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ABSTRACT

This report gives the theory and examples of a method of measuring the electric and

magnetic field strengths in resonant cavities. The fields can be represented as the

product of a readily measured constant, a function of the geometrical coordinates and

the time factor. The problem of determining this space variation is solved by the appli-

cation of electromagnetic perturbation theory to relate the shift in the cavity resonant

frequency caused by the introduction of a metallic perturbation to the volume integral

of the fields removed from the resonator. Three simple solids are examined, a sphere,

a prolate spheroid, and an oblate spheroid; the resulting relations between the frequency

shift, the shape and size of the perturbation, and the space variation of the fields permit

the measurement of the absolute field strength at any point within the resonator. As an

example, the method is applied to a section of the linear accelerator and the results

are given. With proper use this method can give very accurate measurements of the

direction and magnitude of the electric and magnetic fields.

* This report is essentially the same as a thesis of the same title submitted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the
Massachusetts Institute of Technology.
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FIELD STRENGTH MEASUREMENTS IN RESONANT CAVITIES

I. INTRODUCTION

The problem of measuring the electric and magnetic field strengths in resonant

cavities has become increasingly important with the recent great interest in microwave

electronics. At microwave frequencies, ordinary circuit elements become so small

that they are physically impractical, and cavity resonators are used in their place. For

practical application it is necessary that the mode of oscillation and the values of the

fields be known reasonably accurately, at least in some regions within the resonator.

They can be calculated analytically for only a few simple geometric shapes which can

be readily described by one of the standard coordinate systems (for example, rectangu-

lar, cylindrical, spherical, and ellipsoidal cavities). A number of approximate methods

of calculation have been developed, but they are often either difficult to apply or rather

inaccurate in their results. Therefore it has become increasingly necessary for an

accurate method of measuring the electric and magnetic field strengths to be developed.

Prior to the present time, the field strengths in resonant cavities have been meas-

ured by extensions from standing wave measurements in wave guides. Electric-field,

rod-type probes and magnetic-field, loop-type probes have been inserted into the walls

of the resonators, and the electromagnetic energy received has been essentially rectified

and presented on a meter. The orientation of the probes for maximum deflection has

given the direction of the electric field along the axis of the rod-type probe and the

direction of the magnetic field perpendicular to the face of the loop-type probe. While

variations of this presentation have been used, they do not overcome the many objections

to this method. First and foremost, it is only possible to get relative field strengths,

that is, the ratio from one point to another, since the presentation apparatus is exceed-

ingly difficult, if not impossible, to calibrate for absolute measurements. Second, the

fields are measured near the region of the walls and only very general arguments based

on symmetry and on knowledge of the known fields in a somewhat similarly shaped cavity

can be used to give an idea of the field strengths in other regions. Third, the insertion

of the probe itself changes the field depending on the size of the probe. Further diffi-

culties are met with the integrating effects of the large size probes necessary when the

field strengths are low. With these various difficulties, it is not surprising that more

work has not been done on measuring field strengths in resonant cavities.

Recently, there has been developed a method which eliminates many of the objections

to the probe-type measurements (1). It follows the general ideas of this report except

that it has the objection of giving the field strength only in the immediate neighborhood

of the walls of the cavity. In some cases, e.g. the narrow gap of a klystron cavity, this

can be a great advantage, for measurements can be made in restricted volumes where

the methods of this report are difficult to use.

The method of measuring field strengths in resonant cavities with which this report

will be concerned makes use of electromagnetic perturbation theory. This theory relates
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the electric and magnetic field strengths with the frequency shift caused by the introduc-

tion of a small metallic perturbing volume into the cavity resonator. The magnitude of

the frequency shift is proportional to the value of fields at the point of perturbation; by

making the relatively simple measurements of frequency shifts, the fields can be com-

puted.

This method overcomes most of the objections previously stated. In the first place,

a measurement of absolute field strength can be made once the relation between the shape

and size of the perturbing element, the frequency shift, and the fields is known. Second,

it is possible to suspend the perturbing element anywhere in the volume of the cavity

resonator in such a way that the method of suspension does not appreciably change the

field. In the third place, since the shift in resonant frequency can be measured with

great accuracy, it is possible to make the perturbing element quite small compared to

a wavelength, and thus minimize effects from variations of the field over the dimensions

of the measuring device. At the same time, this method retains the advantages of deter-

mining the directions of the fields, since the theory will show that certain shapes have

preferred directions and that by maximizing the frequency shifts, the directions of the

electric and magnetic fields may be determined.

The author has employed this method of field strength measurements on the Linear

Accelerator Project at the Research Laboratory of Electronics at the Massachusetts

Institute of Technology for the past two years, and feels that it has some value. This

report gives a discussion of the theory involved and the methods and results of measure-

ments on a typical cavity whose geometry does not permit a simple analytical solution

for the fields.

II. GENERAL THEORY OF CAVITY FIELDS

Before going further, it would seem advisable to give a brief discussion of the fields

in cavity resonators. A cavity resonator is formed by any closed volume, though almost

always it is enclosed by high conductivity metal surfaces. To obtain an analytical solu-

tion for the fields and the resonant frequency, Maxwell's equation must be solved subject

to boundary conditions imposed by the cavity. Combining Maxwell's equations leads to a

wave equation, and the fields are derivable from a potential function which satisfies the

wave equation. The fields must satisfy the boundary conditions, which, for the generally

assumed perfectly conducting wall, are that the tangential electric field and the normal

magnetic field are zero on the boundaries. The net result is that such a solution is

possible for only a limited number of resonator shapes which are readily defined by

standard coordinate systems.

While a cavity whose fields can be calculated is of interest to this report only for

checking the theory, many of the concepts needed are included in more general shaped

cavities, and it seems reasonable to outline the calculation of the case of a cylindrical

cavity. This will also provide the relations needed to verify the theory to be developed.

Maxwell's equations may be written in vector form in a cavity with no space charge or
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current density, as follows

8B
V xE + -= 0

- at

aD
V H - = 0

- at

V D=0

V B=0

(1)

In free space, and to a good approximation in air, there are the auxiliary relations

B = oH
- -

D = E
_o-

(2)

Writing these equations in cylindrical component form and solving them simultaneously

gives scaler wave equations for the various components, and it is seen that two general

types of solutions satisfy these wave equations. In the transverse magnetic (TM) mode,

the magnetic field has no component along the z-axis; in the transverse electric (TE)

mode, the electric field has no component along the z-axis. It is a general result for

all cavities of a general cylindrical shape and for a spherical cavity that there exist

these two types of modes, but in other cavities, "transverse" may refer to any axis or,

in the case of a spherical cavity, to the radius vector. Only the TM modes will be con-

sidered, since the cavity used to check the perturbation theory was operated in such a

mode, but the solutions for TE modes are similar. Assuming that the fields vary with

ejwt and substituting the boundary conditions for a cylindrical cavity of length L and

radius Ro, that is,

E z = 0 at r = R o

E =Or at z = 0

z = L,

the following are the solutions for the fields.

He =A cos (-

E = A C 
0

0I '

0

n+ r) 
sin(- L ) U 

nm
R

o

-j = A lz) jn ( n r1 ej wt
E 2 - A cos(4Jz) Jn(r eJi ~ (5)

where A is an arbitrary constant, P = li/L, k = 2r/X = /c, Unm = mth root of Jn

1 = 0, 1, 2, 3 ... , m = 1, 2, 3 ... , and n = 0, 1, 2, 3 ... . This gives, as in all cavities,
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an infinite series of possible TMlmn modes depending upon the values of 1, m, and n

chosen. For the TM010 mode which was used to check the perturbation theory,

Ez =- A A J (kr) ej t (6)

Ho = A J (kr) ejt (7)

2. 405
k = 2.40____5 (8)

R o

These solutions represent fields in the cavity multiplied by an arbitrary constant.

The value of the constant can also be calculated by making the assumptions that the

effects of a coupling hole or probe, and of the finite conductivity of the wall surfaces,

have only a second order effect on the geometrical variations of the field. These are

valid assumptions with cavities of very high conductivity materials and with reasonably

small coupling holes. The unloaded Q of a cavity may be defined as

2Zr X Energy stored
Qo Energy dissipated per cycle

The energy dissipated per second is the power P actually put into the cavity, and the

energy stored in the resonator is

1 2 1 2
2 dv=t H2 dv (10)

Using these relationships, the value of A can be found in terms of an integral over the

cavity volume of the space variation of the fields. For the TM010 mode, whose space

variation is known, this integration can be carried out and yields

2
Qo P k

A 2 | 2 (11)
1/2 (kR)

The fields can then be written with the above value of A, and since Q, P, and can all

be measured or calculated, the fields are completely determined in this case.

The problem occurs when the fields can not be found analytically, and the constant A

contains an unknown integral depending upon the geometrical variations of the fields.

