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Abstract

A macroscopic system is subdivided into cells of identical size and

shape arranged in a regular spatial array. The method of canonical ensemble

would consider one of the cells, schematizing the rest into a "reservoir".

The present "cellular method" treats the cells on an equal footing and is

appropriate to deal with the fluctuations near the critical point for which

the standard theory yields infinite results. Earlier theories dealing with

the same problem appear as special cases of the present treatment. In

particular, the critical points are defined generally enough to include the

so-called -points in solids. The macroscopic system is invariant under

the group of translations which displaces one cell into another. The macro-

scopic quantities (e.g., the thermodynamic parameters) are invariants of

this group.
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THEORY OF CRITICAL FLUCTUATIONS

I. Introduction

The role of fluctuations in statistical thermodynamics is primarily a

negative one. Indeed, the very existence of thermodynamics can be said to

be based on the fact that the fluctuations in the macroscopic thermodynamic

variables are negligible compared to the mean values of these variables.

The proof of this fact is essential in the statistical foundation of thermo-

dynamics. The agreement in the results obtained from different statistical

representations of a physical system is also a consequence of the negligible

character of the fluctuations. Thus, whether one uses a microcanonical
ensemble which corresponds to a completely closed system,or a canonical en-

semble which corresponds to a system in contact with a reservoir, the re-

sults are the same since fluctuations can be neglected.

It is therefore of fundamental interest that fluctuations are not

negligible at the so-called critical points of physical systems, of which

the gas-liquid critical point is the best-known case. As a matter of fact,

if the fluctuations are calculated according to standard procedures, infinite

results are obtained. Experimental results indicate that critical-point

fluctuations, although finite, are orders of magnitude larger than usual

and give rise to macroscopic phenomena, e.g., critical opalescence.

Several theories (1),(2),(3),(4), have been proposed for treating the

problem of critical-point fluctuations, each based on a different analysis

of the physical situation. There are several reasons for our reconsidering

the question. In the first place, the relation between the above-mentioned

theories is rather obscure and none of them can claim general acceptance.

In the second place, all of them appear to be too specialized. (In fact,
one of the authors has recently shown (5) that critical points are of

rather common occurrence, since the well-known -point phenomena observed

in solids and some liquids may be considered as critical points.) The above-

mentioned theories refer only to the gas-liquid critical points and to the

critical mixing points in liquids. Finally, these theories are often based,

in part, on rather special molecular models and do not really treat the

basic statistical problem.

In Section II we sum up the results of the conventional theory of
fluctuations in a form general enough for our purposes. The difficulties

arising at the critical point are discussed in detail.

In Section III we introduce the "cellular method" which can be con-
sidered a refinement of the ordinary treatment of generalized canonical
ensembles. This method allows one to treat the correlation of fluctuations
in different volume elements, an effect which is of great importance at
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critical points and which is ignored by the standard method. The importance

of these correlations was first pointed out by Ornstein and Zernike (2),

and our method is a development of their idea. This development, on its

formal side, leads to a general criterion for the definition of macroscopic

variables, i.e., those variables which can be used in discussing macroscopic

phenomena.

In Section IV we present a calculation of fluctuations and their cor-

relations.

Section V is devoted to a discussion of the relationships between our

theory and those previously mentioned, as well as to some clarification of

the relationships of these theories to each other. In particular, the

question of critical opalescence is discussed.

