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ABSTRACT

XML is a language for describing linear-programming models to computer

systems. Parts I and II of this report together comprise a full syntactic

and semantic specification of XML. Several extended examples of XML

models are given in Part III.

XML's purpose and structure are also set forth in general terms in

"A Modern Approach to Computer Systems for Linear Programming" by Fourer

and Harrison (MIT Sloan School Working Paper 988-78).
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INTRODUCTION

This report is a specification of XML, a language for describing linear-

programming models to computer systems. Parts I and II together comprise

a full syntactic and semantic specification of an initial version of

XML. Several extended examples of XML models are given in Part III.

This arrangement is intended to serve two purposes* First, it

should make clear in detail what an LP modeling language may be like,

thereby making a case that such a language is practical and desirable.

Second, it should be sufficiently precise to serve as a basis for a first

implementation of XML. These goals are sometimes in conflict — one cannot

always be both clear and precise — and so examples have been added to

Part I where the specifications are especially complicated.

This report is not intended to give a formal grammar for parsing

XML. There are many ways in which such a grammar might be devised, but

the choice is properly a matter of implementation rather than specification,

On the other hand, this report also is not organized to serve as

a user's manual or primer for XML. Readers unfamiliar with the idea of

a modeling language are urged to look first at "A Modern Approach to

Computer Systems for Linear Programming" [2] which offers a general

justification and summary of XML.

Syntactic conventions

XML syntactic forms are written in itaJLLci) throughout this report.

XML employs the full ASCII character set. No distinction is made,

however, between the lower-case and upper-case forms of a letter; they

may be used interchangeably in any XMI. expression.

The lexical tokens of XML are -XCJits (defined in section §2.1),

6tAA.ngs (§3.1), nnines (§5.1), and the following special characters:



+ -*/< = >-()[]{}'",:
Appearance of a space or special character indicates the beginning of

a new token.

The following notation is used in defining syntactic forms:

-> The syntactic form to the left of the arrow is defined

to represent any of the syntactic expressions listed

after the arrow.

[ ] In syntactic expressions, anything within brackets is

optional (except where, in §5.2, the brackets are part of

the XML language) . Section numbers in brackets (for

example, [§3.4]) refer to syntactic definitions in other

sections. Bracketed numbers to the right of syntactic

expressions are line numbers referred to in the ensuing

discussion.

. . . The preceding syntactic form may be repeated any number

of times.

Different appearances of the same syricactic form are sometimes distin-

guished by numbers following the form's name (for example, OAQiMnzntl

and ciAgumtntl) . Numbered forms are referred to collectively by writing

i for the number iajigmyrnvti)

.
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1 STRUCTURE OF A MODEL

§1.1 Model components

An XML model is a representation of a class of linear programming

problems.

Every model is composed of units called components . There are

five types of components, each describing a different aspect of the model;

Set components describe collections of objects, over which parts

of the model are indexed.

Parameter components describe numerical data required by the model.

Variable components describe the model's structural variables.

Constraint components describe equations and inequalities that

restrict the activities of the variables.

Objective components describe functions of the variables to be

computed or optimized.

§1.2 Declarations of components

A model is represented by a collection of declarations that

describe its components.

A declaration may describe just one component separately from all

others declared in the model. Such a component is said to be single .

Alternatively, a declaration may describe a group having any

number of related components, all of the same type. Every group is

indexed by a specified set value (§3.2): there is exactly one component

of the group corresponding to each set .L_^'.,^r.

A declaration's name is a unique identifier used throughout the

model to refer to the component or components that the declaration repre-

sents. Its alias is an alternative to the name provided for use in

printed output that refers to the model.

s <
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The type of a declaration is the type of component that it

declares.

§1.3 Elements of a declaration

Each declaration comprises one or more parts called elements ,

which are written by use of the XKL syntactic forms described in

succeeding sections.

There are six types of elements, each pertaining to a different

aspect of the component or components being declared:

A name element gives the declaration's name (§1.2).

An attribute element specifies simple and fundamental

properties of a component or group of components.

An indexing element specifies a set value by which a

group of components is indexed.

A specification element gives an explicit or symbolic

expression for a component or group of components.

An alias element gives the declaration's alias (§1.2).

A comment element is a string of explanatory text that

accompanies the declaration.

A declaration contains at most one element of each type.

Each of the five declaration types uses these elements in a

somewhat different way. Thus, the precise syntactic form and meaning of

an element depend to some extent on the type of declaration in which it

is employed. Further, not all types of elements need appear in a decla-

ration. A name element is required, and a specification element is

required in constraint and objective declarations; but otherwise all

elements are optional. Omission of an optional element is interpreted

according to a default convention for that element.

The syntax, meaning, and default for each element type are given

separately for each component type in Part II of this specification.
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2 REPRESENTATION OF NUMERICAL VALUES

§2.1 Nunierical constants

Numerical constants of the forms ^ntZQQA. and fitcUL are employed to

represent literal numerical values.

An AJ'VizgiZA is any sequence of digits, optionally preceded by a sign

(+ or -). liVtZQiAs represent integral numerical values in cVuXhr\QJU.C.-

(ixpAZ66A.ons (§§2.2-2.4), and stand for numerical values contained in

sets (§3. 2)

.

A Kexit is any sequence of digits, optionally: (a) preceded by a

sign (+ or -); (b) including a decimal point before, among, or after the

digits; or (c) followed by the letter E and an X.ntzgeA exponent. Rea£s

represent rational approximations to real numerical values. Every

AjntZQQA is also a ^iZaZ.

Two rational approximations •'i^ and A- to real numerical values are

equal when their difference is within a sufficiently small tolerance of

zero. If fi, and -'i„ are not equal. A., is greater than or less than A„ in

the usual sense. (XML incorporates no definition of "sufficiently small".

Choice of a tolerance is left to the solution algorithms.)

A (rational approximation to a) real numerical value is, in

certain contexts, rounded to yield the nearest integral numerical value.

Formally, a positive real value K is rounded to the greatest integer

value X. such that -i < H. + 1/2; -H. is rounded to --L.



-6-

§2.2 NumeAU.cs

A numOJLLC. represents a single (rational approximation to a) real

numerical value. Humzxics are the basic building blocks of OAAjtimoXi-C-

e.Kpn.e^6AX)n3 (§2.4). Their general form is:

numeXcc -»

Kzal [§2.1]

paAa!n\ttQA-lz{i2AQ.ncz [§5.2]

\jaAloibtz-fiz{i<Lfi<inc<i [§5.2]

objtcitivt-fiziQAznta [§5.2]

indax-name. [§6.2]

A fiZjCdi may serve as a nvufnOAX-C, anywhere in a model.

A paAamztOA-KZiftfKincz may serve as a nLm2AX.C anywhere in a model,

subject to certain exceptions to prevent circular definitions (§5.3).

The numerical value that a paAwneXeA-^e.^eAe.ncz represents may be

determined from the parameter's declaration (§B.4).

A vaAAJlbZe.-n.2.{iQAZnce. may serve as a niomAA.c only in a specification

element of a constraint or objective declaration. It represents the

activity of the referenced variable.

An obje.(ltLvQ.-\.zi2AQ.nc.Z may serve as a numwic only in a specifica-

tion element of an objective declaration. It represents the value

computed for the referenced objective.

An -cndex-mzwie may serve as a numeAUc only within its scope of

definition (§6.7). It represents integral numerical values chosen from

a specified index set, according to the rules given in §§6.4-6.6. An

AjridZK- ncmz serving as a nu/neAcc is invalid if these rules assign it a

character-string value (§3.1) rather than an integral value.
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§2.3 AAxXivmttlc.- f^anctions

An oAAXhnzt-ic- {jUncCCon represents a numerical value computed from

one or more other values. Its general form is:

qfUXhmeXic- <(u>tcXt.on ->

function- name. ioAgutmnt [, cUiQumZYit] ...)

{^unction- namz -* ABS

CEIL

FLOOR

MAX

MIN

ROUND

TRUNC

oAgumznt -> aAAXhm^tic-e.Kpfiej,6^on [§2.A]

Each {^uncXw n- name, imposes certain additional requirements upon the

number of OAgumen^ts, and indicates a particular method of computing a

value. Particulars are given in §§2.3.1-2.3.3 below.

§2.3.1 Absolute value: ABS

ABS iaAJXhme,tlc- e-xpiui^on)

aAiXhmeXA.c-(ixpfiQJi&lon -> [§2.4]

The computed value is the magnitude (absolute value) of the value

represented by the aAAJJn3r\eJU.c-(LXp12^i)ion.
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§2.3.2 Integer functions: CEIL, FLOOR, ROUND, and TRUNC

CEIL (oAlthmeXlc- expAe44-<lon)

FLOOR (o/iXt/iweXcc- expA&44-con)

ROUND (oA^une^c- exp-^e64-con)

TRL^NC (oAAXhmdtic- Q.xpAHi^ion)

a/uXlvm&Zcc-ZKp^z66-con -> [§2.4]

The a/uXhneXic-Zxpfieyi6-Lon is evaluated to yield a numerical value

A., from which the OAAMmeJU-C- (^anCJtions compute the following:

CEIL: the smallest integer not less than h..

FLOOR: the largest integer not greater than fi.

ROUND: the integer that results from rounding '"i (§2.1).

TRUNC: the integer part of K.

§2.3.3 Greatest or least: MAX and MIN

W^iaXQumdwty oAQumznt [, ajiguim^nt] ...)

MlN(aAguiiien^, (ViQuxmnt [, oAQumzYVt] ...)

oAQumzYit -^ aAAMmQXX.c-<Lxph.(iAi>lon [§2.4]

MAX computes the greatest amont the values represented by the

oAQumtiits.

MIN computes the least among the values represented by the OAQUimriLS

.
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§2. A A^uMmttXc- expA.gA.5 ions

An aAAXhtr&t-ic-Zxp\2A6^on is the most general form for represen-

tation of (rational approximations to) real numerical values. It is written:

aAAXiimdJtic- exp^e^-6 lo n ^

tznm [1]

(Vujthmz^tLc- e.xpfl^^^lon + ttnm [2]

cvUXlrar\(iXA.<i--zxpfiU^iilon - tzAm [3]

ttnm ->- ^acXoA. [Al]

teAm * (^acXofi [A2]

tojm I iacXofi [A3]

tdAxn DIV iactofi [A4]

XeAm MOD iacZoK. [A5]

{^acXofi -» a,tom [Bl]

+ iJac^o^ [B2]

- jJac^OA. [B3]

aXom ** ladon. [B4]

outom -> mmexic [§2.2] [CI]

(VuMumtlc- function [§2.3] [C2]

(o^Lci/ime^c-exp-^ei^xon) [C3]

4-cgma [C4]

4-cgitia -> SIGMA -indtxXng-zxpfL2A6-lon (^ajv<Xhn^tLc-2.xpnsJ>iiloYi)

Ajn.d(LxXnQ-zxpfiUi,A^on -> [§6.3]

An aAAXhmztX.C.-ZXpHZA)i>AjOn represents the numerical value determined by

the following recursive algorithm:

The value of an a/iXt/imCxtic-exp-^e<54-con is the value of a tOJun [1],

the sum of the values of an aJil.tim(ltic-(lxpAU6A.on and of a ^e/U7i [2], or

the value of an afLCthne^CCc-Zxp^ZA-bion minus the value of a tznm [3].

