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Abstract

Viscoelastic materials, such as biomaterials and non-Newtonian fluids, typically ex-
perience mechanical loading which evokes a nonlinear rheological response. Rheolog-
ically complex materials can provide novel functionality in biological and engineered
systems. However, it is found that standard characterization techniques are insuf-
ficient to appropriately describe nonlinear viscoelasticity. The goal of this thesis is
to transcend the limitations of current characterization methods as well as demon-
strate applications of nonlinear viscoelastic materials, including reversible adhesion
and snail-like wall climbing.

PART ONE of this thesis introduces a complete language and framework (or on-
tology) for characterizing nonlinear viscoelasticity using large amplitude oscillatory
shear (LAOS) deformation. The LAOS protocol spans the 2D parameter space of de-
formation amplitude and frequency, known as a Pipkin space. Physically meaningful
material measures are proposed, corresponding to clearly defined language such as
strain-stiffening/softening and shear-thickening/thinning. The new ontology is gen-
eral enough to be applied to any viscoelastic material, mapping behaviors from purely
elastic to purely viscous, and any complex response in-between. The framework has
been packaged into a distributable data analysis program (MITlaos) to widen its use
in both academic and industrial settings.

PART TWO examines the nonlinear rheological response of various soft materials
and constitutive models. The new framework is illustrated by examining prototypi-
cal nonlinear constitutive models (Giesekus, pseudoplastic Carreau, and elastoplastic
Bingham). Various soft materials are tested experimentally, including pedal mucus
gel from terrestrial gastropods, a wormlike micelle solution, ultrasoft hagfish slime,
and an oilfield drilling fluid.

PART THREE describes the use of nonlinear rheological behavior to enable unique
functionality, specifically for bioinspired snail-like wall climbing and tunable adhesion
using magnetorheological fluids. Yield stress fluids are examined here to enable the
bioinspired adhesive locomotion of a self-contained mechanical device (Robosnail,
developed by Brian Chan, Ph.D. ’09). Field-responsive magnetorheological fluids are



analyzed in the context of providing fast-switching reversible adhesion for use with
adhesive locomotion devices and shape-changing soft robots.

In conclusion, interest in soft materials is increasing across many disciplines. The
contributions presented here provide the means to a better understanding of biological
and engineered systems which involve complex viscoelastic materials.

Thesis Supervisor: Gareth H. McKinley
Title: Professor, Mechanical Engineering

Thesis Supervisor: Anette E. Hosoi
Title: Associate Professor, Mechanical Engineering
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size exceeds the error for all amplitudes. . . . . . . . . . . . . . . . . 117

4-3 Reconstruction of (a) elastic and (b) viscous stresses using the Cheby-

shev spectrum of each signal (c,d). The nonlinearity of each signal

is predominantly described by including only the third-order contri-

bution; contributions higher than n = 3 are comparably insignificant

(e5, e1, v5/v1 < 0.005) (same experimental data as Figure 2-2). . . . . 118

4-4 Raw LAOS data for the micellar solution, shown as elastic Lissajous-

Bowditch curves generated from experimental oscillatory tests. Each

trajectory is positioned in a Pipkin space according to the imposed

values (ω, γ0). Solid lines are total stress σ(t)/σmax vs. γ(t)/γ0. The

maximum stress, σmax, is indicated above each curve. . . . . . . . . . 120

4-5 Elastic Lissajous-Bowditch curves generated from experimental oscil-

latory tests of the micellar solution, displayed in a Pipkin space. Each

trajectory is positioned according to the imposed values (ω, γ0). Solid

lines are total stress (filtered) σ(t)/σmax vs. γ(t)/γ0, dashed lines are

elastic stress σ′(t)/σmax vs. γ(t)/γ0. The maximum stress, σmax, is

indicated above each curve. . . . . . . . . . . . . . . . . . . . . . . . 121



4-6 Viscous Lissajous-Bowditch curves generated from experimental oscil-

latory tests of the micellar solution, displayed in a Pipkin space. Each

trajectory is positioned according to the imposed values (ω, γ0). Solid

lines are total stress (filtered) σ(t)/σmax vs. γ̇(t)/γ̇0, dashed lines are

viscous stress σ′′(t)/σmax vs. γ̇(t)/γ̇0. The maximum stress, σmax, is

indicated above each curve. . . . . . . . . . . . . . . . . . . . . . . . 122

4-7 “Rheological Fingerprints” of the elastic properties of the micellar so-

lution in large amplitude oscillatory shear. Each parameter is plotted

in a Pipkin diagram as a function of the imposed frequency and strain

amplitude. (a,b,c) Elastic moduli G′M , G′L, and G′1 respectively; un-

labeled contours shown at increments of 2 Pa (d) Intra-cycle elastic

nonlinearity as indicated by the normalized third-order elastic Cheby-

shev term, e3/e1; contours shown at -0.05, ±0.01, and increments of

0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4-8 Viscous properties of the micellar solution in large amplitude oscilla-

tory shear, each parameter plotted in a Pipkin space; (a,b,c) Dynamic

viscosities η′M , η′L, and η′1 respectively; contours shown at increments

of 2 Pa.s. Inter-cycle nonlinearities are indicated by gradients of these

measures. Inter-cycle thinning is shown for sufficiently large and in-

creasing values of the shear rate amplitude γ̇0 = γ0ω. (d) Intra-cycle

viscous nonlinearity as indicated by the normalized third-order viscous

Chebyshev term, v3/v1 ; contours shown at increments of 0.05. Intra-

cycle thickening is indicated by v3/v1 > 0, whereas intra-cycle thinning

is shown by v3/v1 < 0. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5-1 A purely elastic oscillatory response for G′′2 = −G′′0 = −0.1, G′1 = 1,

and all other terms equal to zero. (a) elastic Lissajous curve of stress

vs. strain, (b) p viscous Lissajous curve of stress vs. strain-rate. . . . 130

5-2 Oscillatory response of arbitrary construction which includes even har-

monics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131



5-3 Oscillatory response of arbitrary construction which includes even har-

monics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6-1 Photos of Atlantic hagfish used for this research. (a) top-down view of

three hagfish in a large glass beaker, (b) collection of fresh slime exudate.138

6-2 Microscope images of stabilized hagfish slime. The primary constituents

of whole slime exudate are mucin vesicles and wound-up threads. Each

egg-shaped thread winding is composed of a continuous filament of di-

ameter 1-3µm, with length up to 15 cm when fully unraveled. . . . . 138

6-3 Hagfish slime networks can sustain large stretch ratios while main-

taining a cohesive mass. This photo shows Tim Winegard (hagfish

wrangler, University of Guelph) raising the rheometer test geometry

after experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6-4 Results of a creep test conducted with “fresh” hagfish slime reconsti-

tuted from exudate mixed with seawater in the lab. At short times

the strain oscillates due to inertio-elastic ringing, in which the sample

elasticity couples with the finite instrument rotational inertia to “ring”

at a resonant frequency, just like a mass at the end of a spring (see

Section 1.2.3). At longer times the strain is approximately constant,

γss, and this is representative of a primarily elastic material response. 142

6-5 Frequency sweep results with hagfish slime reconstituted from fresh

exudate. The strain amplitude was prescribed (γ0 = 10%). The me-

chanical resistance is so low (G′ < 0.03 Pa) that inertial effects from

the rheometer spindle easily appear in the data, with a sharp jump in

raw phase angle from δ = 14.7◦ to δ = 134.9◦ at ω = 1 rad.s−2, corre-

sponding to the resonant frequency of the material-instrument system

ω∗ = 0.99 rad.s−1 (Fig. 6-4). . . . . . . . . . . . . . . . . . . . . . . . 143

6-6 Large amplitude oscillatory shear test with hagfish slime reconstituted

from fresh exudate. The strain amplitude was prescribed as indicated

on the abscissa (ω = 0.15 rad.s−1). . . . . . . . . . . . . . . . . . . . 144



6-7 Creep tests conducted with hagfish slime reconstituted from stabilized

exudate mixed with seawater in the lab. Various stress amplitudes

are imposed to examine the nonlinear rheological response. (a) time

dependent creep response curves at each imposed stress, (b) elastic

analysis of each curve including the differential modulus K ′ (Eq. 6.12)

and initial secant modulus G0 (Eq. 6.11. . . . . . . . . . . . . . . . . 145

6-8 Photos of successive extensional flow tests performed on a single sample

of hagfish slime, made from fresh slime exudate. The shape of the

filament at the end of each run changes slightly; note that after Run 3

the shape is convex near the center of the filament due to the gel-like

nature of the slime mass. . . . . . . . . . . . . . . . . . . . . . . . . . 149

6-9 Extensional flow results for hagfish slime, corresponding to the tests

shown in Figure 6-8. (a) Successive tests on the same sample show

repeatable results. (b) The plate separation imposes a constant exten-

sional deformation rate, ε̇ = 0.2 s−1, if homogeneous deformation is

assumed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6-10 Analysis of the extensional flow measurements shown in Figure 6-9

(Run 1), with standard assumptions for kinematics of radial deforma-

tion, R(t) = R0 exp(−ε̇t/2). (a) apparent stress difference, and (b)

apparent extensional viscosity. . . . . . . . . . . . . . . . . . . . . . . 151

7-1 Validation of the MITlaos software (Chapter 3), using a strain sweep for

xanthan gum solution (0.2 wt%) at ω = 3.75 rad.s−1. MITlaos software

is used to analyze the raw stress and strain waveforms resulting from

Arbitrary Waveshape tests (squares). A duplicate test was performed

with the typical oscillation test mode of the ARES rheometer software

(circles), which provides viscoelastic parameters but no raw data or

assessment of higher harmonic content. The superposition of results

indicates the validity of the Arbitrary Waveshape test and the MITlaos

software for analyzing both linear and nonlinear LAOS results. . . . . 158



7-2 Lissajous-Bowditch curves of the Carreau pseudoplastic model (Eq. 7.2)

for various values of the Carreau number Cu = λγ0ω and power

law index n. Here n = 1.0 is Newtonian (dotted lines), n = 0.5 is

shear-thinning (dashed lines), and n = 0.0 is the limiting case of vis-

coplastic yield stress behavior (solid lines). (a) 3D trajectories of the

stress response σ(t)/σmax as a function of the normalized LAOS inputs

{x(t), y(t)}, shown for λγ0ω = 10. Note that the maximum stress σmax

is different for each value of n, as shown in (b), which depicts 2D Lis-

sajous curves projected onto the planes of stress vs. strain (σ̃(t) vs.

x(t)) and stress vs. strain-rate (σ̃(t) vs. y(t). In (b) the stress is scaled

by the Newtonian stress η0γ̇0, rather than the maximum stress, at each

value of the Carreau number Cu = λγ0ω. . . . . . . . . . . . . . . . . 160

7-3 Lissajous-Bowditch curves for the elastic Bingham model in terms of

the variables Γ0 = γ0/γY , N = µpγ̇0/σY defined by Yoshimura and

Prudhomme[2]. (a) Homogeneous strain (e.g. cone-plate) response

showing individual limit cycles of the oscillatory stress vs. strain

(elastic curves) and stress vs. strain-rate (viscous curves). Maxi-

mum normalized stress (σ/σY )max is shown above each curve. (b)

Steady oscillatory response of plate-plate deformation (inhomogeneous

strain), curves of torque vs. displacement (elastic curves) and torque

vs. displacement-rate (viscous curves). The maximum normalized

torque shown above each curve, (2M/πR3σY )max. . . . . . . . . . . . 164

7-4 The energy dissipated by a single LAOS response is represented by the

area enclosed in a Lissajous curve of stress vs. strain. For a given

strain amplitude γ0 and maximum stress σmax, the maximum possible

dissipated energy is the circumscribing rectangle of the perfect plastic

model response, with strain amplitude γ0 and yield stress σY = σmax.

The example shown here is the measured steady LAOS response of the

drilling fluid at ω = 15 rad.s−1, with γ0 = 3.16, σmax = 113 Pa, and

φ = 0.829. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173



7-5 Carreau model response, characterized by the perfect plastic dissipa-

tion ratio, φ (Eq. 7.12). (a) Behavior of φ with respect to normalized

shear-rate amplitude. (b) Behavior of φ as a function of n, shown for

various values of the Carreau number Cu = λγ0ω: φmax, φ(λγ0ω = 10),

φ(λγ0ω = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7-6 Viscosity flow curves for the 0.2wt% xanthan gum solution (squares,

step shear rate for each data point) and the invert emulsion drilling

fluid (circles, thixotropic loop test). Fits to the Carreau model are

shown for each fluid (lines). . . . . . . . . . . . . . . . . . . . . . . . 175

7-7 Steady-state Lissajous curves for the xanthan gum solution (0.2wt%

aqueous). (a) Un-normalized 3D Lissajous curves at ω = 3.75 rad.s−1.

(b,c) Normalized curves arranged in a Pipkin space at the correspond-

ing input parameters of frequency and strain-amplitude, {ω, γ0}. (b)

individual plots of normalized stress (solid lines) and elastic stress

(dashed lines) vs. strain; (c) individual plots of normalized stress (solid

lines) and viscous stress (dotted lines) vs. strain-rate. The maximum

stress σmax in each test is shown above each limit cycle. . . . . . . . . 178

7-8 Yield stress indicators for the xanthan gum solution (0.2wt% aqueous),

shown as a function of the LAOS input parameters {ω, γ0}. (a,b) Stiff-

ening index and Thickening index, respectively, lines shown at ±0.01.

(c) perfect plastic dissipation ratio φ. φ > π/4 indicates a region

in which the xanthan gum solution is shear-thinning. The maximum

observed value, φmax = 0.97 at {ω = 3.75 rad.s−1,γ0 = 10}, does

not indicate an idealized yield stress response, which would appear as

φPP = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179



7-9 Steady-state Lissajous curves for the drilling fluid, shown for a selected

range of strains and frequencies. (a) Un-normalized 3D curves for fixed

ω = 4.75 rad.s−1 and strain-amplitudes γ0 = 0.562, 1, 1.78, 3.16, 5.62, 10.