II. Fluctuations and Critical Points

The thermodynamic properties of a closed system can be adequately

described in terms of a so-called fundamental equation

U = U(X1,X2 ,@.,Xr+ l) , (1)

where U is the internal energy and X1,X2 ,...,Xr+ l are the extensive vari-

ables characterizing the system. (The Xi include volume, entropy, mole

numbers, etc.) We shall assume our system to be spatially homogeneous on

a macroscopic scale so that U is a first-order homogeneous function of its

arguments. It is then most convenient to let X r 1 = V, the volume, and to

define the "densities":

xi U 
Xi = - ; u= - (2)

rtl r+l

The fundamental equation can then be written

u = U(X1,X2,..,x r) . (3)

The generalized forces conjugate to Xk or xk are

Pk = au au (4)

In order to obtain the fluctuations of the quantities xk about their

mean values, we shall consider our system as a part of a large closed

system, e.g., one cm3 of a gas in a large container. We now have the pos-

sibility of processes in which the quantities Xk flow from the subsystem

to the remainder of the system, called a "reservoir", and vice versa; these

processes are subject only to the condition that there is no change in the

value of Xk for the whole closed system. The assumed difference in size

between the subsystem and the reservoir implies that these processes may
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lead to a noticeable change in the state of the subsystem while the quanti-

ties xk and Pk are essentially unchanged in the reservoir.

It is well known (6) that the probability of finding the subsystem in

a state Xlax2a,...,xrm, which may differ from the equilibrium state

Xl,...,Xr, is given by a generalized canonical distribution function:

r

?a - E + E' k xkcj (

Pa wa exp k
kT

Here P is the probability of finding a state of the system described by

the index a, w is the statistical weight (degeneracy) of this state, Ea

its energy, and xka the value of the variable xk in this state. The index

k runs from 2 to r omitting x1 which is the entropy density. The function

IV is the thermodynamic potential

r

'V=U-> PkXk (6)
k=l

We can put the expression for Pa into a more symmetrical form as fol-
lows. Let us define:

Sa = k ln wa * (7)

Then: r 
ux - Ea - Pk (xk - xka)j (8)

P = exp -
kT

where the summation now goes from 1 to r (including the entropy term).

We can also write:

P = exp a (9)
kT

where:

r

'a= Ea- 7 Pk xka (10)

k=l

This "microscopic free energy" % will be of interest to us subsequently.

The physical meaning of . _ . is the minimum work required to bring
about the state a. Hence Eq. (9) expresses the well-known principle of

Boltzmann.

* Sa is the entropy one assigns to a system known to be in a state a of statistical

weight wa.
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Let us introduce the notation:

xk = Xka - Xk (11)

If we expand E as a function of the 8xk, we obtain

E= -M I 8xk xI a x , (2)
a a x7x37 SOk 6XA

k=l k,=l

keeping second-order terms. Now = U, (aE aXk)o = Pk; and we can define

I a2E ~
_/

aa o = uk = aka (13)

Then to this approximation we find
r

Pc c exp 1
kT

where c is a normalization constant which is needed because Eq. (14) is

only an approximation to Eq. (8).

In terms of this Gaussian distribution, one can immediately write

down the fluctuations in which we are interested:

6x = | 6( kJ( X a 1 ; r = kT vk~ , (15)
X{§6=kPa d(ax,).. }d(X(r)

where the matrix j1 Vk 11 is the inverse of the matrix IlUkQ I. These matrices

have been called stiffness Iluk II and compliance IIvk II matrices (5).

The smallness of kT compared to the internal energy of macroscopic

systems assures us that the relative fluctuations are small, hence the

microcanonical and canonical methods are essentially equivalent. Speaking

more physically, the behavior of the subsystem is the same whether it is

isolated from the rest by a real wall or isolated only in imagination.

This situation is different, however, at the so-called critical

point where Det uik I| = 0 and where the matrix elements Vik and hence the
fluctuations become infinite (5). Actually, the experimentally observed

fluctuations become extremely high at the critical point, as manifested in

the phenomenon of critical opalescence, for example. The fluctuations are,

however, finite and our formalism must be improved, so as to provide a

finite result.

The weak point in the above discussion, which is essentially the

same as the standard discussion of fluctuations, is in the use of the
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canonical ensemble to represent the behavior of a subsystem of our whole

system while idealizing the remainder by treating it as a reservoir. When

the fluctuations are large, as in the vicinity of a critical point, the

microcanonical and canonical ensembles no longer give the same results, and

it is essential to treat the system as a whole in a proper manner. This

will involve a modification of the usual canonical ensemble which will be

carried out in the next section. At this stage, we merely need to point

out that such a modification is necessitated by the large critical-point

fluctuations which indicate a breakdown of the usual approach discussed

above.