The value of a teAtn in the value of a iacXoX [Al], the product of

the values of a ieAm and a (^actofi [A2], the value of a ^eAm divided by
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the value of a dadcX [A3], the rounded value of a tSAin integer-divided

by the rounded value of a (^actCi [A4], or the rounded value of a tMm

modulo the rounded value of a ^acXoA [A5].

The value of a ^actofi is the value of an atom [Bl] or of another

(^acXofi [B2], the negative of the value of a {^acJuOK [B3], or the value of

an cutOD^ raised to the power of the value of a {^acXoK [B4].

The value of an a,tom is the value represented by a numeA/CC [CI]

or by an OAAjJmnQJtLc- (^ancJU-On [C2]; or is the value of the parenthesized

a/iXtfurte^C-exp4C44^on [C3]; or is the value of a 4-cgma [CA].

The value of a A-tgma is found as follows: the parenthesized

o^Xc/ime^c-ex/o^ei-i'COn is evaluated once with respect to each index deter-

mined by the X.nde.XA.ng-e.KpfLZii-Lon (§§6.A-6.6); and all resulting values

are summed. If the -IndcXAng-e-Xp^eJii-con specifies an empty index set, the

value of the 6A.gma is zero.

(Examples of ctAAJ:hneJxc-ZXpAeA6Zons of many kinds appear in the

sample models in Part III of this specification.)

§2.5 Coni)tant-cvuX!vm;tlc- zxpfLtiScons

A coMtwnX-a.'vLthmQXic.-Q.xp'iUSi.on is any aJuMvmoXA^c.- (i.xp>tti>i>.ioyi

(§2.4) containing no vaAAjxbtt-fitiQAznde^s or obJQ,cJU.vz->i2.i(lfiQ.ncQ.s (§5.2).

The value of a COn^btCiVit-aAAj:hmQjtLc.-(LXpKQJ>SA^on does not depend on

the variables' activities, and so is unchanged from solution to solution.

In this sense, it is a constant of the model.
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§2.6 LcngaA-g/L-ctfaneX^c-exp^e^i-cons

A tln^A-cL'UXlvv.eXLC-e.KpA.z&iZon is any cvUX}vms,tic-zxpn.(i^&-ion (§2.4)

that satisfies the following restrictions:

• It contains no objeci<lve--^eiieACnces (§5.2).

• In every -te/un, at most one {^acton. contains voAXabZz-

Kzizuzncds (§5.2).

• In every tzHm of the form tojim I ^acton., the {^acion.

contains no vanA,abtQ.-n.z{^2AQ,nz(Ls.

' No toAm of the form tzhm DIV {^actoH or tOJm MOD ^acXofi

contains vcUu.ablz-n.zffZfi2.nczs.

• No {^acXon. of the form aXjom ** (^actoH. contains yjaJvLabtz-

Kz^zAznczs.

• No oAXXhnztic- ^unctAJJn contains vaAAjxbtz-fizizfiznczs.

Every tA^nzaA-oJuMvinztLc-zxpn.Zii6'Lx}n is either a cOYU:>ta.Yit-aAAM-mztA.c-

ZxpfLZi>i>-Lon (§2.5), or represents a linear combination of the activities

of one or more variables.
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3 REPRESENTATION OF SET VALUES

§3.1 SPUnqs

A it'iA.n.Q is any sequence of characters beginning and ending with an

apostrophe (') a..d containing no apostrophes elsewhere, or beginning and

ending with a double-quote (") and containing no double-quotes elsewhere.

St^i.nas represent character-string values ; arbitrary sequences of

characters. The character-string value represented by a particular

&tAA.nQ is exactly the sequence of characters between the apostrophes or

double-quotes

.

An empty sequence of characters (that is, a sequence of zero

characters) is called the null character-string value. It is represented

by a &tAJ.ng comprising two consecutive apostrophes or double-quotes

(" or "").

§3.2 Items

An item is either an integral numerical value or a character-string

value. Items represent the "things" that a model is concerned with

(factories, products, cities, periods, and so forth); they are the

fundamental constituents of sets.

Two items are equal if they are identical integer values or

identical character-string values. (An integer item is never equal to

a string item.

)

Items are represented by -ctew-exio^aii-UJns of the form:

XX^m- zxpfiUi, ion ^

itAlng [§3.1]

inte-gz-t [§2.1]

coni> tan t-afUXlimctXc- e x.pA.z6i -ion [§2.5]

OKU'X-HiVric [§6.2]
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A 6tAAMg (representing a character-string value) or an itlt<lQ2.K

(representing an integral numerical value) may serve as an /.io^-exp^ai-i-tCK

anywhere in a model.

A c.onlitant-cUuXkinQXX.C.-Q,xpK(li>filon may serve as an Aji2m-(l.xpfii2Ai>A.on

anywhere in a model, subject to restrictions on the ntoneA-CCs within it

(§2.2). It represents the integer item produced by rounding its

arithmetic value.

An A,ndzx- namo, may serve as an lt2!n^-2.xpK<lAi>i.on only within its

scope of definition (§6.7). It represents items chosen from a specified

index set, according to the rules given in §§6.4-6.6.

§3.3 Objects

An object comprises a single item or an ordered sequence of two or

more items. The number of items in an object is its length .

Two objects are equal if and only if they have the same length and

comprise the same items in the same order.

Thus, an object of length 1 is essentially just an item. An object

of length 2 represents an "ordered pair" of items, an object of length 3

represents an "ordered triple" of items, and so forth. In general, an

object of length n represents an "ordered list" of n items.

Objects are represented by use of the form obje.cX-ZXpH.zit&'ijOn'.

obiQ,cJ:-2.xpnjii)i>lon -+

^(ijm-(?yy^ii>i>lon [1]

iitQjin-zxpK(Li,&A.ony -cteni-expA.e-44^on [, UiQji\-Q.xpK2M,.ijon] ...) [2]

iXzm-(ixpn.zA>&lon -y [§3.2]

Form [1] represents an object comprising a single item. Form [2] repre-

sents the ordered sequence of items in an object of length 2 or more.
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§3-4 Set values

A set value Is an unordered collection of any nunier of distinct

objects. These objects are said to be contained in the set value, and

are referred to as its members . A set value having no members is empty .

All members of a set value must have the same length, referred to

as its menJje r- 1en gth . Thus one may have sets of single items (taember-

length of 1), sets of ordered pairs of items (member- length of 2), and

so forth. The member-length of an empty set is undefined.

Two set values are equal if every member of the first is equal

to some member of the second, and every member of the second is equal to

some member of the first.

Set values may be represented by use of the form 6 e.t- constant:

6eX-coii&tciyU. -»-

{}

{membeA [, membeA.] ...}

mambeA -^ objZct-e.xpfie^6.lon [: cutia^]

obje.ct-ZKp^U6-ion -^ [§3.3]

atccLi ->• 6tAA.ng [§3.1]

Each object- ZxpH^ii 6ton between the braces represents one member of the

set value denoted by the se.t-COH!>tant' Braces with nothing between them

denote an empty set.

The optional aJLLoA specifies a member's alternative name for use

in reports. For example, a set of cities could be written

{'BO' : 'BOSTON' , 'NY '

:
'NEV/ YORK' , 'PH' : 'PHILADELPHIA'

)

KH.Caites are not part of the set value; they are ignored in interpreting

hkit- {^unctions (§3.5) and Slt-HXp^Ui^ions (§3.6).
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§3.5 S^t-^unc^t^JOns

A 6eX-{)Unc.tion represents a set value computed from one or more

other set values, items, or numerical values. Its general form is:

i^uncJUjon-namz -> PROJ

SECT

SEQ

afigu/mnt -> ^(im-e,xp^2.66yion [53.2]

4c^-expA.fc4-5-con [§3.6]

con6tant-(VuJ:lm^^t^.c-^xpn.2^6lon [§2.5]

Each ^unctAjon-nam^ imposes additional requirements upon the number and

form of OAgumznts, and indicates a particular method of computing a set

value. Particulars are given in §§3.5.1-3.5.3 below.

§3.5.1 Projection of a set; PROJ

?R0J(6(it-e.x.pAZ&6^n [, con6tanX.-(VUMmztic-zxpfi2M-ion] ...)

6eX-zxpA.e^6lon -> [§3.6]

con!>tayvt-anAXimcX^Ca-^xp^eA6wn -> [§2.5]

PROJ projects a set value (represented by the ^eX-txp^QA'i-con) onto

specified coordinates (either as indicated by the conitant-OAAXlmeJXC.-

e.xpfiti6^ons, or else the first coordinate by default). The projection

is determined as follows:

If there are ccnl)tayit-a''iiX}imcXic-Q.xp'ieJ>!>-C0K5, they must represent
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distlnct positive Integral numerical values; denote these values by

-c, , .... t . Otherwise, let M = 1 and -c, = -c =1.

Denote by 5 the set value represented by the 6<li-^KpA.eAi'L0n;

denote by Z the member-length of 5. Then it is required that £ ^ n,

and £ ^ -c, , ,..,£> -i .

The computed (projection) set value has member-length n: for

each object (ci, , ..., Go) In S, the object (a- , . . . , a . ) is in the

computed projection.

Example : Suppose ROUTES represents the set

{('BO','NY',0), (•BO','PH',0), ('BO'/PH'.D,

('BO' ,'WA',0), ('B0','WA',1), ('NY' ,'WA',0)}

The following are some possible uses of PROJ:

PROJ(ROUTES) is {'BO', 'NY'}

PROJ (ROUTES, 2) is { 'NY' , 'PH' , 'WA'

}

PROJ (ROUTES, 1,2) is { ('BO' , 'NY' )

,

('BO' , 'PH' )

,

('BO' ,'WA'),('NY' ,'WA')}

PROJ (ROUTES, 3,1) is { (0, 'BO' ) , (1
,

' BO' ) ,
(0, 'NY' )

}

§3.5.2 Section of a set: SECT

SECT (6e.t-^xp^Q^6A.on ,<Xem-&xpn.aM-Con)

SECT (i>2.t-&Kp^(iM -ton [ ,tt(>in-&KpA{i.i,S-u>n,cun6tiiitt-a.n.i-tliimtA.c- zxpA.QA>6-<.on] . . .

