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Based on a linear systems approach, we derive the Wigner distribution

function (WDF) of a 4–f imager with a volume holographic 3D pupil; then

we obtain the WDF of the volume hologram itself by using the shearing

properties of the WDF. Two common configurations, plane and spherical wave

reference volume holograms, are examined in detail. The WDF elucidates the

shift variant nature of the volume holographic element in both cases. c⃝ 2009

Optical Society of America

OCIS codes: (350.6980) Transforms, (090.7330) Volume gratings, (080.5084)

Phase space methods of analysis.
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1. Introduction

The Wigner distribution function (WDF) was originally introduced in quantum me-

chanics [1]. It has also been extremely useful in optics for simultaneously describing

the space and spatial–frequency content of optical signals [2]. The WDF of a scalar

optical field g(x) is defined as

Wg(x, u) =

∫
g

(
x +

ξ

2

)
g∗
(

x − ξ

2

)
e−i2πuξdξ, (1)

where x denotes the spatial coordinate and u is the local spatial frequency [3]. The

WDFs of several thin elements, such as lenses, phase masks, apertures, gratings,

etc., have been derived in straightforward fashion by applying eq. (1) to transparen-

cies [4–6]. The WDF typically leads to simple geometrical representations, which pro-

vide better intuitive understanding of optical transforms. Since the Bragg selectivity

property of volume holograms can have both strong spatial and angular dependence,

the WDF is even more appealing for the analysis of volume holographic optical sys-

tems such as 3D pupils. However, to our knowledge, the WDF of a 3D pupil has

not been derived to date. One reason may be that volume holograms are not thin

elements; hence, straightforward application of eq. (1) is not feasible.

In this Letter, we show how to derive the WDF of volume holograms (VHs) with

arbitrary index modulation and examine two specific examples: plane and spherical

wave reference VHs. For notational simplicity, we consider 1–dimensional geometries

only, but extension to 2–dimensional geometries is straightforward.
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2. WDF of volume holograms

We start from a linear–optical field transformation

E2(x2) =

∫
h(x2; x1)E1(x1)dx1, (2)

where h(x2; x1) denotes a response at the output plane (x2) produced by an impulse at

the input plane (x1), and E1 and E2 are the input and output fields, respectively. Ap-

plying the WDF definition to eq. (2), we obtain the input–output relation in Wigner

space as

W2(x2, u2) =

∫∫
Kh(x2, u2; x1, u1)W1(x1, u1)dx1du1, (3)

where

Kh(x2, u2; x1, u1) =

∫∫
h
(
x2 +

x′
2

2
; x1 +

x′
1

2

)
h∗
(
x2 − x′

2

2
; x1 − x′

1

2

)
× e

−i2π
“

u2x′
2−u1x′

1

”

dx′
2dx′

1. (4)

Kh is the double WDF of the impulse response [7] and represents the system in Wigner

space. Since the impulse response of a VH is too complicated to be used in eq. (4), we

rather consider the impulse response of a 4–f VH imager, whose geometry is shown

in Fig. 1. This is convenient because general forms of its impulse response have been

reported previously with the 3D pupil formulation [8]. Assuming Born’s first order

approximation [9], the impulse response of the 4–f VH imager in the paraxial region

is given by

h4fVH(x2; x1) = E
[
x1 + x2

λf
,
x2

1 − x2
2

2λf 2

]
, (5)
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where λ is the wavelength, E is the 2D Fourier transform of a refractive index modula-

tion ϵ(x′′, z′′) of the VH [8], and f is the common focal length in the unit magnification

4–f system. Substituting eq. (5) into eqs. (3) and (4), we obtain the Wigner repre-

sentation of the 4–f VH imager as

W2(x2, u2) =

∫∫
K4fVH(x2, u2; x1, u1)W1(x1, u1)dx1du1, (6)

where

K4fVH(x2, u2; x1, u1) =

∫∫∫∫
dx′

1dx′
2e

−i2π
“

u2x′
2−u1x′

1

”