Before going on to examine the statistical problem in more detail, it

seems convenient to simplify the definition of the critical point. As

presented above, it appears as a result of the "cooperation" of all exten-

sive variables Xl,X2, ..,x r. Instead, we can choose P1'P2. ''Pr-lXr as
independent variables, and introduce the corresponding free energy

r-l

A (xr) = u - . Pk Xk (16)
k=l

(A is a function of P1,P2,...,Pr-l as well as xr , but it is the latter

dependence which will interest us.) It can be shown (5) that a critical

point may also be defined as follows:

a 2A O , -- A (17)
8 xr Xr axr

The advantage of this formulation is that it refers explicitly to a single

independent variable. Of course, this can be chosen to be any of the

Xl,x2,...,xr. The various formalisms arising are not identical, but lead

to the same conclusions.

III. The Cellular Method

We generalize the concept of a canonical ensemble by introducing

what we call the cellular method. Instead of concentrating our attention

on a subsystem and schematizing the rest into a "reservoir", we divide the

whole system into cells which we treat on an equal footing. We choose these

cells as identical in size and shape and arranged in a regular spatial

array. If we are dealing with a fluid system, we can choose a simple

cubic array of cubical cells. If we deal with a crystalline system, it

will be natural to let our array have the symmetry of the crystal; the

individual cells can then consist either of single unit cells of the crystal

or of groups of contiguous unit cells. To avoid the necessity of introducing

-5-

_ 1__ ^__·_��____1_1��1_ 11_ -111141··11-·----�---�-_I^�



the reciprocal lattice, we shall work with a cubic array, but our considera-

tions can easily be transcribed so as to apply to the general case.

The position of any cell is then specified by a vector k:

k = kl + k2j2 + k3 , (18)

where k,k 2,k3 are integers between 1 and M, if there are M3 cells, and

1j J2,J3 are the unit vectors defining the primitive translations of our
array.

In the previous section, we pointed out that if one works with the

appropriate thermodynamic potential A(xr), the conditions for a critical

point can be expressed in terms of the one variable xr. We are now interes-

ted in considering states of our large system specified by the set of

values Xrk, where k varies over all the M3 cells; Xrk is the value of xr

in the cell k. (We take the variables P1,P2,...,P r 1 as fixed for our

system.)

By applying an argument similar to that used in the preceding section,

one can easily show that the probability of finding a state {xrk}, is given

by:

P = C exp (- ak ~ ZkZ2) , (19)

k-

where*

1 a2A (20)
a (axrkaro = (Zkaz )o ; (20)

Zk Xrk- Xr * (21)

In spite of the great formal similarity between Eq. (14) and Eq. (19), one

must be very careful to distinguish between the two quadratic forms appear-

ing in the exponential in these two equations. The first, Eq. (14), refers

to a set of different thermodynamic variables xl...,xr; the second, Eq. (19),

refers to the set of values xrk of one thermodynamic variable xr in the
different cells k of the whole system. Both quadratic forms express the

minimum work necessary to carry the system from its equilibrium state to

one deviating from equilibrium.

We should point out an important restriction on the values of the

Zk, the deviations of xrk from its average value xr; namely, we must have:

* It is necessary to average over all of the "internal coordinates" of the system e.g.,
thermal vibration coordinates; in other words, we preserve only the dependence on the
set of variables zk.
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Ez k = 0 (22)

k

This expresses the fact that our whole system is closed, so there can be

no net fluctuation in xr if we sum over all cells.

The eigenvalues and eigenvectors of this form are of considerable

interest, so we shall now determine them. This is simple, if we notice

that the set of coefficients ak, for fixed k, varying over all cells, is

Just a permutation of the set ak', for any other fixed k'. This expresses

the fact that the interactions Cas measured by aki) of any cell with its

neighbors of all orders are independent of the particular cell considered.