)

62X-PKpAe.SiA.on -> [§3.6]

-6tem-expA.e44-ton -> [§3.2]

com>tant-aAAXh}r\2ytlc-txpfLeM<.on -> [§2.5]

SECT sections, or "slices", a set value (represented by the ieX-dXp^eAS-ion)

on specified items (represented by the 'Ctdjm-e.xpfiUiXons) at specified

coordinates (as indicated by the coniiant-cUu.thyneJU.c-e.xpA<li6-ions , or else

the first coordinate if none is indicated). The section is determined
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as follows:

Denote by C, , .... Z the items represented by the Ctojm-ZxpKUiA.ons.

If there are C0ni>ta.iit-CL'uXhmeJxc.-ZKpfi&i>6Xj0ns, they must represent distinct

positive integral numerical values; denote these values by ^, , . . . , jI .

Otherwise, n = 1; set -c. = 1.

Denote by S the set value represented by the 6eX-e.x.p^eJ>'i>-con;

denote by Z the member-length of S. It is required that Z > n, and

Z > -i^, ..., Z > l^.

The computed (section) set value has member-length Z ~ n. For

each object (a,, ..., a») in S for which

a =ei,...,a. =e
-t^ 1 ^n '^

the computed section contains the same object with items a. , ..., a.

deleted.

Example ; Consider again the set ROUTES of §3.5.1. Some possible

uses of SECT are:

SECT (ROUTES, 'BO') is { ('NY' ,0) ,

(

'PH' ,0) , ('PH' ,1)

,

(•WA',0),('WA',1)}

SECT (ROUTES, 'NY') is {('WA',0)}

SECT(ROUTES,'PH') is { }

SECT (ROUTES, 'WA', 2) is { (' BO' ,0) , (' BO' ,1) , ('NY' , 1)

}

SECT (ROUTES, 1,3) is { ('BO' , 'PH' )

,

('BO' , 'WA' )

}

SECT(R0UTES,1,3,'B0' ,1) is {'PH','WA'}

§3.5.3 Set of a sequence of integral values: SEQ

SEQioAgumzntl, oAgumzntZ [, aAgwmnt3] )

oAgwmnti -* con^tattt-oAlthm^ytic-zxpAaAiZon [§2.5]

An.gu)Wntl and OAgurmntZ are evaluated and rounded; denote the

resulting integral values by m and n, respectively. If aAguj'"e.nf3 is
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present, it is evaluated and rounded; denote the resulting integral

value by fe. If cUigLWiQ.ntS is not present, let fe be 1.

The computed set value contains all integers of the form m + -ik

for which -t is a nonnegative integer and m + -ik < n.

Example ; Some instances of SEQ are:

SEQd.lO) is {1,2,3,4,5,6,7,8,9,10}

SEQ(1975, 2000,5) is {1975,1980,1985,1990,1995,2000}

§3.6 S(lt-^xpA&i6^ons

A &£.t-Q.xpfiZi>6-ion Is the most general form for representation of

set values. It is written:

&zt-dU.iiQAznci2. [1]

&<iX- Q.xpfi2A&ion * 'i,llt-dl{^{iQ.flQ.nCZ [2]

&2X-(Ui{i2.fiz.ncQ. -> 6eX-anion [Al]

&cX-diiitKQ.yiCQ. - 6zt-aition [A2]

ieX-uyiion -^ ^^--CnteAAdcM-on [Bl]

^eX-uyUon OR 6 zt-'CnteA6 section [B2]

ieX-lnt^Jv!) action -> 6eJ:-cUom [CI]

6eX-lntQ,n^zctlon AND iat-aXom [C2]

6&t-cutom ->- ^zX-conitant [§3.4] [Dl]

dzt- iimcXlon [§3.5] [D2]

b^Z-^tiOAznan [§5.2] [D3]

(4et-expA.e44^on) [D4]

J

A i,QX-Q.xpfiZi>ii'Lon represents the set value determined by the following

recursive algorithm:

The value of a Ae^-expAei-i-coti is the value of a i>Q.t-di^{^Zfie.ncz [1],

or (s tlic cartesian product of the values of a ie t-c.xp'LC6-6 <V'H and a



-20-

ieX-di^^QAe.ncz [2] determined as follows: Let S, and S. denote the values

of the 6eX-Zxp^eA6A,on and 6eX-dl{,^&fiencz; let t, and £_ denote their

respective member-lengths. Then the cartesian product has member- length

Z, + Zj' ^°^ every pair of members (a,, .... a» ) of S^ and (6 , ..., b„ )

of S-, the cartesian product contains (a,, ..., a» , b , .... bp ).

The value of a 4e^-cit)5j$eACJlce is the value of a 6eX-Littion [Al], or

is the complement of a 6eX-uyiion in a 4 e^- etc i^i^GAcncd [A2] determined as

follows: Let S, and S„ denote the values of the i cXi- di
{,
{jSACnce. and

6eX-u.yiCony respectively; they must have the same member-length. Then

the complement contains all members of S-, that are not members of S^.

The value of a 6e.t-uyu.on is the value of a 6 e.t--cntdU dctio n [Bl],

or is the union of a 6Zt.-anion and a 6 dt- -intCMA tctio n [B2] determined as

follows: Let S, and S. denote the values of the ieX-uyiion and

i eX--cnteA^ e.cX<jO n ; they must have the same member-length. Then their

union contains an object if and only if it is a member of S, or_ a member

of S^.

The value of a ^ eX- ^nte.fil> e.ctlo n is the value of a i>eX-cUom [CI],

or is the intersection of the values of a ie.t-iiVte.Ue.cJu.On and a iet-atom

[C2] determined as follows: Let S-i and S~ denote the values of the

6eX-'Lnte/ii>ectlon and -iet-atum; they must have the same member-length.

Then their intersection contains an object if and only if it is a

member of S, and a member of S^.

The value of a 6eX-a.to>r\ is the value represented by a ieX-COH^tant

[Dl], -6 eX- function [D2], or 6 eX-^Z^Z^encZ Iirl, or is the value of the

parenthesized 6eX-&xpfieM-i.on [D4].
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Examples . Represent some sets as follows:

51 {1,2,3}

52 (2, 3, A, 5}

53 {'A'.'B'}

54 CC'D'}

Some typical set expressions and their values are:

53 * S4 {('A','C'),('A','D'),CB','C'),('B','D')}

SI * SI (d.l), (1,2), (1,3), (2,1), (2, 2), (2, 3), (3.1), (3, 2), (3, 3)]

82 - SI {4,5}

SI - S2 {1}

54 - S3 {}

SI OR S2 {1,2,3,4,5}

SI AND S2 {2,3}

S3 AND S4 {} "
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4 REPRESENTATION OF LOGICAL VALUES

§4.1 Logical values

There are two logical values ; true and false . Forms for

representing logi_al values are given in the following sections.

A syntactic form is said to be true when it represents the logical

value true, and to be false when it represents the value false.

§4.2 lQuaZLtA£yt

An Q.qualAXy is true or false according to whether two values are

equal or unequal. Its form is:

J

zqualltij

vala^l = valae.2 [1]

vaZuzl ~= valwii [2]

vaXazl, vatanZ -> con{>tcLnt-aAX.thmeJxc-zxpfiz^6icn [§2.5]

-6Cew^exp'^e44^on [§3.2]

obje.ct-ZKp^e^6lon [§3.3]

6Zt-e.)(.pfiZ66lon [§3.6]

Form [1] is true and form [2] is false if and only if the two indicated

values are equal. The sort of equality to be tested is determined by

valuci and valuQl as follows:

If vaZuel and value2 are coniitant-a'vithjtr}P_tLc-zxpn.2^6ion^i the

zquaZAJiiJ tests whether they represent equal numerical values [§2.1].

Otherwise, if valael and ua£ue2 are Itom-zxpfKLfif^'Lons , the zquaLitiJ

tests whether they represent equal items [53.2]; if uoXuel and Vdtazl

are ob/cct-exp^ei-i tons , the zquatitij tests whether they represent equal

objects [53.3].

If vaCucl and uaiuL'2 are ic f-explC/iA-COHs , the equucU-itiJ tests

whether tliey represent equal set values [§3.4].
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§4.3 Jnzquxi£-ltteJ>

An -CnzquaiAXiJ is true, or false according to whether one numerical

value is greater than or less than another. Its form is:

valuzi > \jalaz2 [1]

vaZuzl <= valvi^l [2]

ua£ae.l < valuzl [3]

vaJbizl >= voJiazl [4]

vaZuzly valiLZl -» con&tjXYVt-anAXhmztic-zxp'iQJiiilon [§2.5]

Form [1] is true and form [2] is false if and only if the numerical

value represented by vatazl is greater than that represented by vaZazl.

Form [3] is true and form [4] is false if and only if the numerical

value represented by uoXuel is less than that represented by V(itu2.2.

§4.4 Me/ft eMJ>hX.ps -

A m^mb^Ukip is true or false according to whether an object or

objects are members of a given set. Its form is:

mcmb&Ai>hA.p -»•

objZct-ZKp^&{,6-ion IN 6eX-ZKp^eJ>6ion [1]

ieX-zxp^di'fi-ion IN 4e^-expA.e44-ton [2]

obj^ct-e.xpAe^6lon -> [§3.3]

6eX-zxp^QA6Zon -»- [§3.6]

Form [1] is true if and only if the object represented by objccX-

CxpteiAcon is a member of the set value represented by ioX-exp^Z-ii ion.
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Form [2] is true if and only If every object contained in the set

value represented by the left-hand izt-e-XpfieAti-Con is also contained in

the set value represented by the right-hand ieX-CKp^ilH-ion.

