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Abstract

We study pooled (or group) testing as a method for estimating the prevalence of HIV;

rather than testing each sample individually, this method combines various samples into a

pool and then tests the pool. Existing pooled testing procedures estimate the prevalence

using dichotomous test outcomes. However, HIV test outcomes are inherently continuous,

and their dichotomization may ehminate useful information. To overcome this problem,

we develop a parametric procedure that utilizes the continuous outcomes. This procedure

employs a hierarchical pooUng model and estimates the prevalence using the likelihood equa-

tion. The likelihood equation is solved using an iterative algorithm, and a simulation study

shows that our procedure yields very accurate estimates for a fraction of the cost of existing

procedures.
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1 Introduction

Estimation of the prevalence of HIV is important for evaluating the current status of the

AIDS epidemic and planning effective intervention programs. However, precise estimates are

very difficult to obtain because HIV infection is not associated with any clinical symptoms.

Because the interval between the infection time and the onset of the clinical symptoms of

AIDS is very long, the total number of AIDS cases does not provide information on the

recent incidence of HIV. Consequently, population surveys are the primary mode of HIV

prevalence estimation.

This method screens an unbiased population sample using an antibody test, such as

ELISA, and estimates the prevalence from the number of positive tests. However, even this

method has its limitations. Because participants in a siurvey must give their prior consent,

self-selection bias can occur that results in an underestimation of the prevalence (Gill, Adler

and Day 1988). Also, the number of tests is frequently limited by financial constraints that

adversely affect the accuracy of the estimates.

One possible way to improve the accuracy of the estimates and reduce the self-selection

bias is pooled testing. The rationale behind pooled testing is simple and intuitive: suppose

that a pool is formed from the blood of ten (for example) individuals and is tested with a

single antibody test. If the prevalence is sufficiently small then there is a high probability

that all ten samples will be HIV negative. Moreover, even if the pool is positive, it will

raxely contain more than one infected individual. Under these conditions, a single pooled

test provides nearly the same information as ten individual tests, and the pooling method

achieves almost the same accuracy as individual testing but for significantly lower cost.

Furthermore, the pooling procedure preserves the anonymity of the participating individuals,

and therefore can reduce the self-selection bias (Gastwirth and Hammich 1989).

In his seminal paper, Dorfman (1943) showed how pooled testing, which is called group



testing in the statistical literature and composite testing in the environmental statistics

literature, can be employed to efficiently detect the defective members of a population.

Group testing was researched aggressively in the subsequent years and a large literature now

exists on the topic (see Sobel and Groll 1958 and Johnson, Kotz and Wu 1991 and references

therein).

Group testing has also been used to estimate the proportion of the defective members

of a population (e.g., Sobel and Elassoff 1975, Chen and Swallow 1989 and Lovison, Gore

and Patil 1994). However, these studies assume that tests have no misclassification errors.

Motivated by the HIV prevalence estimation problem, Tu, Litvak and Pagano (1994) and

Gastwirth and Hammich provide new insights into pooled testing by developing poohng

procedures for imperfect tests. Nevertheless, existing studies suffer from two shortcomings.

First, they assume that pooling does not affect the sensitivity and specificity of the test.

However, if the group size is large, some positive sera may be excessively diluted by negative

sera and become undetectable in the pool. Failure to explicitly capture this dilution effect

may result in prevalence underestimation. Second, they assume that the test results are

binary (i.e., infected or non-infected), even though the outcomes of ELISA, known as the

optical density readings, are inherently continuous. To implement their poohng procedures,

they adopt the dichotomous classification of the test outcomes dictated by the test kit

manufacturers; this classification, in addition to ehminating useful information, is specifically

designed for individual testing.

The purpose of this paper is to propose a parametric procedure that overcomes these

two shortcomings. Our procedure employs the hierarcfiical pooling model of Wein and

Zenios (1995), which is described in Section 2, and explicitly captures both the dilution

effect and the continuous nature of the test outcomes. This model is used in Section 3

to develop an iterative estimation algorithm that utilizes the continuous optical density



readings. To implement the algorithm, it is necessary to calculate a quantity that cannot be

expressed in closed form. We overcome this problem by developing an asymptotic expansion

that is described in Section 4. An upper bound on the asymptotic variance is derived in

Section 5, which is used in Section 6 to determine the sample size and the pool size that

eflPectively balance the tradeoff between the testing cost and the accuracy of the estimate.

A Monte Caxlo simulation study is carried out in Section 7 to assess the performance of our

estimation procedure. The results indicate that the parametric procedure can achieve more

accurate estimates and atteiin significant cost savings relative to existing poohng procedures.

Concluding remarks appear in Section 8. '
'

2 The Hierarchical PooHng Model

ELISA detects HIV antibodies in the blood of infected individuals and then translates the

antibody concentration into a continuous quantity, known as the optical density (OD) read-

ing. To capture the continuity of the OD readings, we describe this mechanism as a two-level

hierarchical statistical model. The probabihty density of the antibody concentration is spec-

ified at the first level, and the conditional density of the OD reading given the antibody

concentration is determined at the second level. The dilution effect is captured by assuming

that the antibody concentration in a pool equals the average of the individual concentrations.