Different authors have adopted various concepts to take care of this difficulty. One of

the most popular is to carry over the analogies of low-frequency, lumped -constant reso-

nant circuits, and define Q and a shunt impedance, the Q being defined as above, and the

shunt impedance as a factor which gives the amount of power which must be supplied to

maintain a given voltage across a given path. Others consider the ratio of the shunt

impedance to the Q in order to have a constant depending upon the geometry and not
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containing the conductivity of the walls. All these have a great disadvantage in that,

unlike the Q, the shunt impedance has no unique definition and depends completely on the

arbitrary path used to define it (2). To avoid this difficulty, cavity fields will be dis-

cussed in a method which recognizes that the fields can be represented by a measurable

constant multiplying a purely geometrical variation. It has the additional advantage of

representing the general solution to a cavity whose fields cannot be found analytically,

and of leading directly to the perturbation method of measuring the field strengths.

The following concepts are those developed by J. C. Slater (3). The essential idea

behind this theory is that a general solution of the fields in a cavity resonator can be

obtained from a summation over certain normal modes of oscillation. These normal

modes have orthogonality properties and have certain defined values on the boundaries

of the cavity. In terms of such modes, the fields in cavities of any shape may be calcu-

lated, and more exact solutions which take into account variations in the fields caused

by finite conductivity and coupling devices may be had for the simple shape resonators.

This report will not attempt to develop these concepts, but will use them.

As Slater has shown, the E and H fields of a resonant cavity with no current density

and no space charge can be given by the following vector summation over normal modes

E = a E EP a dv (12)

HZa iHHa dv (13)
a

where Ea and H , the normal modes, are time independent solutions of the vector wave

equations

V x V xE = k E vXE =k H (14)
-a a -a -a a -a

VX V XH = k2 H VXH =k E (15)
-a a -a -a a -a

with the additional normalization and orthogonality conditions that

-a E b dv Ha Hb d v = dab ab (16)
(16)

1 a=b

Substitution of these relations into Maxwell's equations yields two differential equations

for the coefficients in the expansions for E and H,

d2 2 d

Eo Lo Pa dv + k _

(17)
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and

- H a o E H dv -k0 - o lH Ha dv + ka H a dv (nXH) a da - (nxE) a- Ha da
dt

(18)

where S is the boundary surface on which the tangential component of Ea is zero and S'

the boundary surface on which the tangential component of H is zero. By accounting

for the integrals over these surfaces, the effects of finite conductivity and coupling de-

vices may be computed.

The method of application is to solve the vector wave equations in the coordinate

system most nearly representing the cavity to obtain the functions Ea and Ha . The

coefficients are found by solving the differential equations with the values E and H on the

surfaces S and S'. Then, by taking the indicated summations, E and H are known. In

terms of this method of description, the fields of the TM010 cavity oscillating in its

lowest mode can be written as follows, after normalization

· K J (kr) t ( 1E = E E -E dv = E dv (19)
-a -a -irL R0 Jl(kr ) -a

H = H H H dv = J, (kr) H H dv (20)-a -- a
J -rL RJl(kRo) - -a

and where the solutions of the differential equations for the coefficients give

H ·H dv = const ej(t (21)
- -a

Ea dv - j a dv (22)

The constant in Eq. 21 for the coefficients can be found in terms of the Qo and input

power, by the same method as was used to find Eq. 11

Qo P X 
const = a (23)

All quantities in this expression are measurable, and the net result is that the fields can

now be expressed in terms of a measurable constant multiplying a term depending com -

pletely on the geometrical properties of the resonant cavity.

For a general cavity, the approach is exactly the same except that the geometrical

factor must somehow be measured. In general terms, the fields will be expressed in

terms of E and H where these are time-independent functions of position and are-O 
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normalized over the volume of the cavity. These functions correspond to the Ea and H a

above, and are proportional to the true fields. The constant of proportionality can be

expressed in terms of purely measurable quantities. The following chapters are then

devoted to determining the method and details of measuring Eo and Ho, and once this is

done, the true fields are given by

Ejo Qo P Xo E ejet (24)
377 7 -o

H = 7 Ho ejt (25)

III. DERIVATION OF THE PERTURBATION FORMULA

The principal advantage of expressing cavity fields by the methods developed in the

previous chapter is that these descriptions of the fields lead to a simple derivation of the

perturbation formula. This derivation is given in Ref. 3 but is repeated here for com-

pleteness and also in the hope that an understanding of the derivation will aid in compre-

hension of its use. Consider a cavity in which the functions E and H have already been-a -a

found. If one of the bounding walls is now pushed into the cavity by a small amount, the

final fields, E and H will be zero in the volume between the initial and final walls. The

resulting discontinuity at the perturbed wall of the tangential component of H must then

be included in the right-hand sides of the differential equations for fE · Eadv and

fH. Ha dv. This surface discontinuity in H will be included as the integral (n XH)

E dv over the perturbed wall surface. Since, for a very small perturbation, the per--a
turbed field H will be very nearly the original H over the wall surface, the desired

-a
integral may be expressed by

(n xH)' E da (n XHa) E da = n (E x Ha) da (26)

By a vector analysis theorem

v (E aX Ha ) =H (v x E) - Ea (VX Ha) (27)-a -a -a)

and from the definitions of H and E in Eqs. 14 and 15, this is given by k (H - E a)
-a -a a a a

If this expression is now integrated over the small volume removed from the cavity by

the perturbation of the wall, then

i V (EaX Ha) dv = ka (H2 - Ea) dv (28)

Applying the divergence theorem, the left-hand side is transformed into two surface
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(29)

integrals# one over the original surface and the other over the perturbed surface. Over

the original surface n· (E X H ) can be changed to H . (n X E )# and by the boundary#_ -a-a -a --a
condition defining E

a
# this tangential component is zero on the original surface. This

leaves the integral over the perturbed surface# and since the normal from the divergence

theorem is the opposite of the desired normal# the result is that

f-n . (E X H ) da =k f (HZ - E
Z

) dv- -a -a a a a
~V

By the approximation in Eq. 26 this gives the desired f (~ X H) . E a da over the per

turbed volume. If the original field were a constant times H #or H rH . H dv# the-a -a--a
result would have to be multiplied byf H . Ha dv. Thus

j<n X H) . E da = k fH. H dvf (H
2

- E
2

) dv (30)---a a--a a a
~V

Substituting this in Eq. 18 for the coeffici~nts! H . H a dv and assuming that they are

proportional to a constant multiplied by e
Jwt

# then

but

and thus

2 2 2 f. 2 2
- E P. w + k =k (H - E ) dvo 0 a a a a

AV

(31)

(32)

(33)w; ~.,2 =f (E; -H;) dv

wa ~V

This last result is the electromagnetic perturbation formula, and relates the shift in

resonant frequency to the integral! (E 2 - H2) dv over the volume which was removeda a
from the cavity.

There are two warnings which must be remembered in applying this perturbation

theory. The first is that it is exact only for infinitesimal perturbations, and cannot be

applied for finite distortions. The second is perhaps slightly more subtle# but is never

theless important. Since the whole derivation# as given above# depends upon the unper

turbed fields E and H satisfying the boundary conditions before the perturbation is
-a -a

introduced, the formula will not hold in cases where even an infinitesimal distortion is

made from a situation not originally satisfying the boundary conditions. The reasons for

making these two distinctions clear will be apparent when# in succeeding chapters, this

perturbation theory is applied to various shapes of perturbing volumes.

The foregoing derivation of the perturbation formula for a perturbation of the walls

still holds for a perturbing volume placed within the resonator# if the perturbation is
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small compared to a wavelength, and if the two warnings given in the preceding para

graph are heeded. The reason for the restriction as to the size of the perturbation is

that the derivation given did not take into account the possibility of resonant effects

occurring when the perturbing object is of the order of a wavelength. The frequency

shifts caused by such a resonance would thoroughly mask the frequency shifts calculated

from the application of the perturbation formula. To avoid this difficulty, all the per

turbing shapes used will be of dimensions much smaller than a wavelength, and the cal

culations can be carried out using only the perturbation theory developed in this chapter.

IV. PERTURBATION EFFECTS OF METALLIC SPHERES

Perhaps the simplest example of the application of the perturbation theory developed

in the previous chapter is to the perturbation produced by a metallic sphere in the E and

H fields of a cavity resonator. The spherical symmetry and resulting non-directional

effects, as well as the magnitude of the perturbations produced, make the metallic

sphere an extremely useful tool in measuring field strengths.

