

HD28
.M4.14 \

WORKING PAPER

ALFRED P. SLOAN SCHOOL OF MANAGEMENT

FASTER ALGORTTHlvlS FOR THE
SHORTEST PATH PROBLEM

Ravindra K. Ahuja
Kurt Mehlhorn
James B. Orlin

Robert E. Tarjan

Sloan W.P. No. 2043-88 April 1988

MASSACHUSETTS

INSTITUTE OF TECHNOLOGY
50 MEMORIAL DRIVE

CAMBRIDGE, MASSACHUSETTS 02139

FASTER ALGORITHMS FOR THE
SHORTEST PATH PROBLEM

Ravindra K. Ahuja
Kurt Mehlhorn
James B. Orlin

Robert E. Tarjan

Sloan W.P. No. 2043-88 April 1988

Faster Algorithms for the Shortest Path Problem

Ravindra K. Ahuja*
Sloan School of Management
M.I.T., Cambridge, MA. 02139 , USA

Kurt Mehlhorn
FB 10, Universitat des Saarlandes

66 Saarbriicken,

FEDERAL REPUBLIC OF GERMANY

James B. Orlin

Sloan School of Management
M.LT., Cambridge, MA. 02139, USA

Robert E. Tarjan

Department of Computer Science

Princeton University, Princeton, NJ 08544, USA
and

A.T. & T. Bell Laboratories

Murray HUl, N] 07974 , USA

On leave from Indian Institute of Technology, Kanpui - 208 016 , INDIA

M.I.T. LIBRARIES

Ai'G 1 1988

RECEiVEO

Faster Algorithms for the Shortest Path Problem

Abstract

In this paper, we present the fastest known algorithms for the shortest path

problem with nonnegative integer arc lengths. We consider networks with n nodes

and m arcs and in which C represents the largest arc length in the network. Our

algorithms are obtained by implementing Dijkstra's algorithm using a new data

structure which we call a redistributive heap. The one-level redistributive heap

consists of OGog C) buckets, each with an associated range of integer numbers. Each

bucket stores nodes whose temporary distance labels lie in its range. Further, the

ranges are dynamically changed during the execution, which leads to a redistribution

of nodes to buckets. The resulting algorithm runs in 0(m + n log C) time. Using a

two-level redistributive heap, we improve the complexity of this algorithm to

0(m + n log C/ log log nC). Finally, we use a modified version of Fibonacci heaps to

reduce the complexity of our algorithm to 0(m -i- n VlogC) . This algorithm, under

the assumption that the largest arc length is bounded by a polynomial function of n,

runs in 0(m -i- nVlog n) time, which improves over the best previous strongly

pol)Tiomial bound of 0(m + n log n) due to Fredman and Tarjan. We also analyse

our algorithms in the semi-logarithmic model of computation. In this model, it

takes Flog x/log nl time to perform arithmetic on integers of value x. It is shown

that in this model of computation, some of our algorithms run in linear time for

sufficiently large values of C.

The shortest path problem is one of the most well-studied combinatorial

optimization problems. Algorithmic developments concerning this problem have

proceeded along two directions: (i) development of algorithms that are superior

from worst-case complexity point of view (e.g., Dijkstra [1959], Johnson [1977a, 1977b,

1982], Boas, Kaas and Zijistra [1977], Fredman and Tarjan [1984] , and Gabow [1985]);

and (ii) development of algorithms that are very efficient in practice (e.g.. Dial [1969],

Gilsinn and Witzgall [1973], Dial el. al [1979] , Denardo and Fox [1979], Pape [1980], and

Glover et. al [1985]).

Surprisingly, these two directions have not been very complementary. The

algorithms that achieve the best worst-case complexity have generally not been

attractive empirically , and the algorithms that have performed well in practice have

generally faUed to have an attractive worst-case bound. In this paper, we present new

implementations of Dijkstra's algorithm intended to bridge this gap. Under the

assumption that arc lengths are bounded by a polynomial function of n , these

algorithms achieve the best possible worst<ase complexity for all but very sparse

graphs and yet are simple enough to be efficient in practice.

Let G = (N, A) be a directed network with a nonnegative integer arc length

Cjj associated with each arc (i, j) € A . Let A(i) = ((i, j) e A: j e N), for each i e N.

Let n = INI , m = I A I and C = max (Cjj : (i, j) € A) . Further, let s be a distinguished

node of the network called the source. The shortest path problem is to identify a

path of the shortest length from the source s to every other node in the network.

We assume that all logarithms in this paper are base 2, unless stated

otherwise. We further assume, except in Section 5, that all arithmetic operations

(including multiplication and division) take 0(1) time. In all the divisions

(multiplications) in the paper, however, the divisor (multiplier) is a power of 2.

Dijkstra's algorithm [1959] is possibly the most well-known method to solve

the shortest path problem. Dijkstra's algorithm maintains a distance label d(j) for

each node j and a partition of the set of nodes into two subsets: permanently labeled

nodes and temporarily labeled nodes. At each iteration, the algorithm selects a

temporarily labeled node i with smallest distance label, makes its label permanent,

and scans arcs in A(i) to revise the distance labels of adjacent temporarily labeled

nodes. The method stops when all nodes are permanently labeled.

Dijkstra's original implementation of the algorithm runs in 0(n'') time. Tliis

bound is the best possible for fully dense networks, but can be improved using clever

priority queue data structures if the number of arcs is much less than n'^. The

following table indicates such improvements In the table, d = max (2, Fm/nl) and

represents the average degree of a node.

Due to

1. WUliams (1964]

2. Johnson [1977a]

3. Johnson [1977b]

4. Boas, Kaas, and Zijlstra [1977]

5. Johnson [1982]

6. Fredman and Tarjan [1984]

7. Gabow[1985]

Running Time

0(m log n)

0(m log^ n),

0(m log log C + n log C log log C)

0(C + m log log C)

0(m log log C)

0(m + n log n)

0(m log^j C)

Table 1. Running times of polynomial shortest path problems.

For the sake of comparing the above algorithms, we make the reasonable

assumption that C is bounded by a p>olynomial function in n, (i,e., C = 0(n^^^'). This

assumption is known as the similarity assumption (Gabow [1985]). Under this

assumption, Fredman and Tarjan's implementation using Fibonacci heaps runs

faster than others for all classes of graphs except very sparse ones, for which the

method of Johnson [1982] appears more attractive.

In this paper, we describe a new data structure that we call the redistributive

heap, and we use it to implement Chjkstra's algorithm. We consider both one-level

and two-level versions of this data structure. A one-level redistributive heap

consists of Odog C) buckets, each with an associated range of integer numbers. Each

bucket stores nodes whose temporary distance labels lie in its range. The ranges of

buckets are changed dynamically, which leads to redistribution of nodes among

buckets. The resulting algorithm runs in 0(m + n log C) time Using a two-level (or

two-echelon) bucket system, we improve the complexity of our algorithm to

0(m + n log C/ log log nC) . The use of a modified version of the Fibonacci heap data

structure further reduces the complexity of our algorithm to

0(m + nVlog C). Under the similarity assumption, this algorithm runs in

0(m + n Vlog n) time and improves the running time of Fredman and Tarjan's

shortest path algorithm. Further, the first two of our algorithms use very simple

data structures which make them attractive from an implementation viewpoint.

Our one-level bucket method uses essentially the same data structure as

proposed by Johnson [1977b], except that our search technique is simultaneously

simpler and more efficient. Whereas Johnson uses binary search to insert nodes into

buckets, we use sequential search. Consequently, his algorithm is OGog log C) times

slower than our algorithm. Our two-level bucket approach may be viewed as a

hybrid between Johnson's 11982] and Denardo and Fox's [1979] algorithm.