Readers are referred to our companion paper (Wein and Zenios) for a detailed de-

scription of the hierarchical model. In that paper, the hierarchical model was validated on

dilution series data and pooled testing data using a generalized linear model. In this section,

we briefly summarize our hierarchical model and show how to use it to derive the probability

density of pooled OD readings.

Let p denote the unknown HIV prevalence and consider a pool consisting of m individ-

ual blood samples. The pool's OD reading and antibody concentration are defined by X^"^''



and y^"*', respectively. These random variables have probability densities fx{x;p,4>,^)

and TTy (y;p), where and 7 are nuisance parameters that appear in the second level of the

hierarchical model. Without loss of generahty, we assume that the OD reading is normalized

so as to fall between and 1.

The model's first level specifies the density Ky iV'^P)- Let 'K+iy) and 7r_(j/) be the

probability density for the antibody concentration of infected and non-infected individuals,

respectively, and define tt*^*^'"'* = tt*^ * k_''\ where * is the convolution operator. Let

T^Y {y) be the conditional density of V*'"^ given that the pool consists of k infected and

m — k non-infected individuals. Then

n^y'^'^Hy) = m7r*^''"^Hmy) (1)

and the first level of the model states that

vrr(y;p) = t [fjA^-prM^'^'Hy)- (2)

The model's second level specifies the conditional density of the OD reading given the

antibody concentration:

f{x-An\y) =
,

'
,.

e ^^^l^ ^i
, (3)

where the nuisance parameters (j) and 7 depend upon the test kit employed. By equations (2)

and (3), the density of X^"") is

fP{x-p,<f>n) = t (7)P'(1 -Pr"'/?'"''(x;</.,7), (4)

where

/j?''"\x;0,7) = r T^'f'"'\y)f{x;<t>n\y)dy. (5)

To complete the description of the model, it remains to determine the parameters

and 7, and the densities 7r_ and 7r+. Because our goal is to estimate p, we assume that
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these quantities can be obtained from an off-line analysis of historical data, and that the

only unknown parameter is p. The off-line estimation of these quantities is discussed in

Subsection 7.2.

It is worth noting that our model not only captures the dilution effect and the continuity

of the OD readings, but is also consistent with empirical evidence that identify two sources

of variability in ELISA: within sample (due to measurement errors) and between sample.

The first level of the model captinres the between sample variability. The second level of the

model, in particular equation (3), allows repeated measurements from the same sample to

be different, and hence captmes the within sample variability.

To improve readability, in the remainder of this paper we suppress the notational

dependence on the parameters
(f)
and 7; for example, we use f{x\y) instead of f{x; 0, 7|y).

3 The Iterative Algorithm

In this section, we develop an algorithm to estimate the prevalence of HIV. This is done

by deriving the likehhood equation from the probability density function (4), and then

iteratively solving this equation.

Suppose that we collect blood samples from nm individuals, pool them together to form

n independent pools of size m, and then test the pools. The raw data are x = (xi, . .
. , Xn),

where Xj denotes the OD reading of the ith pool. Equation (4) implies that the overall

likelihood function is

^(^;p) = n (e {^)pHi - P)'"-V?''"V.)) • (6)

To obtain the maximum likehhood estimate (m.l.e.) p of p, we solve the likelihood equation

a log L(x;p) ^ ^ ^^^
dp



It is convenient to define Tk{x;p), the conditional probability that a pool contains k infected

individuals given that its OD is x,

Tki^W) — / V T—i
• \P)

Er=o(7Hi-p)'"-vi^''"^w

After some tedious but straightforward algebra, equation (7) reduces to

1 n m 1 n m
-im kTk{x,\p) - ——^ ^(m - k)Tk{xi;p) = 0. (9)
P i=l A:=0 ^ P i=l fc=0

Because 12T=o'''k{^'^P) — !> expression (9) simplifies to the self-consistency equation

n m
nmp = ^^A;rfc(x,;j9). (10)

i=l k=0

Intuitively, the left side of (10) is the expected number of infected individuals and the right

side is the conditional expected number of infected individuals, given the data.

Motivated by (10), we propose the following iterative algorithm, where e denotes the

desired tolerance level:

Step 1. Start the procedure with an initial estimate p^°\

Step 2. Obtain improved estimates by taking

1 n 771

p(3+i)^_L^^fcr,(xr,p(^)). (11)

Step 3. Terminate if |p**+^^ —
P^^^\ < e; otherwise, return to Step 2.

To prove that the algorithm converges, we show that it is an Expectation-Maximization

(EM) algorithm (see Dempster, Laird and Rubin 1977). The EM algorithm is applicable

whenever the raw data can be viewed as incomplete observations from a "complete" data set,

and the maximum hkelihood estimates for the complete data set are easily obtainable. Here,

the complete data set consists of both the observable OD readings, and the unobservable

number of infected individuals in the pooled samples. The details are described in Appendix

A.



4 Analytical Approximation

The algorithm of Section 3 requires the computation of the conditional probabihties Tk{x; <j))

for A; = 0, . .
.

, m. Since we have been unable to obtain these probabilities in closed form,

Monte Carlo simulation is employed in Subsection 7.3 to estimate these probabilities. An

analytical approximation to these probabilities is derived in this section; this approximation,

which assumes large pool sizes, is much less computationally intensive than the simulation

procedure, and is used in Section 6 to derive eflFective samphng designs. The large pool

size approximation is derived in Subsection 4.1, and is employed in Subsections 4.2 and 4.3,

respectively, to calculate asymptotic expansions for the probability densities defined in equa-

tions (4) and (5). A discussion of the appropriateness of the large group size approximation

is deferred to Subsection 4.4.