The method of applying the perturbation formula is to assume that a perfectly con

ducting sphere is placed into a constant electro- or magneto-static field, and to solve

for the resulting E or H field subject to the boundary conditions on the sphere. This

gives fields which satisfy the boundary conditions before the perturbation theory is

applied, which, it will be remembered from the preceding chapter, is one of the neces

sary steps in correctly applying the perturbation formula. The sphere is expanded by

an infinitesimal.amount, and the E or H fields integrated as indicated by the perturba

tion formula. This insures that the perturbation formula is correctly applied only to an

infinitesimal change in the boundaries, and hence both the warnings given in Chapter III

have been heeded. The resulting expression can then be integrated from a sphere of

radius zero to the desired size, and the perturbation effect is known for a given sphere

in a given electric or magnetic field. Although the perturbation formula will be applied

to E and H fields separately, it will hold in a region where both fields are present be

cause of the linear character of Maxwell's equations and the superposition theorem.

The assumptions of constant static fields do not lead to any loss of generality. Since

the perturbing sphere will be small compared to a wavelength, the fields found in cavity

resonators will be practically constant for distances comparable to the sphere diameter.

Static fields may be considered since the perturbation formula is concerned only with an

integration over the space variations of the field and is independent of the time variation.

The static fields may be considered the equivalents of the geometric field variations

discussed in Chapter II.

Consider a constant electrostatic field of magnitude Eo directed along the positive

z-axis. The effect on this field caused by the introduction of an uncharged, perfectly

conducting metallic sphere of radius r o is straightforward to work out, and will be taken

from the literature (4). The resulting potential function outside the sphere expressed in

spherical coordinates is given by
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(35)

(36)

(34)

(37)

(38)

(39)

(40)

(41)

(42)

j
V+dV

. 2 2
21T' E =. E dvo a

V

221w - w
o w2 = E; dv

o 6.V

dv = r
2

sin e dr de d~

E r
3

q, = - Eo r cos e +~ cos e
r

E~ = - r ;in e U= 0

The resulting fields are obtained from the gradient of this potential, and are

. aq, [2r~]E =-- =E 1 +-- cos er ar 0 3r

The perturbation formula for the case of zero H field is

integrating the fields for an infinitesimal expansion of the sphere into the field, . from r 0

to r o + dro ' gives

and

Since

From integral calculus, it is obvious that

j XO+dX
O

f(x) dx =f(xo) dxo
X

o

Applying this to the previous expression, the result for the infinitesimal expansion of the

sphere is



V+dV

E 2 dv = 12rr E rZ dr (43)a 0 0 0
"V

For the total perturbation caused by a sphere of radius ro, the above expression must
be integrated from r = O, to r = r o , and substituting the resulting expression into the
perturbation formula gives

2 2
0 E 2 4n 33 Eo r (44)

0
O

This, then, gives an expression relating the magnitude Eo of the E field to the size and

shape of a perturbing volume, and the frequency shift caused by its introduction.

The application of perturbation theory to a metallic sphere in the H field is exactly

similar. A potential function for a perfectly conducting metallic sphere in a constant

H field of magnitude Ho along the positive z-axis, is given by

= - H o r cos 0 + 2 - cos l (45).
r

From the gradient of the potential, the components of the field are

H = H ° 1 - cos 0 (46)
r

H0 = -H o 2 sin 0 (47)

H =0 (48)

and applying the perturbation theory exactly as was done for the E field, the final result

for a sphere of radius r is that

2 2
6 -Co 3 2 4 3

2 2 o3 ro (49)
0o

By applying the superposition principle, the perturbation effect in a region where both
fields are present is given by

2 2
___ __ 

4 -rr 3 2 1 2
- r ° 3 (E Ho ) (50)
O

From this, it is clear that a sphere alone cannot give E and H separately, but only the

function (E -2H2), and that at least one additional equation is needed. Actually, as it
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turns out in a general resonant cavity, there will be five components of the fields which

must be determined. This means that to determine E and H completely, except in a

region where only E or H alone is present, shapes of perturbing volumes must be exam-

ined to obtain other relationships between the various components.

These results have been checked experimentally, as will be shown in a future chapter,

but there is also a method of checking them theoretically which has been applied. The

results will be mentioned here but the work not carried out, as it does not further the

general problem. The method of checking lies in the fact that both spherical cavities

and cavities formed by two concentric spheres can be calculated analytically for the

fields and frequencies. For the TE modes in a spherical cavity, H is not zero at the

center while E is, and the opposite is true for TM modes. By solving for the frequency

difference between a spherical cavity and a concentric spherical cavity of the same outer

radius, agreement was had with the frequency shift found by using the perturbation for-

mula on the fields in the center of the spherical resonator. These results agreed with

those for spheres inserted in constant fields as found in this chapter.

V. PERTURBATION EFFECTS OF CIRCULAR METALLIC NEEDLES

The next two chapters will be concerned with the perturbation effects of ellipsoids

of revolution; the present chapter with ellipses rotated around the major axis to form a

circular needle, and the following chapter with ellipses rotated around the minor axis

to form a circular disk (5). These two chapters will then give the necessary additional

relations for complete determination of the fields.

The problem of the general ellipsoid with all axes different cannot be calculated

analytically. This is unfortunate since such a calculation would make possible one series

of applications of the perturbation formula, and the results for needles and disks could

be found by letting two of the three axes be equal. An additional, though minor, compli-

cation results from the fact that the coordinate systems best suited for describing the

needles and disks have not been worked out, and there is no readily available potential

function for perfectly conducting disk or needle in an electric or magnetic field. Thus,

the problem must be worked out from the equations of the ellipsoid, the potentials found

for the various orientations of the needle and disk, and then the perturbation formula

applied to the resulting fields. This process will be carried out in full for the case of

the needle in the present chapter, and merely outlined, with the end results given, in the

next chapter on disks.

The process to be followed in finding the potential in the desired coordinate system

is the straightforward method of generalized coordinates and is in the literature (6). The

coordinates to be used for the circular needle of elliptic cross sections are the points in

space determined by the intersections of a family of confocal ellipsoids, = constant,

with a family of confocal hyperbolas, ?s = constant, with an angle, t = constant, measured

around the x-axis. The equations of the coordinate surfaces are given by
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2 2 2 2x r x r 
+ 1 = , = 1 (51)

5 + a' + c a -F7 7- c

where

a >tc

e > -c

2 2 < a

2 2 2 (52)
r =y +z

y = r sin J

z = r cos i

These equations can be solved simultaneously for x, y and z, and this yields

x[ 1+21/2

x ((a2 )(a - cZ)

y + C2)(77 - c2)
(a 2 c2)

z= [(+ c2)( c2)
(a2- c2)

1/2

sin (54)

1/2

cos 4p (55)

The desired coordinates are , *7 and , and the metrical coefficients can be calculated

from Eqs. 53, 54 and 55 and are

h 2[( ~ +a2)( e + c2])2 h2
= (aZ 7)( cz

h = ( + c )(7? - c ) 1 (56)

The potential function needed will be found by a method given by J. A. Stratton (7).

The case of the constant field being directed along the x-axis, or, as can be seen from

the equation for the ellipsoid, along the major axis of the needle, will be calculated, and

from this solution, the potential function for the field along the minor axis can readily be

found. For an applied field of magnitude Co, along the x-axis, the potential of the field

is given by

qo [ 2a z
(57)1/2

j =--C x=-C (V +a )(a -'i (57)
L (aZ -cZ)

-13-
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The desired potential function must satisfy Laplace's equation, since there is no free

charge; it must reduce to a constant on the surface = 0, that is, on the surface of the

needle; and it must be regular at infinity. The primary potential o is a solution of

Laplace's equation, but is not regular at infinity. Let

o = A 1 F 1(t) F2(7) F 3('4) (58)

If the boundary conditions are to be satisfied on the surface = 0, the potential cP1 of the

induced distribution must vary identically with 77 over surfaces of constant . Assume

then, that

1 = A2 G1(5) F2(97) F 3(ip) (59)

l1 must also satisfy Laplace's equation, which can be found from its expression in gen-
eralized coordinates (6) with the metrical coefficients given above. It is

v 2 =o = a 2 [ +a 2 ( +c2) 

(60)

a 2 2 2( +77)(a - c aO "

-77e [ (7 _ 2) d t47 ( + c 11j)( c a(

Substitution of the expression for l into Laplace's equation, 60, then gives the following

differential equation for G1().

G dG GdG 1 dG 1 1 1 1
+ - += 0 (62)

dt 2 t a2 I] 2 (t + a2)( + c2 )

If one solution of a second-order, linear differential equation is known, in this case,

Fj(t ) , an independent solution, G 1 (5), can be determined from it by integration (8).

