r Usr
11— 1.98 0.000 1.000 0.024 4 -2 60 0089  —0.155 0.984
—1 555 0.000 0.991 0.136 1 36 0378  —0.139 0.915
0 198  —0038 0.996 0.056 ~1 85 0338  —0.286 0.895
0 555 —0103 0.982 0.148 0 36  —018  —0.086 0.978
0 107 ~0.176 0.954 0.244 0 52 0304 0087 0.924
1107 0.000 0.974 0.230 0 85  —0498  —0075 0.863
i 56 —0.139  —0143 0980
2 390 0041  —0.106 0,903
Y 000 o0 2000 3 39 0000  —0.088 0.5
2 o000 o el 393 0000  —0228 0.074
~1 88 0000  —0.204 0.977 493 0.000 0.000 1.000
0 22 0050 —0.062 09951 s 4 _2 41 . 0984  —0.120  —0.130
0 67 0040  —0.171 0.984
0 S A 259 0968  —0163  —0.182
7.2 0048  —0.178 0.983
o2 poas 0 o3 1 38 0058  —0003  —0272
0 : ' : 1 60 0022  —0123  —0.363
1 6 0000 —~0.159 0.986
: 1 65 0914  —0128  —0381
1 82 0884  —0.140 0448
32 —1 60 0935 0122  —0.331 0 38 0834  —0166 0.523
~1 75 0914 0152  —0377 0 82 0726  —0321 0.608
Y 0973 —0.138 0.182 0 91 0711 —0.342 0.602
0 56 0920 0216 0.326
0o 75 0862  —0.281 0419 |'s 6 =3 41 0059  —0.109 0.993
0o 85 0832  —0316 0,455 ~2 65 0164  —0.197 0.966
1 37 0992  —0.114 0.070 ~1 59 0328  —0.216 0.920
152 0981  —0.163 0.107 1 87 0388  —0.305 0.872
0 86  —063  —0014 0.774
0 91 0650  —0014 0.759
o o3 000 0% e 2 63 —0162  —01% 0974
: : SE ‘ : 3 63 0096  —0.168 0.981

Evidently lowering the temperature gives a rapid rise
in intensity for the lower rotational levels. Since our
experimental frequency is fixed by the cavity, » is the
same for all lines. Also, it is an experimental fact that
in oxygen the normalized line breadth parameter (Av/P)
at a given temperature has the same value for all lines
within roughly 4:10 percent. (Beringer and Castle’s'
anomalous results were caused by their incorrect use of
v/H rather than dv/dH to convert their field widths to
frequency widths.) Thus at a given temperature, the
variations of intensity from line to line come almost
entirely from the factor |(S,),;|*exp[—BK(K+1)/
kT7]. Since the Boltzmann factor is readily calculated,
we are left only with the task of computing the matrix
elements.

To handle the general case, it is convenient to
expand H,; as

H=H*tu,+Hu_+Hzuz
where
T+= (HxFiHy)/V2 (31)
and
uy = (ux==ruy)/v2.

The ux and uy are unit vectors in the X and V direc-
tions. Then

H-Sij=H%(S5.):;/V24+H(S_)i;/V2+Hz(S2) i,  (32)
where S, are Sy=+iSy. Since the selection rules on
matrix elements of S., S_, and Sz are all different

(AM being +1, —1, and 0. respectively), only one term
on the right will contribute to (S,);; for a given ij

transition. The .S matrix elements will have coefficients
f, depending on the rf field and sample configurations,
which give the fraction of the stored energy active in
inducing each particular type of transition. For example

f | H* (%
sample I(S+)ij|2__f+l (S-+)ifl2

(S igl = e T

2 2
f Hdr
cavity

Finally, we note that with cylindrical symmetry about
the static field direction Z,

(M| Sy 7 M) 2= 4] (231 S| /) |

(33)

(34)

for elements which exist in the left member. This

“enables us to write, in general,

H(S i =2| (Sx)i; 2L f16(M s, M ;1)
+ (M, M= 1)1+ (S2)i|2fod (M, M ;).