4.1 A Large Pool Size Approximation

Let yt*^'"*) denote the conditional antibody concentration given that the pool consists of

k infected and m — k non-infected individuals; in this subsection, we prove that yt*^-'"'

converges in distribution to a normal random variable as A;, m ^ oo. Let /i+ and /x_ denote,

respectively, the mean antibody concentrations of infected and non-infected individuals, and

let a+ and a_ be the respective standard deviations. In addition, define fi{p) — piJ.+ + (1 —

p)//_.

Proposition 1 Let k,m ^^ oo, such that k/m -^ s. Then,

y^(y(fc,m) _ ^(^)) ^ pj ^Q^
^^2 ^ (1 _ ^yj^

Proof: Let Y^^ and Y~, i — 1,2, .. . denote infinite sequences of independent, identically

distributed (iid) random variables with respective densities n+{y) and 7r_(y). The definition



of y^*^'*") implies

If we define

and

y(fe,m) _ ^1 + . . + Vfc +Yi + . . + y^_fc

(13)



As m increases, the value of the integrand in (18) depends more and more completely on the

values of y in the neighborhood of ^(r). Hence, we replace f{x\y) by its Taylor expansion

around /i(r),

|(x|M0)4(.-Mr))^g'/(x|t/) = /(a:|A.(r)) + (y-Mr))^(x|M0) + o(2/-Mr))'^(x|/x(r)) + O(|y-//(r)|^). (19)

If we substitute (19) into (18), then (16) implies that E{Y^'''"'^ -n{r)) = 0{m-^), E{Y^''-'^^ -

^{r)f =
'•'^++^^-'')'^- + 0{m-^) and E{Y^'''"'^ - (//(r)))^ = 0{m-^). Thus, we have

f^^''-\x) = fixHr)) + ^^i + (l^-0^-
|/(^|^(,)) + 0(^-2). (20)

The calculation of ^-^ is required to complete the derivation. This calculation was

performed using the symbolic differentiation of a computer algebra system (Maple V) and

the expression is given in Appendix B.

4.3 Approximating fxi^w)

The methodology of Subsection 4.2 can also be used to derive an asymptotic expansion for

fx i^'^P)^ which is defined in (4). Let cr(p) = Jp(^+ + (1 ~ p)^'- + p(l ~ p)(a*+ ~ A*-)^- The

Central Limit Theorem implies that

y/^{Y(^) - ^{p)) ^ N {0,a^{p)) as m ^ oo. (21)

Repeating the intermediate steps of Subsection 4.2 yields

/r (x;p) = fixHp)) + ^0(^Im(p)) + 0{m-'). (22)

This expression is used in Section 5 to derive an upper bound for the asymptotic variance

of the m.l.e. as the number of pools n —> oo.



Objective

To Estimate the Prevalence p.

Known Parameters

Raw Data

{xi, . . . ,Xn} ' OD readings from pools of size m

Approximations

fk{x;p) =

dy2

(T)p''(i-p)"'-*/x'"''w

Step 1

Step 2

Step 3

The Algorithm

Start the procedure with initial estimate p'°'.

Terminate if \p'-^'^^^ —
p'^^l < e;

otherwise, return to Step 2.

Figure 1: The estimation algorithm for the proposed estimate.

4.4 Discussion of the Approximation

The asymptotic representation for fx i^) can be used to approximate Tk{x;p) and imple-

ment the estimation algorithm (see Figvue 1). However, it is expected that the algorithm

will converge to a fixed point that will be different from the m.l.e. To distinguish this fixed

point from the m.l.e., we call it the proposed estimate and denote it by p. Using (20), we

can show that the difference between the proposed estimate and the m.l.e. is of Oim^"^)]

however, the proof is omitted here and can be found in Zenios (1995).

Regarding the appropriateness of the large group size approximation, we note that the

empirical results in Wein and Zenios display a large separation between OD readings for HIV

positive and HIV negative individuals. Consequently, our parametric procedure can adopt

very large pool sizes without significant loss of information, thereby partially justifying our

10



large group size approximation. However, the accuracy of the asymptotic expansion (20)

depends on the rate that y('"'+ and Y^'^^' converge to normal random variables in (15).

Following the conventional rule-of-thumb (the sample mean of n iid random variables is

approximately normal for n > 15), we conclude that if the pool size m and the number of

infected individuals in the pool, k, satisfy 15 < A; < m — 15, then the normal approximations

should be sufficiently accurate for practical purposes.

The condition ^ < m — 15 is apt to hold for large pool sizes. Although A; > 15

may be practical for other statistical applications, we would expect k to be much smaller

than 15 for HIV prevalence studies. Approximation (15) would hold for small k if TT+{y) was

approximately normal; however, this does not appear to be the case (see Figure 7 of Wein and

Zenios). In conclusion, we do not have a persuasive justification for (15); nevertheless, the

large group size approximation developed in this section performs well in the computational

study described in Section 7.

