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Mirabolic Robinson-Shensted-Knuth corre-
spondence

Roman Travkin

Abstract. The set of orbits of GL(V) in FI(V) x FI(V) x V is finite, and
is parametrized by the set of certain decorated permutations in a work of
Magyar, Weyman, Zelevinsky. We describe a Mirabolic RSK correspondence
(bijective) between this set of decorated permutations and the set of triples:
a pair of standard Young tableaux, and an extra partition. It gives rise to a
partition of the set of orbits into combinatorial cells. We prove that the same
partition is given by the type of a general conormal vector to an orbit. We
conjecture that the same partition is given by the bimodule Kazhdan-Lusztig
cells in the bimodule over the Iwahori-Hecke algebra of GL(V) arising from
FI(V) x FI(V) x V. We also give conjectural applications to the classification
of unipotent mirabolic character sheaves on GL(V) x V.

1. Introduction

1.1.

Let v € V be a nonzero vector in an N-dimensional vector space over a field k. The
stabilizer Py of v in GLy = GL(V) is called a mirabolic subgroup of GLy. The
special properties of the pair Py C GLy are among the principal reasons why the
representation theory of GLy is in many respects simpler than that of the other
reductive groups over k (see e.g. [2], [10]). One more remarkable feature of the pair
Pxn C GLy was discovered by P. Etingof and V. Ginzburg a few years ago. Namely,
the quantum Hamiltonian reduction of the differential operators on GLy with
respect to Py is isomorphic to the spherical trigonometric Cherednik algebra Hy
(see e.g. [b]); equivalently, the quantum Hamiltonian reduction of the differential
operators on GLy xV with respect to GL is isomorphic to Hpy. Thus one is led
to study the D-modules on GLy xV whose quantum Hamiltonian reduction lies
in the category O for Hy (see [6]). The corresponding perverse sheaves are called
mirabolic character sheaves; they are close relatives of Lusztig’s character sheaves
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(see e.g. [14]). The present work is a first step towards a classification of mirabolic
character sheaves.

1.2.

According to Lusztig’s classification of character sheaves, the set of isomorphism
classes of unipotent character sheaves on a reductive group G is partitioned into
cells, which correspond bijectively to special unipotent classes in G. For G = GLy,
each unipotent class is special, and each cell contains a unique character sheaf;
thus the unipotent character sheaves are classified by their (nilpotent) singular
supports, so they are numbered by partitions of N.

Finally, recall that the cells in question are the two-sided Kazhdan-Lusztig
cells of the finite Hecke algebra H . If F1(V) stands for the flag variety of GL(V),
then Hy is the Grothendieck ring of the constructible GL(V')-equivariant mixed
Tate complexes on F1(V) x FI(V') (multiplication given by convolution). The two-
sided cells arise from the two-sided ideals spanned by the subsets of the Kazhdan-
Lusztig basis (formed by the classes of Goresky-MacPherson sheaves). This basis
is numbered by the symmetric group Sy, and its partition into two-sided cells
is given by the Robinson-Shensted-Knuth algorithm, see [11]. A GL(V)-orbit in
F1(V) x F1(V') numbered by w € Gy lies in a two-sided cell A iff a general conormal
vector to the orbit is a nilpotent element of type A, see [18].

1.3.

The starting point of our work is a classification of GL(V')-orbits in N’ x V where
N is the nilpotent cone in End(V) (it was independently obtained by P. Achar
and A. Henderson in [1]). We prove (see section 2.2) that the set of orbits is in a
natural bijection with the set B of pairs of partitions (v, 8) such that |v| = N, and
v D 0, that is v; > 6; > v;11 for any ¢ > 1. Note that B arises also in Zelevinsky’s
classification of restrictions of unipotent irreducible representations of GLy (Fy)
to Pn(Fy) (see [21], Theorem 13.5), and this coincidence is not accidental.

A conormal vector to a GL(V)-orbit in F1(V') x F1(V) x V lies in the variety
Z of quadruples (u1,ug,v,v*) where v € V, and v* € V*, and uy, us are nilpotent
endomorphisms of V' such that u; +us+v®@v* = 0. The set of orbits of GL(V) in Z
is infinite, and Z is reducible (it has N+1 irreducible components of dimension N?)
but we define in 3.2 a collection of closed irreducible subvarieties of Z numbered by
the triples (v D 6 C /') of partitions such that |v| = |v/| = N. These subvarieties
are the images of the closures of the conormal bundles to GL(V)-orbits in F1(V) x
F1(V) x V; they are mirabolic analogues of the nilpotent orbit closures in A.

The Hecke algebra Hy acts by the right and left convolution on the
Grothendieck group of the constructible GL(V')-equivariant mixed Tate complexes
on FI(V) x FI(V) x V; we will denote this bimodule by Ry. It comes equipped
with a Kazhdan-Lusztig basis numbered by the finite set RBy of GL(V)-orbits
in FI(V) x FI(V) x V, described in [16] (see also [15]). Thus we can define a
partition of RBy into bimodule KL cells. In this note we define an analogue of
the RSK algorithm which is conjectured to be connected with these bimodule
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cells. Our mirabolic RSK correspondence (see subsection 3.5) is a bijection
between the set RBy of colored permutations of {1,..., N}, and the set of triples
{(T1,T>,0)} where Ty (resp. T3) is a standard tableau of the shape v (resp. 1)
where |v| = |[V/| = N, and 6 is another partition such that v > 6 C v/'.

We conjecture that the colored permutations w,w’ € RBy lie in the same
bimodule KL cell iff the output of the mirabolic RSK algorithm on @, ' gives the
same partitions: v(w) = v(a'), V(@) = v ('), 8(w) = (@) (see Theorem 3 for
a partial result in this direction). An equivalent form of the conjecture states that
the H-subquotient bimodules of Ry supported by the bimodule KL cells are
irreducible (cf. Proposition 8). We also define a partition of RBy into microlocal
two-sided cells according to the type of a general conormal vector to the corre-
sponding orbit. We prove that the colored permutations w,w’ € RBy lie in the
same microlocal two-sided cell iff the output of the mirabolic RSK algorithm on
W, W gives the same partitions v D @ C v’ (see Theorem 2). In subsection 5.8 we
describe combinatorially the involution F on RBy arising from the Fourier-Deligne
transform from the category of GL(V')-equivariant sheaves on F1(V) x FI(V) x V
to the category of GL(V)-equivariant sheaves on F1(V*) x F1(V*) x V*. In sub-
section 5.9 we give a conjectural application to the classification of unipotent
mirabolic character sheaves. In subsection 5.10 we formulate a conjecture on the
structure of the asymptotic bimodule over Lusztig’s asymptotic ring J for diagonal
bimodule KL cells: those corresponding to triples v D 6 C v (that is, v = /).

1.4.

Let us emphasize that almost all arguments and constructions in the paper are of
elementary combinatorial and linear algebraic nature. For instance, even though
the bimodule Ry over the Hecke algebra Hy is of geometric origin, it is described
explicitly in Propositions 2 and 3. The Kazhdan-Lusztig basis of R is defined by
an inductive combinatorial algorithm, similarly to the Kazhdan-Lusztig basis of
H . Only the description of the W-graph of the H y-bimodule R iy in Proposition 9
does rely on geometric considerations.

1.5. Acknowledgments
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cation, where our Theorem 1 is proved independently (as Proposition 2.3). I am
indebted to M. Finkelberg for posing the problem, numerous valuable discussions
and help in editing the paper. I am thankful to Independent University of Moscow
for education, financial support and various help. I thank P. Etingof for creating
the ideal conditions for my work.
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2. GL(V)-orbits in N x V/
2.1.

The following Theorem essentially goes back to J. Bernstein, who proved in [2], sec-
tion 4.2, the finiteness of the set of Py-orbits in the nilpotent cone of gly. It was
independently proved by P. Achar and A. Henderson ( [1], Proposition 2.3).

Theorem 1. Let N C gl(V) be the nilpotent cone. There is a one-to-one cor-
respondence between GL(V)-orbits in N X V and pairs of partitions (X, p) such
that |A| + |u| = SN + > pi = N. Furthermore, if a pair (u,v) € N x V be-
longs to the orbit corresponding to the pair (A, u) then the type of u is equal to
>\+/L: (Al +/L1,)\2+,u27...) .

Proof. Given a pair (A, u) such that ||+ |u| = N, we will construct the pair (u,v)
in the following way. Let ¥ = A 4+ p and u be a nilpotent of type v. Denote by D,
the set of boxes of the Young diagram v, i.e. D, = {(i,7) | 1 < j < v;}. Choose a
basis e; j ((¢,7) € D,) such that ue; ; = €; j_1 for 2 < j < v; and ue;; = 0. Let

v =">e; where we put e; o = 0.
i
The inverse correspondence is obtained as follows. Let (u,v) € A/ x V. Denote

by Z(u) the centralizer of u in the algebra End(V'). Let v be the type of w and A
be the type of u|z (), and p be the type of uly/z(wu)o-

Let us prove that these two correspondences are mutually inverse. We will
need the following lemma.

Lemma 1. Let A C End(V) be an associative algebra with identity and A* the
multiplicative group of A. Suppose the A-module V' has finitely many submodules.
Then A*-orbits in V are in one-to-one correspondence with these submodules.

Namely, each A*-orbit has the form Qg := S\ Us where S is an
submodules S’ ¢ S

A* -submodule of V.

