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THE SYNTHESIS OF SEQUENTIAL SWITCHING CIRCUITS *

BY

D. A. HUFFMAN 

ABSTRACT

An orderly procedure is developed by which the requirements of a sequential
switching circuit (one with memory) can be reduced to the requirements of several
combinational switching circuits (those without memory). Important in this pro-
cedure are:

1. the flow table: a tabular means by which the requirements of a sequential
switching circuit may be stated precisely and by which redundancy in these require-
ments may be recognized and eliminated, and

2. the transition index: a new variable which indicates the stability (or lack of
stability) of a switching device.

The role of those switching devices which are not directly controlled by the input
of a sequential switching circuit is investigated thoroughly. The resulting philosophy,
which is exploited in synthesis procedures for circuits using either relay or vacuum-
tube switching devices, is valid for circuits using other devices as well.

PART I t

I. INTRODUCTION TO RELAY CIRCUIT THEORY

Historical Background

In 1938, C. E. Shannon established an orderly algebraic procedure
for the treatment of relay contact networks.2 This major theoretical
advance was based on an analogy with the calculus of propositions used
in symbolic logic. In 1948, G. A. Montgomerie 3 described a concise

* This paper is derived from a dissertation submitted in partial fulfillment of the require-
ments for the degree Doctor of Science at the Massachusetts Institute of Technology.

1 Department of Electrical Engineering, Massachusetts Institute of Technology, Cam-
bridge, Mass.

t Part II will be published in this JOURNAL for April, 1954.
2 C. E. Shannon, "A Symbolic Analysis of Relay and Switching Circuits," Trans. AIEE,

Vol. 57, pp. 713-723 (1938).
3 G. A. Montgomerie, "Sketch for an Algebra of Relay and Contactor Circuits," Jour.

IEE, Vol. 95, Part III, pp. 303-312 (1948).
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D. A. HUFFMAN

method of specifying static (or "combinational") relay circuits which
has since been used extensively by Shannon 4 and others, and is now
called a "table of combinations." The need for similar orderly analysis
methods for circuits with dynamic relay action was realized by Mont-
gomerie,3 and some of the matrices described here bear superficial re-
semblance to his, even though they were developed independently.

Assumed Form of the Switching Circuit

Our generalized relay switching circuit will have p input terminals,
and q output terminals. Each of the input terminals will be connected
to a terminal (called the control terminal) of the coil winding of a single-
winding relay; the other end of the winding will be connected to the
proper supply voltage. (See Fig. 1, for example.) These relays, which
are under the direct control of the circuit inputs, are designated as X
or primary relays. All other relays (if any) in the circuit are to be
called Y or secondary relays. Their number will be designated s.

Each of the s secondary relays will be controlled by a network of
contacts from (in general) all of the relays-both primary and secondary
-in the circuit. Similar networks of contacts (the Z networks) will
lead to each of the q output terminals from ground.

Contacts associated with a given relay (R) will be given the lower-
case designations. Normally open contacts are labeled with the un-
primed letter (r), and the normally closed contacts with the primed letter
(r'). We shall assume that, for a given relay:

1. All normally open contacts are open (or closed) at the same
time. Likewise, all normally closed contacts are open (or closed)
simultaneously.

2. When the normally open contacts for a given relay are open (or
closed), the normally closed contacts are closed (or open), and vice versa.

Algebraic Description of the Relays

A binary (two-valued) variable is one which may, at any given time,
assume just one of two possible complementary values. The binary
variables used in describing a relay circuit represent the absence or
presence of a metallic path. These variables are assigned the values
zero and one. A contact, or a network of contacts, has a transmission
of unity when it is closed, and a zero transmission when it is open.5

In terms of the transmission concept, r = 0 will be interpreted to
mean: The normally open contacts on the relay R are open; that is, the

4 C. E. Shannon, "The Synthesis of Two-Terminal Switching Circuits," Bell System Tech.
Jour., Vol. 28, pp. 59-98 (1949).

6 Transmission is thus somewhat analogous to admittance. The dual concept, that of
hindrance, is somewhat analogous to impedance; a closed circuit has a zero hindrance and an
open circuit has unity hindrance. We shall use the idea of transmission exclusively.

[J. F. I.162



SEQUENTIAL SWITCHING CIRCUITS

relay is unoperated. Similarly r = 1 will mean: The normally open
contacts on R are closed; that is, the relay is operated. Of course-with
the assumptions made previously-whenever r = 0, then r' = 1 and
whenever r = 1, then r' = 0. Thus r and r', when considered as contact
variables, always have complementary values.6

A relay is energized or de-energized according as the transmission of
the contact network in series with its winding has a transmission of
unity or zero, respectively. It will be convenient to use the upper-case
letter R as the notation for the transmission of this network. Thus,
when R = 1, the relay is energized; and when R = 0, the relay is
de-energized.

It is necessary to make a fine distinction between the state of opera-
tion of a relay and its state of energization, as reflected by the variables
r and R, respectively. If r and R have the same value the relay is in a
stable state. If instead, r and R have complementary values the relay
is in an unstable state. Since both r and R may each have only the
values zero and one, there are just four mutually exclusive situations
which may arise:

1. r = 0 and R = 0; a stable state.
2. r = 0 and R = 1; an unstable state; the relay is unoperated and

is energized. If R continues to have the value one, then eventually the
relay will become operated and the value of r will change from zero to
one. The time required is called the relay operate time.

3. r = 1 and R = ; an unstable state; the relay is operated and is
de-energized. If R continues to have the value zero, then eventually
the relay will become unoperated and the value of r will change from
one to zero. The time required is called the relay release time.

4. r = 1 and R = 1; a stable state.

We now define a new variable, TR, called the transition index which
reflects the stability or instability of a relay R. When rR O0 the relay
is stable; when rR = 1 the relay is unstable.

For convenience we will make use of an algebraic operation which
we shall call cyclic addition, 7 and for which the notation is . It will
have the following properties:

0 0 = 1 1 =0; 0 1 = 1 0=1. (1)

In terms of this notation

R = r R and R = r E rTR. (2-a, b)

6 The priming notation may be used whenever the idea of complementation exists. Thus,
0' = 1 and 1' = 0.

7 In the language of congruences, TR is congruent, modulo two, to the sum of r and R.
See, for example, Birkoff and MacLane, "A Survey of Modern Algebra," New York, The Mac-
millan Company, 1941, pp. 23-29.

-
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D. A. HUFFMAN

Combinational and Sequential Circuits

Consider for the time being a switching circuit which has no second-
ary relays; for example, that of Fig. 1 (a). For this kind of circuit the
contact networks which lead to the output terminals must be composed
of contacts from relays which are under the direct influence of the input
(the primary relays). Since each primary relay may be either operated
or unoperated, there are 2P possible states of operation for the p primary
relays, taken collectively. Each of these primary states determines
uniquely a transmission of either zero or unity at each output terminal.
In Fig. 1 (a), for instance, there is an output ground if X 1 is operated
or if X 2 is unoperated, or both. If X1 is unoperated and if X 2 is oper-
ated, however, the output will be ungrounded.

Consider now a circuit having secondary relays as well as primary
relays-for example that of Fig. 1 (b). Assume that all three of the
relays are unoperated. Operation of the X 2 relay has no effect on the
Y relay but does result in a ground at the output terminal (since the y'
contact is closed). As long as Y remains unoperated, the output is
grounded or not grounded according to whether X 2is or is not operated.

r,-- …---------- I: IZ (o)

, I Zb (b

FIG. 1. Illustrating combinational and sequential switching circuits.

Let us now assume that the X 1 relay is operated. The closing of its
normally open contact, x, energizes and subsequently operates the Y
relay, and closes the y contact. Now the state of operation of X1 cannot
affect Y since the latter is permanently energized through its own
normally open contact. (Permanently, that is, until the supply volt-
ages are removed.) Now the y' contact in the output network is open
and operation of X 2 cannot ground the output terminal.

Notice that the output transmission is not a unique function of the
primary relay states of operation but depends as well on the past history
of the circuit. The circuit may be said to have a memory; it "remem-
bers" whether or not X1 has been operated.

We may generalize from these two simple examples: In a circuit
having no secondary relays there can be no "memory"; the states of
operation of the primary relays uniquely determine the output trans-
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SEQUENTIAL SWITCHING CIRCUITS

missions. Such a circuit is called a combinational circuit. In a circuit
having secondary relays, the possibility of a "memory" exists since the
states of operation may not uniquely determine the output transmis-
sions. A circuit having secondary relays will be called a sequential
circuit.

Specification of the Terminal Characteristics of Switching Circuits

The terminal characteristics of a combinational circuit may be
described equally well by specifying the nature of the contact networks
at the outputs. A useful means of specification of these networks (or
of any two-terminal contact network) is the table of combinations. In
it are listed the 2 possible (collective) states of operation of the p
primary relays which may contribute contacts to such an output net-
work; beside each of these 2 states is listed the transmission of the
network. In Table I, the table of combinations tells us that the
Za network (Fig. (a)) has a transmission of zero if and only if X is
unoperated and X2 is operated.

TABLE I.-Tables of Combinations for the Networks in Fig. 1.

(a) (b) (c)
XI X2 Za X1 y

O 0 1 0 0
0 1 0 0 1
1 0 1 1 0
1 1 1 1 1

Y x2 y Zb

0 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

The precise specification of a sequential circuit is more difficult.
We can list the transmissions of the Y and Z networks in tables of com-
binations (see Table I (b) and (c)) but this listing tells us little about the
terminal characteristics of the circuit or what function "memory" plays
in its operation.

Up to the present time no precise way of tabulating the terminal
characteristics of the general sequential switching circuit has been
published. The flow table developed in Section II is the author's
answer to this problem. Without an exact specification, such as the
one the flow table gives, we cannot hope to be able to lay down rules for
the synthesis of the general sequential circuit.

Comments on the Synthesis of Contact Networks

Our synthesis method for sequential circuits will lead to the listing
of the transmission requirements for several Y and Z networks in tables
of combinations. The physical realization of contact networks which
meet the requirements in a table of combinations has received much
study and there is much research yet to be done. We will not attempt

II- I - --I-- I�---·I--� -*-· I -I-----·I- -
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to show how to design such networks but will usually diagram one
possible physical realization and the reader may verify that it corre-
sponds to its table of combinations.8

Part of the problem of synthesizing contact networks exists because
several quite different-appearing networks may be terminally equiva-
lent. It is not always easy to decide on a criterion of merit for these
different networks or to be sure that once a "good" network is found a
"better" one does not also exist. However, a common denominator for
all equivalent contact networks is the table of combinations. For ex-
ample, Fig. 2 gives two equivalent networks along with the table of
combinations which they have in common.

a 
b '

C

Network
a b c Transmission

000 I
00 1 0
010 0
o I I I
1 00 0
1 0 
1 1 0 Il l . 1

(a) (b) ' I
(c)

FIG. 2. Two equivalent networks and their table of combinations.

II. THE ANALYSIS OF SEQUENTIAL RELAY CIRCUITS

Matrix Representation for Two-Terminal Networks

In each of the relay switching circuits discussed in this paper, there
is a two-terminal contact network connected between ground and the
control terminal of each secondary relay. These networks have been
given the notations Y 1, Y2, . , Y,. In addition, there are two-terminal
networks between ground and each of the output terminals. These
networks are to be given the notations Z 1, Z 2, .- , Zq. Each of the Y
and Z networks may be a function of all the contact variables for the
circuit-that is, of the (p + s) variables x 1, x 2 , X,, Y, Y2,, , y ,.
Therefore, each of these transmission functions may be represented in
a table of combinations with rows corresponding to all possible com-
binations of the (p + s) contact variables. It is more convenient,
however, to use modified tables of combinations which, for the sake of
compactness, are put in the form of rectangular matrices.

To illustrate the construction of such matrices, Table II shows the
tables of combinations for the three secondary relay control networks

8 For further study on contact networks the reader is referred to W. Keister, A. E. Ritchie
and S. Washburn, "The Design of Switching Circuits," New York, D. Van Nostrand Company,
Inc., 1951.

For recent papers on the reduction of combinational circuit requirements to simple forms,
refer to M. Karnaugh, "The Map Method for Synthesis of Combinational Logic Circuits,"
AIEE Technical Paper No. 53-217, April, 1953; or to E. E. Veitch, "A Chart Method for
Simplifying Truth Functions," Proc. Assn. for Computing Machinery, May, 1952; or to W. H.
Burkhart, "Theorem Minimization," ibid.

I66 [J. F. I.



SEQUENTIAL SWITCHING CIRCUITS

TABLE II.-Tables of Combinations for the Y and Z Networks of Fig. 3.

xl x 2 Y1 Y2 Y3

O O 0 0 0
0 0 0 0 1
O O 0 1 0
0 0 0 1 1
O 0 1 0 0
0 0 1 0 1
O 0 1 1 0
0 0 1 1 1

0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1

1 0 0 0 0
1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1

1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

and the single output network of
the corresponding matrix forms.