§4.5 Loq-lcjoZ-zxp-XQ^iions

A tOQlcat-ZXpA.Ziiii'ion is the most general form for representation

of logical values. It is written as follows:

toQlcat- zxpfiQJi'fi'ion ->

loQlaal-tzAm [1]

loQ-i(iaJi-zxpfiU6lon OR toglcjcUL-toJim [2]

toQlcaJL-to.'nn -> loQlcoJi- ^acton. [Al]

loQlcjOil-tfifm AND log-icaZ-^acto^ [A2]

loglccLt- (,acton. -y tog-lcat- atom [Bl]

NOT logicjdl- ^acto-i [B2]

logical-atom -> tquatltij [§4.2] [CI]

Inzquuxtuttj [54.3] [C2]

manbeAAltlp [§A.4] [C3]

(logtcal-txpfLU^-con) [C4]

The truth or falsity of a togZcaZ-2.xp^e^6'Con is determined by the

following recursive algorithm:

The value of a Zoglcat- zxp^eyiiton is the value of a togltaJi-tdHm

[1]; or is false if and only if both a Zog-Ccxil-e.xp^eA6.ion and a

toglCjaJi-teJm are false [2].

The value of a togicaJi- t<lHm is the value of a togtcat- ^actofi [Al];

or is true if and only if both a tinj-icaZ- tzitr] and a l^og-icat- {jactun. are

true [A2].

The value of a toglcoZ- f^actoH. is the value of a £og<.ca£-afoni [Bl];

or Is true if and only if a togicaZ- ^actoH. is false fB2l.
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The value of a log<xial-<ttcm is the value represented by an

^quatUy [CI], ZmqualU,^ [C2], or mmb^uUp [C3]. or is the value of

the parenthesized loQlcal-Q.xpfitK>i>ion [C4].
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5 REFERENCES TO MODEL COMPONENTS

§5.1 MoDi&s

A yvame. is any sequence of letters, digits (0, 1, 2, ..., 9), and

underscores (_) of which the first character is a letter.

Wonies serve as identifiers for model components, as described

below. Womcs also identify indices employed in indexing operations

(§§6.1-6.7).

The following reser'/ed words are notnes that XML uses for special

purposes, and so are not allowed as compomnt- names (§5.2) or

lnde.x- norms (§6.2):

AND
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declaratlon of a single (§1.2) component In the model. The componznt-

Kd^eAZncZ refers to this component.

Form [ 2

]

; The compomnt-namz must be the name of a declaration of

a group (§1.2) of components in the model. This group must be indexed

by a set value that contains either (a) a member represented by

Ajtoxn- zxpfveJi -4 -con

if the COmpomnt-njZ^ZfieAcz contains just one Ctem-e.xpn.Ui><.on; or (b) a

member represented by

(-ctem-exp/^eiA^onl, ..., -it(m-zxp^zi>'i>-lon±)

if the compone.nZ-.n.Q.^(2AzncQ. contains -c > 2 item-^xp'l2^6ions. The

component- fie.{,2Ae.nce. refers to the group's component corresponding to

this member.

Component- ^e.(ieAe.nce.s are designated a e-t-^ej$eAences, paAa»iefc'A-

fie-ffZAznccs, v(VujCible.-Kz{f£Aznczs , (iott4t^uuRt-A.ei$eAenccs, or objzctivz-

A.ejJcAence.s according to the type of component to which they refer.

Examples ; (1) A variable declaration has name X and declares a

group indexed over { 'WA' , 'PH' , 'NY' ,
' BO' } . The followinc va^abl^-

/^Ci^eAences represent the variables:

X['WA']

X['PH']

X['NY']

X['BO']

(2) A parameter declaration has name DEMAND and declares a group

indexed over {(1,2), (1,3), (1,4), (2, 3), (2, 4), (3, 4)}. The following

paJijamitQA-n.z{ie.fiQ,nzzs represent the parameters:

DEMAND [1,2]

DEMAND [1,3]

DEMAND [1, 4]

DEMAND[2,3]

DEMAND [2,4]

DEMAND [3,4]
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§5.3 Circular declarations

Some restriction must be placed upon compomnt~A.e.^eA.e.nce.s to avoid

declarations that define components in terms of themselves.

For this purpose, declaration A is said to depend upon declaration

B if either

(a) A contains a coinponenX-'^ei^eAencc for a component

declared by B; or

(b) A depends on some declaration C, and C dcpands on B.

A declaration is circular if it depends on itself.

A compomyvt-^t^ieAznce. is invalid if its presence results in a

circular declaration.
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6 INDEXING

§6.1 Definition

Indexing Is the means by which model entities are associated with

members of sets. XML uses indexing in two ways: to define groups of

components (§1.2) and to specify indexed (E) sums (52.4).

There are two aspects to indicating Indexing in XML:

(a) Specifying a set value called the index set . Members

of this set are called indices , and the items in each

member are a list of index items .

(b) Evaluating 4et-expA.e4-6^ons, aAXt/u)ie.^c-expA.e<44^ons, and

togA,cat-e.xpfieJ>i-LOns with respect to each of the Indices,

For this purpose, -index- ncumzs may be defined to repre-

sent index items.

The syntactic forms for indicating indexing are given in §6.2 and §6.3.

Rules for determining the index set are put forth in §6.4, and evaluation

of expressions with respect to indices is described in §§6.5-6.6. Limits

on appearance of an index- name, within a model are explained in §6.7.
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§6.2 J ndzx-lnq- unlets

JndcKcng- uniXs express the simplest concepts of Indexing. They

are written in either of two forms:

lnd<LXA.nq- gyvCt -»

[Index-tLA>t] OVER 0V2A-2.XP [WHERE MhoAZ-ZXp] [1]

Undex-nawie] FROM ifiom-axp TO to-txp [BY bi/-exp] [where iMkanz-dxp] [2]

indzx-tlitt -> Indzx-Yiamz

(Xndzx- namt , index- naimd [, index- ncwiz] ...)

-cnrfex-muMe -* name [§5.1]

ove^-exp -^ i^et-expfizAtlon [§3.6]

{^fwm- exp •\

to-exp > -» coni>tant-aA.i.tlw^etcc-expfie'i6<.on [§2.5]

by- exp J

u}heAe-exp -> £og^ca£-cxp^e6A'Con [§4.5]

Each index-name in the index-ZAJ^t (in form [1]), or the initial

index-name (in form [2]), is said to be defined in the iyidexing-unct.

An index-name defined in an indexing- uyuX must be different from:

(a) every other index-najve defined in the indexing- unit;

(b) every other index-noine in whose scope (56.7) the

indexing- unit lies; and

(c) every noJ^C specified In a name element of any declaration.

The number of index-nomes in the index-tii>t (for fomi [1]) must

equal the member-length (§3.4) of the set value represented by the oveA- exp.
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§6.3 J nd^XA-HQ- zxpn.e^i,.lons

Jnd^Xying-S.xp^ey&A'Cons are the general forms for indicating indexing.

They are written as lists of -endzxJ^ng- units:

-cnriex^nq-expAe6^Xon ->

AJidtXAjn.Q- anct [Al]

inAjUjcUi-in.dzxA.nQ-zxpn.2A6-ion, tznminaZ-indzxMig-unAJ: [A2]

inCtCat-indzxA.ng-zxpfizM'Con -> indzxA-ng-zxp^zi^ijon

tzAynCnaZ- indzxA,ng- unit -* indzxing- urUjt

Indzxlng-uniX. ^' [§6.2]

Form [Al] consists of a single indzxA.ng-UYuX., while form [A2] comprises

a sequence of AJidzxA.ng- uiiCts

.

§6.4 Determining the index set

Every iyvdzXA^ng-ZXpfiZA^-ion specifies an index set (§6.1). The

manner in which this set is determined depends on the form of the

indzxing-zxpfizMion, as follows:

Single Indzxing- unit , form [1], no iA}hzAZ-Zxp : The index set is

the set value represented by the OVZA-Zxp.

Single indzxinq- unct , form [2], no wkzfiz- zxp : If the bij-zxp is

not present, the index set is the set value represented by

SEQi^jfLOm-Zxp, to-zxp)

If the biJ-ZXp is present, the index set is the set value represented by

SEQi^nvm-zxp, to-zxp, by-zxp)

(On SEQ, see §3.5.3.)
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Single X.ndQ.XA.nQ-ayuX , viUi whcA^-zxp : The Index set is the set

value determined by the following algorithm:

(a) Determine a tentative index set by ignoring the

W/ieAe-c.xp and following the rules for form [1] or

[2] given above.

(b) Place an index in the index set if and only if (i) it

is a member of the tentative index set, and (ii) the

W^eAe-CXp is true with respect to it.

(On evaluation with respect to an index, see §6.6.)

Sequence of i.nd(lXAJiPi- aYlLts : The index set is the set value deter-

mined by the following algorithm:

(a) Determine an initial index set from the ^nXJUXlZ-

A.nde.King- dxpfumZo n , by applying the rules of this

section (§6.4) recursively. Denote the members of

the initial index set by i^, , . . . , w .

1 n

(b) For each m . determine a terminal index set T. from the

teAminat-yCndzXA.ng-uyuJ:, by (i) interpreting any

oucA-exp, (J/wm-exp, to-zxp, by-s.xp, or ivhe-fie.- axp with

respect to m - (§6.6), and (ii) following the rules

for single-unit 'indexing- ^xpAeJiiZons given above.

(c) Compute the index set as:

({m^} * T^) OR ({m^] * T^) OR ... OR ({m^} * T^^)

(On operators * and OR, see §3.6.)

Examples : (1) Suppose that CITY represents the set { 'PH' , 'NY' ,
' BO'

}

Then the index set specified by

OVER CITY, FROM 1972 TO 1Q«A BY 4

is just CITY * SEQ(1972,1984,4) , whose members (indices) are

('PH',1972), ('NY', 1972) ('BO', 1972)

('PH',1976) ('NY', 1976) ('BO', 1976)

(•PH',1980) ('NY', 1980) ('BO', 1980)

('PH',1984) (•NYM984) ('BO', 1984)
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(2) Consider the following <.ndz)U.ng-e.xpA.U.iZon: >—

I FROM 1 TO 5, J FROM 1 TO I

The initial index set is {1,2,3,4,5}; the terminal index sets are

T. = (1, ...» -1} . Thus the entire index set is

({1}*{1}) OR ({2}*{1,2}) OR ({3}*{1,2,3})

OR ({4}*{1,2,3,4}) OR ({5}*{1,2 , 3,4,5})

which is just the "triangular" set of pairs

{(1,1), (2,1), (2, 2), (3,1), (3, 2), (3, 3), (4,1), (4, 2), (4, 3),

(4, 4), (5,1), (5, 2), (5, 3), (5, 4), (5, 5)}

(3) Either of these lnde,XA.ng-^Kp^^^6^ons:

CI OVER CITY, C2 OVER CITY WHERE CI ~= C2

(C1,C2) OVER CITY * CITY WHERE CI ~= C2

specifies an index set that contains all members of CITY * CITY whose

two items are not the same. Hence the index set is:

{('?H','NY'),('PH','BO'),('NY','PH'),

(•NY','BO'),('BO' ,'PH'),('BO','NY')}

§6.5 Representing index items by i.nde.X- namzs

An Ajn.d2.x.-namz defined in an indzxA.nQ-e,xpfi(^6A,on represents the feth

item of every index, for some fe. The value of fe is determined by where

the -indzx- ncmz appears in the lndzXA.nQ-(lxpfi2^i>i.on, in the following way:

Single. i,ndfAX.nCi- gyict , form [1] ; The feth indzx-nam(L in the

indzx-ZAJ>t represents the feth item in each index.