That is, if Yl(x) is a solution of

d + p(x) + q( qx) y = 0 (63)
dx

then

Y2(x) = y(X) (X dx (64)
y /(x) x

Applying this to find G 1 (E) where Fl(t) = + a, the result is that

_1 dt dg__

It,2 .2 e 2 t+c 
G = M 5+a dE (65)

(Va

-14-



GM() i F3/ d2 (66)

(t + a) (e + c)

The limits of integration on G(t ) are arbitrary, but to make 1 vanish at infinity, the

limits used are to infinity. Substituting this in the expression for ) 1 gives

A1 d E 22 (c3/2 2) (67)
*l o (= +a ) ( +c )

The total potential for the case of the applied field parallel to the major axis is the sum

of the primary potential o and the induced potential 1, and is

[ + )(a2 1/ + A a 2 cd (68)
(a5 -] [ ( + a ) (t c )

Since nothing in the foregoing derivation restricted it to either an E or an H field, the

constant C o can be either Eo or Ho, and A will then be determined from the boundary

conditions applying to the field being considered.

In the case of the primary field being directed along the y- or z-axis, it is simple to

sketch the derivation of the potential to find the changes in the final function _. Fl(t)

will in this case be / + c2 and the resulting integration for G1 (t) will give

Gl( ) = + c 2 d (69)

2 2
+ (ecZ) / a

The final potential, in this case, of the primary field perpendicular to the major axis of

the needle, will be

C 2I +211/2 [ 2 sin l + A (70)
= ~eI~c (a7- c) +n2 )p2 it (70)

(± +c) +a

in contrast to the expression for 11 given in Eq. 68.

There are obviously four cases which must be calculated, two for E o , parallel and

perpendicular to the major axis a of the needle, and two for Ho . The procedure to be

used is similar to that followed for spheres. The fields will be found when the needle is

placed in a previously constant field, and the perturbation formula applied to an infini-

tesimal expansion of the needle into these fields. The resulting expression will then be

integrated from a needle of zero size to one of semi-major and semi-minor axes a and c.

The cases of Eo and Ho parallel to the major axis will be calculated in detail to illustrate

-15-
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the method used, while the calculations for the other two cases will be merely outlined

and the results given.

Consider a needle of semi-major axis a and semi-minor axis c placed in a constant

electric field of magnitude E o . The potential in the presence of the needle, as found

in Eq. 68 will be given by

411= -Eo ( a2(2Z C) + AE] (71)

(72)V = d - 23/2 2

( + a ) ( + c )

-1

2 2 3/2
(a - c)

2 2a
2 c 2

I + a 2

J+ a2 J a2 c2

g+ a+2 _ c2

The fields, E, E, and Eqj are found from the gradient of this potential, and the value

of A from the boundary conditions that the tangential components of E, E and Enj, are

zero on the surface of the needle, = 0.

I aO11
E: - -h: =E o [ (e + a2)(?7

( +q)(a

2] 1/2

(74)

If E = 0, at = 0 for all values of 7 and , then

A -1
E --

where

-1
V = 

= 2 3/2
(a - c )

2 _ 2
2a c

a

L

ln a - a - c

a+a2 -c2

which makes

E + a2)(~7- C:)1
E177 = E 2 2

[( + a)(a - c )

Ee + c2)(a2 _- 1
° e+ 1 -(aZ- cZ)

E =0Oq,~

0 2V[' v+ VoJ + a2(t + c O~~
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The next step is to apply the perturbation formula to an expansion of the needle, and

integrate these fields over the expansion. The second warning in applying the perturba-

tion formula must be thoroughly considered here. The perturbation formula holds only

for an expansion of the perturbing volume to a similar volume. In the case of the sphere,

this was automatically accounted for, since any two spheres are similar. Here, the

needle can be expanded in many ways. The surface, = 0, represents the surface of

the needle, and it might then be thought that an expansion from = 0 to dg, or from one

ellipsoid to a confocal ellipsoid infinitesimally larger would be wanted. But the pertur-

bation formula would not hold .in this case because the needle would not be expanding all

dimensions equally into the field, and the resulting confocal, slightly larger ellipsoid

would not be similar to the original. What is then needed is the equation of a circular

needle of elliptic cross section similar to the original, but infinitesimally larger. The

equation of the basic needle is

2 2
-Z+ =1 (80)
a c

and the equation for a similar needle is

x 2 r2 2 a,2 ,2x + 2 where 2 c 2 (81)
Z + '-Z = a whe re a = r - (81)

a c a c

Putting the values of x2 and r2 found in Eqs. 53, 54 and 55 into the expression for the

similar needle, and solving for the value of t denoting the surface of the similar needle

2 22

a -(82)

When the similar needle is only infinitesimally greater than the basic one

a' a + da c' c + dea da c c -dc = 1 +da (83)
a a c c

and
2a 2 c 2 da

dko 97 (84)

This value will then be the upper limit of integration for the application of the perturbation

formula to the expansion of the basic ellipsoid. The volume increment is given by

dv = hh 2 h 3 d d d (85)

1 (E +7) d d? d (86)

it 2 at a/a2 2 2
t+ ha -t 7 a -c

With this information, the fields E[, E and E found in Eqs. 77, 78 and 79 can now be
4'
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integrated over the infinitesimal expansion of the needle. This results in

g2w
2 1

E dv = Z

0

2
a

d~U
2

0

0
de

dt (E7 + E + E ') [ + a 2 2

(87)

However, E = 0, and E7 and EI both contain terms in [1 - V/Vo , which, integrated

between the limits on , are equal to zero. Carrying out the remaining .integrations

over gives

V+dV

V

2
wE 22dv = o c 4

dv= 23/2a- 2 2 4
(a - c ) 

2

Ja -k dgd (88)

Substituting the value of d 0o given in Eq. 84, and performing the integration

as a result

over g7 gives

V + dV

V

2 -8 Eo d
E2 dv = 0 de

(a - c2) Vo

a2 -c +ln -a - c

l aa+ a2 - c 

(89)

and substituting in the value of VO from Eq. 76 gives

V+dV
/?

2 2 2/ 
2 8 E(a -c ) da

E dv = - o

n a + a - 2 a2 - c

2 2 a
a a - c

(90)

This is the result of the integration over the infinitesimal expansion of the volume of the

needle. To find the total perturbation caused by the introduction of the needle, the above

expression must be integrated from a = c = 0 to a and c. For similar needles, = c/a

is a constant and da = da/a = dc/c. Substituting and integrating, this will give the total

perturbation caused by the introduction of the needle into the field

2 2) 3 / 2o a 2 d a2- 2 8r E (1 - B a2 da 2 23/2 4w 3
Wo - = 2E 3) 3 a

(0 _ 
1
__ -2 [

I_ j, _ 2 - P]@° 1 Jnl-2>l- [Inlt-2]

(91) (92)

This is an exact expression for the perturbation effect produced by the introduction of a

needle of semi-major axis a and semi-minor axis c with the applied field parallel to a.

It holds for all values of , and in particular, as approaches unity, a approaches c,

-18-
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the needle approaches a sphere, and the expression reduces to

2 2

3E -4 a (93)
03

Oo

which is the expression found in Eq. 44 for the perturbation of a metallic sphere.

Figure 1 contains the above relation normalized to the perturbation effect of a sphere

of radius r = a, and plotted as Fi1(P) against from zero to one. Figure 2 contains the

same function on an expanded scale for small P.

B

Fig. 1

.16

.14

.12

.10

F(8)

.08

.06

.04

.02

0 .02 .04 .06 .08 .10

)9

Fig. 2

The same method is followed exactly to find the perturbation effect produced by a

needle with its major axis along the applied H field The gradient of the same 11 is

taken to obtain the fields, but in this case AH is determined by the boundary condition

on H, that is, that the component of H perpendicular to the surface of the needle, H , is

equal to zero on the surface, = 0. Performing these operations gives

2
A H 2 -ac

H 2 - ac V

+ 0 )(a -
H =OK +??)(a2 - c2)

2A H 1
1 + AHV - ---

ac
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2 2- 1/2
= H E + )(' - C + AH

+ n?)(a - 2)j

H = 0

(96)

(97)

Integrating the fields over the volume between the basic needle and the infinitesimally

greater similar needle, and making the substitutions for AH and Vo, results in

VV+dV

JV

T
2
A, -

-8,r H2(a 2 - c2)3/20 7 

2aa 2 c2 Ia +

cz r
a -

da
(98)

If, as before, P = c/a and da = da/a, the final result for the total perturbation produced

by the introduction of a needle of semi-major axis a and semi-minor axis c into a mag-

netic field directed along a is

2 2
o -co

2
0O

2 -23/2 4w 3
H2( 1 P)- ) T a

1 _P2 1 In + 11 2

P I p2 

(99)

This function is plotted as F 2 (p) in Figs. 1 and 2, after being normalized to the pertur-

bation effect of a sphere i a magnetic field, and the figures show the agreement with

the sphere when = 1.

