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Abstract: We propose a photonic crystal (PhC) structure that supports
super-collimation over a large frequency range (over 4 times that of
a traditional square lattice of holes). We theoretically and numerically
investigate the collimation mechanism in our structure, in comparison to
that of two other frequently used related PhC structures. We also point out
the potential importance of our proposed structure in the design of super-
collimation-based devices for both monochromatic and polychromatic light.
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1. Introduction

The ability of photonic crystals (PhCs) to “mold the flow of light”[1] has resulted in a re-
markable variety of fascinating optical phenomena, such as omnidirectional reflection[2], low
loss bends[3], high-Q cavities[3], efficient spontaneous emission[4], negative refraction[5],
enhancement of nonlinear effects[6], ultrafast all-optical switching[7], and thermal emission
design[8]. Super-collimation, or diffractionless light propagation, represents an additional im-
portant property made possible by the powerful versatility of PhCs. It was first described by
Kosaka et. al[9], and subsequently by several other groups[10, 11, 12, 13, 14]. In all these
demonstrations of super-collimation, the nondiffractive propagation is achieved by having a flat
constant-frequency contour (CFC) in the dispersion relation of the PhC. When a beam, having
the same frequency as the flat CFC, propagates in the PhC normal to the direction of the flat
CFC, the Fourier components of the beam propagate with group velocities pointing in almost
the same direction, and hence the beam does not spread much. However, in all the earlier ob-
servations of super-collimation in PhCs, the flat feature is usually confined to a not very broad
frequency range around the frequency of the flat CFC, thus limiting the bandwidth over which
super-collimation can be observed, and making super-collimation sensitive to variations in the
frequency of the propagating monochromatic beam. For example, super-collimation has been
observed along the diagonal directions of a PhC consisting of a 2D square lattice of circular
holes in a dielectric[13], a schematic of which is shown in Fig. 1a. The super-collimation prop-
erty in such a structure manifests itself only in a narrow frequency interval, within which the
CFC’s curvature flips sign. This is depicted in Fig. 1b, where we show a typical color contour
plot of the first TE (electric field in the plane of periodicity) band for the structure of Fig. 1a.
The change in the sign of the CFC’s curvature implies the existence of a CFC with zero curva-
ture, thus leading to super-collimation at the frequency of that particular CFC, and in a narrow
frequency range around it. This stimulates the interest to search for PhC structures that sup-
port super-collimation over a larger frequency range. The band diagram of these PhCs would
consist of extended frequency ranges over which the CFCs are flat enough to substantially sup-
press diffraction. A hint as to how to achieve this feature can be inferred from the flatness of
tight-binding bands for electrons in solids[15]. The fact that tight-binding bands arise from the
weak overlap between atomic orbitals inspires us to consider the simple, well-known waveg-
uide array structure depicted in Fig 1c. We show a typical projected band diagram for the first
TM (electric field perpendicular to the plane) band for such a structure in Fig. 1d, together with
a color contour plot of the first TM band in Fig. 1e. Although this structure is not commonly
used for super-collimation purposes, its CFCs (in a given band) get flatter as the frequency
increases. However, the curvature of these contours doesn’t change sign, and hence it doesn’t
go through zero, which would be a conventional criterion for super-collimation. Therefore, to
obtain a PhC that supports super-collimation over an extended frequency range, we consider
a hybrid PhC structure that combines features from both of the above-mentioned PhC types.
Namely, we propose inserting into the waveguide array structure a square lattice of circular
rods having the same refractive index as the waveguides, such that the rods are placed halfway
between neighboring waveguides, with a lattice constant equal to the nearest-neighbor waveg-
uide spacing. A schematic of this hybrid structure is shown in Fig. 2a. In this manuscript, we
investigate the phenomenon of super-collimation in this hybrid structure, and show how it si-
multaneously inherits useful properties from both of the structures in Fig. 1a and Fig. 1c: the
sign flip of the CFCs’ concavity (due to the discrete translational symmetry) from the 2D holes-
in-dielectric structure, and the extended frequency range (over 4 times the frequency range of
a traditional square lattice of holes) of the flat CFCs (due to the weakly coupled waveguides),
from the waveguide array structure. More specifically, in our proposed PhC structure, the pho-
tonic modes of higher-order-bands have their energy mostly concentrated in the waveguides,



and neighboring waveguides couple weakly, thus giving rise to tight-binding-like flat bands.
So, one might be tempted to think that the rods don’t play any role, and consequently that the
performance of our proposed structure is not very promising, given the known fact that, in lin-
ear waveguide arrays, a beam initially localized in one of the waveguides is observed to hop
quickly to the other waveguides in what is known as discrete diffraction[16]. However, as we
will see later in this letter, the rods play an important role; in fact, by breaking the continuous
translational symmetry along the waveguides’ direction, the rods place our proposed structure
at an advantage over the waveguide array, since they enable the existence of a CFC with zero
concavity.