(b,c) Normalized 2D projections of σ/σmax arranged in a Pipkin space

at the corresponding input parameters {ω, γ0} which generated each

response curve. The maximum stress is shown above each curve. (b)

individual plots of normalized stress (solid black lines) and elastic stress

(dashed red lines) vs. strain; (c) individual plots of normalized stress

(solid black lines) and viscous stress (dotted blue lines) vs. strain-rate. 182

7-10 Quantitative LAOS analysis of the drilling fluid. (a,b) Stiffening index

and Thickening index, respectively, lines shown at ±0.01. (c) Perfect

plastic dissipation ratio, φ, shown as contours in a Pipkin space. At

small strain amplitude φ takes very small values indicated a predomi-

nantly elastic response, which at larger strain amplitude gives way to a

predominantly viscous response and eventually a maximum dissipation

ratio, φmax = 0.93, nearing the behavior of an idealized perfect plastic

response. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

7-11 First-harmonic dynamic viscosity v1(γ̇0) = η′1(γ̇0) from LAOS tests

(closed symbols) compared to the apparent shear viscosity η(γ̇) from

the thixotropic loop test (open circles). Good correspondence is found

between the tests at sufficiently large strain amplitudes γ0 ≥ 3, con-

sistent with the Rutgers-Delaware rule. The viscosity at low shear-

rates gives a lower bound for the Carreau model fitting parameter

η0. The Carreau fit for η0 = 103 Pa.s, λ = 53.5 s, n = 0.099, and

ηinf = 0.377 Pa.s is given by the solid line. . . . . . . . . . . . . . . . 186



7-12 Dynamic viscosity from LAOS tests (crossed symbols) compared to

the apparent shear viscosity η(γ̇) from the thixotropic loop test (open

circles). (a) Large-rate dynamic viscosity η′L, which shows excellent

correspondence in the yielded regime, γ0 > 3. (b) Magnitude of the

first-harmonic complex viscosity, which slightly over-predicts the flow

viscosity in the yielded regime, but suffers from less under-prediction

in the unyielded regime. . . . . . . . . . . . . . . . . . . . . . . . . . 187

8-1 Bottom view of a crawling terrestrial slug Limax maximus, 1 cm scale

bar; a) muscular contractions compress the foot parallel to the sub-

strate, creating an area of high shear stress which ruptures the mucus

network structure; b) an interwave of low stress allows the network

structure to reform into a solid-like material which holds the organism

to the substrate. Compression waves move toward the head (top of

picture) during locomotion. . . . . . . . . . . . . . . . . . . . . . . . 192

8-2 Simple model of an adhesive locomotion system - the crawler consists

of N discrete pads and rests on a fluid with thickness h. An internal

controlled force iteratively moves one pad forward with respect to the

rest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

8-3 Material selection space comparing yield stress fluids; Stars: native

mucus gels, Triangles: polymeric solutions and gels, Hexagons: Partic-

ulate suspensions and gels, Circles: soft glassy materials. A suitable

simulant will meet a minimum yield stress requirement and have a

low post-yield viscosity. See Appendix D for material preparation and

reference details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198



8-4 Steady shear viscosity of simulants compared to native pedal mucus

from Helix aspera; native slime collected from two snails, tested with

plate-plate fixtures D = 0.8 mm with sandpaper, h = 100µm; a)

Carbopol-based simulant, plate-plate with sandpaper, solvent trap,

h = 1000µm, D = 4 cm for 0.5%-2%, D = 2 cm for 3%-4%; b)

Laponite-based simulant, solvent trap, D = 6 cm 1◦ cone-plate for

1%-2%, D = 4 cm 2◦ cone-plate for 2.5%, D = 4 cm plate-plate,

h = 1000µm with sandpaper for 3%-7%. . . . . . . . . . . . . . . . . 200

8-5 Linear viscoelastic moduli of simulants compared with native pedal

mucus from Limax maximus ; pedal mucus tested with D = 2 cm plate

with sandpaper, solvent trap, h = 200µm, σ0 = 5 Pa; simulants tested

with D = 4 cm plate with sandpaper, h = 1000µm, solvent trap;

a) Carbopol-based simulant, σ0 = 5 Pa; b) Laponite-based simulant,

σ0 = 20 Pa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

8-6 Large amplitude oscillatory shear (LAOS) of simulants compared with

native pedal mucus from Limax maximus, same geometries as Figure 8-

5, all samples tested at ω = 1 rad.s−1; a) Carbopol-based simulant; b)

Laponite-based simulant. . . . . . . . . . . . . . . . . . . . . . . . . . 205

8-7 Lissajous curves resulting from the large amplitude oscillatory shear

tests shown in Figure 8-6 for the polymer gel simulant(a) and the

particulate gel simulant(b). . . . . . . . . . . . . . . . . . . . . . . . . 207

8-8 Lissajous curves resulting from the large amplitude oscillatory shear

tests shown in Figure 8-6 for native pedal mucus from Limax maximus. 208

8-9 Time-dependent stress overshoot of simulants, D = 5 cm 1◦ cone-

plate; a) Carbopol 2%, error bars shown at one standard deviation; b)

Laponite 3%. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210



8-10 (a) The common garden snail helix aspera (and other terrestrial gas-

tropods) use the nonlinear viscoelastic properties of excreted trail mu-

cus for transitory attachment, allowing locomotion on inclined surfaces.

(b) Bioinspired embodiment of a mechanical crawler that successfully

uses adhesive locomotion to traverse inclined and inverted surfaces, as

in (c), using appropriately designed complex fluids described in this

thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

9-1 (a) Sketch of the experimental setup for adhesive pull-off tests of a field-

responsive magnetorheological fluid. Instrument materials are non-

magnetic. The adhesive fluid layer (diameter D, gap height h) resides

between rigid surfaces. The lower plate allows for a permanent magnet

(diameter Dm) to be introduced to “activate” the adhesive with an

inhomogeneous field. The top of the magnet is separated from the

bottom of the fluid by a distance δ. (b) Free body diagrams for yield

stress fluid adhesion. For the top plate only forces in the z-direction are

shown. The fluid is modeled locally as a perfect plastic with radially

dependent yield stress. Small gaps are assumed (h/D � 1), so that

material deformation consists primarily of shear. . . . . . . . . . . . . 218

9-2 Rheological characterization of the passive yield stress fluid, Carbopol

2wt%, pH 7. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

9-3 Steady flow characterization of the magnetorheological fluid, which be-

haves as a nearly perfect viscoplastic with constant stress as a function

of shear rate (a). Another method of showing viscoplastic yield stress

behavior is shown in (b), which depicts steady flow viscosity as a func-

tion of the imposed shear stress. The viscosity and stress values have

been corrected for the parallel plate geometry. . . . . . . . . . . . . . 223



9-4 Shear yield stress for the magnetorheological fluid as a function of the

external magnetic field strength (field lines perpendicular to shearing

direction). Yield stress values extracted from Fig. 9-3 (circles). The

dashed line is a power law fit to the data (ignoring the data point at

B = 0.462 T), resulting in α = 137737 Pa.T−2. . . . . . . . . . . . . . 224

9-5 Idealization of B-field which activates the magnetorheological fluid.

The field is constant above the magnet (R/Rm < 1), then decays by

the power-law r−3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

9-6 Newtonian oil adhesive performance, measured force as a function of

apparent gap height. The Stefan adhesion model (dashed lines) is pre-

dictive for sufficiently small loads when system compliance is negligible,

and sufficiently small values of h(t)/R(t) such that the lubrication ap-

proximation holds. Here D0 = 49 mm and η = 9.281 Pa.s for all tests.

ḣ is given in the key. (a) h0 = 1.0 mm, (b) h0 = 0.5 mm. . . . . . . . 233

9-7 Adhesive performance of the passive yield stress fluid, Carbopol 2wt%. 235

9-8 Experimentally measured adhesive performance of the “off state” MR

fluid. Various separation speeds are examined for the same initial

diameter D0 = 49 mm and initial height h0 = 0.4 mm. Here the dashed

line is the prediction of the perfect plastic yield stress adhesion model

with σy = 9.12 Pa, corresponding to the experimentally measured shear

stress at the characteristic shear rate γ̇ = 2ḣR0/h
2
0 = 3.06 s−1. Top

plate is native aluminum surface. . . . . . . . . . . . . . . . . . . . . 236

9-9 Experimentally measured adhesive performance of the “off state” MR

fluid. Various initial diameters D0 examined for the same separation

speed ḣ = 10µm/s and initial height h0 = 0.5 mm. Top plate covered

with P2000 grit sandpaper. For reference Dm = 12.7 mm, but no

magnet was used for these ambient tests. . . . . . . . . . . . . . . . . 237

9-10 Initial static force measurement, for data set shown in Fig. 9-9. Top

plate covered with P2000 grit sandpaper. For reference Dm = 12.7 mm,

but no magnet was used for these ambient tests. . . . . . . . . . . . . 237



9-11 Experimentally measured adhesive performance for a moderately acti-

vated MR fluid (Alnico 8 disc magnet), Bface = 0.077 T on face of mag-

net, but just above bottom plastic surface B0 = 0.061 T. Various initial

diameters D0 examined for the same separation speed ḣ = 10µm/s and

initial height h0 = 0.5 mm. The top plate is covered with P2000 grit

sandpaper, Dm = 12.7 mm. . . . . . . . . . . . . . . . . . . . . . . . 239

9-12 Experimentally measured adhesive performance for a strongly acti-

vated MR fluid (Neodymium disc magnet), Bface = 0.389 T on face

of magnet, but just above bottom plastic surface B0 = 0.296 T. Vari-

ous initial diameters D0 examined for the same separation speed ḣ =

10µm/s and initial height h0 = 0.5 mm. The top plate is covered with

P2000 grit sandpaper, Dm = 12.7 mm. (a) Log-Log plot, (b)Linear-

Linear plot of same data, which highlights the iterative sawtooth failure

leading up to the peak force (for R/Rm = 2.81, 3.97). . . . . . . . . . 240

9-13 Experimentally measured peak adhesive force (open symbols) at mod-

erate magnetic field B0 = 0.61 T, for various initial geometries h0 and

(R0/Rm). The theoretical predictions of the current model are given

by the lines (see Section 9.3). No fitting parameters are used. . . . . . 242

9-14 Experimentally measured peak adhesive force (open symbols) at high

magnetic field B0 > 0.14 T, for various initial geometries h0 and

(R0/Rm). The theoretical predictions of the current model are given

by the lines (see Section 9.3). No fitting parameters are used. The ex-

perimentally measured adhesive strength is systematically lower than

predicted by theory for these field strengths. . . . . . . . . . . . . . . 243

9-15 Remnant fluid patterns after adhesive failure, for various parameter

values B0 and R0/Rm. Images shown of the surface containing the

permanent magnet. Opposing top surfaces are not shown, which ex-

hibit “clean” failure for R0/Rm ≤ 1.5 and remnant fluid rings for

R0/Rm ≥ 2.8. The “flower” instability is observed for large R0/Rm

and moderate magnetic fields. . . . . . . . . . . . . . . . . . . . . . . 244



9-16 Demonstration of using magnetic fields for reversible adhesion to non-

magnetic substrates, enabled by a viscoplastic magnetorheological fluid.

Surfaces shown are aluminum, plastic, wood, ceramic tile, and glass.

The suspended mass, m = 112 g, is a switchable permanent magnet

configuration which creates a magnetic field strength on the order of

B = 0.16 T over an area of approximately A ∼ 230 mm2. The holding

stress is therefore at least mg/A ∼ 4.8 kPa. . . . . . . . . . . . . . . . 245

A-1 Chebyshev polynomials of the first kind; plots of the first few odd

polynomials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

C-1 Non-interpolated vs. interpolated fingerprints of viscoelastic parameters.276

C-2 Additional quantitative LAOS analysis of the xanthan gum. (a,b,c)

Elastic moduli G′1, G′M and G′L respectively. (d,e) higher harmonic

Chebyshev coefficients, e3/e1 and e5/e1, respectively. Contour lines

shown at ±0.01 in (d,e). . . . . . . . . . . . . . . . . . . . . . . . . . 277

C-3 Additional quantitative LAOS analysis of the xanthan gum (cf. Fig-

ures 7-7-7-8). (a,b,c) Elastic moduli η′1, η′M and η′L respectively. (d,e)

higher harmonic Chebyshev coefficients, v3/v1 and v5/v1, respectively.

Contour lines shown at ±0.01 in (d,e). . . . . . . . . . . . . . . . . . 278

C-4 Smoothed Lissajous curves for the drilling fluid. LAOS test strain-

sweep at constant frequency ω = 0.475 rad.s−1, increasing strain am-

plitude γ0 from bottom row. (left column) Elastic perspective, 2D

projection onto stress vs. strain axes; (middle column)3D view with

strain, strain-rate, and stress as the coordinate system; (right column)

Viscous perspective, 2D projection onto stress vs. strain-rate axes. . . 279



C-5 Smoothed Lissajous curves for the drilling fluid. LAOS test strain-

sweep at constant frequency ω = 4.75 rad.s−1, increasing strain am-

plitude γ0 from bottom row. (left column) Elastic perspective, 2D

projection onto stress vs. strain axes; (middle column)3D view with

strain, strain-rate, and stress as the coordinate system; (right column)

Viscous perspective, 2D projection onto stress vs. strain-rate axes. . . 280

C-6 Additional quantitative LAOS analysis of the drilling fluid (cf. Fig-

ures 7-9 and 7-10). (a,b,c) Elastic moduli G′1, G′M and G′L respec-
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Chapter 1

Introduction and background

A material subjected to mechanical loading may respond by storing energy (elastic

deformation), dissipating energy (viscous deformation), or a combination of the two

(viscoelastic deformation). Aspiring students are typically introduced to the mechan-

ics of materials by considering either purely elastic solids or purely viscous fluids.

Complete courses and textbooks focus on either of these two limits, and engineer-

ing departments subdivide along the lines of solid mechanics and fluid mechanics.

Viscoelastic materials are currently treated as an advanced topic but play a central

role in many systems, especially biological materials (biofluids, cells, and tissues),

field-responsive “smart” materials, processing of structured materials, oil drilling op-

erations, and soft condensed matter in general. Rheologically complex materials are

not simply present in many circumstances, but also provide novel functionality due to

nonlinear viscoelastic properties. This is the case for both biological and engineered

systems. Figure 1-1 shows several examples in which nonlinear viscoelastic material

responses are relevant.

Biomaterials are inherently structured, hierarchical, and complex, often exhibit-

ing nonlinear mechanical properties. Physiological conditions commonly produce me-

chanical loading which evokes a nonlinear rheological response, and in some instances

this is essential for proper biological functioning. Terrestrial gastropods depend on

the dramatic viscous shear-thinning of pedal mucus for their locomotion[3] (Figure 1-

1a). As another example, the strain-stiffening of arterial walls enables stability to
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Figure 1-1: Several examples in which nonlinear viscoelastic material behavior is
relevant, ranging from biological to engineered systems. (a) the adhesive locomotion of
snails (see Chapter 8), (b) biomaterials and biofluids such as artery walls, blood, and
cells (photo from N.I.H. Medical Encyclopedia), (c) bread dough processing (photo
of Dr. Shen Kuan (Trevor) Ng by Donna Coveney), (d) personal care products such
as hand lotions, (e) magnetorheological fluids (see Chapter 9).

inflation over a range of pressures[4] (Figure 1-1b).

Engineered systems and processing operations also require an understanding of

nonlinear viscoelastic properties. The processing of polymers, emulsions, suspensions,

and other structured materials (e.g. bread dough[5], Figure 1-1c) typically involves

large deformations and nonlinear rheological responses. Some applications currently

use nonlinear rheology to their advantage, for example shear-thickening fluids are

used in mechanical clutches, and yield stress fluids are ubiquitous among lotions and

foodstuffs (Figure 1-1d). Field-activated “smart” fluids, such as magnetorheological
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fluids (Figure 1-1e) are commercially used for actively-tuned dampers, and in this

thesis are used for tunable adhesion to non-magnetic substrates (Chapter 9).

The significance of nonlinear viscoelasticity is becoming increasingly apparent.

However, it is less clear how to describe such complex materials most appropriately.

Standard methods for characterizing nonlinear viscoelasticity are mathematically ro-

bust but lack a physical interpretation and have proven to be insufficient descriptors,

especially for biological materials[6, 7]. The goal of this thesis is to transcend the

limitations of current characterization methods as well as demonstrate new applica-

tions of nonlinear viscoelastic materials, including reversible adhesion and snail-like

wall climbing.

1.1 Scope of thesis

Part one of this thesis describes new rheometric techniques and methods (Chapters 2-

3). In particular, it introduces a complete, low-dimensional language and framework

(or ontology) for characterizing nonlinear viscoelasticity using large amplitude oscil-

latory shear (LAOS) deformation. LAOS quantifies the progressive transition from

linear to nonlinear rheological behavior in the 2D parameter space of deformation

amplitude and frequency, known as a Pipkin space. The term rheological finger-

print is used here to describe the 2D (frequency, amplitude) mapping of viscoelastic

properties. The new framework avoids the ambiguities of current state-of-the art

techniques, such as Fourier-Transform rheology which hitherto has provided only a

mathematical description of nonlinear viscoelastic responses. This thesis proposes

physically meaningful material measures and clearly defined language such as strain-

stiffening/softening and shear-thickening/thinning, which can be used in conjunction

with graphical representations of response curves with strain, strain-rate, and stress as

the coordinate axes (Lissajous-Bowditch curves). The new ontology is general enough

to be applied to any viscoelastic material, ranging from purely elastic to purely vis-

cous, and any complex response in-between. The framework has been packaged into

a distributable data analysis program (MITlaos) to widen its use in both academic
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and industrial settings.