Y1 Y2 Y3 Z

O O 0
1 0 1
1 1 0
0 1 1
O O 0
1 0 1
1 1 0
0 1 1

1 0 0
1 0 0
O O 0
O O 0
1 0 0
1 0 0
1 1 1
1 1 1

0
0
0
0
0
1
0
0

O
0
0
0
0
0
0
0

*

0 1 0 0
O 0 1 0
0 1 0 0
O 0 1 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

1 0 0 0
1 0 0 0
O O 0 0
O O 0 0
1 0 0 0
1 0 0 0
1 0 0 0
1 0 0 0

the circuit of Fig. 3. Table III gives
In general, the Y matrix will have as

entries ordered s-tuples of the proper values of Y1, Y 2, - -, Y 8; and
similarly, the Z matrix will have as its entries ordered q-tuples of the
proper values of Z 1, Z2, .*, Zq. Positions in the matrix will be given
in the form (x;y), where x is the ordered p-tuple of the values of the
primary contact variables x1, x 2, ... , x, and where y is the ordered
s-tuple of the values of the secondary contact variables y1, y2, , y.
For example, the entry "1" in the (00;101) position of the Z matrix of

----- __- _ ___ �I_�I�CI_� ······-- ·--··---sli·�·LII�-·�-�--. 1-~-~l~ C I
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D. A. HUFFMAN

Table III(b) corresponds to the starred row of Table II. In this same
starred row the values for Y1, Y2, and Y3 are one, zero, and one,
respectively. And so the entry in the (00 ;101) position of the Y matrix
of Table III(a) is "101."

X,

X2

z

IX

I X2

1y2lYs
FIG. 3. A sequential switching circuit.

TABLE III.- Y and Z Matrices Formed from the Data of Table II.

(a)
The Y Matrix

00 01 10 11

(b)
The Z Matrix

00 01 10 11

x-

y: \
000
001
010
011
100
101
110
111

000
101
110
011
000
101
110
011

100
100
000
000
100
100
111
111

010
001
010
001
100
100
100
100

100
100
000
000
100
100
100
100

000
001
010
011
100
101
110
111

The Composite Transition Matrix

Next we shall form the composite transition matrix,
example. We shall make use of the equations

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

r, for our present

TY1 = Y1 y 1, 
7 Y2 = Y2 E Y2 , and ry3 = Y3 · y 3, (3-a, b, c)

which correspond to Eq. 2(a) applied to the three secondary relays.
The mechanics of construction of r are as follows:

For a given primary relay state, x = (xl, x 2, · ·, xP), and for a given
secondary relay state y = (yl, y2, , y)--that is, for a given total
relay state (x;y),-there is an entry (Y 1, Y 2, ' " , Y 8) in the Y matrix.
In , the proper entry at the (x;y) position is (TY1, T2, .' ', Y.,)

[J. F. I.I68
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SEQUENTIAL SWITCHING CIRCUITS

= (Y1 E y1, Y2 y2, '"*, Y, y). For instance, the entry in the
(00;010) position of the Y matrix of Table III(a) is "110." Since this
entry is in the row corresponding to y = 010, then we find the proper
entry in the r matrix of Table IV(a) by adding cyclicly the correspond-
ing components of "110" and "010." The result is "100," and this is
inserted in the (00;010) position of the matrix. This derived entry
is to be interpreted: "For the total relay state (00 ;010), the relay Y, is in
an unstable state, but the relays Y2 and Y are both in stable states."

TABLE IV.-The T Matrix Derived from Table III.

x:
00 01 10 11

Y: \

000
001
010
011
100
101
110
111

000 100 010 100
100 101 000 101
100 010 000 010
000 011 010 011
100 000 000 000
000 001 001 001
000 001 010 010
100 000 011 011

Later, in the synthesis process, we shall need to reverse the procedure
above and derive the Y matrix from the r matrix. Then we shall need
to make use of the equations

Y1 := Y1 yl, Y 2 = 7r2 y2, " Y = TrS (D ys, (4)

which correspond to Eq. 2(b) applied to the s secondary relays. In
order to derive each entry in the Y matrix, we shall have to add cyclicly
the components of the appropriate value of y = (yl, y2, · · , ys) to each
component of the corresponding entry in r.

In a matrix, each entry consisting entirely of zeros indicates sta-
bility for all the secondary relays. If an entry contains a single digit
one as a component, then just one secondary relay is in an unstable
state, and the entry tells us what the secondary relay state will next be
if the input state remains unchanged. For instance, in the T matrix
of our present example, the "100" entry at the (00;010) position indi-
cates that the Y1 relay is unstable; and thus, if the input state remains
"00," the resulting total relay state will be (00;110). A glance at r
reveals that all the secondary relays are stable for this new total relay
state, since the entry at this position consists entirely of zeros. The
circuit action described above is diagrammed by the heavy arrow in
Fig. 4.

An important fact to observe in the use of a composite transition
matrix is that a change of state in the secondary relays is indicated by

._ �_�ll______ll·_L1LIIIW�L1^-*·llrml�L�_- ~--~~-~- - - -�·------·lslP�-�---·-�III�-L-�·IIIYI -�X1 -I--
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vertical movement in the matrix and in the associated diagram, while a
change of input state is accompanied by motion in a horizontal direc-
tion. Moreover, once a stable state has been reached for all secondary
relays, then further circuit changes can occur only if modification is
made in the input state. In other words, if the circuit has a stable
secondary relay state, and if the input state is changed from the existing
value to another one, then the focal point of our attention must first
be moved horizontally into the column corresponding to the new input
state; and if further changes are to occur, these must be in the ver-
tical direction.

IX

I k/

FIG. 4. Transition diagram for the matrix given in Table IV.

Race Conditions

In a composite transition matrix the presence of two or more of the
digits "1" indicates that at least two secondary relays are simultane-
ously unstable, and that a race condition exists. In such a case, several
secondary relay actions are possible, depending upon the magnitudes
of the operating and release times for the relays involved and upon the
past history of their excitations. For example, in Table IV, if the total
relay state is (10;111), the corresponding entry is "011." This entry
indicates that a "race" develops between the relays Y2 and Y3 to see
which relay will become released first. If Y 2 wins the "race" and is
released first, the resulting secondary relay state is "101." If, however,
Y 3 is the first relay to release, then the secondary relay state becomes
"110." But if a "tie" develops and both relays release at the same time,
the secondary relay state will be "100." These three possibilities are
indicated by dotted lines rising from the bottom node in the third
column of Fig. 4.

- -- �1 C



SEQUENTIAL SWITCHING CIRCUITS

All race conditions in Fig. 4 are indicated by dotted lines. In this
figure each race condition is non-critical, since each of the alternate
possibilities leads eventually to the same ultimate secondary relay state.
For example (see the right-hand column of Fig. 4): If the input state
is "11," the ultimate secondary relay state will be "100," no matter
what the initial secondary relay state was.

Not all race conditions are of the noncritical variety. It may be
that the alternate possibilities present in a race condition lead to
different ultimate circuit conditions. Consider, for instance, Table V
(and Fig. 5). Here, several ultimate circuit conditions are possible if
the total relaystate is initially (00 ;010).

TABLE V.-A Matrix Illustrating Race Conditions and Cycles.

yx:

Y: \

000
001
010
011
100
101
110
111

Q1IX
l I

/I

00

010
000
101
010
000
000
000
010

O

01 10 11

000
100
001
010
010
001
100
000

000
011
100
100
000
000
100
100

00/0 o

001
010
110
001
001
010
001
100

I
Il

/l
/ \II

IA

FIG. 5. Transition diagram for r matrix of Table V.

Cycles and Ultimately Stable Terminal Action

It may be that, for a given input state, internal circuit action is
continuously sustained because at least one secondary relay is always
maintained in an unstable state. For this situation there will be no

_ _~~~~~~~~~~~_~~ _. .- I~I_ Y Y - I-~- --- lll- ..lI ...---- -�- 111_1 �11 I_
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single ultimate secondary relay state, but instead there will be a cycle
of states occurring. The column of Table V (and of Fig. 5) for which
the input state is "01" illustrates such a cycle. Here the secondary
relay states · ·* , 001, 101, 100, 110, 010, 011, · · · occur in cyclic fashion.

If the output state of a relay switching circuit remains constant for
all the secondary relay states of a cycle, we shall say that the circuit
has ultimately stable terminal action.

It is also possible that race conditions and cycles may coexist in a
switching circuit. Two examples of this situation are given in the
columns of Table V which correspond to the input states "10" and "11."

The Flow Table

Our attention will now be limited to the analysis of those relay
switching circuits in which there are no cycles, and where all race condi-
tions (if any exist) are of the noncritical type. For this kind of cir-
cuit we can construct a flow table, F. Our running example (Fig. 3,
Tables II, III, and IV, and Fig. 4) is of the proper classification, and
the associated flow table is given in Table VI.

TABLE VI.-The Flow Table Derived from Table IV and Fig. 4.

00 01 10 11

000 5 3 7

001 8 5 ® 7

010 9 5 ( 7
011 O 5 2 7

100 1 000
101 ( 5 6 7

110 Q 10 6 7

111 4 { 6 7

The circles in F correspond in position to those entries in r which
are made up of zeros only, and which therefore represent those circuit
conditions for which all secondary relays are stable. The circles are
numbered serially; the order of assignment of the numbers is unim-
portant. The remaining entries in F are uncircled, and each such entry
tells what stable circuit condition will ultimately result if the circuit is
put in a total relay state corresponding to the entry in question and if
the input state remains unchanged. This stable circuit condition can
be derived by analyzing the composite transition matrix, r. With this
rule, and aided by the diagram of Fig. 4, if necessary, we obtain Table VI.

Since we are going to state our synthesis problems in terms of flow

[J. F. I.172
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tables, it will be worth while to take time to understand thoroughly how
a flow table is used and what its entries mean. The flow table can give
us a graphic idea of what circuit actions can occur in a relay cir-
cuit. Just as in the composite transition matrix, horizontal motion in
the flow table corresponds to modification of the input state. Within
each row of the table the following rules hold:

1. Each circled entry in a row of a flow table indicates a stable
circuit condition, and no further changes will occur unless the input state
is modified.

2. Each circled circuit condition within a row of a flow table can
lead to any other circuit condition (circled or uncircled) which is listed
in the same row of the table.

3. Each uncircled entry in a row of a flow table indicates the stable
circuit condition which will ultimately follow if the input state is left
constant. This stable circuit condition, circled, will be listed in the
same column of the table, but in another row.

For example (see the fifth row of Table VI): If the existing circuit
condition is denoted by "6," then circuit conditions "1," "5," or "7"
can follow, depending upon whether the input state is changed from
"10" to "00," "01," or "11," respectively. If, in particular, circuit
condition "1" results (by changing the input state from "10" to "00"),
we must next concentrate our attention on the first row of the flow table,
because the circled "1" entry appears in this row.

The switching circuit which we have used in this section on analysis
is one which is designed to be used in conjunction with an electrically
operated lock. The single output of the unit is to act as the switch
which energizes the lock so that it can be opened. The two input
terminals are connected to two keys, K, and K2, respectively-each of
which has a single normally open contact. The "combination" which
is to open the lock is the following (the numbers refer to entries in
Table VI):

Starting with both keys released (1), K, is first depressed (3) and
then released (9); K2 is then depressed (10) and released (4); finally,
K1 is again depressed (2) and the lock is to open (8) when K, is then
released.

After the lock has been opened (8), depressing either or both of the
keys (5, 6, or 7) will allow it to be locked again. If a mistake is made
in working the "combination" for the lock, then one of the circuit con-
ditions 5, 6, or 7 will result, and the combination may be started again
only after both keys are first released (1).

Summary of Material on Analysis

The transition index TR has been defined. Its use led to the com-
posite transition matrix . and Z (the output matrix) give us all the
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information that the original circuit diagram can. With a knowledge
of the succession of input states, we may determine-with the aid of r-
the states of each relay of the switching circuit. Then, by looking at
the proper entry in Z, the output state is determined.

We have concerned ourselves only with the relative order of state
changes, and not with the actual timing in the circuit. With this out-
look, we have seen some of the situations which may arise. For a circuit
with no sustained cycles 9 or potentially critical race conditions, we have
defined a flow table F which is useful in determining ultimate circuit
conditions, if the input state is changed only after the secondary relays
have reached stable states.

III. THE SYNTHESIS OF A SEQUENTIAL RELAY CIRCUIT

Introductory Remarks

In this section our attention will be limited to those design problems
in which the input state changes only after a stationary output state
has been reached, and in which such an output state will always occur:
in other words, those circuit actions which could be those of a relay
circuit with ultimately stable terminal action.

The most difficult and the most important part of a synthesis of a
relay switching circuit-as with most other syntheses-is the problem
of saying what we want to do. The flow table does for sequential relay
circuits which have ultimately stable output what the table of combina-
tions does for combinational-type contact networks. In each case the
table gives in a precise way meanings that dozens of qualifying state-
ments in a word specification might never be able to convey.

We must keep in mind the situation which faces the designer. First,
he would like to specify what the circuit output state is to be for all
possible sequences of input states, and not for just a single sequence.
It is all very well to say what the output states should be for some
"normal" sequence of inputs; but if there is even a possibility that other
sequences might occur, then circuit action must be specified for these
sequences also. A complete problem specification must indicate clearly
what happens for each conceivable set of circumstances.