(We impose periodic boundary conditions on our whole system, so that the

cells near the boundary "surfaces" need not be considered separately.)

The eigenvalues Xm and eigenvectors {£m must satisfy

E.ak tem = Am km ; (k,m varying over all cells). (23)

The solutions to Eq. (23) are:

m = Eak e , (24)

e1 - .m] , (25)

where

, km = 8 (_m - m') . (26)
k

Since ak% depends only on 2 - k, Xm is actually independent of k as it

must be.

The eigenvalues can be written in a simpler form if we note that it

is sufficient to take only two distinct values of the akj:

akk = a a> (all k) , (27)
(27)

aky = a (k,_ nearest neighbors),

akf = 0 (otherwise).

The first of these conditions states that all cells are equivalent. The

second condition, nearest-neighbor "interactions" only, is not necessary
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for most of the following work but simplifies the form of the equations to
some extent.

The eigenvalues are now:

3

A = a + 2a 1 cos mi ; (m = + + m3j3) (28)
i=l

The eigenvector corresponding to X0(Xo = XM(j + + _J) = a + 6l)

is of especial significance. It is M( -

This is the only eigenvector which does not involve phase differences be-

tween the different cells. Now, while the eigenvalues m depend on the

properties of the quadratic form of Eq. (19), the eigenvectors really

furnish an appropriate and flexible coordinate system, as it were, for

describing our physical system.

We may use the unique character of the eigenvector o to suggest a

characterization of those variables of our system which can be handled in
a macroscopic discussion; namely, only variables which transform like

o', i.e., which are the invariants of the translation group, can qualify
as macro-variables, since all others involve unobservable phase differences

as one goes from cell to cell.

The variables which satisfy this criterion are of two rather different

kinds. In the first class, we have thermodynamic variables such as magnetic

moment per unit volume,average particle density, etc. The additional

characteristic feature of these variables is that their conjugate "forces"

exist and, consequently, the values of these variables are subject to the

control of the experimenter. In the second class are variables which might

be called quasi-thermodynamic ones, such as the atomic coordinates in a

crystal and the long-range order in alloys, etc. Here there are no con-

jugate forces, so the variables in question cannot be controlled freely.
Nevertheless, they are of a macro nature in the sense described above and,

correspondingly, are subject to measurement - by their coherent x-ray

scattering, for example.

The variables which do not behave like to are perhaps typified by

the thermal vibrations or phonons which essentially involve phase differen-
ces between cells and must always be averaged over in macroscopic treat-

ments.

Let us finally apply our study of the eigenvalues to the case of the
critical point; here the quadratic form:

-8-
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2 E- ak Zkz
k, -

becomes positive semi-definite, i.e., one of its eigenvalues must vanish.

It is not difficult to see that the eigenvalue which vanishes (the others

remaining positive) is A . Thus, at the critical point,

= a + 6al = 0 . (29)

This result is, of course, to be expected in the light of the above

discussion, but it can be proved directly and, therefore, is an example

in support of the arguments advanced.

In fact, we notice that if a + 6al = 0, all other Am are positive;

but if Xm = O, m M (J + j2 + J3)
' then some m < 0, contradicting our

requirement that the quadratic form be positive semi-definite.

IV. Fluctuations with Correlations

We can now turn to the calculations of the mean-square fluctuation

in the value of xr in cell k and the correlations of the fluctuations in

different cells. We shall use the approach of the preceding section.

