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Abstract Aquatic flow over a submerged vegetation canopy is a ubiquitous exam-
ple of flow adjacent to a permeable medium. Aquatic canopy flows, however, have
two important distinguishing features. Firstly, submerged vegetation typically grows
in shallow regions. Consequently, the roughness sublayer, the region where the drag
length scale of the canopy is dynamically important, can often encompass the entire
flow depth. In such shallow flows, vortices generated by the inflectional velocity profile
are the dominant mixing mechanism. Vertical transport across the canopy-water inter-
face occurs over a narrow frequency range centered around fv (the frequency of vortex
passage), with the vortices responsible for more than three-quarters of the interfacial
flux. Secondly, submerged canopies are typically flexible, coupling the motion of the
fluid and canopy. Importantly, flexible canopies can exhibit a coherent waving (the
monami) in response to vortex passage. This waving reduces canopy drag, allowing
greater in-canopy velocities and turbulent stresses. As a result, the waving of an ex-
perimental canopy reduces the canopy residence time by a factor of four. Finally, the
length required for the set-up and full development of mixing-layer-type canopy flow
is investigated. This distance, which scales upon the drag length scale, can be of the
same order as the length of the canopy. In several flows adjacent to permeable media
(such as urban canopies and reef systems), patchiness of the medium is common such
that the fully-developed condition may not be representative of the flow as a whole.
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1 Introduction

Canopies of submerged aquatic vegetation represent a permeable medium with high
porosity (typically > 90%). Relative to other flows adjacent to permeable media, this
high porosity allows rapid vertical transport into the canopy as well as large, and
often turbulent, in-canopy flows. The biogeochemical processes within a submerged
canopy, as well as the impact of the canopy on the surrounding environment, are
regulated, at least in part, by the exchanges of momentum and mass between the canopy
and surrounding open water. For example, larval settlement on seagrass depends on
the rate at which larvae are delivered into the canopy (Eckman (1987); Grizzle et al.
(1996)). Also, turbulent mass exchange across the canopy-water interface can regulate
the supply of nutrients needed for growth. Bartleson et al. (2005) used a numerical
model to examine how the rate of water renewal impacted the ecosystem balance
within a seagrass meadow. The epiphyte biomass increased with rate of renewal, but
the seagrass grew best when exchange rates were low enough to allow nutrient levels
to be drawn down within the meadow, which slowed algal growth. The response of
submerged macrophytes to changes in nutrient supply was thus shown to be strongly
dependent on the rate of fluid exchange between the canopy and surrounding water.

When flow encounters a submerged canopy, the discontinuous canopy drag gener-
ates a shear layer across the canopy-water interface. This shear layer is hydrodynam-
ically similar to a plane mixing layer (Raupach et al. (1996)). As a result, interfacial
transport in canopy flows is dominated by a street of coherent Kelvin-Helmholtz-type
vortex structures (Figure 1, see also Gao et al. (1989); Ghisalberti and Nepf (2006)).
The vortices cause vertical transport to be highly periodic but also, due to their finite
lateral extent, spatially non-uniform (Ghisalberti and Nepf (2005)). The frequency of
vortex passage (fv) agrees well with that predicted by linear stability analysis (Ghisal-
berti and Nepf (2002); White and Nepf (2007)) and is dependent upon the mean flow
speed and shear layer thickness.

Particularly in dense canopies, the vortices often do not penetrate completely to
the bed. This separates the canopy vertically into two zones (Nepf and Vivoni (2000)).
The upper zone (termed the “exchange zone”) is flushed rapidly by the vortices and is
driven by both the turbulent stress and the hydraulic gradient. The lower zone (termed
the “wake zone”) is governed by a simple balance of drag and hydraulic gradient, much
like classical porous medium flow. The extent of vortex penetration into a submerged
canopy (δe) is inversely proportional to the drag length scale of the canopy, ((CDa)−1,
where CD is the canopy drag coefficient and a is the frontal area per unit volume).
Specifically,

δe ≈ 0.25 (CDa)−1 (1)

(Nepf et al. (2007)). In the absence of vortex-driven transport, mixing in the wake
zone is much lower than that in the exchange zone (Nepf and Vivoni (2000)). Canopy
residence time is therefore highly dependent upon the fraction of the canopy that is
flushed by the vortices. Consequently, CDah, the scale ratio of canopy height h to
exchange zone depth, is a key dimensionless parameter in the description of transport
in canopy flows (Nepf et al. (2007)).

Drag length scales of real submerged canopies are highly variable. Under the as-
sumption that CD is O(1), the drag length scale of marine and freshwater grass
canopies typically ranges between O(1) and O(100) cm (see, for example, Wu et al.
(1999); Luhar et al. (2008)). For experimental canopies with typical drag length scales
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((CDa)−1 = 16 − 50 cm), roughly one-third to one-quarter of the mixing layer ex-
ists within the canopy (Ghisalberti and Nepf (2004)). Therefore, using Equation (1),
(CDa)−1 is an approximate measure of the vortex size.

While the importance of coherent turbulent structures is a characteristic of flows
near highly permeable media, flows over submerged aquatic canopies have two im-
portant distinguishing features. Firstly, the depth of flow above the canopy (H − h,
where H is the total flow depth) can be of the same order as the drag length scale.
Such shallow flows warrant further attention, as our current understanding of flows
over permeable media comes primarily from the study of effectively unbounded flows
that are very deep (terrestrial canopies and urban canopies) or over very dense media
(packed beds). In §3 of this paper, we contrast vertical transport in shallow canopy
flows against that in deep, rough-walled flows.