2. Super-collimation mechanism in our proposed structure

We begin the study of super-collimation in our proposed structure by considering the fourth
transverse magnetic (TM) band. Because of time-reversal symmetry, the dispersion relation is
an even function of ky, the y-component of the Bloch wavevector. For small values of ky, the
angular frequency is described by an expansion in terms of even powers of ky, namely

ωT M
4 (kx,ky) = ωT M

4 (kx,0)+αT M
4 (kx) · (ky)2 +β T M

4 (kx) · (ky)4 + ... (1)

where ωT M
4 denotes the angular frequency of the fourth TM band. Since we aim at the optimum

super-collimation performance of our proposed structure, and since small αT M
4 (kx) is necessary

to achieve super-collimation, we search for the particular rods’ radius r and waveguide thick-
ness t that minimize the absolute value of αT M

4 (kx), while we set the refractive index of both
rods and waveguides to n = 3.5. We carried out such optimization calculations by using the
MIT Photonic Bands (MPB[17, 18]) software. The values of r and t that give rise to flat CFCs
over the largest frequency range in the fourth TM band of the proposed structure, are those that
minimize the maximum (over kx) of |αT M

4 (kx)|. The result of this optimization calculation for
minr,t maxkx |αTM

4 | corresponds to r = 0.16a and t = 0.2a, where a is the lattice constant. We
calculated the TM bands of this optimum structure, by using MPB, with a spatial resolution of
128 pixels/a , and we show in Fig. 2b the projected band diagram of the lowest four TM bands.
We also present in Fig. 2c a color contour plot of the fourth TM band, as a function of kx and
ky. We observe from Fig. 2b–2c that the flat CFCs of the fourth TM band extend almost over
the entire frequency range of the fourth band, thus enabling super-collimation over a significant
frequency range. Moreover, except near the edges of the fourth band, the CFCs are flat for all
the values of ky and not just in the vicinity of ky = 0. This last feature indicates that our pro-
posed structure can support super-collimation of spatially narrow beams. Note that the flattest
CFC for the structure with r = 0.16a and t = 0.2a, has angular frequency ω = 0.495(2πc/a).

Having found the optimum parameters for our proposed structure, we study the propagation
of a beam with Gaussian envelope and angular frequency 0.495(2πc/a), along the x-direction,
in one of the waveguides of our optimum structure. We represent the z-component of the electric
field of such a beam as

Ez(x,y; t) = e−iωt
∫

ky values on
CFC of freq. ω

dky e−(ky)2/2(σky )2
En=4

(kx,ky)(x,y)≡ e−iωtA(x,y) (2)

where En=4
(kx,ky)

(x,y) is the E-field of the TM Bloch modes on the CFC with ω = 0.495(2πc/a).
We define the diffraction length Ldiff as the distance in the x-direction that the beam prop-
agates before the full-width at half-maximum (FWHM) of |A(x,y)|2 spreads by a factor of√

2 from its initial value at x = 0. For σky = 0.12(2π/a), the beam is localized mostly in 3
waveguides only, as shown in Fig. 3a, and the diffraction length is Ldiff = 500a. To obtain an
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Fig. 1. (Color online) Two “often-used” low-diffraction structures. (a) Profile of the refrac-
tive index of a 2D holes-in-dielectric structure, with the dielectric having n = 3.5, and the
holes having radius r = 0.421a′, where a′ is the nearest-neighbor center-to-center separa-
tion between holes (the square lattice spacing). Note that the holes form a square lattice.
(b) Color contour plot of the frequency of the first TE band for the structure shown in Fig.
1a. (c) Profile of the refractive index for a waveguide array structure, with the waveguide
having refractive index n = 3.5. (d) Projected band diagram of the first TM band for the
waveguide array with t = 0.2a. (e) Color contour plot of the frequency of the first TM band
for the waveguide array with t = 0.2a.



estimate of the operational frequency width over which the CFCs are flat enough to support
super-collimation, we define the frequency bandwidth Bkx at a particular kx by the expression
Bkx = maxky [(ω4(kx,ky)]−minky [(ω4(kx,ky)]. A small value of Bkx for a certain kx means that
the ω4’s for all values of ky (for the particular kx in question) are of a similar value; Bkx is hence
a measure of the “band flatness” at a given kx value. The kx-value that minimizes |αT M

4 (kx)|
is 0.25(2π/a), and the frequency bandwidth there is Bkx = 0.0008(2πc/a); the CFC associ-
ated with the minimum of |αT M