5 An Upper Bound on the Asymptotic Variance

This section contains a derivation, which is based on the information inequality, of an upper

bound on the variance of the proposed estimate. Let /i^'"^(p) = E{X^'^^\p), and let /i(^('")(p))

and /i(p) denote, respectively, the Fisher's information about /i^'"'(p) and p contained in a

single observation from X^"^\ which is the OD reading of a pool of size m. Because X^'"^ is

an unbiased estimate of /x*'"'(p), the Cramer-Rao lower bound implies that

Since Var(p), which is the asymptotic variance of p as n —> oo, equals l/(n/i(p)), it follows

that

V„tf) < ^-(^'"'Iri,
(24)

11



Let us first calculate //('"'(p). Prom (22), we have

/x('")(p) = jf x/(x|Mp))cix +^ ^ x^(x|Mp))cix + 0(m-2). (25)

Equation (3) implies

/ xj{x\y)dx=-^ (26)

,7

y

and difl^erentiating twice under the integral sign yields

Thus, substituting (26) and (27) into (25) gives

l + Mf))^ 2m {l + (/i(p)n'
^ ;

V
;

Differentiating (28) yields

dp
'"'

(1 + (/X(p))^)2

^^(P) / 7(7 + 1) (A^(P))'""^ - 47^ (/^(P))'""' + 7(7 - 1) (/^(p))""\
^^ 2m\ (1 + (;,(p))^)^

(7 + 1)^ (M(P))'^-' - (47^ - 2) (/x(p))^^-^ - (7 + 1)^(m(p))^-^ ^ ,

(1 + (m(p))')'

(7 + 1)(7 + 2) (/x(p))'^-' - (47^ - 4) (m(p))'^-' - (7 + 1)(7 + 2) (/i(p))'^-'
C , (29)

(i + (Mp))^)^

where ^4 = /x_ - //+, B = a^ - a'i + n^.
- ^t and C = cr^^+ - o-^^_ + /i+/i?. - /i+A*--

Carrying out a similar analysis for Vax(X^'"'|p) leads to

V.r(X(-)M ,.
(/^(P))' ^ ^'(P) f

'/'(7-l)(Mp)r^

(2 + (40 - 6)7 + 27^) {MY'-' + (7 - 2)(0 - 2 + 27)(/^(p))^^-^ >^ .3Q.

For brevity of notation, let h be the first term in the right side of equation (29) and / be

the coefficient of ^ in (29). Similarly, let v be the first term in the right side of (30), and w

12



be the coefficient of — in (30). Substituting (29) and (30) into (24) and omitting terms of

0{m~^), we have the upper bound

V + —
Var(p) < ^ + 0{m-'). (31)

n (h^ + ^)

We conclude this section with a brief discussion of confidence intervals. The Wald's

1 — a confidence interval for p is

p±^M=, (32)

\/nh{p)

where Za/2 is the upper a/2 quantile of the standard normal density. Because a closed

form expression for /i(p) is not available, we could attempt to use the observed information

°dpi instead. Although the details are omitted, the resulting confidence intervals

were tested in the computational study in Section 7, and were not sufficiently reliable for

practical use (e.g., the actual covering probabihty for the 95% confidence interval was roughly

85%). Alternatively, we could construct confidence intervals that use the upper bound (31).

However, this gives a covering probability that is roughly 99%.

6 Designing Efficient Procedures

To conduct a population survey that adopts the algorithm of Figure 1, we must first specify

the number of pools n and the group size m. An efficient design must balance the testing

cost with the acciuracy of the resulting estimate. The design problem that arises in practice

can be posed as one of the following two constrained optimization problems: either choose n

and m to achieve a prespecffied variance at minimum cost, or choose n and m to minimize

the variance of the estimate subject to a prespecified budget constraint. These two problems

are closely related (more about that later), and for concreteness we will address the former

problem.

13



Let A denote the prespecified variance threshold. Since the true variance of the esti-

mate is not available in closed form, we employ the upper bound of the asymptotic variance

derived in (31) as a smrrogate. Oiu resulting design will be conservative, in that the actual

variance will be less than or equal to A. Of course, the upper bound on the variance is a

function of the prevalence, which must be estimated at the design stage.

We assume that the cost of testing a pool of size m is (see Behets et al. 1988 for a

detailed discussion)

C('-) = {' ^, '!"":; (33)
[ em + f if m > 1,

where e and / are positive constants. The design problem is to choose positive integers n

and m to

minimize nC{m) (34)

subject to n > —-,
"^

.
, . (35)

-A(/^^ + f)
It is possible to solve this integer programming problem using exhaustive search. However,

this is cumbersome and time consuming. Instead, we obtain a closed form solution to the

non-integer relaxation of this problem.

Proposition 2 // {wh? - 2hlv){fh'^ — 2ehl) > 0, then the solution to the non-integer relax-

ation of (34)- (35) IS

(_r,,. , / {wh'2-2hlv){fh^ -2ehl) \

0,
^^

^, , (36)

?; -I-
^^

n* = ,^'
, . (37)

A(/.^ + ^)

The proof involves a standard Lagrangian argument and elementary calculus, and is omitted.

Similarly, we can solve the second optimization problem, which is to choose m and n

to minimize the upper bound of the asymptotic variance subject to nC{m) < B, where B is

14



the prespecified available budget. The solution to the integer relaxation of this problem is

given by (36) and

em* + f , ^

n* =—^. (38)

Notice that the pool size in (36) is independent of the specified variance threshold

and the imposed budget constraint. It can be shown that this pool size also minimizes the

cost per unit information (i.e., cost times variance). Although the design in Proposition 2

employs an upper bound on the asymptotic variance and is clearly suboptimal, this result

should provide a useful back-of-the-envelope calculation.