Proof. Tt is clear that the sets (g give us a decomposition of V' into a union of
locally closed subvarieties. So, we must prove that two points v,v’ € V belong to
the same A*-orbit iff they belong to the same Qg, i. e. they generate the same
A-submodule S = Av = Av’. If v and v’ belong to the same A*-orbit then v/ = av
for some a € A* and Av = Aav = Av’. Conversely, let v,v" € Qg for some S, so
that Av = Av' = S. It is easy to see that A*v and A*v’ are constructible dense
subsets of S. This implies that A*v N A*v' # @ and therefore A*v = A*v'. O

2.1.1. Let us deduce the theorem from the lemma. Fix a partition v of N. Con-
sider all the GL(V)-orbits in A/ x V' consisting of points (u,v) where u has the type
v. These orbits correspond to GL(V),-orbits in V' where GL(V),, is the stabilizer
of w in GL(V). Note that GL(V),, = (Z(u))*. According to the lemma it suffices
to prove that V has finitely many Z(u)-submodules and find all these submod-
ules. Consider V' as a k[t]-module where ¢ acts by u. This module is isomorphic to
P kt]/(t7ik[t]). Let V; = Kk[t]/(t¥ik[t]) C V be the the i-th direct summand of this
K3
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sum. For each i let {e; ;}7., be a basis of V; such that ue; ; = €; ;1 (j > 2) and
ue; 1 = 0. We can write

Z(u) = Endyy EBHomk (Vi, Vir) @ k[t] / (it i)
Let a;, be a generator of the k[t]-module Homyy (V;, Vir) C Endy (V) given by
@i §€iy 5 = 0i iy €ir (j—max{O,vi—vy}) (we put e; ; = 0 for j <0).

Now let S be a Z(u)-submodule of V. Sinse S is invariant under a; ; for all ¢, S
has a form S = &, S; where S; C V;. Further since S invariant under v € Z(u)
all the S; have the form u**V;. Put A; = v; — p;. The invariance of S under all
a; v is equivalent to the fact that A and p are partitions, i.e. Ay > Ay > ... and

1 > p2 > .... So we have shown that Z(u)-submodules of V' are in one-to-one
correspondence with pairs of partitions (A, ) such that A+ u = v. An application
of Lemma 1 concludes the proof of the theorem. O

2.2. Comparison with Zelevinsky’s parametrization

A. Zelevinsky considers in [21], Theorem 13.5.a) the set 3 of isomorphism classes
of pairs (U, W) where U is an irreducible unipotent complex representation of the
finite group GLy (F,), and W is an irreducible constituent of the restriction of U
to the mirabolic subgroup Py (F,). He constructs a natural bijection between 3
and the set 8 of pairs of partitions (v, §) such that |v| = N, and 7; —1 < 9~] <y
for all j (this is equivalent to v; > 6; > v;41 for all ). The following Proposition-
Construction establishes a natural bijection between P, and the set of pairs of
partitions (A, u) such that |A| + |u| = N

Proposition-Construction 1. Let v be a partition and U the conjugate partition
so that v; > j <= U; > 1. There exists a natural one-to-one correspondence
between pairs (A, u) of partitions such that A+ p = v, and partitions 0 such that
vy —1< é; < U; for all j (this is equivalent to v; > 0; > vy for all i). This
correspondence is given by

0; = Nig1 + 1 1)
A = Z(Vk —0p) =vi — 0; + vig1 —
k=i
- (2)
Hi = Z(Gk — Vkg1) = 0i = vig1 +0ip1 —
k=i

Proof. It is easy to see that equations (1) and (2) give mutually inverse correspon-
dences. 0

We will denote the above correspondence by (v,0) = T(\u), (A\p) =
E(v, 0).
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Corollary 1. A pair (u,v) lies in an orbit (N x V)5 ) such that (X, u) = Z(v,0)
iff the Jordan type of u is v, and the Jordan type of ulv /(v uv,u?v,...) 5 0.

Proof is obvious from the construction. O

3. GL(V)-orbits in F1(V') x FI(V) x V

3.1.

Let (Fy, Fa,v) € FI(V) xF1(V) x V. Consider the orbit GL(V)- (Fy, F3,v). Iff v =0
then this orbit lies in F1(V') x F1(V) x {0}. Such orbits can be parametrized by
permutations of N elements. Otherwise, if v % 0 the orbit is preimage of an orbit
in F1I(V) x FI(V') x P(V'). This follows from the fact that if ¢ € k* then the element
(Fy, Fs, cv) can be obtained from (Fy, F,v) by the action of the scalar operator
¢-id € GL(V). Such orbits are in one-to-one correspondence with pairs (w, o)
where w € Gy is a permutation and o is non-empty, decreasing subsequence of
w (see [16]). So GL(V)-orbits in FI(V) x FI(V) x V are indexed by pairs (w, o)
where w € G and o is a decreasing subsequence of w (possibly empty). We will
give another proof of this fact in the following lemma.

Lemma 2. There is a one-to-one correspondence between GL(V')-orbits in F1(V') x
FI(V) x V and pairs (w,0) where w € &n and o C {1,2,...,N} such that if
1,7 € 0 and i < j then w(i) > w(j). These orbits can be also indexed by pairs
(w, B) where B C {1,2,...,N} is a subset such that ifi € {1,...,N}\ S and j € 5
then either i > j or w(i) > w(yj).

We denote by RB the set of such pairs (w, 3). We think of elements of RB as
of words colored in two colors: red and blue. Namely, if (w, ) € RB we consider
the word w(1)...w(N) and paint w(i) in blue if ¢ € 8, and we paint it in red if

id B

Proof. For each w € Gy let 2, be the corresponding GL(V)-orbit in FI(V) x
F1(V). Namely, (Fy, Fy) € Q,, iff there exists a basis {e;} of V such that
Fl)i:<€1,...,ei> (3)

Faj=(ew), - Cu(j)) (4)
Consider all the GL(V)-orbits in FI(V) x FI(V) x V' consisting of such points
(F1, F3,v) that (Fy, Fy) € Q,, where w is fixed. Fix a pair (Fy, F3) € ,, and let
H be its stabilizer in GL(V'). Then these orbits correspond to H-orbits in V. Let
A C End(V) (k = 1,2) be the subalgebra defined by

ac€ Ay <= Vi a(Fy;)C Fi,.
Denote A = A; N Ay. Then H = A* and we can apply Lemma 1.
Let {e;} be a basis satisfying (3) and (4) and E; ; the operator given by

E; jej = djje;. (5)
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Then

A= & kB
i<i’
w(i)<w(i')
Now it is easy to see that all the A-submodules in V have the form S(8) :=
Dic 3 ke, where (3 satisfies the condition of the lemma. So, applying Lemma 1
proves the second part of the lemma. We will denote by €, g the orbit in F1(V') x
F1(V) x V corresponding to (w, ).
For each (w,3) € RB let

o=o()={ief|Vj([>i) &w(j)>wi)=j¢Pp} (6)
It is easy to see that (w,3) and (w,o) can be reconstructed from each other. So
the lemma is proved. O

Note that €, g consists of such triples (Fi, Fa,v) that there exists a basis
{ei} satisfying (3), (4) and such that!

v = Z e;. (7)
i

3.2. XY, Z and two-sided microlocal cells
We denote F1(V) x FI(V) x V by X, and consider the cotangent bundle T*X. It
can be described as the variety of sextuples (Fy, F», v, u1,ug,v*) € T*(X) where
(F1, F3,v) € X, u; (i = 1,2) are nilpotent operators on V, u; preserves F; and v* €
V*. The moment map T*X — gl(V)* = gl(V) sends a point (Fy, Fa, v, uy, us, v*) €
T*(X) to the sum u; +us+v®v*. The preimage Y of 0 under this map is the union
of conormal bundles of GL(V)-orbits in X. So all the irreducible components of YV’
have the form Y, » = N*Q, ,. We determine the type of u; for a general point of
N*Qu o

Now consider the projection 7: Y — FIV) x V x N x N x V*
(Fy, Fy,v,uy,ug,v*) — (Fa,v,u1,u2,v*). Let Y = 7(Y). The preimage of a
point (Fh, v, u1,us,v*) € Y is isomorphic to the variety Fl,, (V) of full flags fixed
by wy. This variety is known to be pure-dimensional and the set of its irreducible
components can be identified with the set St(A) of standard tableaux of the
shape A where \ is the type of u;. Namely, for each T' € St(\) the corresponding
irreducible component Fl,, 7 of Fl,, (V) is defined as follows. Let A\()(T) be the
shape of the subtableau of T' formed by numbers 1,...,¢. Then Fl,, v is the
closure of the set Fl,ff1 of all F € Fl,, (V) such that u |, has the type A (T).

Let Z be the variety of quadruples (u1,uz,v,v*), where (uj,u2) € N, v eV,
v* € V* and u; +us+v®v* = 0. Then we have a projection 7 : Y — Z. We say that
W, w" € RB belong to the same two-sided microlocal cell if 7(Yy) = m(Yg). We
denote by P the set of pairs of partitions (v, #) such that |v| = N and v; > 6; > v;14
for each ¢ > 1. Further, denote by T the set of triples of partitions (v, 8,v') such
that (v,0) € P and (V,0) € P. For any t = (v,0,/') € T denote by Z* the

IThis formula is different from the one in [16]: v = Y ico Ci-
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set of quadruples (u1,us,v,v*) € Z such that the types of ui,us and 1|y /ku, o
are equal to v, " and 6 respectively (it is easy to check that for each quadruple
(u1,uz2,v,v*) € Z we have k[ui|v = k[uz]v and u1 |y /kfu,]o = U2|v/k[u,]v)-

3.3.

We fix w € RB. Let y be a general point of variety Yz = N*(Qgz). We take
t = t(w) = (v,0,V') € T such that n(y) € Z*. We consider the standard Young
tableaux T7 = T1(w) € St(v) and Tp = Ta(w) € St(v') such that F;(y) € Fly, 1,
(i =1,2).

Proposition 1. The map w — (t(w), T (@), T2 (wW)) realizes a one-to-one correspon-
dence between RB and the set of triples (t,T1,T3) such that t = (v,0,1') € T,
Ty € St(v), Ty € St(v'). Moreover w and w' belong to the same two-sided microlocal
cell iff t(w) = t(0').

Proof. Denote by Y®T1:72 the set of points y € Y such that w(y) € Z* and
Fi(y) € Fl,, 1,(V). These sets are locally closed, disjoint, and Y is their union. We
claim that all of them are open subsets of irreducible components of Y. We will
use the formula (14) (see page 21) whose proof does not use the proposition we
are proving. (See also Remark 1 below.) Note that the number of the sets Y'*71.T2
coincides with the number of irreducible components of Y. This follows from the
fact that the number of these sets is equal to the rank of the right hand side of
the formula (14), and this rank coincides with the cardinality of RB, i.e. with the
number of irreducible components of Y. Therefore, if all these sets are irreducible
then their closures must be irreducible components of U. In this case we obtain a
bijection of required form. Hence it is enough to prove that the sets Y*71:72 are
irreducible. Note that all the fibers of the projection Y* Y172 — Z* have the form
Flu, 7 (@) X Flus, 1, (w)- It means they are irreducible and have the same dimension.
So it is enough to prove that Z*t is irreducible.