4 | has ω = 0.495(2πc/a). Next, we ask over which frequency
range does Bkx not change appreciably, to obtain a measure of the frequency range over which
our structure supports super-collimation. Bkx remains below 0.0008

√
2(2πc/a) in a frequency

range from 0.493(2πc/a) to 0.558(2πc/a). Hence, the relative frequency range over which our
optimum structure supports super-collimation is (0.558−0.493)/0.495 = 0.13, or 13%.
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Fig. 2. (Color online) Proposed 2D PhC structure (a) Schematic of the refractive index: the
rods, of radius r, and waveguides, of thickness t, (shown in green) both have n = 3.5, and
are surrounded by air (n = 1). The rods form a square lattice, with lattice constant a, and
the waveguides are halfway (on the y-axis) between the rods. (b) Projected band diagram of
lowest four TM bands for r = 0.16a and t = 0.2a. (c) Color contour plot of the frequency
of the fourth TM band.



3. Super-collimation mechanism in other structures

3.1. Holes-in-dielectric structure

Having explored super-collimation in our structure proposed in Fig. 2a, we now study super-
collimation in the two other previously-mentioned structures. We first start with the 2D holes-
in-dielectric structure shown in Fig. 1a and take the refractive index of the dielectric to be
n = 3.5. Super-collimation was demonstrated in this structure[13], for a beam propagating along
the x′-direction (diagonal), at the frequency of the flattest CFC of the first TE band. Because
of the structure’s mirror symmetry with respect to the plane y′ = 0, we expand the angular
frequency close to the super-collimation frequency in even powers of ky′

ωT E
1 (kx′ ,ky′) = ωT E

1 (kx′ ,0)+αT E
1 (kx′) · (ky′)

2 +β T E
1 (kx′) · (ky′)

4 + ... (3)

Since the frequency range in which we have super-collimation is known to be small in this
structure, we consider maximizing the propagation length at the super-collimation frequency,
instead of maximizing the frequency bandwidth around it (as we did for the structure proposed
in Fig. 2). In order for this structure to support super-collimation over the longest propagation
length, the holes’ radius r′ needs to be chosen such that ωT E

1 (kx′ ,ky′) depends very little on ky′ .
It is known from Ref.13 that there always exists a value of kx′ at which αT E

1 is zero since it
changes sign from negative to positive. We denote this value by ko

x′ , so that we have α(ko
x′) = 0.

Therefore, to minimize the dependence of ωT E
1 (kx′ ,ky′) on ky′ , we searched for the radius r′

that minimizes |β (ko
x′)|, and found that r′ = 0.421a′ where a′ is the lattice constant of the

holes’ structure, along the x and y directions. A color contour plot of the first TE band for this
optimum hole radius was obtained by using MPB, and is shown in Fig. 1b. The minimum fre-
quency bandwidth occurs at the value of kx′ corresponding to ω(kx′ ,ky′ = 0) = 0.1966(2πc/a′),
and has a value of Bmin = 0.0034(2πc/a′). It spreads by a factor of

√
2 at kx′ -values with max-

imum frequencies equal to 0.1945(2πc/a′) and 0.2004(2πc/a′). Hence, the relative frequency
range over which the optimum 2D holes structure supports super-collimation is 0.03 (or 3%),
which is smaller than that of our proposed structure by a factor of 4.3. The minimum value
(over ko

x′ ) of |β T E
1 (ko

x′)| for the optimum 2D holes structure having r′ = 0.421a′, occurs at
ko

x′ = 0.457(2π/a′), where we have ωT E
1 (ko

x′ ,ky′ = 0) = 0.2124(2πc/a′). Thus, we calculate
the diffraction length of a beam with gaussian envelope and angular frequency 0.2124(2πc/a′)
propagating along the x′ direction in the optimum 2D holes-in-dielectric structure. If we set the
physical frequency of this beam to be the same as that for the optimum structure in Fig. 2, then
the lattice constant a′ in the holes’ structure is related to that in Fig. 2 by a′ = (0.2124/0.495)a.
In this case, sending a beam of the same physical width as before corresponds to using
σky′ = 0.12×(0.2124/0.495)(2π/a′), and yields a diffraction length of 707a′ = 303.4a. So the
collimation length in this optimum 2D holes-in-dielectric structure is shorter than that in our
proposed structure by a factor of 1.65, when we use beams of the same physical frequency and
same physical width. We show in Fig. 3b how such a beam spreads after it propagates, along
the diagonal of the optimum 2D holes structure, a physical distance equal to the collimation
length (500a) of our proposed structure.