Secondly, if the circuit designer can honestly say that he cares only
about the output state as some function of the input state, he cannot
fairly say in the problem statement what secondary relays he wants to
use. The problem statement can then be made only in terms of what
signals are available (the input states) and what signals are desired (the
output states).

9 It is also possible to write flow tables for circuits with cycles or for circuits in which it
is important to specify output states in addition to those which correspond to total relay states
for which the circuit is stable. In such flow tables, entries of a type 'Ij" may be utilized.
Aln entry "j" is the "destination" of all entries with uncircled i's and it directs our attention
to the entry with a circled "j" as the next circuit condition of interest.
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The Problem Statement and the Flow Table

In order to illustrate the various problems which arise during the
synthesis of a sequential circuit, we shall first limit ourselves to a specific
example. The circuit we wish to design has some of the properties of
a "delay line." It is to have two input terminals and two output
terminals. We want the output state to be the same as the last previous
input state. In order to illustrate how restrictions on the input state
are taken care of, we shall specify that we shall use our circuit only
under those circumstances which allow the input state to change by one
variable at a time. In other words, for example, modification of the
input state from "01" to "00" or to "11" will be allowed, but from "01"
to "10" will be impossible. And so, after our synthesis is complete, it
would not be fair to complain of improper circuit action for these for-
bidden changes of input state; for we specify here that they cannot occur.

With the restrictions named above, there will be just two separate
circuit conditions possible for each input state, and each of these will
be associated with a different output state. For instance, if the input
state is "00," it could have been preceded by either "01" or "10." The
corresponding output state then will be either "01 " or " 10," respectively.

TABLE VII.-A Flow Table and Output Data for a "Delay Line" Circuit.
(a) Flow Table (b) Output Data

x: Stable
Circuit

00 01 10 11 Condition

( 3 5 1
0( 3 5 2

1 () 7 3
1 (i) 7 4

2 () 8 5
2 ) 8 6

4 6 ) 7

4 6 0 8

Output
State

01

10

00

11

00

11

01

10

Consequently, there will be eight stable circuit conditions-two for
each of the four possible input states. These are numbered serially
and listed as circled entries in Column (a) of Table VII, each in a sepa-
rate row and each in the proper column. The output state associated
with each is listed in Column (b).

Next we list the uncircled entries of the flow table, making use of
the three rules stated previously (see p. 173), and being careful to make
certain the conditions in the word statement of the problem are satisfied.
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The positions in the flow table which correspond to unallowable input
transitions are left blank.1'

The first row of our derived flow table informs us, for instance, that
circuit condition "1" (which may occur for input state "00") may lead
to either circuit condition "3" or "5," and Table VII, Clumn (b)
verifies that each of these latter conditions will give the proper output
state, "00."

Condensation of the Flow Table by Row Merging

From our discussion of flow tables in the section on analysis, we
know that there is going to be one secondary relay state assigned to
each row of the flow table. If our object is to reduce the number of
secondary relays as far as possible, we would like to be sure that our

TABLE VIII.-Hypothetical Derivation of a r Matrix Corresponding
to Table VII.

(a) Flow Table (b) The r Iatrix
x: x:

00 01 10 11 \ 00 01 10 11
oU. ' a:.
.7. I _,._ _

00 X (0 5 7 00
11 1( 3 ) 8 11

10 1 ( 6 0 10

01 2 4 00 01

00 00 11 10

00 11 00 10

10 00 11 00

10 11 00 00

problem has been stated in a flow table with as small a number of rows
as possible. Sometimes it is possible to merge two rows of a flow table.
Each such merger will reduce the number of rows by one. The rule
for merging of rows in a flow table is this:
L[4rTwo or more rows of a flow table may be merged if-and only if-for
each input state, these rows do not have conflicting entries. An entry which
appears in any one of the merged rows will appear in the composite row.
Those entries which are circled in any one of the merged rows will be circled
in the row resulting from the merger.

Application of this rule to Column (a) of Table VII indicates that
the following pairs of rows may be merged: one and three, two and five,
four and seven, and six and eight. The condensed flow table which
results from making all four mergers is given in Table VIII."1 The

10 We may also leave a position in a flow table vacant if, for the corresponding input-state
transition, we do not care to define the circuit action to follow. See the further discussion of
this point in Input-Output Sets, page 183 of this paper.

" In our example the result of making all possible row mergers gives an answer which is
independent of the order in which the mergers are made. In Requirements for a Unique
Flow-Table Condensation, page 188 of this paper, however, it will be proved that the result of
condensing a flow table to the point where no further mergers are possible may not be unique
if (as in our example) there are "vacancies" in the original table: that is, if some modifications
of input state are prohibited.
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merger of rows one and three, for example, results in the first row of
this new table.

The first row of Column (a) in Table VIII preserves the information
contained in each of the component rows. It retains the information
that circuit condition "1" leads to condition "3" or condition "5,"
depending on whether the input state is changed from "00" to "01"
or to "10," respectively. Similarly, this first row tells us (as did the
third row of Table VII, Column (a)) that circuit condition "3" may
lead either to condition "1" or to condition "7," depending on the
change of input state.

In the circuit which we shall synthesize from the condensed table,
circuit condition "3" would lead to circuit condition "5" if the input
state could be changed from "01" to "10." But the "if" is an enormous
one; for we stated firmly during the specification of the problem that
this transition in input state could not occur. Thus it is important to
recognize that, since this information which the top row of Table VIII,
Column (a) gives is about a hypothetical change in input state, it will
neither be of value to us nor cause us trouble. Similar situations are
apparent in each of the four rows in this same Column (a).

FIG. 6. Transition diagram for the derivation in Table VIII.

The Assigning of Secondary Relay States to the Rows of the Flow Table

Since there are four rows in the condensed flow table, it will be
necessary to have at least two secondary relays in order to assign a
distinct secondary relay state to each row. If we were to hypothesize
that the operating and release times of each secondary relay were pre-
cisely the same, and that this time was the same for each of the sec-
ondary relays, then the problem of assigning secondary relay states to
the rows of the flow table would be easy indeed. For then we could
assign them in some arbitrary fashion to the rows, as has been done in
Column (a) of Table VIII. The assumption that all operating and

V· __ _ l_~~~·-- .i
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release times were all the same would guarantee that all race conditions
would end in "ties," and we could then form the composite transition
matrix of Column (b) of Table VIII, which corresponds to the diagram
of Fig. 6. The transitions which correspond to the "tied races" are
indicated by the solid lines in the second and third columns of the figure.

From a practical point of view, the presence of race conditions such
as those discussed above is perilous; for if the operating characteristics
of a relay change slightly over a period of time, one or more of the transi-
tions indicated by dotted lines becomes possible. These transitions
would result in improper operation of the switching circuit.

We can avoid the difficulties of race conditions in which "ties" must
be achieved in order for proper circuit operation to occur (and therefore
in which some entries in must indicate two or more relays to be un-
stable). What we need to do is to assign secondary relay states to the
flow table in such a way that in r, only one secondary relay is indicated
to be unstable at a given time. After having done this, we may then
reconsider some of the entries in and allow, if we desire, noncritical
race conditions to exist.

For our present example, one assignment of secondary relay states
which avoids critical race conditions is that given in Table IX,
Column (a).

TABLE IX.-An Alternate Development of T and Yfrom Column (a)
of Table VII.

(a) Flow Table (b) r Matrix (c) Y Matrix
x: x:

00 01 10 11 00 01 10 11 00 01 10 11
\ X:~~~~~~~V

00 ( 5 7 00

01' ® 3 8 01

10 1 6 D 10

11 2 4 () () 11

00 00 01 10 00 00 00 01 10

00 01 00 10 01 01 00 01 11

10 00 01 00 10 00 10 11 10

10 01 00 00 11 01 10 11 11

Derivation of the and Y Matrices

The r matrix corresponding to our choice of secondary relay states
is given in Table IX, Column (b). By reversing the procedure of
analysis, we add cyclicly to each entry in r the secondary relay state
assigned to the row in which the entry is found. The Y matrix of
Column (c) results.

Derivation of the Z Matrix

By consulting the output data of Table VII, Column (b), we may
immediately assign to the Z matrix those output states which correspond
to the eight stable circuit conditions of Table IX, Column (a). The
result is the partially completed matrix of Table X.
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TABLE X.-Illustrating Development of the Z Matrix.

(a) Partial Z Matrix

00

(b) Completed Z Matrix

01 10 11 00 01 10 11

00 01
01 10
10
11

00

11
00

01
11 10

00
01
10
11

01
10
01
10

00 00 01
00 00 10
11 11 01
11 11 10

If we can honestly say that we are concerned with the output state
only after all the secondary relays of the switching circuit become stable,
then any choice whatsoever may be made in the output states which
are used to complete the Z matrix.

However, there are certain advantages to completing the matrix as
we have indicated in Table X, Column (b). Here we have assigned to
each entry in Z the output state associated with the corresponding
entry in F, even if the entry is uncircled in F. For example, both the
(01 ;00) and (01 ;01) positions in Z are given the output state "00,"
since these correspond to those positions in F which contain "3" as an
entry, and since the circuit condition "3" is associated with the output
state "00." If Y is completed in this way, we assure that, as the input
state is changed from its present value to a new value, the output state
immediately becomes and remains constant at the value corresponding
to the ultimate circuit condition.

TABLE XI.-The Derived Tables of Combinations.

X1 X2 Y1 y2

0 0 O 0
0 0 0 1
0 0 1 0
0 0 1 1

0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1

1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Y 1 Y 2 Z1 Z2

0
0
0
0

0
0
1
1

0
0
1
1

0 0 1
1 1 0
0 0 1
1 1 0

0 0 0
0 0 0
0 1 1
0 1 1

1 0 0
1 0 0
1 1 1
1 1 1

1 0 0 1
1 1 1 0
1 0 0 1
1 1 1 0
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The Tables of Combinations and the Final Circuit

We may reverse the steps taken in the section on analysis and
decompose the Y and Z matrices-listing the entries in tables of com-
binations instead of in the matrix form. The data in Table XI result
from the breaking down of the entries found in Tables IX(c) and X(b).

The purpose of this paper is to demonstrate that the problem of the
design of sequential relay circuits may be reduced to the problem of the
design of combinational-type contact networks. Our task is then com-
plete, and the designer of combinational circuits may now take the
data in Table XI and design corresponding secondary relay controlling
networks and the output networks. One possible realization of these
is given in the final circuit diagram of Fig. 7.

XI

I
FIG. 7. The synthesized "delay-line" circuit.

IV. FLOW TABLE MANIPULATION

Simplification of the Original Problem Statement

In our zest for listing all possible circuit actions in a problem specifi-
cation, it is conceivable that we may say more than we actually need to.

TABLE XII.-The Simplification of a Problem Statement.

(a) (b) (c)

00 01 10 11

0
1

1

1

1

1

1

1

7

4

4

4

4

4

2 6

3

5 (
5 6

6

5 8

Output
State 00 01 10 11

o 0

0 1

1 1

0 1

0 1

0 1

0 1

1 1

7

4

4

4

4

4

2 6

03
s O
5 6

6

5 3

s O

Output
State

0

0

1

0

0

0

0

1

00 01 10 11

7 2 6

1 4 0 3

1 4 5 (

1 ( 5 6

1 4 0 6

1 4 5 (

1 ()5 3

Output
State

0

0

1

0

0

0

0O

O
O

O

O

®
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Two or more circuit conditions which we have listed separately in a flow
table might, if proper means of analysis were available, be recognized
as a single condition. The elimination of this redundancy in the prob-
lem statement may be quite important to us if our object is to get as
simple a circuit realization as possible. In the following sections we
show that this overstatement of a problem can occur, and we shall give
rules for detecting it.

As an example to show how redundancy in a flow table might arise,
let us examine Table XII, Column (a) and the corresponding output
data. This table specifies a circuit which delivers an output ground
only at the end of the input sequence "00" --> "10" -- "11" or at the
end of the input sequence "00" -- "01" - "11." The first sequence
corresponds to the sequence of circuit conditions "1" -- "2" "3,"
and the second sequence to the sequence of circuit conditions "1" -- "7"
-> "8." The word specification of the problem is satisfied in the flow
table, but we may suspect that "3" and "8" could actually be considered
as the same circuit condition, since each of them is associated with the
same input state and the same output state.

Let us assume, tentatively, that conditions "3" and "8" are equiva-
lent. If this is true, any possible sequence of input states must give
identical outputs whether we start with the circled entry "3" or with
the circled entry "8." The third and eighth rows of Column (a) of
Table XII tell us that given changes of input state result in the same
ultimate circuit conditions, whether we start initially from "3" or from
"8"; and so our original assumption is valid.

Recognition of the equivalence of conditions "3" and "8" allows us
to reduce the number of circled entries in the flow table by replacing the
designator "8" with the designator "3." If this is done everywhere in
the table, Column (b) is the result. In this column the eighth row is
now redundant and it may be eliminated, as in Table XII, Column (c).
The effect of this procedure can be expressed alternatively by saying
that we have merged rows three and eight, and that the merger was
valid because circuit conditions "3" and "8" were equivalent.