Our algorithms are computationally attractive even if C is not O(n^'^0, i.e.,

the similarity assumption does not hold. In this case, the uniform model of

computation, which assumes that all arithmetic operations take time 0(1), is

arguably inappropriate. It is more realistic to adopt the semi-logarithmic model of

computation in which arithmetic operations take time proportional to the length of

the integers they manipulate. This model of computation assumes that arithmetic

on integers of length Odog n) has cost 0(1). We also assume that C = o(2"°^^0;

i. e.,logC = 0(n°(''^).

We analyse the worst-case complexity of our algorithms in the

semi-logarithmic model of computation. In particular, it is shown that our

algorithm which uses Fibonacci heaps runs in time 0(m flog nC/log n1 + n Vlog nC)

time. Consequently, this algorithm runs in linear time (and hence is optimal)

whenever log nC ^ (log n)^ or m > n log n/Vlog nC . In particular, the algorithm

runs in time linear in the size of the data for all sufficiently large C.

1. One-Level Redistributive Heap and Dijkstra's Algorithm

In this section, we describe the Redistributive heap (abbreviated as R-heap)

and we use it to implement Ehjkstra's algorithm. We illustrate heap operations with

the help of a numerical example. Here we describe the one-level version of the

R-heap, leaving the generalizations for the subsequent sections.

1.1. Properties of R-heap

A heap (or a priority queue) is an abstract data structure consisting of items

each with a real valued label, and on which the following operations can be

performed; create, insert, delete, and find-min. The R-heap is a data type that

differs from a heap in a few ways that are particular to the operations needed for

Dijkstras algorithm The R-heap stores nodes with finite temporary distance labels,

denoted by the set T. A node is added to the heap when it gets a finite temporary

distance label and is deleted from the heap when it is pennanently labeled Let

Min(d) = min {d(j) : j e T). The implementation of the R-heap takes advantage of the

following two properties that are true for Dijkstras algorithm

LL Integrality Property. Each label d{i) is integer.

L2. Monotonicity of minimum. Min(d) does not decrease following a deletion

of a node from the R-heap.

A single level R-heap consists of 1 + K subsets of nodes, called buckets.

for some suitable choice of K. For our implementation of Dijkstras algorithm, we

have K = 1 + [log Cl For k = 0,l,...,K, the nodes in bucket k are denoted by

the set CONTENTS(k). We associate with each bucket k a (possibly empty) closed

mterval ^f integers [/j^ , uj^] which we denote by rangeik). The l^ and uj^ are

respectively called the lower and upper limits of range(k) . If
'k ^ "k ' ^^^^ *^^

range is considered to be empty. We refer to I range (k) I as the width of bucket k .

We define the maximum width of bucket k to be 2*^"^
. The ranges of buckets

change dynamically throughout the algorithm; nevertheless, for the following

discussion, it may be easier to view the ranges as fixed. We store nodes with finite

temporary distance labels in the R-heap as follows: Node i will be stored in

bucket k if d(i) e [/j^ , uj^] . TTie ranges of the buckets always satisfy the following

properties, which makes this assignment uniquely defined.

Rl. Range property. If a node j heis a finite temporary label, then

d(j)6 (/q ,uk].

R2. Monotonicity Property. If j < k, and if buckets j and k are both nonempty,

then u: < /j^ . In other words, if ij e CONTENTS(j), ii e CONTENTS(k),

then dd]) < d(i2).

R3. Continuity property'. TTie union of all ranges is a closed interval [/q , uj^].

The ranges of the buckets also satisfy the following two additional properties.

These properties will be necessary for the algorithm to work; however, their use in

the algorithm will not be apparent until much later.

R4. Redistributivity property. The width of bucket is 1. The width of the k-th

bucket is at most the sum of the maximum width of buckets through k-1,

foraU k=l,...,K.

R5. Last bucket property. I rangeCK) I S C .

In our algorithms, the initial ranges of the buckets are as follows:

range(O) = []

;

range(k) = [2^-'^
, 2^-1] , for k = 1 K.

Note that the maximum width of bucket K is 2'^°S ^ ' ^ C. For simplicity of

exposition, we also create a bucket K+1 which contains all nodes whose temporar)'

distance label is « .

We associate with each node i in the heap H an index assign(i) which

indicates the bucket to which it is assigned.

If d(i) = « , then assign(i) = K + 1.

If d(i) < « and i e H , then assign(i) = (k : i € CONTENTS(k)).

We assume that the contents of each bucket are stored as a doubly linked list

(see, for example, Aho, Hopcroft and UUman [1974]). Accordingly, each insertion and

deletion from buckets take 0(1) steps.

1.2. Dijkstra's Algorithm Using Heap Operations

We perform the following operations on an R-heap.

INTTIALIZE(K, H) : returns a new empty heap H with buckets

K + 1.

REINSERKi, H)

:

reinserts node i in the bucket whose range

contains d(i).

DELETEd, H)

:

deletes node i from the heap.

FIN'D-MCS'(i, H)

:

returns a node i such that d(i) is minimum

among all nodes in H.

The following is a description of Dijkstra's algorithm that uses the above

heap operations.

algorithm DIJKSTRA;

begin

IN'ITIALIZE;

while T * do

begin

FIND-MIN(i, H);

T: = T-(i);

DELETE (i, H);

for each (i, j) e A(i) do

begin

d(j): = min {d(j) , d(i) + Cjj);

if d(j) = d(i) + Cij then REINSERTC), H);

end;

end;

end;

1.3. The DELETE and REINSERT Operations

The procedures INITIALIZE, DELETE, and REINSERT are all straightforward,

and are given below. The procedure FIND-MIN contains the redistribution and is

deferred to after the numerical example.

Procedure INITIALIZE;

begin

T: = N;

d(s): = , and d(j); = « for all j e N - (s);

C: = maxlq: : (i, j) e A)

;

K: = 1 + [log C1 ;

range(O): = {)

;

for k : = 1 to K do rangeCk) : = [2^-1 ^k .]]
.

CONTENTS(O): =
{q)_; ^

for k : = 1 to K do CONTENTSC k) : = ;

CONTENTS(K+l): = N - (s) ;

assign(s): = 0;

assign(j): = K+1, for all j e N - {s};

end;

procedure DELETE(j, H);

begin

k : = assign(j);

CONTENTS(k): = CONTENTS(k) -
{j) ;

end;

procedure REINSERKj, H);

begin

k : = assign(j);

CONTENTS(k); = CONTENTS(k) -
{j} ;

while d(j) e range(k) do k : = k - 1;

CONTENTS(k): = CONTENTS(k) u (j);

assign(j) : = k ;

end;

It follows from properties L2, Rl, and R3 that the REINSERT procedure always

succeeds in putting the node in an appropriate bucket.

We illustrate the R-heap and the heap operations on the shortest path

example given in Figure 1 below. In the figure, the number beside each arc indicates

its length.

5

source

Figure 1. The shortest path example.

For this problem, C = 25 and K = 1 + flog 251 = 6. The starting solution of

E>ijkstra's algorithm is d(l) = , and d(i) = «= for each i e (2, 3, 4, 5, 6) .

The initial R-heap is presented in Figure 2.

buckets:

REINSERT is called to place them in the right buckets. The R-heap at this point

appears in Figure 3.

4 5 6 7

(8,15] (16,31] [32,63] [~]

(2,4) (5) {61

buckets:

10

Lemma 1. Let D be the number of calls of the procedure REINSERT. Then the

cumulative time spent w all calls to REINSERT is 0(D + nK).