The two cases of the applied fields perpendicular to the major axis, that is, applied

along c, can be calculated with the same procedure. For this case, QL must be used,

and, as found in Eq. 70 it can be written as

C (c(t + 2)(?7 - c2)1/2

where

sin [1 + AU]

d 
2 2, 2

(t c) + ta 2

I J2/ a I2 c2

2(a- c ) 3 (e + c 2 )
(a -c)

1 in t a +
2 a2

|e + d 

and

1
U = 12 2 3 / 2

(a - c
2 2 2 2

a- a -

For the applied E field, AE is determined from the boundary condition that E = E = 0
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at = 0, or that

and the gradient of L then gives

2+ )(a cE =E (( + a )(, - cI
Eg =EOl?(e c)(a Z)

1/?.

(104)sin - - 2 
sin - o- Uo(g + c 2 ) +a

1/2

E : E[( + a)(a2 1 1/22 2

El = E cos [1 U

Integrating the fields between the two

UO and P gives

JV+dV

V

E2dv =

sin [1 - (105)

(106)

similar needles and substituting in the values of

2 23/2 281r E( - 2 ) a da

2 f

and integrating from zero to a, gives the final result that

2 2
W - _ 
0

2
co

2° {2 3/ 2 4r 3
2EL (1 - p) 

1 -
[ClP+

(108)

which, normalized to

The result for the

given by

a sphere in the electric field is plotted as F 3 (p) on Figs. 1 and 2.

applied H field perpendicular to the major axis a of the needle is

2 2
0o _=

o

2HI(1 - 2) 4 a3

(I - 2P) 1 2 + 1 In 1- 1
P2 2...

(109)

This result is also plotted in Figs. 1 and 2.

In conclusion, the effects of the four possible orientations of a needle are listed

below as well as the functions which are plotted in Figs. 1 and 2.
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E o parallel to a

2 2
C -

O

2
0

F (IR =
- r1",

L

Eo( 1 - )1 _a

(1 - 2 3/2

[ ( I 1 J- p )

(110)

(111)

ilnI + 1 -

1 - 1 - j

E o perpendicular to a

2 2
CO - C

o _

2
oF =

F2({ ) =

2E 2o(1 - 2)3/ 3

p21 - 1l'-{3'P 2

1-P n 1 '1 

P /i-1 1 ±
2 - in1- 

(112)

(113)

Ho parallel to a

2 2
C - )

2
o

F 3 (p) =

32 /2 4r 3
-Ho ( 1 - {3) T a

(114)

- 2 1 -1 1-P

(1- 1 - P1

-(Z 3 /

[ /1 p2

P
1 n 1 + -

1 - 1 P _

(115)

Ho perpendicular to a
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2 r 2 13/2 4 3

W2 Z2Hol ) 3 2
0 1 23 11 _ p + I In 1 +

P Z 3/21- 

F 4(P) [1 2 1 P2)/ (117)
2' -- 1 1- + p in -i
2 7

The F(P) functions are the ratios of the frequency shift caused by a needle of seni-major

axis a and semi-minor axis Pa to the frequency shift of a sphere of radius a placed in

the same field. The method of applying these results is straightforward. Knowing the

dimensions of the needle and its orientation with respect to the field, the calculations of

the perturbation effect for a sphere of radius equal to the a of the needle multiplied by

the value of F(P) for the orientation gives the desired relation between the shape of the

perturbation, its size, and the field strength.

To be more specific, consider a cavity oscillating in a TM0 1 1 mode. At any general

point there will be three components of the fields: H perpendicular to the axis, Eor

perpendicular to the axis, and Eoz parallel to the axis of the cavity. If three frequency

shifts are now measured, the first caused by a ball of radius a; the second, by a needle

of semi-major axis a directed perpendicular to the axis of the cavity and of semi-minor

axis Pa; and the third, by the same needle with 3najor axis parallel to the axis of the'

cavity; calling these frequency shifts fl, Af2, and Af3 and realizing that for small

frequency shifts 2 2
2 2
o - c 2Af (118)

2 ''T_
ca 0o

the following equations can be written for the field components

2 2 1 2 2 f1E + E 7 H=9
or oz 3 (119)

fo a

FI(P) Eor + F(P ) E z 2F(P) H (120)

2 2 1 2
F 2 ( ) Eor + F(P) Eoz - F 4 (P) H 4 3 (121)

Thus there are three equations and three unknowns, and an exact solution for the fields
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is possible by the simultaneous solutions of the above equations. This procedure is

extremely tedious to carry out and very good approximate solutions can be found by

proper choice of p. This will be taken up in detail in the last two chapters. Obviously

for cavities oscillating in a TEOll mode, there will be three equations relating the two

components of Ho with the one component of E o .

VI. PERTURBATION EFFECTS OF CIRCULAR METALLIC DISKS

This chapter will outline the derivation and give the final results of the perturbation

effects of circular metallic disks, formed by revolving an ellipse around its minor axis.

The procedure to be followed in finding the potential and in applying the perturbation

formula is exactly the same as in the previous chapter and any steps omitted here may

be found by reference to it.

The coordinate system is defined by the following equations

2 2 2 2
r + = 1- =1 (122)

2 2 2 2
e+a +c a -7 7-c

from which

1/2
x = ( + a 2 )(a 2 sin L (123)

(a2 - c)

1/2
+ a2)(a2 co (124)
kacos c )

(a2 c 2 )

z= [ +c )(-c2)] (125)

and

hi + 211/2 (126)
h 2 = (g + a)( + c2) (126)

1 1 (~ +7) i 1/ 2

h2 = )( c 2] (127)
lI( (a+ 2 - c2/

h= (5 + a2)-(a ?). (128)
(a _ c

By the procedure used previously, the potentials for the applied field parallel to the

semi-major axis a is given by

___ __ ___ _.
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= ( + a)(a2 -71) 

V = '

(g + a) + cZ

sin 1 + AV]

-1

2 2 3/2
(a - c ) F

F +

(+

2

a -c
a)

+ tan- I+c _

Ja - c

ti
2]

and

Vo = 2a2 a2da - c + tan(a -1 c ) 2 2 a -cC(a a - ) LJa a-ca j

(131)

(132)

The potential for

given by

where

the applied field perpendicular to the major axis of the disk is similarly

= -C ( + c 2 ) ( 1- c )] [+ AU] (133)

1 o (a2 c)(134)

J
2 a c2

( 2 c 2

( a- aca 2) c
(a 2)

and

tan-1 ag + c
aZ 

a -c 1
(135)

(136)+ tan 1 c
|2 2 7la a

Here, as in the previous chapter, the A's in each case are determined by the boundary

conditions that tangential E and normal H must be zero on the surface of the disk, = 0.

For Eo applied parallel to the semi-major axis a, the gradient of 1 determines the

fields, and the only component of E which does not go to zero when the integration is per-

formed between zero and dto is Eg

A -1
AE V (137)

25-
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+ c )(a2 -) Z V 2E= L 2 1 sin - + (138)

(+r)(a - c 0 L ft v t li+2J

Integrating the square of this field between the two similar ellipsoids, and substituting

p = c/a and d 0o which is the same as found in Eq. 84 gives

V+dV 2 23/22
2V+ dV 8r E(1 -2) a da

E dv = 0 (139)

IT - 1 P -1 PI,_P 23

For the total perturbation effect of the disk, the above expression, integrated from

zero to a, gives

2 2 2 23/2 4 a3

2 2 2Eo(l - P-) 3p

2 1(140)

c ° [ 2 -tan -- 1 2]/1 -_ 2

Normalization of this to the effect of a sphere of radius a in the same field yields

2 2)3/2

F() = (141)

- tan- --lPI

Similar procedures for the other three field orientations with similar normalizations

to spheres in the same field give

Eo perpendicular to a

2 2 2( 2 3/2 4 3
W0 = E0 ( - )a

,_r~ ~~~ ,7~~~ _, (142)
Wo

F 6(3)

Ho perpendicular to a

Ji - P_ -1 P T-P + tanl P -X

(1- p)

(1 A1

P tan-1 p Tr

P -1-p j
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2 2 2 3/2 4 3
2_ -2 -H(-p) / 3 (144)

2 2 z)3/2
fL-I R -- 3 ( - p) IA
1: [ 1 A1r-,~

2 -tan- 1 p i-p 2

_ IP

\ . J

Ho parallel to a

2 2 2 -2 3/2 4 3
(A) -(. -2H(1-13) a(146)

0 tan 1 (2-) 
_ 11 _2 12 

4(- 2 3/2

F 8 (P) - (147)
-1 (2 2) 2

[t a- 1-
-F..-L J_

The four functions of given above are plotted in

Fig. 3. There are several features of interest which

can be readily seen. In the first place, for disks

oriented with their faces, or semi-major axes, paral-

lel to E and perpendicular to H o , the field function

measured is (E 2 1 H ), which is the same as for a

sphere. In this case, however, the disk does give

the direction of the fields. In the limit, as P approches

zero, there is no perturbation by a disk with its face

perpendicular to E and parallel to Ho, but there is

an effect for the opposite orientations in each field.