Of course we may continue to condense the flow table by merging
the fourth, fifth, and sixth rows into a single row. These latter mergers,
however, would not change the number of circled entries in the table.

Now that our appetite for simplifying flow tables has been whetted,
we may be tempted to see equivalence when it does not exist. In
Table XII, Column (c), for instance, circled entries "4" and "7" are
both associated with the same input state and both give the same output
state. If the initial circuit condition is "4," a change of input state
from "01" to "11" produces the condition "6." On the other hand, if
the initial circuit condition is "7," the same change of input state (from
"01" to "11") gives the condition "3." But conditions "3" and "6"
cannot be equivalent because they give different output states. There-
fore "4" and "7" cannot be considered equivalent either.
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TABLE XIII.-The Simplification of a Problem Statement.

(a) (b) (c)
x: x :

00 01 10 11

6 () 4 7

6 3 7

5 1 8

5 2 ) 8

) 2 3 7

( 1 3 8

5 1 4 0
6 2 4 ()

Output
State 00 01 10 11

10 6 ) 3 7

10 60 3 7

11 5 108

11 5 1 08

11 1 3 7

00 ()1 3 8

00 5 1 3 (

01 6 1 3 ()

Output
State 00 01 10 11

10 6 3 7

10 5 1 08

11 1 3 7

11 ( 1 3 8

11 5 1 30

00 6 1 3 (

00

01

Sometimes the reasoning is not so straightforward as it was in the
above example. For instance, in Table XIII, Column (a), we might
examine for equivalence the entries "1" and "2." If we assume for
the time being that they are equivalent, then examination of the flow
table indicates that the validity of our assumption depends on whether
or not entries "3" and "4" are equivalent. When we look at the third
and fourth rows, we find in turn that "3" and "4" are equivalent if "1"
and "2" are. But this follows from the original assumption. Similar
reasoning would hold if we were to assume initially the equivalence of
"3" and "4." Our conclusions must be: "1" and "2" are equivalent,
and so are "3" and "4."

Because of the equivalences discovered above, we may condense
Column (a) of Table XIII by merging the first and second rows and by
merging the third and fourth rows. The procedure is first to replace
"2" by "1" and "4" by "3" everywhere in the table (see Column (b))
and then to eliminate the redundant rows as in Column (c).

Statement of Rules

With the aid of reasoning which we have done above, we now define
equivalence as follows:

Two circled entries of a flow table may be considered equivalent if,
and only if,

1. each entry appears in the same column of the flow table (is associated
with the same input state), and if

2. each entry is associated with the same output state, and if,
3. for each sequence of input states which could start equally well from

either of the two circuit conditions involved, the corresponding
output sequence is independent of which circuit condition was
used as the starting point.

Output
State

10

11

11

00

00

01
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Another way of saying this same thing is this: In a flow table, two
circled entries which are associated with the same input state and with
the same output state are equivalent unless there exists some sequence
of input states which may start from either of these two circled entries,
and yet which gives corresponding output sequences which differ from
each other.

There will be further illustration of these qualifications in the
following sections.

Problem Statements Which Have a Unique Simplification

Input-Output Sets

The circled entries of a flow table may be partitioned into mutually
exclusive input-output sets. Within each such set the members all have
a given input state and a given output state in common. If two entries
belong to different input-output sets, then either their input states or
their output states, or both, differ. For example, in Table XIV,
Column (a) we may place the entries into the following input-output sets:

(1,7,9,12) ; (5,14) ; (2,6,11); (4,8,13) ; and (3,10,15).

Notice that the pattern of vacancies in the rows corresponding to the
members of each set is the same. For instance, the second, sixth, and
eleventh rows have the following patterns of entries:

5 () 3

5 10

5 ( 3

In each of these rows the position in the third column is left vacant.
For flow tables which are constructed in such a way that the vacancy

pattern in the rows corresponding to the members of any given input-
output set is the same for all members of the set, there is a unique way
of eliminating redundancy and therefore a unique minimum-circled-
entry form of the table. This statement will be proved later in the
section entitled Equivalence-Sets (see page 185).

Meanwhile, let us note that a vacancy in a row of a flow table may
indicate one of two things: Either (1) the input transition corresponding
to the vacancy is impossible, or (2) for this transition we do not care
to define the resulting circuit action. In the latter case we must be
satisfied with whatever circuit action actually occurs when the relay
circuit is in operation.

When we have a flow table before us, we need not be concerned with
the reasons for vacancies-only that they exist. Therefore, for purposes
of the following discussion, let us assume that vacancies in a flow table
indicate that the corresponding transition in input state is impossible.
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Testing for Equivalence

Imagine now that we have before us two identical relay switching
circuits of the kind described by a given flow table. Assume also that
this flow table meets the requirement that the same vacancy pattern
shall exist for all members of a given input-output set. If we wanted
to test two different circuit conditions, "i" and "j," for equivalence, we
might do this by putting the two switching circuits into the conditions
"i" and "j," respectively.

Imagine now that a given sequence of input states is impressed upon
each of the circuits. If, at any time in this sequence, we find that an
input transition which is possible for one circuit is not possible for the
other, we might immediately conclude that the respective conditions
of the two circuits are not listed in the same input-output set. There-
fore we would have found one sequence of input states which, starting
with the initial circuit conditions "i" and "j," did not result in the same
output sequences. We should then conclude that "i" and "j" are not
equivalent.

TABLE XIV.-A Unique Simplification of a Problem Statement.

(a) (b) (c)

00 01 10 11

O 2 4

5 

5 2 4

1 0

(D 8
5 0

(6 8
7 

(D 2 4
1 6 4

50
(D 2 4

1 @
(D 8

1 6 4

10

3

0
10

10

3

3

10

3

10

10

Output
State

01

11

11

00

10

11

01

00

01

11

11

01

00

10

11

00 01 10 11

( 2 4 10

5 3

5 2 4 (

1 ( 10

0 8
5 (~) 10

() 6 8 3

7 6 3

1 6 4 (

.00 01 10 11

4 10

3
I---

Output
State

01

11

11

00

10

11

01

00

01

11

11

01

00

10

11

11

s Q
5 2

12

14 0

06
7

0 11

12 6

s O
) 2

1

1 6

Output
State

01

11

11

00

10

11

01

00

11

13

8

8

13

13

4

8

4

15)
15

10

3

3

10

3

15

10

0

_ � __
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With the aid of the reasoning above, we know that if any two circuit
conditions are equivalent to a third, then any input sequence which is
possible starting from any one of these conditions is possible starting
from the other two, and corresponding output sequences are the same
for all. It follows that each of the three conditions is equivalent to
the others.

Equivalence-Sets

By the logical extension of the argument above, we know that, for
a flow table meeting our restriction of uniform vacancy pattern for all
members of an input-output set, the input-output sets themselves may
be partitioned into equivalence-sets. These equivalence-sets are to be
defined in such a way that each member of the set is equivalent to every
other member of the set, and so that no member of one equivalence-set
is a member of another.

For Column (a) of Table XIV, we may-by techniques discussed in
preceding sections-determine that the equivalence-sets are: (1,9,12);
(7); (5,14); (2,11); (6); (4,13); (8); (3); and (10,15).

It is easiest to test for equivalence when a flow table is in its primitive
form: that is, with one circled entry per row. If we have determined
that the flow table meets our required restrictions on the placement of
vacancies, we may place the entries in equivalence-sets. If our object
is to simplify the problem statement as far as possible (reduce the num-
ber of circled entries to a minimum), the best we can do is to replace
each member of an equivalence-set by a single entry from that set, and
then to eliminate the resulting superfluous rows of the table. This
minimum number of circled entries is clearly unique, and is the same as
the number of equivalence-sets.

In Column (b) of Table XIV, we have replaced the members of each
equivalence-set by the member of this set which has the lowest nu-
merical designation, and then we have eliminated the redundant rows.
The table we have derived (Column (c)) is the simplest possible way of
stating the terminal action specified by the original flow table of
Column (a).

A Problem Simplification Which is not Unique

If a circuit is described by a primitive flow table which does not
meet the requirements of uniformity of vacancy pattern within each
input-output set, then it may not be possible to partition the entries of
the flow table into equivalence-sets. Practical situations in which there
may not be this required uniformity may occur if the input is the output
of another sequential switching circuit, or if a human being arbitrarily
restricts the input transitions allowable in accordance with his knowl-
edge of the internal state of the circuit.

)__.__ ______·· IIYI�-·---·ll�·-·ll�-L· - --.
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TABLE XV.-Two Simplifications of the Same Problem Statement.

(a) (b) (c)
X : X X:

00 01 10 11

(0 3 5

( 7 8
6 ® 4 5

1 
9 4 

90
2 3 ®

0 48

Output
State 00 01 10 11

01 ( 3 4 5

01 ) 7 4 8

00 1( 4 5

10 1 (

11 2 4 

01 2 () 8

11 2 3 ()

Output
State 00 01 10 11

01 ) 3 5

01 ) 7 8

00 6 )4 5

10 1 ()

11 6 4 

11 ( 3 4 8

01 6 (0) 8

01 2 3

01

In Column (a) of Table XV, the flow table does not meet the re-
strictions of uniformity of vacancy pattern; see, for example, the first
and sixth rows. Inspection of the flow table and the output data in
Column (a) shows us that the only input sequence which may start
with both condition "1" and condition "6" is that beginning "00, 01,
· -," and that for this sequence, condition "3" follows immediately
whether we start with "1" or with "6." Thus "1" and "6" have a sort
of equivalence. We shall call it pseudo-equivalence in order to distinguish
it from the true equivalence, which we discussed earlier (see section
beginning on page 183).

By reasoning similar to that used above, we may establish that en-
tries "2" and "9" possess this pseudo-equivalence also. And the
same is true for entries "6" and "9." The pseudo-equivalences which
we have found (there are no more equivalences of any kind) in the flow
table of Column (a) are summarized here.

"1" --> "6" "2" -* "9" "6" "9"

Notice that we cannot form mutually exclusive equivalence-sets as we
did with the tables meeting the uniform vacancy requirement.

The inability to form sets of equivalent entries leads to situations
which were not possible for flow tables meeting the uniform vacancy
restriction. If we replace "6" by "1" and "9" by "2" in Column (a)
of Table XV, and if we then merge the pairs of rows which contained
these circled entries, the flow table of Column (b) can be derived.
(When we compare, for example, the first row of Column (b) with the
first and sixth rows of Column (a), we find that we have retained the
information in the two component rows.) If, instead, we replace "9"

Output
State

01

01

00

10

11

01

11

01
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SEQUENTIAL SWITCHING CIRCUITS

by "6" everywhere in Column (a), and then merge the rows containing
these circled entries, Column (c) follows.

Now consider Columns (b) and (c) of Table XV, both of which repre-
sent the same problem, and in neither of which can the number of
circled entries be reduced further. It might well be that two different
people would have stated the problem in these two forms in the first
place, and so we cannot guarantee that there is a unique "simplest"
primitive form of the flow table for the general sequential circuit
problem.

Row Mergers

An Example in Which the Flow-Table Condensation is not Unique

Column (a) of Table VIII had a unique minimum-row form in
which no further row mergers were possible. In general, however,
when a flow table has "vacancies" there may not be a unique minimum-
row form. In the flow table of Column (a) of Table XVI, for example,

TABLE XVI.-Illustrating Non- Unique Flow-Table Condensations.

(a) (b) (c)
X: X: X:
00 01 10 11 00 01 10 11 00 01 10 11

(025 ( 4 0204
1 4 70( 1 30

6 I 8 2 3 20 8

2 3 1 8 1 0 3

1 (05 4

0 2 3
1 2 8

1,2 1,5 2,4 2,5 3,6 3,8 4,6 7,8

If we merge rows one, two, and five; rows three and eight; and rows
four and six; the result is that shown in Column (b). If, instead, we
merg and six; the rand ive, rows two and four, rows three and six, and
rows seven and eight, the resulting condensed flow table is that of
Column (c).

_ C_ w 1 1_11 f - S andi I· I~_ · _
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The flow tables of Columns (b) and (c) in Table XVI do not have
rows which can be merged further; yet each contains the same informa-
tion that the table of Column (a) does. From this simple example,
therefore, we have demonstrated that, in general, a flow table cannot-
by row merging-be reduced to a unique minimum-row form.

Requirements for a Unique Flow- Table Condensation

The result obtained in the previous section leads us naturally -to the
question: "Are there flow tables in which the operation of row merging
leads us to a unique minimum-row form of the table?" The answer is
"Yes." If a flow table has no "vacancies" (that is, if no input transi-
tions are prohibited), there is such a unique form. We shall see below
the reasoning behind our affirmative answer.

For any flow table of the "completely filled" type, we may form
mutually exclusive sets of rows in which the pattern of entries in the
rows of each set is the same. (The first three rows in Column (a) of
Table XVII comprise such a set.) Then all the rows within each set

TABLE XVII.-Illustrating a Unique Flow-Table Condensation.

