
MIT Open Access Articles

Analytical Solutions for Multicomponent, Two-Phase Flow 
in Porous Media with Double Contact Discontinuities

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: C. Seto and F. Orr, “Analytical Solutions for Multicomponent, Two-Phase Flow in Porous 
Media with Double Contact Discontinuities,” Transport in Porous Media, vol. 78, Jun. 2009, pp. 
161-183.

As Published: http://dx.doi.org/10.1007/s11242-008-9292-y

Publisher: Springer Netherlands

Persistent URL: http://hdl.handle.net/1721.1/49447

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/49447
http://www.springerlink.com/help/disclaimer.mpx


Analytical Solutions for Multicomponent, Two-Phase Flow in Porous Media with 

Double Contact Discontinuities 

 

C. J. Seto
*
 and F. M. Orr Jr. 

 

Department of Energy Resources Engineering, Stanford University, Stanford CA 

94305, USA. 

 
*
 Corresponding author.  Now with the MIT Energy Initiative, Massachusetts Institute 

of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue, 

Room 66-060, Cambridge MA 02141, USA.  e-mail:  cjseto@mit.edu 

 

To be submitted to Transport in Porous Media 

 

Abstract 

 

This paper presents the first instance of a double contact discontinuity in analytical 

solutions for multicomponent, two-phase flow in porous media.  We use a three-

component system with constant equilibrium ratios and fixed injection and initial 

conditions, to demonstrate this structure.  This wave structure occurs for two-phase 

injection compositions.  Such conditions were not considered previously in the 

development of analytical solutions for compositional flows.  We demonstrate the 

stability of the double contact discontinuity in terms of the Liu entropy condition and 

also show that the resulting solution is continuously dependent on initial data.  

Extensions to four-component and systems with adsorption are presented, 

demonstrating the more widespread occurrence of this wave structure in 

multicomponent, two-phase flow systems.  The developments in this paper provide 

the building blocks for the development of a complete Riemann solver for general 

initial and injection conditions. 

 

Keywords:  method of characteristics, Riemann problem, analytical solution, 

multicomponent flow, degenerate shock, double contact discontinuity, two-phase 

injection. 



1.  Introduction 

 

The development of analytical solutions for the dispersion-free limit of multiphase, 

multicomponent flow using the method of characteristics (MOC) is a well established 

technique.  This method has been applied to modeling many enhanced oil recovery 

strategies, ranging from multicontact miscible gas injection (Helfferich 1981, Johns 

and Orr 1996, Dindoruk et al. 1997), to surfactant and polymer flooding (Isaacson 

1981, Hirasaki 1981, Johansen and Winther 1988) and  enhanced coalbed methane 

recovery (Zhu et al. 2003, Seto et al. 2006).  In all of these processes, the resident 

hydrocarbon is recovered through a complex interaction between phase behavior and 

multiphase flow.  Application of this technique to analyzing injection processes has 

led to improved understanding of the physics of the recovery mechanism (Larson and 

Hirasaki 1978, Monroe et al. 1990, Orr et al. 1993, Johns and Orr1996, Jessen and 

Orr 2004, Juanes and Blunt 2007) and has contributed to the development of efficient 

tools for more accurate simulations of these processes (Lie and Juanes 2005, Seto et 

al. 2007, Juanes and Lie 2008). 

 

In many of these applications, the boundary conditions are specified such that the 

injection and initial fluids are single phase.  Under these particular conditions, a 

number of researchers have developed algorithms for determining the structure of the 

solution (Johns 1992, Jessen et al. 2001, Wang et al. 2005).  Jessen and Orr (2004), 

LaForce and Johns (2005) and Seto et al. (2007) considered single-phase fluid 

injection into a system that initially contained two phases to model gas injection for 

condensate recovery.  Solution structures from their analyses were similar to those 

found in single-phase injection and initial conditions, and algorithms for constructing 

solutions followed the same methodology.   

 

Much of the MOC theory for multicomponent flow has focused on injection of single-

phase mixtures (Monroe et al. 1990, Johns 1992, Dindourk 1992, Wang 1998, Jessen 

et al. 2001).  Only recently, have researchers considered multiphase injection 

compositions (Seto 2007, LaForce and Jessen 2007).  Although two-phase injection 

compositions have not been thoroughly investigated in gas displacements, they have 

been explored for immiscible three-phase flow (Falls and Schulte 1992, Guzman and 

Fayers 1997, Marchesin and Plohr 2001, Juanes and Patzek 2004, LaForce et al. 