The second unique feature of aquatic canopy flows arises from the flexibility of
the porous medium. Presumably to reduce their drag, submerged canopies tend to be
sufficiently flexible that the canopy height is a strong function of flow velocity (see,
e.g., Vogel (1984); Denny et al. (1998); Stephan and Gutknecht (2002)). While the
mean deflection of submerged vegetation in a current can be easily accommodated in
numerical models, very little is known about the hydrodynamic impact of a pronounced
and coherent waving, the monami. This waving is in response to vortex passage, and
occurs at the same frequency (Ghisalberti and Nepf (2002)). The monami is observed as
pockets of plant deflection moving downstream; each pocket corresponds to the strong
sweep (a downward and downstream velocity perturbation) at the front of the coherent
vortices (Ghisalberti and Nepf (2006)). This unsteadiness of the medium geometry
can have a considerable impact on the canopy-scale hydrodynamics. However, most
experimental studies to date have employed rigid model vegetation. In §4, we investigate
the impact of the monami on the salient hydrodynamic and transport properties of a
canopy flow.

When flow encounters a submerged canopy, a finite length (LT ) is required for the
transition from boundary-layer flow upstream of the canopy to mixing-layer-type flow
in the vegetated region. This transition region is characterised by the development
of a shear layer across the top of the canopy due to the drag-induced deceleration
of fluid within the canopy. Through the growth of the Kelvin-Helmholtz vortices, the
thickness of the shear layer grows downstream, reaching its equilibrium size a distance
LT from the front of the canopy (Figure 1(b)). This transition occurs over O(m) in the
laboratory (Ghisalberti and Nepf (2002)). Beyond LT , the velocity profile and vertical
transport do not vary with distance from the front of the canopy. Vertical transport in
the transition region is considerably different to that in the fully-developed flow. Due
to the deceleration of in-canopy fluid during the transition, there is a strong upward
advective flux but vortex-driven mixing is expected to be diminished due to the reduced
vortex size. The final objective of this work (§5) is to describe the length scale of this
transition. Most experiments on canopy flows focus on the region of fully-developed
flow. While the equilibrium condition is a good representation of the canopy flow if
LT # L (where L is the canopy length), this is not necessarily always the case. In order
to describe the hydrodynamic impact of a submerged canopy, it is therefore essential
that we have the capacity to predict the scale of LT .

It is important to note that this analysis pertains only to ‘dense’ canopies, where
canopy drag dominates bed drag and an inflection point is generated in the mean
velocity profile. This is the case when CDah ! 0.1 (Nepf et al. (2007)). Furthermore,
this analysis is not applicable to extremely shallow flows, where the free surface restricts
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vortex growth. In this approach to the limit of emergent vegetation, wake turbulence
begins to dominate shear-layer-scale turbulence within the canopy and δe drops below
the value given in Equation (1) (Nepf and Vivoni (2000)). In the experimental canopy
of Nepf and Vivoni (2000), this was found to be the case when the depth of flow above
the canopy (H − h) was less than the plant height (h).

2 Experimental conditions

To address the issues discussed in §1, we use previously-conducted canopy flow exper-
iments (Table 1). The run names used here are consistent with Ghisalberti and Nepf
(2006), which contains more detail about the model canopies and all runs except FT1,
FT2 and R23 (unpublished). All experiments were conducted with a model canopy
placed in a unidirectional current in a level flume. The two flumes employed here had
cross-sections of 60(W) × 40(H) cm2 and 38 × 58 cm2. The flow rate ranged between
4700 and 14800 cm3/s. These experiments were performed with both rigid and flexible
model canopies. In naming the experiments, ‘R’ denotes a rigid canopy, ‘F’ a flexible
canopy and ‘T’ an experiment to investigate the transitional region. The rigid canopies
were composed of wooden dowels. The flexible canopy for experiments F2, F6 and FT2
is shown in Figure 2. It is made from a buoyant plastic and is modelled on Zostera ma-
rina, a common seagrass (see Ghisalberti and Nepf (2006) for more detail). This flexible
model clearly exhibits the monami ; the depression in the height of the white plants
can be seen in Figure 2(b). The canopy for Run FT1 was a dynamically similar model,
made from a thinner film of the same plastic (Ghisalberti and Nepf (2002)). In all
cases, the length of the model canopy was greater than LT , allowing the measurement
of fully-developed canopy flow.

In each experiment, vertical profiles of ten-minute, 25 Hz velocity records were
obtained by acoustic Doppler velocimeters. Points in each profile were separated verti-
cally by 0.5− 1 cm. To capture the horizontal variability in canopy flows, profiles were
taken at three or four locations separated laterally by tens of centimetres. Experiments
FT1 and FT2, where one vertical profile was taken at several streamwise locations,
are exceptions. These experiments are used to determine the scale of LT . With the
exception of these runs, the data presented in this paper are temporally-averaged, then
horizontally-averaged, statistics. The principal flow direction is x, with z denoting the
vertical direction. At each measurement location, velocities in both directions (u and
w) are decomposed into long-term temporal averages (U and W ) and deviations from
these averages (u′ and w′). The horizontal average of the relevant statistic is then
taken.