(a) (b)
x: x:

00 01 10 11 00 01 10 11

Q328 0008

1 3 0 8 0 7 2 (

1 ( 2 8 1 3 ® 4

5 7 2 (D 6 A)
(0) 7 2 4

1 3 ( 4

9 () 6 8
9 7 6 (

0() 7 6 8

may be merged to give a single composite row which will have the same
entry pattern as the membqrs of the set. After all the rows within each
set have been merged, the resultant condensed flow table has as few
rows as we can obtain. This minimum-row result is unique, and inde-
pendent of the order in which the mergers were made.

By way of illustration of the principles stated above, consider
Column (a) of Table XVII. The entry patterns present in the various
rows of the table allow the following mutually exclusive sets of rows to
be formed: (1,2,3); (4,5); (6); and (7,8,9). The minimum-row form

�_� ____�___ I
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of this table is found by merging all rows of a set with each other. The
result in our present example is the flow table shown in Column (b) of
Table XVII.

Row Splitting

For the sake of completeness we must include among the possible
manipulations on a flow table a process which is the opposite of row
merging. It will be called row splitting. Future investigation may
show that this process is sometimes useful in modifying a flow table so
that the assignment of secondary relay states is made easier.

When a row of a flow table is split into several other rows, the
pattern of entry designations in each of these new rows must be equiva-
lent to that of the original row. In the flow table of Column (a) of
Table XVI II, one way of splitting the row containing the circled entries

TABLE XVII I.-Illustrating Splitting of Rows in a Flow Table.

(a) (b)
x: x:

00 01 10 11 00 01 10 11

(i) 6 6 3 ( 6 5 3

1 0 4 3 1 6 () 3
7 2 (0 1 (0 4 3

(0O) (i)0 3 7 2 0
O 6 4 3
7 ()) 3

one and five, and of splitting the row containing the circled entries four
and six, is that shown in Column (b). In this derived table the rows
resulting from the splitting process give the same description of circuit
action that the original flow table did, and we could obtain again the
original flow table by making all possible mergers in Column (b).

Another more complicated type of row splitting occurs if the row we
attempt to split has but one circled entry. Then the effect is to increase
the number of circled entries in the flow table; or we may say that the
single circled entry of such a row is itself split. The rules for splitting
an entry into two or more parts are easy to state. If we split an entry
"i" into m different entries, we take the row of the flow table which
contains the circled entry "i" and replace it by m rows which contain
circled entries "ii," "i2," * * , "i,_ Each of these m circled entries is
to be equivalent to the others. Thus each will be in the same column
as the original entry "i," and the output state associated with each will
be the same as that of the original entry. In each of the rows of the

I_ �----I"----·------·IIl�-l-l--·---·as�--· ·-- --·- _
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new flow table we insert uncircled entries which are either the same as
the corresponding entries in the original table or equivalent to them.

By way of illustration, let us, in Column (a) of Table XIX, split the
entry "1" into three parts, and the entry "3" into two parts. One way
of doing this is that given in Column (b). Notice that in this latter
table the uncircled entries "1" and "3" have been replaced by equivalent

TABLE XIX.-Illustrating Splitting of Entries in a Flow Table.

(a)

01 10 11

3

3

6

3

X:

00

4

0
5

5

2

4

0

4

(b)

01 10 11

(0 31

( 32

(0 32

7 32

7 6

12

G 31

4

4

4

0
5

5

0
2

4

4

4

entries everywhere in the table. We could, of course, simplify the
table of Column (b) to produce again the flow table of Column (a).

Combinations of the techniques above may be used to split the rows
in a flow table. (See the example leading up to Table XXV.) The
test for the validity of such splits is always to determine whether or not
the rows resulting from each split may be merged again to give the
original row.

(To be continued.)

X0

00

7
7

7

1

7

0
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THE SYNTHESIS OF SEQUENTIAL SWITCHING CIRCUITS*
BY

D. A. HUFFMAN 1

PART II t

V. GENERALIZATION OF THE SECONDARY RELAY ASSIGNMENT PROBLEM

On the Number of Secondary Relays Required
For s secondary relays there are 28 secondary relay states available

for assignment to the rows of the flow table. Since we want each of
the n rows of the flow table to be assigned a separate and distinct
secondary relay state, there must be at least as many secondary relay
states available as there are rows in the table. In other words, it is
necessary that n 2.

The least conceivable number of secondary relays which we shall
need for the flow table will be called So; and so will have the property
that it is the least integer which satisfies the inequality above.

It can also be demonstrated, by actually specifying a circuit, that
certainly no more than 2so + 1 secondary relays are necessary for the
synthesis of a circuit which is described by a flow table with n rows.'2

Derivation of Formalized Assignment Criteria
Rather than try to build up a cumbersome catalog of situations

which may arise in the assignment of secondary relay states, we shall
immediately point out some other objectives we seek in the synthesis
of any relay switching circuits.

It is our purpose to design circuits in such a way that the relation-
ships among the operate and release times for the various relays play
no part in the circuit operation. This requirement eliminates the possi-
bility of including critical race conditions in the properties of the syn-
thesized circuit. Where no race conditions exist, it is always possible
for circuit operation to occur in such a way that successive secondary
relay states involve only unit changes of state: that is, changes in which
a single secondary relay variable is modified (see, for example, Table IV
and Fig. 4).

In a flow table in which only unit changes of secondary relay state
are to occur, each uncircled entry "k" must lead to the circled entry

* This paper is derived from a dissertation submitted in partial fulfillment of the require-
ments for the degree Doctor of Science at the Massachusetts Institute of Technology.

1 Department of Electrical Engineering, Massachusetts Institute of Technology, Cam-
bridge, Mass.

t Part I was published in this JOURNAL for March, 1954.
12 See The "2so + 1" Realization, page 284 of this paper
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"k" (in the same column of the table) by a succession of adjacent second-
ary relay states. \We will say then that each uncircled "k" entry is
connected to the circled "k" entry.

We shall call a set of secondary relay states connected if each member
of the set can be connected to every other member of the set by at least
one succession of adjacent states from the set. For example, in Table
XXIV(a), the 8-set (for k = 8) is composed of the secondary relay
states "100," "010," and "110." This 8-set is connected, since (for
instance) the state "010" may be connected to the state "100" by the
succession "010"-"110"-"100."

In the synthesis procedure, therefore, we wish to assign secondary
relay states to the rows of the flow table in such a way that each k-set is
connected. (There will be as many k-sets as there are circled entries.)
This assures us that the r matrix can be constructed in such a way that
only unit changes of state are indicated.

An important fact to keep fixed in mind in assigning secondary relay
states is that the adjacency of two states is not affected by making a
given interchange of variables in the state designators, or by comple-
menting corresponding variables in the two states. For instance, the
two states "1011" and "1010" are adjacent. If we interchange the
second and third variables in each state, we get "1101" and "1100,"
respectively, and these new states are still adjacent. If, instead, we
complement the first variable in each of the original state designators,
the results are "0011" and "0010," respectively, and again the modified
states are adjacent.

The reasoning above tells us that once we have any solution to the
problem of assigning secondary relay states to the rows of the flow
table, then we may perform given interchanges of variables and/or
complementations on any number of the secondary relay states, and
still have a valid assignment.

An Ideal Situation for Assignment
The Problem Statement

Here we include a synthesis example in which the solution of the
assignment problem is straightforward. Its purpose is to show some
of the goals which we should strive for, even though-in the syntheses
of most switching circuits-they will not be so readily reached.

The circuit we wish to synthesize has two input leads and four
output leads (see Fig. 8). The input restrictions are such that only

No. I
Input No. I Relay Output
Leads Switching No.4 No. 2 Leads

No. 2 Circuit
No. 3

FIG. 8. A switching circuit to be synthesized.

·· _ ___. I
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one input lead may be grounded at a time, and so that neither input
lead may be grounded unless both are first ungrounded. This latter
restriction prohibits the transitions in input state from "01" to "10,"
and vice versa.

Of the four output leads, one-and only one-is to be grounded at
a time. With the second input ungrounded, each grounding of the first
input lead is to "advance" the position of the output ground by one
step (clockwise on the schematic diagram). Removal of the input
ground is to have no effect upon the output: for example, if initially
both input leads are ungrounded and the No. 2 output lead is the one

(a)
TABLE XX.

(b)

00 01 10

0
2

3

4

1

2

3

4

8

5

6

7

0®D

11

10

11

12

9

0

Output
State 00 01 10

0
0
0

1

2

3

4

1000

0100

0010

0001

1000

0100

0010

0001

1000

0100

0010

0001

8

5

6

7

®D

10

11

12

9

0

grounded, grounding of the first input lead is to remove the ground
from the No. 2 output lead and impress the ground instead upon the
No. 3 output lead. Subsequent removal of the input ground is to have
no further effect on the output.

The grounding of the second input lead, on the other hand, is to
make the position of the output ground "retreat" to the next counter-
clockwise lead in the schematic diagram.

Our synthesized circuit is then to be a sort of "reversible counter";
a ground on one input lead is to have an effect opposite to that of a
ground on the other input lead.

11
-
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The Synthesis
A flow table corresponding to our problem statement is the one given

in Table XX, Column (a). In it, no equivalences exist, but the mergers
indicated in Column (b) may be made. In this latter flow table there
are eight rows, and thus we know that at least three secondary relays
will be necessary for a realization.

TABLE XXI.

(a) Flow Table

01 10 11

8

0
7

6

10

©
0

9

1212

5 11

00
(c) Y Matrix

01 10 11

001 100 (101)

001 001 (001)

010 010 (010)

111 010 (110)

100 100 (100)

100 001 (000)

010 111 (011)

111 111 (111)

(b) r Matrix

00

\ X:

000

001

010

011

100

101

110

111

000

010

010

000

010

000

000

010

01 10 11

001

000

000

100

000

001

100

000

100

000

000

001

000

100

001

000

(d) Z Matrix

00 01 10 11

000

001

010

011

100

101

110

111

1000

0001

1000

0001

0100

0010

0100

0010

1000

0001

1000

0001

0100

0010

0100

0010

1000

0001

1000

0001

0100

0010

0100

0010

(1000)

(0001)

(1000)

(0001)

(0100)

(0010)

(0100)

(0010)

Since each k-set consists of just two members, we may make each
such set connected if we assign adjacent secondary relay states to these
two members. One assignment satisfying this restriction is that of
Table XXI, Column (a). It is ideal in the sense that a change in state
of no more than one secondary relay ever is required in passing from
any circuit condition to any other. Further, this assignment can be

\ X:

y:\

000

001

010

011

100

101

110

111

y:\

000

001

010

011

100

101

110

111

00

0
4

1

0
2

0
3

00

000

011

000

011

110

101

110

101
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made without any modification of the flow table from the form given
in Column (b) of Table XXI, other than reordering of its rows.

Clearly there will be many flow tables for which this fortuitous
assignment may not be made. Nevertheless the operational advan-
tages of this kind of assignment are such that any flow table should
first be optimistically examined with the hope that it is a case of this
type.

Input
Terminols x2

X2 Y'yi

Yz2

y 3
X2

Xl

y_; 2

Y3

YI

Y2

No. 4 Jo.2 Output
Networks

No. 3

FIG. 9. The synthesized "reversible counter."

The T and Y matrices were developed in the usual manner. The
underlined entries of the Z matrix correspond to circled entries in the
flow table and therefore are the output states associated with these
entries. In order to simplify the output networks the additional entries
in the Z matrix were chosen so that the output state does not change
to its ultimate value until the proper secondary relay action has been
completed.' 3 The parenthesized entries in the Y and Z matrices corre-

13 Contrast this procedure with that in The Tables of Combinations and the Final Circuit,
Part I of this paper, page 180.

> - =~~~~~~~~~~~
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spond to non-occurring total relay states, and they were chosen to
simplify the contact network structures in the circuit diagrammed in
Fig. 9.

A Non-Ideal Situation for Assignment
The Problem Statement

The flow table in Column (a) of Table XXII describes a circuit
which has two outputs, each somewhat under the direct control of its
respective input. Starting from condition "1" (for which neither of the
inputs and neither of the outputs is grounded) grounding of the xi input
grounds the z output ("3"); grounding of the x2 input grounds the z2

output ("2"). But simultaneous grounding of both x and x2 results
in no ground at the output ("10"). In the latter case no possibility of
an output ground exists ("8" and "9") until the circuit is returned to
condition "1" by the ungrounding of both inputs.

In case a ground on the zl output lead was originally obtained ("3")
it will remain ("5" and "7") until such a time as it is removed by the
appearance of a ground signal on the x2 input lead only ("8"). Simi-
larly, in case a ground on the z2 lead was originally obtained ("2") it
will remain until such time as it is removed by the appearance of a
ground on the x input lead only ("9").

The Synthesis
Since all input transitions are allowed, the flow table is completely

filled. Its minimum-row form is unique (see Table XXII, Column (b))
and at least so = 2 secondary relays will be necessary for a realization.

TABLE XXII.
(a) (b)

X:

00 01 10 11

O 2 3 10

6 0 9 4

7 8 (D 5
6 2 9 (

7 8 3 (

( 2 9 4

O 8 3 5

1 9 10

1 8 10

1 8 9 (1)

Output
State

00

01 x:
10 00 01 10 11

01 2 3 10
10 9 
01 8 0 
10 I ® 
00

00

00

� �__ I_ __ I
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TABLE XXIII.