Proof. The time spent in each call of REINSERT is 0(1) plus the time sp>ent in the

while loop Each repetition of the while loop, except the last one, leads to a decrease

in the index assign(j) of a node j by one. Thus the total time spent in the while loop

for reir\sertion of any node j e N is 0(K), since tissign(j) decreases monotonically

from K+1 to . The cumulative running time , therefore, is 0(D + nK). Q

1.4. The FIND-MIN Operation.

We now consider the FIND-MIN operation. In this operation, we first

identify the nonempty bucket with the lowest index. This is easily accomplished in

0(K) steps using a sequential search of the buckets. Let bucket p be the

lowest-index nonempty bucket. If p = or 1 , then any node in bucket p has the

minimum distance label among all nodes stored in the heap (from properties R4

and R2). If p ^ 2 , then bucket p contains a node with smallest distance label; but

to determine that node we may have to scan the entire contents of bucket p. This

time bound would be 0(n) in the worst case, and hence totally unsatisfactory for our

purposes. However, we can do better. The improvement is based on the following

observation : If p ^ 2 is the lowest-index nonempty bucket, then it follows from

property L2 that the ranges range(O), . . . , range(p - 1) will never be used again for

storing temporary labels. We can thus redistribute the range of bucket p into the

buckets 0, . . . , p - 1 and REINSERT the nodes of CONTENTS(p) in these buckets

As we shall see later, this redistribution of ranges is crucial to improve the overall

complexity of our algorithm to 0(m + nK). We first illustrate the redistribution on

our example and then generalize it subsequently.

In the example given in Figure 4, bucket 4 is the lowest index nonempty

bucket. The buckets 0, . . . , 3 are empty, and the union of their ranges is (0,7).

The range of bucket 4 is [8, 15], but the smallest distance label in this bucket is 9. By

property L2, no temporary distance label will ever be less than 9. We therefore

redistribute the range (9, 15) over the lower indexed buckets in the following manner.

1

1

range(O) = [9]

,

ranged) =[10],

range(2) =[11,12],

rangeO) =[13,15],

range(4) = e .

All other ranges do not change. The range of bucket 4 is now empty, and the

contents of bucket 4 must be reassigned to buckets through 3. This is accomplished

by successively calling the REINSERT procedure. The resulting contents of the

buckets are as follows:

CONTENTS(O) = (5) ,

CONTENTS(l)= 0,

CONTENTS(2) = e ,

CONTENTS(3) = (2, 4) ,

CONTENTS(4) = .

This redistribution necessarily makes bucket nonempty, and the

FIND-MIN operation then returns node 5 as the node with smallest distance label.

In general, we redistribute the range of the lowest-index nonempty bucket,

say, bucket k with k > 2 , into buckets , . . . , k - 1 . This procedure consists of

modifying the ranges of buckets , . . . , k and then reassigning all the nodes of

bucket k. If property R4 is satisfied, then the redistribution of the range of bucket

k can always be done and its nodes can be reinserted in the appropriate buckets.

The potential bottleneck operation in the FIND-MIN operation is node

scanning. A node is scanned whenever it is in the lowest-index nonempty bucket.

In principle, any node j could be scanned in any of the n different FIND-MIN

operations; however, in our reinsertion step we are reinserting each scanned node

j into a lower index bucket. Thus each node can be scanned at most K different

times in all FIND-MIN operations. The total time spent in scanning nodes is

O(nK). This is why redistribution of ranges reduces the running time so

dramatically.

A formal description of the FIND-MIN operation is given below.

12

procedure FLVD-MIN(i, H);

begin

k: = 0;

while CONTENTS(k) = do k; = k + 1;

p: = k;

iipg (0, 1) then

begin

d^^: = min(d(j) : j e CONTENTS(p));

range(O) : = { d^in)

;

let Up be the upper limit of bucket p;

if p = K then

for k; = ltoK do rangeCk): =[2^^-'' + d^^j^ ,
2l< + d^j^^j^ + 1]

;

else

for k; = ltop do range(k):=l 2k-U dn^i^ ,
min(2l^ + dn^j^-1. Up)];

for each j e CONTEN'TS(p) do REINSERT^, H);

end;

if CONTENTS(O) * then return any node i € CONTENTS(O)

else return any node i € CONTENTS(l);

end;

1.5. Accuracy and Complexity of the Algorithm

Theorem 1. Dijkstra's algorithm implemented using a one-level

R-heap determines shortest paths from node s to all other nodes in 0(m + n log C)

steps.

Proof. The algorithm is an implementation of EHjkstra's algorithm and to show its

correctness it suffices to show that the R-heap correctly stores the temporar)- labels

and correctly determines the minimum temporar)- distance label. This amounts to

showing that the properties R1-R5 are satisfied throughout the algorithm.

Suppose inductively that properties R1-R5 are satisfied at a given step. We

first consider an operation in which d(j) is decreased. Decreasing a distance label

does not affect the properties R2-R5, but can affect Rl. Let node i be the node with

13

smallest distance label at this iteration. Then d(i) = Iq or d(i) = /q + 1 , depending

upon whether node i was in bucket or bucket 1, respectively, prior to its deletion

from the R-heap. Note that uj^ ^ /q + 1 + C ^ d(i) + Cjj = d(j) ^ d(i) S Iq . Hence,

Iq < d(j) < uj,^ , and property Rl remains satisfied.

Now consider a FIND-MIN step in which the ranges of buckets are modified.

Let bucket p be the lowest-index nonempty bucket in this step. If p = K, then the

ranges of all buckets are translated from their initial ranges by the amount dj^jj^,

and by the inductive hypothesis they will satisfy R2-R5. If

p < K, then let bucket h be the least-index bucket for which 2"~^ + djj^jp > Up.

Note that h < p, since u- = /_ + I range (p) I - 1 < /p + 2P~^ £ <^min ^ ^^^ • ^^ "^^

range of each bucket k = 0, l,...,h-l, isa translation of the initial range by the

amount dj^^^; the range of bucket h is [
2"'^ + dj^jj^ , Up]; the ranges of buckets

h -I- 1, . . . , p are empty; and other buckets are unaffected. It is easily verified that

these new ranges satisfy properties R2-R5.

We next note that modification of ranges in the FIND-MIN step necessarily

moves each node in bucket p to a lower index bucket. If p < K, then, as observed

above, the new range of bucket p is empty and all of its nodes move to other buckets.

Now, consider the case when p = K. If the previous range of bucket K was

I^K ' 'k + 2^ - 1], then its new range is [d^jn + 2^-1
, dmin + 2^ - 1]. Since

d(j) < dmin + C < di^in + 2^'^, during reinsertions all nodes in this bucket move to

lower index buckets.

Finally, we analyze the complexity of our algorithm. The DELETE operation

is performed n times and each execution requires 0(1) time. The REINSERT

operation is performed at most m times because of the modifications of distance

labels and, by Lemma 1 , it requires 0(m + n log K) cumulative time. The

procedure FlND-MlN is called n times. If either of bucket or 1 is found to be

nonempty then this call takes 0(1) time. Otherwise, the call requires 0(K) time to

find the first nonempty bucket and to update the ranges of buckets. This effort is

bounded by O(nK) in total. The time needed to find the smallest distance label in

bucket p is 0(I CONTENTS(p) I). However, subsequently, the REINSERT

procedure reinserts each node j € CONTENTS(p) to a lower index bucket, which

can happen at most K times for any node. The total time needed to find the smallest

distance labels is thus bounded by O(nK). This also implies that FIND-MIN

14

operation calls REINSERT operation O(nK) times, requiring O(nK) cumulative

time. As K = 1 + flog Cl , the theorem follows.