Single i.ndQJU.nq-iuvCt, form [2] : The one A.ndo.x- name, represents

the first (and only) item in each index.

Sequence of indilxX.ng- nyujts : Let I be the length of the indices

determined by the lniXA.aZ-indQ.XA.nQ-Q.xpfiUi>-ion. Then an -LnddX- name, is

determined to represent the feth item in each index as follows:
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(a) For an inddx- ncuna defined in the iiiltiat- lndzXA.ng-

txpfuiiiii-iony determine fe by applying the rules of this

section (§6.5) recursively to the iyiLtAJX.t- -ind^-XA^nQ-

e,xpfLtl>6.lon.

(b) For an -cndS-X-nOine defined in the tQAminaZ- -Cnd^XA.ng- ault

,

determine a k' by applying the above rules for form

[1] or [2] to the tznminat- A^nde.xX.nQ- avuX . Then

fe = £ + fe'.

Examples ; Let ROUTE represent a set value whose member-length is

2, and let PRODUCT and USE represent sets whose member-lengths are 1.

(1) The following indtXA.ng- exp^QAi-ion specifies iiidices whose

length is A:

I OVER PRODUCT, (J1,J2) OVER ROUTE, K OVER USE

JndtX-name. I represents the first item in each index. Jl represents the

second item, J2 the third, and K the fourth.

(2) Indices specified by the following A^nd(lXA.nQ-Q.xpfiQ2>i>A,on also

have length 4:

I OVER PRODUCT, FROM 1968 TO 1992 BY 4, (.I,K) OVER ROUTE

Index- no/ne, I represents the first item in each index, J represents the

third, and K represents the fourth. No -Lndux- nfuno. represents the

second item in each index.
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§6.6 Evaluation with respect to an index

An aAithmoZic-zxp'tzA^^on, i>QX-ex.p\&^6ion, or logA.caZ-ZKpA.e.iiX.on is

evaluated with respect to an index as follows:

(a) Each -tudcx-nowe in the expression is taken to repre-

sent some item of the index, as explained in §6.5.

(b) The value of the expression is computed according to

the usual rules.

AAAJJmeJxc-e.x.pn.z.i,-i,Aions are evaluated with respect to indices in

6lgmxs (§2.4); in f,fiom-zxps, to-zxps, and by-zxps of -tndexing-expA-eA-i-cons

(§§6.2-6.4); and in specification elements for parameter, variable,

constraint, and objective components (§§B. 4,C.4, D.4 ,E. 4)

.

Seyt-e,xpA.^iX.ons are evaluated with respect to indices in OVQA-CXps

of <.ndzXA,ng- ^xpAl^^6X.ons (§§6.2-6.4) and in specification elements for

set components (§A.4).

Log'icaZ-ZKpfiZ66-cons are evaluated with respect to indices in

W^e-^-exps of -Cnde.XA,ng-ilxpA.&.66Zons (§§6.2-6.4) and in specification

elements for constraint components (§D.4).

Exanyle : Consider the following i-Cgma, in which X names a variable;

SIGMA I OVER {'PH' ,'NY' ,'BO'},

J FROM 1972 TO 1984 BY 4 ( (J-1970) * X[I,J+4] )

The -indexing- e.xp^^'iiA.on in this -ii-igmx specifies a set of 12 indices of

length 2 (see §6.4, example 1); .Inde^X- name. 1 represents the first item

of each index, and J represents the second item of each index.

Thus evaluating the expression (J-1970) * X[I,J+4] with respect to,

say, the index ('NY', 1976) yeilds the value of 6 * X[ 'NY' ,1980]

.

Evaluating the same expression with respect to ('BO', 1984) yields

14 * X['BO' ,1988].
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§6.7 Scopes of -cndcK- namQ.s

A scope of an -Lndzx-nainz is that portion of the model in which the

A.nde,X- namo. may be used to represent values of index items (as described

in §§6.5-6.6).

An -cndex- nowie has one scope for each X.nde.XA,ng- unit that defines it.

Scopes of the same -indzx- name, for different X.nde.XA.ng- units may not

overlap (§6.2).

A scope of an indzK-nomz for a particular inde.XA.ng- unit includes:

(a) the MheAQ.-e.xp of the -indexing- untt (if any, §6.2);

(b) all succeeding indexing- units in the same indextng-

expleMiton (if any)

;

(c) if the Indzxtng-anit is part of a declaration's indexing

element (§ §A. 3,B. 3,C. 3,D. 3,E. 3) : any specification

element (§ §A.4,B. A ,C.4 ,D. A ,E. 4) in the same declaration;

(d) if the indexing-unit is part of a 6igrm. (§2. A): the

parenthesized afiitlmettc-expKeA^ion that follows that

4-tgma's Indzxlng-expfieMlon.

The remainder of the model is not included in the scope.



PART II

XML LANGUAGE FORMS FOR

PARTICULAR COMPONENTS AND ELEMENTS
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A SET DECLARATIONS

§A.l Name element (required)

&QX-namQ.-(it(mQ.ivt ->

name [§5.1]

This element specifies the name (§1.2) for the declaration.

No 4 e^- name- e£cnie)tt may be the same as any other 4 e-t- name- element,

po/Lome^eA- name- eXcment (§B.l), uaA^6£e-name-e£emeni (§C.l), conittAain-t-

name- zl(2)n^nt (§D.l), obje.cXivz-name.-eI.&mnt (§E.l), or ^ncfex- name (§6.2)

defined in the model.

§A.2 Attribute element (optional)

6eX-cuttfUba.tz-tlejimnt ->

[LENGTH] n

n -^ -tn^egeA. [§2.1]

This element states that the declared set or sets must represent

a set value whose member-length (§3.4) is n.

The constant n must be a positive -Cntegd^.

Default: LENGTH 1 is assumed.
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§A. 3 Indexing element (optional)

6 2,t-indzKinq- oZennznt -»

lndzxAJaQ-zxpK2^&lon [§6.3]

A group (§1.2) of sets is declared if and only if this element is

present. The group contains one set corresponding to each index (§6.1)

specified by the XndexXng-expA.C/44^n.

Default : A single (§1.2) set component is declared.

§A.4 Specification element (optional)

&<^-6\:)ZcX.iljzaticn-tit2ynznt ->

6eX-zxpfiU6-con [§3.6]

This element indicates what set value each declared set represents,

as follows

:

If the declaration is for a single set: any reference to that set

represents the set value yielded by evaluating the 6eX-<lxpfLU6'L0n.

If the declaration is for a group of sets: any reference to a

set in the group represents the value yielded by evaluating the

iZt-e.xpfiZ&6Aj0n with respect to that set's corresponding index (§§6.6, A. 3)

DefacuLi.. The model does not indicate what set value each declared

set is to represent.
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5A.5 Alias element (optional)

6 zt- atloA - atejncitt

&tAX.nQ [§3.1]

The sequence of characters represented by the i>tAA.ng is the alias

(§1.2) for the declaration.

Default: No alias is defined.

§A.6 Comment element (optional)

'i eX- cornntut- zter>tznt -*

6tAA.ng [§3.1]

The sequence of characters represented by the ipLtng is a comment

to accompany the declaration.

Default: No comment is defined.
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B PARAMETER DECLARATIONS

§B.l Name element (required)

name. [§5.1]

This element specifies the name (§1.2) for the declaration.

No paAa>neieA-Maine-e£ejnen^ may be the same as any other pcuUmoXeA-

name.- dLomiiYVt , 6 eX- namn- eI.QmQ.nt (§A.l), vaAA,able-name-eZemQnt (§C.l),

con!it/Lcu.nt- name- element (§D.l), objective- name- el er^^znt (§E.l), or

^nde.X-name. (§6.2) defined in the model.

5B.2 Attribute element (optional)

paAametLeA-att'Ubute- element -"

fieAitAA.cJJ.on [fieAtnXction]

fieAtAicJ:.ion -> positive

NEGATIVE

NONPOSITIVE

NONNEGATTVE

NONZERO

INTEGER

This element states that numerical values represented by the

declared parameter(s) must satisfy the listed KeA>t?vic.tA.ons.

Default*. Tiio declared parameter(s) may represent any numerical

v.i I'.iiv;.
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§B.3 Indexing element (optional)

Andzx^ng-zy.freA6Xx)n [§6.3]

A group (§1.2) of parameters is declared if and only if this

element is present. The group contains one parameter corresponding to

each index (§6.1) specified by the -cndex^ng-expA.e44^ott.

Default: A single (§1.2) parameter component is declared.

§B.4 Specification element (optional)

con6tayvt-aAitlvmXla-e.xpn.eA6Ajon [§2.5]

This element indicates what numerical value each declared parameter

represents, as follows:

If the declaration is for a single parameter: any reference to

that parameter represents the numerical value yielded by evaluating the

coyi&tanX-aA(XhmztA.c.-zxp^z6i,/.on

.

If the declaration is for a group of parameters: any reference to

a parameter in the group represents the value yielded by evaluating the

coyi6ta.nt-aAithjneJU.c-expAZS-l>^on with respect to that parameter's

corresponding index (§§6.6, B.3).

Default: The model does not indicate what numerical, value each

declared parameter is to represent.
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§B.5 Alias element (optional)

paAatmteA- atlai - al omzivt

&tfUnQ [§3.1]

The sequence of characters represented by the i,VvinQ is the

alias (§1.2) for the declaration.

Default: No alias is defined.

§B.6 Comment element (optional)

6tAZng [§3.1]

The sequence of characters represented by the ^txLng is a comment

to accompany the declaration.

Default: No comment is defined.
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C VARIABLE DECLARATIONS

§C.l Name element (required)

vcuUabl?.- nav.z- oZomznt

nayr\z [§5.1]

This element specifies the name (§1.2) for the declaration.