(a) Flow Table (b) r Matrix

\ 00 01 10 11 00 01 10 11Y:\ y:\~~\ I

000 (1 2 3 10 000

001 () 9 ) 001
010 ) 8 ® ) 010
011 011

100 1 ( 100 
101 9 101

110 8 110

111 111

000 001 010 100

000 000 100 000

000 100 000 000

100 000 000 000

001

010

Notice that the flow table requires that, in order to qnake the 1-, 2-,
and 3-sets connected, the secondary state assigned to its first row be
adjacent to the states assigned to its fourth, second, and third rows,
respectively. Because no one of the four states (00, 01, 10, and 11)
which are available from two relays can be adjacent to each of the
other states, we know that two relays will not be sufficient for a proper
secondary assignment. Therefore, for this flow table, at least three
relays are necessary.

In actuality no proper assignment can be made to the flow table as
it stands in Column (b) of Table XXII, regardless of how many sec-
ondary relays are used. We may recognize the dilemma which exists
if we appreciate that each secondary relay state is either even or odd,
depending on whether the state designator has an even or odd number
of unity components. Thus, the state "10010" is even, while "10110"
is odd. If two states (such as the two above) are adjacent, one must
be even and the other odd.

In Table XXII, Column (b), therefore, if we choose to assign an odd
state to the first row of the table, then the state associated with the
second row must be even (since the 2-set must be connected and the
two members of the set must then be adjacent). If an odd secondary
relay state is associated with the first row of the table-as we have
assumed-that associated with the fourth row must also be even, since
the 1-set must be connected. But the second and fourth rows cannot
both be assigned even states, since this makes it impossible for the two
members of the 9-set to be adjacent.

The dilemma above may be bypassed if we augment the flow table
by inserting additional "8" and "9" entries and if we assign the sec-
ondary states as shown in Column (a) of Table XXIII. The purpose

_1I-1I_ __�·IIL--·ll�pl�-·llI�·--·CTIIIIII�--�^-.IIL��IIIUIIIU--l^·Y--·---·Ubm*(L·II� --
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of augmenting the flow table in this way is to make both the 8-set
and the 9-set connected. The corresponding partial r matrix is that of
Column (b).

Another possible solution to the assignment problem may occur if
we do not make all possible row mergers in the original primitive table.

TABLE XXIV.
(a) Flow Table (b) Matrix

x: \ x:

00 01 10 11 00 01 10 11

000 ( 2 3 10 000 000 001 010 100

001 6 Q 9 4 001 100 000 100 100

010 7 8 5 010 100 100 000 100

011 011

100 1 ® @ D 100 100 000 000 000

101Q 2 9 101 000 100 001 000

110QO 8 3 110 000 010 100 000

111 111

For instance, the assignment made in Table XXIV is a valid one for
our present example.

If we split the entries in each row of the table of Column (b) of
Table XXIV and make the secondary state assignment of Table XXV,
Column (a) (notice the symmetry about the dotted horizontal line), we
obtain a flow table in which no more than one secondary relay need

TABLE XXV.
(a) Flow Table (b) r Matrix

00 01 10 11 00 01 10 11Y:\ \ :

O 21 31 102 000

Q QD 91 001

/N 81 6" ( 010

12 (E e ® 011.:............. .... o .
11 @ 10 100

(D 82 ( ( 101

( (D 92 ( 110

. 2 32 .10 Ill

000 001 010 100

000 000 010 000

000 001 000 000

100 000 000 000

100 000 000 000

000 001 000 000

000 000 010 000

000 001 010 100

000

001

010

011

100

101

110

111

__ �__
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TABLE XXVI.

(a) Y Matrix

01 10 11 00

(b) Z Matrix

01 10 11

001 010 100 000

001 011 001

011 010 010

011 011 011

100 100 100

100 101 101

110 100 110

110 101 011

001

010

011

100

101

110

111

00

01

10

00

00

10

01

00

00 00 00

01 01 01

10 10 10

00 00 00

00 00 00

10 10 10

01 01 01

00 00 00

change state in going from one circuit condition to another.14
Y, and Z matrices corresponding to this latter assignment are
Table XXV, Column (b) and Table XXVI. The final circuit
is shown in Fig. 10.