2. The Two-level Redistributive Heap and Dijkstra's Algorithin

In this section, we present a generalized version of the redistributive heap

discussed in the previous section which uses a two-level bucket system instead of a

one-level bucket system. We show that the two-level bucket system can be used to

implement Dijkstra's algorithm in 0(m + n log C/log log C) time. We subsequently

eissume, without any loss of generality that C S 4, since the shortest path problem with

C < 3 can be solved in 0(m) time. Under the similarity assumption, this algorithm runs

at least as fast as Fredman and Tarjan's implementation of Dijkstra's algorithm and is

asjTnptotically faster whenever m/n = Odog n).

2.1. Properties of Two-Level R-heap

The two-level (or two-echelon) R-heap consists of K (big) buckets, and each

bucket is further subdivided into L (small) subbuckets. The range of a bucket is the

union of the ranges of its subbuckets and, similarly, the contents of a bucket is the

union of the contents of its subbuckets. We refer to the h-th subbucket of the bucket

k as the subbucket (k, h). An example of an empty two-level R-heap with K = 3

and L = 3 is given in Figure 5.

Bucket range

Buckci

span

Bucket

Subbucket

Subbucket

range

Subbucket [0]

span

1

[1] [2]

1

[3.5] 16.8] [9.11] [12.20] [21 . 29] [30, 38]

3 3 3 9 9 9

Figure 5. An empt)' two-level R-heap with K = 3 and L = 3.

1 5

In the one-level bucket system, the range of a bucket is redistributed over all

of the previous buckets. Thus the maximum width of bucket k is at most the sum of

the maximum v^idth of the first k - 1 buckets. In the two-level bucket system, the

range of a subbucket is redistributed over all of the previous buckets. This allows us

to select much larger width of buckets and leads to a reduction in the number of

buckets. For example, to store the distance labels in the range [0 , 38], the one-level

bucket scheme uses 7 buckets, whereas the two-level bucket scheme given in Figure 5

uses only 3 buckets. Further, once the bucket containing a node is detennined,we can

determine the appropriate subbucket in 0(1) time . This speed of insertion into the

subbuckets and the reduction in the number of buckets is translated into an

improved complexity bound of the algorithm.

The algorithm suggested in this section also performs multiplication and

division by powers of K and L . We assume that both K and L are appropriate

powers of 2. This allows us to perform multiplication and division more efficiently,

by shifting the binary representation of a number. As earlier, the range of the bucket

k is a closed interval of integers [l^ , uj^] which we denote by range (k). The

maximum width of bucket k is defined to be L*^ for all k = 1, . . . , K. The ranges of

the buckets satisfy the properties Rl, R2, R3, R5, and the following modification of

R4.

R4'. Redistributivity Property. The width of each subbucket in bucket 1 is 1. The

width of a subbucket in bucket k is at most the sum of the maximum width of

the buckets 1 through k-1 , for all k = 2, . . . , K.

The initial ranges of the buckets are given below.

ranged) = [0,L-1];

range (2) = [L,L + l2-1];

range (3) = [L + L^ , L + L^ + L^ - 1]

;

range (K) = [L + L^ + . . . + L^-1 , L + L^ + . . . + L^-^ + L^]

,

where K and L are positive integers chosen so that L*^"^ ^ C. We show in the

Appendix that K = L = 1 + [2 log C/log log Cl satisfies this condition. Clearly, there

are many other choices of K and L which also satisfy the above condition, but

16

setting both equal to 1 + [2 log C/log log C1 apj^ears to be a good choice for our data

structure For the sake of convenience, we create a bucket K + 1 which contains all

nodes with temporary distance label equal to •»
. This bucket has exactly one

subbucket. We refer to the above ranges as initial ranges in this section For
o o

simplicity, we represent the initial range of bucket k by [U , u .]

.

The range of a bucket is partitioned into the ranges of its subbuckets. The

range of a subbucket (k, h) is denoted by the interval [I^ , u^y^] . The /j^ and uj^^^

are respectively called the lower and upper limits of the subbucket (k, h). The ranges

of subbuckets satisfy the following property for every k = 1, . . . , K.

R6. Subbucket property.

L

(i) range (k) = LJ range (k,h)

;

h = l

(ii) if r < h and the subbuckets (k, r) and (k, h) are nonempty, then uj^ < /j^ ; and

(iii) I range (1, h) I =1, for each h = 1 , . . . L.

We store the ranges of buckets explicitly. The ranges of its subbuckets are

maintained implicitly and computed efficiently as needed. Chje to the redistribution

of ranges, the first few subbuckets of a bucket may be empty. The index ej^ represents

the number of such empty subbuckets of the bucket k. Initially, ej^. = 0, for each

k = 1, . . . , K. The range of a bucket k is divided over its nonempty subbuckets using

the following rule: the first L'""' numbers in the range [l^ , uj^] are given to the

subbucket ej^ + 1- the next L*""^ numbers are given to the subbucket ej^ + 2, and so on

Consequently, the range [/j^j^ , uj^^] of a subbucket (k, h) is given by the following

expressions:

/;j, = /l,Mh-ei,-l)Ll^-l;

"kh = "^^ {'k
^^^-

^k^ L^"^ - >' "k }•

If l^Y\ > "k.h ' ^^^^ ^^^ subbucket is considered to be empty. If ranges of the

buckets are given by the initial ranges, the range of bucket k < K consists of L*^

integer numbers and ranges of its subbuckets consist of L*^"' integer numbers in

order. The last bucket has all of its subbuckets, except the first one, empty This is

sufficient since the width of a subbucket in bucket K mav be as much as L^~^ , and

1 7

lK 1 ^ c. It will be seen later that we keep this property satisfied throughout the

algorithm.

We store nodes with finite temporary distance labels in appropriate

subbuckets. We represent the contents of the subbucket (k, h) by the set

CONTENTS (k, h). The contents of a bucket k is the union of the contents of its

subbuckets, but we never need this set explicitly. What we need is the number of

nodes in a bucket k, which we represent by the cardirulity index card(k) and maintain

throughout the algorithm. Further, we associate with node i in the R-heap a

two-tuple set, assign(i), which indicates the bucket and the subbucket to which it

belongs. For example, if assign(i) = (k, h), then it implies that node i is in the h-th

subbucket of bucket k.

2.2. Heap Operations in Two-Level R-heap

We now describe how the various heap operations needed in Dijkstra's

algorithm can be performed on a two-level R-heap. The procedure INITIALIZE

given below creates the initial R-heap.

procedure INITIALIZE;

begin

set d(s): = , and d(j); = « for each j € N - (s);

C: = max (cj: : (i,j) e A);

K:= 1+ r21ogC/loglogCl ;

L:= 1+ r21ogC/loglogCl;
o o

rangeOi): =Ui^- Uj^l / for each k: = 1, . .
. , K;

set ej^ : = for each k: = 1, . .
.

, K;

CONTENTS 0,1): = (s);

CONTENTS(K+l, 1): = N - (s);

assign(s): = 0, 1);

assign(i): = (K + 1, 1), for each i e N - (s);

card(l): = l;

card(k); = , for each k = 2, . . . , K;

end;

18

Clearly, the procedure INUIALLZE takes 0(n -t- K) time. The DELETE

operation is as easy as in the one-level bucket system, and is given below.

procedure DELETE(j, H);

begin

(k, h); = assign(j);

CONTENTSCk, h): = CONTENTS(k, h) -
(j);

card(k): = card(k) - 1;

end;

The procedure REINSERT(j, H) is also similar. If node j is to be moved from

its present subbucket, then by scanning the buckets we determine the bucket whose

range includes d(j). Then, in 0(1) time we determine its subbucket whose range

includes d(j) and add node j to its contents. A formal description of this procedure is

given below.

procedure REINSERT(j, H);

begin

(k, h): = assign(j);

if d(j) i range(k, h) then

begin

CO\TEN'TS(k, h); = CONTENTS(k, h) -
(j);

card(k): = card(k)-l;

while d(j) « range(k) do k: = k-l;

r: = L(d(j)-/i,)/L'^-''j+ei,+ l

assign(j): = (k, r);

CONTE\'TS(k, r): = CONTEN'TSCk, r) + (j);

card(k): = card(k) + 1;

end;

end;

Lemma 2 In the iwo-level R-heap , D calls of the procedure REINSERT take

0(D + nK) total time.