7 Simulation Study

The results from a Monte Carlo simulation study are reported in this section. The purpose

of this study is to address the following questions:

1. How accurate are the approximations of Section 4?

2. What is the value of employing the continuous OD readings rather than the traditional

dichotomous test results?

3. Is it necessary to exphcitly incorporate the dilution effect into our analysis?

4. What are the expected benefits from pooled testing?

The first question is addressed by comparing the proposed parametric estimator (p.p.e)

to the exact m.l.e. To answer question 2, we develop a class of binary estimators, and compare

the best binary estimator to the exact m.l.e. To address question 3, we compare the p.p.e.

to two other binary estimators, one that explicitly captures the dilution effect and one that

ignores it. We also consider individual testing in order to provide an answer to question 4.

15



To obtain meaningful results from the simulation study, we employ real data. The data

are described in Subsection 7.1 and are used in Subsection 7.2 to estimate the parameters of

the simulation model. The various estimators are defined in Subsection 7.3, the results of the

simulation study are reported in Subsection 7.4 and a hypothetical application is described

in Subsection 7.5.

7.1 Data

We employ two data sets that were collected and tested by the National Reference Laboratory

of Australia (NRL). The NRLl data set consists of the OD readings for 4000 HIV negative

and 3000 HIV positive sera. The sera were tested using a commercially available test kit,

and the cutoff classifying the test outcomes as positive or negative was 0.05. The NRL2 data

set consists of OD readings from 10 infected sera, diluted sequentially to a fixed negative

serum to produce a series of 10 two-fold dilutions, with ratios 1 : 16, 1 : 32, . .
.

, 1 : 8192. The

samples were tested in duplicate using 10 different test kits. No individuals are common

to the two data sets, and the test kit in NRLl is not one of the 10 kits used in NRL2.

Finally, we note that all individual samples in NRLl were diluted according to the test kit

manufacturer's instructions before being tested.

7.2 The Simulation Model

The simulation model randomly generates antibody levels and OD readings for both individ-

ual and pooled samples via the hierarchical model defined in Section 2. In this subsection,

we specify the model parameters
(f)
and 7, and the densities 7r+(y) and i^-iy).

The parameters and 7 are solely dependent on the test kit employed, and can be

estimated from dilution series data by fitting the data to a generalized linear model; Wein

and Zenios carry out this procedure for the 10 different test kits in NRL2. The ten estimated

16



values for 7 (one for each test kit) ranged from 0.09 to 1.11, and averaged 0.54. Evidently,

the value for 7 is highly dependent on the test kit employed. Unfortunately, we do not have

dilution series data for the test kit employed in the NRLl data set, which is the data set

used to estimate 7r+(j/) and 7r_(y). For simplicity, we use the value 7 = 1.0 in the simulation

model. Sensitivity analysis in Wein and Zenios shows that 7 = 0.54 and 7 = 1.0 yield

qualitatively similar results.

We employ the parameter and the densities 7r+(t/) and 7r_(y) that are used in Wein

and Zenios, and readers are referred to that paper for details; here we provide only a brief

summary. Rather than estimate in a manner similar to the estimation of 7, Wein and Zenios

obtain the estimate
(f)
= 0.0088 as a by-product of estimating 7r_(y) from the NRLl data. The

densities TT+{y) and 7r_(y) are difficult to obtain because the antibody concentration is not

an observable quantity. Moreover, these densities are population dependent and may vary

if the epidemic is nonstationary. However, if the epidemic is progressing slowly, then these

densities can safely be assumed to be constant, and hence do not have to be re-estimated

every time a population survey is conducted.

Using a combination of exploratory data analysis and the EM algorithm to estimate

7r_(j/) from the 4000 OD readings for HIV negative individuals in NRLl, Wein and Zenios

conclude that the variabihty of OD readings for HIV negative individuals is due nearly

entirely to within sample variability and contains almost no between sample variability.

Consequently, for TT-{y) we use the degenerate density with mean //_ = 0.0086 and cr_ = 0.0.

Exploratory data analysis in Wein and Zenios suggests that the within sample variability

is substantially larger than the between sample variabihty for HIV positive individuals,

and they make the simplifying assumption that the within sample variability is zero for

infected individuals. Thus, X\Y = E{X\Y) for infected individuals, and combining this

17
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Figure 2: The density iT+{y) used in the simulation model.

with equation (3) we obtain

Y = X\Y
(39)

^l-X\YJ

Since our estimate for 7 is one, if we let Xi, . .
.

, a;3000 denote the observed OD readings for

the 3000 infected individuals in the NRLl data set, then the density TT+iy) is specified by

the empirical density of (yr^) , • • ,

( i-xToo )' '^^^^ density is displayed in Figure 2. For

ease of reference, the parameters of the simulation model are provided in Table 1.

7.3 Estimation Procedures

In this subsection, we describe the procedures that are considered in this simulation study:

the proposed parametric estimator, a numerical procedure for the exact m.l.e., three distinct

binary estimators that employ binary test results rather than continuous OD readings, and

individual testing.
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/i_ = 0.0086

/x+ = 3.79

cr_ = 0.00

cr+ = 4.00

(t)
= 0.0088

7 = 1.00

Table 1: The parameters of the simulation model.