Let t = (v,0,1). Let O, ¢ be an orbit in N' x V corresponding to the pair
(v,0), i.e. the set of all (u,v) € N'x V such that the type of u is equal to v and
the type of u|y/(ku).v) 15 equal to §. We have the natural pojection Zt — Oyp.
The fiber of this map over a point (u,v) is isomorfic to the set of v* € V* such
that u +v ® v* € O, where O, C N. One can check that this subset is an open
subset of an affine subspace of V*. So the fibers of this projection are irreducible.
Besides, this bundle is homogeneous. Since the orbit O, ¢ is irreducible, we obtain
that Z* is irreducible. O

Remark 1. Instead of using the formula (14), one can directly compute the di-
mension of the sets Y7172 showing that dim Y*”"72 = dim Y, which amounts
to proving the equation

dim Z* = N? — n(v) — n(v/)
where t = (,0,1'), and n(v) = 3,5, (i — Dv;.
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3.4. Notation

We will call the map @ — (t(w), Ty (@), T2(w)) constructed in 3.3 the mirabolic
RSK correspondence and denote it by RSK ;.

3.5. The description of mirabolic RSK correspondence

We are going to give a combinatorial description of mirabolic RSK correspondence
defined in Proposition 1. Let w = (w,3) € RB. We will construct step by step
a standard Young tableau. Besides we will need a separate row of infinite length
(denote it by r®) consisting originally from the symbols “@”. We assume that “@”
is greater than all the numbers from 1 to V.

We will run next procedure successively for i =1,2,..., N :
la. If i € B then insert w(i) into the tableau T'® (originally empty) according

to the standard row bumping rule of the RSK algorithm described in [9] ( The
tableau T changes as the next element is inserted).

1b. If i ¢ (3 then insert first w(i) into r® instead of the least element greater
than w(i), and then insert the element removed from ¢ by replacing into tableau
T via row bumping algorithm (see [9].)

2. After all the elements w(1),...,w(N) are inserted, we should insert the
elements of r® successively via standard row bumping algorithm.

3a. After that we construct T () from the tableau T by throwing out all
the symbols “@”.

3b. T1(w) is defined as the standard tableau where number
cell that was added into T® at the i-th step.

3c. Finally, t(w) = (v,0,v') where v = Sh(Ty(w)); v/ = Sh(Ty(w)); 6 =
(Sh(T))_  and we have denoted

Sh - the operation of taking the shape of a tableau;

“” stands in the

()— - the operation of removing of the first part of a partition;
T? - the tableau T® obtained at the last step of the algorithm.

Let us illustrate the above construction by the following example.

3.6. An example

Let N = 10, w = 7,2,5,1,6,9,3,8,10,4; 3 = {1,2,3,4,7}. The tableau T® and
the row r® obtained at the i-th algorithm step will be denoted as T,® and 7"
respectively. So:
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As result we have v = Sh(Ty(w)) = (5,3,2); v/ = Sh(Tx(w)) =
(5,3,2); 6 = (Sh(T®))_ = (00,5,2,1)_ = (5,2,1). Note that coincidence of v
and v/ is purely accidental.

Theorem 2. For any w € RB the triple (t(w),T1(0),T2(w)) obtained by the
mirabolic algorithm described in 3.5 coincides with the triple (t(w), T, T2) defined
m 3.3.

Proof. Consider colored permutation w4 € RBsn defined by the formulas

by = (wg,B4)
i+ 2N if i<N
wi(i)=dw(i—N)+N if N<i<2N
i—2N if ¢>2N

By = {i+Nliep}

Consider a general point = € Yy, , x = (Fi, Fa,u1,uz,v,v*). Denote by S
the annihilator of k[uj] - v*. We are going to describe the relative position of flags
FinSand FoNS.

3.7. The relative position of flags F; NS and Fo NS

Define 2 sequences of subsets {v,,} and {J,,} (m > 1) inductively as follows:

1.y =41,...,3N}\ B4.

2. &, consists of all 4 € 7, such that there exists no j € ~,, satisfying both
inequalities j < i and w4 (j) < w4 (7).

3. TYm+1 = Tm \5m

It is easy to check that §,, # @ iff 1 < m < N, moreover, the minimal
element of J,, is equal to m and the maximal one is equal to m + 2N. Define a
permutation w] : {N +1,...,3N} — {N +1,...,3N} as follows:

w) (i) = w4 (7) ifvefy
! w4 (j), where j = max{l € §,,|l < i} ifi €y,

Lemma 3. The flags F} NS and F3; NS are in relative position w.

Proof. Choose a basis eq,...,esn of Vi such that Fi; = (e1,...,e;); Fs; =

(€w,(1)s+++»€w,(j))- Denote by {e;} the dual basis. Then by sufficiently general

choice of the point z and the basis {e;} we will have (u.)™v* = Y am el
T€EYm—1

where the coefficients a,, ; # 0. Note that the space S is the intersection of kernels

of functionals (u*)™v*, where 0 < m < N —1. Hence it is transversal to the spaces

Fi n and Fy . Therefore i-dimensional subspaces of the flags /4, NS and F» NS

have a form Fy ;4+ny NS and F ;4 n N S.

Denote by r; j(w}) the number of all ¢ such that ¢ < i and w}(i’) < j. Then
to prove the lemma we have to show that dim Fy ; N F ; NS = r; ;(w)) for any
i, € {N +1,...,3N}. Define r; j(wy) in the same way. Then dim Fy ; N F5 ; =
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ri,j(wy). Denote by R; ; the set of all i’ < ¢ such that wy (i) < j. Then Fy ;N Fs
has a basis {e;s} where i’ € R, ;.

Note that if m < m/ and §,, N R; ; # @ then &, N R;; # &, so we can
find k@j Z 0 such that 5m n Ri,j 7é g iff m S ki,j- Then (U*)mv*|F1,iﬂF2,j 7é 0 iff
m < k; j. Moreover, for m = 1,...,k; ; these functionals are linearly independent.
By this reason the space Fy; N F5; NS being the intersection of kernels of these
functionals has dimension dim Fy ; (| Fa ; (S = dim Fy ; ( Fa; —kij = i j(wy) —
ki j.

It remains to prove that r; j(wy) — k; ; = 7 j(w]). We have the following
equalities:

C=

Rij(wy) = (Rij(wi) NB)UCU Rij(wi) Nom);

1

m

Rig(w}) = (Ruwt) 08 UC U Ri(wt) 016,)

From the definition of w} we obtain R; ;(w}) N B = R; ;j(w4) N 3. Besides,

in the case m > k; ; we have R; j(w}) Ndpm = R j(wy) Ny =@

in the case m < k; ; we have R; j(w]) N0m = R; j(wi) N \ {im }, where i,
is the minimal element of R; j(w4) N &y,

This implies that the set R; ;(w]) can be obtained from the set R; j(w4) by
removing the elements iy, . .., 1, ., whence we get the required equality: r; j(w]) =
ri,j(uq_) 7]?71‘,]‘. O

3.8.

Let, as before, x = (F1,Fz,u1,u2,v,v*) be a general point of variety Y. ;
S = (k[ui]v*)t. Let u = u1|s = —uzl|s, and let T} and T} be the standard tableaux

such that 1 NS C Fl, 75 Fo NS C Fly, 7.

Lemma 4. One can make the flags F1 NS and F5 NS to be any points of varieties
Fl, 1/ and ¥l, 1; by an appropriate choice of a point x.

Proof. Consider any F € Fl, 7, and F§ ¢ Fl,7; and let the flags Fj, F; be
Fy = Fg ifi <N
F,=F, y+F.uny ifi>N

Then ' = (Fy, F,u1,uz,v,0*) € Y. Note that the correspondence
(F1, F3) — 2 defines a map f : Fl, 7y x Fl, 7y — Y.

Since Fl, 17 X F1, 7 is irreducible, the image of f belongs to one irreducible
component of Y. As this image contains the point z, it lies in Yy, . Finally, as

F? and F3 are arbitrary points of Fl, 7; and Fl, 7;, replacing = by x' proves the
lemma. (|

defined (for & = 1, 2) as follows: {
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3.9.

According to Lemma 3, the relative position of F; NS and F» N S is given by the
permutation wy, so using the result of Spaltenstein ([18]), we see that the pair
T/, T4 corresponds to wy by the classical RSK correspondence.

Now note that the spaces Fjan and Fpon are invariant with respect to
both operators u; and ua. Let V = Fy oy N Fyon. Then a sixtuple (F1 NV, F> N
V,u1|v,usly,v,v*|y) is a general point of variety Yg. Let (t(w),T1(w),Ta(w))
be the triple defined in 3.3 and t(w) = (v,0,v'). Then F1 NV € Fly,|, 7 (@) »
F, NV € Fly,|, @) and 6 is the type of the nilpotent u1|v /kju,ov-

Lemma 5. The tableauz Ty (w) and To(w) are obtained of the tableaux T| and T;
by removing the numbers N +1,...,2N.

Proof. By the reason of symmetry, it suffices to prove the lemma for T} (w) which
we will denote by T for short. Recall that 77 is defined by the condition F; NS C
Fl,,|s,7;- So denoting by Ty the tableau obtained from T by removing the numbers
greater than N, we have
FinsSn FLQN S Flul\SmFLQN,Tl .

Note that the spaces V' and S N Fjon are both complementary to Fj n inside
F1 2n. Therefore they can be identified with Fy on/F1 v. Under this identification
the operators u; |y and u1|snr, ,y g0 to the same operator ui|p, ,y/r - Similarly,
the flags F1 NV and F1 NS N Fyon go to the same flag (F1 N Fy on)/F1,n. From
this we obtain that

(FlmFl,QN)/Fl,N € Fl and (FlﬁF1,2N)/F1,N c Fl =

uilpy oy /Fy N0 T1 uilpy on /Py o T1

Now F3j being a general point of a certain component of the variety Fl,, we obtain
that Tl = Tl. O

Lemma 6.