For nonrotating radiation perpendicular to Z in a
gas-filled cavity, fi=f.=3. For localized samples,
these numbers would obviously be reduced by filling
factors. With pure circularly polarized radiation, one
of the f, would be unity, all other f’s being zero.
(Rotation is possible only when two degenerate modes
are excited out of phase.)

The procedure for calculating the required matrix
elements, starting from the simple elements of S,

(35)
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referred to the gyrating coordinates g, can be symbolized
as -

(SF) = (UTTISFTU)i;
=[U T (X, ¥reS)TU ;. (36)

In this equation, the $p, are the direction cosines
between fixed and gyrating axes; T is the transformation
between the Hund case (a) basis (in which S,=2 is
diagonal, and in which we express ®r, and .S,) and the
basis which diagonalizes the field-free Hamiltonian;
U is the transformation between the latter basis and
the true eigenfunctions in the presence of the field.
The transformations 7 are derived and tabulated in
TSI; U is derived in Sec. I-B of this paper, and a
number of specific cases are listed in Table VIL

For F=Z, (T7'SrT) has been carried out in TSI
and the result appears, multiplied by —g,%3H, as the
terms linear in  in (4) of this paper. As discussed in
Sec. I-B, we neglect the part of U which is off-diagonal

KIM | T (L, ®x,S)T|KJ'M—1)=
J'=K—1

J=K—1([K(K-1)—-MM—1)]

Xg(K,K—1)/g.*

J=K | =Cx[(K+M)(K+M—-1)} [KK+1)-MM—-1)]
Xg(K,K)/g.
J=K+1 0 —Brn[(K+M)(K+M+-1)]

[n this, the Cx_y, By, and g(K,J) are defined in Eq.
(60) of TSI and listed in Table VIIT of that paper. We
aote that since we are dealing with (M| M —1) elements
there is no symmetry of this matrix about the diagonal.
Thus one must take extra care to read off the correct
element. Inspection of this matrix shows that AJ =2
transitions are forbidden between the field-free eigen-
functions which form the basis for (37). The AJ=+1
transitions contribute to the millimeter spectrum
treated in TSI. The AJ=0 elements are all proportional
to [J(J+1)—M(M—1)]}, and their squares will give
the allowed transition probabilities in very weak fields.

For the fields of interest in this experiment, however,
the departure of U from a diagonal (unit) matrix are so
large (i.e., the J’s are so mixed) that it is essential that
the transformation U be applied. When this is done,
it turns out that AJ= 42 transitions have appreciable
intensities even at a thousand gauss, and that their
intensity is of the same order as that of the “allowed”
lines for fields above roughly 6 kilogauss. Of course,
the intensities of the ‘“allowed” lines is also strongly
modified by .

B. Comparison with Experiment

In Table T we list the values of 4|(Sx):;|?
Xexp[ — BK(K+1)/kT] evaluated at T=300°K for

J=K
Cra[(K—M)(K—M+1)] 0 ]
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in K. The resulting transformed matrix elements (Sz).,
are of the type (KJM|Sz|KJ'M). For transitions
possible below 50 kMc/sec, J'=J=2. These would be
forbidden in the absence of the magnetic field, but, as
noted in Sec. I-B, J breaks down as an angular mo-
mentum quantum number with increasing field and is
kept only as a convenient label. On the other hand, at
high fields 3C,.,= —g,*8HS7 is such an important part
of the Hamiltonian-that when the total Hamiltonian is
diagonalized, Sz is nearly diagonal also. Thus the
(J|J+£2) elements of Sz never get very large. Detailed
calculation verifies this conclusion, all AM =0 transi-
tions having a calculated intensity less than one percent
of that of the strong AM =41 transitions. The con-
clusion is further substantiated by the fact that AM =0
lines were not observed experimentally even when a
cavity mode was used in which f, was 0.44.