× E

[
x1 +

x′
1

2
+ x2 +

x′
2

2

λf
,
(x1 +

x′
1

2
)2 − (x2 +

x′
2

2
)2

2λf2

]

× E∗

[
x1 − x′

1

2
+ x2 − x′

2

2

λf
,
(x1 − x′

1

2
)2 − (x2 − x′

2

2
)2

2λf2

]
. (7)

Next we compute the WDF of VHs from eq. (7). As shown in Fig. 1, the input and

output WDF to the VH are denoted by W3(x3, u3) and W4(x4, u4). They are related

to W1 and W2 as

W3(x3, u3) = W1

(
−λf1u3,

L

2f
u3 +

x3

λf

)
and (8)

W4(x4, u4) = W2

(
λf2u4,

L

2f
u4 −

x4

λf

)
. (9)

These relations originate from the well–known properties of the WDF: free–space

propagation and phase modulation by a lens produce x– and u–shear in Wigner

space, respectively [3]. Using the coordinate transforms in eqs. (8) and (9), we obtain

the Wigner representation of a VH as

W4 (x4, u4) =

∫∫
KVH(x4, u4; x3, u3)W3 (x3, u3) dx3du3, (10)
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where

KVH(x4, u4; x3, u3) = K4fVH

(
λfu4,−

L

2f
u4 −

x4

λf
;−λfu3,

L

2f
u3 +

x3

λf

)
. (11)

Equation (10) implies that the output WDF, in other words the WDF of the Bragg

diffracted field, is computed by the integration of KVH multiplied by the input WDF.

Hence, KVH(x4, u4; x3, u3) represents the contribution of the input WDF at x3 and

u3 to the Bragg diffraction originating from x4 along u4 direction. In the next section

we will show how Bragg selectivity is evidenced in Wigner space.

3. Examples

We examine two common VHs [10,11] in detail. For simplicity, the lateral dimension

of VHs is assumed to be infinitely extended.

3.A. Plane wave reference volume hologram (PRVH)

A PRVH is recorded by two mutually coherent plane waves as shown in Fig. 2(a).

The refractive index modulation is

ϵ(x′′, z′′) = exp

{
i
2π

λ

(
θsx

′′ − θ2
s

2
z′′
)}

rect

(
z′′

L

)
, (12)

where x′′ and z′′ are the Cartesian coordinates inside the VH (see Fig. 1). The impulse

response of the 4–f VH imager is

h(x2; x1) = δ (x1 + x2 − fθs) sinc

{
L

2λf 2

(
x2

1 − x2
2 + f2θ2

s

)}
. (13)
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After a long but straightforward derivation [12], an analytical expression of KVH is

obtained as

KVH(x4, u4; x3, u3) =

(
2

Lθs

)
δ

(
u4 − u3 −

θs

λ

)
Λ

{
2

Lθs

(x3 − x4) +
λ

θs

(u3 + u4)

}
× sinc {2u3 [Lθs − |Lλ(u3 + u4) + 2(x3 − x4)|]} , (14)

where Λ denotes the triangle function [13]. Finally, the WDF of the output field is

related to the WDF of the input field as

W4(x4, u4) =

(
2

Lθs

)∫
Λ

(
Lλ
(
u3 + θs

2λ

)
+ (x3 − x4)

Lθs

)

× sinc
{
2u3

[
Lθs −

∣∣Lθs(2u3 + θs

λ
) + 2(x3 − x4)

∣∣]}W3 (x3, u3) dx3. (15)

Due to the δ–function in KVH, the integration kernel in eq. (15) depends only on

x3, u3, and x4. The kernel indicates the weighting values applied to the input WDF

and represents contribution of the input WDF at x3 and u3 to Bragg diffraction at

x4. For x4 = 0, the kernel is plotted in Fig. 3(a). As expected, the spatial frequencies

near u3 = 0 contribute to diffraction significantly in agreement with Bragg theory

for this recording geometry. At x4 = 0, maximum Bragg diffraction is produced by a

probe beam with u3 = 0 and at x3 = −Lθs/2, instead of x3 = 0 (see Fig. 3(a) and

(b)). The offset is introduced due to the thickness of the VH.
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3.B. Spherical wave reference volume hologram (SRVH)