In Table 1, the friction velocity is defined as the square root of the maximum in
the horizontally-averaged Reynolds stress profile. That is,

u∗ =

√(
−u′w′

)

max
, (2)

where the overbar indicates a temporal average. The maximum stress occurs at the top
of the canopy in these flows. A range of heights is given for the canopies of Runs F2 and
F6. In Run F2, where the canopy is flexible but not waving, the range represents the
variable extension of the buoyant blades that made up each plant. In Run F6, where
waving is observed, the range represents the oscillation of an average plant during
the monami. In the other flexible canopies (Runs FT1 and FT2), the value of h is a
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canopy average measured beyond the transitional zone. The mean interfacial velocity
is denoted as Uh; for those runs with a range of heights, Uh is the velocity at the
maximum value of h. Finally, the drag length scale of the canopies was evaluated from
a momentum balance within the exchange zone, as described in Ghisalberti and Nepf
(2006).

3 Vertical transport in canopy flows

The inner layer of flows over rough boundaries is typically considered to consist of
three regions: the canopy sublayer (CSL, 0 < z < h), the roughness sublayer (RSL,
h " z " 2 − 5h) and the inertial sublayer (ISL, 5h " z " 0.2δ) (see, e.g., Raupach et
al. (1991); Cheng and Castro (2002); Britter and Hanna (2003)). Immediately above
the canopy, flow in the RSL is characterised by strong three-dimensionality, coherent
turbulent structures and the influence of length scales associated with the roughness.
In the ISL, the boundary layer has adapted to the integrated effect of the underlying
roughness Britter and Hanna (2003). In this region, velocity varies with the logarithm
of height and the relevant length scale is height above the canopy (or, more precisely,
the height above the zero-plane displacement, d). Relative to the scaling of vertical
mixing in the ISL (i.e. Dz = κu∗(z − d)), vertical mixing is enhanced in the RSL
(Raupach et al. (1996)).

A central theme of this paper is that aquatic flows over submerged canopies are
generally sufficiently shallow so as to be dominated by the RSL. That is, the effect of the
free surface is often to restrict the development of a logarithmic layer and cause the flow
to be dominated by the length scales and relatively coherent turbulence associated with
the RSL. Due to light requirements, the depth of submerged canopy flows is restricted.
Duarte (1991) found that a majority of seagrass species colonise to a depth of 5 m or
less. The same holds true for freshwater angiosperms (Chambers and Kalff (1985)). So,
despite the height of submerged canopies being highly variable, it is not uncommon for
H/h to be less than 5 in canopy flows. In such cases, the RSL will represent most or all
of the flow depth and the hydrodynamics will be governed by the drag scale (CDa)−1,
rather than by a combination of the drag scale and the flow depth. In the following
sections, we discuss fundamental differences between canopy flows and unvegetated
open-channel flows, where the RSL typically represents a tiny fraction of the overall
flow depth. Firstly, differences in the structure of vertical transport in canopy flow and
the ISL are discussed. Secondly, flow in two open channels are contrasted: one with a
submerged canopy and one without.

3.1 Impact of a submerged canopy on open-channel flow

The impact of a submerged canopy on vertical transport in open-channel flow is demon-
strated in Figure 3. In this figure, vertical profiles of four key hydrodynamic parameters
in rough turbulent flow in an unvegetated channel are compared to those in flow over a
submerged canopy. The four parameters are: (i) the mean velocity (U), (ii) a character-
istic vertical turbulent velocity (wrms), (iii) a characteristic vertical turbulent length
scale (the mixing length lz , defined by u′w′ = −l2z(∂U/∂z) |∂U/∂z|) and (iv) the rate
of vertical scalar mixing (Dz). As is customary in open-channel flow, each parameter
is normalised by H and/or u∗H , where u2

∗H = gHS = u2
∗(H/(H − h)). Here, S is
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the surface slope. In effect, we are comparing two channels (one vegetated and one
unvegetated) with the same flow depth and surface slope. The canopy flow character-
istics are taken from Run R7, which contains a canopy of moderate density (4% by
volume) and submergence (h/H = 0.3). With the exception of the velocity profile, the
curves for flow in the unvegetated channel are taken from smooth bed data presented
in Nezu and Rodi (1986) and Nezu and Nakagawa (1993). Examination of data in
rough channels (Fischer et al. (1979); Nezu and Nakagawa (1993); Kironoto and Graf
(1994)) reveals that, for the qualitative comparison here, typical channel roughnesses
do not have a significant impact on these profiles. The velocity profile is computed
assuming an equivalent roughness (ks) of H/100. Expressions for the four profiles in
an unvegetated flow are given in the Appendix.

The primary hydrodynamic impact of the canopy is the exertion of drag, which
significantly reduces the mean channel velocity (Figure 3(a)). For this canopy, with
dimensionless density CDah = 0.7, the mean flow is less than one-third of that over
the rough bed. Naturally, this flow reduction is most pronounced near the bed, in the
region of drag exertion. The profiles of the vertical turbulent velocity (wrms, Figure
3(b)) are similar in the upper regions of the two flows. Given the significantly lower
mean velocity, this similarity implies much higher turbulence intensities in canopy
flows. Within the canopy (z/H < 0.3), there is a rapid attenuation of vertical turbu-
lent fluctuations. The reduced velocities and turbulence are possibly one reason why
canopies of submerged macrophytes typically support a greater abundance and species
richness of aquatic fauna than unvegetated areas (Lewis (1984)). The vertical mixing
length (lz , Figure 3(c)) exhibits much less variability in the canopy flow than it does in
the unvegetated channel. In the bare channel, where there is a range of eddy scales, the
dominant turbulent length scale depends primarily on distance from the boundaries. In
canopy flow, however, there is a predominance of a single scale (i.e. the vortex scale).
Consequently, the vertical mixing length scales upon the vortex scale (Ghisalberti and
Nepf (2004)), which is dictated by canopy characteristics and is of the order of the
drag length scale (CDa)−1. At z ≈ h, the characteristic length scale in the canopy
flow is lower than that in the unvegetated channel and the strength of the turbulence
is comparable. However, the rate of vertical scalar mixing is significantly higher in the
canopy flow. This results from greatly different rates of mixing of mass and momen-
tum in canopy flows. In open channels, the turbulent Schmidt number (Sct = νtz/Dz ,
where νtz is the vertical eddy viscosity) is approximately unity (Fischer et al. (1979)),
indicating equal rates of transport. In canopy flows, mass is mixed much more rapidly
than momentum, as in a mixing layer (Raupach et al. (1996)). Experimentally, Ghisal-
berti and Nepf (2005) found that the turbulent Schmidt number in a shallow canopy
flow has a mean value of approximately 0.5 and reaches a minimum value of 0.3 at the
top of the canopy. That is, mass is mixed across the canopy-water interface three times
more rapidly than is momentum. This elevates the rate of vertical scalar mixing into
and out of the canopy above that at the same point in the unvegetated channel.