We have already written in Eq. (19) the expression for the probabili-

ty of finding a state of the system characterized by a given set of values

of the xrk. It has also been pointed out that there is a restriction,

Eq. (22),-on the values of the set of variables Zk, because our system is

closed. We now want to calculate

Zkz exp[ E ak ZkZ2 d'
zzo _ -ak, -Z"Z~.. /n

exp -- ak- Zkz2

where d' means that we integrate over the M3 - 1 dimensional space of the

Zk, subject to the restriction of Eq. (22)

In order to take into account this restriction in the simplest way,

we go over to the coordinate system determined by the eigenvectors of the

matrix IlakA 1. The calculation is given in the Appendix; we quote only

the result here:

i cos p.(k - )
ZkZ = (

The p (31)

The primed summation means that we sum over all p except M( + ~2 + 3)

-9-
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i.e., that the eigenvalue o does not appear in the sum. This follows im-
mediately from the restriction of Eq. (22), as is shown in the Appendix.

Let us first analyze this result for the case k = 2. Introducing

the explicit expressions for the eigenvalues, we have

_ 1 1
2 MPl'P2' p3 a° + 2a l (cos p + cos P2 cos p (32)

Now, far from the critical point, where the interactions between cells

should not be important, this reduces to the conventional result. For,
in this case, it follows from Eq. (29) that

ao >> - 6al , (33)

and, therefore,

p - ao (34)

22 kT (5)
Zk a- - (a5)

\axr P .PO
, " ' r-l

which is the result obtained by the method of Section II in this particular

case (one variable).

Closer to the critical point, we can transform the sum in Eq. (32)
into an integral, since M is as large as we please;

2w 2w 2w
2 L 1 1 dql dq2 dq3Zk a i \ S @ 2 q 2 (36)
k a° (2F) Io o + o [cos ql + cos q2 + cos q3]

Eq. (36) shows that the fluctuations become large as we approach the

critical point, i.e., as 2al/ao approaches -1/3. At the critical point,
however, we must use the sum of Eq. (32) since the integral diverges (the

integrand becoming infinite at its limits). In this case, the sum remains
finite and independent of M, for large M, at the critical point (see
Appendix for details).

Considering now the case k 2, i.e., the correlation of the fluctua-
tions in different cells, we may make several remarks. In the first place,
it is clear that, in the limit of vanishing interaction between cells, all

Zkzj are zero (k 2). For, in this case, Xp = ao and the phase factors

-10-
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cancel out.* Secondly, as Ik-2t increases the cancellation between suc-

cessive terms increases and zkz2 becomes small.

This point can be brought out more clearly by another method which

we now discuss. This method is of interest in itself and it establishes

the connection between our work and that of Ornstein and Zernike (2) (see

Section V). The essential point is to derive an equation relating the

correlation coefficient of the fluctuations in different cells to the basic

coefficients ak_ which are derivatives of the free energy and thus express

the forces within our system.

The correlation coefficient gk~ is defined (7) by

ZkZ2

(zk ) (zi)

Instead of using the expressions given above for these quantities, it is more

convenient to evaluate them in terms of the minors of the determinant of

I akj · Let A be the determinant of IlakyII and Ak be the cofactor (with
its appropriate sign) of akj in A. Then**

Zkzg exp I- Z ak ZkZld ]i A

___kz , -k
ZkZA =- r 1 1 = ] r * (38)

exp - akj ZkZQ dv

Since Akk = All for all k,2 as a result of the properties of IIak , we

have

Ak

__ - (39)

Let us define

ak,

fk akk ; (40)

The quantity fky is the average of zk when z = 1 and all other variables

are zero (linear regression coefficient (7)). We see that fk is a direct

* The cancellation is not complete and Zkz ( l/ao)(l/M 3) because we do not sum over

the eigenvalue o . This term is, of course, negligible for large M.

** The restriction of Eq. (22) has not been imposed here. It can be shown (8) that this
restriction plays no important role in these considerations.
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index of the "energetic" interaction between cells k and , and vanishes

under our assumptions unless k and 2 are nearest neighbors. Using Eqs.(39)

and (40), one can easily show* that

gk, = fk fm gi ' (k M ) (41)
m k,-

Eq. (41) has a simple interpretation: it states that the correlation

coefficient gkg (which measures the statistical effect of cell _ on cell

k) is equal to-the sum of two terms. The first is the direct interaction

fkj, present only for nearest neighbors; the second is the sum giving the

effect gm, of cell _ on all other cells m which have a non-vanishing inter-

action fkm with cell k.