X,

- ~~~t~ ~ilk-a

The r,
given in
diagram

Y2 Y1I Y31

Y- Y y3 - z

FIG. 10. The circuit derived from the flow table of Table XXV.

14 It is easy to prove that any four-row table may be processed in the manner of this
paragraph and that the resultant circuit is one in which a change in circuit condition requires,
at most, a change of state of just one secondary relay. Inherent in such a proof is the conclu-
sion that any four-row table may be realized in a circuit which uses three secondary relays.

00

000

001

010

011

100

101

110

111

000

001

010

111

000

101

110

111

l

'I
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VI. STANDARD CIRCUIT REALIZATIONS

Purpose
For some complex flow tables it may not be practically possible for

the designer to find a solution to the problem of assigning secondary
relay states, even though he knows (from the preceding section) what
principles should guide him. For the general sequential circuit (with
ultimately stable terminal action) the author knows of no definitive
procedure which assigns secondary relay states to the flow table in such
a way that all k-sets are connected, and so that a minimum number of
secondary relays is used. Because of this fact it is valuable for a circuit
designer to have at hand "standard" circuit realizations for the second-
ary relay control networks. The following two sub-sections demon-
strate that such realizations exist, no matter what the form of the flow
table may be.

The "2So + 1" Realization
In this section we shall demonstrate that, for a flow table with n

rows, a circuit can be designed which uses exactly 2s0o + 1 secondary
relays.15 Since, for the arbitrary flow table with n rows, no general
method has yet been found which uses fewer relays, we must consider
this as an upper limit on the number needed. If other design methods
can be found which will be valid for any flow table and which will always
require fewer than 2so + 1 secondary relays for the circuit realization,
then a new and better upper limit will have been discovered. 6

The "2so + 1" realization is one which is valid regardless of the
details of construction of the particular flow table. It is a "standard"
circuit in the sense that certain main features remain the same, no
matter what flow table we wish to give a circuit realization. The
schematic circuit diagram for the "2so + 1" realization is given in Fig. 11
for the particular case So = 3. In order to adapt this circuit to a given
flow table, we need only design the various C networks (and their
complements) and substitute them into the standard circuit. The
number of C networks it will be necessary to design will be the same as so.

Even though the idea of connected k-sets is valid for the "2So + 1"
realization, it is also cumbersome, and we shall satisfy ourselves with a
direct demonstration that all race conditions which occur are noncritical
in nature.

In order to discuss the actions of the secondary relays, we shall
break up these relays into two groups (the a-group and the -group) of
So relays each; the remaining relay will be called Y. Thus the 2so + 1
secondary relays will be called Y,1 Y 2, "', Y-, Y, Y 2, ... YO,,
and Yo.

'5 so was defined in On the Number of Secondary Relays Required, this paper, page 275.
16 In recent research the author has proved that 2so-1 is always a sufficient number of

secondary relays to implement a flow table. However, for relay circuits, this upper bound
does not correspond to a simple standard circuit, as does the 2so+l-1 bound. The results of
this research will be published later this year.

I ___
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It will be easier to demonstrate how a circuit can be constructed
with 2so + 1 secondary relays if we work with an example. The ex-
ample we have chosen is that of Table XXVII(a). Here there is a
flow table of n = 7 rows and 2s0o + 1 is found to be equal to seven.
The secondary relay states assigned have been indicated beside the
rows of the table. Each secondary relay state, y, has been decomposed
into components consisting of the states of the a-group of relays, those
of the -group of relays, and the state of the single relay, Yo. In our
example the notation for the secondary relay state is y = (ya, yo, Yo).

Yo I al
LoAX_

Yo Y 2 Y2
IY°

02

Yo Ya3
-11--I - Y03

, Yo
l- .1

I I -

· Y-I Iye I

_yt 2 yi.X

A23 yB6

,Yo .Yal v

Y Y---y
UU 

y2

- . .. _

YE2 s

Y Y Y'

__H C C ~~r Iy
may0 ~ E1:-

.YO

FIG. 11. The "2so + 1" circuit realization (for so = 3).

y a and y represent the states of the a- and the -groups of three (so)
relays each, and yo is the state of the remaining relay. For instance,
in the third row of the table in (a) of Table XXVII, y = y = 010
and Yo = 0.

We soon notice in (a) of Table XXVII that each secondary relay
state, y, has been chosen of the form y = (yi, yi, 0). In other words,
each row has assigned to it a set of secondary relay states so that y, = yg
and yo = 0. Since each of the a- and -groups of relays has three (so)
members, we may be sure that there are enough secondary relay states

Yo

IL

_II___II�____II_·_-11141 ----LI�I_.III-�L-UI^*�_-L---.·-.
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(yi, Yi, 0) available to go around among the rows of the flow table.
(The particular values of yi assigned to the various rows of the table
are completely arbitrary.)

A circuit can be constructed to utilize the assignment of secondary
relay states which is given in Table XXVII(a). Figure 11 represents
such a circuit. Especial attention should be paid to the construction

TABLE XXVII.-A Flow Table and the Corresponding
C1 NAetwork in MIatrix Form.

(a)

Y = (Ya, Y, yo):

000 000 0

001 001 0

010 010 0

011 011 0

100 100 0

101 101 0

110 110 0

YB = (Y$1, Y#2, YOe) 

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

000 001 010 011 100 101 110 111

21

9

1

9

10

0

2

20

3

11

22

17

12

4

13

©
23

13

05
@

0
14

19

6

0i

18

7

0
15

16

24

8

@
(b)

000 001 010 011 100 101 110 111

0 0 0 0 1 0 0 1

1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 O 0 0 1 0 1 0

0 1 0 1 1 0 1 0

0 0 1 1 1 1 1 1

1 1 1 0 1 1 0 1

of the contact networks controlling the relays in the a-group and in the
/3-group, and to that controlling the yo relay, because the form of these
networks is the same no matter what the number of rows in the flow
table with which we start.

In Fig. 11, the C networks are made up of contacts from the primary
relays and of contacts from the g-group of secondary relays. Now we

- -- --- - -- -----
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shall investigate the construction of a typical C network. The motives
behind this construction will be evident when circuit action is described
later.

Each position in the flow table of (a) in Table XXVII corresponds
to a fixed combination of y3 = (yfl, y02, yo3) and of x = (x1, x 2, X3). The
matrix for each C network will be in terms of combinations of these
values of ye and x. In (b) of Table XXVII we have derived the entries
in the matrix representation for the C1 network. This network will be
used later as a building block in forming the controlling network for
the Y,, relay and also for the network which controls the Yo relay. (In
general, the two-terminal network C is used in the control networks
for the Yj and Y relays.)

Suppose, for instance, that we wish to find the proper entry in the
(110; 011) position of the C1 matrix. We should first look at the corre-
sponding position in the flow table. It contains an uncircled "7."
Notice now that the circled "7" is in a row corresponding to y", = 1.
(yal is the first component of y.) And so we make the entry in the
(110;011) position of the C1 matrix the digit "1." If we continue to
fill in the C1 matrix by inserting these ultimate values of ya, the result
is (b) of Table XXVII. (The last row of the matrix may be completed
in any arbitrary fashion.)

Now that we have given the rule for construction of the C networks
in Fig. 11, we shall soon see the reason for specifying the networks in
this way. Whenever the circuit is in a stable condition, our method
of formation of the C networks assures that C1 = y, C2 = y2, and
C3 = y3a. And also, for any stable circuit condition, ya = y1, ya2 = y2,
and y,a3 = $3. These restrictions, applied to the typical physical cir-
cuit configuration of Fig. 11, tell us that each of the seven secondary
relays is in a stable state. Let us investigate now what happens as we
change the circuit from condition "3" to condition "21." The starting
point for our discussion of circuit changes is the stable circuit condition
"3" for which

C = , C = 0, C3 = 1,
yai = 0, ya2 = 0, ya3 = 1,
y = 0, y02 = 0, yY3 = 1, and yo = 0.

The flow table in (a) of Table XXVII indicates that a change of
input state from "010" to "000" should result in the ultimate circuit
condition "21." Of particular interest to us is the action of the various
groups of secondary relays.

The method of building the C networks was such that, whenever
the input state is modified, these C networks immediately assume trans-
missions corresponding to ultimate states of the relays in the a-group.
In our example this means that change of the input state from "010"
to "000" modifies the C network transmissions to C = 1, C2 = 1, and
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C3 = 0. These correspond to the value of y, = 110, which is associated
with the circuit condition "21." We now have

C 1 = 1, C2 = 1, C3 = 0,
y. = 0, ya2 = 0, y = 1,
y = 0, y 2 = O, y#3 = 1, and y0o = 0.

This change in the transmission of the C networks assures that the
relays in the a-group are now energized according to their ultimate
states of operation (see Fig. 11). It can be observed that the relay Yo,
and the relays in the P-group are still in stable states.

After a time, all the relays in the a-group have reached their ultimate
states of operation. Then

C 1 = 1, C2 = 1, C = 0,
Yai = 1, ya2 = 1, ya3 = 0,

yI = 0, y2 = 0, y=3 =1, and y0o = 0.

Yo becomes energized (see the controlling network for Y0 in Fig. 11)
just as soon as corresponding values of the transmissions of the C net-
works and the states of operation of the a-relays become equal-and not
before. As soon as Y 0 becomes operated,

C1 = 1, C2 = 1, C3 = 0,
'al = 1, ya2 = 1, ya3 = 0,
y, = 0, y2 = 0, ya3 = 1, and y0o = 1.

Operation of Y0 does not change the stability of the relays in the
a-group. But just as soon as-and not before-Yo is operated, the fi-
relays become unstable. Eventually these j-relays will become oper-
ated in the same way as their counterparts in the a-group. Then

C 1 = 1, C2 = 1, C = 0,
yal = 1, y2 = 1, ya3 = 0,

ys = 1, y02 = 1, y,3 = 0, and y0o = 1.

During the time before the states of operation of the p-relays match
up with the corresponding states of operation of the a-relays, the trans-
missions of the various C networks will be changing, since they are
functions of the transmissions of contacts on the -group of relays.
During this time the Y0 relay is kept operated by the path to ground
through its own y0 contact. However, as soon as all -relays are oper-
ated in the same pattern as the a-relays, Yo becomes de-energized and
eventually unoperated. Now

C 1 = 1, C2 = 1, C3 = 0,
yal = 1, ya2 = 1, Yr3 = 0,
y = 1, y = 1, ya = 0, and yo = 0.

[J. F. I.288
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All secondary relays are again in stable states and again y = y and
yo = 0. The circuit is at last in condition "21" and this was the de-
sired result.

The changes in secondary relay state which have been described in
the preceding paragraphs can be summed up in the briefer graphical
form in Table XXVIII. The heavy arrows indicate where race condi-
tions exist, but we have demonstrated that these are not critical.

TABLE XXVIII.-Secondary Relay Actions.

y: (ya, y Yo)

001 001 0

110 001 0
110 001 1)

110 110 1
110 110 0)

The control network configurations in the circuit of Fig. 11 are char-
acteristic of the "2so + 1" realization. So also are the actions of the
groups of secondary relays given in Table XXVIII. To sum up:

When the circuit is stable, then an input-state modification which
leads to a circuit condition which is represented in a new row of the
flow table produces secondary relay action, as given below.

1. The a-relays change to the "new" states.
2. The Y relay operates.
3. The -relays change to the "new" states.
4. The Y relay releases again to its unoperated state.

The "One-Relay-Per-Row" Realization

An interesting realization of a sequential circuit results if each row
of the flow table is associated with its own relay. Thus, for a table
with n rows, there will be n secondary relays. For each stable circuit
condition represented in the ith row of the table, the ith (and only the
ith) secondary relay is to be operated. For example, we might assign
secondary relay states to the flow table shown in Table XXIX.

We wish to specify controlling networks for the secondary relays so
that when a stable circuit condition represented in the ith row of the
table (and associated, therefore, with the ith secondary relay) is followed
by a stable condition in the jth row, then the only intermediate sec-
ondary relay state is to be one in which both the ith and the jth (and
only these) secondary relays are operated. For instance-in Table
XXIX-if we want to pass from condition "3" to condition "21," the
following secondary relay action will occur:

·--· lli~~~~~~~~~~~~~~~~~~~~~~~~~l~~~~~~~ -*-- - -I--- -··I-L-··-·41~·1.1-_ -------- - _ ----1
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1. If the circuit is in condition "3," the total relay state is (010;
0100000).

2. If the input state is now changed to "000," then the total relay
state immediately changes to (000; 0100000).

3. We wish the state in (2) above to be followed by the state (000;
0100001).

4. The next, and final, total relay state is to be (000; 0000001).

TABLE XXIX.-A Flow Table.
x:

y:\ 000 001 010 011 100 101 110 111

1000000 10 i 13 16

0100000 21 () ( 17 ) () 18
0010000 9 Q 12 23 14 3
0001000 (D 3 13 3 7 24
0000100 1 11 19 @ 8

0000010 9 2 Q 5 6 
0000001 ) 20 22 4 © () 15 )

In order to illustrate the general rule for formation of the secondary
relay controlling networks, we shall design these networks for the second
and seventh secondary relays; these are the relays associated with the
circuit conditions "3" and "21," respectively.

The controlling networks for each of the secondary relays may be
considered to be in the general form shown in Fig. 12. If the relay Yi

FIG. 12. Il!ustrating te design of secondary relay control networks.

is not operated, then the closing of the A network will result in its
operation. On the other hand, if Y is operated and the A network
is open, then opening the B network will result in the release of the relay
to its unoperated state.

Let us now form the network Y2. The A network is to be closed
whenever any one of the following statements is true:

1. The input state is "010" and the fourth relay is operated.
2. The input state is "100" and the third relay is operated.
3. The input state is "101" and the third relay is operated.
4. The input state is "111" and the fifth relay is operated.

_ _�_
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Each condition above is one which ultimately leads to a stable cir-
cuit condition represented in the second row of the table. The circuit
realization of the conditions above is given in the upper network of
Fig. 13(a).

The B network for the second secondary relay is to be one which
opens whenever other secondary relays become operated. However,
inspection of the flow table shows that the only rows which may be
entered from circled entries in the second row are:

(1) the seventh; (2) the sixth; (3) the first.

The circuit realization which satisfies the requirements above is given
in the lower network of Fig. 13 (a).

In Fig. 13(b) is a simplified terminally-equivalent version of the Y2
network which is obtained from Fig. 13(a).

In Fig. 14(a) and (b) are given the original and the simplified con-
trol networks for the Y7 relay.

One important practical problem would arise in the operation of the
circuit which we have designed above. Assume that the supply voltage
for the secondary relays has been disconnected from these relays-as it
would be during a shutdown period. Then each secondary relay is
unoperated and therefore yl = y2 = -- = y7 = 0. Examination of
the networks controlling the secondary relays (those of Figs. 13(a) and
14(a) are typical) would reveal that the transmission of none of these
networks can become unity until one of the secondary relays becomes
operated. But none of these relays, in turn, can become operated (or
even energized) until transmission of its controlling network becomes
unity. These facts lead us to the conclusion that, as the circuit stands,
proper operation cannot occur if the power is once turned off. To
remedy this defect in the circuit, we may add to one of the secondary
relay control networks (say Y 1) a parallel branch consisting of a cascade
connection of normally closed contacts from each of the secondary
relays (see Fig. 15). Now when the voltage supply is connected to
the relays, Y1 will operate initially and the ensuing circuit action can
be that specified by the flow table.

There are two most interesting characteristics of a circuit derived
in the manner above:

1. The maximum time necessary for transfer from one stable circuit
condition to another is equal to the release time for the "old" relay,
plus the operating time of the "new" relay. (In our example above,
Y2 is the "old" relay and Y7 the "new" relay.)

2. Since only one secondary relay is operated when the circuit is
stable, and since the greatest number of relays ever operated is two
(and this is only a transient condition), then there is always very low
current drain from the voltage supply.

[J. F. I.292
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VII. SUMMARY OF THE SYNTHESIS PROCEDURE

In the preceding sections we have developed a number of attitudes
and procedures which have been useful in formalizing the steps of our
synthesis procedure. We have demonstrated that the problem of de-
signing a relay switching circuit with sequential and ultimately stable
terminal action may be reduced to the equivalent problem of designing
several combinational-type contact networks. The steps which we ad-
vise taking in the synthesis of a sequential relay circuit are these:

1. Make a statement of the problem in terms of a flow table in such
a way that the specifications of the desired circuit action are exhaustively
listed.

2. Investigate the conciseness of the problem statement and the
possibility of simplification. We have proved that, for a flow table
with "uniform vacancy" within each input-output set, the ultimate
simplification will be unique.

3. Determine possible row mergers in the flow table so that the table
may be shortened in length. We have proved that, for a circuit in
which any input transition is possible, the form of the minimum-row
condensed form of the flow table will be unique.

4. Assign secondary relay states to the rows of the flow table in
such a way that all k-sets are connected. To make this assignment, it
may be necessary to augment the flow table by additional uncircled
entries. If desired, we may use the operation of row splitting as a
supplementary tool.

5. Develop a r matrix so as to realize the transitions indicated by
the flow table. If we have made each k-set connected, the existence of
at least one proper r matrix is guaranteed.

6. Derive, by established procedure, a Y matrix corresponding to
the matrix.

7. Place the output data in the Z matrix. If we wish the ultimate
output state to appear as soon as possible after the input state is
changed, we insert in each position of the Z matrix the output state
associated with the corresponding numerical designator in the flow table,
whether this designator be circled or not.

8. List the information in the Y and Z matrices in tables of combi-
nations for the use of the designer of the static contact networks. With
the initial assumptions we have made about the characteristics of the
component relays, these secondary relay control networks and output
networks will force the circuit to operate with the action specified by
the original flow table.

In a particularly complex synthesis problem, we may find it im-
possible to solve by inspection the problem of assigning secondary relay
states to the rows of the flow table; or we may wish to take advantage
of the properties peculiar to one of the "standard" circuit realizations.

_ _�___I�__IIIUII·Il·_I^-_-�_--�� -I_1I--·- -··--r�--�_·_urru�ryL·u^·-rur�*;u--X-·-
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In this case, circuit realization may be made in terms of the "2so + 1"
circuit or of the "one-relay-per-row" circuit.

VIII. CRITIQUE OF MATERIAL ON SEQUENTIAL RELAY CIRCUITS, WITH EMPHASIS
ON THE ROLE OF THE SECONDARY RELAY

The switching circuits we have considered in the preceding sections
may be affected at any given time by some combination of several
binary input variables, and these circuits may in turn act upon their