2008).  Marchesin and Plohr (2001) demonstrated that two-phase injection can be 

understood as the limit of cyclic injection.   

 

The algorithms developed for four-component (Monroe et al. 1990) and 

multicomponent systems (Jessen et al. 2001) identified nc-1 key tie lines required, for 

constructing the solution.  Once these were identified, a critical step in constructing 

the solution was to identify the shortest key tie line, as solution construction starts at 

that tie line.  The solutions presented in this paper involve nc key tie lines, and in the 

three-component example, solution construction is initiated at the longest key tie line.  

Another consequence of considering single-phase injection compositions only is that 

only one branch of the nontie-line composition path is utilized.  The wave structure 

reported in this paper utilizes both branches of the nontie-line path. 

 

This paper presents a solution structure in which a double contact discontinuity, 

involving two distinct genuine nonlinear characteristic families, plays a fundamental 

role.  In this context of multicomponent, multiphase flow, this kind of discontinuity 



has first appeared in the solution for a two-component, two-phase flow for a polymer 

flooding model (Johansen and Winther 1988).  For a linearly degenerate characteristic 

field, this transitional contact discontinuity involving the slow and fast characteristic 

families have also been reported in a class of polymer models, known as the KK 

models (Keyfitz and Kranzer 1980, Isaacson 1981, Mota 1992, Souza 1995).  In the 

context of a three-phase flow in porous media, a double contact discontinuity, but this 

time involving the same genuine nonlinear characteristic family (the fast family), was 

necessary to obtain the complete Riemann solution description for arbitrary initial and 

injection conditions (Isaacson et al. 1992, Souza 1992).  Finally, this kind of 

discontinuity has been reported in other fields too, such as modeling sedimentation of 

polydispersive suspensions (Berres and Burger 2007). 

 

The wave structure presented here provides the building block for obtaining analytical 

solutions with any initial and injection condition.  The complete set of solutions for 

any injection and initial condition is of value because it allows the development of a 

Riemann solver which can be used to efficiently solve the system for any set of 

boundary conditions. 

 

The structure of the paper is as follows.  Section 2 presents the mathematical model 

for two-phase, multicomponent flow.  Section 3 presents the double contact 

discontinuity that arises under two-phase injection in three-component systems.  We 

also discuss the development and stability of this structure, and analyze the conditions 

under which it occurs.  Extensions to four-component displacements and to systems 

with adsorption are given in Section 4.  They demonstrate that the double contact 

discontinuity can arise in a variety of compositional flow settings.  The main 

conclusions are summarized in Section 5. 

 

2.  Mathematical Model 

 

The conservation equations for the dispersion-free limit of multicomponent, two-

phase flow in 1D are (Helfferich 1981) 
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where  
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and 

  fyfxF iii  1 ,  cn,,i 1 .                                (3) 

 

Ci is the overall composition for component i, Fi is the overall fractional flow of 

component i, xi is the liquid phase composition of component i, yi is the vapor phase 

composition of component i, S is the vapor phase saturation and f is the vapor phase 

fractional flow.  This model assumes the usual simplifications made in frontal 

advance theory (Helfferich 1981):  1D flow; homogenous and isotropic porous 

medium; negligible dispersive effects created by diffusion, dispersion, gravity and 

capillary forces; incompressible fluids; isothermal flow and instantaneous equilibrium 

as fluids mix as they propagate downstream.  Extensions to Eqs. (1) to (3) to include 

adsorption and desorption effects are presented in Section 4.2. 

 

 

 



Equations (1)-(3) are subject to the following constraints: 
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Because Fi and Ci are dependent on phase behavior and saturation, the governing 

equations can be converted to an eigenvalue problem.  The eigenvalues represent the 

characteristic wave propagation speeds of compositions through the displacement, and 

the corresponding eigenvectors are the directions of variation in composition space 

that satisfy the differential equations.   

 

The Riemann problem consists of solving a system of conservation laws in an infinite 

domain, with piecewise-constant initial states separated by a single discontinuity.  

Continuous variation of the solution from the injection state to the initial state may 

result in non-monotonic variation of wave velocity, resulting in a multivalued state for 

a specific wave velocity.  Such states are unphysical; therefore, additional constraints 

are needed to construct unique solutions:  the velocity rule and an entropy condition 

(Isaacson 1981, Helfferich 1981).   

