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INTRODUCTION

Black and Cox [2] analyze the effects of certain bond indenture provi-

sions on the valuation of corporate securities. One specific problem

addressed in their paper is the valuation of a risky discount bond in the
I

presence of a safety covenant. A safety covenant is a provision of a bond

indenture stipulating that if the value of the firm falls to or below a

specified level then the bondholders are entitled to some immediate settle-

ment of their claim on the firm.

The analysis of Black and Cox [2] assumes that the dynamics for the

value of the firm can be described by a diffusion process. They suggest

that the value of the debt may be altered if the value of the firm follows a

jump process since it would then be possible for the value of the firm to

reach points below the "barrier" specified by the safety covenant without

first passing through it.

This paper presents an approach to this valuation problem and provides

some specific results. These results and the valuation methodology are com-

pared to the work of Black and Cox [2]. Lastly, some extensions to this

analysis are discussed.

nb50io^
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THE VALUATION PROBLEM AND THE BLACK-COX RESULT

Consider a firm with two classes of claims, equity and a single homo-

geneous class of discount debt, where the bondholders are promised a payment

of B in T time periods. In the event that the promised payment is not made,

*

the entire firm value passes immediately to the bondholders. It is assumed

that the bond indenture stipulates that, during the life of the debt, the

firm cannot make distributions to the equityholders nor can it issue new

senior or equivalent rank claims on the firm.

It is further assumed that the bond indenture specifies a safety coven-

ant of the form;

o -YT ^ „ -rx
Ce < Be

where C and Y are constants and r is the assumed constant instantaneous risk-

less rate of interest. If the value of the firm should fall to or below this

barrier, then the entire firm value passes immediately to the bondholders.

Thus the condition;

V _< Ce~^^

constitutes a violation of the safety covenant, where V is the value of the

firm with T periods of time remaining in the life of the debt.

Under the additional assumptions:

A.l) There are no transaction costs, indivisibilities, taxes, bankruptcy

costs or agency costs.

Black and Cox [2] allow for a constant proportional dividend, which will
be omitted here. The analysis to be presented can readily incorporate
such a dividend.
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A.2) Every individual acts as if he can buy or sell as much of any

security as he wishes at the market price.

A. 3) Short-sales of all assets, with full use of proceeds, is allowed.

A. 4) Trading in assets takes place continuously in time.

A. 5) The dynamics for the value of the firm can be described by a

• diffusion type stochastic process;

— = adt + adz

where a is the instantaneous expected rate of return on the firm

per unit time, O^ is the instantaneous variance of the return on

the firm per unit time and dz is a standard Gauss-Wiener process.

Merton [11] demonstrates that any security whose value can be written as a

function of the value of the firm and time, H(V,t), must satisfy;

l/2a^V^H,„,+ rVH„ - rH - H = (1)W V T

which is a parabolic partial differential equation where the subscripts de-

note partial derivatives. Different securities are distinguished by the

specification of appropriate initial and boundary conditions.

Black and Cox [2] solve equation (1) with the appended conditions;

HCCe"^"^, T) = Ce"^"^ (l.a)

H(V,0) = Min[V,B] (l.b)

by showing that the solution to (1) (l.a) (l.b) is consistent with risk

neutral preferences. See Cox and Ross [6]. The boundary condition (l.a)

states that the value of the debt equals the value of the firm when the firm
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vlolates the safety covenant. The initial condition (l.b) says that the

value of the debt at maturity is the minimum of the value of the firm or the

promised payment given that the firm did not violate the safety covenant dur-

ing the life of the debt. The Black and Cox [2] valuation formula can be

represented as;

H(V T) = Be-^^c^ft°^^^
- ^°g^ -^ (^-'^/2a')T\

^
^^/logB - logy - (H-1/2o^)t\

V a/F ^ \ a/F ^

'(^
-YTX'^l

/21ogC - logB - IorV + (r-2Y+l/2a^)T\ (2)

a/i

,n-l

„ -rx /Ce
- Be lll\ 3.