No \}(VUjxblQ.-ncm(L-Ql.2yn2.nX. may be the same as any other vOJiiabto.-

mmz-^e/mnt, ^eX-narm-^ermnt (§A.l), paAame.t^- naxm- &Z2rmnt (§B.l),

corUt/uUnt-ncumz-^Z^ymnt (§D.l), obje,ctlv&-na}-ne.-2Z2}mnt (§E.l), or

Ind^X-name. (§6.2) defined in the model.

§C.2 Attribute element (optional)

attfu.biite.i .

.

.

oUJAX-butzl -> NONNEGATIVE

NONPOSITIVE

UNRESTRICTED

CiWUbuX&2 -^ CONTINUOUS

INTEGER

There must be at most one attAlb'.Lte.!. The choice of (Xtt^bute.1

may impose a restriction on the class of feasible solutions, as follows:
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NONNEGATRn; — A solution Is feasible only if all variables

defined by the declaration have zero or positive activities.

NONPOSITIVE — A solution is feasible only if all variables

defined by the declaration have zero or negative activities.

UNRESTRICTED — A solution may be feasible regardless of

the signs of the variables defined by the declaration.

There must be at most one cutXnXhatZl. If cuWu.buX.z2 is INTEGER,

a solution is feasible only if all variables defined by the declaration

have integral activities. If cuWUbtxtcl is CONTINUOUS, a solution may

be feasible regardless of the activities' integrality.

Default ; If no cUt/UbuXzl is specified, UNRESTRICTED is assumed.

If no (vUUUhutzl is specified, CONTINUOUS is assumed.

§C.3 Indexing element (optional)

\)cvila.blt- lndQ.xX.nc\- di(m2.nt ->

lnd<iXA,nQ-<Lxpfi(K>&i.on [§6.3]

A group (§1.2) of variables is declared if and only if this element

is present. The group contains one variable corresponding to each index

(§6.1) specified by the lndzxln2-ZxpfiU>i>lon.

Default: A single (§1.2) variable component is declared.
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IC.A Specification element (optional)

LinoaA-OinAMmzXMc-zxpfi^&A^on [§2.6]

This element indicates that each declared variable represents the

activity of a particular linear form (which may be a constant), as follows;

If the declaration is for a single variable: any reference to

that variable represents the activity yielded by evaluating the LinZOA-

aJUXkir\QjUjn- dxpfiojillon.

If the declaration is for a group of variables: any reference to

a variable in the group represents the activity yielded by evaluating

the tin^/XM.-aAXMmiltic.-ilxpn.ZMition with respect to that variable's

corresponding index (§§6.6, C.3).

Default : The model does not indicate what activity each declared

variable is to represent.

§C.5 Alias element (optional)

va/UablQ.-aLlcL6-zteme.nt -*

4>VUng [§3.1]

The sequence of characters represented by the JkiAi-ViQ is the alias

(§1.2) for the declaration.

Default: No alias is defined.
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§C.6 Comment element (optional)

vaAX/J.bl£.- conrndnt- (^Z<im(iYVt

6tAlnQ [§3.1]

The sequence of characters represented by the 6VvinQ is a comoent

to accompany the declaration.

Default: No comment is defined.
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D CONSTRAINT DECLARATIONS

§D.l Name eletoent (required)

con&tAdiyit-namt-iZ&mnt

namz [§5.1]

This element specifies the name (§1.2) for the declaration.

No C0Yi6tAaA,)\t-)iamz-zZ(mznt may be the same as any other C0Yii>tnj0U.nt-

Yicanz-dLamZYVt^ ^oX-namz-zlomzYit (§A.l), poAMnztoJi-mmz-dizmzrvt (§B.l),

\janlabl.z-n(mz-zZQm2yit (§C.l), objzcitivz-namz-dizmzYVt (§D.l), or

-turfex-no/rie (§6.2) defined in the model.

§D.2 Attribute element (optional)

BOUND

GUB

This element indicates that each declared constraint has one of

the following special forms:

BOUND — an upper bound, lower bound, or both on one

particular variable.

GUB — a "generalized upper bound": upper and lower bounds

on an unweighted sum of variables, or on the difference of

two such sums.

Default : No special form is indicated.
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§D. 3 Indexing element (optional)

yind(Lxi.nQ-e.x.pfiQj>i,A.on [§6.3]

A group (§1.2) of constraints is declared if and only if this

element is present. The group contains one constraint corresponding to

each index (§6.1) specified by the xnc/excng-expA.eA4-con.

Default ; A single (§1.2) constraint component is declared.

§D.A Specification element (required)

lk& = nki> [1]

llu <== nk& [2]

£/lA >= A/l4 [3]

nJui <= Ihs <= fihj>2 [4]

I ,
-^1 >= lhf> >= Aiii>2 [5]

togicjxJi-zxpns^iilon [§4.5] [6]

Zk& -> ^neoA-oA.c-t/wie-tcc-exp'^eA^-con [§2.6]

nk6 -> tinzjOLA.-anAjhmQjtic--Q,xpfiu&lon [§2.6]

fih&l, nhi>2 -»- coni>tayvt-aMX.lvmtic-ZKpKeMA,on [§2.5]

If the declaration is for a single .^castraint, this element

specifies a condition that must be satisfied by a feasible solution.

If the declaration is for a group of constraints, each constraint

in the group imposes a condition that must be satisfied by a feasible

solution. The condition imposed by any particular constraint is
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deterndned by interpreting lk6 ^ hki, or Ahil and n>U2, or the toglcaZ.-

e.Kp^eAi>ion with respect to the particular constraint's corresponding

index (§§6.6, D.3).

The nature of the condition represented by a CCnitfiO-int-

Ap^CA-^CCLtcon-elemejit depends on its form. Specifically, a solution is

feasible only if:

Form [1] ; The numerical value represented by tki equals that

represented by AivJ

.

Form [2] ; The numerical value represented by Iki is less than or

equal to that represented by aPU).

Form [3] ; The numerical value represented by Zh6 is greater than

or equal to that represented by fih&.

Form [4 ]; The numerical value represented by aJuI is less than

or equal to that represented by £/i6 , and the numerical value represented

by £/i4 is less than or equal to that represented by fihil.

Form [5] : The numerical value represented by fihil is greater than

or equal to that represented by Zkiy and the numerical value represented

by th& is greater than or equal to that represented by -'l/iAZ.

Form [6] : The £ogXca£-expAe64-con is true. (Since a loglcjxl-

ZXpn.U,&A.on may not contain vaA^a6£&-4ei^e/Lences, this form does not

constrain the activities of any variable; rather, it specifies a condition

on the model's set and parameter data. Hence this form can be used to

insure that the model's data are valid, as demonstrated in the examples

of Part III.)
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§D.5 Alias element (optional)

constAOAnt-atLaA-iiZafmnt

6tAA.ng [§3.1]

The sequence of characters represented by the 6tAA,ng is the alias

(§1.2) for the declaration.

Default: No alias is defined.

§D.6 Comment element (optional)

conit/uUnt-conrne.nt-eZoytie.yvt

itxing [§3.1]

The sequence of characters represented by the iitA<.nQ is a comment

to accompany the declaration.

Default: No comment is defined.
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E OBJECTIVE DECLARATIONS

§E.l Name elgnh^nt (required)

noma [§5.1]

This element specifies the name (§1.2) for the declaration.

No objQ,(lti\}Z-ncm^-^Z^yi\lli^t may be the same as any other obje.ctlve.-

namerzlermnt, ^zt-namz-QZoynznt (§A.l), paJumoJizfi-namz-ztQynzYVt (§B.l),

vaAA^abZe.-n(me,-zZQjnzYit (§c.l), con^.tAacnt-nattie-eXoTieitt (§D.l), or

Indzx-ncm^. (§6.2) defined In the model.

§E.2 Attribute element (optional)

ob izctcvz-attilbutz- eZ^rmnt

COMPUTE

MAXIMIZE

MINIMIZE

MAXIMIZE indicates that: (a) the declared objective, or objectives

in the declared group, specify linear combinations of the model's vari-

ables; and (b) the value represented by any such objective may meaning-

fully be maximized subject to conditions imposed by the model on the

variables' feasibility (§§C.2, D.4).

MINIMIZE is analogous to MAXIMIZE, except that it indicates

objectives whose values may meaningfully be minimized.
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COMPUTE indicates that no assuaptions of the sort specified by

MAXIMIZE or MINIMIZE are to be made.

Default : COMPUTE is assumed.

§E.3 Indexing element (optional)

ZndzxA.ng-iLxpn.Q^6<.on [§6.3]

A group (§1.2) of objectives Is declared If and only if this

element is present. The group contains one objective corresponding to

each index (§6.1) specified by the -cnd^xx^ng-exp-^^4-i.con.

Default: A single (§1.2) objective component is declared.

§E.A Specification element (required)

ob izctlve.-6pzcX.f^ccLtcon-Ql2}nQ.nt ->

(Vilthir]ztlc-e,xpAe.6:,wn [§2.4]

This element indicates what each declared objective represents,

as follows:

If the declaration is for a single objective, it represents the

function of the variables' activities determined by evaluating the

oA-cthmeXtc- expA.e64^on

.

If the declaration is for a group of objectives, each objective

in the group represents the function of the variables determined by
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interpretlng the cVuX}wiQjU.C-Zxpn.U.iA.on with respect to that objective's

corresponding index (§§6.6, E.3).

If the declaration's obja.cXX\J^-Citt''uhtLt(l-^tQjin(liit (§E.2) is

MAXIMIZE or MINIMIZE, the OAAMmeJUc-ZXpfieJt^-ion must be a tindOA-

(VuXivneXia- e.xpA.e.66-ion (§2.6).

§E.5 Alias element (optional)

obj'active,- clIIcus - ^emant ->-

iPUng [§3.1]

The sequence of characters represented by the ^t^ting is the alias

(§1.2) for the declaration.

Default ; No alias is defined.

§E.6 Comment element (optional)

itfUYlQ [§3.1]

The sequence of characters represented by the ttxing is a comment

to accompany the declaration.

DefauiLt: No comment is defined.





PART III

EXAMPLES OF XML MODELS
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EXAMPLE 1:

A MULTIPLE-PERIOD INPUT-OUTPUT MODEL

This problem is a variation on coimnon input-output economic models.

A fixed set of artivity matrices is used to model production over many

periods. The objective is maximum cumulative production in one industry

(rather than lainimum cost, which is more common).

The model given here is a generalization of an example presented

in G. Hadley's Linear Programming [3], problem 13-23, page 513. An

account of how a typical matrix-generator system handles the same model

may be found in the DATAMAT Reference Manual [5], Part 1, Example 2.