 

The velocity rule specifies that faster-propagating states lie downstream of slower-

propagating states.  In situations where a continuous variation violates the velocity 

rule, a shock must be introduced to resolve the multivalued state.  Shock segments are 

discontinuous, and therefore, the shock must satisfy the integral form of the 

conservation equation.  This is achieved by applying the Rankine-Hugoniot condition. 

For each component, the integral balance across the shock is 

R
i

L
i

R
i

L
i

CC

FF




 ,  cn,,i    1 ,                                      (5) 

where Λ is the shock velocity and L and R represent conditions upstream and 

downstream from the shock. 

 

The entropy condition ensures shock stability, requiring that the velocity immediately 

downstream of the shock be slower than the shock velocity, and the velocity 

immediately upstream of the shock be faster than the shock velocity.  Under a small 

perturbation, the shock remains self-sharpening as it propagates through the 

displacement.  If velocities on either side of the shock do not satisfy these 

requirements, the shock is unstable and collapses under a small perturbation. 

 

In the solutions that follow, we assume that gas and liquid phase relative 

permeabilities are described by quadratic functions of saturation.  As a consequence, 

the fractional flow is a function of saturation, 
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where M is the ratio of vapor viscosity to liquid viscosity and Sor is the residual oil 

saturation, the saturation below which the liquid phase is immobile.  The analysis 

presented in this paper assumes constant phase viscosities.  Component partitioning 

between phases is described by the relations: 
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where Ki is the equilibrium ratio (or K-value) for component i.  Components are 

arranged in order of decreasing volatility, such that 
cnKKK  21 .  In the section 

that follows, we assume that the K values are independent of composition.   

 

3.  Double Contact Discontinuity 

3.1.  Composition Paths 

 

The developments in this paper rely on the MOC theory for compositional 

displacements (see Helferrich 1981, Dindoruk 1992, Johns 1992, Johansen et al. 

2005, and references therein).  The two families of eigenvalues and eigenvectors, can 

be classified into two types:  one which follows the tie-line composition and is a 

function of saturation (tie-line eigenvalue, λt) and one which varies between the tie 

lines and is a function of both saturation and tie-line equilibrium composition (nontie-

line eigenvalue, λnt).  Setting S and 1x  as dependent variables,  
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The case of fixed mobility ratio, constant K-value, no volume change on mixing case 

admits closed form integration of the nontie-line path and is derived in Wang et al. 

(2005).  Figure 1 shows the composition paths (tie-line and nontie-line paths) for a 

system with K1 = 2.8, K2 = 1.5, and K3 = 0.1, and M = 0.5 and Sor = 0.  For each tie 

line, there are two points where the nontie-line path is tangent to the tie-line path, and 

the eigenvalues are equal.  At these points, the eigenvalues switch from a situation 

where the tie-line path is the fast path and the nontie-line path is the slow path to a 

situation where the ordering is reversed.  Therefore, the system is nonstrictly 

hyperbolic (Dafermos 2005).  The equal-eigenvalue points correspond to inflection 

points on the nontie-line path where one corresponds to a minimum, min
nt , and the 

other corresponds to a maximum, max
nt .  Figure 2 shows the evolution of characteristic 

speeds along a tie line.  Characteristics in the two-phase region can be mapped into 

three regions defined by the min
nt  and max

nt  loci:   

    min
ntgg SS 0 :  nt  is the fast path, and tl  is the slow path, 

    max
ntg

min
ntg SS   :  nt  is the slow path, and tl  is the fast path, and 

    1g
max
ntg SS  :  nt  is the fast path, and tl  is the slow path. 

 

3.2.  Wave Structures in Three-Component, Two-Phase Flow 

Before describing the double contact discontinuity that appears for two-phase 

injection conditions, we recall the traditional construction of analytical solutions for 

single-phase injection (Monroe et al. 1990, Orr 2007).  The composition path and 

solution profile are presented in Figures 3 and 4.  We consider injection of pure C1 

(I1) to displace a mixture of 0.4 C2 and 0.6 C3 (O).  All compositions are reported in 

overall mole fractions.  We identify the initial tie line as the shortest tie line and 

initiate solution construction from that tie line.  The solution starts with a phase 

change shock along the initial tie line from initial conditions into the two-phase region 

(O to A).  This is followed by a tie-line rarefaction to the equal-eigenvalue point (A to 

B).  At the equal-eigenvalue point, there is a path switch from the tie-line path to the 



nontie-line path.  A nontie-line rarefaktion connects the initial tie line to the injection 

tie line (B to C1).  At point C1, the landing point of the nontie-line path on the 

injection tie line, there is a path switch from the nontie-line path to the tie-line path, 

which corresponds to a zone of constant state in the solution profile.  This is followed 

by a phase change shock along the tie line out to the injection conditions at I1 (C1 to 

I1). 