It is important to note that the depth-invariant mixing length is only observed in
shallow canopy flows. This is demonstrated in Figure 4, which compares profiles of
the vertical mixing length in comparatively shallow (Run R7, H/h = 3.4) and deep
(Run R23, H/h = 13.6) flows. In this figure, the mixing length and height above the
canopy have been normalised by the drag length scale. In contrast to the shallow flow,
the mixing length in the shear layer of the deep flow increases with height above the
canopy. Importantly, the rate of change (dlz/dz ≈ 0.13) is much less than that in the
ISL (dlz/dz = κ = 0.41). So, while deep canopy flows deviate somewhat from the
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dominance of a single length scale, they remain dynamically distinct from logarithmic
layers.

It stands to reason that if (CDa)−1 describes the vortex scale, then description of
the depth of a canopy flow should be based not on the simple ratio H/h but on the
ratio of the depth of the overflow to the vortex scale (i.e. CDa(H−h)). In Figure 4, the
shallow flow has a depth ratio of 1.6 and the deep flow a ratio of 7.3. Similarly, in other
rough-walled flows where the bed does not impede vortex growth (i.e. CDah ! 0.3), it
would seem that extension of the RSL above the roughness should scale upon (CDa)−1,
not h. Indeed, Raupach et al. (1991) note that the vertical extent of the RSL above
the canopy (as a multiple of h) is highly variable and lower for dense canopies. This
suggests that it is in fact the drag length scale of the canopy that dictates the vertical
extent of the RSL.

3.2 Periodicity of momentum transport

The cospectrum of u and w (Couw) reveals that the coherent vortices are responsible
for the majority of interfacial transport in canopy flows. In Figure 5, the normalised
cospectrum at the top of the canopy in Run R7 is shown. The presented cospectrum is
the average of six individual realisations from two measurement points (immediately
above and below the canopy top) in three vertical profiles. The cospectrum is relatively
narrow-banded about the frequency of vortex passage (fv), shown from individual
spectra of u and w to be approximately 0.07 Hz. The cospectrum exhibits clear peaks
at both fv and 2fv. As shown in Ghisalberti and Nepf (2006), each vortex consists of
two downward transport events, a strong sweep (u′ > 0, w′ < 0) followed by a weaker
ejection (u′ < 0, w′ > 0). The peak at twice fv arises from the two stress events per
vortex; the differential strength of the two events generates the peak at fv.

Integration of the cospectrum is used to determine the fraction of vertical interfacial
transport generated by the coherent vortices. The vortices are deemed to be responsible
for all energy in the cospectrum below a (nominal) frequency of 3fv. This limit allows
the full incorporation of the higher frequency peak into the vortex contribution. As
the flow is sufficiently shallow to prevent the development of an ISL, the vortex is
the turbulent structure in the flow with the lowest frequency. All energy above 3fv is
deemed to be generated by incoherent, smaller-scale turbulence. The coherent vortices
generate 80% of the interfacial momentum transport in Run R7 (CDah = 0.7, Re =
u∗(CDa)−1/ν = 3 × 103). This contribution appears to be invariant in the shallow
canopy flows studied here (i.e. those for which CDa(H − h) ∼ O(1)). For example, the
fraction is insensitive to canopy density, with the vortices contributing 78% of transport
in Run R1 (CDah = 0.3). Likewise, flows with vastly different Reynolds numbers (Run
R9, Re = 8 × 102, 75%) and even canopy flexibility (Run F6, waving canopy, 75%)
have similar contributions. However, in the deep flow (Run R23, CDa(H − h) = 7.3),
the vortex contribution is less than 60%. Using this description of vortex influence
based on the uw-cospectrum, the coherent vortices are the dominant mechanism for
vertical transport into and out of submerged canopies in shallow flows. Accordingly,
our characterisation of these flows is based largely upon the length and velocity scales
of the vortices. It remains to be seen if the vortices are responsible for a similar fraction
of scalar transport. While the deviation of the turbulent Schmidt number from unity
(§3.1) suggests fundamental differences in mass and momentum transport in canopy
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flow, time series of in-canopy concentration show clear peaks at the vortex frequency
(Ghisalberti and Nepf (2005)).