6 = (Sh(T}))- = (Sh(T}))-.

Proof. By definition of the tableaux T| and T4, their shape coincides with the type
of nilpotent u = u1|s = uz|s. On the other hand, 6 is the type of u1 |y /k[u,]»- Define
L := k[u]v and consider the space D = (Fy n + Fa,n) NS+ L. It is invariant under
u, moreover u|p has only one Jordan block (it can be checked directly). Besides,
DNV = Land D+V = 8. Therefore u|y,;, has the same type as u|gs/p. Define
d := dim D. Then from the equalities S = D+ V, dimV = N, dimS = 2N,
it follows d > N. So d is the least power of u vanishing on S. Hence, the type
of u|g/p is obtained from the type of u|s by removing the maximal part of the
partition. O
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3.10. The completion of proof of Theorem 2

Let (v©,60° (V) T, TS) be the result of application to w of the algorithm
described in 3.5. We have to prove that this quintuple coincides with
(v(w), B(w), V' (), Ty (@), To(w))-

Note that the result of application of algorithm 3.5 will not change if instead
of infinite row of symbols “@” we will take finite sequence N + 1,...,2N. Then
i+ N € §,, iff at the i-th step of the algorithm w(%) is being inserted into the m-th
position of 7®. In this case w; (i) is the number inserted into T® at the i-th step
of the algorithm. Hence, if we apply to w; the classical RSK algorithm and after
that throw out from the tableaux T3 (w;) and T (w1 ) all the numbers greater than
N then we obtain the same pair of tableaux as the pair 77 and T3 obtained by
the algorithm 3.5.

Moreover, the partition 8¢ has the form 6 = (Sh(7}(w;)))—. We have proved
above that

Ti(wy) =T7; To(wi) =Ty; 6= (Sh(T}))-.
In view of Lemma 5 we obtain
Ty =Ty (w); Ts =Ty(w) and 6°=6(w).

The proof of Theorem 2 is completed. (]

4. Hecke algebra and mirabolic bimodule

4.1.

Let X be a finite set and E be a vector space over C with basis {eq}aes. Then
the algebra End(F) of all linear operators on E can be described as the algebra
of C-valued functions on ¥ x ¥ with the multiplication given by convolution:

(f % 9)(e, 8) =Y fla,7)g(v,B)

yeX

If a finite group G acts on ¥ then it also acts on E and End(FE). Denote by
H = Endg(F) C End(F) the algebra of G-invariants in End(E). It consists of all
functions on ¥ x X that are constant on each G-orbit.

Now let k = I, be a finite field of q elements. Let V, X, Y be as in the previous
section. Let X be the set of k-points of FI(V') and G = GL(V'). Then the algebra
H from the previous paragraph is called Hecke algebra. It has a basis consisting of
characteristic functions of orbits. Denote by T, the characteristic function of €2,
considered as an element of H. Now consider the vector space R of G-invariant C-
valued functions on X (k) where X = F1(V)) x F1(V) x V. It has a natural structure
of H-bimodule. Namely, if f € H,g € R then

(f*g)(Fl,FQ,U): Z f(FlaF)g(FaF27U)a
Fe[F1(V)](k)
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(g*f)(Fl7F2aU): Z g(FhFaU)f(FaFQ)'
Fe[F1(V)](k)

Ifw € RB,let Tz € R denote the characteristic function of the corresponding
orbit 5 C X. Note that the involutions (Fy, Fy) < (Fa, Fy) and (Fy, Fa,v) <
(Fy, Fy,v) induce anti-automorphisms of the algebra H and the bimodule R. These
anti-automorphisms send T, to T,,-1 and Ty to Tj-1 where w~! = (w1, w(p))
for w = (w, B).

4.2. Explicit formulas for the action of H in R

We are now going to compute the H-action on R in the basis {Tz}. It is known
that the algebra H is generated by the elements T, where s; = (i,¢ + 1) is the
elementary transposition. So, it suffices to compute Ty, Ty and TyTs,. We will
compute only Tj3Ts,, since the other product can be obtained by applying the
above anti-automorphisms.

Proposition 2. Let w = (w,3) € RB and let s=s, € 6Gy,i€{1,...,N —1}.
Denote ws = (ws,s(8)) and @' = (w,8 A {i + 1}). Let 0 = o(w) and
o' = o(ws) be given by (6). Then

Ty ifws>wandi+1¢ o,
Tos + Tiwsy if ws >w andi+1¢€ o,

ToTs =  Tyr + T s if ws <w and BN = {i}, (8)
(¢—1)Ts + qTws ifws <wandi¢o,

(¢—2)Te +(q— 1) Ty +Tws) fws<wandtCo
where v = {i,1 + 1}.

4.3. Tate sheaves

It is well-known that H is the specialization under q — ¢ of a Z[q,q~!]-albebra
H. The formulas (8) being polynomial in ¢, we may (and will) view R as the
specialization under q + ¢ of a Z[q,q~!]-bimodule R over the Z[q,q~!]-algebra
H. We consider a new variable v, v? = q, and extend the scalars to Z[v,v~!] :
H:= Z[V,V_l] RzZ[q,q-1] H; R := Z[V,V_l] ®zlq,q-1] R.

Recall the basis {H,, := (—v)~“®)T,} of H (see e.g. [17]), and the Kazhdan-
Lusztig basis {Ew} (loc. cit.); in particular, for a simple transposition s, H, =
H, —v~!. For @ € RB, we denote by () the difference dim(Qz) — n, where

= W = dim(F1(V)). We introduce a new basis {Hg := (—v) @) Ty} of
R. In this basis the right action of the Hecke algebra generators H , takes the form:

Proposition 3. Let w = (w,3) € RB and let s = s; € Gy, 1 € {1,...,N — 1}.
Denote ws = (ws, s(8)) and @' = (w,8 A {i+1}). Let 0 = o(w) and ¢’ = o(ws)
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be given by (6). Then

Hgs — v 'Hg ifws>wandi+1¢o,

Hgs — v_lH(ﬁ,s)/ —v tHg ifws>wandi+1€do,
HiH,={ Hy —v '"Hgy — v 'Hg, ifws<wand BNe={i}, (9)

Hgs — vHg ifws <wandié¢o,

(v ' —v)Hzg + (1 —v ) (Hy + Hzs) ifws<wand:Co
where v = {i,1 + 1}.

It is well known that H is the Grothendieck ring (with respect to convolu-
tion) of the derived constructible G-equivariant category of Tate Weil Q;-sheaves
on FI(V) x FI(V), and multiplication by v corresponds to the twist by Q;(—1)
(so that v has weight 1), see e.g. [4]. In particular, H,, is the class of the shriek
extension of Q[¢(w) + n](%) from the corresponding orbit, and H,, is the
selfdual class of the Goresky-MacPherson extension of Q;[¢(w) + n](%) from
this orbit. Similarly, we will prove that R is the Grothendieck group of the de-
rived constructible G-equivariant category of Tate Weil Q;-sheaves on X, and
‘H-bimodule structure is given by convolution. In particular, Hy is the class of

the star extension of Q[¢(w) + n}(%) from the orbit Q; C X. We will de-
note by ji.Qi[¢(w) + n](%) the selfdual Goresky-MacPherson extension of
Qi[e(w) + n](%) from Q4 C X, and we will denote by Hyg its class in the
Grothendieck group.

Recall that a G-equivariant constructible Weil complex F on X is called Tate
if any cohomology sheaf of its restriction 4% F' and corestriction i F' to any orbit
Q4 admits a filtration with successive quotients of the form @l(m), m € %Z. If for
any w € RB the sheaf i, Q[¢(w) + n](@) is Tate, then the shriek extension
7 Qil(w) + n](@) is Tate as well (see Remark between Lemmas 4.4.5 and
4.4.6 of [4]). Note also that the G-equivariant geometric fundamental group of any
orbit Qg is trivial. Hence the classes Hg = [1Q;[((D) + n](@)] do form a
Z[v,v~1]-basis of the Grothendieck group of G-equivariant Tate sheaves on X,
and this Grothendieck group is isomorphic to R.

In order to prove the Tate property of ji. Q;[¢(w) + n](%), we need to
study certain analogues of Demazure resolutions of the orbit closures Q.

4.4. Demazure type resolutions

We consider the elements w; = (w,;) € RB such that w = id (the iden-
tity permutation), and 8; = {1,...,i}, where i = 0,...,N. We set Hg, =
Zogjgi(—v)j_iHﬂ,j. This is the class of the selfdual (geometrically constant) IC
sheaf on the closure of the orbit ,.

We fix k& (0 < k < N), and a pair of sequences i1,...,%, and ji,...,Js of
integers between 1 and N —1. Let S = Sfllj “* be a variety of collections of flags

g

and vectors (Fo, ..., F., F},...,F. v) such that:
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1. (FT,FO, ) € Qu,

2. (Fp-1,Fp) € Q4 foranype{l T

3. (F]_,,F) ey , forany ¢ € {1,... s}

In other Words,

S = ﬁsil XF](V) e XF](V) ﬁsir ><Fl(v) ﬁﬁ)k ><Fl(v) ﬁsjl XF](V) e ><Fl(v) QSJ‘S
Consider a map ¢ = ¢itvds o giuedsk L X which  takes

L1yl [ARTIIE 28

Fo,...,F, F}, ..., F to (Fy, F',v).

Proposition 4. For any w € RB there exist i1,...,1:;j1,---,]s and k such that:
a) $(S) = Qg, moreover ¢ is an zsomorph@sm over Qg
b) The sheaf ¢.(Q;) is Tate.

Proof. a) We proceed by induction in £(w) = dim Q5 —n. Assume the proposition 4
is true for any w’ such that £(@0') < £(w).

Let w = (w, 3). If w = id then w = Wy, for some k. We choose i1, ..., 4, and
1, ---,Js to be the empty sequences. Then the map ¢ is an embedding Q3 — X,
and the proposition is true. Otherwise (w # id) it is easy to show that either
ws; < w and ws; = (ws;, $;(B)) € RB, or s;w < w and (s;w, ) € RB. Without
loss of generality we can restrict ourselves to the first case (the second one is
obtained replacing w by Wt = (whw(B)) ).