 

The double contact discontinuity solution is compared to the previously described 

composition route in Figures 3 and 4.  We consider the injection of a mixture of 0.594 

C1 and 0.406 C3 (I2) to displace a mixture of 0.4 C2 and 0.6 C3 (O).  The solution path 

starts with a shock from the initial composition into the two-phase region, along the 

initial tie line (O to A).  At point A, the shock velocity  OA  and the initial tie-line 

rarefaction velocity  A
t  coincide.  This is followed by a tie-line rarefaction to the 

equal eigenvalue point (A to B).  At the equal-eigenvalue point, the solution switches 

from the tie-line path to the nontie-line path.  A nontie-line rarefaction extends only to 

an intermediate tie line (B to C2), which is followed by a tie-line shock to another 

nontie-line path (C2 to D).  This is followed by a nontie-line rarefaction to the 

injection composition (D to I2).  There are three features of this solution that have not 

previously been reported:  1)  partial use of the nontie-line branch emanating from the 

equal-eigenvalue point of the initial tie line, 2)  use of an intermediate tie line, which 

we term the double contact tie line (C-tie line) and 3)  utilization of the interior branch 

of the nontie-line path. 

 

Although segments of this solution are present in the traditional construction, Figure 

3, the intermediate tie line is required to complete the solution, resulting in a solution 

that requires nc key tie lines, as opposed to the nc-1 tie lines found in conventional 

solutions.  Next, we analyze the four other possibilities for solution construction and 

demonstrate why they are not valid constructions. 

 

The first possible solution is a shock along the injection tie line from injection 

composition to the landing point of the nontie-line path from the initial tie line on the 

injection tie line (I to C).  This path is shown in Figure 5.  This is the solution that 

follows the traditional construction (Dindoruk 1992).  It is inadmissible because the 

IC shock velocity is larger than the nontie-line wave velocity at C:  

0487107561 .. C
nt

IC   .  Therefore, the velocity rule is violated. 

 

Next we consider a tie-line shock from the injection composition to the landing point 

of the interior branch of the nontie-line path from the initial tie line (I to C), followed 

by a nontie-line rarefaction along to the initial tie line (C to B).  Figure 6 shows 

composition path.  This composition path is also inadmissible because the IC shock 

velocity is larger than the nontie-line wave velocity at C:  

2.0305 1.0403IC C

nt    .  Once again, the velocity rule is violated. 

 

The third route is a shock from the injection tie line to another point on the nontie-line 

path (I to C), followed by a nontie-line rarefaction up to the initial tie line (C to B).  

Figure 7 shows the Hugoniot locus traced from the injection composition (I).  The 

Hugoniot locus does not intersect the tie line of the initial composition.  Therefore, a 

shock from injection composition to the initial tie line is not permissible.  However, 

the Hugoniot locus does intersect the nontie-line path at point C, and a shock from the 



injection state to a point on the nontie-line path is permissible:  

1205107601 .. C
nt

IC   .  Although this shock obeys the velocity rule, it does not 

satisfy the 1-Lax entropy condition (Lax 1957), because the upstream nontie-line 

wave velocity is slower than the shock velocity:  ICI
nt.  04411 .  Therefore, this 

solution is also inadmissible. 

 

The final potential solution route makes use of the interior branch of the nontie-line 

path from the injection condition, I.  While the wave velocities of this path increase 

towards the maximum, this branch is nested inside the nontie-line path tangent to the 

initial tie line (Figure 8).  In other words, the nontie-line path passing through I does 

not intersect an admissible path emanating from O, and continuous variation from 

injection tie line to initial tie line is not possible.  Therefore, a shock between the 

nontie-line branches is required to complete the solution structure.  We now show that 

such a solution route is admissible. 