The transcription to XML is fairly straightforward. Original

parameter and variable names have been retained in the XML model for

clarity; alias elements could be added if more mnemonic names were

desired for reporting. Note that the model declares a group of objec-

tives, each representing total production of a different industry in

set OBJ: the modeler may choose to maximize any of these, or even

several successively.



-64-

ORIGINAL FORMULATION, EXAJ-tPLE 1

An economy comprises a variety of industries, each manufacturing a

particular product. Production is to be modeled over a number of time

periods, subject to the following constraints:

• There is an initial stock of each product. Stocks may be

built up or run down in subsequent periods.

• Each industry requires certain fixed amounts of various

inputs for each unit of its product manufactured. The

Inputs are of two sorts: endogenous inputs which are

products of industries in the economy, and exogenous

inputs whose supplies are postulated (labor, for instance).

• Each industry has an initial capacity. Capacities may be

increased (but not decreased) in any period, but the added

capacity may not be used until the following period.

Analogously to production, each industry requires certain

fixed amounts of various inputs — endogenous and exoge-

nous — for each unit of increase in capacity.

• There is an initial supply of each exogenous input; the

supply Increases by a fixed percentage in each subsequent

period.

• Each industry must satisfy an exogenous demand for its

product in each period. There is an initial exogenous

demand for each product, and this demand increases by a

fixed percentage in each subsequent period.

The objective is to maximize the total production of a particular

industry over all periods.

To express the problem as a linear program, let T be the number of

periods, n the number of industries, and PI the number of exogenous inputs.

The variables may then be specified as:
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4 .(^) stock of product i. at beginning of period t\

^ = 1, . . . , n; ;t = 1, .... T+1

X-C-t) quantity of product i. manufactured in period -t;

''I. (-i) increase in capacity of industry i in period -t;

The parameters of the problem can be specified as four matrices and

six vectors, whose elements are:

A.. number of units of product i. required to produce

1 unit of product /;^ = 1, ...,n;y = l, ...,)a

A. - number of units of exogenous input -c required to

produce 1 unit of product j; ^ = 1, ..., k;

y = 1 n

v.- number of units of product -c required to increase

capacity of industry j by 1 unit; x^ = 1, ..., n;

y = 1 , . . . , n

P. • number of units of exogenous input i. required to

increase capacity of industry j by 1 unit;

e- initial stock of product ^; ^c = 1, ..., n

C- initial capacity of industry x; ^ = 1, ..., n

C. initial supply of exogenous input ^; -c = 1, ..., n

Y • fractional increase in supply of exogenous input

-i per period; ^ = 1, ..., n

b. initial exogenous demand for product 't; X = 1, ..., n

3 . fractional increase in exogenous demand for product

i. per period; -c = i, ..., n

The objective is to maximize the total production, Ej. X (-C) , of some
'C Z

industry j. The constraints may be expressed in five classes. First are

the initial stock constraints

4^(1) = e^ I = \y ... , n
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Second are the production constraints , which specify thit the quantity

of a product manufactured in a period equals (i) the quantity required by

all industries for production in the period, plus (ii) the quantity

required by all industries for expansion of capacity in the period, plus

(ili) the exogenous demand in the period, plus (iv) the net change in

stocks

:

Third, capacity constraints dictate that production must not exceed an

industry's capacity, which is its initial capacity plus the sum of all

increases in prior periods:

x^C-t) ^ (^1 + l~^i '^^('^) ^ = 1, . . . , n; ^ = 1, . . . , T

Fourth, supply constraints ensure that the quantity of exogenous inputs

consumed does not exceed the available supplies:

Fifth, all variables must be nonnegative.
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XML REPRESENTATION, EXAMPLE 1

SETS

ind COMM: 'Industries'

ex COMM. 'Exogenous inputs'

obj COMM: 'Subset of industries whose production may be maximized'

PARAMETERS
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PARAMETERS (continued)

chat ATTR: NONNEGATIVE

INDX: OVER ex

COMM: 'Initial supplies of exogenous inputs'

gamma ATTR: NONNEGATIVE

INDX: OVER ex

COMM: 'Fractional Increases (per period) in supplies of

exogenous inputs'

b ATTR: NONNEGATIVE

INDX: OVER ind

COMM: 'Initial exogenous demands for products'

beta ATTR: NONNEGATIVE

INDX: OVER ind

COMM: 'Fractional increases (per period) in exogenous demands'

VARIABLES

s ATTR: NONNEGATIVE

INDX: OVER ind, FROM 1 TO p+l

COMM: 'Stocks: s[i,t] is stock of product 1 at beginning
of period t'

X ATTR: NONNEGATITO

INDX: OVER ind, FROM 1 TO p

COMM: 'Production: x[l,t] is quantity of p'-oduct i

manufactured in period t'

r ATTR: NONI'IEGATIVE

INDX: OVER ind, FROM 1 TO p

COMM: 'Capacity increase: r[i,t] is increase in capacity

of industry i in period t'

OBJECTIVES

prod ATTR: MAXIMIZE

INDX: i OVER obj

SPEC: SIGMA t FROM 1 TO p (x[i,t])

COMM: 'Maximize total production (over all periods) in

objective industry'
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CONSTRAINTS

subset SPEC:

COMM:

inlt ATTR:

INDX:

SPEC:

COMM:

prod INDX:

SPEC:

COMM:

cap

sup

INDX:

SPEC:

COMM:

INDX:

SPEC:

COMM:

obj IN ind

'Objective industries are a subset of all Industries.'

BOUND

i OVER ind

s[i,l] = e[i]

'For each industry: stock variable for period 1 must
equal initial stock.'

i OVER ind, t FROM 1 TO p

x[i,t] = SIGMA j OVER ind (a[i,j] * x[j.t]) +
SIGMA j OVE,R ind (d[i,j] * r[j,t]) +
(l+beta[i])**(t-l) * b[i] + s[i,t+l] - s[i,t]

'For each industry in each period: production must
equal the sura of:

(1) Output used in endogenous production,
(2) Output used in increasing capacity,
(3) Output absorbed by exogenous demands, and

(4) Net change in stocks.'

i OVER ind, t FROM 1 TO p

x[i,t] <= c[i] + SIGMA tt FROM 1 TO t-1 (r[i,tt])

'For each industry in each period: production must
not exceed initial capacity plus total of capacity
added in previous periods.'

i OVER ex, t FROM 1 TO p

SIGMA j OVER ind (ahat[i,j] * x[j,t]) +
SIGMA j OVER ind (dhat[i,j] * r[j,t])

<= (l+gamma[i])**(t-l) * chat[i]

'For each exogenous input in each period: total input
used in production plus total input used to increase
capacity must not exceed current supply.'
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EXAMPLE 2:

A MODEL FOR ALLOCATING TRAIN CARS

This model describes the allocation of cars to trains in a route

network, given a schedule and demands for each scheduled train. The

objective may be to minimize total cars, total car-miles, or some

tradeoff between the two.

The original formulation given below is adapted from a study of

service requirements in the Northeast Corridor [1], The equivalent

XML model differs mainly in employing more mnemonic terminology. Note

the convenience of using a set of ordered quadruples to represent the

schedule.
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ORIGINAL FORMULATION, EXAMPLE 2

A uniform fleet of passenger cars provides railroad service to a set of

cities. Service is offered by means of a set of scheduled "trains", each

comprising one or more cars and running between a given pair of cities.

At any given time, each car in the fleet is either part of some currently

running train, or is sitting in storage at one of the cities.

Three things constrain the size and deployment of the fleet:

a fixed schedule, known demands for scheduled trains, and a standard

station length at all cities.

Fixed schedule . The schedule lists all trains that depart in a

chosen schedule-period (a day, for example). IXiring the schedule-period,

every scheduled train must be run, carrying one or more cars.

It is assumed that each schedule-period is followed immediately by

another, identical schedule-period. Moreover, the same service is to be

provided in every schedule-period: that is, the same schedule must be

rim, with the same allocation of cars to cities and trains.

Each entry in the schedule specifies a city of departure and a city

of arrival, and corresponding departure and arrival times. In general,

a train may arrive during the schedule-period (e.g., day) of departure,

or during any subsequent period. For simplicity, however, it is assumed

here that every train arrives either in the same period, or at an earlier

time in the next period. (If the schedule-period is a day, this just

says that a train arrives either the same day that it leaves, or the next

day; and that every trip lasts less than 24 hours.)

A car that arrives at city c at time t is free to leave c in any

scheduled train that departs at t or later. (Stopover delays at the

arrival city — to discharge and board passengers, for example — are
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consldered part of the preceding trip, and are reflected by adjusting

the arrival time in the schedule accordingly.)

Demands . For each scheduled train there is a known demand which

must be ir.et; hence there is a minimum number of cars required in each

train. A train may be larger than its minimum size, however, if circum-

stances require that extra (deadhead) cars be shifted from one city

to another.

Station length . Stations' loading platforms can accomodate only

a certain number of cars (assumed to be fixed throughout the system)

.

If the demand for a scheduled train exceeds this number, two or more

sections are run.

For each train, there is a minimum number of sections that can

meet demand. Since sections are expensive, it is required that no train

be run with more than the minimum number of sections. This requirement

places an upper limit on the number of cars (including deadheads)

assigned to a train.

All of these requirements can be expressed formally as linear

constraints on variables. To begin, define the following sets:

C The set of cities

T = {0, ».., T-1} A set of T times into which the

schedule-period is divided.

S c {(c^,t^,C2>t2)' C-^cCj 0-2^^, t^zT , t2^T; c^ ^ C2)

The schedule: each member represents

a train that leaves city c-^ at time ti

and arrives at city C- at t„

Let I be the maximum length of a section. Represent the demands by
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d_ ^ [^T,-to] The smallest (integral) number of cars
C1C2 1 ^

required to meet demand for train

^^l''^l''^2'^2^
e S

Define two collections of variables:

u.„[t] Unused cars stored at city c in the interval

beginning at time -t, for all ceC, tcT

X [-t^,-t„] Number of cars assigned to the scheduled

train that leaves c, at t, and arrives at

0-2 ^^ ^2

The model can now be expressed by three sets of constraints. First,

all cars must be accounted for at each time in each city:

ujt] = aj(i-l) n^d T] + I X [^^.^] - I ^,^^'^2^

for all CeC, teT

(In words: cars in storage at C at time -t must equal cars in storage in

the preceding interval, plus cars that arrived in trains at t, less cars

that left in trains at t.) Second, the nunfcer of cars in each train must

both meet demand and require no superfluous sections:

for all (c^,^. ,c„,;f-) e S

Third, the number of cars stored must be nonnegative:

u^[t] > for all ceC, tcT

In addition, a useful solution must deal only in integral numbers of cars;

but, fortunately, these constraints have 3 or>.->cial form that guarantees

integrality of every basic solution produced by the simplex algorithm.