Part two (Chapters 4-7) examines the nonlinear rheological response of various

soft materials and constitutive models. The new framework is illustrated by ex-

amining prototypical nonlinear constitutive models such as the Giesekus model, the

pseudoplastic Carreau model, and the elastoplastic Bingham model. Various soft

materials are tested experimentally, including pedal mucus gel from terrestrial gas-

tropods, a wormlike micelle solution, ultrasoft hagfish slime, and an oilfield drilling

fluid. Rich nonlinear viscoelastic responses are revealed and meaningfully described

using the new ontology. Extensions of the framework introduced in Chapter 3 are

also discussed.

Part three (Chapters 8-9) describes the use of nonlinear rheological behavior to en-

able unique functionality, specifically for bioinspired snail-like locomotion (Chapter 8)

and reversible adhesion using magnetorheological fluids (Chapter 9). Gastropods

(such as snails and slugs) crawl using adhesive locomotion, a technique which ex-

ploits the nonlinear mechanical properties of excreted pedal mucus to enable their

traversal of inclined and inverted surfaces. Yield stress fluids are examined here to

enable the bioinspired adhesive locomotion of a self-contained mechanical device (Ro-

bosnail, developed by Brian Chan, Ph.D. ’09). Field-responsive fluids are analyzed

in the context of providing fast-switching reversible adhesion for use with adhesive

locomotion devices and shape-changing soft robots. The adhesive performance of a

field-responsive magnetorheological fluid is examined with models and experiments.

Interest in soft materials is increasing across many disciplines. The contributions

presented here provide the means to a better understanding of biological and engi-

neered systems which involve complex viscoelastic materials.

1.2 Rheological characterization techniques

The mechanical response of a material may be correlated with either deformation

(elastic properties) or the rate of deformation (viscous properties). For a purely elastic

material, the stress response is only a function of the imposed strain. To describe
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Figure 1-2: Simple shear characterization of (a) purely elastic material response, and
(b) purely viscous material response.

the stress-strain relationship of a material, one may start by imposing a simple shear

strain and measuring the resulting shear stress (Figure 1-2a). An intrinsic material

property, the shear modulus, is then determined from G = σ/γ. For a linear material,

G is constant independent of the amplitude of deformation. For a nonlinear response

G is still defined but depends on the amplitude of deformation, e.g. G = G(γ). It is

sometimes convenient to describe the response in terms of a tangent modulus, GK ,

which is equivalent to the chord modulus G in the linear regime but diverges from G

for a nonlinear elastic response.

Any purely viscous material can be described by imposing a constant rate of

simple shear deformation and measuring the resulting shear stress (Figure 1-2b).

The resistance to flow is then described by the intrinsic material property η = σ/γ̇.

A material with a nonlinear viscosity, e.g. η(γ̇), can still be described by this intrinsic

material measure which represents resistance to flow. A tangent viscosity can also be

defined for such a response, ηK = dσ/dγ̇.

When a material is viscoelastic its stress response is a function of both strain and

strain-rate, in which the material may have partial memory and exhibit a response

which depends on the entire history of its deformation. Numerous testing protocols

39



are available to a rheologist for probing such material behavior which depends on the

timescale of deformation.

Available rheometric protocols include small amplitude oscillatory shear, stress

growth upon inception of steady shear flow, stress relaxation after a sudden shearing

displacement, strain response to a sudden step in stress (a.k.a. a creep test), and con-

strained recoil after steady shear flow (a.k.a. creep recovery). The material measures

associated with such tests are described in detail in the textbook Dynamics of Poly-

meric Liquids, vol. 1 [8]. In the linear viscoelastic regime the viscoelastic material

functions are inter-related.

A nonlinear viscoelastic response is one for which the intrinsic material measures

depend not only on the timescale of deformation, but also on the amplitude of de-

formation. For a nonlinear viscoelastic response, material measures cannot always

be inter-related from the various test protocols. Furthermore, certain test protocols

cannot systematically explore the full domain of timescale and amplitude dependence

of the material properties, as discussed in the following section.

This thesis is primarily concerned with addressing the current limitations to char-

acterization of nonlinear shear properties. Extensional flow properties are also rel-

evant to many processing or use conditions. A short discussion (Section 5.1) ad-

dresses the modification of theory to apply to Large Amplitude Oscillatory Extension

(LAOE), but extensional flow properties in general are beyond the scope of this work.

As such, shear rheometry techniques are the focus of the following sections.

1.2.1 Non-oscillatory techniques

Test protocols other than oscillatory deformation can be used to examine nonlinear

rheological behavior in shear. For example, step-strain tests or step-rate tests can

examine nonlinear material responses, but neither test on its own simply reduces to

both linear viscoelasticity and steady flow for all materials. Thixotropic loop tests can

also examine time-dependent nonlinearities in the viscous response, e.g. by ramping

the shear-rate up to a particular value over a specified time, and subsequently ramping

shear-rate back down. Time dependent viscous properties are indicated by hysteresis
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(i.e. loops) in the resulting curves of σ(γ̇, t), but the response to linear ramps of

shear-rate cannot be used to connect with linear viscoelastic characterization.

1.2.2 Oscillatory shear deformation

Viscous and elastic mechanical properties can be simultaneously probed by subjecting

a material sample to oscillatory deformation. Oscillatory techniques allow for the

nonlinear viscoelastic response to be systematically explored and related to steady

flow and linear viscoelasticity within the two-dimensional experimental space {ω, γ0}.

Additionally, oscillatory shear does not involve any sudden jumps in speed or position

and it is therefore a relatively easy flow to generate[9].

For shear deformation, one requires an input shear strain of the form γ(t) =

γ0 sinωt, where γ0 is the strain amplitude and ω is the frequency of deformation.

This oscillatory shear strain consequently imposes an oscillatory strain-rate γ̇(t) =

γ̇0 cosωt, where γ̇0 is the amplitude of the strain-rate. The stress resulting from this

deformation will also be oscillatory, and will have a component in phase with the

strain (i.e. elastic stress, σ′ = f ′(γ)) and a component in phase with the strain-rate

(i.e. viscous stress, σ′′ = f ′′(γ̇)). Note that the inputs of strain and strain-rate are

exactly 90◦ out of phase (i.e. phase quadrature), which allows for the decomposition

of the elastic and viscous stresses since elastic stress should only be a function of

strain (e.g. σ ∼ Gγ where G is the shear modulus) and viscous stress should only be

a function of strain-rate (e.g. σ ∼ ηγ̇ where η is viscosity). In the linear viscoelastic

regime, the stress response is simply represented by

σ(t) = γ0 (G′ sin(ωt) +G′′ cos(ωt)) (1.1)

where G′ is the elastic modulus and G′′ is the viscous modulus[10].

This oscillatory test protocol involves only two input parameters, e.g. frequency

and strain amplitude {ω,γ0}. These parameters can be mapped in a two-dimensional

plane known as a Pipkin space, named after A.C. (Jack) Pipkin [1], drawn in Figure 1-

3. Three boundaries of this 2D space are related to limits of viscoelastic materials
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Figure 1-3: Schematic map of the input parameters for oscillatory shear rheometry,
known as a Pipkin diagram (adapted from A. C. Pipkin[1]). For viscoelastic fluids,
the limit of low frequency corresponds to approximately viscous behavior, whereas
high frequency corresponds to approximately elastic behavior. Linear viscoelastic
responses are expected at sufficiently small values of strain amplitude γ0. A. C. Pipkin
drew a question mark in the region of intermediate frequency and large amplitude,
the deformation regime in which many materials are processed and used.

responses. The first limit is that of vanishing strain-amplitude, γ0 → 0, which is the

regime of linear viscoelasticity in which material properties are only a function of

the timescale (frequency) of loading. The next limit is that of vanishing frequency,

ω → 0, in which case the response of a viscoelastic liquid is quasistatic and therefore

representative of a steady flow test with gradually changing shear-rate. The final

boundary is that of high frequency ω → ∞, for which case a viscoelastic liquid will

approach a purely elastic response. It is the middle region, away from these limiting

cases, which is often the most relevant for processing and use of viscoelastic materials

(i.e. the nonlinear viscoelastic region). It has been difficult to systematically describe

material responses in this regime, which motivated A.C. Pipkin to include a large

question mark in this region. It is this region which is of primary interest for this
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thesis.

The nonlinear viscoelastic regime can be approached by systematically increas-

ing the strain amplitude γ0. This results in a so-called “large amplitude oscillatory

shear” (LAOS) test. Early LAOS research was initiated in 1965 by Harris[11], 1966

by Philippoff[12], and 1970 by Onogi et al.[13]. These researchers examined the non-

linear material response as the strain amplitude was increased. Such nonlinearity

is exhibited by viscoelastic coefficients which depend on strain amplitude γ0 and a

non-sinusoidal stress response. For a nonlinear viscoelastic response, the stress re-

sponse is more complicated and the viscoelastic moduli, G′ and G′′, are no longer

uniquely defined. Meaningful quantitative measures have been difficult to identify,

and attempts at quantifying LAOS results tend to fall into two categories: analysis

of the time-domain response σ(ωt) or alternatively, analysis of parametric response

curves of stress vs. strain or stress vs. strain-rate (i.e. stress as a function of the

orthogonal mechanical inputs).

The time-dependent oscillatory waveform σ(ωt) is historically the most common

“perspective” used for quantitative LAOS analysis. An adequate mathematical rep-

resentation for a time-dependent oscillatory stress response is a Fourier series, and

the term Fourier-transform rheology (or FT-rheology)[9, 14, 15] refers to the practice

of representing the periodic oscillatory stress response as

σ (t;ω, γ0) = γ0

∑
n

{G′n (ω, γ0) sinnωt+G′′n (ω, γ0) cosnωt}. (1.2)

This FT framework is mathematically robust and reduces to the linear viscoelastic

framework in the limit of small strains. However, it suffers from two drawbacks.

First, although FT rheology is a very sensitive indicator of nonlinearity, as quantified

by the Total Harmonic Distortion (T.H.D.) (e.g. [16]) or the normalized intensity

of the 3rd harmonic (e.g. [17]), the FT framework does not result in a clear phys-

ical interpretation of the higher-order coefficients. Second, the linear viscoelastic

moduli “G′” and “G′′” are not uniquely defined once the material response becomes

nonlinear[18], since a nonlinear stress response is not a single-harmonic sinusoid. The
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first-harmonic moduli G′1 and G′′1 are often used as viscoelastic moduli, e.g. they

are often the output of commercial rheometers. These first-harmonic measures have

been used as a means to classify LAOS responses[19], and have been sufficient for

describing some types of nonlinear behavior, for example using the idea of strain-

rate frequency superposition[20, 21]. However, the use of first-harmonic moduli is an

arbitrary choice (the meaning of this choice is outlined in Section 2.2) and can fail

to capture the rich nonlinearities that are apparent in the raw data signal. Another

method of using the time-series stress signal for LAOS analysis is a recently proposed

decomposition into characteristic response functions[22, 23] which uses sets of sine,

square, and triangular waves to describe a prototypical nonlinear response. These

selected waveforms may be thought of as a set of “basis functions” used to repre-

sent a superposition of different physical phenomena. Although this provides a very

useful step toward a physical interpretation, these basis functions are not mutually

orthogonal, in contrast to the harmonic series that form the basis of FT-rheology.

They therefore blur measurement of the linear viscoelastic response and qualitative

interpretations of the progressive onset of nonlinearity. Qualitative interpretations of

the non-sinusoidal shape of σ(ωt) has also been explored[24], however it is difficult to

find physically meaningful interpretations in the time-domain.

The second “perspective” of LAOS analysis (and the one used in this thesis to

provide physically meaningful parameters) is based on parametric response curves of

stress vs. strain or strain-rate. These parametric plots are commonly called Lissajous

curves, and are frequently used to represent the raw test data obtained from LAOS

(e.g. Philippoff[12]). As a historical note, such curves are more accurately termed

Lissajous-Bowditch curves, as orbital trajectories bearing J. A. Lissajous’ name were

studied by N. Bowditch in 1815, before J. A. Lissajous was born and predating Lis-

sajous’ treatment in 1857 by more than forty years[25, 26]. There have been some

attempts to quantitatively analyze the LAOS response from this perspective of para-

metric response curves of stress as a function of the orthogonal mechanical inputs

of strain and strain-rate. Tee and Dealy[27] offered three measures for quantifying

viscous Lissajous-Bowditch curves of stress vs. strain-rate. Their material function
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which quantified the non-elliptical shape of a single curve was useful for indicating

nonlinearity but offers no physical interpretation. More recently, the so-called geo-

metrical interpretation (also referred to as stress decomposition) was introduced by

Cho et al. [28]. For a single harmonic sinusoidal strain input, the geometrical in-

terpretation decomposes the generic nonlinear stress response into a superposition

of “elastic” and “viscous” contributions using symmetry arguments (further details

are provided in Section 2.2). Although this decomposition is unique, the resulting

material parameters associated with the decomposition are not unique due to the

non-orthogonality of the underlying basis functions, as outlined in Section 2.2.

Physical interpretation of the multitude of different material nonlinearities ob-

served in LAOS tests is difficult, and widespread adoption of the technique has been

hindered because an appropriate framework does not yet exist. It is therefore de-

sirable to develop a complete, low-dimensional framework for quantifying nonlinear

viscoelasticity which avoids these ambiguities. Chapter 2 introduces a framework to

overcome the current limitations of LAOS interpretation. This framework includes a

descriptive language and set of unambiguous material measures for quantifying the

nonlinear viscoelastic response of soft materials using Large Amplitude Oscillatory

Shear (LAOS). The framework gives meaning to some of the past attempts listed

above, and inter-relations are given between various LAOS quantifiers.

In addition to LAOS, other experimental protocols exist for measuring nonlinear

oscillatory rheology. The most common of these techniques is to measure a differen-

tial modulus[6, 29, 30] from a small amplitude oscillatory shear deformation that is

superposed upon a fixed bias strain or stress. This protocol is quite useful for ma-

terials dominated by elasticity, but is less robust for materials which relax and flow

under the constant imposed bias strain (or stress). Although the differential modulus

protocol cannot be applied readily to viscoelastic fluids in general, it has been useful

to describe some of the results in this thesis (e.g. hagfish slime, Chapter 6). It has

recently been shown that the technique of “free oscillations” (a.k.a. creep ringing),

which has traditionally been used to measure linear viscoelastic moduli, can also be

used to characterize the nonlinear differential moduli[30]. A review of the general use
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of inertio-elastic ringing (“free oscillations”) is provided in the following Section.

1.2.3 Inertio-elastic ringing (“free oscillation”)

This section was originally published as a review article in the Rheology Bulletin[31].

In addition to the review presented in this section, the method of inertio-elastic ringing

is used in Chapter 6 to examine the rheology of hagfish slime networks.

Background

Inertial effects are ubiquitous and unavoidable in stress-controlled rheometry. Many

rheologists will have seen the kind of phenomena shown in the experimental data

of Figure 1-4. If the fluid is sufficiently viscoelastic, inertio-elastic “ringing” events

(i.e. damped oscillations) are observed in the angular displacement measured at the

start of a creep test, as a result of the coupling of instrument inertia and sample

elasticity. Even if the fluid is a simple viscous Newtonian fluid one may have noticed

that the initial strain response of any real creep test is always quadratic in time,

rather than the simple linear response J(t) ≡ γ(t)/σ0 = t/µ that is always taught

in class. Although well-understood theoretically, effectively dealing with the conse-

quences of inertio-elastic ringing is something with which practitioners of the coarse

art of rheometry may not always be comfortable. This section is intended to remind

the reader of the sources of these phenomena, and review some methods for extracting

useful rheological information from the data rather than simply discarding or deleting

it.