 

Figure 9 shows how nontie-line eigenvalues vary as the nontie-line paths from point I 

on the injection tie line and from point B on the initial tie line are traced. There is one 

tie line between the injection and initial tie lines at which the two nontie-line 

eigenvalues are equal.  A path switch between nontie-line branches is permissible 

there.  A shock along this tie line is required to switch from the upstream nontie-line 

path to the downstream nontie-line path, because continuous variation along the tie 

line, from D to C, violates the velocity rule (Figure 10).  This shock provides the 

transition between the slow and fast characteristic families.  The shock velocity 

between states C and D satisfies  
D
nt

CDC
nt   .                                                     (10) 

This type of shock is called a double contact discontinuity (Dafermos 2005) or a 

degenerate shock (Jeffrey 1976).  The shock velocity coincides with the common 

characteristic velocity of both nontie-line branches.  The sequence of compatible 

waves is shown in Figure 11.  Because the velocities immediately upstream and 

downstream of the shock coincide with the shock velocity, there is no zone of 

constant state that connects the two nontie-line paths.  The tie-line along which this 

occurs we call the contact tie line (C-tie line).   

 

3.3.  Stability of the Double Contact Discontinuity 

The double contact discontinuity associated with the C-tie line is neither a slow shock, 

nor a fast shock.  Rather, it provides a transition between the two.  Therefore, it does 

not adhere to the e-Lax entropy condition (Lax 1957).  This shock is admissible by the 

Liu entropy condition (Liu 1974, 1975): 
DiCD   ,  CDi  and between       ,         (11 a) 

connecting the upstream state to the downstream state, and similarly on the 

downstream side of the shock: 
CiCD   ,  DCi  and between       .          (11b) 

Figures 12 and 13 show a graphical construction of the Liu entropy condition for the 

double contact discontinuity.  By virtue of the concave downward curvature of the 

flux function between D and C along the C-tie line, this wave structure is stable. 

 

3.4.  Continuous Dependence of the Solution on Injection State 

The solutions presented in this section focus on the nontie-line path that connects the 

injection tie line to the initial tie line.  A graphical construction using fractional flow 



theory demonstrates the conditions under which the double contact discontinuity 

occurs.  The solution route presented in Figure 3 provides a transition between 

solutions that traverse the complete exterior branch of the nontie-line path and those 

that follow the complete interior branch of the nontie-line path (Figures 14 and 15).  

Type 1 utilizes the complete exterior branch of the nontie-line path traced from the 

initial tie line, A1 to B1, where A1 is the equal-eigenvalue point of the initial tie line.  

A genuine shock along the injection tie line connects the nontie-line path to the 

injection composition.  Figure 16 shows the graphical construction for this shock. The 

velocity of the genuine shock is given by the slope of the chord connecting B and I, 
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The nontie-line eigenvalue, B
nt , is represented by the slope of the line segment from 

B to π (Eq. 8 b).  The shock on the injection tie line is a 1-Lax shock.  As the injection 

gas saturation is decreased, the slope of BI  steepens, the velocity of the genuine 

shock increases, and the length of the zone of constant state downstream of the shock 

decreases.  The limit of this wave structure occurs when *II  .  At this point, 
B
nt

BI   .  Injection gas saturations below this value violate the velocity rule, and a 

new path must be found to connect injection and initial states.   

 

Type 2 routes traverse the interior branch.  They occur when the nontie-line path from 

I2 is outside of the nontie-line path traced from A1 (Figure 14).  This solution route 

includes a nontie-line rarefaction from the injection composition to the initial tie line 

(I2 to A2) and a shock to the initial composition.  At A2, the landing point of the 

nontie-line rarefaction from I on the initial tie line, a zone of constant state separates 

the slow wave (I2 to A2) and the fast wave (A2 to O).  The limit of this solution occurs 

when the nontie-line path traced from the injection condition exactly matches the 

equal-eigenvalue point on the initial tie line (A1).  The saturations where these 

transitions occur depend on phase behavior and mobility ratio.  Under these 

conditions, the zone of constant state collapses to a single point.  Construction of this 

type of solution is initiated at the injection tie line, which is the longest tie line, as 

opposed to traditional construction which always starts at the shortest key tie line 

(Monroe et al. 1990, Jessen et al. 2001, Orr 2007). 

 

Type 3 contains elements of both Type 1 and Type 2 solutions.  The geometric 

construction at the C-tie line is illustrated in Figure 17.  The slopes of the line 

segments representing the double contact discontinuity  CD and the nontie-line 

eigenvalues immediately upstream  D  and downstream  C of the shock coincide.  

As the injection saturation is decreased, the velocity of the discontinuity increases and 

the location of the C-tie line moves closer to the initial tie line, creating a family of 

solutions that vary smoothly from the injection tie line to the initial tie line. 