Proof. Each execution of the REINSERT procedure takes 0(1) time plus the time

spent in the while loop Each iteration of the while loop moves a node to a smaller

1 9

index bucket. As there are K buckets, D calls of this procedure would take

0(D + T\K) overall time.

The procedure FINEVMIN is described below, followed by its explanation.

procedure FIND-MING, H);

begin

k: = l;

while card(k) = do k: = k + 1;

p: = k and h: = ej^ + 1 ;

while CONTENTSCp, h) = do h: = h + 1;

if p > 1 then

begin

dn^ir,: = min{d(j): j e CONTENTS(p, h)};

if p = K then

for k; = 1 to p do
o o

range(k): = [l^ + d^^^^ , u^ + d^^] and e^. = 0;

else

begin

let Upj^ be the upper limit of the subbucket (p, h);

for k; = 1 to p - 1 do
o o

range(k): = [1^ + d^^^ , min (Up + d^^, u^^]] and e^r. = 0;

range(p): = [Up^ + 1 / Up] and ept = h;

end;

for each j e CONTENTS(p, h) do REINSERTCj, H) ;

h: = l;

end;

return any node i € CONTENTSd, h);

end;

The procedure FIND-MIN proceeds by determining the lowest-index

nonempty bucket p. Next, by scanning its subbuckets, the lowest-index nonempty

subbucket (p, h) is identified. These two steps require 0(K) and 0(L) time

respectively. If p = 1 , then every node in the subbucket (p, h) has the smallest

20

distance label (by property R6 (iii)). If p > 1 , then ranges of buckets are modified and

nodes in the subbuckel (p, h) are reinserted to lower index buckets. This arxalysis is

divided into two cases. If p = K, then the new ranges of buckets are the initial ranges

translated by the amount dj^jp. As in Theorem 1, it can be shown that this keeps

the properties Rl, R2, R3, R4', and R5 satisfied, moves the nodes with smallest

distance labels to the subbucket (1,1), and makes the new range of bucket K

completely disjoint from its previous range. If p < K, then the range of the subbucket

(p, h) is redistributed over the buckets 1 to p - 1; the range of bucket p is modified as

(Upj^ + 1, Up); and the first h subbuckets of the bucket p are made empty. In either

case, all nodes in the subbucket (p, h) move to the lower index buckets during

reinsertions. Since there are K buckets, each node is scanned 0(K) times in all

FIND-MIN steps. The REINSERT procedure is called 0(m + nK) times and it takes

equal amounts of time to execute all the calls Since K = L = [2 log C/log log C1 + 1,

we get the following result:

Theorem 2. Dijksira's aJgorithm implemented using a two-level R-heap runs in

0(m + n log C/log log C) time. M

Finally ,we discuss the time needed to initialize the subbuckets as empty sets.

This initialization takes 0(KL) time, which could dominate the running time if C is

exponentially large. In such a case, the semi-logarithmic model of computation is

more appropriate as discussed in Section 5. Nevertheless, we can reduce the

initialization time to O(nL) by postponing any insertion of a node into subbuckets of

bucket k until k is selected for the first time in a FIND-MIN operation In this way,

the initialization time is dominated by the running time of the algorithm.

3. A Further Improvement if C < n

In this section, we suggest an improved version of the algorithm described in

Section 2. The improved algorithm runs in 0(m + n log C /log log nC) time. This

improvement is obtained by using larger numbers of subbuckets with each bucket

and using a more efficient technique to locate the first nonempty subbuckel of a

bucket.

This data structure consists of K buckets and each bucket has K [log nj

subbuckets. The value of K is chosen so that (KLlog nj)^"'' ^ C It can be easily

shovNTi that the value of K = flog C/max(log log C, log log n)l satisfies the above

21

condition, and log C/max (log log C, log log n) = OOog C/log log nC). Using more

subbuckets with each bucket does not affect the reinsertion time since it depends

solely on the number of buckets. However, the FIND-ME^ step has to be p)erformed

more cleverly as it involves sequentially scanning the subbuckets of a bucket to find

the lecist index nonempty subbucket. We use the following technique to speed up

this operation. We partition the subbuckets of a bucket into K groups of Uog nj

subbuckets each. We associate with each such group a binary number of

Llog nJ bits, whose i-th bit is 1 if the i-th subbucket in the group is non-empty, and

otherwise. We refer to this number as the binary number of that group. Thus the

binary number is an integer no more than n. In the FIND-MTN step, we first scan

through the buckets to identify the least-index nonempty bucket. We then scan

through its groups of subbuckets, in order, to identify the first group whose binar)'

number is nonzero. Both of these steps take 0(K) time. Next, we identify the first

non-zero bit in the selected group by a table-lookup. This consists of preparing a table

at the beginning of the algorithm consisting of values (x, y) where for all 1 < x < n

the corresponding y value denotes the first nonzero bit in the number x. For a given

group, we use its binary number (as x) in the table to find its first nonzero bit (as y) in

0(1) time. Further, the binary numbers of groups of subbuckets can be easily

maintained with an additional overhead of 0(1) operations per DELETE and

REINSERT operation. Consequently, the above algorithm runs in 0(m + nK) =

0(m + n log C/log log nC) time.

4. Implemer\tation Using Fibonacci Heaps

We show in this section that the two-level bucket system can be implemented

in 0(m + n Vlog C) time using a variant of Fibonacci heaps. Observe that the

two-level method requires 0(m + nK) time except for the step of finding the first

nonempty subbucket which takes 0(L) time for each FIND-MIN step. Our

improvement results from having a much larger number of subbuckets for each

bucket, i.e., K < < L, and using Fibonacci heaps to select the first nonempty subbucket

of a bucket. For this purpose, we number the subbuckets (of all the buckets)

consecutively 1 through M = LK and associate with each node the index of the

subbucket to which it belongs. This index is called the key of the node. It may be

pointed out that the data structure we describe now is in addition to the two-level

bucket system described in the previous section and its sole purpose is to identify a

22

node with smallest key which is equivalent to finding the least-index nonempty

subbuckel in the above data structure

The Fibonacci heap (abbreviated as F-heap) data structure is able to perform

the following operations efficiently:

find-min: Find and return a node of minimum key.

insert(x): Insert a new node x with predefined key into a collection

of nodes.

decrease (wlue, x): Reduce the key of node x from its current value to value,

which must be smaller than the key it is replacing.

delete(x): Delete node x from the collection of nodes.

The Fibonacci heaps of Fredman and Tarjan [1984] support these operations

in the following amortized time bounds (By amortized time we mean the time per

operation averaged over a worst-case sequence of operations. For a thorough

discussion of this concept, see Tarjan [1985] and Mehlhom [1984]) : 0(1) for

find-min, insert, and decrease, and Odog k) for delete, where k is the heap size.

These bounds are also attained by relaxed heaps due to E>riscoll et. al [1987] and

V-heaps due to Peterson [1987]. We are interested in the case in which n can be

much larger than M, i.e. many items have the same key. We show below how to

modify F-heaps so that the amortized time per delete is reduced to Odog min (n, Mj)

without changing the 0(1) amortized time bound for the other three operations For

the two level bucket system, we select L = 2*^"^ and K = fVlog C 1+1. Note that

this choice of L and K assures that L*^"' ^ C which is a necessary condition for the

two level R-heap. There are a total of n insert operations, n find-min operations,

0(m + nK) decrease operations and n delete operations in the algorithm. Using the

above data structure, these operations take a total of 0(m + nK + n log (LK)) =

0(m + nNTogT) time, since logaK) = K-1 + log K = ©(VTogT).