surroundings by some combination of several binary output variables.
Our main efforts have been to show that the operating requirements
of a sequential (dynamic) switching circuit may be restated as a set of
requirements for circuits with combinational (static) characteristics.
These sequential requirements may be stated conveniently in a flow
table.

The switching devices which we have used in the circuits of the pre-
ceding chapters have been relays. Some of these (the primary relays)
are under the direct control of the input; the excitation of the others
(the secondary relays) is a function of the states of operation of the
various secondary relays as well as of the input state. In fact, we could
define a secondary relay as one which is not under the direct influence
of the input.

The output state of a sequential relay circuit may be a function of
the states of operation of both the primary and the secondary relays.
If there were no secondary relays, then the output would necessarily
be a function of the input state only, and the circuit would not be a
sequential one, but a combinational one. And so we may say that in
a sequential circuit there must necessarily be devices (one or more)
which are not under the direct control of the input. What is the func-
tion of these secondary devices?

Under the assumptions that we have made for the secondary relays
-that all normally open contacts are either open or closed at the same
time, and that the transmissions of all the normally closed contacts are
always complementary to those of the normally open contacts-then
only one property of such a relay seems to be necessary. This is: that
.i time lag should occur between its state of excitation (energization) and
its state of response (operation). If we were to rob the secondary
relays of this property, we could never put one into an unstable state,
Itnd there could never be step-by-step transitions between the various
internal circuit configurations. We may say that, from a theoretical
:oint of view, the time lag between the excitation and the response of
i:I(: various secondary relays is a property sufficient to insure proper
operation of the sequential relay circuits. This statement is evident if
one agrees to the validity of the individual steps taken in the synthesis
proposed in the earlier sections of this paper.

From an operational point of view, the relay circuit designer knows
that the assumption of complementary transmission for the normally

� � ___ ���
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open and normally closed contacts on a relay is not altogether valid.
If the "complementary transmission" assumption is not valid, then it
may be that the transmission of the contact network which excites some
secondary relay, Yi, may change value several times before arriving at
the transmission dictated by the existing total relay state. This non-
ideal situation creates what the relay circuit designer knows as an oper-
ating hazard. Such a hazard would be potentially undesirable if the
response time (the operate time or the release time) of the relay Yi were
smaller than the time required for the transmission of the controlling
network to settle down at its proper value. For then the response of
Yi would not be that intended by the designer, and improper operation
of the over-all circuit might result.

Fortunately a finite amount of time (the response time) is necessary
before the amount of energy in the magnetic field of a relay changes
enough to change the state of operation of the relay. This smoothing
effect tends to decrease the importance of an operating hazard. To
eliminate the importance of a hazard altogether, the smoothing effect
should be large enough that the response time of each secondary relay
is greater than the hazard time of its controlling network.

Another property which is inherent in each relay may be termed
that of requantization. By this term we mean to emphasize that the
ultimate response of a relay is two-valued (because of the two-valued
nature of the transmissions of its contacts), even though the magnitude
of its magnetic field changes continuously in accordance with the
"smoothed" excitation. This requantization property prevents corrup-
tion of the ground signals as they are handled by the secondary relays.

We may state the following conclusions:

1. Ideally, it is necessary and sufficient that there be a non-zero
time between the excitation and response of a secondary relay.

2. Practically, it is important that a secondary relay also have the
properties of excitation-smoothing and of requantization of this smoothed
excitation as a two-valued output.

If we were to endow the secondary relay with human attributes,
we could say that each one is a decision-making element. After each
change in stimulation from its environment, it waits a time to "decide"
what the final stimulation is to be, and then reacts accordingly. The
operating "hazard" occurs when this "yes-no" decision is based on
observation over an insufficient length of time.

IX. THE SYNTHESIS OF ELECTRONIC SWITCHING CIRCUITS

Electronic switching circuits have been more and more used in recent
years, particularly in applications such as calculating machinery, where
their speed of operation and lack of moving parts place them at a dis-
tinct advantage over relay switching circuits. The underlying prin-
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ciples of electronic switching circuits are, however, the same as those
we investigated in relay circuits, and these similarities will be pointed
out in this section.

Combinational and Sequential Circuits
An electronic switching circuit may be combinational or sequential

-in nature just as a relay circuit is. A "combinational" network will
refer to an electronic circuit which has several input leads upon which
various combinations of "high" or "low" voltages may be impressed,
and one or more output leads upon which, at a given time, either a
"high" or "low" voltage appears. For a combinational network the
functional dependence of an output voltage on the input voltages may
be expressed by the entries in a table of combinations. (See, for ex-
ample, Fig. 16.) On the other hand, a flow table will be used to describe
the terminal characteristics of a sequential electronic switching circuit.

Schematic Diagram

(a) a w_~ _-

(b) --

a~ b

m+
a
b -

b

(e) a 1 

FIG. 16. Basic electronic combinational networks.
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There is a variety of ways of giving an electronic realization to the
requirements listed in a table of combinations. We will limit ourselves
to circuits using standard vacuum-tubes (triodes and pentodes) and
simple rectifiers. In Fig. 16 are listed five of the most used configura-
tions of vacuum-tubes and rectifiers along with their associated tables
of combinations and the symbols which will be used to represent them
in this paper. These basic circuits and others are commonly used as
building blocks for more complex networks. It is to be expected that,
as research on them progresses, other devices, such as transistors and
special-purpose switching tubes, will be utilized in building combina-
tional networks.

The variables used in describing electronic switching circuits repre-
sent voltages. Such a voltage may be either "high"-in which case the
variable is assigned a value of "1"-or "low," and then the variable
is given the value "O." (Just how high "high" is and how low "low"
is will be discussed below.)

The single triode is the most common way of complementing a two-
valued voltage. When its input voltage is low (low enough to cut off
the plate current) the output voltage is high, and when the input volt-
age is high (high enough to cause appreciable plate current to flow) the
output voltage is low.

For the common-plate triode pair the output voltage is high only if
both input voltages are low. For the pentode the output voltage is
low only if both inputs are high.

The "forward" rectifier connection has the property that its output
voltage is low only if both input voltages are low (lower than the voltage
to which the associated resistor is returned). For the "backward"
rectifier connection a high output results only when both inputs are high
(higher than the voltage to which the associated resistor is returned).

There have been several papers written about the realization of com-
binational type networks using tubes and rectifiers. The book by Pro-
fessor H. H. Aiken and his associates at Harvard University 7 represents
the most notable original contribution in this field. The author cannot
attempt to improve upon the excellent material presented there.

In this same book there appears, under the heading of "Triggers,
Rings, and Digit Counters" (Chapter 8), an approach to the sequential
circuit problem. This approach cannot be satisfying to this author
because it fails to take into account the consequences of excitation and
response not being identical, either physically or algebraically. Let us
emphasize again that the fact of instability in a switching device arises
from the distinction which we must make between excitation and re-
sponse, and a sequential circuit can be designed properly only by the
successful control of this instability.

17 Staff of the Computation Laboratory, "Synthesis of Electronic Computing and Control
Circuits," Cambridge, Harvard University Press, 1951.
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Just as in our previous work with relay circuits our synthesis method
for electronic switching circuits consists of a listing of the circuit re-
quirements in a flow table and then a reduction of these requirements
to a set of specifications for several combinational circuits. All of the
techniques for manipulation of flow tables, assignment of secondary
response states, and derivation of the , Y, and Z matrices are just as
valid for electronic circuits as they are for relay circuits. It is only
the physical realization of the Y and Z matrices that is different for the
two types of circuits. The simple example of the next section will illus-
trate the underlying similarities and the physical differences involved.

The Synthesis Procedure Applied to a Simple Problem

Let us synthesize an electronic switching circuit which will have
two input leads and two output leads. Assume that the voltages on
the two input leads may not change simultaneously. The requirements
(listed in the flow table of Table XXX(a)) for the circuit are these:
A low voltage is to appear on both output leads if either of the input
voltages is low (conditions "1," "2," and "3"). A high voltage is to
appear on the Z1 output lead (condition "4") only if both input volt-
ages are high and if, just previously, only the X1 input voltage was high.
Similarly, the Z 2 output voltage is to be high only if both input voltages
are high and if, just previously, only the X2 input voltage was high.

The flow table listing these requirements may be condensed as shown

TABLE XXX.

(a) Primitive Flow Table (b) Condensed Flow Table

x: x:

00 01 10 11

(i 2 3

10 5
1 4 5

2 3 

2 3 ()

z: 00 01 10 11

00 (0 2 ( (0

00 1 (0 3 0

00

10

01

(c) r Matrix (d) Y Matrix (e) Z Matrix

x:

00 01 10 11
, :

0 00 00 00 10

1 00 00 00 01
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in 'Table XXX(b). The secondary assignment and derivation of the
r, Y, and Z matrices are straightforward and are the same as if the syn-
thesis were of a relay circuit. The final result of the synthesis procedure
is the listing of the requirements for three electronic combinational
networks (the Y, Z1, and Z, networks). One possible circuit utilizing
networks designed from these requirements is given in Fig. 19. Inter-
mediate steps in its derivation are given in Figs. 17(a) and 18(a). These
intermediate steps will be explained below.

Generation of Secondary Excitation and Response Voltages
Let us concentrate our attention on the Y excitation network.

There are a variety of ways in which it may be designed, and four of
these are given within the dotted-line limits of the symbolic diagrams
of Fig. 17. The design of these combinational networks is an extensive

W 3 Y. Y

Y I y

12 X2 12

(a) (b)

i -
Delay

Y Iv

1,
t L______ ' t_ !____

(C) (d)

FIG. 17. Symbolic diagrams of four equivalent networks.

subject in itself and the reader is referred to the Harvard University
text for further information on it.

Notice that the secondary excitation voltage, Y, is produced by (is a
function of) the three voltages xl, x2, and y. Notice also that the re-
sponse voltage, y, is made to lag the excitation voltage, Y, and that
the connection which accomplishes this delay also creates a sort of
feedback loop in the circuit. (It may be proved that, for proper circuit
action, the voltage gain around the loop created must be greater than
unity.) Usually it is not necessary to add the delay indicated, because
some delay already exists around the loop due to distributed capacity,
lead inductance, and the electron transit times within the vacuum
tubes. However our analysis shows exactly at what point delay should
be added if this addition becomes necessary.

___· il-i - I---L-l·
-L--·l·ICIYI·· I·-
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It is clear from the diagrams of Fig. 17 that in electronic circuits
designed by our synthesis methods there may not be a device which is
analogous to the secondary relay of preceding sections. Instead, as in
our present example, we may have to think about secondary delay loca-
tions. Thus, for example, the number So, which has been defined earlier
in this paper,l s will refer in electronic circuits to the minimum conceiv-
able number of secondary delay locations necessary to realize a given

(a)

(b)

(C)

(d)

x2
0-

FIG. 18. Schematic diagrams of four equivalent networks.

flow table; at these delay locations there may not be a switching device,
and perhaps it may not even be necessary to add additional delay at
such points.

It is true that when feedback loops are added in the symbolic dia-
gram they-in conjunction with the associated combinational networks
-often produce interconnections of rectifiers and vacuum tubes which
may be recognized as familiar. For example, observe the schematic
diagrams of Fig. 18. (These correspond to the symbolic diagrams of

18 See On the Number of Secondary Relays Required, page 275 of this paper.
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Fig. 17.) The two center triodes of Fig. 18(b) are seen to be connected
as an Eccles-Jordan circuit. The adjacent triodes have often been
called "puller" tubes. And, in Fig. 18(c) there appears a modification
of the Eccles-Jordan circuit.

Let us emphasize here that the familiar-looking circuits of Fig. 18
have been derived as a by-product of our synthesis procedure; they were
not used as a starting point for it. What should concern us is that
correctly designed combinational networks will insure proper operation
of the total electronic switching circuit. The derivation of "trick"
circuits-even though interesting, and perhaps surprising-should be
considered as an incidental matter.

Let us return briefly to the synthesis of our circuit. If we use the
circuit of Fig. 18(a) to generate the secondary voltage, y (and its com-
plement, y'), then additional rectifiers may be added in order to give
the output voltages, Zi and Z2. The final circuit, with the two Z net-
works added, is given in Fig. 19.

FG. 19. The derived electronic switching circuit.

Comments on Treatment of the Eccles-Jordan Circuit
Since the Eccles-Jordan circuit is a commonly-used one, it may be

of interest to examine whether or not the one of Fig. 18(b) is being used
in the conventional manner. Let us consider what happens when both
the X 1 and X2 voltages are low. (This actually happens for circuit
condition "1" listed in Table XXX(a).) Examination of the circuit
diagram will show that, for these input voltages, the plate voltages on
both of the two inner triodes (the Eccles-Jordan triodes) are low. This
certainly is not the way that the Eccles-Jordan circuit is usually oper-
ated, but we see here that it is one possible (and here, useful) mode of
operation.

Many of the algebraic inaccuracies this author believes exist in other
methods which have been proposed for the treatment of Eccles-Jordan
circuits arise directly from failure to recognize that the plate voltages
of such a circuit are not algebraically complementary, since the possi-
bility exists for both triodes of the pair to be conducting simultaneously.
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Hazards
Since we have established a direct analogy between relay circuits

and electronic circuits, it is natural to wonder what, in electronic cir-
cuits, is related to the "hazard" discussed for relay circuits. (See
Section VIII.) It will be remembered that the possibility that a sec-
ondary excitation network might change its transmission several times
before coming to the value dictated by the total relay state was termed
a hazard. For electronic circuits the possibility that a secondary exci-
tation network may give an excitation voltage which may change level
(low to high, or high to low) several times before coming to the level
dictated by the total circuit state will also, by analogy, be called a
hazard.

For example, in Fig. 17(d) the voltage X2 may be processed by the
electronic devices along two separate paths before finally affecting the
excitation voltage, Y. If the delays along these two paths are not the
same, then the possibility for a hazard exists. In general, the existence
of two or more parallel paths over which signals are processed in a com-
binational network may introduce a hazard.

As we consider electronic switching circuits of greater and greater
complexity it is easy to visualize that the possibility of hazards in the
various secondary excitation networks becomes increasingly serious.
If we are to continue the analogy with relay switching circuits we should
now ask ourselves: "How can the functions of smoothing and requanti-
zation be best~accomplished at the secondary delay locations?"

+ 

y

y

FIG. 20. A smoothing and requantizing device.

Elimination of the Effect of Hazards
A sufficiently large capacity will certainly accomplish the necessary

smoothing if it is connected at the delay location. However it will also
tend to corrupt the two-valued nature of the secondary response voltage
there. On the other hand, it is easy to use a simple direct-coupled
amplifier to accomplish the requantization of the secondary voltage but
such a simple amplifier has practically no smoothing properties. If we

[J. F. I.302
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use a capacity in conjunction with the direct-coupled amplifier, an
increase in the value of capacity required for smoothing makes it neces-
sary that the gain of the amplifier also increase, in order to preserve the
requantization property. What is needed is an amplifier with an effec-
tively infinite gain and with a terminal at which the smoothing capacity
may be connected without affecting this gain.

One relatively simple circuit which will have the properties needed
is shown in Fig. 20. If the quantity

(R1 + r,)(R2 + r) + Rk(4 + 1)[R1 + R2 + 2rp - /,RlRb/(R + Rb)]

is positive the circuit will have an infinite gain. (R 1 and R2 represent
the total resistive loading at each plate.) The circuit has the property
that, for all practical purposes, the voltage at each plate is either "high"
or "low" and does not assume intermediate values. If the voltage at
the input grid varies continuously from a low value to a high value, at
some critical intermediate voltage the voltage at the plate of the oppo-
site triode will suddenly change from low to high. As the grid voltage
decreases from its high value to its low value the same plate voltage
will jump again to its low value.

If the input voltage to this device is some excitation voltage, Y,
which has been smoothed by the capacity at the input grid, then the
plate voltage described above can be used as the requantized response
voltage, y. Its complement, y', appears at the other plate terminal.

In use in complicated switching circuits such a requantizing circuit
would replace the delay lines at the secondary delay locations where
hazards exist. The smoothing at each of these locations could be made
as great as necessary to eliminate the effect of hazards by adding suffi-
cient capacity at the input grid of the device.

Completion of the Analogy
In case this requantizing device (or some similar one) is used at each

secondary delay location we will have a circuit completely analogous
to one using relays. The voltage (high or low) from the electronic
excitation network corresponds to the transmission (unity or zero) of
the contact network exciting a relay; the smoothed excitation voltage
corresponds to the magnetic field of the relay; the two complementary
requantized response voltages correspond to the complementary trans-
missions of the normally open and normally closed contacts on the relay.
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