Let S = Sy 7% ¢f = ¢l Then

1,21, 1y 2,215

S = ﬁsi X S. (10)

FI(V)

By the induction hypothesis, S contains an open dense set mapping isomor-
phically by ¢ onto (gs,. It follows that a map €2; X, g5, — X has an image
lying in Q4 , moreover, this map is an isomorphism over Q. According to (10), S’
contains an open dense subset isomorphic to €2, x Qas,, hence ¢/'(S") = Qg,
and ¢~ 1(Qg) is isomorphic to Q.

b) We will prove by induction that any fiber of ¢ is paved by the pieces
isomorphic to A*¥ x G",. Moreover, the union of pieces constructed at each step is
a closed subvariety of the fiber.

If r = s = 0 then any nonempty fiber is just a point, and the statement is
obvious. Otherwise without loss of generahty we can assume 7 > 0.

Let S = Sfll i ’Js’“ and S’ = Sjl’ ’js’ . We have a commutative diagram:

FI(V)

S=Q, Xp, 8 —=Q,, xFI(V) xV (11)
\ Y=pri1 Xidpﬁ) Xidy
¢ /
X

where 7(Fy, ..., F., Fy,...,F)) = ((Fy, F1), F.,v).
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It is easy to see that the fibers of the map 1 are isomorphic to P!. For each
point x € X we obtain the corresponding map 7 : ¢~ !(z) — ¢~ (x) = PL. We have
the following commutative diagram, whose middle part coincides with diagram 11:

¢~ () - v (@) 2P

X
— ! T
S =Qs, Xy, S Qs x FI(V) x V
d) ¢:pr1 XidFl(V) Xidv
projection pr2 Xidp)(v) Xidy

X

s’ " X

(12)
All the 4 squares in this diagram are Cartesian.

Denote by s : ~!(z) — X the composition of maps from the commutative
diagram 12. This map is an embedding.

For each point y € ¥~ (z) we have 771 (y) = (¢/) ! (5(y)). By the induction
hypothesis, all the fibers of ¢’ can be decomposed into pieces of required form. If
x = (F,F’,v) then the image L of the map s consists of triples (F, F",v) such
that (F', F) C Q,. For 2’ € X the fiber (¢)~!(z’) depends only on the orbit Q5
which contains z’. The line L can intersect 2 or 3 such orbits; one intersection is
open in L, and any other intersection is just one point.

Let U = L) Q4 be the intersection open in L. Since all the fibers of 7 admit
a required decomposition, it is enough to construct the decomposition of the set
7 Y U") = ¢—1(U) where U’ = »—1(U) = U. This follows from the fact that the
bundle (¢')~1(U) — U is trivial.

Indeed, in this case for any 2’ € U we have ¢/~1(U) = U x (¢') "1 (z'), because
¢'~1(2") admits the required decomposition, and U is isomorphic to either Al or
G-
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It remains to prove the triviality of the bundle (¢')~!(U) — U. Note that the
bundle S — X is GL(V)-equivariant. Choose a point 2’ € U and consider a map
GL(V) — X, given by ¢ — g-2’. Then the induced bundle S x , GL(V) — GL(V)
is trivial, so it is enough to prove that there exists the dotted arrow in the diagram

U“ X (13)

This can be checked directly.
So the proof of proposition 4 is finished.

Corollary 2. Bimodule R is generated by the elements e; = Ty, .
Proof. We prove by induction on £(w) that Ty € Y, He;/H.

Choose i1, ...,%r,j1---,Js and k as in Proposition 4. Then
Tjs le 'Ti)k Tz, Tzl :Tﬁ,—i- ZaﬁTﬁ
A<W

where az € Z[v,v~!], and @ < % means 23 C Q. The left hand side of this equal-
ity belongs to HexH (recall that e, = T3, ). Besides, by the induction hypothesis,
Ta € Y, He;H for each & < w. Hence, Y. azTy € >, He;H.

From this we can conclude that T; € ZZ He, H. O

Corollary 3. For any w € RB, the sheaf j1.Q[{(w) + n](%) is Tate.

Proof. Follows from Proposition 4.b) by the Decomposition Theorem. O

Corollary 4. The Grothendieck group of the derived constructible G-equivariant
category of Tate Weil Q;-sheaves on X is isomorphic to R as an H-bimodule with
respect to convolution.

4.5. Duality and the Kazhdan-Lusztig basis of R

Recall the involution (denoted by h — h) of H which takes v to v—! and H,, to
H,,. It is induced by the Grothendieck-Verdier duality on F1(V) x F1(V'). We are
going to describe the involution on R induced by the Grothendieck-Verdier duality
on X.

Recall the elements w; = (w,B;) € RB such that w = 1id (the
identity permutation), and 3; = {1,...,i}, where ¢ = 0,...,N. We set
Hg, = Y g<;j<;(—V)!"Hg,. This is the class of the selfdual (geometrically

constant) IC sheaf on the closure of the orbit Q,.

Proposition 5. a) There exists a unique involution v — 7 on R such that Eﬁj =
Eﬁ)i for anyi=0,...,N, and hr = h¥, and rh =Th for any h € H and r € R.
b) The involution in a) is induced by the Grothendieck- Verdier duality on X .
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Proof. The uniqueness in a) follows since R is generated as an H-bimodule by
the set {H @5 L = 0,...,N}, according to Corollary 2. Now the Grothendieck-
Verdier duality on X clearly induces the involution on R satisfying a); whence the
existence and b). O

Now let w1 < wo stand for the adjacency Bruhat order on RB described
combinatorially in [15], section 1.2.

Proposition 6. a) For each W € RB there exists a unique element Hg € R such

that Hy = Hyg, and Hg € Hg + di<id v 1Z[v=1Hj.
b) For each w € RB the element H g is the class of the selfdual G-equivariant
IC-sheaf with support Q. In particular, for w = W;, the element H g, is consistent

with the notation introduced before Proposition 5.

Proof. a) is a particular case of [13], Lemma 24.2.1.
b) We already know that Hg is the class of jiQ;[{(w) + n](%), and
7 Qul(w) + n}(@) is Tate. Now b) follows from the Beilinson-Bernstein-

Deligne-Gabber purity theorem by the standard argument (see e.g. [3], section 6).
O

4.6. Pointwise purity

We are now going to show that the sheaves i, Q[¢(@') + n](w%) are pointwise
pure. We choose a point Fy € F1(V) and denote by B € GL(V) the corresponding
Borel subgroup. We consider the preimage of Fy under the second projection X’ :=
Xp, = pry H(Fo) € X, Xp, = FI(V) x {Fo} x V2 FI(V) x V. Fix @ € RB, and
let Q' = Qy 5, = Qy N Xp, be the corresponding B-orbit in Xp,. Choose a point
S XFO~

Lemma 7. There exists a one-parameter subgroup x : G,, — B preserving x,
whose eigenvalues in the normal space Ny x/Q' are all positive.

Proof. Let w = (w, ), x = (Fy, F1,v). Choose a basis e1,...,exy of V such that
Foi=(e1,---,¢€i), F1i = (€w(1) -1 Cuw(i))s V=D _;co € Where o is defined by (6).
Define sets 5, v, 0r,0; C{1,...,N},i=1,2,... inductively as follows:

e /i=0,m={L....,N}\ 5
e o, ={ic€B |BjeB (j>iandw(j) > w())};
Sp={icy |y (G <iandw(j) < w(i))};
L ﬁrJrl = ﬁr \ Ory Yr+1 = Vr \ 67"-
Let (k1,...,kn) be the integer sequence given by k; = 1—rif i € 0., and k; = r if
i € 6,. Then it is not hard to verify that the homomorphism t + diag(t*1, ... t*~)
satisfies the required condition. O

Proposition 7. The intersection cohomology sheaf ji. Qi[¢(w') + n](%) of an
orbit Qg C X is pointwise pure of weight zero.
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Proof. We denote the locally closed embedding Q4 g, < X' by a. The statement
of the proposition is equivalent to pointwise purity of a!*@l. We choose a point x €
= QR C ﬁu;/’ r,- Due to B-equivariance, it suffices to prove the purity of the
stalk of a.Q; at x. We claim that there is a locally closed subvariety Y’ C X’ such
that a) YN = x; b) Y’ is smooth at z; ¢) the tangent space T, X' = T, @T,Y’;
d) Y is stable under the action of the one-parametric subgroup x(G,,); moreover,
Y is contracted to x by this action. The existence of Y’ with required properties
follows from Sumihiro equivariant embedding theorem [20].

We denote the locally closed embedding Q4 g, NY’ — Y’ by a’. The inter-
section cohomology sheaf a],Q; on Y is x(G,, )-equivariant, and hence its stalk at
x is pure, see e.g. [19]. The morphism b: B x Y’ — X' (g,y) — g(y) is smooth
at the point (e,z) (where e is the neutral element of B) due to the condition c)
above. It follows that b*al*@l\(ew) = PTSGf*@H(e,x) where pro : BxY' — Y’ is
the second projection. We conclude that the stalk a;,.Q;|, is pure. The proposition
is proved. B O

Corollary 5. We define the Kazhdan-Lusztig polynomials Pgy by
Hy = 3 5<5PagHy. Then all the coefficients of Pgg are nonnegative
integers. The coefficient of v=* in Py 5 vanishes if k # £(®) — £(§) (mod 2). O
4.7. The structure of the H-module R

It is known that the algebra H ®z[y,v-1] Q(wv) is isomorphic to the group algebra of
symmetric group Q(v)[& n]. Hence, the isomorphism classes of irreducible modules

over H ®z[y v-1] Q(v) are indexed by the set of partitions of N. We denote by V,,
the irreducible module corresponding to a partition v.

Proposition 8. H ®z[y 1] Q(v)-bimodule R ®@yyv-1] Q(v) has the following de-
composition into irreducible bimodules:

R ®Z[v,v—1] Q(V) = @ Vu* ®Q(v) Vir (14)
(7,0,0")€T
where the sum is taken over all the triples of partitions v,0,v" such that |v| =
|| = N and for any i > 1 we have v; > 0; > v; — 1; v > 6, > v] — 1.