We now discuss the modification of the F-heaps to show that the amortized

time per delete operation can be reduced to Odog min (n, M)) without changing the

0(1) amortized time bound for the other operations. The main idea is to make sure

that the F-heap contains at most M items, i.e., al most one item per key value.

23

Making this idea work in the presence of decrease oi>erations requires some care and

some knowledge of the internal workings of F-heaps.

We need to know the following facts about F-heaps. An F-heap consists of a

collection of heap-ordered trees whose nodes are the items in the heaps. A

heajj-ordered tree is a rooted tree such that if p(x) is the pwrent of node x, key(p(x)) <

key(x). Each node in an F-heap hais a rank equal to the number of its children. A

fundamental operation on F-heaps is linking, which combines two heap-ordered

trees into one by comparing the keys of their roots and making the root with the

smaller key the parent of the root with the larger key, breaking a tie arbitrarily. A

link of>eration takes 0(1) time. In an F-heap, a p>ointer is maintained to a tree root of

smallest key, making find-min an 0(1) time operation. An insertion consists of

creating a new one-node tree and adding it to the collection of trees. This also takes

0(1) time.

Each non-root node in an F-heap is in one of the two states, marked or

unmarked. When a node becomes a non-root by losing a comparison during a link,

it becomes unmarked. A decrease operation on a node x is performed as follows.

First the value of x is updated. Then, if x is not already a tree root, the arc joining x

and its parent p(x) is cut and the following step is repeated, with y initially equal to

(the old) p(x), until y is unmarked or y is a tree root, cut the arc joiiung y and its

parent p(y), and replace y by (the old) p(y). After the last such cut, if the Icist node y is

not a root, it is marked. The overall effect of a decrease operation is to break the

initial tree containing x into possibly several trees, one of which is rooted at x. The

time required by the decrease operation is 0(1) plus 0(1) per cut. Since at most one

node is marked per cut, and since one node becomes unmarked per cut except for at

most one cut per decrease operation, the total number of cuts during a sequence of

heap operations is at most twice the number of decrease operations, even though a

single decrease can result in many cuts.

The fourth heap operation, delete(x) , is done by first performing

decrease(key (x), x), which does not affect key (x) but makes x a tree root, then

removing node x, making each of its children a tree root, and fir\ally repeatedly

linking trees having roots of equal rank until no two tree roots have equal rank.

Fredman and Tarjan showed that when rooted trees are manipulated in the

ways described above, the following invariant is maintained: for any node x, rank (x)

24

= Odog d(x)), where rank(x) is the number of children of x and d(x) is the number of

descendants of x. A simple analysis gives an amortized time bound of 0(1) for

find-min, insert, and decrease, and Odog n) for delete.

Now we are ready to solve the problem posed earlier. For each value

i € (1 , M], we maintain the set S(i) of items x with key(x) = i. One item in S(i) is

designated as the representative of S(i). All the items, both the representatives and

the non-representatives, are grouped into heap-ordered trees of the kind

manipulated by the F-heap algorithm. These trees are divided into two groups:

active trees, whose roots are representatives, and passive trees, whose roots are

non-representatives. The following invariant that every non-representative is a

root of the heap ordered tree and that key (p(x)) < key(x) is maintained throughout

the algorithm.

We note the following important features of this representation: the

representative of the nonempty set S(i) of minimum i is the root of an active tree,

and the total number of nodes in active trees is at most M. (Every node in an active

tree is a representative.) To facilitate find-min, we maintain a pointer to the active

tree root of minimum key; thus find-min takes 0(1) time. We perform insert(x) by

making x into a one-node tree, which becomes active or passive depending on

whether the set S(i) into which x is inserted is empty or not; if so, x becomes the

representative of S(i). We perform decrease (value, x) as described above, breaking

the tree containing x into one or more new trees, with the following change: x is

moved from S(key(x)). If x Weis a representative then some other item in S(key(x)) (if

any) is made its new representative, and the tree rooted at the new representative

becomes active. Further, if S(value) is empty, then x becomes a representative.

Otherwise, it remains a non-representative. Other new roots created by the cuts

during the decrease become the roots of active trees. Tlie total time required by the

decrease is 0(1) plus 0(1) per cut, including the time necessary to move trees

between the active and peissive groups.

We perform the delete operation as described above, except that the repeated

linking is performed only on active trees. That is, active trees of equal rank are

repeatedly linked until there is at most one active tree per rank.

We analyse the efficiency of the four heap operations in almost exactly the

same way as in Fredman and Tarjan (1984]. We define the potential of a collection of

25

rooted trees to be the number of trees plus twice the number of marked nodes they

contain. We define the amortized time of a heap operation to be its actual time

(measured in suitable units) plus the net increase in potential it causes. The initial

potential is zero and the potential is always nonnegative. Thus for any sequence of

heap of>erations the total amortized time is an upper bound on the total actual time.

The amortized time of a find-min is 0(1), since it does not change the

potential. An insert increases the potential by one and thus also has an 0(1)

amortized time bound. A decrease operation resulting in k cuts adds

0(1) - k to the potential (each cut, except for at most one adds a tree but removes a

marked node). Thus a decrease takes 0(1) amortized time if we regard a cut as taking

unit time.

Each link during a delete reduces the potential by one and thus has an

amortized time of zero, if we regard a link eis taking unit time. The additional time

spent during a cut is O(log min {n, M)) , as is the potential increase caused by

removing a node of minimum key, since the maximum rank of an active tree is

OClog min (n, M)). Thus the amortized time of a delete is O(log min (n, M)), as

desired. Finally, the cost of creating empty sets S(i) is 0(M). We have thus shown

the following result:

Theorem 3. Dijkstra's algorithm implemented using the two-level R-heap and the

modified Fibonacci heaps runs in 0(m+ n yjlog C) time. U

The idea used here, that of grouping trees into active and passive trees, applies

as well as to V-heaps to give the same time bounds, but it does not seem to apply to

relaxed heaps.

5. The Semi-Logarithmic Model of Computation

In the previous sections, we analysed our algorithms in the uniform model of

computation. In particular, we assumed that arithmetic on integers in the range

[0 , nC] has cost 0(1). In this section, we analyse our algorithms under the

semi-logarithmic model of computation. The bottleneck operation in the

straightforward analysis of our algorithms in the semi-logarithmic model of

computation is the comparison whether d(j) € range(k) during reinsertions. We
slightly vary the algorithm so that this step can be performed by looking at a small

number of bits of d(j) and we obtain the improved time bounds.

26

The exact definition of the semi-logarithmic model is given by the following

two assumptions.

Al Arithmetic and all other RAM-operations (index calculations, pointer

aissignmenls, etc.) on integers of length OClog n) have cost 0(1), and that

A2. log C = 0(nOn)). (Alternatively, C = 0(2).

Remark: In this model, we store numbers larger than Odog n) in more than one

word We represent arc lengths and distance labels as arrays of length Fdog nC)/Rl ,

where R = Ldog n)/2j . Each array element is an integer in the range (0, 2^-1]. Since

we assume (assumption Al) that indexing into these arrays has cost 0(1), and this is

only reasonable if the indexes are Odog n) in length we are forced to the assumption

that Flog nC/log n1 = 0(n^^

'

')
; which justifies assumption A2.