Parametric Estimators. The proposed parametric estimator employs the algorithm

in Figure 1 with the estimates in Table 1. The p.p.e. employs the pool size given by

Proposition 2. The cost parameters are obtained from the field study of Behets et al., and

are e = 0.04 and / = 1.35; details may be found in Wein and Zenios. Figure 2 displays the

derived pool size m* for < p < 1. Notice that m* > 80 for p < 0.22. The hierarchical

pooling model was vahdated on pools of size at most 80 in Wein and Zenios and, in fact,

80 appears to be the largest pool size reported in ihe literature (Gaboon-Young 1992).

Consequently, we do not consider pool sizes larger than 80.

To derive the exact m.l.e., we use the algorithm in Figure 1 with f^ {x; (f))
replaced by

a lookup table representation of the density. The table entries are obtained from a simulated

data set as follows. For each value of k and m, a sample of 3000 pools that each consist

of k infected and m — k non-infected individuals is generated from the antibody densities

7r+(t/) and 7r_(y). The OD readings are generated using the density in (3), and the table

representation is obtained from the empirical density of the simulated OD readings.

When embedded in the estimation algorithm in Figure 1, these representations produce

an estimate that is approximately equal to the m.l.e. We call this estimator the theoreticai

parametric estimator (t.p.e.), and it provides the benchmark to which the performance of

the p.p.e. is to be compared. The t.p.e. also uses the pool sizes shown in Figure 2.

Binary Estimators: To assess the value of employing continuous OD readings rather

19



than traditional binary test results, we also consider the following class of procedures: test n

pools of size m, classify each pool outcome as HIV negative or positive using the OD cutoff

M, and estimate the prevalence from the total number of positive pools. Let Se(m, u) and

Sp(m, u) denote the sensitivity and specificity for this class of pooling procedures, and A; be

the total number of positive pools. The prevalence estimate is

-—1 f
Se{Tn,u) — k/n \

^" ~ l,Se(m,M) + Sp(m,«)-lj '
^ '

and the asymptotic variance of p is

Var(p) = ^(1 - P)'-'"
/';-"'^''^-/'"';"'*;"

. (41)
nm^ (Se(m,u) + Sp(m,u) — 1)^

where f{m,u,p) = [1 — (1 — p)'"]Se(m,M) + (1 — p)'"(l — Sp(m, u)). Also, the cost per unit

information is

m'^ {be{m,u) +bp[m,u) — 1)''

We consider three different bimary estimators that are based on (40). The first estima-

tor, called the simple binary estimator (s.b.e), assumes that that Se(m, u) and Sp{m,u) are

not a function ofm (i.e., there is no dilution effect), and that the cutoff u is determined by the

test manufacturer. Consequently, for all m, Se(m, u) and Sp(m, u) represent the sensitivity

and specificity under individual testing, as reported by the test manufacturer. The pool size

m is chosen to minimize the cost per unit information (42); recall that the pool size derived

in Section 5 also minimized this quantity. The simple binary estimator was proposed by Tu

et al. who were the first to derive equations (40)-(41). To implement this procedure, we

set u equal to 0.05, which is the cutoff for the NRLl data, and use Monte Carlo simulation

(with It = 0.05 and m = 1) to derive very precise estimates of the sensitivity and specificity

under individual testing; these two estimates are substituted into equations (42) and (40) to

perform the computations described above.
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Figure 3: The derived pool size m*.

The other two binary estimators exphcitly incorporate the dilution effect, and hence

are expected to outperform the simple binary estimator. Both estimators use the same OD

cutoff u and pool size m; the estimators' differentiating characteristics will be defined after

we show how these two parameters are calculated. As with the s.b.e., u and m are chosen to

minimize (42). However, the quantities Se(m, u) and Sp(m, u) in (42) are difficult to estimate

for a testing procedure that deviates from the manufacturer's instructions; therefore, we

develop approximate closed form expressions for these quantities in order to find the cost-

minimizing values of u and m. These expressions are obtained from the simplified pooling

model of Wein and Zenios. This model assumes that the OD reading X and the antibody

concentration Y are related via In
(y^) — 7 ln(y)+e, where e is a Gaussian random variable

with mean zero and variance a^. Proposition 1 and the simplified pooling model lead to an

asymptotic approximation for the probabiUty density of In {-[ZxW^)^ where X^*^-'"' is the
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conditional OD reading for a pool of rn given that it contains k infected individuals. This

approximation can be used to derive the expressions:

Se(m,u) =
u-7ln(^//+ + (l-^K)

l-(l-p)'
1 ,2 kal + {m-k)cri

(43)

'u — 7ln(/x_)
Sp(m, ^.) = $ ^:^^:^ . (44)

'a2

In (43)-(44), we set 7 equal to 1, and use the approach in Subsection 7.1 of Wein and Zenios

to estimate a^ and modify //+ and a+ so that a conservative estimate for the left tail of

TT+{y) is obtained. The resulting estimates are a = 0.42, ^+ = 2.732 and a+ = 1.3032. The

approximations (43) and (44) are substituted into equations (41) and (42) in steps 2 and 3,

respectively, of the following algorithm:

Step 1. Set m = 1.