Inertial effects are often interpreted as undesirable, because inertia limits the

ability to measure the theoretical creep response of an unknown test material at

short times. However, effects such as inertio-elastic creep ringing can be exploited in

order to rapidly estimate viscoelastic properties. Creep ringing can be deliberately

exploited to slightly extend the accessible range of oscillatory measurements, and

the data extracted can also be compared with the viscoelastic material properties

measured in forced oscillation tests in order to check for self-consistency.
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Figure 1-4: The transient creep response of a viscous Newtonian fluid and a viscoelas-
tic polymeric gel with equivalent instrument inertia and geometry. The viscoelastic
fluid exhibits underdamped oscillations but little flow at long times as shown in (a).
The short time creep response, shown in (b), is identical for the two fluids and is
completely determined by instrument inertia and geometry. A short time asymptotic
solution proportional to t2 is also shown by the broken line. Creep ringing is caused
by the coupling of instrument inertia with the elasticity of the viscoelastic sample
(Rhamsan gum (courtesy of CPKelco, San Diego, CA) at 0.75 wt% 250mM NaCl,
AR-G2, D = 6 cm 2◦ cone, T = 25◦C, σ0 = 1 Pa for each).

Review

The analysis of inertio-elastic vibrations arising in viscoelastic materials has been

practiced for some time. It was apparently one of the most popular methods of (at-
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tempting to) extract viscoelastic moduli, especially for low frequencies and low-loss

samples, when it was difficult to measure the phase angle (see, e.g., the opening

remarks by Markovitz [32]). The earliest protocols were to perform the test under

free vibrations; that is, a predetermined force was released and the system was then

allowed to return to equilibrium as it underwent damped vibrations (often referred

to as ’free damped vibrations’ in the literature). Some early rheometer designs incor-

porated torsional springs, which would exhibit free (and weakly damped) vibrations

even when the sample itself had no elasticity. Instrument elasticity complicated the

experimental procedure, as pointed out by Walters [33], who noted that the free

vibration technique was generally only useful for extracting a viscosity coefficient.

Without the torsional spring, however, the analysis and experiments are less difficult.

By measuring the ringing frequency ω∗ and the logarithmic decrement ∆ associated

with the ringing (to be defined in detail below), Struik [34] showed that the viscoelas-

tic moduli can be approximated for small ∆, negligible instrument elasticity, and

negligible sample inertia by the following expressions:

G′ ≈ Iω2
∗
b

(
1 + (∆/2π)2) (1.3)

G′′ ≈ Iω2
∗
b

(
∆

π

)
(1.4)

tanδ ≈ ∆

π

(
1 + (∆/2π)2)−1

(1.5)

where I is the moment of inertia of the system, ω∗ is the ringing frequency and ∆

is the logarithmic decrement. This is defined as the natural logarithm of the ratio

of two successive peaks, or more generally ∆ = (1/n)ln(A1/An+1) where A is the

amplitude of the ringing above the equilibrium displacement and n is the number of

cycles between peaks.

In these expressions, b is a geometry factor given by γ/σ = bφ/T that relates the

raw (or measured) angular displacement φ and torque T to the rheological quantities

of interest, i.e. strain γ and stress σ (i.e. b = Fγ/Fσ where σ = FσT and γ = Fγφ).

For example the geometry factor for a cone-plate is bc−p = 2πR3/(3tanθ), and for
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a plate-plate, bp−p = πR4/2h. Struik also gives higher order correction terms to

the approximation given above. These corrections are proportional to ∆, ω, and

derivatives with respect to frequency (to access a range of frequencies, one would need

to vary the instrument inertia). Struik also presents a plot of maximum relative error

versus logarithmic decrement. For example, at ∆=1.0 (or equivalently tanδ = 0.33

from Eqs. 1.3-1.5) the maximum relative error for the elastic modulus is 7%, and for

the loss modulus 23%. These ideas are also reviewed in the treatise by Ferry [10].

Forced oscillations with precise harmonic control and measurements over many or-

ders of magnitude in frequency are now readily provided by commercial rheometers,

and therefore the free vibration technique is no longer a common method of measur-

ing viscoelastic moduli. However, the ringing caused by the coupling of instrument

inertia and sample elasticity is still part of the everyday lives of experimental rheol-

ogists. Zolzer & Eicke [35] used creep data obtained on a modern controlled stress

instrument to revisit the early ideas of ringing under step stress loadings, and used

the approximations developed for free vibrations to interpret their data; however,

this work is not widely known or cited. Another option for obtaining estimates of

viscoelastic moduli from observations of free ringing is to assume a specific rheological

constitutive model for the material. The differential equation governing the evolution

in the sample stress is then coupled with the differential equation of motion for the

system, and the resulting time-dependent response can then be solved analytically

(or numerically) and regressed to the experimental measurements in order to obtain

best-fit material parameters. The resulting equation of motion is of the general form:

I

b
γ̈ = H(t)σ0 − σs(t) (1.6)

where I = Igeometry + Irheometer, H(t) is the Heaviside step function characterizing

the imposition of the instrument stress and σs(t) is the shear stress in the sample

arising from deformation. It is immediately apparent that the sample stress is not

a step function, σs(t) 6= H(t)σ0, due to the finite inertia of any real rheometric

instrument, although it eventually reaches the constant, desired value after the inertial
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transient has decayed. The constitutive equation for sample stress is coupled with

this equation of motion, and the full system of (differential) equations must be solved

simultaneously. Arigo & McKinley [36] presented numerical solutions for a four-

mode upper-convected Maxwell model in parallel with a solvent viscosity, along with

the analytical solution for the single-mode formulation (a convected Jeffreys model).

Additional rheological models were considered by Baravian & Quemada [37], including

the Kelvin-Voigt and Maxwell models. Baravian & Quemada noted that creep ringing

was advantageous in extending the accessible frequency range in measurements on

biopolymer gels (they reported ringing at up to 75 Hz) since inertial effects limited

the frequency range accessible by forced oscillations.

Illustrative examples

We turn now to some examples of creep ringing behavior. Figure 1-5 shows the

creep response for three common rheological models: Newtonian, Kelvin-Voigt, and

Jeffreys. For each model the ideal creep response is shown (with I = 0 in Eq. 1.6)

alongside the actual response that arises due to a finite moment of inertia. For

completeness, the analytical solutions for the Kelvin-Voigt and Jeffreys models are

given in Table 1.1 and 1.2 (see e.g. [37] for detailed development of solutions). The

Kelvin-Voigt model contains two parameters (a spring of modulus GK in parallel with

a dashpot ηK) and is the canonical model for a viscoelastic solid because it attains a

finite strain at steady state. The Jeffreys model contains three-parameters (one spring

and two dashpots), and at steady state shows a steady rate of creep as expected in a

viscoelastic fluid. The three elements of the Jeffreys model can be arranged as either

a Kelvin-Voigt unit in series with a dashpot, or equivalently as a Maxwell unit (i.e.

a spring in series with a dashpot) in parallel with a dashpot [38]. In this work we

use the former formulation because it is convenient to see how the results reduce to

the Kelvin-Voigt model in the limit η2 → inf. Ringing is only observed in the under-

damped case, corresponding to sufficient elasticity, GK , GJ > Gcritical, where Gcritical

is given in Table 1.1 and 1.2 for each model.

The envelope for determining the logarithmic decrement is also shown for the
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Kelvin-Voigt

For ringing, GK > Gcritical =
η2
Kb

4I

γ(t) = γK

{
1− e−AKt

[
cos (ωKt) + AK

ωK
sin (ωKt)

]}

where γK = σ0

GK
, AK = ηKb

2I
, ωK =

√
GKb
I
− A2

K

with short time response: γ(t) ' σ0

I/b

[
1
2

(δt)2 − 1
6
η
I/b

(δt)3 + ...
]

G′ = GK , G′′ = ηKω, λK = ηK
GK

Table 1.1: Creep ringing solutions for a Kelvin-Voigt model (viscoelastic solid) cou-
pled with an inertial mass.

Kelvin-Voigt model in Figure 1-5(b). For an approximate viscoelastic solid creep

response of the form J(t) ≈ Xe−
∆ω
2π
t sin (ω∗t+ ψ) + Y , the logarithmic decrement

∆ can be determined from the absolute value of three peaks, J1, J2, J3 (as shown

in Figure 1-5b) by the formula ∆ = 2 ln ((J1 − J2)/(J3 − J2)) , which eliminates the

need to know the offset bias Y. The logarithmic decrement ∆ may then be used in

conjunction with Eqs. 1.3,1.4 to approximate the viscoelastic moduli.

It is apparent from Figure 1-5(c) that the logarithmic decrement may be more

difficult to obtain for a viscoelastic fluid, since an irreversible flow component is part of

the response. For this case an approximate viscoelastic response is of the prototypical

form J(t) ≈ Xe−
∆ω
2π
t sin (ω∗t+ ψ) + Y + Zt. In this case, the logarithmic decrement

can be determined from the absolute value of four peak points, J1, J2, J3, J4 (shown

in Figure 1-5c) without knowledge of Y or Z, by the formula

∆ = 2 ln

(
J1 − 2J2 + J3

−J2 + 2J3 − J4

)
. (1.7)
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Jeffreys

For ringing, GJ > Gcritical = A2
J
I
b

(1 + η1/η2)

γ(t) = γ̇Jt−BJ + e−AJ t
[
BJ cos (ωJt) + AJ

ωJ

(
BJ − γ̇J

AJ

)
sin (ωJt)

]

where γ̇J = σ0

η2
, ωJ =

√
GJb
I

η2

(η1+η2)
− A2

J

AJ = GJ+η1η2b/I
2(η1+η2)

, BJ = σ0

GJ

(η1+η2)
η2

(
2AJI
η2b
− 1
)

with short time response: γ(t) ' σ0

I/b

[
1
2

(δt)2 − 1
6

1
I/b

η1η2

η1+η2
(δt)3 + ...

]

G′ = GJ
(λ2ω)2

1+(λ1ω)2 , G′′ = GJ
(λ2ω)[1+(λ2

1−λ1λ2)ω2]
1+(λ1ω)2

λ1 = (η1 + η2)/GJ , λ2 = η2/GJ

Table 1.2: Creep ringing solutions for a Jeffreys model (viscoelastic fluid) coupled
with an inertial mass.

Figure 1-5(d) is a close-up of the short time response of each constitutive model

presented in Figure 1-5(a) - (c). This graphically shows that the initial short time

response of any model is related only to the inertia of the system and is quadratic in

time. This can be readily observed from Eq. 1.6. Provided the sample being probed

does not exhibit any instantaneous (or ’glassy’) elastic response, then at time t = 0+

the sample stress resisting the acceleration of the rheometer fixture can be ignored and

the resulting second order differential equation is (I/b)γ̈ = σ0 which can be readily

integrated to give γ(t) = 1
2
(σ0b/I)t2 + ... for any constitutive model. As the shear

strain and the shear rate build up in the material, the viscous or viscoelastic stress

will retard the acceleration of the fixture. The next order correction to the short time

solution is also given in Tables 1.1 and 1.2 for the Kelvin-Voigt and Jeffreys models.

It is clear from the expression above that all controlled stress rheometers under-

going a step stress loading will exhibit a quadratic response at short times. It is
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Figure 1-5: Typical data (simulated) for inertial creep responses compared to ideal
non-inertial responses: a) Newtonian; b) Kelvin-Voigt viscoelastic solid, under-
damped; c) Jeffreys viscoelastic fluid, under-damped; d) an enlargement of the re-
sponse near the origin shows that all models have the same quadratic response at short
times, which is determined purely by the instrument inertia and geometry factor.

interesting to note that the degree to which this response is actually resolved will

vary with the temporal sampling rate of the data acquisition system and the min-

imum angular displacement (or strain) that can be resolved by the rheometer. As

angular resolution and temporal sampling rates increase, inertio-elastic oscillations

will become increasingly apparent in short time creep data.

As a further illustration of the creep ringing technique, Figure 1-6 shows real data

from a creep test on pedal mucus (a biopolymer gel) from the terrestrial gastropod He-

lix aspera (also known as the common garden snail). This protein-polysaccharide gel

exhibits an apparent yield stress on the order of 100Pa [7], but is dominated by elas-

ticity below the yield stress. The ringing frequency is approximately ω∗ = 2.14 rad.s−1
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Figure 1-6: Creep test of native pedal mucus from the terrestrial gastropod Helix
aspera; inertio-elastic ringing fit to both a Kelvin-Voigt and Jeffreys model (AR-G2,
D=0.8 cm plate with sandpaper, 1000µm gap, T=22◦C, σ0 = 5 Pa << σy).

(f∗ = 0.34 Hz) and the slow decay in the oscillations indicates weak damping. The

under-damped oscillatory response for the two-parameter Kelvin-Voigt model and

three-parameter Jeffreys model (Tables 1.1 and 1.2) were fitted to the experimental

data using a nonlinear fitting routine in MATLAB. Once the model parameters are

determined they can be converted into values of G′ and G′′ (see formulae in Tables 1.1

and 1.2), and compared with the values extracted from the approximate analysis of
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ω∗ [rad.s−1] G′ [Pa] G′′ [Pa] tanδ
Approximation 2.14 231 18.2 0.08
Kelvin-Voigt 2.03 210 25.9 0.12
Jeffreys 2.11 223 17.0 0.08

Table 1.3: Viscoelastic moduli determined from inertio-elastic creep ringing shown in
Figure 1-6 using three different methods: the approximate relation using frequency
and logarithmic decrement, and fitting two assumed constitutive models: Kelvin-
Voigt and Jeffreys.

Struik which are model-independent and use only the ringing frequency ω∗ and loga-

rithmic decrement ∆. Here the logarithmic decrement was determined from the first

two cycles, using the four-point calculation (Figure 1-5(c) and Eq. 1.7) to account

for the finite flow in the response. Table 1.3 shows the comparative results, using all

three techniques.

The Jeffreys model achieves a satisfying fit to the data especially at short times

before any finite flow effects are observed, and will therefore be used as a benchmark

for comparing the results. It is interesting that the approximation, based on frequency

and logarithmic decrement, does as well or better than the Kelvin-Voigt model at

determining the moduli. Here the logarithmic decrement is small (∆ ≈ 0.25 <<

2π), which satisfies the low-loss criteria for using the approximation. In addition to

achieving a better fit to the data, another benefit of assuming a rheological model

is the opportunity to extend the measured result from free oscillations (which are

inherently limited to the single frequency, ω∗) to frequencies above and below the

ringing frequency. The precision of this extrapolation certainly depends on the quality

of the model fit, but at a minimum allows one to estimate the trends in frequency

dependence within a small range of the ringing frequency.

Conclusions

This short section has hopefully clarified some of the key features of inertio-elastic

creep oscillations that can often be discerned in the high resolution data obtained with

state-of-the-art rheometers. We remind the reader that when the effects of inertia are

negligible (at ’long’ times t � {1/AJ , 1/AK} respectively from Tables1.1 and 1.2),
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the frequency-dependent linear viscoelastic moduli can be determined directly from

the creep compliance J(t [10], although the frequency range and accuracy will still

be limited by the rate of data acquisition and length of measurement. However, the

presence of inertia limits the high frequency projection, since the short time response

of any real creep test is dominated by inertia, and therefore the sample stress is not

actually a step function, σs 6= H(t)σ0, but instead σs = H(t)σ0 − Iγ̈. The creep

compliance is not well defined for these short times. Of course, one way to nearly

eliminate instrument inertia is to perform a step strain experiment and measure

instead the relaxation modulus G(t), in which case it is only the response time of the

instrument and sample inertia that become the limiting factors.