Proof. Choose a finitely generated Z[v,v~!]-algebra A C Q(v) such that
H ®zv,v-1) A is isomorphic to a direct sum of matrix algebras over A, so that
V., is defined over A. Then it suffices to prove that this isomorphism holds after
the specialization - ® 4 C which takes v + ,/q where ¢ is a prime power such that
A # (v? —¢)~!. In this case the left hand side of formula (14) can be interpreted
as
Endp(k) (E) @ H ®z[v,v—1] C

where P(k) C GLy is the stabilizer of v # 0, and F is the vector space introduced
in subsection 4.1. According to [21], Theorem 13.5.a), the irreducible components
of P(k)-module E are indexed by partitions 6 with [#] < N. We denote by Wy
the irreducible representation of P(k) indexed by 6. Denote by U, the irreducible
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unipotent representation of G(k) indexed by v. Then the restriction of U, to P(k)
is a direct sum of the representations Wy (with multiplicity one) for all 8 such that
v; > 0; > v; — 1 for any ¢ and 0 # v.

As a representation of the group G(k), F admits a decomposition as follows:

E=Pu, oV,

(Here G(k) acts on V,, trivially). Therefore, as a representation of P(k), E can be
written in the form
F = @ W9 ® VI/

vi20;>vi—1
v#60

It follows that

(7,6,0)€T
where the sum @' is the same as in formula (14), but the case v = § = v/ is
excluded. Besides, we have H ®y,,v-1] C = @, V) ® V,,. Adding these equalities,

we obtain the required result.
O

5. Bimodule KL cells

5.1.

Consider all possible subbimodules of bimodule R spanned by subsets of basis Hy.
We say that two coloured permutation w and w’ belong to the same Kazhdan-
Lusztig bimodule cell if for each such subbimodule M we have Hg € M <=
H 1w € M. If instead of subbimodules we consider left or right submodules then we
obtain the definition of left and right Kazhdan-Lusztig cells.

For N = 3, a big part (for 8 nonempty) of RB is depicted in [15] 1.3
with the help of Latin alphabet. It is a union of 13 two-sided KL -cells:
{max}, {z,u}, {g,0,p.h}, {o,t}, {v,w,m,n}, {s,0,k,b}, {r,q}, {g,/} {Lch
{j,d}, {e}, {a}, {min}. We take this opportunity to add two order relations
missing in loc. cit.: c<l, r <.

Conjecture 1. The bimodule KL cells coincide with the two-sided microlocal cells.

We are only able to prove an inclusion in one direction, see Theorem 3 below.
First we have to formulate and prove a few lemmas.

5.2.

Consider the projection 7/: Y — FIO(V) x FI(V) x V x N x N x V* where
F1®) (V) is the variety of flags consisting of subspaces of V which have dimensions
0,...,i— 1,4+ 2,...,N. This projection sends a point (Fi, Fa,v,u1,us,v*) to
(Fy, Fy,v,u1,uz,v*) where F| is obtained from F; by deleting the subspaces of
dimensions i,7 4 1. Let Y; = m(Y).
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Besides, for each ¢ € {1,...,N — 1} consider the set ®; C RB defined
as follows: (w,B) € @; iff for a general (Fy,Fs,v,u1,u2,v*) € Y, g we have
u1lp, 11 /F,_, = 0. Denote by s; = (i, + 1) the elementary transposition.

Lemma 8. a) Let (w,3) € RB,i € {1,...,N — 1}. Then (w,) € ®; iff w(i) >
w(i+1) and N {i, i+ 1} # {i}.
b) Let (w,B) and (w', ") be distinct colored permutations. Then (Y g) =
7 (Y p) iff w(j) = w'(§) when j € {1,...,N}\ {i,i +1,i+ 2},
BAB = (B\B)U(B'\B) C{i,i+1,i+ 2}, and one of the following conditions
is satisfied up to interchanging (w, ) and (w',3"):
1 w(i) <w(@+2) <w(+1),
B {ii+ 10 +2) € {@,{i}, {i,i+ 2}, {60 + 1,0 + 21},
w' =ws;, 3 =s5(03);
2. w(i+2) <w(t) <w(+1),
5ﬂ{i7i+ 1 i+2} e{o,{i+2},{i,i+2}, {5, i+ 1,9+ 2}},
w' = wsit1, B = si11(P);
3. wi+2) < w(H— 1) < w(i), BN {iyi+ 1,0+ 2} = {i,i+2},
w' = wsit1, B = si1(0);
4. w(i+2) <w() <w(+1), sN{i,i+1,i+2} = {3},
w' = wsi, B = si(B);
((+2)<wi+1) <w(), n{i,i+1,i+2} ={i},
w=w, F=pU{i+1}.
Proof. a) Let {e;} be a basis of V and x = (Fy, F»,v) € Q3 be the element given
by (3), (4), (7). We must find the conormal space N}, 3 C T X. It is isomorphic
to the space of triples (u1,us,v*) such that ug is a nilpotent preserving Fj and
up + us +v @ v* = 0. Let

5. w

N N
up =Y (w)i;Bij, v =) cief (15)
ij=1 i=1

where E; ; is defined by (5) and e is the basis dual to e;. Then the last relation
is equivalent to the fact that the following conditions are satisfied:

;i =0 for i € 3;
(Ul)z —(u2)ij fori,j € Bori,j&p;
(uk)”—() fori € B, j€p;
(U1)23+(u2)1] = —Cj forie B, j &8, i<y, w(z)<w(]),
(u1)ij = —¢j, (u2)i; =0 forie B, j&p, wi)>w(j);
(u1)i; =0, (u2)i; =—c; foriep, j&p0, i>j.

If we substitute j = ¢ + 1, we obtain the statement a) of the lemma.

b) Note that the fiber (7))~!(§) over an arbitrary point § = (Fy,Fy,v,

K3
U1, uz, v*) € Y; is isomorphic to the variety of full flags in the 3-dimensional space
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F1it2/F1 -1 fixed by uy ; = uy |F~'1_i+2/ﬁ‘1,i—1. The structure of this variety depends
on the type of u; ;. There are three possibilities for this type: (3),(2,1)and (1,1,1).
Denote W = 7(Yy, 5), W = wi (Y. g). Since 7} is proper, W and W' are closed.
Suppose W = W’. This means that for a general point § € W the fiber (7})~1(7)
is reducible, so the type of u; ; equals (2,1). Such fiber has a form of a union of

two intersecting projective lines:

(™)~ (@H) = L(§) Ul (9);
L(9) = {(Fy, Fa,v,u1,u9,v*) € (7)) 7H(G) | Fri/Fiio1 = imug ;i };
12(9) = {(F1, Fa,v,u1,u,0*) € (7)1 (§) | Friv1/Fri-1 = keruy ;}.

Let U C W be the set of all § € W such that the type of uj,; equals (2,1).
It is an open dense subset in W. Consider the sets Uy = Uy k(7). The set
Uy UUy = (7)) ~Y(U) is an open subset of ()~ (W). Since U1 UUs C Yy U Y, 5
and U}, are irreducible, we must have either Y, 3 = Uy, Yo g = Uz or Yy, 5 = U,
Y g = U;. Without loss of generality, we can assume that we have the first case.
Then it is easy to see that (w,8) € ®;41 \ D4, (W', 3') € D; \ Pig1.

Conversely, if (w,3) € ®; \ ®;41 (resp. (w, ) € ®;41 \ ®;) then the type of
uy ; for a general § € W is (2,1). Therefore, we have Y, g = Uy (resp. Vi, g = Uz).
So, there exists exactly one (w',3") € ®;41 \ ®; (resp. (w,3) € ®; \ ®;41) such
that W;(Yw,g) = W;(leﬁl).

It is clear that the condition (w,f) € ®,11 \ ®; is equivalent to the fact
that the first two parts of one of the conditions of the lemma are satisfied. So,
we must prove that if (w’, ') is given by the last two equations of this condition
then we have W = W’'. Choose a general y € Y, 3 and let § = w}(y). Since
(w,B) € ®iy1 \ ®;, we have y € [1(g). We must prove that l5(§) C Y, g. Let
y = (F1, Fa,v,u1, ug, v*) be given by (3), (4), (7) and (15) for some basis {e;}.

First suppose the condition 1 of the lemma is satisfied. Then we have a :=
(w1)iit1 # 0, b:= (u1)ii+2 # 0, (u1)it+1,i+2 = 0. So,

keruy ; = (e;, bej+1 — aeipo) mod Fy ;1.

Consider the space Fj ;,, such that F} . ,/F1 ;1 = keruy ;. Then
Fi 41 =g Friy1 where g =id — (a/b)Ei12+1 € GL(V).

A general point y1 € l2() has a form y; = (FY', F,v,u1,uz,v*) where F{/;,, =
Fi o and FY'; = Fyj for j # 4,9+ 1. If F{' # g- I then F{' = ghs; - | where
h =id + cE; ;41 for some ¢ € k, and s5; € GL(V) is given by s;e; = e, (j)-
Denote ¢’ = ghs;. Let 3/; = (¢/)~! - y1. Then
v = (Fi, (9)7 F, ()71 v, (Ad(g)7Y) - wr, (Ad(g)7Y) - g, (9')"0")

Note that g and h preserve Fs, so we have

() F=sh gt Fy=s-F
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Therefore (¢') "' Fy ; = (€wr(1),- - €wr(j)) for all j. Further,

(¢) o= djsie; = D da, e
JjEB Jjep’
where d; € k and d; # 0 for general a,b,c. This implies that y] € N*Q, 5 C
Y. g . Hence y1 = ¢’ -y € Yy . Thus any general point y; € lo(y) lies in Y, .
Therefore 12(7]) C Yw/ﬂ/. QED.
Other cases can be considered in a similar way. O

5.3.

For each (w, 8) € RB there exists at most one (w’,3’) € RB such that conditions
of the above lemma are satisfied. We will denote it by (w’, 8") = K;(w, ).