Step 2. Use steepest descent to obtain a cutoff u{m) that achieves a local minimum of

Var(p).

Step 3. If F{Tn,u{m)) > F{m — l,u{m — 1)) or m > 80, stop; otherwise, set m <— m + 1

and return to Step 2.

Upon termination, this algorithm gives a locally optimal procedure that satisfies the con-

straint m < 80. Table 2 displays the resulting pool sizes and cutoffs for the seven prevalence

values that are considered in the simulation study of the next subsection.

Notice that the binary estimate p in (40) is a function of Se(m, u) and Sp(m, u), where

m and u are derived from the three-step algorithm described above. Our two binary esti-

mators differ by how they approximate Se(m, u) and Sp(m, u) in (40). The proposed binary
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parametric estimator to the theoretical binary estimator, and finally we compare the p.p.e.,

the p.b.e., the s.b.e. and the individual estimator.

Experiment 1: A sample of 80,000 antibody concentrations is generated from the

probability mixture pK^{y) + (1 — p)7r_(y). The simulated blood samples are divided into

n = 1000 pools of size m = 80, and the OD readings are generated using the conditional

density (3). The p.p.e. and the theoretical parametric estimator are obtained under seven

different scenarios of varying prevalence, and the experiment is repeated 400 times for every

scenario. The simulation model was implemented in C, on a Sun Sparc Station 20.

For the p.p.e. p, the estimator mean E{p\p) and the estimator variance Var(p|p) are

obtained from the simulation experiment. We also compute the relative bias

rbias(p) = l:i3M^ (45)
P

the relative variance error

\^Y""H - Var(pb)

revar(p) = —^^ (46)
P

and the mean squared error (mse), E[{p — p)'^\p]. The analogous quantities are also deter-

mined for the theoretical parametric estimate p.

The results are given in Table 3. Not surprisingly, the theoretical parametric estimator

is unbiased. In contrast, the p.p.e. is biased, and tends to understate the true prevalence.

The relative bias decreases as the prevalence increases. Also, the relative variance error is

positive, which confirms that (31) provides an upper bound on Vax(p|p).

Experiment 2: Once again, 80,000 (different) simulated blood samples are generated

for the seven scenarios in Table 2. The blood samples axe divided into pools of size 80 to

obtain the theoretical parametric estimator. In addition, the same blood samples are divided

into pool sizes given in Table 2 to derive the theoretical binary estimator.
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pool contains more than one infected individual; pools that contain more than one infected

individual hide information on the true prevalence. In contrast, the theoretical parametric

estimator has the flexibility to employ substantially larger pool sizes because it can infer

the total number of infected individuals in each pool from the OD reading. Therefore, the

parametric estimator can adopt a substantially larger pool size and still achieve the same

variance as the binary procedure. This situation changes when the prevalence is low because

then the optimal group size for the binary estimator is close to 80, and the group size for the

parametric procedure is exactly 80; recall that we have introduced the restriction m < 80.

Hence, the upper bound restricts the flexibihty of the parametric procedure and forces it to

behave like the binary procedure.

This experiment confirms our intuition that the continuous OD readings can be used

to produce very precise estimates. Unfortunately, the estimators in this experiment are hard

to employ in practice. In the next experiment we use more practical estimators that contain

several approximations. Although these estimators are expected to be biased, we will see

that the bias is offset by their high efficiency, and the procedures that utihze the hierarchical

pooling model produce very precise estimates.

Experiment 3: Once again, 80,000 (different) simulated blood samples are generated

for the seven scenarios in Table 2. The blood samples are divided into pools of size 80 to

obtain the proposed parametric estimator. The same blood samples are also divided into the

pool sizes given in Table 2 to derive the proposed binaxy estimator. In addition, these blood

samples are divided into the pool sizes dictated by the simple binary procedure in order to

derive the s.b.e. Finally, the samples are also tested individually to calculate the individual

estimator.

Table 5 gives the mean squared error (mse) for the four estimators. We observe that

the mse for the simple and individual estimators are from 4 to 40 times larger than the mse
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mator and the proposed paxametric estimator. A budget constraint is imposed such that,

if individual testing is adopted, at most 1000 samples can be tested. The objective is to

employ the procedure that will give the smallest mse.

Individual estimator: Here n = 1000 and m = 1. From the results of experiment 3

(not shown), the variance is expected to be 6.2 x 10""*. Because the individual estimator is

unbiased, this coincides with the mse.

Proposed binary estimator: From Table 2, m = 20, and to satisfy the budget

constraint n =
^^^I'^^^^o)

~ ^65. From Table 6, the variance is (/lOO^f§P)^»^ =

1.00 X 10-^ and the mse is (0.04636 - 0.05)2 ^ ;^ qO x 10"^ = 2.30 x 10"^

Proposed parametric estimator: Here m = 80, and to satisfy the budget constraint

" = i.35+aM(80) ^ 220. From Table 6, the variance is expected to be {VTOO^^^f 5«^ =

5.72 x 10-^ and the mse is (0.04832 - O.OS)^ + 5.72 x 10"^ = 8.54 x 10"^

Hence, the proposed parametric estimator has the smallest mse and is the preferred

procedm-e.