As we noted earlier, one reported experimental benefit of inertio-elastic ringing

is the ability to achieve higher frequencies than forced oscillations. Note, however,

that the ability to resolve this frequency is important, and this depends on the rate

of data acquisition of the rheometer. The ringing frequency, to first order, depends

on the instrumental parameters and sample elasticity as ω∗ ∼
√
bG′/I. For a given

material, the limiting frequency is maximized by increasing
√
b/I. If the inertia

of the geometry is much less than the inertia of the instrument, then the choice of

geometry should be made to increase b. For a cone-plate bc−p ∼ R3/θ, where R is the

radius and θ is the cone angle, while for a plate-plate bp−p ∼ R4/h where h is the gap

height. Thus, assuming that the total inertia is primarily from the instrument, large

diameters with small gaps maximize the ringing frequency by increasing the ’stiffness’

of the system. Higher ringing frequencies will also decrease the total timescale of the

ringing, since higher frequencies will increase the rate of dissipation in the viscoelastic

material (note also in Tables 1.1 and 1.2 that increasing b/I increases the damping

rates AK and AJ respectively). Decreasing the total ringing time will also improve

the approximation of a step-sample-stress, σs ≈ H(t)σ0 (with progressively higher

frequency oscillations that are dissipated increasingly rapidly and which can only be

observed for short times t < AJ , AK respectively). Shifting the ringing frequency to

higher values is thus useful for observing creep compliance in viscoelastic materials

at shorter timescales.
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When analyzing inertio-elastic ringing, the Struik approximation using frequency

ω∗ and logarithmic decrement ∆ can be used as a very rapid manual self-consistency

check to compare with forced oscillation tests. If better precision is desired, the

higher order terms given by Struik could be used (which require data at multiple

frequencies). Alternatively, a rheological constitutive model can be assumed a priori,

and the ringing response can be fit to this model. At least one commercial software

package for rheological analysis includes a routine to fit creep ringing to mechanical

models such as those in Tables 1.1 and 1.2 (TA Instruments, New Castle, DE). In

this particular software the user is still required to manually convert the fitted model

parameters to the viscoelastic moduli G′(ω∗) and G′′(ω∗). Being aware of the existence

of inertio-elastic creep ringing and the quadratic short time response of any material

to a step stress loading in a rheometer enables the practicing rheologist to extract

useful information from data that is often obscured or ignored.
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Chapter 2

New measures for characterizing

nonlinear viscoelasticity with large

amplitude oscillatory shear (LAOS)

2.1 Introduction

Biopolymer networks[6, 39, 40], wormlike micelles[41], colloidal gels[42], and metastable

soft solids in general[21], exhibit complex nonlinear rheological responses, and as such

have been of interest to experimentalists and theoreticians for many decades. The

question arises of how to probe the complex viscoelastic response of such soft mate-

rials in the most appropriate way; see for example Philippoff[12]. Many of the bio-

logical and industrial processes associated with these materials cannot be described

by steady shearing flow, nor by linear viscoelastic deformations constrained by small

strain amplitudes. Large amplitude oscillatory shear (LAOS)[14] provides a method

to quantify the progressive transition from linear to nonlinear rheological behavior as

the strain amplitude γ0 is increased at any given imposed frequency ω. The indepen-

dent variables ω,γ0 can be used to define the coordinate axes of a Pipkin diagram[1]

which seamlessly connects steady viscometric flow (in the limit of small ω), linear

viscoelasticity (in the limit of small γ0), and nonlinear viscoelasticity. However, a
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comprehensive framework does not currently exist for quantifying in a physically

meaningful way the nonlinear viscoelastic response that arises from this imposed

deformation protocol. In this chapter I develop a descriptive language and set of

unambiguous material measures for quantifying the nonlinear viscoelastic response of

soft materials, enabling the development of a unique “rheological fingerprint” of an a

priori unknown substance.

Both the elastic and viscous characteristics of an unknown material can be ex-

amined simultaneously by imposing an oscillatory shear strain, γ(t) = γ0 sin(ωt),

which consequently imposes an orthogonal strain-rate γ̇(t) = γ0ω cos(ωt). Here ω is

the imposed oscillation frequency, γ0 is the strain amplitude, and t is time. At small

strain amplitudes when the response is linear, the material is commonly characterized

by the viscoelastic moduli G′(ω), G′′(ω) as determined from the components of the

stress in phase with γ(t) and γ̇(t) respectively[10]. The strain amplitude γ0 can be

increased systematically to enter the nonlinear viscoelastic regime, resulting in a large

amplitude oscillatory shear (LAOS) test. However, these linear viscoelastic moduli

are not uniquely defined once the material response becomes nonlinear[18], since a

nonlinear stress response is not a single-harmonic sinusoid. Physical interpretation of

the multitude of different material nonlinearities observed in LAOS tests is difficult,

and widespread adoption of the technique has been hindered because an appropriate

framework does not yet exist.

The most common method of quantifying LAOS tests is Fourier transform (FT)

rheology[15]. For a sinusoidal strain input γ(t) = γ0 sin(ωt), the stress response can

be represented completely by a Fourier series[14], given in two alternate forms to

emphasize either elastic or viscous scaling, respectively,

σ (t;ω, γ0) = γ0

∑
n odd

{G′n (ω, γ0) sinnωt+G′′n (ω, γ0) cosnωt} (2.1)

σ (t;ω, γ0) = γ̇0

∑
n odd

{η′′n (ω, γ0) sinnωt+ η′n (ω, γ0) cosnωt} . (2.2)

Only odd-harmonics are included in this representation because the stress response is
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assumed to be of odd symmetry with respect to directionality of shear strain or shear-

rate, i.e. the material response is unchanged if the coordinate system is reversed[8].

Even-harmonic terms can be observed in transient responses, secondary flows[43],

or dynamic wall slip[44], but these conditions will not be considered here. In the

linear viscoelastic regime the stress response will include only the first harmonic,

n = 1, whereas nonlinear material responses at larger strains result in the appear-

ance and growth of higher harmonic contributions. Although this FT framework is

mathematically robust and reduces to the linear viscoelastic framework in the limit

of small strains, it suffers from two drawbacks. First, although FT rheology is a very

sensitive indicator of nonlinearity, as quantified by the Total Harmonic Distortion

(T.H.D.) (e.g. [16]) or the normalized intensity of the 3rd harmonic (e.g. [17]), the

FT framework does not result in a clear physical interpretation of the higher-order

coefficients. Second, the use of the first-harmonic coefficients G′1 and G′′1 as measures

of the viscoelastic moduli in the nonlinear regime (and which are often the output of

commercial rheometers) is arbitrary and often fails to capture the rich nonlinearities

that are apparent in the raw data signal.

A striking example of the shortcomings of the conventional FT rheology frame-

work, and motivation for a new approach, is provided by the nonlinear viscoelastic

response of native pedal mucus gel secreted by the terrestrial slug Limax maximus [7].

In the present work, a series of strain-controlled oscillatory tests at a fixed frequency

of ω = 3 rad.s−1 is imposed and the corresponding nonlinear behavior of the physically

cross-linked mucus gel is shown in Figure 2-1. The typical rheometric measures of

viscoelastic moduli are shown in Figure 2-1a and appear unremarkable. By contrast

Figure 2-1b shows the raw data measured by the torque transducer at each imposed

frequency; the periodic stress response σ(t) at steady state is plotted parametrically

against γ(t). These parametric plots are commonly called Lissajous curves, and are

frequently used to represent the raw material test data obtained from LAOS (e.g.

Philippoff[12]). Such curves are more accurately termed Lissajous-Bowditch curves,

as orbital trajectories bearing J. A. Lissajous’ name were studied by N. Bowditch

in 1815, predating Lissajous’ treatment in 1857 by more than forty years[25, 26]. A
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Figure 2-1: Oscillatory strain sweeps of pedal mucus from Limax maximus at a
frequency ω = 3 rad.s−1. (a) Typical rheometer output of the fluid viscoelasticity as
parameterized by the first-harmonic Fourier moduli; (b) Plotting the raw data from
every-other point as σ(t) vs. γ(t) reveals additional nonlinear characteristics that are
obscured by G′1, G

′′
1.

linear viscoelastic response appears as an ellipse, which contains two mirror planes

(the major and minor axes of the ellipse). A steady nonlinear viscoelastic response

loses the mirror planes and requires only that the response is periodic,σ(t) = σ(t+T )

where T is the period of oscillation, allowing both odd and even harmonics in the
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Fourier series stress response. For the common situation of a simple fluid in which the

material behaves the same in both shear directions, only odd harmonics are allowed

(Eq. 2.1) and the Lissajous-Bowditch curve maintains a rotational symmetry about

the origin (rotation by π radians). We refer to the curves of σ(t) vs. γ(t) as elastic

Lissajous-Bowditch curves to distinguish them from the viscous Lissajous-Bowditch

curves which represent σ(t) as a function of the imposed shear-rate γ̇(t).

The “elastic modulus” of pedal mucus reported by a rheometer (i.e. the first

harmonic elastic modulus, G′1) decreases slightly with strain amplitude (Figure 2-1a),

implying minor strain-softening. However, the raw data in the form of Lissajous-

Bowditch curves (Figure 2-1b) reveal a strong nonlinear response evocative of strain-

stiffening. The elastic Lissajous curves in Figure 2-1b are elliptical for small γ0 (see

inset), but become progressively distorted in the nonlinear regime. At large strains,

the shear stress is greater than one would expect by projecting the center portion of

the ellipse, suggesting pronounced elastic strain-stiffening at large strain amplitudes

which is not captured by the first harmonic elastic modulus.

This paradoxical behavior is not unique to pedal mucus but appears to be common

in soft biological materials and can been seen, for example, in data reported for

a keratin filament network[45]; in both cases strain-stiffening is suggested in the

elastic Lissajous-Bowditch curves even though the familiar “viscoelastic moduli” do

not appear to increase as a function of imposed strain amplitude γ0. A quantitative

measure for easily identifying and comparing this type of stiffening response does not

currently exist.

In addition to FT rheology, various other methods have been proposed for quanti-

fying nonlinear viscoelasticity in LAOS[27, 28, 22]. However, these techniques either

lack physical interpretation, cannot be calculated uniquely, or do not apply generally

to all viscoelastic materials. Tee and Dealy[27] offered three measures for quantifying

viscous Lissajous-Bowditch curves of stress vs. strain-rate. Their material function

which quantified a non-elliptical shape of a single curve was useful for indicating non-

linearity but offers no physical interpretation. A recently proposed decomposition

into characteristic response functions[22, 23] uses sets of sine, square, and triangu-
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lar waves to describe a prototypical nonlinear response. These selected waveforms

may be thought of as a set of “basis functions” used to represent a superposition

of different physical phenomena. Although this provides a very useful step toward

a physical interpretation, these basis functions are not mutually orthogonal, in con-

trast to the harmonic series that form the basis of FT-rheology. They therefore blur

measurement of the linear viscoelastic response and qualitative interpretations of the

progressive onset of nonlinearity. Similarly, the so-called geometrical interpretation

(also referred to as stress decomposition) introduced by Cho et al. [28] suffers from

non-orthogonality of the resulting material measures. For a single harmonic sinusoidal

strain input, the geometrical interpretation decomposes the generic nonlinear stress

response into a superposition of “elastic” and “viscous” contributions using symmetry

arguments (further details are provided in Section 2.2). Although this decomposition

is unique, the resulting material parameters associated with the decomposition are

not unique due to the non-orthogonality of the describing basis functions, as we out-

line below. It is therefore desirable to develop a complete, low-dimensional framework

for quantifying nonlinear viscoelasticity which avoids these ambiguities.

In this chapter I introduce a comprehensive framework for physically interpreting

the deviations from a linear response to an imposed oscillatory shear deformation.

This framework provides a geometric representation and a descriptive language for

qualitatively familiar, but poorly defined, adjectives such as elastic stiffening/soften-

ing and viscous thickening/thinning. I also propose several new measures for report-

ing the first-order (linear) viscoelastic moduli in the nonlinear regime, to complement

the first-order Fourier coefficients which are often insufficient to describe the material

response. These additional measures all reduce to G′(ω) in the linear regime, but

diverge systematically when applied to a nonlinear signal, offering additional physical

insight into the underlying rheological response which would otherwise be obscured

by conventional measures.
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Figure 2-2: Applying the geometrical interpretation to the largest strain amplitude
data point from Figure 2-1, (ω = 3 rad.s−1, γ0 = 2.8); (a) total stress and elastic
stress σ′, (b) total stress and viscous stress σ′′.

2.2 Interpretation of higher harmonics using the

Chebyshev polynomial representation

To interpret LAOS data in a physically meaningful way, we first extend the method of

orthogonal stress decomposition[28], which uses symmetry arguments to decompose

the generic nonlinear stress response into a superposition of an elastic stress σ′(x),

where x = γ/γ0 = sinωt, and viscous stress σ′′(y) where y = γ̇/γ̇0 = cosωt. The

total oscillatory stress is the sum of the two contributions, σ(t) = σ′(t) + σ′′(t). This

decomposition is based on the idea that the elastic stress σ′ should exhibit odd-

symmetry with respect to x and even-symmetry with respect to y, whereas viscous

stress σ′′ should exhibit even-symmetry with respect to x and odd-symmetry with

respect to y. The decomposition is defined below[28], and using this definition, along

with Eq. 2.1 we indicate here that these elastic and viscous stresses are related directly

to the Fourier decomposition as follows,

σ′ ≡ σ (γ, γ̇)− σ (−γ, γ̇)

2
= γ0

∑
n odd

G′n (ω, γ0) sinnωt (2.3)

σ′′ ≡ σ (γ, γ̇)− σ (γ,−γ̇)

2
= γ0

∑
n odd

G′′n (ω, γ0) cosnωt. (2.4)
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Thus, in contrast to the closed loops formed by the total stress σ vs. γ or σ

vs. γ̇, plotting elastic stress σ′ vs. x or viscous stress σ′′ vs. y produces single-

valued functions of strain or strain-rate respectively. Figure 2-2 illustrates this stress

decomposition using the LAOS experimental data for native pedal mucus shown in

Figure 2-1. The intra-cycle elastic and viscous nonlinearities (i.e. nonlinearities within

a given steady state cycle at fixed ω, γ0) are therefore related to the nonlinearity of

these functional forms. Cho et al.[28] suggest a polynomial regression fit to these lines

of elastic and viscous stress (see their Eq. (23)). However, the material properties

represented by the polynomial coefficients are not unique since they depend on the

order of the polynomial arbitrarily chosen by the user. For example, given an unknown

smooth function F (x), a regression fit to a first order polynomial F = a0 + a1x will

always result in different coefficients a0, a1 than a regression fit to the higher-order

polynomial F = a0 + a1x+ a2x
2 + ... except in the limit of x� 1 or if the unknown

function is itself a linear function. Thus, fitting higher order terms affects the values

of lower order terms, and polynomial regression fits do not result in unique values for

quantifying nonlinearity. A framework which breaks down beyond the limit x� 1 is

not suitable for quantifying a nonlinear (viscoelastic) response.

What is desired is an approach in which one fits F = a0f0(x)+a1f1(x)+a2f2(x)+

... such that incorporation of higher order terms does not affect lower order terms,

i.e. the fi(x) must be orthogonal over the finite integration domain, in this case

[-1,1]. These functions fi(x) are basis functions, and for the present case in which

we decompose the stress into terms σ′(x) and σ′′(y), where x = γ/γ0 and y = γ̇/γ̇0,

the domain limits are the same for each curve, −1 ≤ x, y ≤ 1. Various sets of

orthogonal polynomial basis functions exist, including Laguerre, Hermite, Jacobi,

Utraspherical (Gegenbauer), Legendre, and Chebyshev of the first and second kind

[46]. The appropriate set of polynomials for describing σ′(x) and σ′′(y) will exhibit

(i) orthogonality over a finite domain, (ii) odd symmetry about x = 0 and (iii) a

bounded range for higher-order contributions. By process of elimination, we argue

that the logical choice for understanding LAOS is the set of Chebyshev polynomials of

the first kind. Laguerre and Hermite polynomials are eliminated because their limits
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of orthogonality are [0,∞] and [-∞,∞], which contradicts the finite domain criteria.