This is certainly logical since the boundary conditions

demand that there be no tangential E and no normal H

on the surface of a perfect conductor. As all four

functions approach unity, they give the same frequency

shift as a sphere, since a and c are then equal. A

omn~rncr~rri rdf T'jcc 1 Irl 2 rri rPCc +h- ccrtnl rif-
l aVll s 1DVA V1 1' 6D . D God J -6- | V w' Jas- 9X-

ferences between the usefulness of needles and disks

Fig. 3 in measuring the fields. F 1 (P) for low values of P is
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much greater than the other three functions, and this permits a single field component

to give the major perturbation effect. For disks there are two functions, F 5 (P) and

F7(p), which are greater than the others. This results in the fact that there are only

certain field arrangements which permit the disk to measure a single component. For

example, for a cavity oscillating in a TM mode with the Ho field only in the 0 direction,

an infinitely thin disk with its face parallel to H and parallel to the r-axis will measure

only Eor, and with its face parallel to H and parallel to the z-axis will measure only

Eoz, but there is no orientation which will measure Ho alone. In the general TM mode,

with both Ho and Hor' and in the TE modes, there are no orientations which will meas-

ure a single component.

VII. EXPERIMENTAL VERIFICATION OF PERTURBATION EFFECTS

The relations developed in the preceding chapters between the size and shape of the

perturbing object, the frequency shift, and the field strength have been experimentally

verified. The method of fneasuring the frequency shifts and the results of these experi-

ments will be discussed in the present chapter.

The ease with which small frequency shifts can be measured in a high Q cavity

resonator is one of the major justifications for developing this perturbation method of

determining field strengths. At first glance the problem of measuring a change in fre-

quency of a tenth to a hundredth of a megacycle from a resonant frequency of three

thousand megacycles might seem formidable, but it need not be so. The method em-

ployed here utilizes the stabilized microwave oscillator circuit developed by R. V. Pound

(9). This circuit stabilizes a McNally klystron to a resonant cavity by means of Magic-

Tee discriminator feedback loops to the klystron reflector plate. The klystron is thus

electronically tuned to the resonant frequency of the cavity, and, when the circuit is

properly designed, it can follow considerable shifts in the cavity frequency. The degree

of stabilization obtained depends upon the Q of the cavity used, as well as the gain and

stability of the feedback loops. To measure the frequency shifts produced by the per-

turbing volume, two Pound oscillators were used, and a beat signal obtained in the low-

frequency band. One oscillator was stabilized with the cavity to be measured, and the

other with a high Q tunable wavemeter, which gave control over the beat frequency ob-

tained with no perturbation. This beat frequency was fed into an ordinary AM radio

receiver, and by introducing the perturbing volumes into the cavity whose fields were

to be measured, the changes in resonant frequency were measured with the receiver.

The stabilizing cavities and circuits were reasonably well insulated, both mechanically

and thermally, and the beat signal obtained was found to vary less than a kilocycle over

a five- to ten-minute period. By using a well calibrated receiver, with an expanded

frequency dial, it was relatively simple to measure frequency shifts of one kilocycle in

a beat frequency of approximately five megacycles. This permitted the use of quite

small (compared to a wavelength) perturbing volumes and eliminated much of the diffi-

culty of the fields' varying rapidly over the perturbation.
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For checking the perturbation theory developed previously, the TM 0 10 cavity de-

scribed in Chapter II was used as one of the stabilizing cavities, and the frequency shifts

measured for various shapes and sizes of perturbations. From Chapter II, Eq. 20,

2 _ J2(kr) J2(kr)
E2(k H= J- ( k r ) (148) (149)

a L 2
2'-,,' a 2 2

LRo J (kR ) 7rLR (kRo)

2w _ 2.405k = = (150)

For the cavity used,

L = 3. 000 in. (151)

Ro = 1.612 in. (152)

fo = 2798.4 Mc. (153)

E2 = 0.1510 J(kr) in.- 3 (154)a o

H = 0. 1510 J2(kr) in. - 3 (155)a 1

For the following measurements, the perturbing volume was glued with Ambroid

cement to ordinary thin silk thread. The frequency shift caused by the thread could not

be measured; this indicates the very slight effect it had on the fields. For a sphere in

this cylindrical cavity

2 2
1 H2 o 2AfE - H (156)
a~ a2 r 0rr 4 r f

Table I-A gives the results for three different spheres first in the E field alone on the

axis of the cavity, and then at the maximum of (Ea - H ), with the percentage error

of each measurement. From the low percentage error in the E field measurements, it

is seen that the perturbation theory checks to within a few percent, both the magnitude

of the effect, and the cubic variation with sphere radius. For the measurements at the

maximum of (Ea - 2 H2), the percentage error is somewhat greater and can be accounted

for by the difficulty in getting the sphere directly at the maximum and by the perturbation

of the fields caused by the hole needed to introduce the spheres.

Table I-B gives the results for the measurements made on disks. Four disks were

used, three of very thin metal to check the variation with semi-major axis a and one of

P = 0. 455 to give some idea of the correlation of theory with variations of P. Because

of the difficulty of aligning the disk in a mixed E and H field, and because disks are not
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Table I-A Spheres

ro() f(Mc) E (in. ) Percentage Af(Mc) E 2 H (in. 3) Percentage0 in) ~f E a)i a a 2 a 
(meas.) (calc.) of Error (meas) (cac) of Error

0. 125 5.09 0. 149 0. 1510 1.3 0.693 0. 0203 0.0214 5.1

0. 09375 2.14 0. 148 0. 1510 2.0 0. 298 0. 0206 0. 0214 3.3

0. 0625 0. 645 0. 150 0. 1510 0.6 0. 090 0. 0210 0. 0214 1.9

Table I-B Disks

a (in.) P A f(Mc) F5 () E (in. - 3 ) Percentage
of Error

(meas.) (caic.)

0. 122 0 1.91 0.424 0.143 0.1510 5.3

0. 094 0 0. 92 0. 424 0. 149 0. 1510 1.3

0. 066 0 0.330 0.424 0.154 0.1510 2.0

0. 121 0.48 2.52 0.690 .118 0. 1510 22.6

Table I-C Needles

a (in.) A f(Mc) F 1 ( E (in. ) Percentage
E ~in. -3 a of Error

(meas.) (calc.) of Error

0.212 0.052 4.30 0.125 0.206 0.1510 29.2

0.191 0.101 3.54 0.165 0.176 0.1510 16.9

0.136 0.46 2.28 0.438 0.118 0.1510 22.6

F 3(3)

0.212 0.052 0.059 0.00182 0.194 0.1510 28.4

0.136 0.46 1.19 0.168 0.160 0.1510 6.0

F_ F. _ 12-3

F4 (P) F2Ea2 - F 4 Ha(in. 3) Percentage4(p) 2 a 7 2 4 aof Error
(meas. ) (calc . ) of Error

0.212 0.052 0.0125 0.00182 0.00358 0.000490 0.000481 1.4

0. 136 0. 46 0.241 0. 168 0.243 0. 0359 0.0368 2.5
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as useful in measuring fields, the checking was done only for the E field along the axis.

The expression for the perturbation produced by a disk with its semi-major axis directed

along the E field is

WO2 - 2 4r a 3 F 5 (p) 2

2 a (157)2 2 a
o o

from which

E 2 = f (158)
a 4 a 3 F 5 (P) fo

The percentage errors for the thin disks are only slightly larger than for spheres and
can easily be accounted for in the difficulty of correctly measuring a. The odd sizes

of these thin disks result from the fact that they were punched from thin stock and the
clearance between the inner and outer surfaces of the punch left burrs on the disks. The

results for the I = 0. 48 disk, however, has a large percentage error, and the reason

for this is probably the very poor tolerances held in machining. As will be seen in the
case of needles, the perturbation theory seems to be quite critical as to the cross-

section shape of the disks and needles. This P = 0.48 disk was examined under a micro-

scope and its cross section clearly was not elliptic.

Table I-C gives the results for needles placed in the E field at the center of the

cavity and at the value of the maximum of [F(P)E2 1 F 4 (P)H . The needles were first

aligned with their semi- major axis along the axis of the cavity and hence along the Ea

field. In this case,

2 2AfE= f (159)
4n a 3 F 1 (P) fo

In the second experiment, the needles were oriented with the semi-major axis perpendi-

cular to the axis of the cavity, but still in the center of the cavity, and in this case

Ea ZAf (160)
a 4T a 3 F 3 (p) f

In the third case, they were still oriented as in the second, but were displaced from the
center to the maximum negative values of Af. Then

2 1 2 _Zaf

F 3 (P ) Ea F 4 () H2 f (161)
o

From the percentage errors plotted in Table I-C, it is seen that there seems to be rather
poor agreement with the theory, but, as in the case of disks, the reason is that the

needles were not truly ellipsoids of revolution. Examination under a microscope showed
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that the P = 0. 101 needle was the closest to an ellipsoid, the P = 0.46 next, and the P =
0. 052 the farthest, which agrees with the changes in percentage error. The experimen-

tal error also shows that the effects of the non-elliptic cross section are least important

when the fields are at right angles to the a axis and most important when they are

parallel. Because of the machining difficulties, it was decided that it would not be worth-

while to attempt making needles of better cross section, though it should not be impos-

sible to do so.