A SRVH is recorded by mutually coherent plane and spherical waves as shown in

Fig. 2(b). The refractive index modulation is given by [10]

ϵ(x′′, z′′) = exp

{
−i

π

λ

x′′2

z′′ − zf

}
exp

{
i
2π

λ
θsx

′′
}

exp
{
−i

π

λ
θ2
s z

′′
}

rect

(
z′′

L

)
, (16)

where zf is the distance from the hologram to the point source emitting the spherical

wave on the optical axis. The impulse response of the 4–f VH imager is expressed as

h(x2; x1) = exp

{
−i

π

λ

zf

f 2
(x1 + x2 − fθs)

2

}
sinc

{
L

λf 2
(x1 + x2) (fθs − x2)

}
. (17)

Using the same procedure [12], we obtain the formula for the WDF of the SRVH as

KV H(x4, u4; x3, u3) = (λf)2

∫∫
du′

3du′
4e

i2π{u′
4(−Lλ

2
u4−x4)−u′

3(Lλ
2

u3+x3)}

× exp

{
−i2πλzf (u′

3 + u′
4)

(
−u3 + u4 −

θs

λ

)}
× sinc

{
Lλ

(
−u3 + u4 +

u′
3 + u′

4

2

)(
u4 +

u′
4

2
− θs

λ

)}
sinc

{
Lλ

(
−u3 + u4 −

u′
3 + u′

4

2

)(
u4 −

u′
4

2
− θs

λ

)}
. (18)

The result of numerically integrating KVH(x4 = 0, u4 = θs/λ; x3, u3) is shown in

Fig. 4(a). As expected, the maximum Bragg diffraction at x4 = 0 and u4 = θs/λ is

produced by a spherical wavefront (sheared WDF), in which x3 is not zero due to the

finite thickness as shown in Fig 4(b).
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4. Conclusion

We presented the formulation for the WDF of VHs with arbitrary refractive index

modulation. Since VHs are thick diffractive elements, the conventional approach of

computing the WDF for thin transparencies, is not applicable. We proposed a two

step procedure: first we compute the impulse response of the 4–f VH imager and then

we apply a coordinate transform dictated by the WDF properties to the result of the

4–f VH imager. This end result is the WDF of the VH excluded with the effect of

propagation and lenses of the 4–f VH imager. Two common VHs were examined in

detail: plane and spherical wave reference VHs, and indicated how Bragg selectivity

exhibits itself in Wigner space. Note that the entire derivation is based on the 1st–order

Born approximation, and therefore if the diffraction efficiency is high we may have

qualitative differences with respect to more accurate theories, such as coupled wave

theory [14]. However, simulation of non-planar wave holograms with coupled–wave

theory is not straightforward, whereas our simple theory is more general for volume

holograms of small diffraction efficiency. Potentially the proposed formulation can be

applied to other thick optical elements provided that impulse responses are available.
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Fig. 1. (Color online) Geometry of the 4–f VH imager, in which a VH is at the Fourier
plane of a traditional 4–f telescope.
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(a) Plane wave reference VH (b) Spherical wave reference VH

Fig. 2. (Color online) Recording geometries
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(a) Normalized integration kernel of eq. (15)
where x4 = 0.

(b) Geometrical interpretation of (a)

Fig. 3. (Color online) Wigner representation of a PRVH, where λ = 0.5 µm, θs = 30◦,
and L = 1 mm.
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(a) Normalized KVH(x4 = 0, u4 =
θs/λ; x3, u3).

(b) Geometrical interpretation of (a)

Fig. 4. (Color online) Wigner representation of the SRVH, where λ = 0.5 µm, θs = 30◦,
zf = −50 mm, and L = 1 mm.
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