Jacobi polynomials are not appropriate, as they do not have symmetry about x = 0

(except for special cases in which Jacobi polynomials can be related to Ultraspherical

polynomials). Ultraspherical and Chebyshev (second kind) are ill-suited for LAOS

due to their values at x = ±1; higher harmonics have ever-larger maxima, or for some

classes of Ultraspherical polynomials have ever-decreasing maxima. Finally, Legendre

polynomials are eliminated because they are not directly related to the time-domain

Fourier coefficients, thus implementation with previously reported LAOS data and

comparison with other LAOS interpretations would be unnecessarily complicated. We

therefore make the choice to select Chebyshev polynomials of the first kind, because

these functions are bounded, exhibit symmetry about x = 0, are orthogonal on the

finite domain [-1,+1], and can easily be related to the Fourier coefficients which have

dominated the discussion on quantitative LAOS analysis. Using this basis set, the

elastic and viscous contributions to the measured stress response can be written as

σ′ (x) = γ0

∑
n: odd

en (ω, γ0)Tn (x) (2.5)

σ′′ (y) = γ̇0

∑
n: odd

vn (ω, γ0)Tn (y) (2.6)

where Tn(x) is the nth-order Chebyshev polynomial of the first kind, and x = γ/γ0,

y = γ̇/γ̇0 provide the appropriate domains of [-1,+1] for orthogonality. The first,

third, and fifth Chebyshev polynomials of the first kind are shown in Appendix A for

reference, in addition to their equations and orthogonality relations. The functions

at each order are orthonormal and therefore the coefficients en, vn are independent of

each other. We refer to en(ω, γ0) as the elastic Chebyshev coefficients and vn(ω, γ0)

as the viscous Chebyshev coefficients.

In the linear regime e3/e1 � 1 and v3/v1 � 1, and Eqs. 2.5,2.6 recover the linear

viscoelastic result such that e1 → G′ and v1 → η′ = G′′/ω. We interpret any devia-

tion from linearity, i.e. the n = 3 harmonic, as follows. A positive contribution of the

third-order polynomial T3(x) = 4x3− 3x results in a higher elastic stress at the max-
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imum dimensionless strain, x→ 1 than is represented by the first-order contribution

alone. Thus e3 > 0 corresponds to intra-cycle strain-stiffening of the elastic stress,

whereas e3 < 0 indicates strain-softening. Similarly, a positive value for v3 represents

intra-cycle shear-thickening of the viscous stress, and v3 < 0 describes shear-thinning.

These physical interpretations are not apparent in the time-domain (Fourier coeffi-

cients) but become immediately apparent from the sign of the Chebyshev coefficients.

Our deliberate use of Chebyshev polynomials allows the coefficients en and vn

(Eqs. 2.5,2.6) to be calculated from the familiar Fourier coefficients (Eq. 2.1). We

use the identity Tn(cos θ) = cos(nθ), together with sin θ = cos(π/2 − θ) which gives

Tn(sin θ) = sin(nθ)(−1)
n−1

2 for n:odd (see Appendix A for details). The relationships

between the Chebyshev coefficients in the strain or strain-rate domain and the Fourier

coefficients in the time domain are thus given by

en = G′n (−1)
n−1

2 n:odd (2.7)

vn =
G′′n
ω

= η′n n:odd (2.8)

Thus, just as the third-order Chebyshev coefficients provide physical insight into

the deviation from linear viscoelasticity, as described above, the third-order Fourier

coefficients can also now be given a physical interpretation (with appropriate sign

correction for G′3). This new framework allows Fourier coefficients to be used to

calculate physically meaningful measures of nonlinearity, i.e. the elastic and viscous

Chebyshev coefficients.

Some researchers report results from FT rheology in terms of amplitude and phase,

e.g. [47], in which Eqs. 2.1,2.2 would take the form

σ = γ0

∑
n: odd

|G∗n| sin (nωt+ δn) (2.9)

where |G∗n| =
√
G′n

2 +G′′n
2 is the scaled stress magnitude and δn is the phase with

respect to the input strain signal γ(t) = γ0 sinωt. The variable δn may be interpreted

as determining the initial conditions of the higher-harmonic contributions. For ex-
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Figure 2-3: Diagram summarizing the interpretation of the third-harmonic phase
angle δ3, as revealed by the third-order Chebyshev coefficients.

ample, at ωt = 0 the third harmonic contribution is |G∗3| sin(δ3), and subsequently

oscillates with a frequency of 3ω1 for ωt > 0. Thus, δ3 determines the initial value of

the third-harmonic contribution, and must range from 0 ≤ δ3 ≤ 2π.

As we noted above, only the signs of the third harmonic Chebyshev coefficients

are needed to interpret the nature of elastic and viscous nonlinearities. Here they are

related to the n = 3 phase angle and our interpretation of intra-cycle stiffening/soft-

ening and thickening/thinning can be summarized as (see also Figure 2-3)

e3 = − |G∗3| cos δ3


> 0 strain - stiffening for π/2 <δ3 < 3π/2

= 0 linear elastic for δ3 = π/2, 3π/2

< 0 strain - softening for −π/2 <δ3 < π/2

v3 =
|G∗3|
ω

sin δ3


> 0 shear - thickening for 0 < δ3 < π

= 0 linear viscous for δ3 = 0, π

< 0 shear - thinning for π < δ3 < 2π

If only torque and displacement signals are available, rather than stress and strain,

it is common to report the scaled intensity of the third harmonic torque response,

69



I3/I1, where In is the magnitude of the n-harmonic torque signal. One may calculate

the scaled third harmonic Chebyshev coefficients as e3/e1 = (I3/I1) cos δ3/ cos δ1 and

v3/v1 = (I3/I1) sin δ3/ sin δ1, the signs of which have an equivalent interpretation to

e3 and v3, respectively, since e1 and v1 are always positive.

Other attempts have been made to physically interpret the phase of the 3rd har-

monic, e.g. [48]. Our interpretation is distinct in that the phase angle δ3 indicates the

nature of both the elastic and viscous nonlinearities, even when they occur simulta-

neously. Furthermore, in our framework this interpretation is based on the absolute

phase difference relative to the excitation (δ3). By contrast, in the work of Neidhofer

et al. [48] the relative phase with respect to the first harmonic (δ3 − δ1) is used. Our

result above suggests that the sign of both the elastic and viscous deviation from lin-

earity is captured by a single quantity, δ3. The interpretation of the higher harmonic

stress response (G′3,G′′3 and the absolute phase δ3) is thus facilitated by the use of our

elastic and viscous Chebyshev coefficients e3 and v3.

2.3 Meaningful viscoelastic moduli in the nonlin-

ear regime

The second issue addressed with this new framework is the lack of clearly defined vis-

coelastic moduli for a nonlinear material response. The frequently used first-harmonic

coefficients G′1 and G′′1 often fail to capture the rich nonlinearities that are apparent

in the raw data signal (as shown in Figure 2-1). I define here several new measures for

accurately reporting the magnitudes of the first-order (linear) viscoelastic moduli in

the nonlinear regime, each of which has a distinct physical interpretation and comple-

ments the often-reported first-order Fourier coefficients. These additional measures

are deliberately chosen such that they reduce to the unique material functions G′(ω)

or G′′(ω) in the linear regime, but diverge systematically when used to analyze a

nonlinear signal, offering additional physical insight beyond that captured by the av-

erage measures G′1, G
′′
1. The variation in these new measures can be reported as a
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function of imposed strain amplitude γ0 (or strain-rate amplitude γ̇0) to indicate the

nature of material nonlinearity across different steady state cycles (i.e. inter-cycle

nonlinearities).

2.3.1 Elastic modulus

The apparent contradiction of Figure 2-1 is addressed by first recognizing that G′1

can be a misleading measure of the “elastic modulus” of such a material, since other

harmonic components may also store energy[18]. The first-harmonic represents a sine

transform G′1 = ω/ (πγ2
0)
∮
σ (t) γ (t) dt, which is a measure of the average elasticity

in the material response at each imposed pair of LAOS coordinates (ω, γ0), and is

therefore unable to distinctly represent the local elastic response of a material at

small and large instantaneous strains. To capture this local behavior, we define a set

of elastic moduli that are geometrically-motivated and then derive their relation to

both conventional FT rheology descriptions (by substituting Eq. 2.1 into the defini-

tions) and our new Chebyshev stress decomposition (via Eqs. 2.5,2.6). The following

definitions are introduced:

G′M ≡
dσ

dγ

∣∣∣∣
γ=0

=
∑
n odd

nG′n = e1 − 3e3 + ... (2.10)

G′L ≡
σ

γ

∣∣∣∣
γ=γ0

=
∑
n odd

G′n (−1)
n−1

2 = e1 + e3 + ... (2.11)

where G′M is the minimum-strain modulus or tangent modulus at γ = 0 and G′L

is the large-strain modulus or secant modulus evaluated at the maximum imposed

strain. The definitions of G′M and G′L can be considered as methods for calculating

G′ from available raw data, since for a linear viscoelastic response each is equivalent

to G′ (similarly, G′1 is also equivalent to G′ for a linear viscoelastic response). These

measures can easily be visualized graphically using typical Lissajous-Bowditch curves

as shown in Figure 2-4a (linear response) and Figure 2-4c (nonlinear response). These

measures are deliberately chosen such that both converge to the linear elastic modulus

G′(ω) in the limit of small strains (e3/e1 � 1), i.e. G′L = G′M = G′1 = G′(ω) in the
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Figure 2-4: Definitions of new measures for reporting viscoelastic moduli: (a),(b)
elastic moduli and dynamic viscosities, respectively, for a model linear viscoelastic
response with G′ = 0.8, G′′ = 0.6 at (ω = 1 rad.s−1, γ0 = 1); (c),(d) elastic moduli
and dynamic viscosities, respectively, for a nonlinear viscoelastic response (experi-
mental data shown is same as Figure 2-2). The first harmonic moduli are shown
for comparison. In the linear regime (a,b) all measures are equivalent to the linear
viscoelastic moduli. A nonlinear material response (c,d) will result in different values
for each material measure.

linear regime, as seen from Eqs. 2.10-2.11. The corresponding Lissajous-Bowditch

curve is an ellipse with local tangent at γ = 0 parallel to a secant at γ/γ0 = x =

1. Although these new elastic measures are calculated from the total stress signal,

they can also be related to the elastic stress σ′ as decomposed by the geometrical
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interpretation of Cho et al. [28]. Thus, another useful measure of elasticity may

be the slope of the elastic stress at maximum strain, G′K ≡ dσ′/dγ|γ=γ0
, which is

reminiscent of a differential modulus for a given strain amplitude. We note that one

might be tempted to take the local slope of the total stress near maximum strain as a

type of elastic modulus, however this measure does not reduce to G′(ω) in the linear

regime.

The minimum-strain modulus G′M is the tangent modulus at zero instantaneous

strain. This is a natural way to measure an elastic modulus. By the nature of an

oscillatory test for which γ(t) = γ0 sin(ωt), at the point where γ = 0 the strain-

rate is at a local maximum, dγ̇/dt = 0 and the viscous contribution to the stress

is thus locally constant. However, the strain is changing, which suggests that any

change in stress should be related only to elasticity. In fact, this is a possible way to

measure G′ in the linear regime, since for small total deformations G′M → G′, but the

formulation of Eq. 2.10 offers an interpretation of the elastic modulus in the nonlinear

regime which is distinct from G′1.

The large-strain modulus, G′L, is the secant modulus at maximum strain. This is

also a natural measurement of an elastic modulus since for γ = γ0, we have γ̇ = 0,

which suggests that the instantaneous viscous stress at this point should be zero.

Accordingly, the total residual stress in the sample results only from the elastic char-

acteristics of the soft material. The result is that G′L → G′ in the linear regime

(small γ0), but Eq. 2.11 offers an alternative and distinct view of the nonlinear elastic

response.

The graphical representation of these measures aids our interpretation of Lissajous-

Bowditch curves in both the linear and nonlinear regime. A Lissajous-Bowditch curve

in the linear regime will appear as an ellipse. A common misconception is that the

slope of the semi-major axis of this ellipse represents the elastic modulus (this slope

actually represents the magnitude of the complex modulus). The elastic modulus

is represented by the tangent slope at zero strain, G′M , and the slope of the se-

cant at maximum strain, G′L. The secant at maximum strain is not equal to the

semi-major axis of the ellipse, except for the case of a purely elastic solid whose
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Figure 2-5: Different elliptical approximations to a nonlinear viscoelastic signal, using
the newly proposed alternative measures of elastic modulus.

Lissajous-Bowditch curve would appear as a straight line.

Using these graphical interpretations, it can be observed from the elastic Lissajous-

Bowditch curves of Figure 2-1b that for large imposed strain amplitude γ0 the material

is strain-stiffening within a given cycle (intra-cycle stiffening) since G′L > G′M . As the

strain amplitude is varied, it is also observed that the tangent modulus G′M decreases,

indicating a type of inter-cycle softening of the elasticity at low strains. These insights

can not be gained from reporting G′1 alone.

We now have three ways to report the first-order elastic modulus: G′1 = e1,

G′M = e1 − 3e3 + .., and G′L = e1 + e3 + .... These can be thought of as three

different ways to approximate the leading order response of a nonlinear viscoelastic

material. Figure 2-5 depicts the use of these three elastic moduli in the approxima-

tion of an intra-cycle strain-stiffening nonlinear model. The simulated response is

described by G′1 = 1 Pa, e3 = −G′3 = 0.2 Pa, v1 = G′′1/ω = 0.1 Pa.s, and v3 = 0,

with all other higher harmonic contributions being identically zero. The minimum-

and large-strain elastic moduli can be found from the model parameters by use of

Eqs. 2.10-2.11. The linear approximation to the nonlinear viscoelastic response can
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be represented by using any of the first-order elastic moduli along with the loss mod-

ulus {G′1, G′′} , {G′M , G′′} , {G′L, G′′} to create elliptical Lissajous-Bowditch curves.

As can be seen in Figure 2-5, the first-order Fourier elastic modulus is a type of

average elastic response. The small-strain modulus G′M approximates the linear vis-

coelastic response as an ellipse that matches the small-strain elasticity. The linear

approximation using the large-strain modulus G′L captures the large-strain elasticity

by matching the stress response at maximum strain.

2.3.2 Dynamic viscosity

It has been previously shown that under oscillatory shear deformation, all of the

dissipated energy is represented by the first-harmonic loss modulus G′′1 [13, 18]. The

total energy dissipated per cycle per unit volume is πγ2
0G
′′
1. WhileG′′1 = η′1ω represents

the total dissipation per cycle, it cannot differentiate between any local changes in the

coefficient of viscous dissipation between the lowest and highest instantaneous shear-

rates experienced during the oscillatory deformation. We therefore regard G′′1 = η′1ω

as representing an average dissipation coefficient over the cycle. Here we introduce

new measures η′M and η′L which indicate the instantaneous viscosity (or coefficient of

viscous dissipation) at the smallest and largest shear-rates, respectively.

To represent the viscous nature of a soft viscoelastic material, we will use the

framework of dynamic viscosities, as given in Eq. 2.2. We define a set of dynamic

viscosities for reporting the viscous or dissipative response in a similar fashion to the

framework of the previous section. The definitions are

η′M ≡
dσ

dγ̇

∣∣∣∣
γ̇=0

=
1

ω

∑
n odd

nG′′n (−1)
n− 1/2 = v1 − 3v3 + ... (2.12)

η′L ≡
σ

γ̇

∣∣∣∣
γ̇=γ̇0

=
1

ω

∑
n odd

G′′n = v1 + v3 + ... (2.13)

where η′M is the minimum-rate dynamic viscosity and η′L is the large-rate dynamic

viscosity. These measures are represented graphically in Figure 2-4b (linear response)

and Figure 2-4d (nonlinear response). Note that each measure of dynamic viscosity
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reduces to η′ = G′′/ω when the response is a single harmonic, i.e. η′L = η′M = η′1 =

η′(ω) in the linear regime.