/21ogC - logB - logV + (r-2Y-l/2o^)T\

W ^ o/F /

r—

Y

where T] = 2(— z") and ^ is the unit normal distribution function. The first

two terms correspond to the risky discount bond valuation of Merton [11] and

the last two terms represent the value of the safety covenant.
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JUMP PROCESSES AND A VALUATION METHODOLOGY

It is assumed that jumps or nonlocal movements in the value of the firm

2
are due to the arrival of information concerning the firm. The timing of

these information arrivals is random and independent of the impact this in-

formation has on the value of the firm. A natural prototype for such a jump

process is the Poisson process.

With a Poisson process, the instantaneous probability of information

arriving in the time interval dt is Xdt, where X is the mean number of

arrivals per unit time. The instantaneous probability of no information

arriving is 1-Xdt, since the probability of more than one arrival, during

the interval dt, is of an order less than dt. Given that information has

arrived, the impact of that information on the value of the firm is deter-

mined by a drawing from a distribution, f(Y), where Y = V(t + dt)/V(t) and

V(t + dt) - V(t) is the change in firm value due solely to the Poisson event.

Successive drawings from f(Y) are independent and all drawings are indepen-

dent of the timing of the drawing. These firm value dynamics can be formally

written as;
dV^ = (a-Xk)dt + dq

where ct is the instantaneous expected rate of return on the firm per unit

time, dq is the Poisson process and k = E[Y-1], where (Y-1) is the random

variable percentage change in firm value given the occurrence of a Poisson

event and E is the expectations operator.

2
This brief discussion of jump processes closely follows the work of

Merton [12] and Cox and Ross [5].
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Thus, the firm will earn a deterministic rate of return, (a-Ak) , during

inactive time intervals where no information has arrived;

^ = (a-Xk)dt

and will earn a random return during active time intervals where information

has arrived;

^=.(a-Xk)dt + (Y-1)

The resulting sample path for V will be continuous most of the time, with

finite jumps, of differing sign and magnitude, occurring at discrete points

in time.

Security pricing in the presence of jump processes has been studied

by Merton [12] [13] and Cox and Ross [A] [5] [6], In these cases, the Black-

Scholes [3] three asset hedging argument will not result in a pricing equa-

tion, analogous to (1), whose solution is consistent with risk neutral

preferences. One means of closing these valuation problems is to follow

Merton [12] and assume that the jump component in the dynamics for the value

of the firm represent diversif iable risk. The risk of the market or the econ-

omy may be thought of as a continuous process, but there exist a sufficient

number of other securities with contemporaneously independent sources of

jump risk so as to make this source of risk diversif iable. This implies that

the expected rate of return on the firm is the riskless rate of interest, a=r.

Writing the value of the debt as a function of the value of the firm and

time, WCV,t), the dynamics for the value of the debt can be written as;
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f = (a^ - Xk„)dt + dq^

where ol^ Is the Instantaneous expected rate of return on the debt, dq , is a

Poisson process with parameter X and k^ = E[Y -1], where Y = W(VY,t) /U(V,t) .

See Merton [12]. The instantaneous expected rate of return, ol^, on the debt

can be represented by the expansion;

(r-Xk)VW^(V,T) - W^(V,T) + XE(W(VY,T) - W(V,t))

"w
~

W(V,T)

See Kushner [9]. However, the only source of risk in the return to the debt

is dq,,, which is perfectly functionally dependent on dq. Thus, since dq has
w

been assumed to be diversif iable risk, the expected rate of return to the

debt must be the riskless rate of interest, ol^ = r.