Let us first analyse the basic algorithm of Section 1. We consider the following

alternative description of the algorithm. The accuracy of this version can be proved

similarly to that of the original algorithm, and therefore its proof is omitted. Let K =

flog nCl , let Mm (d) be the minimum finite temporary distance label, and let

^K-1 '^ ^^ ^^^ binary representation of Min (d), i.e., Oj € (0, 1) and Min (d) =

K-1

y OLj 2'
. As before, we have buckets 0, . . . , K + 1 with

i =

i € CONTENTS(O) iff d(i) = Mm (d),

i e CONTENTS(k) iff Min (d) < d(i) < «, ^^_^ • • • Pq ^^ the binary

representation of d(i) and k is the maximal index for with Pj(._-j * <^k-l ' ^^"^

i € CONTENTSCK +1) iff d(i) = «.

CXir algorithm requires successive bits in the binary representation of d(j). Let

biii], k) denote the k-th bit in the binary representation of d(j). We show that bit(j, k)

can be computed in 0(1) time. As already indicated, we store a temporary distance

label d(j) as an array d(j,) of length flog nC/Rl of number of R bits each. The index

k = assign(j) for each j is stored as a pair (k^, k2) with < k2 < R and k = k^R + k2.

Then bit(j, k) is the k2-th bit in the number d(j, kp. We can calculate this bit by using

the table BIT, where BIT(v, j) is the j-th bit in the binary expansion of v for each

V € (0, 2*^-1] and each j e [0, R-l], The table BIT is easily computed in bnear time.

27

Then the k2-th bit in the number d(j, k^) is given by BIT(d(j, k^), k2) and it can be

computed in 0(1) by a table look-up in the table BIT.

With these definitions, procedures REINSERT and FIND-MIN can be

reformulated as follows:

procedure REINSERT (j, H);

begin

k : = assign (j);

CONTENTS(k) : = CONTENTS(k) -
(j);

while bit (j, k) = aj^ and k>0 do k: = k-l;

CONTENTS(k) : = CONTENTS(k) u (j);

assign(j) : = k

end;

procedure FIND-MIN(i, H);

begin

while card(k)= do k : = k + 1;

Min(d) <- min{d(j) : j e CONTENTS(k));

let cxj^_-j • • cxq be the binary expansion of Min(d);

for aU j € CONTENTS(k) do REINSERT(j, H);

end;

A call of FIND-MIN has cost Odog nC) exclusive of the cost of the calls to

REINSERT. The total cost of the calls to REINSERT is 0(m + n log nC). Finally, the

cost of relabeling is OCflog nC/log n1) per relabeling step and hence

0(m flog nC/log n1) overall. We summarize in:

Theorem 4. Under the assumptions Al and A2, the modification of the algorithm of

Section 1 runs in time Oimflog nC/log nl+ n log nC) . U

It is worthwhile to compare this time with the running time of Fredman and

Tarjan's algorithm under this model. In Fibonacci-heaps every step involves the

comparison between two keys and hence has cost ©(flog M/log nl) when the keys

are at most M. Thus Dijkstra's algorithm with Fibonacci-heaps has running time

0(m flog nC/log n1 -^ n log n Flog nC/log nl) , which agrees with the time bound of

Theorem 4. (There does not appear to be any simple modification of the Fibonacci

28

heap data structure to improve running times under the semi-logarithmic model.)

However, the present implementation is simpler and has smaller cor\stant factors It

is also worth noting that it takes time 0(m flog C/log n1) to read the input in our

model. Thus the modification of the algorithm of Section 1 is optimal whenever

m S n log n.

We turn to the algorithms of Sections 2 and 4 next. In these algorithms each

bucket is represented as an array of L subbuckets. An index into such an array has

log L bits. In the spirit of assumption AT we restrict ourselves to

log L = Odog n). The assignment of nodes to buckets is as follows: Let

K =riog nC/log l1 and let aj^_-j clq be the L-ary expansion of Min(d), i.e.,

< Oj < L and Min(d) = ^ (x^V . Then a node i e T with d(i) < «» belongs to

subbucketCk, h) if either Min(d) = d(i) and k = 0, h = a^ ; or if Min(d) < d(i), ^^_^ • • • pQ

is the L-ary representation of d(i), k is the maximal index with Pj^_-] * aj^_-] and

h = pj^.-j . Note that the buckets are numbered through K-1 and for each bucket,

subbuckets are numbered through L-1.

As above, we store label d(j) as an array d(j,) where each array element is a

LOog n)/2j bit number. We assume that log L divides Ldog n)/2j . Tben the k-th

digit in the L-ary representation of d(j), represented by DIGITCj, k), can be computed in

time 0(1) in the same way as we computed the k-th digit in the binary expansion

above. The procedure REINSERT is now given below.

procedure REI\SERT(j, H);

begin

(k, h) : = assign(j);

CONTE\TS(k, h); = CO\TENTS(k, h) -
(j);

card(k): = card(k)-l;

while DIGITCj, k) = a^. and k > 1 do k : = k - 1;

CONTENTSCk, DIGIT(j, k)) : = CONTENTS(k, DIGIT(j, k)) u (j);

card(k) : = card(k) + 1;

end;

29

The total cost of all calls to REINSERT is 0(m + nK). Also, the total cost of

arithmetic in the relabel step is ©(mTlog nC/log nl). The procedure FIND-MIN is

given below.

procedure FIND-MIN(i, H);

begin

k : = 0;

while card(k) = do k : = k + 1;

p : = k and h : = 0;

while CONTENTSCk, h) = do h : = h + 1;

if p>0 then

begin

Min(d): = min{d(j) : j e CONTENTS(p, h));

let txj<^_i ctQ be the L-ary expansion of Min(d);

for all j e CONTENTS(p, h) do REINSERT(j, H);

h: =
0(o;

end;

return any node i in CONTENTS(0, h);

end;

A call to FIND-MIN has cost 0(K + L) exclusive of the costs of reinserting.

Thus the total cost of the shortest path algorithm is ©(mTlog nC/log n1 + n(K + L)).

We select K = Flog nC/log n"l If log nC/log log nC < 2'-(^°g "^/^J fi^gj^ ^g ^^^^^

L to be the greatest power of 2 which is less than or equal to log nC/log log nC and for

which value log L divides Ldog n)/2 J ; otherwise L is set to 2'-'^°6 r>)/2J -^ either

case, the running time of the algorithm reduces to OCmTlog nC/log nl + n log nC/log

log nC). We thus obtain the following result:

Theorem 5. The algorithm of Section 2 runs in time

Oimflog nC/log nl + n log nC/log log nC) . U

Finally, for the algorithm in Section 4 we use Fibonacci-heaps with the

domain [0 , KL]. Thus the total cost of all calls to REINSERT increases to

0((m + nK) Hog KL/log nl) since each of the m -i- nK calls to REINSERT brings

about an additional cost of ©(Flog KL/log n"|) for the decrease operation in the

Fibonacci-heap. Further, each call of find-min has cost 0(logKL Flog KL/log nl).

3

Since a find-min in a Fibonacci-heap requires Odog KL) steps and each step has a cost

of OCflog KL/log n1) by the remark following Theorem 4. Thus the total cost is

0(m(Flog nC/log n1 + flog KL/log n1) + n(K + log KL) flog KL/log nl). We select

K = FVlog nCl and log L = fV log nCl for log nC < (log nr ; and K = log nC/log n

and log L = LOog n)/2j for log nC ^ (log n)^ . It can be easily verified that in both the

cases, the above expression reduces to ©(mf^log nC/log n1 + n\'log nC) We thus

obtain the following theorem.

Theorem 6. The algorithm of Section 4 runs in time

Oim\^hgnC/lognY nilognC]. g

We conclude that the algorithm of Section 4 is optimal whenever log nC t (log n)'" ,

i.e., C t n'°§ "
, or if m > n log n/Vlog nC.