2.3.3 Dimensionless index of nonlinearity

These new alternative measures of elastic modulus and dynamic viscosity can be

compared to quantify intra-cycle nonlinearities which distort the linear viscoelastic

ellipse. For example, if the large-strain modulus G′L is greater than the minimum-

strain modulus G′M , then the response is strain-stiffening within the particular cycle

(i.e. intra-cycle strain-stiffening). We define the following strain-stiffening ratio:

S ≡ G′L −G′M
G′L

=
4e3 + ...

e1 + e3 + ...
. (2.14)

Note that S = 0 for a linear elastic response, S > 0 indicates intra-cycle strain-

stiffening, and S < 0 corresponds to intra-cycle strain-softening. Users of this frame-

work may also choose to compare the moduli using e.g. the ratio G′L/G
′)M =

(1 − S)−1; we prefer the measure in Eq. 2.14 for convenience in relating the new

measure to higher order Fourier/Chebyshev coefficients, and to eliminate potential

singularities as G′M → 0.

We similarly define the shear-thickening ratio as

T ≡ η′L − η′M
η′L

=
4v3 + ...

v1 + v3 + ...
(2.15)

where T = 0 indicates a single harmonic linear viscous response, T > 0 represents

intra-cycle shear-thickening, and T < 0 intra-cycle shear-thinning. The parameter T

behaves in a comparable manner to the 3rd order viscous Chebyshev coefficient v3,

and therefore has a similar relationship to I3/I1 and δ3 as described at the end of

Section 2.2.

The full framework for characterizing nonlinear viscoelasticity is summarized in

Table 2.1. The table includes both terminology and definitions of material measures.
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Elastic Characterization

Material Measures Interpretation

G′1 = ω
πγ2

0

∮
σ(t)γ(t)dt

First-harmonic (average)
elastic modulus

Linear
first-order
properties

G′M ≡ dσ
dγ

∣∣∣
γ=0

Minimum-strain
elastic modulus

G′L ≡ σ
γ

∣∣∣
γ=γ0

Large-strain
elastic modulus

Nonlinear
properties

e3 = −G′3 Intra-cycle elastic nonlinearities

S ≡ G′L−G
′
M

G′L
= 4e3+...

e1+e3+...

e3 and/or
S


> 0
= 0
< 0

strain - stiffening
linear elastic

strain - softening

Viscous Characterization

Material Measures Interpretation

η′1 = 1
πωγ2

0

∮
σ(t)γ̇(t)dt

First-harmonic (average)
dynamic viscosity

Linear
first-order
properties

η′M ≡ dσ
dγ̇

∣∣∣
γ̇=0

Minimum-rate
dynamic viscosity

η′L ≡ σ
γ̇

∣∣∣
γ̇=γ̇0

Large-rate
dynamic viscosity

Nonlinear
properties

v3 = −G′′3/ω Intra-cycle viscous nonlinearities

T ≡ η′L−η
′
M

η′L
= 4v3+...

v1+v3+...

v3 and/or
T


> 0
= 0
< 0

shear - thickening
linear viscous

shear - thinning

Table 2.1: Material measures and nomenclature for characterizing nonlinear viscoelas-
ticity with imposed oscillatory shear strain.

77



78



Chapter 3

Data analysis software: MITlaos

The descriptive framework for nonlinear viscoelastic characterization (Chapter 2) is

sufficiently general to be applied to any viscoelastic material, ranging from purely

elastic to purely viscous, and any complex viscoelastic response in-between. The

framework has been packaged into a distributable data analysis program to widen

its use in both academic and industrial settings[49]. This MATLAB-based software,

“MITlaos,” is freely available for use by anyone. This author is the primary con-

tact for distribution of MITlaos, by means of the permanent email address ‘MIT-

laos@mit.edu’.

The data processing used in the MITlaos software follows the protocol described in

Section 4.2.1. The MITlaos software includes source code for processing data, along

with a graphical user interface to improve ease of use. A manual for using MITlaos

is distributed to each user. This chapter includes the contents of the MITlaos v2.2

user manual. The source code associated with the primary data processing portion

of MITlaos is included in Appendix B.

The MITlaos software requires time-series signals of strain and stress, along with

user-specification of some analysis parameters. A flowchart showing the program

sequence is shown in Figure 3-1. The input data must be in the form of a plain text

file, but the software is sufficiently flexible to accept various formats and layouts,

including the standard text file export of some commercial instrumentation. Output

from the software includes data files and image files. The data file outputs can be
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Figure 3-1: Flow chart of the processing sequence for the “MITlaos” data analysis
software.

modified at the user’s discretion, and include calculated viscoelastic parameters and

time-series signals of elastic and viscous stresses,σ′(γ(t)) and σ′′(γ̇(t)) respectively.

Image file output is also useful for documenting the analysis. Figure 3-2 shows

one of the optional image outputs from the software, which includes an overview of

the analysis (here for pedal mucus from Limax maximus, ω = 3 rad.s−1, γ0 = 2.8,

c.f. Figure 4-2). The top left subplot in Figure 3-2 includes the input time-series

data of strain γ(t) and shear stress σ(t) used for the analysis. The lower left subplot

of Figure 3-2 is a Fourier spectrum of the stress response represented in terms of

a power spectrum density P (ω). This Fourier spectrum provides a mathematically

robust description of the response in terms of the individual harmonic contributions

to the system response. However, interpreting the physical meaning directly from

the phase and amplitude information encoded in the higher harmonics has proven

elusive. The physically meaningful characterization is represented in the middle and

far right columns of Figure 3-2. The middle column of Figure 3-2 captures the elastic

behavior of the sample response, showing the elastic Lissajous-Bowditch curve at the
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Figure 3-2: MITlaos Output: Overview plot example, shown here for pedal mucus
from Limax maximus, ω = 3 rad.s−1, γ0 = 2.8, c.f. Figure 4-3.

top, and at the bottom containing the spectrum of elastic Chebyshev coefficients and

the value of the different measures of elastic moduli. The solid red line in the elastic

Lissajous-Bowditch curve, the elastic stress σ′(γ), clearly shows the strain-stiffening

nature of the material response. The dashed-green line labeled “Chebyshev 1+3” is

the representation of the elastic stress using only first- and third-harmonic Chebyshev

coefficients e1 and e3; higher harmonics also exist (e5, e7, etc.) but these are negligible

as shown by the near overlap of the approximate (dashed line) and actual (solid line)

elastic stress σ′(γ). The far right column of Figure 3-2 contains the corresponding vis-

cous characterization of the sample response, showing the viscous Lissajous-Bowditch

curve at the top and at the bottom displaying the viscous Chebyshev spectrum and

the different local measures of dynamic viscosities. The software can save the overview

plot of Figure 3-2 for each test at a given amplitude and frequency, (γ0,ω). All of the

data displayed in the overview plot of Figure 3-2 can be output to data files.
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Figure 3-3: MITlaos Output: Filter performance, shown here for pedal mucus from
Limax maximus, ω = 3 rad.s−1, γ0 = 2.8, c.f. Figure 4-3.

As a final example of figure output from MITlaos, a plot showing the performance

of the comb-filter is shown in Figure 3-3. The raw data (shown as open circles)

is smoothed by retaining only the odd, integer harmonics of stress up to a cutoff

frequency, resulting in the smoothed stress response shown by the solid blue line.

Section 4.2.1 provides a detailed discussion of the comb filter process.

The remaining portions of this chapter contain instructions for installing and using

the MITlaos software.

3.1 Introduction

This manual describes the use of MITlaos (MATLAB version), a data analysis pro-

gram for analyzing rheological properties in large amplitude oscillatory shear (LAOS).

In addition to calculating standard viscoelastic parameters such as G′1, G
′′
1, MITlaos

calculates additional parameters for interpreting nonlinear viscoelastic behavior. For

detailed information regarding definitions and interpretation please refer to Chapter

2, and [28][50].NOTE: As input, the program requires oscillatory waveforms of strain

and stress from a strain-controlled oscillatory shear test.
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NOTE: MITlaos requires installation of MATLAB, which can be pur-

chased from The MathWorks at www.mathworks.com.

3.2 Installation

MITlaos is currently distributed as a ZIP folder which contains multiple subfolders

and multiple MATLAB subfunctions. Installation is done by unzipping and saving the

MITlaos folder to any location on the local hard drive. Although any location is ac-

ceptable, a convenient location for the MITlaos folder is ...\MATLAB\work\MITlaos.

WARNING: Do not modify the contents of the MITlaos folder.

Please contact MITlaos@mit.edu regarding installation prob-

lems.

3.3 Running the program

3.3.1 Structure of Input Data File

MITlaos requires a text-based (ASCII) data file which contains columns of data.

Header information is typically tolerated by the program. At a minimum, time-series

data for strain (or displacement) and stress (or torque) are required. Additionally, a

data column of time may be included if data are sampled at uneven intervals.

NOTE: MITlaos is flexible regarding the arrangement of columns in the

data input file. The user will specify which column contains strain, stress,

and time (optional).

3.3.2 Starting the Program

Once MITlaos is installed and the data input file is of the proper form, the program

can be initialized with the following sequence.

1. Open MATLAB
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Figure 3-4: The MITlaos main window (arrows added to show the standard order of
completion).

2. Change the current working directory to the MITlaos folder (e.g. ...\MATLAB\

work\MITlaos\). This folder should contain MITlaos.m

3. Type MITlaos at the command prompt to start the program

3.4 Main Window Overview

The MITlaos program consists of one main window (Figure 3-4) and several side

windows. The main window includes all the necessary steps for analyzing sets of

data. Several buttons in the main window open side windows that provide the user

with more information and with more options to customize the data analysis.

The MITlaos main window is broken into separate panels (which look like boxes)

that group together related information. MITlaos was designed for filling out the

information in one panel and then moving to the next one. The typical order for

setting up MITlaos is to complete the Data Input panel, Input Variables panel, Stress

Filtering panel (optional), Save Panel (optional), Additional Tools (optional), and

then to press the ‘Analyze Data’ button. The arrows in Figure 1 show the progression
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Figure 3-5: Data Input Panel.

Figure 3-6: Choose Data Window.

across the main MITlaos window. This User Manual will also follow this order.

3.5 Data Input Panel

The Data Input panel lets the user select and preview the data file MITlaos will ana-

lyze. To select the data file, click either the Choose Data button or type the filename

and its directory into the File Name and Path Name boxes (see Figure 3-5).

Choose Data button

Press the ‘Choose Data’ button in the Data Input panel to browse and select the

file to analyze (Figure 3-6). Select the file, then click ‘Open’ and the filename and

directory information will automatically be entered into the MITlaos main window.
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Figure 3-7: Import Wizard (only used to preview data).

Preview Data button (Optional)

The ‘Preview Data’ button uses a function called Import Wizard to preview the

selected data file. This can be used to quickly look at the contents of the selected

input file. The Import Wizard is shown in Figure 3-7.

WARNING: Import Wizard must only be used for previewing

data. Press ‘Cancel’ when finished using the wizard; DO NOT

click ‘Next.’

In Figure 3-7, the box on the left shows the raw contents of the chosen data file.

The grid on the right shows how MITlaos will load the file. In the example shown in

Figure 3-7, MITlaos automatically cuts off the top rows of text containing the headers

and units and reads only the numerical data below them. Note that the values of

Torque are being read properly, however the numerical value is so small that Import

Wizard rounds to 0 in the display on the right.

File Name edit box

The File Name edit box displays the name of the chosen data input file. Using

the ‘Choose Data’ button will automatically fill in this box; however, the user may
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Figure 3-8: Input Variables panel.

also manually type the name of the data file into this box if desired.

Path Name edit box

The Path Name edit box displays the directory of the input file. As with the File

Name edit box, the ‘Choose Data’ button can be used to automatically fill in this

box. The user also has the option to type the pathname of the data file into this box.

3.6 Input Variables Panel

The Input Variables panel (Figure 3-8) allows the user to specify all the information

MITlaos requires for loading the data. It asks three separate questions:

� At what oscillatory frequency was the sample tested?

� Which columns in the data file contain which variables?

� What portion of the time-series data should be analyzed?

Frequency edit box

In the Frequency box, enter the oscillatory strain frequency used to test the sam-

ple, in units of [rad/s]. This input is necessary to run the analysis. It is suggested
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that the user include the frequency in the input filename as a convenient reference.

Column Specification

The user must specify which columns in the data file contain the strain, stress,

and (optionally) time signals. This allows MITlaos to read data files with different

layouts. To identify the column in the data file corresponding to each signal, click

on the dropdown menus to the right of the words ‘Strain’ and ‘Stress’, underneath

the heading ‘Column #’. From the dropdown menu, select the column number cor-

responding to the location of the data signal in the input file. To make the Time

column options visible, the user must first select the ‘Yes’ box to the left of the word

‘Time’. If the input datafile has headers labeling the columns, it is possible to see

them with the ‘Preview Data’ button (in the Data Input panel) to see which column

contains which variable.

NOTE: Different columns must be selected for each variable.

Strain and Stress are the two variables required by MITlaos. Time is an additional

variable that can be incorporated into the analysis if necessary. If the data was NOT

collected at equally spaced time intervals, then it is important to include time as an

input. If time is not included, MITlaos will assume the data points are equally spaced

in time. It is recommended to NOT include time if data are evenly spaced.

In order to input displacement (instead of strain), click on the ‘Convert Displace-

ment’ checkbox to the left of the word ‘Strain’. A box allowing the input of a conver-

sion factor will appear to the right of ‘Units’, and the word ‘Strain’ will be changed to

‘Displacement’ (Figure 3-9). Use the appropriate conversion factor such that strain

is unitless (i.e. not in terms of percent), according to the equation γ[−] = FγΘ.

If the data was collected as torque, instead of stress, click on the ‘Convert Torque’

box to the left of the word ‘Stress’. Similar changes will occur, allowing the user to

specify a conversion factor between torque and stress. Use the appropriate conversion

factor such that stress is in units of Pascals, according to the equation τ [Pa] = FτT .

Note that torque may be reported in various units, but must be chosen to give stress
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Figure 3-9: Input Variables panel, with ‘Convert Displacement’ and ‘Convert Torque’
options selected, and the ‘Time’ column input turned on.

in units of Pascals. These conversion factors depend on the type and size of geometry

being used (cone-plate, plate-plate, etc.). Values for conversion factors may be found

in rheology textbooks, and may sometimes be given by the geometry manufacturer.

Data Windowing

MITlaos can analyze all or part of the time-series data contained in the input

file. There are two large buttons, titled ‘Window Data’ and ‘Use Full Data Set’ that

allow the user to choose between these options (see Figure 3-8). To the right of these

buttons are three boxes which display the starting point, ending point, and number

of cycles chosen from the dataset. These boxes will be empty if no data range has

yet been chosen.

NOTE: At least one complete cycle must be selected for the analysis to

work properly

To analyze the full time-series data set, press the ‘Use Full Data Set’ button. The

full dataset will be trimmed to an integer number of complete cycles (this is necessary

for analysis), and the boxes to the right of the button will immediately display how

much data will be included for analysis.

Windowing the data is required if the time-series data contains transients, or if

several strain amplitudes or frequencies are contained within the same data. In these

cases, only part of the data should be used for each analysis. Press the ‘Window

Data’ button and a new window will open called ‘processPartDataGUI’, which allows

89



Figure 3-10: ProcessPartDataGUI window.

the user to select which portion of the time-series to include for analysis.

ProcessPartDataGUI

Stress and strain are plotted against time (or arbitrary time) in the ProcessPart-

DataGUI (Figure 3-10). Since MITlaos is designed to analyze a viscoelastic system

response to a sinusoidal strain input, the strain signal should appear as a sine wave

and the stress response should oscillate with the same period (note that stress should

simply be a shifted sine wave in the linear viscoelastic regime). By looking at this

stress and strain signals, the user should be able to determine which portion of the

data should be analyzed.