Under these assumptions, the valuation problem for a risky discount

bond in the presence of a safety barrier can be posed as;

(r+X)W(V,T) - (r-Xk)VW^(V,T) + W (V,t) = X / W(VY,T)f(Y)dY (4)

W(V,t) = V for V £ Ce^^ (4. a)

W(V,0) = Min[V,B] (A.b)

where equation (4) is an integro-differential equation. The boundary condi-

tion (4. a) now accounts for the fact that a violation of the safety covenant

may result in a settlement less than Ce '
.

One attack on solving equation (4), subject to conditions (4. a) and

(4.b), is suggested by the work of Black and Cox [2]. They demonstrate that

their results, (2), are consistent with the approach of computing the expected
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4
discounted value of the payments to the bondholders. In the case of a risky

discount bond in the presence of a safety covenant, the pertinent distribu-

tions are the first passage time and the defective. The first passage time

is the time of the first violation of the safety covenant upon which the

debt receives a payment. Here, time t is measured as the expended life of

the debt. The defective is the distribution of the firm value given that the

safety covenant has not been violated. At maturity the debt receives the

pajrment Min[V,B] which is subject to the defective distribution.

Prabhu [14] demonstrates that the defective distribution, D(V,t), as-

sociated with a Poisson process, like (3), and a barrier, Ce , must satisfy;

D^(V,t) - (r-Xk-Y)Dy(V,t) + AD(V,t) = X / D(VY,t)f (Y)dY (5)

D(V,0) = 1 (5. a)

If equation (5) can be solved for a given f(Y), then the first passage time

distribution, G(t,V), follows immediately from the identity;

G(t,V) = 1 - D(V,t)

Few solutions to equation (5) are known. This paper derives the solution

for the case where f(') is the binomial density.

4
Black and Cox [2] predicate this approach on the argument that their re-

sults are invariant to an assumption on preferences; specifically, risk
neutrality. Their methodology and the one employed here will be compared
in a later section.
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THE BINOMIAL CASE

Let;

f(Y)

1/2 for Y = e

1/2 for Y = e

otherwise

-5

where 6 is a positive constant. The random firm value at time t = x can be

written;
V(t=T) = Vexp((r-Ak)T + z(t)6) (6)

where z(t) is the sum of a random number, n, of mutually independent random

variables, x : i=l,2,...,n, with the common distribution,

'

1/2 for X = 1

g(x) = • 1/2 for X = -1

otherwise

The random variable z(t) is distributed compound Polsson, h(z(T)), where;

h(z(T)) =? ""^Y^>" {g(x)}"*
_ n!

n=0

where n is the Poisson distributed random variable number of jumps in T time

1 n*
periods, n and x are independent and {g(x)} is the n-fold convolution of

g(x).

Clearly;

prob(V(t=T) = V*] = prob[z(T) - z*]

where

V* = Vexp((r-Xk)T + z*5)
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Now consider the prob[z(T) = z*] given exactly N jumps over the life of the

debt; / ^ \

prob(z(T) = z*|n=N) = I l/2(N+z*)/ (1/2)^

Let;

N-z*
where j is defined for only those cases where —^— is an integer.

prob[z(T) = z*|n=N] =f ^] (l/Z)^*"^"^

z*+j

Remembering that the occurrence of jumps is governed by a Poisson process,

this random walk in z(t) can be "randomized" along the lines of Feller [7];

" -Xt,, .zA+2j /z*+2j\ .,<,.

- ='^\.(*')

where

;

2j+zJ

h* ''''
-,l, TTfofe^ {r)

a modified Bessel function of the first kind of order z*.

—VT
Now consider a barrier, Ce , where y - r-Ak. This case is of interest

since its solution will serve as an integral part of the solution to the

more general case of arbitrary y. It is possible to solve for the defective

distribution, borrowing from the method of images used to solve the same

problem for a Wiener process. First define the integer n;
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n = logV + (r-Xk)T - logC

where [X] is the largest integer smaller than X. Thus, when z(t) = n, a

violation of the safety covenant has occurred.