 

4.  Extensions 

In this section we show that similar composition paths occur in four-component 

systems and systems with adsorption.  We demonstrate, therefore, that the presence of 

the double contact discontinuity is pervasive in multicomponent, two-phase flow 

systems. 

 

 



 

4.1.  Four-Component, Two-Phase Flow with Constant K-Values 

A solution involving the double contact discontinuity in a four-component system is 

presented in Figures 18 and 19.  We consider a N2-CH4-CO2-C10 system, where a 

mixture of 0.28 CH4 and 0.72 C10 is displaced by a mixture of 0.5 N2 and 0.5 CO2.  

Such a system is applicable in flue gas injection into an oil reservoir for CO2 

sequestration and enhanced oil recovery.  When CO2-rich gas mixtures are injected 

into an oil reservoir, a large fraction of the injection gas dissolves in the oil phase, and 

the remaining quasi-ternary displacement effectively models two-phase injection 

conditions.  In this system 
2NK = 8, 

4CHK  = 3.5, 
2COK  = 2, 

10CK  = 0.01 and M = 

0.067.  Parameters were chosen to approximate reservoir conditions of 70ºC and 10 

MPa.   

 

Solution construction starts with the procedure outlined in Monroe et al. (1990) and 

by Jessen et al. (2001).  The key tie lines are identified:  injection, initial and 

crossover tie line, as is the shortest tie line.  In this system, the crossover tie line is the 

longest tie line.  Solution paths from the injection tie line to the crossover tie line and 

the initial tie line to the crossover tie line are constructed independently.  At point E, a 

path switch from the landing point of the tangent shock (F to E) to the nontie-line path 

is taken.  The nontie-line path is taken up to the C-tie line, at which point the double 

contact discontinuity along the tie line facilitates the switch from the interior path to 

the exterior nontie-line path (D to C).  This is followed by a nontie-line rarefaction to 

the equal-eigenvalue point on the initial tie line (C to B).  At point B there is a path 

switch from nontie-line path to tie-line path.  The solution is completed by a tie-line 

rarefaction to A, followed by a shock to initial conditions (A to O). 

 

4.2.  Four-Component, Two-Phase Flow with Adsorption 

 

Similar displacement behavior occurs in systems with adsorption.  Such solutions are 

applicable to enhanced coalbed methane recovery and shale gas reservoirs where gas 

components adsorb and desorb from the solid surface as gas mixtures propagate 

through the reservoir.   

 

When effects of equilibrium adsorption are included, the conservation equations 

become:   

 
1 1

1 0, 1, , ,
p pn n

ij j j i ij j j c

j j

x S a x u i n
t x

   
 

  
     

  
       (13) 

where   is the porosity, ai is the amount of component i adsorbed on the solid phase 

per unit volume of rock, uj is local flow velocity of phase j, and np is the number of 

mobile phases.  For a more detailed explanation of the extension of MOC theory to 

systems with adsorption, refer to Zhu (2003) and Seto (2007).  

 

Adsorption is described using the multicomponent extension to the Langmuir 

isotherm of Markham and Benton (1931),  
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where the fractional coverage of individual components, θ, is a function of a 

Langmuir constant for a given temperature, Bi, for a pure gas species, P is the system 

pressure, and yi is the equilibrium gas phase fraction of component i.  In terms of 

molar concentration of adsorbed components, ai, Eq. (15) is expressed as 







cN

j

jj

iimiri
i

pB

pBV
a

1

1


,                                                (15) 

where ρr is the mass density of the coalbed, ρi is the molar density of component i at 

standard conditions and Vmi is the Langmuir constant at a specified temperature for 

component i.  Adsorption constants and K-values used in this example are presented 

in Table 1.  The mobility ratio for this system is 0.1.   