VIII. FIELD STRENGTHS OF AN UNKNOWN CAVITY

The application of the perturbation method of field strength measurements has been

made to a cavity whose fields cannot be found analytically. The unknown cavity used was

a typical section of the linear accelerator under construction at the Massachusetts

Institute of Technology. The choice of the cavity was dictated by the fact that any con-

siderations of the output energy of the accelerator must be prefaced by a knowledge of

at least the axial distribution and magnitude of the electric field. These fields have been

computed (10) by the methods mentioned earlier for general cavities, but an experi-

mental verification of these computations was necessary. In short, the accelerator

cavity can be considered a typical unknown cavity, while at the same time the results of

the measurements are of immediate use.

In measuring any unknown resonant cavity some thought should be devoted to the gen-

eral characteristics dictated by the shape of the cavity and the field distribution of the

most nearly similar simple cavity. In the present case the accelerator cavity is an

iris-loaded cylinder. The irises are thin metallic circular rings placed periodically

along the axis of the cavity transverse to it. It would seem reasonable to expect this

cavity to have both TM and TE modes, with field distributions similar to those of a

cylindrical cavity in the region between irises, and to be thoroughly perturbed from these

distributions near the iris. Furthermore, the periodicity of the irises should give a

periodicity of the field distributions. The accelerator operates in the TM r mode (180 °

phase shift between each iris) and this is the oscillation which will be examined. Since

it is periodic with the irises, and since it is a TM mode and hence symmetrical with the

z-axis, if the fields are measured from a point midway between the irises to one iris,

and from the center to the walls, these conditions of symmetry will give the fields over

the whole cavity.

For a completely unknown cavity certain preliminary measurements would have to be

made to determine these features, and these measurements will be described for com-

pleteness. One simple method of identifying modes in a cavity is to feed a frequency-

modulated signal into the cavity through a Magic-Tee. The rectified output from one arm

of the Magic-Tee can be put on a cathode-ray oscilloscope whose sweep is adjusted to the

modulation frequency. This essentially gives an impedance vs. frequency plot, and the

resonance curve of the cavity is presented. By having a calibrated wave meter in

parallel, the frequencies of the resonances can be measured. The TM and TE modes can
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be identified by perturbation methods as follows. For cavities with an axis of cylindri-

cal symmetry, a long thin metallic wire along this axis will violently change the resonant

frequency of a TM mode and barely affect a TE mode. The reason, of course, is that

Fig. 4

Z(cm)

the effect of the wire resembles the perturbation effect of a needle, and, as found in

Chapter V, has a large effect on a transverse field. In a TM mode there is an electric

field parallel to the axis, but there is none in a TE mode. The periodicity effects can

z200l also be measured by moving a sphere along

the axis and noting the variations in fre-

quency. For cavities without cylindrical

symmetry, mode identification can still

be made in this manner by the proper choice

of the point of insertion for the perturbing

wire.

Returning to the problem of measuring

the linear accelerator cavity, once the

desired mode is identified, the cavity is

used to stabilize one of the two Pound

*klo o , I oscillators as described in Chapter VII.

-.100 6 I I I I Since the oscillator will of course lock on
6 54 3 2 1 0 23456

K(cm) any resonance, care must be taken that it

locks on the desired one. For the TM mode
Fig. 5

under consideration, this can be checked

by moving a sphere along the axis. Since there is only an E field present, for the z

mode there should be a zero of this field, or no frequency shift, at the position of each

iris, and the maximum points between irises should be of equal magnitude. Figure 4

shows the results of such a measurement, with the positions of the irises and end walls
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plotted to the same scale. The variations in maximum amplitude can be explained by

the coupling hole in the center section, and the lowering of the Q by the end-walls ter-

minating the two half sections. To examine the symmetry along a diameter, a sphere

was moved completely across the cavity along a diameter midway between the irises,

and the results are given in Fig. 5. As can be seen, the only lack of symmetry comes

near one wall and is caused by the hole necessary for introducing the sphere. These

two figures prove the statement made previously that, because of the symmetrical prop-

erties of the TM mode, the fields need be measured only in a plane bounded by a radius

midway between irises, a radius through the iris, the center line, and the wall.

For this cavity, three fields must be determined, Eoz, Eor' and Ho, where the sub-

script o refers to geometrical variations of the fields as mentioned in Chapter II. They

are, of course, the components of the fields measured by the perturbation effects

developed previously. To measure these three fields, three equations relating them are

needed, and if, as shown in Chapter V, a sphere and a needle in two orientations at right

angles are used, the necessary equations may be found. These relations are

IE + E-~ 2 ZAf2 2 1 2 zf1 (162)
or oz o 3

4i rO fo
0 0

2 2 1 2 2Af
F() Eor F2(p) Eoz 2 F4()o 3 (163)

o4a f0

F2)2 2 2Af 3F(P) Er + F 1(P) Eoz 2 F(P) H = (164)
4rr a for o - F 4 () H0 4r1a 3 f

For experimental convenience, the values of r and a were chosen to keep the maximum

values of Af on one expanded frequency dial of the receiver used. The needle chosen was

that of = 0. 101 used for checking theory in Chapter VII, since it gave the most accurate

results with its a axis parallel to the field and since its was small enough to measure

essentially one component of the field. A series of measurements was made to get an

accurate correction factor to account for the effect of the imperfect elliptic cross

section. These measurements gave that the E fields, measured parallel to a, were 17

percent larger than the theory predicts, while the E and H perpendicular to a, agree

with the theory to within experimental error. Increasing F1 (P) by 17 percent, and finding

F 2 (P) and F 4 (P) from Figs. 1 and 2, with r = 0. 094 inches, a = 0. 191 inches, and fo

2810.0 megacycles, the three equations for the fields are

Eor + E - 0. 5000 H = 0.0687 Afl (165)
or oz o

2 2 2E + 0. 0356 E - 0. 0347 H2 = 0.0420Af (166)or oz o 2
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2 2 2
0.0356 E E - 0. 0347 H = 0.0420 Af 3or oz o 3

(167)

Once the measurements have been made to find Afl, Af2, and Af3 at each point in space,

these three equations can be solved simultaneously to give the three components of the

fields. This formal approach is tedious to apply, and in some cases, where the fields

are rapidly varying, gives results which are less accurate than those obtained by a more

practical approximate solution.

From an examination of the relative magnitudes of the coefficients in the last two

equations found from the needle perturbation measurements, it is evident that, in a

region where the three components of the fields are equal, the equations can be con-

sidered to represent a single component, Eor or Eoz. Furthermore, from a knowledge

of the space variations of the TM fields in a cylindrical cavity, it is clear that Eoz should

be large on the axis midway between the irises and decrease toward the walls and toward

the iris. Eor should be small midway between irises on the center and increase near

the walls and iris, though the boundary conditions demand that it be zero on the iris sur-

faces. Ho should be small in the center and a maximum near the walls, and decrease

toward the irises. The first relationship can be found by eliminating E or in two needle

equations.

E 0. 040(f 3 - 0.0356Afl) + 0.0335 H2

E : (168)oz (1 - 0. 0013)

A second relationship can be found by eliminating Ho from the sphere and first needle

equations.

0. 0420 Af - 0. 00474 Af + 0. 0338 E 2

E oz (169)or 0. 9306

Figures 6 through 12 are 4fl, Af 2 , andAf 3 plotted against the radial position for different

values of z starting at the iris and going to the center of the cavity. Referring to these

figures, it is seen that Af3 is always greater than af 1 , except in the region close to the

walls, and from the general variation of Eoz and Ho, mentioned earlier, Eoz is greater

than Ho except near the walls. Thus, to an error varying from zero at the center to a

few percent near the walls, E 2 can be written approximately as

Eo = 0. 0421 Af 3 (170)

Eo is plotted in Figs. 13 through 19. Knowing E and the values of Af2 and Afl, E 2roz OZ or
can then be found and this is also plotted in Figs. 13 through 19. From the plots of

E2 and E or the value of H 2 can be found from the perturbation equation of the sphere.
oz or' 0

This is plotted on the same figures.

The general features of the fields found in Figs. 13 through 19 can now be pointed out.