The proper representation of the defective distribution is;

D(V.T) = S e"'*^'^[I^(XT) - l2.2n(^'^>l
z=n

(7)

The fact that (7) satisfies equation (5) is demonstrated in Appendix A.

The means by which the derivation of (7) is related to the method of

images can be seen by considering a single sample path for z(t). If it is

a path that will lead to at least a single violation then z(t) has equaled

n at least once. However, upon arriving at n for the first time, the dis-

tribution of the terminal value of this path is symmetric about n. Thus

the defective distributions can be represented as the difference between the

terminal distributions of a process originating at zero and a mirror image

of this process originating at 2n.

Defining the integer m;

m
logV + (r-Xk)T - logB

+ 1

the value of the equity, w(V,t), and debt, W(V,t), in the presence of a

safety covenant can be written as;

w(V,T) = E e ^(I (Xx) - I . (Xi))(Vexp(-XkT+z5) - Bexp(-rT))
z z-/n

z=m
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m-1 ,
°°

_>
W(V,T) = I e" (I (XT))Vexp(-AkT-(-z6) + E e '^(I^(XT))Bexp(-rT)

z= -°o z=m

00 .

+ E e" ^I „ (XT)(Vexp(-XkT+z6) - Bexp(-rT)) (8)
z-2n

z=m

where the first two terms correspond to the value of the debt in the absence

of a safety covenant and the third term represents the value of the safety

covenant.. The fact that (8) satisfies equation (4) is demonstrated in

Appendix B.

Now consider the general case of arbitrary y values. Define the inte-

gers n^ , n-,...,n. and the constants t , t ,..., t for a given y;

n, =
logV + (r-Ak)t^ - logC + Y(T-t^)

1 6

•^2

logV + (r-Ak)t2 - logC + Y(T-C2)

logV + (r-Xk)t. - logC +Y(T-t:.)

which has the effect of transforming the continuous barrier into a step-like

function. Clearly, the correct representation of the defective density for

0<T<t is;- 1

d^(z.T;n^) = e-^-^[I^(XT) -1,.2,^(Xt)]

Since the posited firm value dynamics are Markov, the defective density must

satisfy the Chapman-Kolmogorov condition. Thus the defective density for
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t^<T<t2 is;

J ~
1

^

And the correct defective density for t. <T<t, is:
1-1 — i

d^(z,T;n.) = Z d^
l^^'*^i-i'Vp^'^^^

^^~^^ ^^ -i(^(^-t-_i)

-^z-KJ-2n^ (M^-^_l))

Thus, in principle, it is possible to construct the general defective

distribution from these defective densities and the analysis would proceed

as before.
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DISCUSSION AND COMPARISON OF RESULTS

The comparative statics for W(V,t), (8), are consistent with those of

Black and Cox [2]

;

9W <o
3r

9W

9V
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Let ^(s) be the characteristic function of log(V(t=T)/V) . It follows

from (6) ;

H'(s) = [exp(i(r-Xk)T s)]({)(6s)

where ())(•) is the characteristic function of z(t) and i=/-l.

4)(6s) = exp(-XT + Xt9(6s))

where 6(-) is the characteristic function of x.

9(68) = E[exp(ix6s)]

, ,_
f

i6s , -i5s,
f.= l/2ie + e ] = cos os

Thus;

H'(s) = exp[i(r-Xk)Ts - Xt + XtcosSs]

Consider the following; let X-*<» as 6->0 such that X6^ = O^ , where a^ is a

positive constant.

Evaluating k;

k = E[Y-1] = l/2(e~^+e^) - 1 = cosh 6-1

f 2 pi*

k + 1 = cosh 6=l+vr + 7T +
2: 4!

Thus;

k = ^+«l +^ 2! ^ 4!

lira Xk = l/2a^

5--0

s.t. X6^ = a^
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Recalllng;

cos 5s = 1 - -yj- + -^j ^ +

It follows that;

lira(-AT + Xtcos 6s) = -l/2a^Ts^

I

6-K)

s.t. X6^=o^

And;

lim >F(s) = exp[i(r-l/2o^)T s - l/Za^Ts^]

X-K»

6-^0

s.t. U^ = o^

which is the characteristic function for the normal distribution.