 

Table 1:  Summary of constants used in the example solution presented in Figure 20. 

component Vmi (scf/ton) Bi (psi
-1

) K 

C1 222 0.0017 5 

C2 444 0.0034 3 

C3 707 0.0066 1.2 

C4 0 0 0.1 

 

To illustrate the double contact discontinuity in systems with adsorption, we consider 

displacement of initial composition 0.31 C2 and 0.69 C4 by a mixture containing 0.4 

C1 and 0.6 C3.  The composition path is presented in Figure 20.  As in the example 

presented in the previous section, initial and injection segments are constructed 

independently.  The solution route begins with a phase change shock from the 

injection composition, I, to the two-phase region.  This is followed by a rarefaction 

along the injection tie line to point F.  At F, a semishock connects the injection tie line 

with the crossover tie line.  At the landing point on the crossover tie line of the 

injection segment, E, there is a path switch to the nontie-line path.  A nontie-line 

rarefaction connects the crossover tie line with the C-tie line (E to D).  This is 

followed by the double contact discontinuity that connects the injection segment to 

the initial segment (D to C).  From point C, the nontie-line path is traced to the equal-

eigenvalue point of the initial tie line, B, where there is a path switch from the nontie-

line path to the tie-line path.  This is followed by a rarefaction along the initial tie line 

to A and a tangent shock from A to the initial conditions, O, completes the 

composition path.   

 

4.3.  Four-Component, Two-Phase Flow with Composition Dependent K-Values and 

Adsorption 

 

The simplified phase behavior representation of constant K-values has facilitated 

much of the geometric analysis and solution development for multicomponent MOC 

theory (Wang 1998, Johansen et al. 2005).  Dindoruk (1992) demonstrated that this 

analysis holds when extended to an equation of state description of phase behavior.  

In this section, the initial assumption of constant K-values to evaluate component 

partitioning between aqueous and gaseous phases is relaxed.  The Peng-Robinson 

equation of state (Peng and Robinson 1976) was used to evaluate phase densities.  

Thermodynamic parameters are summarized in Table 2.  Values for adsorption 

parameters, Vmi and Bi, are the same as those summarized in Table 1, with C1, C2, C3, 

and C4 constants corresponding to N2, CH4, CO2, and H2O.  A constant mobility ratio 



was assumed (M = 0.054).  Injection of a mixture of 0.5 N2 and 0.5 CO2 into a 

coalbed saturated with CH4 and H2O at 3000 kPa and 30ºC is considered, representing 

flue gas injection for enhanced coalbed methane recovery.  For a more detailed 

development of the extension to the system presented here, refer to Seto et al. 2006. 

 

Composition path is presented in Figure 21.  Due to the low solubility of gases in the 

water phase and H2O in the gas phase, the phase boundaries do not vary significantly.  

Composition paths are compressed towards the H2O vertex.  However, the solution 

structure remains the same.  Due to the low solubility of H2O in the gas phase, many 

pore volumes of CO2 are required to vaporize all the H2O in the coalbed.  CH4 

recovery is determined by the nontie-line eigenvalue of the landing point of the 

crossover tie line (Seto et al. 2006, Seto 2007).   

 

Table 2:  Thermodynamic properties of components used in example solutions. 

 Pc (kPa) Tc (ºK) ω κij 

N2 CH4 CO2 H2O 

N2 3399 126.1 0.037 0 0.031 -0.02 0.275 

CH4 4599 190.6 0.011 0.031 0 0.103 0.491 

CO2 7377 304.1 0.224 -0.02 0.103 0 0.2 

H2O 22064 647.3 0.344 0.275 0.491 0.2 0 

 

4.4  Discussion 

We note finally that the presence of the additional C-tie line does not affect the 

technique developed by Wang and Orr (1997) for the analytical determination of 

minimum miscibility pressure.  Miscibility occurs when one of the key tie lines is a 

critical tie line.  The C-tie line is bounded by the crossover and initial tie lines.  The 

size of the phase envelope decreases monotonically from crossover tie line to initial 

tie line.  Of the three tie lines, the C-tie line will always have the intermediate length.  

Therefore, the C-tie line cannot be a critical tie line at pressure below that at which 

one of the other key tie lines is a critical tie line.  Hence, the presence of the C-tie line 

does not change the minimum miscibility for injection of flue gas (a N2/CO2 mixture) 

for enhanced oil recovery in reservoir containing CH4 and C10, for example.   

 

5.  Conclusions 

 

The occurrence of the double contact discontinuity in three-component, two-phase 

flows is demonstrated.  This solution involves a path switch between two nontie-line 

paths by means of a double contact discontinuity along an intermediate tie line that is 

neither a 1-Lax shock, nor 2-Lax shock, but rather, a transition between the two.  

Stability of this structure is granted through adherence to the Liu entropy condition.  

This wave structure occurs under certain conditions of two-phase injection mixtures.  