In Figure 5, the cospectrum of canopy flow is compared to that in a logarithmic
ISL. The inertial sublayer cospectrum, evaluated for at a point a distance h from a
solid boundary with a mean velocity equal to Uh in Run R7, is taken from Kaimal and
Finnigan (1994). The comparison demonstrates that the dominance of vertical mixing
by low-frequency processes is not unique to canopy flows. Indeed, there is a greater
contribution from low frequencies in the ISL, with 88% of the momentum flux at
frequencies below the nominal cutoff (3fv ≈ 0.2 Hz). What is characteristic of canopy
flows is the narrow-bandedness of the transport. Significant vertical transport occurs
over only two decades of frequency, as opposed to nearly three decades in the ISL.

4 Impact of canopy flexibility

4.1 Hydrodynamics

Most experimental investigations of canopy flows employ a rigid model canopy. The
steady geometry of an inflexible canopy permits an unequivocal definition of the canopy-
water interface, an easily-calculated frontal density and a reasonable estimate of the
drag coefficient. However, these models are not fully representative of real submerged
canopies. A recent experimental study by Ghisalberti and Nepf (2006) has shown that
canopy waving reduces drag and causes a reduction in interfacial mixing. However,
it is difficult to explicitly determine the hydrodynamic impact of the monami from
experimental data alone. For a given model canopy the surface slope and flow speed
required to trigger the monami are much greater, and the plant height smaller, than
those in the absence of waving. For example, in going from Run F2 (no waving) to
Run F6 (waving), the surface slope increases by a factor of 4.6 and the average canopy
height decreases by 35%.

In this section, we contrast the hydrodynamics of two submerged canopies (one
waving and one inflexible) in open channels with the same slope and flow depth. As
described above, it is difficult to make this comparison from experimental data alone.
So, we compare the experimental data from a waving canopy (Run F6) to the numerical
model prediction for the flow if the canopy were inflexible. To allow this comparison,
it is vital that we can faithfully model the key characteristics (e.g. profiles of velocity
and stress) of flow over an inflexible model canopy. Here, the model of Defina and
Bixio (2005)1 (DBM) is employed. This two-layer model assumes a logarithmic velocity
profile above the canopy. Although the flow immediately above the canopy does not
satisfy the conditions of an ISL, a logarithmic form can be used to adequately describe
the velocity profile (e.g. Shi et al. (1995); Stephan and Gutknecht (2002)). Within the
canopy, the 1-D momentum equation is solved assuming an eddy viscosity that scales
on the product of the local velocity (U) and the plant height (h). While our experiments
(Ghisalberti and Nepf (2004)) show that the more relevant scales for the eddy viscosity
are u∗ and (CDa)−1, the fully empirical closure of the DBM performs well across a
range of canopy densities and heights (Meijer and van Velzen (1999)). The velocity
and velocity gradient are matched at the canopy interface, which dictates the values

1 In Equation (21) of this paper there is a typographical error, confirmed by the authors
(pers. comm.). In the denominator of the coefficient, hp should in fact be h2

p.
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of the zero-plane displacement and roughness height in the logarithmic profile. Model
validation was achieved by comparing the model profiles of velocity and stress for the
non-waving canopy of Run F2 to those measured experimentally. As input, the model
requires the surface slope (S = 1.6 × 10−5 in this case), the flow depth (46.7 cm),
the value of CDa (0.060 cm−1) and the canopy height. As discussed in §2, the canopy
of Run F2 has a range of heights due to the variable extension of the buoyant plant
blades. The lowest plant height (19.5 cm), the point of maximum turbulent stress, was
chosen as the height input for this model. As shown in Figure 6(a), the velocity profile
of Run F2 is predicted particularly well, both within and above the canopy. Figure
6(b) shows that there is a slight discrepancy between the two stress profiles within the
canopy. The important factor in this comparison, though, is the depth of penetration
of turbulent stress. This penetration of vortex-driven flushing is a major control of
canopy residence time. The prediction of penetration depth agrees very well with the
experimental data; both profiles reach negligible stress values at z ≈ 10 cm. So, in
discussing the impact of the monami on canopy hydrodynamics, we are confident that
the DBM will provide realistic estimates of the velocity profile and the depth of the
exchange zone in nonwaving canopies.

Given this confidence in the DBM, we can clearly shed light upon the hydrody-
namic impact of canopy waving. Two open channels with submerged canopies and the
conditions of Run F6 (H = 46.7 cm and S = 7.4 × 10−5) are compared. One sub-
merged canopy is waving, the other is inflexible. Flow characteristics for the channel
with the inflexible canopy are generated by the DBM; those for the channel with the
flexible canopy are taken from experimental measurements. Although the flow depth
in a real channel of constant slope would vary with the bottom roughness, the relation-
ship between flow depth and slope (a Manning’s-n-type formulation) remains virtually
unknown for flexible, submerged canopies. So, for simplicity, the flow depths in the
two channels are the same. Flexibility aside, the two canopies are identical (a = 0.052
cm−1, hmax = 15.5 cm). In the case of the waving canopy, the change in canopy height
over the monami cycle was 4.4 cm (nearly 30% of hmax). As discussed, this waving
causes a decrease in canopy drag. For the waving canopy, the mean value of CDa in
the exchange zone is 0.034 cm−1 (Ghisalberti and Nepf (2006)). The measured value
of CDa for the non-waving canopy of Run F2 was 0.060 cm−1; the inflexible canopy
in this comparison is assigned the same value.