8 Concluding Remarks

We have developed a parametric procedure to estimate the prevalence of HIV from pooled

samples. Our approach is novel in that it captures the dilution effect and estimates the

prevalence directly from the continuous OD readings. This procedmre was developed specif-

ically for the HIV estimation problem but is applicable whenever liquids or gases are pooled

together and tested for estimation purposes; many apphcations can be found in industrial

or environmental quality control.

The procedure was tested on simulated data that were generated from actual blood

samples, and the results indicate that it is more accurate and roughly an order-of-magnitude

more efficient than existing binary pooling procedures. As expected, the benefits from this
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procedure axe larger when the prevalence is high. We also derived a new binary procedure

that exphcitly accounts for the dilution effect. When the prevalence is above 5% our proposed

parametric estimator was several times more efficient than the proposed binary estimator.

However, the approximations embedded in our procedures appear to more accurate in the

binary setting than in the continuous OD setting, and when the prevalence is below 1% the

proposed binary procedure performs better than proposed parametric procedure.

In conclusion, the numerical results provide strong evidence supporting the adoption

of our parametric pooled testing procedures for population surveys aimed at estimating HIV

prevalence. The next step is to determine whether the conclusions of this paper are confirmed

when the procedure is tested on real data.
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Appendix

A Convergence Proof

In this appendix, we show that the estimation algorithm in Section 3 is an Expectation-

Maximization (EM) algorithm. Let us define the unobserved vector z = (zi, . .
.

, 2„), where

Zi is the number of infected individuals in pool i, and view the raw data x as the incomplete

observations from the complete data set (x, z). Hence, the complete log-likelihood is given
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by

1=1 fc=0

(47)

The expectation step of the EM algorithm calculates E /c(x, z;p)|x,p'''' . Because

E[l{z, = k)\x;p^'^]=Tk{x,;p^'^), (48)

it follows from equation (47) that

n m
E [/e(x, z;p)|x,p(^)] = ^^ rfc(x.;p(^))

t=l *:=0

log r p'(i-pr-N+iog(/r^(a:.))

The maximization step updates p^'^ using

p(^+i) = arg maXpE" [/c(x,z;p)|x,p'
is)

(49)

(50)

The function E /c(x, z;p)|x,p^*M is concave in p, and hence p(*+i^
is the unique solution to

the first-order optimality condition

dE /c(x,z;p)|x,p'^^

dp
= 0, (51)

which, after some algebra, gives

nm
(52)

1=1 fc=0

The equivalence of (52) and (11) estabhshes that the iterative procedure is the EM algorithm.

To prove that the algorithm converges to a fixed point, we need the following fact.

Theorem 2 (Dempster et al.): If the incomplete log-likelihood is bounded from

above and

/e(x,z;p(^+i))|x,p(^)] - E [/,(x,z;p(^))|x,p(^^] > X{p^'^'^ - p^'^f

for some scalar A and all p'-^^
, then the sequence p^^^ converges to some p* in [0, 1]

.
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To show that L(x;p) is bounded from above in our problem, we define

M = sup{max(7r+(?/), 7r_(?/))}.

y

Then 7r*<''''">(T/) < M'" and from (1), 7r?'''"^(y) < mM"^. Thus, it follows from (6) that

L(x;p)<[mM"']". (54)

To estabhsh (53), we use (49) to obtain

^[/,(x,z;p(^+i))|x,pW] -^[Ze(x,z;p(^')|x,pW; =
n m

X:E^^(^«;P^'^) (A:logp<^^^) + (m - A;)log(l -p(^+^))) -
t=l fc=0

n m

^ ^r,(x.;p(^)) (fclogp^ + (m - A;) log(l - p^))

.

.
(55)

i=l fc=0

Since X!r=i I^fcLo ^'^fc(^i;p'^^) = nrnp^^"*"^', the right side of (55) reduces to

nm ['''""'°8(3 + ('-^'"""°«(t^))- (^^'

To complete the convergence proof, we need the following lemma.

Lemma 1 For all {x,y) G [0, 1]^,

xlog
(£j

+ (1 - x)log (^-^] >{x- yf. (57)

Proof: Fix 2/ e (0, 1) and define h{x) = xlog (^) + (1 - a:)log [^) - (x - yf. Setting

/i'(x) = gives

which is satisfied hy x = y. Also, h"{x) = ^r^ - 2 > 0. Therefore, h{x) is convex and is

minimized when x — y. Because h{y) = 0, it follows that

X log
[
-

j
+ (1 - x) log (^^) >{x- y? for all x e (0, 1). (59)
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Because y is arbitrary, relation (59) holds for every x and j/ in (0, 1). The result extends

to the closed interval [0, 1] by continuity.

Lemma 1 and (56) imply that

E [/,(x,z;p(^+i))|x,p(^'] - E [/c(x,z;p('))|x,p(^^] > nm{p^'^ - p'^'^^^f for all p*
. (60)

Therefore, the conditions of Theorem 2 hold and the algorithm converges to a fixed point

B Partial Derivative ^[x\y)

Define the constants

A = 47(x-l)2,

B = [47(x-l-0) + (l-7)0](x-l),

C = (40 -87x)(x-l) + 02(^-2),

D = 3;(47x - 40(1 + 27)),

E = 47x^

F = -87x2 + (87 -40)x + 02(^^2).

Then

dy^ 40^y''(l +7/T) \ yT y-^T /
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