The specific saturation at which it occurs is dependent on mobility ratio and phase 

behavior of the system.  Construction of this solution requires identification of the C-

tie line, resulting in a solution that requires nc key tie lines to connect injection and 

initial states.  Previous solutions involved only nc-1 key tie lines.  Additionally, 

solution construction is initiated at the longest tie line, whereas in previously 

investigated solutions, construction started with the shortest tie line.  We have shown 

that this wave structure is stable and that it yields solutions that depend continuously 

on initial data.  This solution provides the completes the set of building blocks for 



solutions in the two-phase region, a necessary step for the development of a complete 

Riemann solver for three-component, two-phase flow. 

 

We have also shown that the double contact discontinuity occurs in more general 

flows, like four-component systems with adsorption and composition-dependent K-

values.  Indeed, we anticipate that the wave structure presented here is a pervasive 

feature in multiphase compositional flows. 
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Figure 1.  Tie-line and nontie-line paths in composition space.  Tie-line paths are 

represented by the dashed line (--) and nontie-line paths are represented by the solid 

line (−). 

 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

S
g



tie line
nontie line


tl
 > 

nt
 


tl
 < 

nt
 

tl
 < 

nt
 

min 
nt

 locus 

max 
nt

 locus 

 
Figure 2.  Evolution of tie line and nontie line wave velocities along a tie line.  In the 

region bounded by the minimum and maximum nt , tl  is the fast path, and nt  is the 

slow path.  Outside of this region, the order of the wave velocities is switched. 
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Figure 3.  Composition path comparing the wave structure for single-phase injection 

(red) and the double contact discontinuity (blue) observed for some two-phase 

injection compositions. 
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Figure 4.  Solution profile corresponding to the composition path presented in Figure 

3. 
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Figure 5.  Composition path for Possible Solution 1:  exterior nontie-line branch.  The 

shock velocity from I to C is greater than the nontie-line eigenvalue at C. 
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Figure 6.  Composition path for Possible Solution 2:  interior nontie-line branch.  The 

shock velocity from I to C is greater than the nontie-line eigenvalue at C. 
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Figure 7.  Composition path for Possible Solution 3:  shock to nontie-line path.  This 

shock from I to C does not satisfy the 1-Lax entropy conditions. 
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Figure 8.  Composition path for Possible Solution 4:  nontie-line rarefaction from 

point I.  The nontie-line path does not intersect the initial tie line.  Continuous 

variation to the initial tie line is not allowed. 
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Figure 9.  Injection and initial nontie-line wave velocities as a function of tie line 

traversed.  A path switch from the injection tie line to the initial tie line is allowed 

along the tie line where the nontie-line wave velocities are equal. 

 

 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

S
g



tie line
nontie line

C 

C 

D 

D 


CD

 

 
Figure 10.  Path switches from the nontie-line paths to the contact tie line are 

permissible.  However, continuous variation along the tie line, from D to C, violates 

the velocity rule.  A shock from C to D, along the tie line, is required. 
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Figure 11.  Development of characteristics along the permissible nontie-line path. 
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Figure 12.  Stability of the double contact discontinuity connecting left state (D) to 

right state (C).  Λ
CD

 is represented by the dashed line (--), and intermediate shocks 

from the upstream endpoint (D), Λ
Di

 are represented by the solid line (−). 
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Figure 13.  Stability of the double contact discontinuity connecting right state (C) to 

left state (D).  Λ
CD

 is represented by the dashed line (--), and intermediate shocks from 

the downstream endpoint (C), Λ
Ci

 are represented by the solid line (−). 
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Figure 14.  Composition paths demonstrating the transition from Type 1 solution to 

Type 2 solution through Type 3 solutions. 
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Figure 15.  Solution profiles demonstrating the transition from Type 1 solution to 

Type 2 solution through Type 3 solutions. 
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Figure 16.  Graphical construction of Type 1 solution. 
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Figure 17.  Graphical construction of Type 3 solution. 
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Figure 18.  Occurrence of a double contact discontinuity in a four-component, two-

phase system with injection condition is single phase:  0.5 N2 and 0.5 CO2.  
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Figure 19.  Solution profile showing the double contact discontinuity in a four-

component, two-phase system. 
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Figure 20.  Extension of the four-component system to include adsorption.  The 

double contact discontinuity also occurs in these systems. 
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Figure 21.  Extension of the MOC theory to include adsorption and composition 

dependent K-values.  The full composition space is shown on the top.  An 

enlargement of composition path at the H2O vertex is shown on the bottom. 