We need consider the set of equations (41) only for some definite

value of , since the set gkj for this value is the same, except for

permutation, as any other set gkm. Hence we shall fix and, with this

understanding, drop it from our notation. We then have, as our final

result,

gk = f + E fk m * (42)
_ () -

V. Discussion

In this section, we shall point out the connections between the

theory presented in this paper and the earlier work done on this problem,

particularly with respect to the theory of critical opalescence.

It was shown in Section II that the customary statistical treatment

of fluctuations leads to infinite critical-point fluctuations. The physi-

cal reason for this was that the minimum work necessary to produce such a

fluctuation vanishes at the critical point in the usual approximation. It

is clear from the nature of the problem that any additional contribution

to the work, usually neglected, will limit the fluctuations to finite

values at the critical point. A number of theories have been advanced

which have this result, and it is our purpose to point out the nature of

the additional term in each case and to discuss the interrelations of these

theories in the light of our own.

al-im 1 kImm~ 

U- +For: mfg-, aA S t askkAe askm ab _ ak A

a]A + k - f ' -fgl as k- fkA
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In the first place, it should be said that virtually all previous

work on the subject has been concerned with the ordinary gas-liquid critical

point of a pure substance or with the critical mixing point of a binary
mixture of liquids. Our theory has been set up in such a manner as to be

applicable to A--points as well as critical points in the ordinary sense.

For this reason, we shall be interested in discussing only those other

theories which are capable, in principle, of such generalization. Hence
we have not considered the mechanism proposed by Yvon (4), who has pointed

out that infinite fluctuations are avoided if one considers the effect of

gravity. Briefly, near the ordinary critical point the compressibility is

large and the gravitational field of the earth gives rise to a non-uniformi-

ty of density, "thickening" the gas-liquid interface into a layer. Although

this effect undoubtedly exists, it seems to be special, insofar as it can-

not be of importance in --points in solids, for example.

The original suggestion for obtaining finite critical-point fluctua-

tions is due to Smoluchawski (1). His proposal was to continue the expan-

sion of the free energy to the next non-vanishing term (quartic term), at

the critical point (see Eq. (12)). This insures a non-zero minimum work

and gives finite results. This method cannot be considered satisfactory

because it is based on the consideration of one volume element with the

remainder treated as a reservoir, and when the fluctuations are large

(though finite) the correlations must be taken into account.

The first major attempt to give a more adequate treatment of criti-

cal-point fluctuations considering correlations is due to Ornstein and

Zernike (2). We have already mentioned that their papers served as a

stimulus to the present work. Their chief contributions were the introduc-

tion of the idea of correlations and the development of an integral equa-

tion for determining the correlation coefficient in terms of the inter-

molecular forces. This integral equation, which they derived by other

methods, follows from our Eq. (42) if one redefines fk and gk by dividing
by the volume of one cell. Going over to the continuum, one then obtains

g(r) = f( + f -r) g(r+) dr' (43)

They have shown that if f(r) is a short-range isotropic function, one can
transform Eq. (43) into a differential equation whose asymptotic solution

is
-kr

g(r) e (44)
r

-13-
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where

k2 = 2(1-F) F= f2 (r) d . (45)

This solution is instructive, since it shows that for k > 0 (above the

critical point) g(r),the correlation coefficient of the fluctuations, drops

to zero exponentially as the distance increases. At the critical point

where k = 0*, g(r) 1, a long-range function, so that fluctuations make

their influence felt over long distances.