Clearly, the reduced drag of the waving canopy permits a higher mean velocity
that the inflexible canopy (Figure 6(c)). The average in-canopy velocity (i.e. that in
the region 0 < z < hmax) increases by 65% due to the 40% reduction in canopy drag
due to waving. This velocity difference is most pronounced at the minimum plant height
in the monami cycle (z ≈ 11 cm), where the velocity in the waving canopy (5.4 cm/s)
is double that in its inflexible counterpart (2.7 cm/s). The monami also drastically
increases the depth of the exchange zone (Figure 6(d)). Defined as the depth over
which −u′w′ decays to 10% of its maximum, interfacial value, δe increases from 5.9 cm
to 11.7 cm with canopy waving. It is important to note that this increase is more than
the amplitude of the monami ; dynamically, waving is more than a simple downshift
of the canopy-water interface. The monami causes the canopy to behave as if sparser,
allowing greater velocities and vortex penetration.
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4.2 Canopy residence time

Due to the increased stress penetration into the canopy, it is expected that waving
will dramatically reduce the canopy residence time. To quantify this reduction, the
vertical transport model of Nepf et al. (2007) (VTM) is employed. This two-box model
separates the canopy into the exchange zone and the wake zone; the boundary between
the two boxes is at z = h− δe. The exchange velocity between the wake zone and the
exchange zone is based on the diffusivity in an emergent canopy, which scales upon
the flow speed (U1) and the plant diameter. The exchange velocity (ke) between the
exchange zone and the water overlying the canopy is 0.19u∗(CDah)0.13. It is important
to note here that the interfacial stress (and thus u∗ and ke) is higher for nonwaving
canopies. This is indicative of the diminished interfacial transport in waving canopies,
the unsteady geometry presumably reducing vortex coherence (Ghisalberti and Nepf
(2006)). Using the methodology of Nepf et al. (2007), the canopy is originally given
a uniform scalar concentration (Co) with zero concentration above the canopy at all
times. The decrease in the depth-averaged concentration in the canopy (C) is then
monitored over time. Implicit in this analysis is the assumption that the canopy is of
sufficient horizontal scale that flushing of the canopy is dominated by vertical mixing.

Firstly, it is important to ensure that the DBM-predicted values of u∗, δe and U1

(the wake zone velocity) give a description of residence time in nonwaving canopies
that is consistent with that from the experimental data. The VTM was run for the
conditions of Run F2 with both experimental data (see Ghisalberti and Nepf (2006))
as well as with the values predicted by the DBM. The comparison of decay curves
of C/Co for the model data and experimental data is displayed in Figure 7(a). The
agreement is very good both in the short term (when the interfacial flux is dictated
by flushing of the exchange zone) and the long term (when the flux is controlled by
diffusion from the wake zone). With this confidence in the ability of the DBM to provide
reasonable input values to the vertical transport model, we use the VTM to investigate
the impact of the monami on the canopy residence time. Figure 7(b) compares the
decay of in-canopy concentration for a waving and nonwaving canopy in a channel
with the conditions of Run F6 (refer to the previous section). For averaging purposes,
the height of both canopies is taken as 15.5 cm. Despite the diminished interfacial
mixing, it is clear that the waving canopy is flushed much more rapidly. This is due
primarily to the fact that the monami permits a much deeper exchange zone than
the nonwaving canopy. Using the time at which C drops to 10% of its initial value as
a nominal description of residence time, the residence time in the nonwaving canopy
(1520 s) is more than four times that in the waving canopy (370 s).

To our knowledge, there have been no direct measurements of vertical diffusivity
in the wake zone of a submerged canopy. The transport model employed here requires
as input this wake zone diffusivity. It is assumed to be the same as that measured in
emergent canopies, which are similarly governed by a balance of hydraulic gradient and
canopy drag. In the same way that oscillatory flows increase solute fluxes from sediment
beds (Webster and Taylor (1992)), it is conceivable that mixing in the wake zone may
be elevated due to the oscillating pressure generated by the vortex street. Although
the diffusivity profiles shown in Ghisalberti and Nepf (2005) (and Figure 3(d)) do not
extend down to the wake zone, they show a rapidly diminishing diffusivity as the wake
zone is approached. So, while there is no direct evidence to inform us on exactly how
low the wake zone diffusivity is, it is undoubtedly lower than that in the exchange
zone. Accordingly, it is clear that the monami will reduce the canopy residence time,



11

provided that there is a wake zone in the nonwaving canopy (i.e. that CDah ! 0.3).
The monami reduces residence time by allowing the erosion, or elimination, of the
wake zone and its comparatively slow mixing.

5 Transition at the front of the canopy

In this section, we examine the length scale of transition at the front of a submerged
canopy. By balancing canopy drag with streamwise advection, Belcher et al. (2003)
derived a characteristic length scale for fluid deceleration (x0) at the front of a canopy.
Coceal and Belcher (2004)2 performed numerical experiments to determine the scaling
coefficient and found that

x0 ≈ 6(CDa)−1 ln

(
CDah

[
Uh

2u∗

])
(3)

However, it is not just fluid deceleration that governs the transition to equilibrium in
canopy flows. A second process occurs, namely the growth of the vortex street and the
mixing-layer-type region that it defines. Only once layer growth ceases can the flow be
considered fully-developed.