Lemma9. Let W = n(Y,, 3) be the image of an irreducible component of Y. Choose
an open dense subset U C W such that the type A of the nilpotent uy is the same
for all points of U. Consider the set Cyw = {(w',3’) € RB | n(Yy g) = W}
There exists a natural bijection Ty : Cw — St(\) such that for each po € U and
(w', 3") € Cw we have Yy g N7 (po) = Fly, 1y w5y X{P0}-

Proof. For each T € St(\) consider the set

Ur = U (Flul(p),T X{p}) C 7T_1(U) cY. (16)
peU
We have Upegy(n) Ur = 7Y (U). The sets Ur are irreducible components of

71(U). Note that the equation (Y, ) = W is equivalent to the fact that
Y., s dominates W (we use that 7 is proper). In this case Y, g must coin-
cide with Uy for some 7. In particular, Y, 3 = Ug, for some Ty € St(A). Since
dimUr = dimUp, = dimY,, g = dimY for each T' € St(\), each Ur is an irre-
ducible component of Y such that 7(Ur) = W. So, we have a one-to-one corre-
spondence between the sets Cyy and St(A). Obviously, this correspondence can be
described as in the statement of the lemma. O

5.4.

Let m;: F1(V) — F19(V) be the natural projection. For each i € {1,...,N — 1}
consider the set @, C St(A) defined as follows: T' € @} iff for a general F' € Fl,, r
we have ui|p,,,/p_, =0.

Lemma 10. a) Let T € St(\). Then T € @, <= ry(T) < rip1(T) < ¢(T) >
ci+1(T) where r;(T) (resp. ¢;(T)) stands for the number of row (resp. column) in
T containing 1.

b) Let T,T' € St(A\) and T # T'. Then m;(Fly, 1) = mi(Fly, 1) iff one of the
following conditions is satisfied up to interchanging T and T’ :
1.2 ria(T) < 1i(T) < 1341(T) and T' is obtained from T by interchanging i + 1
and i+ 2.

2the condition r;12(T) < r;(T) < ri+1(T) is equivalent to c;12(T) > ¢;(T) > ci+1(T).
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2.3 ri(T) < rire(T) < rix1(T) and T' is obtained from T by interchanging i and
14 1.

Proof. a) This statement is equivalent to Lemma 5.11 in [18].

b) Arguments similar to those used in the proof of Lemma 8 b) show that we
can define an involution K7: ®; A ®;,, — ®; A ®; , such that Kj(®;\ &, ;) =
@}, \ ®; and such that a pair of tableaux T' # T € St(\) satisfies 7;(Fl,, 7) =
mi(Fly, ) ff T € ®; A @) | and T" = KJ(T). Thus we must prove that this
involution can be described by the conditions 1, 2 of the lemma.

Suppose T' € ®; \ @, and T" = K{(T) € ®;,, \ ®;. Then the first part
of one of the conditions 1, 2 must be satisfied, and we must prove that 7" is
given by the second part. The equation m;(Fl,, ) = m;(Fl,, 7/) implies that for
j€{0,...,N}\ {i,i+ 1} and for general F € Fl,, v and F’ € Fl,, 1+ the types
of ui|p, and u1|FJ( are the same. This means that T and T’ can differ only in the
position of 4, i+ 1, 7 + 2.

Moreover, choose a general point F' € 7;(Fl,, 7). Let Ix(F) (k = 1,2) be two
irreducible components of 7, *(F) defined similarly to the proof of Lemma 8 b),
and let F’, F" be general points of I1(F),lo(F) respectively. Then F’ (resp. F")
is a general point of Fl,, 7 (resp. Fl,, ). In particular, F’ € Flfll, F" e Flfl.
Let I1(F) N iy(F) = {F1}, and let T} be the tableau such that F, € Flrﬁ Then
we obtain that T (resp. T”) can differ from T only in the position of ¢ and i + 1
(resp. i+ 1 and 7 + 2).

If T satisfies the first part of the condition 2 of the lemma, the last condition
and the conditions '€ ®;\ ®;,, and 7" € ®;; \ ®; imply the desired statement.

If the first part of the condition 1 is satisfied, there is another a priori possible
case:

Ti(Tl) < 7'1'_._1(T1) < T‘H_Q(Tl)

Ci(Tl) > Ci+1(T1) > CZ'+2(T1)

T is obtained from 73 by interchanging ¢ and ¢ + 1

T’ is obtained from T} by interchanging i + 1 and 4 + 2

In this case consider the tableau T" obtained from T by interchanging i + 1 and
i+ 2. If we apply the above argument to the pair K/(T"),T” instead of T,T",
we will obtain that K/(T") = T, contradicting K/(T') = T. So, the lemma is
proved. O

5.5.
For each T' € St(\) there exists at most one tableau T” satisfying the conditions
of Lemma 10. Denote it by T" = K/(T).

Lemma 11. Let W be the image of an irreducible component of Y under the map
w. Then for each i € {1,...,N — 1} we have 7w (®; N Cw) C P, and for each
ie{l,...,N —2} we have v o K; = K] o Tyy.

3the condition r;(T) < riy2(T) < ri+1(T) is equivalent to ¢;(T) > ci+2(T) > cir1(T).
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Proof. In the proof of Lemma 9 we have shown that for each (w,8) € Cy we
have Y,, 3 = Ur where T' = 1y (w,3) € St(\). Now the first inclusion follows
immediately from the definition of ®; and ®.. Let us prove the second equation.
Suppose (w', ') = K;(w, 3). Let 7;: Y; — Y be the projection satisfying 7; o} =
7. Then

W =7(Yu,p) = 7i(m(Yu,p)) = Fi(mi (Yo p) = 7(Yur 5)

So, (w', ') € Cw. Denote T = tw (w, 3), T' = Tw(w’, '). Then for each py € U
we have

7"'i(lﬂjlul(po),T) = 71'i(Yw”@ N 7"'_1(170)) = Wg(Ywﬁ) N 77'1'_1(170)
and the same for T”. The equation (w’, ') = K;(w, 3) means that 7}(Y, ) =
(Y ) and (w,B) # (w',3"). Taking the intersection with m=!(pg), we get
7 (Fly, 7) = mi(Fly, ) and T # T” (this inequality follows from the fact that
is bijective).
So, we get T = K[(T). O

5.6.

We write down the action of Hecke algebra generators on bimodule R in the
Kazhdan-Lusztig basis H. For i € {1,...,N — 1}, recall the subset ®; C RB
introduced in 5.2.

Let w,w" € RB and @' < w. Consider the restriction I1C(Q)|q,, of the
IC-sheaf of Qg to Q. It is a constant Tate complex on Qg concentrated in
cohomological degrees less than —n — £(w"). We denote by p(w’, w) = p(w,w’) the
dimention dim H~"~4®)~1(1C(Qy),) where 2 € Qg .

Proposition 9. For any w € RB andi €1,...,N — 1 we have

—(v7t+ V)Eu;7 if we P
Euﬁ E& = Eu”)*si + Z M(wl7w)ﬁia if w ¢ P;
e,

Proof. By definition, Hy is the class of the IC-sheaf of the orbit closure Qg,
Hg = [IC(Q3)]. Therefore Hy ES is the class of the direct image of the IC-
sheaf under the map ¢: S = Qg, X, , Qs — X. If w € ®; then the image of this
map coincides with Qg and all its fibers are isomorphic to P!, hence we obtain
the required formula. If @ ¢ ®; then im(¢) = Qg.s (5 = s;) and all the fibers
of 1) are isomorphic either to P! or to a point. We claim that the direct image of
the IC-sheaf under the map 1 is perverse. Indeed, pick an orbit Qg inside Qgys.
We need to show that 9. (IC(S))|q,, is concentrated in degrees < —n — {(0’).
Let € Qg and @ = ¥~ !(z). Then we have ¥, (IC(S)), = RI(Q,IC(S)|g). If
@' =10 * s then Q is a point and RT'(Q, IC(S)|g) = Q;[n + £(@")]. If Q is a point
but @' # @ * s then the properties of IC-sheaf imply that H™(IC(S)|g) = 0 for
m > —n—£(w').
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Otherwise, if @ = P! (this happens if and only if @' * s < @), let U = Q N
¢~ (Qgrvs) where ¢p: S — Qg is the projection to the second factor. Then U is open
and dense in @, and IC(S)|y is constant. The complex IC(S)|y is concentrated
in degrees < —n — £(w') — 2, and IC(S)|g\v is concentrated in degrees < —n —
¢(w'") — 1. From this we obtain that H™(IC(S)|g) = 0 for m > —n — ¢(«@’) and
dim H=»~ @) (1C(8)|g) = dim H»~*@)=2(1C(S),/) where 2’ € U. Note that
if we identify U with ¢(U), we have IC(S)|y = IC(Qq)|4w)[1]. Besides ¢(U) C
Qirus. If @' ¢ ®; then @' % s > @', and therefore dim H™~¢@)=2(1C(S),) =
dim H*“*Z(w/*s)(IC(ﬁﬁ,)Mx/)) = 0. If @' € ®; then @ x s = @', and therefore
dim H=2~ 4% =2(1C(S),) = dim H- 24 ) =1 (1C(Qg) g(ar)) = p(d * s,0) =
w(w',w). So we get

dim H™ (1, (IC(S)),) = dim H™(IC(S)|g) =0 if m > —n — £(i');

1 if W =w*s;
dim H =4 (4, (IC(5)),) = dim H ™ @)(1C(S)|g) = { p(@',®) if &' < & and @ € ®;;
0 otherwise.

Now, taking in account that ¢.(IC(S)) is selfdual, we obtain the desired decom-
position. O

Remark 2. Note that Proposition 9 implies that the bimodule R arises from a
certain Gy x &% -graph [y, in the terminology of [11], where &%, = Gy is the
opposed group to Sy, i. e. 8% = {¢°, g € Sy} with multiplication given by
g°h® = (hg)®. The set of vertices of Iy, is RB; the labels Iz are defined by
Ig={s)|wed} U s |w!ed};the edges are {1, w'} such that @' < w,
w(w' w) # 0 and Iz # Ly finally, the multiplicities are p(w,w’).