The important difference between this analysis and that of Black and

Cox [2] lies in the economics of the necessary assumptions. The results of

Black and Cox [2] follow from a strict arbitrage argument, which does not

require knowledge of expected rates of return, the equilibrium structure of

returns, the existence of an equilibrium, preferences or the existence of

securities other than the three used in the hedging argument. Given the

assumptions, their result must hold in any economy where agents prefer more

wealth to less.

Such is not the case when the dynamics for the value of the firm are

subject to jump processes. Some additional assumption must be made in order

to close valuation problem in terms of the data. The assumption used in this
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paper follows along the lines of the security pricing model developed in

Ross [15], and discussed in this context in Merton [12], The result of this

assumption is the identification of the expected rate of return on the firm

and its claims as the riskless rate of interest. Note that the use of the

Ross model does not require any assumptions on preferences. The

valuation formula, (3), follows from a "virtual" artibrage condition.

This paper was not intended to be an exhaustive treatment of the ques-

tion of how the value of safety covenants is effected by the presence of

jump processes. Several interesting problems remain. One extension of this

work could allow the density function governing jump amplitudes to be contin-

uous. An analogous problem to this one has been studied extensively in

Collective Risk Theory and few results are known. See Prabhu [14]. Another

extension could allow for the dynamics for the value of the firm to be a

combined process, involving both Wiener and Poisson processes. Bhattacharya

[1] has made some progress on this difficult problem.

Finally, an interesting question is the impact on the pricing of safety

covenants due to specification error on the firm value dynamics. More spe-

cifically, would the valuation of safety covenants have systematic bias if

priced by the Black and Cox result, (2), when the true firm value dynamics

contained a jump component? Merton [12] [13] examines this question for

stock option pricing.
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APPENDIX A

The Integro-differential equation, (5), in the case where y = r-Xk,

reduces to;

Dj.(V,t) + AD(V,t) = X/D(VY,t)f(Y)dY (A.l)

In the case where f(Y) is the binomial density, the RHS of (A.l) is equiva-

lent to;
00

A/2 I e'-^^I (Xt) - I ,, .,.(Xt))
z=n+l

"^ z-2(n+l)

^
^/2jn-l^"''(^3<^^> -^.-2(n-l)(^^)^

The LHS of (A.l);

00

-XD(V,t) + X/2 Z e~^^a (Xt) + I _^, (Xt)
z-i z+1

z=n

-I ^ ,
(Xt) - I , .i(Xt)) + XD(V,t) (B.l)

z-2n-l z-2n+l

which is seen to be equal to the RHS of (A.l) after collecting terms and

changing the summation indices.

Checking the initial condition, (5. a),

I (0) = V z except z =
z

where

io(o) = 1

thus the Initial condition is satisfied.



APPENDIX B

Below it is verified that W(V,t), (8), satisfies

(r+X)W(V,T) - (r-Xk)VWy(V,T) + W^(V,t) = X/W(VY,T)f (Y)dY (B.l)

for the case where f(Y) is the binomial density.

The. RHS of (B.l) is equivalent to;

™ -\t
\/2 Z e I (Xt) V exp(-XkT+z6)

z
Z=-oo

+ X/2 I e'^'^l (Xt) B exp(-rT)

z=m+-l

+ X/2 Z e'^'^I -, ,,(Xt) (V exp(-XkT+z6) - B exp(-rT))

2=nH-l
==-2(n-l)

m-2 _,

+ X/2 Z e I (Xi) V exp(-XkT+z5)
z2=-oo

+ X/2 Z el (Xt) B exp(-rT)
z=tn-l

" X
+ X/2 I e" ^I ^, _,, ,(Xt) (V exp(-XkT+z5) - B exp(-rT))