We view this shear layer growth as the vertical turbulent diffusion of vorticity
generated at the top of the canopy. Denoting the final thickness of the vortices and
mixing-layer-type flow as tml, the diffusive time scale is given by

tdiff =
t2ml

Dz
≈ (C1δe)

2

Dz
(4)

where Dz is a characteristic vertical turbulent diffusivity. As discussed in §1, C1, the
coefficient that links the final vortex penetration (δe) to the total vortex size (tml), has
a value of 3− 4 in canopies of typical density. To first order, the assumption of C1 as a
constant is reasonable. The vertical diffusivity in the fully-developed region scales on
the total shear across the canopy (∆U) and the shear layer thickness (tml) (Ghisalberti
and Nepf (2005)). Ignoring a very slight dependence upon canopy density, ∆U scales
upon u∗ (Nepf et al. (2007)). Although mixing in the transitional region is likely lower
than that in the fully-developed flow, we would expect the same scaling to apply.
Therefore, a reasonable scaling relationship for the vertical diffusivity in Equation (4)
is Dz ∼ u∗δe. So, if shear layer growth is deemed to be the rate-limiting step in the
transition to fully-developed flow,

LT = Uh × tdiff ∼
δeUh

u∗
. (5)

Here, the characteristic mean advective velocity is Uh, the velocity at the top of the
canopy. Given the dependence of δe on the drag length scale (CDa)−1 (Equation (1)),
the length scale for transition becomes

LT ∼
(

Uh

u∗

)
(CDa)−1. (6)

In defining this relationship, the fully-developed values of Uh and u∗ are used.

2 It is worth noting that the authors use a drag length scale that reduces, in the limit of
sparse canopies, to 2(CDa)−1 (twice the value of our drag scale).
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To determine the scaling coefficient in Equation (6), we use data from Runs FT1
and FT2 (Table 1), where flow properties were measured along the transitional zone
of a flexible model canopy. This data is displayed in Figure 8. Two properties that
characterise the evolution of the canopy flow are shown. Firstly, the local total shear
(∆U(x)), normalized by the fully-developed advective velocity (Uh), is a measure of
the adjustment of the velocity profile to the canopy drag. Secondly, the momentum
thickness of the shear layer (θ(x)), normalised by the drag length scale ((CDa)−1),
is a measure of shear layer growth through the spreading of vorticity. The distance
from the front of the canopy, x, has been normalised according to Equation (6) with
fully-developed values of u∗ and Uh. It is clear from Figure 8 that the deceleration of
in-canopy fluid (and thus the increase of ∆U) occurs more rapidly than the vertical
spread of vorticity. For these two runs, the Coceal and Belcher (2004) model predicts
deceleration lengths of 0.1 and 0.4 on the normalized x-scale; this is highlighted by the
shaded region in the figure. While it can be argued that the shear stops growing not
far downstream of that region, the same can not be said of the shear layer thickness.
That is, x0 underestimates the total length of transition in canopy flows. As shown in
Figure 8, the length of the transitional zone at the front of the canopy is given by

LT ≈ 3

(
Uh

u∗

)
(CDa)−1 (7)

It is important to note that the coefficient in this relationship has been obtained from
streamwise transects in flexible, waving canopies. While we expect the same scaling
relationship to hold for rigid canopies, the coefficient may differ slightly.

For a sparse canopy, it is possible that LT represents a significant component (or
all of) the canopy length. For river grasses, (CDa)−1 typically ranges between 0.1 and
1 m (see, for example, Wu et al. (1999)). While the ratio of Uh to u∗ is a function
of canopy density, the term 3 (Uh/u∗) is O(10) in all of the runs detailed in Table 1.
Therefore, LT in a real submerged canopy will be O(1 − 10 m). Indeed, the data of
Sukhodolov and Sukhodolova (2006) show a vegetated shear layer continuing to grow
O(10 m) into a real river grass canopy. Patchiness of plant canopies, typically on the
scale of metres to tens of metres, is common to all aquatic habitats (see, e.g., Duarte
and Sand-Jensen (1990); Sand-Jensen and Mebus (1996)). Consequently, a vegetated
river flow might not be accurately described by the fully-developed state, but rather
by a continual set-up and set-down of mixing-layer-type flow.

6 Conclusions

In this study, experiments with rigid and flexible model vegetation have been used to
describe some distinguishing hydrodynamic features of aquatic canopy flows. In shallow
flows, where CDa(H−h) is O(1), the coherent vortices dominate interfacial transport.
Cospectra of u and w are narrow-banded and centered about the frequency of vortex
passage. The relevant length scale throughout almost the entire depth of such flows
is the drag length scale (CDa)−1, which is an approximate measure of vortex size.
In deeper flows, there is a transition away from the predominance of vortex-driven
transport and a single turbulent length scale.

Vortex passage drives a coherent, periodic waving of flexible vegetation. In the
waving canopy studied (Run F6), the amplitude of the monami was nearly 30% of the
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maximum plant height. The resultant 40% reduction in canopy drag allowed signifi-
cant increases in the mean in-canopy velocity and the penetration of turbulent stress.
Waving caused a four-fold reduction in canopy residence time due to erosion of the
wake zone, whose thickness is the determinant of residence time in tall canopies.

Finally, the transition from boundary-layer flow upstream of the canopy to a
mixing-layer-type flow within the canopy was investigated. The growth of the mix-
ing layer, rather than the deceleration of in-canopy fluid, was found to be the rate-
limiting process. The length scale of this transition for a waving canopy is approxi-
mately 3 (Uh/u∗) (CDa)−1.
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Appendix

The curves presented in Figure 3 for open-channel flow are described more fully in Table 2.
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Table 1 Summary of canopy flow experiments.