5.7. One-sided microlocal cells

Let W =7(Ys) (@ € RB) be the image of an irreducible component of Y. We
define the right microlocal cell corresponding to W as the set Cyy described in
Lemma 9. We define a left microlocal cell as the image of a right microlocal cell
under the involution @ +— @w~!. In terms of bijection RSK,;, introduced in 3.4,
two-sided microlocal cells are given by condition t(w) = const. The left microlocal
cells are given by conditions t(@) = const and T(w) = const , and the right
microlocal cells are given by conditions t(w) = const and To(w) = const. Each
two-sided microlocal cell is a union of left microlocal cells and of right microlocal
cells as well; moreover, each left microlocal cell and right microlocal cell inside
the same two-sided microlocal cell intersect exactly in one element. Two-sided
microlocal cells are the minimal subsets which are unions of both left and right
microlocal cells.
Now recall that t(w) = (v,0,v) =: (v(0), 8(w), v (W)).

Theorem 3. a) Fach left (right, two-sided) microlocal cell is contained in a left
(resp. right, bimodule) Kazhdan-Lusztig cell.
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b) Conversely, for W, Wy in the same left (right, bimodule) Kazhdan-Lusztig
cell, we have v(wy) = v(ws) (resp. V' (w1) = V' (Wg), resp. v(wy) = v(ws) and
V' (wy) = V' (W9)).

Proof. Tt suffices to prove the theorem for one-sided cells and, by the reason of
symmetry, only for right-handed ones. Let us formulate the following auxiliary
proposition.

Proposition 10. Two elements w,w’ lie in the same right microlocal cell iff there
is a sequence W = W1, Ws,..., Wy = W such that for each j = 1,...,m — 1 there
iste{l,...,N —2} such that w;11 = K;(0;) (see 5.3).

Proof. Tt is easy to see from the definition of operations K; that if @' = K;(w)
then @ and @’ lie in the same right microlocal cell. This implies the “only if”
direction. Conversely, let @w and @’ lie in a microlocal cell corresponding to W.
Consider the bijection 7 : Oy — St(\) of Lemma 9. In view of Lemma 11 it
suffices to prove that any 2 standard Young tableaux of the same shape can be
obtained from each other by a successive application of operations K.

It can be checked directly. O

It is easy to check that if W' = K;(w) then, up to permutation of w and @',
we have w < @', moreover

W =wx*S; W =W * Sj41
’lI)E(I’H_l or w e P,
W' ¢ Dy w' ¢ D,

Observe that if @ < @" and ¢(@") = £(®) + 1 then p(w,w') = 1, so, taking in
account Proposition 9, it follows that if @' = K;(w) then @’ and % lie in the same
right Kazhdan-Lusztig cell. Therefore, in view of Proposition 10, each microlocal
cell lies in a Kazhdan-Lusztig cell. So the proof of Theorem 3.a) is finished.

For the proof of b), we can realize the H-bimodule R in the Grothendieck
group of G-equivariant Hodge D-modules on X. Then we have the functor of
singular support from the category of G-equivariant Hodge D-modules on X to
the category of G-equivariant coherent sheaves on 7" X supported on Y. Similarly,
we have the functor of singular support from the category of G-equivariant Hodge
D-modules on FI(V) x FI(V) to the category of G-equivariant coherent sheaves
on the Steinberg variety of G. These functors are compatible with the convolution
action. Thus if ICy, is a direct summand of the convolution of ICy, with IC,,
and (luy, tug, v, v*) (resp. ( 2u1, 2ug, 2v, 2v*)) is a general element in the
conormal bundle to Qgz, (resp. Q3,), then u; must lie in the closure of G-orbit
of 2u; (and similarly, ‘us must lie in the closure of G-orbit of 2us). The proof of
b) is completed. O
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5.8. Fourier duality

In this subsection we will write X (V),Y(V),Q(V),... instead of X,Y,Qp,...
to emphasize the dependence on V. All the statements in this subsection are
straightforward and left to the reader as an exercise.

Note that we have a canonical isomorphism Y (V) = Y(V*),
(Fy, Fo,v,uy,ug,v*) — (Fy, Fy,v* uf,ul,v). Therefore we get a Dbijection
between the sets of their irreducible components, which gives rise to an
involution F on RB.

Proposition 11. For any w = (w, ) € RB we have F(w) = (wowwp, {1,..., N} \
wo(B)) where wy € Sy is the longest element, i. e. wo(i) = N +1—1. O

Further, we have an isomorphism : Z(V) = Z(V*). It carries images of
irreducible components of Y (V) to images of irreducible components of Y (V*),
therefore ¢(Zy(V)) = Zg» (V™) for some t* € T.

Proposition 12. Ift = (v,0,v') € T then t* = (v,0*,v') where 07 = min{v;, v} +
max{viy1, Vit — 0. O

Proposition 13. If RSKyi (w) = (t,71,T2) then RSKyni(F(w)) = (t*,17,Ty)
where t* is the same as in Proposition 12, and Ty, Ty are conjugate tablequx
to Ty, Ty (see [9] for the definition). Besides, the partition 6*(w) = 6(F(w)) is the
shape of the tableau Ty from 3.5 with all @’s removed. O

Corollary 6. The involution ¥ on RB carries left, right, and two-sided microlocal
cells to left, right, and two-sided microlocal cells, respectively. O

Now consider the Fourier-Deligne transform FD from the derived
constructible G-equivariant category of Q;-sheaves on X (V) = FI(V) x FI(V) x V
to the derived constructible G-equivariant category of @Q;-sheaves on
X(V*) = FI(V*) x FI((V*) x V* =2 FI(V) x FI(V) x V*. Tt gives rise to
an involution F on R which is compatible with the automorphism of the
algebra H induced by conjugation with wy on the Coxeter group Sy. It carries
G-equivariant IC-sheaves on X (V) to G-equivariant IC-sheaves on X (V*).

Therefore we obtain the following
Proposition 14. For any w € RB we have F(Eﬁ,) = EF(“;), O

Corollary 7. The involution F on RB carries left, right, and bimodule Kazhdan-
Lusztig cells to left, right, and bimodule Kazhdan-Lusztig cells, respectively. U
5.9. Relation to mirabolic character sheaves

Recall the definition of unipotent mirabolic character sheaves on GL(V) x V|
cf. [7] 4.1 and [8] 5.2. We consider the following diagram of GL(V)-varieties and
GL(V)-equivariant maps:

GL(V) x V &~ GL(V) x FI(V) x V -1 FI(V) x FI(V) x V.
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In this diagram, the map pr is given by pr(g,z,v) := (g,v), while the map f
is given by f(g,z,v) := (gz,, gv). The group GL(V) acts diagonally on all the
product spaces in this diagram, and acts on itself by conjugation.

The functor CH from the constructible derived category of [-adic sheaves
on FI(V) x FI(V) x V to the constructible derived category of [-adic sheaves on
GL(V) x V is defined as CH := pr,f'[- dimF1(V)]. Now let F be a GL(V)-
equivariant perverse sheaf on F1(V) x FI(V) x V. The irreducible perverse con-
stituents of CHF are called unipotent mirabolic character sheaves on GL(V) x V.
Clearly, this definition is a direct analogue of Lusztig’s definition of character
sheaves.

Recall the following examples of unipotent mirabolic character sheaves
(see [6] 5.4). For M < N let Xx.ar be a smooth variety of triples (g, Fo,v) where
g € GL(V), and F, € FI(V) is a complete flag preserved by g, and v € Fjy.
We have a proper morphism 7y : Xna — GL(V) x V (forgetting F,)
with the image Xy C GL(V) x V formed by all the pairs (g,v) such that
dim(v, gv, g?v,...) < N — M. According to Corollary 5.4.2 of loc. cit., we have

[A\|=N—-M

(mn.an) IO (N ar) = @ L,®Lyx® Fapu
lnl=M

for certain unipotent mirabolic character sheaves F) , supported on Xy s, and
Ly, resp. L, is an irreducible representation of &x_ns, resp. Gyy.

We conjecture the following formula for the class of CHE & in the K-group
of unipotent mirabolic Weil sheaves.

Conjecture 2. CHH; = DA+l =N Fopu(Ha)[Fa,u) where fr, is a functional
R — Z[v,v71] such that fy ,(hr) = fxu(rh) for anyr € R, h € H. Moreover, in
the decomposition (14) of Proposition 8, fx , vanishes on all the summands except
for V¥ @V, corresponding to (v, 0,0) € T where YT(\, w) = (v,0).

5.10. Asymptotic bimodule

For a partition v of N, let ¢, C Gy be the corresponding two-sided KL cell.
Let a(c,) = a, = N> = N —n, = N227_N — > i>1(t — 1)v; be its a-function. For
multiplication in H we have H, Ey = ZZGGN mw%zﬂm for mu, . € Zlv,v71].
If w,y, z € ¢, then, according to Lusztig, the degree of m., . is less than or equal
to a,. Let vy y,» € Z be the coeflicient of v in m,, , .. Lusztig’s asymptotic ring
J, is defined as a ring with a basis {t,, w € ¢,} and multiplication t,, - ¢, =
Zzecu Yw,y,zt=- By the classical RSK algorithm, ¢, is in bijection with the set
of pairs of standard tableaux {(71,7%)} of shape v. According to [12] 3.16.b),
the ring J, with basis {t,,} is isomorphic to the matrix ring Matg;(,) with the
basis of elementary matrices {er, 1, }, so that ¢,, goes to er, 1, where (11,T%) are
constructed from w by the classical RSK algorithm.

Now for a pair of partitions v D 6 we consider the corresponding bimodule KL
cell c,~9c, € RB.Forw € RB,and y € G we haveﬂm~ﬂy = scRB mﬁ,’yygﬂg,
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and Eu “Hg = deRB mym},gﬂg. We conjecture that for w,z € c,~pc,, and
Y € ¢, the degrees of my 4,z and my 5 ; are less than or equal to a,. We denote
by 74,4,z the coefficient of v in my g z, and we denote by vy 4,z the coefficient of
v% in mg 4, 3. We define the asymptotic bimodule J,~¢c, over J, as a bimodule
with a basis {t3, @ € c,5oc,} and the action tg - t, = > Vab,y,5tz, and

ty ey = ZEECLQGCV f}/y;[[)_’gtgo

Z€EcuHocy

Conjecture 3. The based bimodule J,~gcy, {to, W € cusocy} is isomorphic to the
based reqular bimodule Matg(,), {eT, 1.}, so that tg goes to er, 1, where (T1,Ts)
are constructed from w by the mirabolic RSK algorithm.
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