The transformations are carried out in exactly the
same manner for Sx. We can carry them analytically to

J'=K+1
Brn[ (K—M+D(K-M+DT|

[((K+D)(K+2)-MM—-1)
Xg(K, K+1)/g, J

(37)

those lines for which the entire calculation indicated
above was carried through. As remarked in connection
with Eq. (30), these factors should be nearly propor-
tional to the experimental signal strength. [“Signal
strength” is defined as proportional to (1/Q):. It
differs from the (integrated) intensity by a factor of
(1/Av).] Inspection of the last two columns of Table I
shows that the proportionality holds to an average of
roughly 410 percent over a range of almost 100:1 in
absolute value. This agreement is highly satisfactory
in view of the difficulty of the measurement and in view
of the approximation that Av is the same for all lines.

An attempt was made to check (30) more completely
by measuring the absolute intensity. Inserting the
numerical values for T=300°K, with »=9400 Mc/sec
and (Av/P)=2 Mc/sec-mm Hg, one finds

(I/Q)if= 146)(10‘7‘ (SX) :,-P
Xexp[ —0.0069K (K+1)]
XLfe8(My, M40+ f8(M, M;—1)]. (38)

For linear polarization and the strong K=J=1,
M= —1-0 line, this formula gives? 1.36X1078. This

2 Beringer and Castle (see reference 13) quote a calculated 1/Q
of 0.46X 1078 under these same conditions. The discrepancy ap-
parently comes from their value of 9 which is defined as
2(Sx2+Sv?) =8 (Sx)i;]?. They use IM2=4%, which is the value
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conveniently establishes the scale factor for Table I,
and any other cases can be computed by proportion-
ality.

To relate these predictions to experimental data, we
note that the power reflection coefficient of a cavity at
its resonant frequency is?®

lr=[ -1/ &+ 1], (39)

where £=0Q./Qo, Q. being the external ( and (, the
unloaded cavity Q. Thus

Alr[*=4£E=1) (E+H1D700(1/Q)is: (40)

The coefhicient in this equation has a broad maximum
at the optimum operating point §=2-£V3 where [r]2=}
At that point

Alr[2=0.38500(1/Q);. (41)

This change in reflection coefficient gives a proportional
change in power at the bolometer detector, which gives
rise to a proportional unbalance voltage in the bolometer
bridge. Collecting all coefficients of proportionality for
our apparatus, we find the open circuit bridge output
to be

€rms=0.0X10730:Lo(1/Q):, (42)

where Py is the power (in mw) reflected to the bolometer
by a total reflection at the cavity under the operating
conditions. This formula presumes optimum sinusoidal
modulation of the field, in which case the 50-cps modu-

of |(S4)i;12 or 41(Sx):;]2 evaluated before the transformation U
is applied. The transformation U increases the result by a factor
of 1.48 and if we also supply the factor of 2 which they omit,
agreement with our value is obtained.

3 J. C. Slater, Revs. Modern Phys. 18, 487 (1946).

W. P. STRANDBERG

lation component of |r|? has a peak amplitude of
roughly 0.46 of the total change given by (41). The
€rms 1S measured by comparison with a GR microvolter
which is substituted with appropriate attention to
impedance considerations.

The absclute intensities of several lines were measured
at both room temperature and 78°K by this method.
In all cases the experimental values of (1/Q):; were
approximately a factor of two too low. In view of the
difficulty in measuring all of the parameters accurately,
it is quite possible that this represents only an accumu-
lation of small errors. This seems rather unlikely,
however, because of the high stability of the results
with respect to changed conditions. It is worth noting
that Beringer and Castle found a measured (1/Q);, for
the K=J=1, M=—1-0 line, mentioned above, of
1.39X 107, a factor of fen less than our calculated value.
Thus our factor of two is tantalizing, but not too
surprising.

The general theory given in Sec. V-A is profitably
used in consideration of the experiments with circular
polarization. With the TE;y; cavity used, integration
over the field configuration shows that for a purely (+)
circular excitation at a hole in the center of one end,
we have f.=0.68, f_=0.06, and f,=0.26. Thus on
interchanging the sense of rotation with respect to the
static magnetic field, the signals on AM = =1 transitions
change by factors of 12 in opposite directions, whereas
the AM =0 transitions are unaffected. Experimentally,
the change in the AM =41 transitions was very close
to this theoretical limit for ideal adjustment. As
remarked above, no AM=0 transitions could be
observed.