Figure 19 represents a radius midway between the irises; on this figure Eor is zero, and
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Af(

r(cm) r(cm)

Fig. 11 Fig. 12

it increases as the iris is approached until in Fig. 13, which is 0. 11 cm from the center

of the cavity, it is the only component of the fields which can be measured. In Fig. 13,

the maximum of Eor is at r = 3. 10 cm and it decreases rapidly beyond this point. Since

the diameter of the hole in the iris is 3.18 cm, this appears to be correct, since the

boundary conditions on Eor demand that it be zero over the iris surfaces. At r = 0, Eoz

is a maximum in Fig. 19 and decreases as sin wrz/L as the iris is approached. For a

cylindrical cavity, Eoz would fall off J(r), but the irises make it increase as they are

approached, because of the boundary conditions. This increase of E with r can be seen,

as well as the fact that Eoz must be zero on the walls to satisfy the boundary conditions.

Ho , it will be noticed, is plotted only on the radii near the center of the cavity. The
reason for this is that it is found by the subtraction of Eo from the curve for f1 . In the

regions near the irises, E is very rapidly varying, and small errors become magnified

during the subtraction of terms of the same order of magnitude, thus introducing large
2errors in H . Another way of looking at this is that there is no perturbing shape which
0

will measure essentially Ho alone, as will the needles for the components of E o . That

Ho cannot be determined accurately in a region where E is varying rapidly seems to be

a fundamental disadvantage of this perturbation method. The last feature that should be

pointed out is that Ho is less on Fig. 19 than on 18, while it should vary as cos 7rz/L.

This can be accounted for by the perturbation effect of the hole through which the sphere

and needles were introduced.

The symmetry of the fields can be used to determine the distribution in the rest of
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2
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3

r(cm) r(cm)

Fig. 18 Fig 19

the volume between the irises, and from the variations along the axis given in Fig. 4,

the fields are known in the other sections. This really means that the geometric varia-

tions of the field, E and Ho, are determined. For the absolute field strengths, the re-

sults of Chapter II give that the actual E field is the value of Eo multiplied by the time

variation and a constant determined by the Q, Xk, and the input power, all of which can

be readily measured. The value of the constant and the expressions for the fields in

volts or amperes per unit length are given in Eqs. 23 and 25. This results in

377 Q P kO
7=Q 0 o E 0 sin wt (171)

H =377 H o cos wo0t (172)

where Eo and Ho, expressed in the proper units of length, are given in Figs. 13 to 19.

These values of the fields have been checked with the results of the calculations given

in Reference 10, and agreement between the two is well within experimental errors.

One interesting application of the perturbation method of measuring field strengths

has been used extensively for relative values of the axial E field in the accelerator cavi-

ties. The accelerator is a series of seven groups of sixteen sections identical with that

measured in this chapter, each group being separated by an RF attenuator. For many

reasons, it was necessary to make sure that there was even excitation along the axis

of each group and in the process of arranging this, many measurements had to be taken

as various adjustments were made. Since using the best method described in Chapter

VII would be tedious and since only the relative magnitudes of the fields were of interest,

a simple solution was found. The accelerator cavity was used to stabilize a klystron
&
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oscillator as before, but, in this case, the oscillator output was fed into a Magic-Tee

discriminator, a d-c amplifier, and ultimately to a recording milliameter. A long

thread was used to suspend a sphere into the cavity and one end of this thread was at-

tached to the tape of the recorder. As the recorder tape travelled it moved the sphere

in the cavity, and changed the cavity frequency, which essentially fed a frequency-modu-

lated signal into the discriminator. This signal was rectified into d-c voltages, which,

when amplified, were recorded on the tape. Since the sphere was kept along the axis

of the cavity and since Eoz is the only field component on the axis, the output of the re-

corder was a plot of the relative size of Eoz with position along the cavity axis. Thus

a group of sixteen sections could be measured in about a minute, depending upon the

maximum speed of the recording milliameter. This proved to be an extremely useful

feature of the perturbation field strength measurements, and gave extremely reproducible

re sult s.

IX. CONCLUSION

The purpose of this chapter will be to correlate the information on the effects of the

various perturbing volumes found previously in the light of their application to general

field strength measurements. One specific example has been worked out in some detail

in the preceding chapter, and the general procedure to be followed for any cavity would

be the same. For a given resonant mode, the first things to be investigated would cer-

tainly be the resonant frequency and any general characteristics of the mode. In spheri-

cal and cylindrical cavities (not only circular cylinders, but also cylinders in the general

sense) the mode characteristics would be the TE or TM mode types described earlier.

For other cavities, the characteristics would be such information as the presense of

symmetry planes and the positions of the maxima. The method of finding these mentioned

in the previous chapter can be extended to any resonator, and gives the necessary infor-

mation with a minimum of equipment and effort. Once the mode type and symmetry

planes are determined, some thought must be given to the shape and size of the pertur-

bations best suited for measuring the particular fields.

The choice of optimum perturbing volumes depends upon a number of factors, chiefly

the fields to be measured, the equipment available for frequency measurements, and the

ease with which a given shape can be suspended and moved throughout the volume. The

problem of the fields is the most complicated and will be considered first. For the

general cavity there will be six components of the fields, three of E and three of H,

corresponding to the projections of the fields along the coordinate axes being used. To

measure these components, six independent equations relating them must be found and

solved simultaneously. The most convenient perturbing volumes for obtaining these re-

lationships would probably be a needle and a disk of low P, each oriented successively

along the three desired coordinate axes to give the six equations. Since these perturbing

shapes accentuate certain field components, they would lend themselves best to approxi-

mate solutions. For preliminary measurements to establish the general variations of the
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fields and for measurements in regions where only one field is present, the sphere might

be the most useful perturbing volume because of its non-directional characteristics. In

cylindrical cavities, there will be only five components of the fields because of the TE

and TM mode types, and for these measurements one of the orientations of the disk

should be omitted. The details of these measurements and of the possible approximate

solutions of the simultaneous equations would generally follow the procedure given in

Chapter VIII, but without a specific field to discuss, it is not worthwhile to pursue the

subject further. With the shapes of the perturbations decided upon, the size would be

determined by the maximum and minimum conveniently measured frequency shifts.

Very little work has been done on the method of suspending the perturbing shape in the

cavity. The simple and expedient method of cementing it to a piece of fine thread has

been satisfactory for the measurements made thus far. However, for the problems which

may arise in measuring more complex fields, more elaborate methods of suspension

might be necessary. One obvious approach would be a fine dielectric rod, thin enough

not to change the fields materially by its introduction, but strong enough to allow manip-

ulation of the perturbation. With such a rod and a thin needle, the electric lines could

be traced out in space by maximizing the frequency shift.

Once the direction of the electric field has been established and a rigid method of sus-

pending the perturbation has been found, it is possible to measure the total fields without

measuring the components separately. This results from the fact that E and H are

usually at right angles (this is by no means a general condition, since even for a simple

shaped cavity with walls of appreciable resistance, E and H are no longer at right angles).

However, for the case when they are, the following procedure will measure both the

direction and magnitude of the total fields. After having determined the direction of the

E field with a needle of low as described above, a thin disk of as low as possible can

be placed with its face parallel to the direction of E and rotated around this direction as

an axis. From the results of Chapter VI, it is clear that when the rotation is such that

the resonant frequency is a minimum, the disk is aligned with its face parallel to both

E and H. With this orientation, the frequency shift from the resonant frequency with

no perturbation present can be used in Eq. 140 to calculate the magnitude of E alone,

since there is no perturbation of H by a thin disk with its face along H. As the disk is

rotated around the E direction, the resonant frequency will increase to a maximum when

the disk is 90 ° from its former position, or with its face parallel to E and perpendicular

to H. This change in frequency is caused by the H perturbation and is the value to be

used in Eq. 144 to compute the magnitude of H. The direction of H is along the normal

to the face of the disk at this orientation. This method may be used in any cavity where

the total fields are to be found and it can be a check on the methods of finding components

previously discussed.

Another line of approach which might be useful in complex fields would be the per-

turbations caused by non-metallic shapes. These perturbations can be worked out from

considerations similar to those developed in this report, and might well be of some value.
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For the sake of completeness, it might be worthwhile to evaluate the perturbation

method of measuring field strengths in terms of the objections to other methods as

pointed out in the introduction. In the first place, this method gives a value of the abso-

lute field strength in terms of the measurable Qo and input power, or the value of the

geometrical variation of the fields. Secondly, the fields can be measured in any part of

the resonator volume, and not merely in the region of the wall surfaces. The method of

insertion of the measuring device has a negligible effect, and the perturbation can be

made very small compared to a wavelength, which avoids appreciable variations of the

fields over its length. From the results of the measurements in Chapters VII and VIII,

the experimental errors are only a few percent, and without too much effort, could be

reduced still further if greater accuracy were needed. The principal disadvantage lies

in the fact that the H field must be found from the E fields, and can be in considerable

error in regions where E is rapidly varying. Everything considered, however, this

perturbation method of measuring the fields appears to be of value.
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