3.2. Waveguide arrays

Now we explore how the super-collimation mechanism in our proposed structure compares to
that in the waveguide array structure, shown in Fig. 1c. Again, we set the refractive index of the
waveguides to n = 3.5, and we consider the first TM band. The reason for which we deal with
the first TM band in this case, is that the physical k-point of interest (with angular frequency
∼ 0.4952πc/a) now lies in the first TM band. We first study the waveguide array structure
having waveguide thickness t = 0.2a. This structure is the same as our proposed structure, but
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Fig. 3. (Color online) Intensity profile of the propagating beam (of angular frequency
0.495(2πc/a), and physical width corresponding to σky = 0.12(2π/a)) as a function of
y(a), at x = 0 (in blue) and at x = 500a (in red), in (a) Our proposed PhC structure
shown in Fig. 2, (b) The 2D holes structure shown in Fig. 1a, but with lattice constant
a′ = (0.2124/0.495)a, where a is the lattice constant in our proposed structure and in the
waveguide array structures, (c) The waveguide array structure with t = 0.2a. Note that the
spikes in (a) and (c) correspond to the positions of the “waveguide” strips.



with the rods removed. In Fig. 1d, we show a projected band diagram of the first TM band,
and in Fig. 1e we show a color contour plot of the first TM band. We note from these last two
figures that the CFCs get flatter as the frequency increases (i.e. as kx increases). This is a con-
sequence of the fact that, as the frequency is increased, the modes tend to be more concentrated
into the waveguides, and hence the overlaps between neighboring waveguides modes become
weaker and result in narrower frequency bandwidths Bkx . Note that because of the continu-
ous translational symmetry along x, the value of kx ranges from 0 to ∞, whereas the values of
ky range only between −0.5(2π/a) and 0.5(2π/a) due to the discrete translational symmetry
in the y-direction. Sending a beam of the same physical angular frequency 0.495(2πc/a) and
same physical width σky = 0.12(2π/a) as in the structure of Fig. 2, we get a collimation length
of 160a, which is shorter than that of our proposed structure by a factor of 3.125. In Fig. 3c, we
show how significantly this beam spreads after it has propagated a distance of 500a, i.e. after it
has propagated by a distance equal to the collimation length in Fig. 2.

One might argue that the sole role that the rods were playing in our structure was to merely in-
crease the effective index of refraction, and therefore to push the flat CFCs to lower frequencies.
To show that this is not the case, we considered a waveguide array structure having the same
effective index as our proposed structure in Fig. 2, namely we chose the waveguide thickness
to be t ′ = t + πr2= [0.2 + π(0.16)2]a= 0.28a. We then launched a beam of the same physical
frequency 0.495(2πc/a) and the same physical width as before, and we obtained a collimation
length of 275a, which is shorter than the collimation length of Fig. 2, by a factor of 1.8. So
the rods play a more important role in our proposed structure than just increasing the effective
index. In fact, the rods break the continuous translational symmetry along the waveguide direc-
tion, and as in the holes-in-dielectric structure[13], the discrete translational symmetry along
x results in a change of sign of the concavity somewhere in the interior of the flat band. Due
to this change in the sign of the concavity, there exists a value of kx where the concavity is
zero and the associated CFC is superflat. However, in the waveguide array case, the concavity
never changes sign because of the continuous translational symmetry along x. And therefore,
the leading deviation of ω(kx,ky) from ω(kx,0), in the waveguide array case is expected to be
larger than that in our proposed structure. This accounts for the longer collimation length in our
proposed structure, for beams of the same physical frequency and same physical width.

4. Conclusion

In conclusion, we proposed a PhC structure that exhibits long-scale super-collimation over
a large frequency range. We compared the super-collimation phenomenon exhibited by our
proposed structure to that in two other often used related structures. We have shown that our
structure supports super-collimation over longer propagation lengths than waveguide arrays
and 2D holes-in-dielectric PhCs, due to the different translational symmetries involved in each
structure type. Moreover, the operational frequency range over which our structure exhibits
super-collimation is 4 times larger than in the 2D holes case. These two features make our
proposed structure of importance in the design of super-collimation-based devices. In particu-
lar, the large operational frequency range of our proposed structure suggests the possibility of
achieving super-collimation of polychromatic beams. In addition to super-collimation, our pro-
posed structure exhibits negative refraction[5], since the group velocities of modes in the second
and third TM bands, point opposite to the phase velocities. Moreover, beam steering[19] is pos-
sible in our structure as well, due to the sharp corners in the CFCs of the second and third bands.
Finally, we note that our structure could be used for directional thermal emission[8], because
the group velocities of most of the modes in its fourth TM band point in the same direction. We
leave detailed investigations of these possibilities as future work.
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