It remains to formulate some linear objectives for the model. Two

simple ones are as follows:
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Cars . Minimize the number of cars in the system, expressed as the

following linear form:

CeC
^

(Cj^,t^,c^,t^)cS ^^1^2

This counts all cars at the last interval, x-l, of the schedule-period.

The first sum is all cars in storage during this interval, while the

second counts all cars in transit during the interval.

Miles . Minimize total car-miles run in a schedule-period. Letting

m be the distance from C, to c„, this objective is also a linear form:
C1C2 1 2' -
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XML REPRESENTATION, EXAJIPLE 2

SETS

cities

times

COMM:

SFEC:

COMM:

'Set of cities'

SEQ(0,intervals-l)

'Set of intervals into which a schedule-period
is divided'

schedule ATTR: LENGTH 4

COMM: 'Member (cl , tl ,c2, t2) of this set represents a train
that leaves city cl at time tl and arrives at city c2

at t2'

PARAMETERS

intervals

section

demand
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cars

miles

ATTR: MINIMIZE

SPEC: SIGMA c OVER cities (u[c,intervals-l]) +
SIGMA (cl,tl,c2,t2) OVER schedule

WHERE t2 < tl (x[cl,tl,c2,c2])

COMl-I: 'Number of cars in the system: Sum of unused cars
and cars in trains during the last interval of the
schedule-period.

'

ATTR: MINIMIZE

SPEC: SIGJIA (cl, tl,c2 , t2) OVER schedule
(disitance[cl,c2] * x[cl, tl,c2, t2])

COMM: 'Total car-miles run by all scheduled trains in
one schedule-period.'

CONSTRAINTS
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EXAMPLE 3:

MODELING ALTERNATIVE ENERGY SOURCES

This model was developed by Alan S. Manne and Oliver S. Yu [4] to project

the interaction of alternative future electricity-generating systems,

with their corresponding fuel needs and limits, under certain assumptions

of demand growth.

The original description of the model is reproduced below, followed

by a fairly straightforward XML transcription. Periods numbered through

75 in the original have been changed in XML to actual year numbers (1970

through 2045). For clarity, all parameters of the XML model are symbolic;

the explicit numerical values for some parameters in the original would

be included with the rest of the XML model's data.
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ORIGINAL FORIIULATION, EXA>tPLE 3

Unknowns:

PC = base-load equivalent capacity, source i, period t

DP = annual rate of capacity, source 1, period t

3
(units of measurement: TW = terawatts = 10 GW

= 6.57 • 10^^ K\m/yeaT.)

NURQ = annual requirements for natural uranium, cost level I, period t

(Units of measurement: 10 tons)

Note: A bar' above a symbol indicates that the particular variable is

exogenously specified.

Constraints:

CP - capacities, energy sector (i = COAL, LWR, FBR, ADV)

capacity
and produc-
tion, current
period

capacity and
production,
3 years
previously

+3
annual capacity
increase

,

current period

annual capacity
retirement,
after 30 years
of service

PC^
1

PC
t-3

+3 [ DP DP
t-30

where PC =
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NC - new capacity shares (i = COAL, LWR, FBR, ADV)

These represent limitations on the availability and rate of
adoption of new technologies.

^^COAL ^ '" f^^COAL ^ Km " ^4br]

where 6*^ = .30 for t = 3, 6, ..., 30

and e*^ = .24, .18, .12, .06

for t = 33, 36, 39, 42, respectively.

DPj^^ < .00148t for t = 3, 6, ..., 30.

where 6*^ = .10, .20, .40, .60

for t = 24, 27, 30, 33, respectively.

Note: DP^„„ =0 for t = 3, 6, .... 21.

where 9*^ = .10, .20, .30, .40, .50, .60

for t = 45, 48, 51, 54, 57, 60, respectively.

Note: DP^ = for t = 3, 6, ..., 42.
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DM^ „„ - final demands
iLEC

remaining
initial
electric
capacity,
fossil-
fired,

exogenous

+

hydro-
electric
capacity,
exogenous 4-

new electric capacity.
endogenous

final

demands
for
electricity

,

exogenous

RI
FOSS

+ PC
HYDR ^ t^^COAL + Km " ^^BR •" ^^IdvJ ^ ^^-ELEC

^'-^'^

where D>Lj,
LEG

J21.53 10 KWH/year ^

8.76(.75) 10- H/year
!33 TW

PC
,247

HYDR 8, 76 (.75)
(1.01) = .038 (1.01) TW

RI
1. 53-. 247

FOSS 8.76(.75)
= .195 TW

The retirement schedule for the remaining initial electric capacity

from fossil fuel (Rip ^) is calculated on the basis of a 30-year service

life, assuming that the capacity increments grew at the annual rate of

7% during the 30 years preceding time 0.
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t 18
SM - cumulative sum of coal cunsumption (10 BTU)

cumulative sum,

end of current
period

cumulative sum,

3 years
previously

fio3 hhours
+3 per year

r

J

.

heat
rate

base-load
equivalent
capacity

CS
COAL

CS
t-3
COAL

+3 [8.76(.75)] [.01 ] [.54RI4^-.PCJ^^]

SM^ - natural uranium requirements (10 tons)

current annual
consumption
of uranium

annual

refueling
require-
ments

annual requirements
for initial
inventories, next
period

^2^ NURqJ > .18 PC
LWR

+ ,50 DP
t+3
LWR

CRQU - upper bound on uranium consumption at cost level 5, (10 tons)

cumulative uranium
consumption at cost
level i

cumulative availability of uranium at
cost level £ , exogenous

3 lHo NURqJ CAVU. I = 1, 2, ..., 10
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COST - minimand

Present value of costs incurred annually during each 3-year period
over 75-year horizon:

present
value of

3-year
costs

current
costs, annua )

/invest
+ V costs,

troent \
annuaiy

/termJ-nal \ /present value\
/valuationx / factor for \

factor,
30-year

,
service
Uife

P
fa

incurring
capital costs
2 years prior

\to period t ,

-2,
flt=0 ^^^ ^^i ^"''i ^^i ^ ^^i ^^Pi °^i ^ ^^ " "^t^ ^^ ^ ] ]

(unit: $10 )

Where B = -rr^ = one year present-value factor at r% discount rate

.78-t
TV^ = 6 for t > 45; otherwise

It is supposed that interest during construction is included in the
capital cost coefficients, cap.. These costs are incurred at the
coTTimissioning date — two years prior to full power operations —
hence the terra 3 ~.
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XML REPRESENTATION, EXAMPLE 3

SETS

source SPEC:
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PARAMETERS (continued)

sh adv

dm elec

pc_hydr

ri foss

cavu

ATTR: NONNEGATIVE

INDX: FROM 2015 TO 2030 BY 3

COMM: 'Maximum share in new capacity, adv'

ATTR: POSITIVE

COMM: 'Initial final demand for electricity'

ATTR: POSITIVE

COMM: 'Initial hydro-electric capacity'

ATTR

:

NONNEGATIVE

INDX: OVER horizon

COMM: 'Remaining initial electric capacity, fossil fired'

ATTR: POSITIVE

INDX; OVER cost

COMM: 'Cumulative availabilities of uranium'

VARIABLES
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cost ATTR: MINIMIZE

SPEC: SIGMA t OVER horizon (3 * pv**(t-1970) *

(SIGMA i OVER source (cur[i] * pc[i,t]) +
SIGMA i 0\'ER source (capfi] * dp[i,t]) *

(l-tv[t]) / pv**2) )

COMM: 'Sum of present values of current costs and
investment costs incurred in all periods over
horizon'

CONSTRAINTS
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CONSTRAINTS (continued)

lnit_dp_fbr

nc fbr

inlt dp adv

nc adv

fdm elec

init cs coal

sm coal

ATTR: BOUND

INDX: t FROM 1970 TO 1991 BY 3

SPEC: dp ['fbr' ,t] =

COMIl: 'No fbrs before 1994.'

INDX: t FROM 199A TO 2003 BY 3

SPEC: dp['fbr',t] <= sh_fbr[t] *

(dp['coal' ,t]+dp['lwr' , t]+dp [
' fbr' ,t])

COMM: 'From 1994 to 2003: fbr must have at most a

certain share of new capacity.'

ATTR: BOUND

INDX: t FROM 1970 TO 2012 BY 3

SPEC: dp ['adv' ,t] =

COMM: 'No adv before 2015.'

INDX: t FROM 2015 TO 2030 BY 3

SPEC: dp['adv',t] <= sh_adv[t] * SIGMA i OVER source (dp[i,t])

COMM: 'From 2015 to 2030: adv must have at most a

certain share of new capacity.'

INDX: t OVER horizon

SPEC: ri_foss[t] + 1.01**(t-1970) * pc_hyfir

+ SIGMA i OVER source (pc[i,t])
>= 1.05**(t-1970) * dm_elec

COMM: 'For each period: Final demand for electricity must
be met by sura of: remaining initial fossil-fired
electric capacity (exogenous) ; hydro-electirc
capacity (exogenous); and new endogenous capacities.'

ATTR: BOUND

SPEC: cs_coal[1970j =

COMM: 'Initial cumulative sum of coal consumption is zero.'

INDX: t OVER horizon \fflERE t ~= 1970

SPEC: cs_coal[t] = cs_coal[t-3] +
1.971 * (0.54*ri_foss[t] + pc [

' coal" , .])

COMM: 'For each period: Cumulative sum of coal consumption
equals cumulative sum to previous period plus
additional consumption during period.'
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CONSTRATNTS (continued)

sm natu

crqu

INDX: t OVER horizon \vHERE t ~= 2045

SPEC: SIGMA c OVER cost (nurq[c,t])
>= 0.18*pc['lwr' ,t] + 0.50*dp['lwr',t+3]

COMM: 'For each period: Annual consumption of uranium
must equal or exceed annual refueling requirements
plus annual requirement for initial inventories
in next period.

'

ATTR: GUB

INDX: c OVER cost

SPEC: 3 * SIGMA t OVER horizon (nurq[c,tj) <= C3vu[c]

COMM: 'For uranium at each cost level: Cumulative
consumption must not exceed cumulative availability.

'
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