Having indicated how the equations of Ornstein and Zernike follow

from our work, under suitable approximations, we now turn to another

important development, the theory of Rocard (3). Rocard's starting point

is the observation that the thermodynamic variable in question, our xr
(the density in his case), is actually a function of position in the system,

due to the fact that fluctuations occur locally rather than over the system

as a whole. Although this remark is in agreement with the theories given

here and by Ornstein and Zernike, Rocard's method of working out its con-

sequences is different. Since Rocard himself has stressed this difference,

it is of interest that his equations also can be made to follow from our

theory if certain approximations are made.

Rocard's method is to consider the modification in the effective

"force", P' (pressure in his case) due to the spatial variation of xr.

Pr is modified by an additive term proportional to the Iaplacian of xr,

thus giving rise to a corresponding term in the minimum work. This latter

term does not vanish at the critical point and, thus, finite fluctuations

are obtained.

We shall now show how our theory can be made to give results of

this form. The effective force Prk (or simply Pk) in the cell k is given

by

Pk = [: 2Eakli k ] = e (46)Pk j [~ ~ ak ZkZ =Zak z(- -- -- -

since the quadratic form expresses the minimum work. Applying the nearest-
neighbor approximation of Eq. (27) we obtain:

*F Z f_ a ; hence F = 1 at the critical point and k = 0.
-0
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k aOzk + a1 ( k+jl +l j+ +J 1 +2 )k+ l k_--J2 + Zk+J3 + Zk_3

2 (47)
- (a + 6al) z(k) + a v2 (k)

where we have gone over to a continuous position vector k and we have

approximated

a2z(k)

z(k + jl) + z(k - jl) - 2z(k) by -x- , etc.

It is seen that Eq. (47) is essentially equivalent to Rocard's

assumptions, since the first term gives rise to a vanishing work at the

critical point where a + 6a1 = 0, and the second term is Rocard's addition-

al term. It is worth pointing out that Rocard's approach does not take

full account of the correlation effects since, after setting up an equiva-

lent to Eq. (47), he considers only the one cell and not its interactions

with its neighbors.

The last theory to be considered is that of Yvon (4). His fundamental

approach is essentially similar to ours, but his method of treating the

system as a whole is based on a rather different viewpoint. Our theory is

based on treating the system as an assembly of interacting cells whose

basic properties we do not compute but in terms of which we work. Yvon

attempts a completely molecular description of the system (liquid in his

case); he works in terms of an Ursell development but, due to the com-

plexity of his method, he is able to handle only the terms corresponding to

"binary clusters" of molecules when it comes to making explicit calculations.

Since there is no reason to believe that this limitation is plausible in

the neighborhood of the critical point, we do not think this method is

fruitful in practice although, of course, it is probably correct in princi-

ple.

Let us conclude by comparing the predictions of the various theories

discussed so far as critical opalescense (9)(10)(11) is concerned. We have

not made here an explicit calculation of our own, but we have indicated that

both the Ornstein-Zernike and the Rocard theories are, in a sense, special

cases of ours.

Our interest is only in the dependence on wavelength and the angular

distribution.

The Smoluchowski theory predicts

I (1 + cos2e) (48a)
0o X
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I -c - (1 + cos2 ) . (48b)

Here I/Io is the ratio of scattered to incident intensity of light of

wavelength X observed in the direction e; is the compressibility,

P = - v ()T I

and y = A3/aP3. The expression (48a) is valid away from the critical

point,and (48b) at the critical point, in this theory.

Ornstein and Zernike's theory predicts

oo 7 (1 + cos2e) (49)

The constant d is a measure of the radius of the intermolecular forces and

is proportional to E defined in Eq. (45). The additional term in the

denominator arises from the correlation of fluctuations in different volume

elements giving rise to a 1/X2 dependence and an enhancement of the forward

scattering at the critical point. The result is not quite complete as it

stands, since it makes I/Io infinite for = 0 at the critical point.

Placzek (12) has shown that taking the finite volume of the scattering

medium into account introduces a factor preserving the finiteness without

modifying the result for experimentally realisable situations.

Rocard's theory predicts

I oc (1 + cos2 e) 1 (50)
Io 

where c is a constant arising from the additional term in the pressure

(c v2p).