6. Conclusions and Research Issues

We have presented several new efficient algorithms for the shortest path

problem, all based on a new data structure which we call a redistributive heap. The

simplest two-level version of this algorithm runs in 0(m + n log C/ log log C) time

using the uniform model of computation, which improves on previous algorithms

under quite reasonable assumptior\s on the data. In addition, it is sufficiently simple to

be very efficient in practice. Preliminary testing indicates that it is comparable to the

best other implementation of Dijkstra's algorithm. A more complex version of the

algorithm uses Fibonacci heaps and runs in time 0(m + nVlogC) . Although this

algorithm is not as efficient in practice, but it is asymptotically better in the worst case.

In addition to the results mentioned above, we have also considered

algorithms under the semi-logarithmic model of computation, and we have

modified our algorithms appropriately. In the case when C does not satisfy the

similarity assumption, the semi-logarithmic model better reflects current sequential

computation than does the uniform model. In addition to this added degree of

realism, the semi-logarithmic model also avoids an implicit restriction of the

uniform model, viz., the semi-logarithmic model allows the user to operate on a

small part of a large number without getting charged for using the whole number. In

the uniform model of computation, each arithmetic step counts as one operation,

and so there is no incentive to perform arithmetic operations more efficiently. In the

semi-logarithmic model of computation, we count operations more accurately to

31

reflect that some arithmetic operations, such as multiplication by 2 or determining

whether an integer is odd, are inherently faster than other operations, such as

multiplication by 3.

This last degree of flexibility in the semi-logarithmic model is best reflected in

the fact that our algorithms are linear time in the data when

log C = Q(n). Under the uniform model of computation, our algorithms appear

increasingly worse as C gets large. In reality, if C gets sufficiently large, then the time

to solve the problem is proportional to the time to read the data. This improved

relative efficiency of the algorithm for large C is not and can not be captured by the

uniform model of computation.

Currently, under the semi-logarithmic model of computation, our algorithms

are linear time for a wide range of parameter choices. It is an open question as to

whether the algorithm can be made linear time for all p>ossible inputs. It appears that

the most difficult case is when C satisfies the similarity assumption.

The redistributive heap data structure is not easily generalized to solve other

problems because of the assumption that the minimum in the FIND-MIN step is

monotonically nondecreasing. It would be interesting to know whether this

assumption can be relaxed, or whether the data structure can be used to solve other

problems as well.

Acknowledgements

We thank Hershel Safer for a careful reading of the paper and many useful

suggestions. The research of the first and third authors was supported in part by the

Presidential Young Investigator Grant 8451517-ECS of the National Science

Foundation, by Grant AFORS-88-0088 from the Air Force Office of Scientific

Research, and Grants from Analog Devices, Apple Computer, Inc. and Prime

Computer. The research of the second author was supported by Grant DFG

Sonderforschungsbereich 124, TPB2. The research of the fourth author was partially

supported by National Science Foundation Grant No. E>CR-8605962 and Office of

Naval Research Contract No. NOOOl 4-87-0467.

32

Appendix.

Lemma 1. 1 -^ j log log C 2 log log log C, for all values of C ^ 1.

Proof. We prove this result by simple case analysis.

Case 1. 1 < C < 2^
. For these values of C, log log log C < 1 and the inequality

holds.

Case 2. 2'^ < C < 2^ ^
. For these values of C, ^ log log C ^ 1 and log log log C < 2.

Case 3. C>2l^. For € = 2^^ -

Hence the inequality still holds.

r log log C = log log log C = 2. For all higher

values of C, - log log C dominates log log log C. D

Lemma 2. Let L =
^^ '^^ ^

. Then L^ ^ C for all values of C ^1.

Proof. Shouing L*^ ^ C is equivalent to showing that

21ogC
L log L > log C. Substituting L='j—j

—

t= in the left-hand side, we get

L log L = (2 log C/log log C) log (2 log C/log log C)

= (2 log C/log log C) [1 + log log C - log log log C]

> (2 log C/log log C)
(
2'°6 ^°§ ^

I

^y Lemma 1).

Therefore, L log L > log C .

33

REFERENCES

Aho, A. V. , J.E. Hopcroft, and J.D. Ullman. 1974. The Design and Analysis of

Computer Algorithms. Addison-Wesley, Reading, MA.

Boas,P. Van Emde, R. Kaas, and E. Zijstra. 1977. Design and Implementation of an

Efficient Priority Queue. Math. Sys. Theory 10, 99-127.

Denardo, E.V., and B. L. Fox. 1979. Shortest-Route Methods: 1. Reaching, Pruning,

and Buckets. Oper. Res. 27, 161-186.

Dial R- 1969. Algorithm 360: Shortest Path Forest with Topological Ordering.

Comm. ACM 12, 632-633.

Dial, R., F. Glover, D. Kamey, and D. Klingman. 1979. A Computational Analysis

of Alternative Algorithms and Labeling Techniques for Finding Shortest Path Trees.

Networks 9 , 215-248.

Dijkstra, E. 1959. A Note on Two Problems in Connexion with Graphs. Numeriche

Mathematics 1, 269-271.

Driscoll, J. R., H. N. Gabow, R. Shrairman, and R. E. Tarjan. 1987. Relaxed Heaps:

An Alternative to Fibonacci Heaps, Technical Report, CS-TR-1 09-87, Department of

Computer Science, Princeton University, Princton, NJ, submitted to Comm. ACM.

Fredman, M.L., and R. E. Tarjan. 1984. Fibonacci Heaps and Their Uses in

Improved Network Optimization Algorithms. 25th Annual IEEE Symp. on Found.

ofComp. Sci., 338-346, also in /. of ACM 34(1987), 596-615.

Gabow, H.N. 1985. Scaling Algorithms for Network Problems.]. of Comp. and Sys.

Sci. 31 , 148-168.

Gilsinn, J., and C. Witzgall. 1973. A Performance Comparison of Labeling

Algorithms for Calculating Shortest Path Trees. Technical Note 772, National

Bureau of Standards, Washington, D.C.

34

Glover, F., D D Klingman, N. V. Phillips, and R. F. Schneider. 1985 New

Pol)T>omial Shortest Path Algorithms and Their Computational Atttributes. Man.

Set 31, 110^1128.

Johnson, D B 1977a Efficient Algorithms for Shortest Paths in Sparse Networks /.

.4CM24, 1-13.

Johnson, D. B 1977b. Efficient Special Purpose Priority Queues. Proc. 15th Annual

Allerton Conference on Comm., Control and Computing, 1-7.

Johnson, D. B. 1982. A Priority Queue in Which Initialization and Queue

Operations Take OClog log D) Time. Math. Sys. Theory 15, 295-309.

Mehlhom, K. 1984. Data Structures and Algorithms. Vol. 1, Springer Verlag.

Pape, U. 1980. Algorithm 562: Shortest Path Lengths. ACM Trans. Math. Software 6,

450-455.

Peterson, G. L. 1987. A Balanced Tree Scheme for Meldable Heaps with Updates.

Technical Report, GIT-lCS-87-23, School of Information and Computer Science,

Georgia Institute of Technology, Atlanta, GA.

Tarjan, R. E. 1985. Amortized Computational Complexity. SIAM]. Alg. Disc. Math.

6 30^318.

Williams,] .W. J. 1964. Algorithm 232: Heapsort. Comm. /iCA'f 7, 347-348.

G 11 7 7 B

Date Due

DEC 2 7 19^8

SEP-
2^ \993

•tV. 5 t995

Ftd 2 y 199^

Lib-26-67

MIT LIBRARIES

3 TDfiO DOS 35a TDS