2=m-l

The LHS of (B.l) is as follows;

""^ -Xt
(r+X) Z e I (Xt)(V exp(-XkT+z5))

z
Z=-oo



B.2

00

+ (r+X) I e'^'^l (At) B exp(-rT)
z=m

00

+ (r+X) Z
^~^^'^z-2n^^^^^'^

exp(-XkT+z6) - B exp(-rT))
z=m

m-1 ^

- (r-Xk) 2 e" "^1
(Xt) V exp(-XkT+z6)

Z=—00

(r-Xk) ^ e ^^l2_2n(^'^) ^ exp(-XkT+z5)
z=m

(l+k)X Z e I (Xt) V exp(-XkT+z6)
z2=_oo

00

- (r+X) E e""^"^! (Xx) B exp(-rT)
z=m

- (l+k)X I e
^'^1

^ (Xt) V exp(-XkT+z6)
z-2n

z=in

+ (r+X) E e '^''^I - (Xt) B exp(-rT)
z-zn

z=m

+ X/2 E e ^d^+i^^"^) *
^z-l^^"^^^ ^ exp(-XkT+z6)

+ X/2 E e'^'^d ^, (Xt) + I ,(Xt)) B exp(-rT)
z+i z-i

2=111



B.3

00 ,

+ X/2 Z e" "^(I - _^, (Xt) + I o i(^t)) V exp(-AkT+z6)
z-zn+i z-zn-i

z=in

00

- x/2 Z e"'^'^(I „ ^i(Xt) + I ,
,(Xt)) B exp(-rT)

z-/n+i z-zn-l
z=ia

The first nine terms sum to zero, while the last four are seen to be equal

to the RHS of (B.l). Thus W(V,t), (8), satisfies (B.l).

Now consider the boundary condition, (A. a),

W(V,T) = V for V £ Ce~^^

From the definition of z(t);

V < Ce"^^ for z(t) = n

00

W(V,T) = E e" I (Xt) B exp(-rT)
z=n-m

. + E el (Xt) V exp(-XkT+z5)
z

Z=—oo

00

+ Z e"^"^! (Xt)(V exp(-XkT+z6) - B exp(-rT))
z"n-m

00
^

= Z e" I (Xt) V exp(-XkT+z6)
z2=-oo

= V



B.4

Finally, consider the initial condition, (4.b);

W(V,0) = Min[V,B]

Let z(t) = z*;

m-2*-l

W(V,0) = L I (0)-V exp(z5)
z=—°°

+ I I (0)-B

z=ra-z*

00

z=m-z*

If z*>m, then y>B from the definition of m. The first and third terras equal

zero since I (0) = V z except z=0. The second term equals B since lr>(0) = !•

If z*<m then V<B. In this case the second and third terms equal zero and the

first term equals V.







BASEMErslT
Date Sue

API 5

Lib-26-67

,'4Vne

MAR' 4 1983



HD28.I\/I414 no.994- 78
Van Breda, M. /A reconciliation of som
734902 D»BKS 0005508?

3 TDflD 001 071 007

HD28.M414 no.995- 78
/A possible design and e

734900. D.*BKS _ _ 00055245 _

3 TOflO 001 073 13b

HD28.M414 no.996- 78

Tschoegl, Adri/lnternational barter /

734898 .
.
P.*BKS, 0,

3 TOflO 001 071 OSb

HD28.M414 no.997- 78
Mason, Scott P/Risky debt, lump proces
735063 D*BKS 00057 faft.

^\>
i9 D

3 TDSD 001 lOM 151

HD28.IV1414 no,998- 78
Kobrin, Stephe/Political risk :

745187 D*BKS 00143304

3 TOflO 005 130 M71

HD28.M414 no.999- 78
Holland. Dame/Trends in corporate pro
73508.1 .. D.»BKS . . _ 0005778"

3 TOflD 001 103 T5S