The predictions of the Ornstein - Zernike and Rocard theories differ

in two ways: the wavelength dependence, which becomes /X2 at the critical

point in the former theory, and the angular distribution, which is prefer-

entially forward at the critical point in this theory. The two effects

must go together here,as can be seen from the derivation of Eq. (49).

(The theory of Yvon gives a wavelength dependence -AX 4 - BA 6 where

A,B are positive. We discuss this no further for reasons given above.)

Experimental work on critical opalescence has not settled the ques-

tion in any clear fashion. The results of Andant (13) and Battacharya (14)

show a change in wavelength dependence in the immediate vicinity of the

critical point. Both find a dependence on 1/X2 at the critical point and

Andant has studied the change in exponent n (X-n) quite carefully. On the

-16-
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other hand, Rousset (15), working with fluid mixtures (for which the

theoretical predictions are essentially the same), finds no such definite

results. For several types of fluids, the x-4 law and the angular symmetry

(forward and backward) are preserved up to the critical point. In other

cases, the exponent n decreases to a value of about 3 and, at the same time,

an asymmetry between forward and backward scattering appears.

Summing up, it seems safe to say that there are experimental indica-

tions that the correlation effects are real and observable, although not in

all cases.

Appendix

We wish to evaluate

ZZkZ5 exp a Z (Al)

k:4 (Al)
Zkz =

exp 1 "a Zkz dT5 ex k,a X

Let us introduce the (real) eigenvectors of I1aki l1:

_ = -cos (2 k + 2 1 3a ) ; + .0 (A2)r kJ =M 2 o 3M -

The eigenvalues are given in Eq. (24). We use real eigenvectors to avoid

complex integration.

Let

Zk =k2 Yk ; = E Zk =k Zk ; (A3)
-- - k k

(since I rk IIl is orthogonal).

The restriction of Eq. (22) is now simple:

ZEZk = yRk 2Y =Zy~akE = 3/2 Y = 0 . (A4)
k k,2 -- k

Hence, all we need to do to observe the restriction is to set yo = 0 and

drop this variable.

-17-
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Z ce a ZkZ = Xkk (A5)
Lc' k

nkm ln S ky Yu em p [ dT

kzXnexp [1 Nkyk d=

k

The integrals are now simple and we obtain (7)'km TIm Xkyk

_kZ~e . (A8)

m k

Let us put this expression into a simple explicit form by introducing
the values of the km_ from Eq. (A2).

cos -m + w m +d2 2kZA C0 [ km + 3M - ]cos L .m + 3 M J

m 7m
2kZ9- (A9)

mExpanding the co sines and mking us e of the fat tht i = f (j + )_ m

which is the result given in the text, Eq. (31).
The other point we wish to discuss is the behavior of this sum at the

critical point. It will suffice to take the case k - , i.e., to consider

Zk 

Zk i . (All)
m -

-18-
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The only terms which can give rise to difficulty are those for which ml,

m2, m3 are small integers and those for which m, m 2, m3 are near M.

Consider, therefore, at the critical point,

M

2 2 1 7' 1

Zk~ =aI Z t 1 (cos m1 + Co 2 +cos P2 p 3)

(A12)

+ 1 1 f 3 rJ dql dq2 dq
1 ! I I 1

( ) 3 /8 1- (cos ql + Cos q2 + cos q3 )

where we have split the sum into three parts. The first of these is over

all mi< M/16, the second over all mi> M - M/16, and the last over all

remaining mi . The first two sums are equal, due to the degeneracy of the

m, and give the first term above. The third part can be written as a

well-behaved integral as shown. Now the sum above can be written as an

integral by expanding the cosines, valid since their arguments are at most

equal to /8.

M

2 1 1

ence, the expression for is well-behaved even at the critical point

It is worth while to point out that, if our array of cells were one-

(two-) dimensional, the corresponding sum would diverge linearly (logarith-
mically) with increasing M (16),(17).
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