Run CDa (cm−1) h (cm) H (cm) u∗ (cm/s) Uh (cm/s) Canopy type

R1 0.020 13.9 46.7 0.45 2.5 Rigid
R7 0.049 13.8 46.7 1.6 6.3 Rigid
R9 0.063 13.8 46.7 0.50 2.1 Rigid
R23 0.20 3.0 40.0 0.54 2.4 Rigid
F2 0.060 19.5-21.3 46.7 0.53 3.0 Flexible, not waving
F6 0.034 11.1-15.5 46.7 1.1 7.9 Flexible, waving
FT1 0.043 9.0 41.3 0.79 4.5 Flexible, waving
FT2 0.039 13.3 46.7 1.1 6.4 Flexible, waving

Table 2 Hydrodynamic properties of open-channel flows presented in Figure 3. (NN = Nezu
and Nakagawa (1993); NR = Nezu and Rodi (1986))

Parameter Profile Source Notes

U
U

u∗
=

1

κ
ln

(
z

ks

)
+ 8.5 +

2Π

κ
sin2

( πz

2H

)
NN Typical values of ks/H = 0.01

and Π = 0.1 were chosen

wrms
wrms

u∗
= 1.27 exp(−z/H) NN

lz
lz
H

=
κ
√

1− (z/H)

(H/z) + πΠ sin(πz/H)
NR

Dz
Dz

u∗H
=

κ(1− (z/H))

(H/z) + πΠ sin(πz/H)
NN This expression was derived by

assuming that Sct is unity for
open-channel flow, as seen in
Fischer (1973)
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(a) The visualisation of a vortex
above a rigid canopy through the
injection of food dye. These vor-
tices dominate the transport of
mass and momentum across the
canopy-water interface.

δe

(b) The growth of the vortices along the canopy. At a distance LT from the front of the canopy,
the vortices reach their equilibrium size and the canopy flow is fully-developed. The exchange
zone is the region of the canopy that is rapidly flushed by the vortices. The roughness sublayer
(RSL), characterised by three-dimensionality and the importance of roughness length scales,
extends at the very least to the top of the vortices.

Fig. 1 The street of Kelvin-Helmholtz-type vortices in canopy flows.

(a) (b)

Fig. 2 Photographs of (a) a meadow of Zostera marina (“eelgrass”, eel (2008)) and (b) the
flexible model canopy of Runs F2, F6 and FT2. The model was designed to have the same ratio
of buoyancy to flexibility as eelgrass. The model plants are coloured to facilitate visualisation
of the monami ; they are otherwise identical.
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(a) Mean streamwise velocity, U













    




 



(b) Vertical turbulent velocity, wrms
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(c) Vertical mixing length, lz













    




 
(d) Vertical turbulent diffusivity, Dz

Fig. 3 Comparison of vertical profiles of four hydrodynamic parameters in a canopy flow (Run
R7, circles) and an unvegetated open-channel flow (solid line). The canopy takes up 30% of
the flow depth.



19



















      
















κ

1

Fig. 4 The vertical profiles of mixing length for a shallow (Run R7, CDa(H − h) = 1.6) and
a deep (Run R23, CDa(H − h) = 7.3) canopy flow. The dashed line represents the top of
the canopy. The invariant mixing length of the shallow flow is characteristic of canopy flows
where the RSL extends to the free surface. Even well above the canopy in the deep flow, ISL
behaviour (dlz/dz = κ = 0.41) is not observed.



20















    




















Fig. 5 The normalised cospectrum of u and w at the top of the canopy (Run R7). The narrow-
banded cospectrum is centered around peaks at fv , the frequency of vortex passage, and 2fv .
Using 3fv as a nominal cutoff for vortex influence, 78% of the area under the cospectrum (and
therefore of the interfacial momentum transport) is generated by the vortices. The cospectrum
in an inertial sublayer reveals no such dominant frequency in vertical transport.
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(a) Velocity profile from Run F2 (nonwav-
ing canopy, h = 19.5 cm) compared to
the DBM prediction.











     












(b) In-canopy stress profile from Run F2
compared to the DBM prediction.











   












(c) Velocity profile from Run F6 (waving
canopy) compared to the DBM predic-
tion if the same canopy were not waving.
The shaded region represents the height
oscillation through the monami cycle.

















    












(d) In-canopy stress profile from Run F6
compared to the DBM prediction if the
same canopy were not waving.

Fig. 6 The impact of the monami on canopy flow hydrodynamics. Firstly, the DBM predicts
velocity and stress profiles well in a flow with a nonwaving canopy (a,b). This model is then
used to predict the flow behaviour if the canopy of Run F6 were not waving. The monami
permits much greater (c) in-canopy flow and (d) stress penetration into the canopy.
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(a) The VTM is applied to the canopy of Run F2 using measured
flow parameters as well as those from the hydrodynamic model
(DBM). The agreement between the two decay curves is very
good, suggesting that the DBM provides values that accurately
estimate the residence time of nonwaving canopies.







   


 







(b) The impact of the monami on canopy residence time (Run F6).
Nominally defining canopy residence time as the point at which
concentration falls to 10% of its initial value, waving decreases
residence time by a factor of 4 here.

Fig. 7 The decay of in-canopy concentration C using the two-layer vertical transport model
(VTM).



23

























     




θ
 Δ





Fig. 8 The progression of shear layer momentum thickness (θ) and total shear (∆U) along a
waving canopy. The filled symbols represent Run FT1, the unfilled Run FT2. Distance from
the front of the canopy (x) has been normalised according to the predicted scaling relationship
for LT (Equation (6)). The shaded region represents the deceleration length scale estimates
for the two runs by Coceal and Belcher (2004). Deceleration of the in-canopy flow (and thus
the increase of ∆U) occurs more rapidly than the spreading of the shear layer. Fully-developed
canopy flow is reached at a distance 3(Uh/u∗)(CDa)−1 from the front of the canopy.