Click the ‘Choose Range’ button on the bottom left of the window to select the

desired portion of data to analyze. The cursor will immediately change to a cross

hair which will be used for selecting the limiting points of the desired range. Move

the cross hair over the graph and click once at the beginning and once at the end of

the desired data range (note that the vertical position of the crosshairs is irrelevant).

The two chosen points will be displayed in the First Point, and Second Point edit
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boxes. If desired, the user may choose to manually type the location of the chosen

points into the edit boxes.

The chosen data range will be further trimmed to be an integer number of cycles.

The new limits of the data to be processed will be displayed in the ‘Starting Point

After Data Trimming’ and ‘Ending Point After Data Trimming’ boxes. The bottom

box shows the total number of complete cycles that will be used in data analysis. An

integer number of cycles is required for proper processing.

It is possible to redo either of the endpoints of the initially selected data range.

To redo one point, but leave the other point as is, click ‘Redo First Point’ or ‘Redo

Second Point’ and then click on the graph. When satisfied with the selected data

range, click ‘OK’.

On Selecting the Data Range

The stress response reaches a steady state when the stress amplitudes of each

cycle are equal and the shape of the cycle repeats itself. In Figure 3-10, steady state

is reached after the first peak, which is slightly smaller than the others. For best

analysis, include only cycles that have reached equilibrium.

Example: Incorrect column settings

To illustrate a possible mistake with the settings of the Input Variables panel,

an example is included here (Figure 3-11) in which the columns for the data have

been incorrectly assigned. As shown in Figure 3-11, a straight line running through

the graph is an immediate indication that something is wrong, since both stress and

strain should be oscillating. In this example the time column was incorrectly specified

as the strain column.

Example: Multiple strain-amplitudes in one data file

Figure 3-12 shows an example of more advanced data processing that can be done

with MITlaos. This shows the data collected from a waveform test combined with a

stepwise increases in amplitude (6 cycles at each strain-amplitude). The decreasing
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Figure 3-11: Data Set with Incorrectly Specified Columns.

stress amplitudes after each step show that the system has not reached equilibrium.

MITlaos can not accurately process this entire set of data (Figure 3-12) due to the

changing strain-amplitude. However, the data can manually be windowed to analyze

one strain-amplitude at a time. This data set could then be used to separately

analyze four different strain amplitudes. Note, however, that for best results it is

recommended that the analysis be carried out on a system that has reached steady

state.

Example data files are included with the distribution of MITlaos in the subfolder

...\MITlaos\subfunctions MITlaos\. A document in the same subfolder describes

these example data files.

NOTE: The following 2 sections (Stress Filtering panel and Save panel)

are OPTIONAL steps. Default values for these settings are provided

when MITlaos is initialized. However, these settings are not optimal for

all data.
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Figure 3-12: Data Set with a Stepwise Increase in Amplitude.

Figure 3-13: Stress Filtering panel.

3.7 Stress Filtering Panel

Stress signals are smoothed with the help of a Fourier Transform (FT). The raw

stress signal is first decomposed into Fourier components. A linear viscoelastic re-

sponse should have only one frequency component in its Fourier spectrum, whereas

a nonlinear viscoelastic response will also contain higher harmonics. The smoothed

stress signal is then reconstructed using only the odd, integer harmonics of the Fourier

spectrum, since all other harmonics are the consequence of noise, unsteady oscilla-

tions, or systematic bias. This FT filtering technique eliminates noise and also aids in

calculating nonlinear viscoelastic parameters. The Stress Filtering panel allows the

user to change two options involved in this Fourier reconstruction (Figure 3-13).

The first setting is the value for n, the highest odd harmonic used in stress recon-
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struction (i.e. ωmax = nω, where ω is the oscillatory test frequency). The maximum

available value for n, labeled as ‘n (max)’ is displayed as well (this indicates the

Nyquist frequency). The value of ‘n (max)’ is limited by the number of data points

per cycle, and will be displayed as soon as a data range is chosen (see data window-

ing). Although ‘n (max)’ is the maximum possible value for n, it is common to use a

lower n value than this.

Choosing a lower n will limit the number of harmonics used in the Fourier Trans-

form (FT) reconstruction. If n is too low, the stress will be overly-smoothed and

less accurate. However, if n is too high, random noise may be incorporated into the

smoothed stress. For help on choosing the appropriate value for n, click the ‘View

FT Spectrum of Stress’ button (see next subsection).

The second setting is the ‘Points per Quarter Cycle (PPQC) in Fourier-Transform

reconstruction’. This value indicates the number of data points included in the recon-

structed stress signal. A smaller number of points will decrease the resolution of the

reconstruction, and a higher number of points will increase the file size. The default

value is currently 50 PPQC, which is likely adequate to capture most nonlinearities.

No limit is placed on size of the reconstructed Fourier-Transform, other than the op-

erator’s ability to store the resulting data. Note that a smoothed stress signal with a

large PPQC value may represent a higher time-resolution than is actually contained

in the smoothed signal, since harmonics greater than n have been omitted.

View FT Spectrum of Stress

Clicking the ‘View FT Spectrum of Stress’ button opens the FTHamonicGUI

window (Figure 3-14). This window displays the Fourier Transform (FT) power

spectrum of the raw stress signal, and provides the user with information to choose

the appropriate value for n.

The FT spectrum will typically show a series of decreasing peaks that eventually

fall into the noise floor at higher frequencies (note that a single peak at n = 1 is

required for a linear viscoelastic response). Any data signal will have such a noise

threshold. For Figure 3-14, the signal to noise ratio for the first harmonic is of the
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Figure 3-14: FTharmonicGUI window.

order S/N 104.

An appropriate value for n, the highest harmonic to use in reconstruction, is

typically a value which is low enough to avoid the noise floor, yet high enough to

capture the viscoelastic nonlinearities. To select the desired n value, click the ‘Choose

Highest Harmonic’ button. The pointer will turn into a set of crosshairs. Next, click

on the graph at the desired n value, typically near the last big peak that stands

out above the noise threshold (note that the vertical location of the crosshairs is

irrelevant).

When the graph is clicked once, the value of n will automatically be rounded to

the nearest odd integer and displayed in the box below the graph. The user may also

manually type the desired value of n into this box.

3.8 Save Panel

The Save Panel (Figure 3-15) allows the user to select all the options for saving the

analyzed data as figures and/or data files. No files will be saved until the ‘Analyze

Data’ button is clicked, which is located at the bottom-right of the main window.
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Figure 3-15: Save panel.

The data will be saved at the completion of the analysis.

The first edit box at the top of this panel allows the user to choose the beginning

of the save file names. When the figures and data files are saved, each of their

names will begin with the text in this box, and an appropriate suffix will be added

to distinguish each file. This provides a simple way to group related files together.

For example, when saving a JPEG image with suffix ‘Figure1’ (a setting located

beneath the ‘Customize Figure Saving Options’ button), with the text of ‘Beginning

of save file name’ as ‘TestSample42’, the final save file would be called ‘TestSample42-

Figure1.jpg’.

The second edit box determines the folder where figure and data output is saved.

This can be chosen to be different than the original data file location.

The Save Data Files checkbox

This box must be checked to save any data files.

The Save Figures checkbox

This box must be checked to save any image files.

96



Figure 3-16: datasaveGUI window.

Details regarding the ‘Customize Data-File Saving Options’ and ‘Customize Figure

Saving Options’ buttons are discussed in the following two subsections.

Customize Data-File Saving Options

When the ‘Customize Data-File Saving Options’ button is clicked, the datasaveGUI

window opens, allowing the user to specify the layout and format of the saved data

files (Figure 3-16).

The check boxes labeled ‘File 1’, ‘File 2’, etc. determine if each file will be saved.

‘File 1’, ‘File 2’, and ‘File 3’ are intended to contain columns of time-series data, the

layout of which can be modified by using the dropdown menus associated with each

file. ‘File 4’, ‘File5’, and ‘File6’ have fixed formats, since they contain the calculated

viscoelastic parameters. All data files have a default file extension .txt, but this may

be changed by the user.

The layout of ‘File 1’ will be determined by the box immediately to the right of

the ‘File 1’ checkbox. The window shown in Figure 3-16 indicates here that ‘File 1’,

‘File 2’, ‘File 4’, ‘File5’, and ‘File6’ will all be saved. Since the ‘File 3’ checkbox is

unchecked, it will not be saved and none of its information is displayed in the window.

The edit boxes underneath the header ‘Add Suffix to Save-File Name’ will deter-
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mine the last part of each filename. Note that the beginning of each save file name

will be identical, and can be changed in the Main Window under the Save Panel. In

Figure 3-16, ‘File 1’ will be saved under a name ending with ‘1cycle-vStrain.txt’.

Files 1-3 have selectable round circles labeled ‘Include a header with calculated

variables’ located under the save file name edit boxes. When this option is selected, a

29 line header will be printed in the file which specifies all the calculated viscoelastic

parameters of the processed data.

The ‘Column #’ drop down menus to the right allow the choice of time-series data

to be saved in each column. The drop down menu underneath the words ‘Column 1’

and to the right of ‘File 2’ will change the first column saved in the second file. Up

to eight different columns can be specified for each save file.

File 4 is permanently set to create a save file containing all the calculated vis-

coelastic parameters, and contains two rows of text. The first row includes a text

description for each parameter and the second row contains the numerical values for

each parameter. This layout was chosen so that other programs could be written to

easily access these viscoelastic parameters.

File 5 and File 6 are permanently set to output the Fourier Transform spectrum

and the Cheybshev spectrums. The FT spectrum may contain non-integer harmonics,

but the Chebyshev spectrum will contain only integer harmonics.

NOTE: If the ‘Save Data Files’ checkbox in the main window is not

checked, none of these files will be saved regardless of what options are

chosen.

Customize Figure Saving Options

The ‘Customize Figure Saving Options’ button opens the figuresaveGUI window

(Figure 3-17). The check boxes on the left allow the choice of which figures to save.

The dropdown menus underneath the header ‘Image Format’ allow the choice of

saving each figure as JPEG or TIFF format.

The edit boxes underneath the header ‘Suffix to Append to File Name’ will de-

termine the last part of the name for each file. Note that the beginning of each save
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Figure 3-17: figuresaveGUI window.

Figure 3-18: Main Program Buttons.

file name will be identical, and can be changed in the Main Window under the Save

panel. As prescribed in Figure 3-17, the overview plot will be saved under a name

ending with ‘Fig Overview.JPEG’.

NOTE: If the ‘Save Figures’ checkbox in the main window is not checked,

none of these figures will be saved regardless of the selected options.

3.9 Main Buttons

Once all of the details are specified, the analysis is initialized by clicking the ‘Analyze

Data’ button, at the lower-right corner of the MITlaos main window (Figure 3-18).

Quit:

Exits MITlaos and closes main window.
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Analyze Data

This processes the selected data, using the chosen analysis options, and saves the

specified figures and data files. Figures chosen for saving will also be displayed on

screen for viewing.

Note that inputs in the MITlaos main window are only reset if MITlaos is closed

and re-opened. This allows the user to

1. Tweak processing parameters, and quickly reprocess the data with the ‘Analyze

Data’ button

2. Select a different input data file while keeping the same processing parameters.

This allows for quick subsequent processing of multiple data files.

NOTE: An over-abundance of figures may remain on screen when subse-

quently processing many data sets, thus slowing the processing. All fig-

ure files may be conveniently closed by typing ‘close all’ at the MATLAB

command prompt. All of the figures will close, and the main MITlaos

window will remain open.

3.10 Additional function: Plot3D

Plot3D is an additional tool for inspecting Lissajous curve trajectories in the 3D space

with strain, strain-rate, and stress as the coordinate axes. Within this 3D space, three

curves are shown: elastic stress, viscous stress, and total stress. The user can explore

various views of the viscoelastic response within this 3D space. A screenshot of the

plot3D user interface is shown in Figure 3-19.

View Options

Three default view options are available, accessible by three buttons under View

Options:

� Stress vs. Strain (elastic perspective)
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Figure 3-19: Plot3D user interface.

� Stress vs. Strain-rate (viscous perspective)

� 3D view (original view when plot3D starts)

The Azimuthal and Elevation viewing angles can be specified in the boxes under

View Options. The view can be changed by typing a new angle (in units of degrees)

and pressing Enter on the keyboard.

The slider bars on the bottom and right side of the display window can be used

to change both the azimuthal and elevation angles. To continuously rotate the view,

use the arrows at the edges of the slider bars. Dragging the indicator bars will also

change the view, but will not result in a continuous change in perspective.

Save Options

The ‘Image Format’ dropdown menu allows the user to select either TIFF or

JPEG image format for figure output.

The ‘Add suffix to file name’ textbox allows the user to modify the last portion of

the filename for figure output. The destination folder and first portion of the filename

are specified in the main MITlaos interface.
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Save Figure

Outputs an image file of the current 3D view. The figure is saved and a new

window is opened showing the saved image. If desired, the newly opened figure can

be further modified using MATLAB’s standard 3D-modificatin tools. This modified

figure can be saved by accessing the ‘File’ dropdown menu and selecting the ‘Save

As’ command
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Chapter 4

LAOS ontology applied

4.1 Constitutive model examples

In this section I illustrate and reinforce the interpretation of the new quantitative

framework presented in Chapter 2 with some idealized model examples.

4.1.1 Purely elastic strain-stiffening solid

Consider a purely elastic solid material, whose shearing behavior can be represented

by the constitutive expression

σ = f(γ) γ

f(γ) = G0 +Gβ

(
γ

γ∗

)2 (4.1)

where f(γ) is the nonlinear elastic coefficient and γ∗ is a critical strain beyond which

nonlinear effects become significant. All nonlinear spring functions (e.g. FENE,

wormlike chain, etc.) have leading order expansions of this form with expressions for

Gβ that vary with the chosen model; whenGβ is positive the model is, by construction,

strain-stiffening. It can be shown analytically (by using substitution and equating

coefficients) that the decomposition of this nonlinear response results in the following
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elastic Chebyshev coefficients

e1 = G′1 = G0 +
3

4

(
γ0

γ∗

)2

Gβ

e3 = −G′3 = +
1

4

(
γ0

γ∗

)2

Gβ.

(4.2)

All higher coefficients e5, e7 are zero as the function in Eq. 4.2 can be expressed exactly

by the first two Chebyshev polynomials. As we expect for elastic strain-stiffening, e3

is positive. However, because of the functional form of the Chebyshev basis functions

the material nonlinearity corresponding to Gβ is distributed between the first and

third order terms. Accordingly, the first harmonic Fourier component G′1 in fact

represents a combination of both the zero-strain elastic modulus and a contribution

from this nonlinear term[33]. In the limit of small imposed strain amplitudes, γ0 � γ∗,

e1 = G′1 → G0 and e3 → 0 as we expect. It is clear that the first Chebyshev coefficient

e1 = G′1 could be used to indicate inter-cycle stiffening if multiple data points were

plotted against strain amplitude, but the degree of intra-cycle strain-stiffening is

immediately apparent from one data point as indicated by the sign of e3. It is also

noteworthy that the third order Chebyshev and Fourier coefficients contain only 1/4

of the total nonlinear contribution to the stress amplitude. Thus, simply considering

the magnitude of the third harmonic (e3 or e3/e1) significantly underestimates the

actual nonlinear contribution to the material response.

In contrast to the first-order Fourier elastic modulus, the alternative measures for

reporting elastic modulus, G′M and G′L, distinctly capture the small-strain elasticity

f(γ → 0) and the large-strain elasticity f(γ → γ0), respectively. That is,

G′M =
∑
n odd

nG′n = e1 − 3e3 = G0 (4.3)

G′L =
∑
n odd

G′n (−1)
n− 1/2 = e1 + e3 = G0 +

(
γ0

γ∗

)2

Gβ. (4.4)

Thus, the minimum-strain modulus G′M = f(γ = 0) equates to the zero-strain elas-

ticity, whereas the large-strain modulus G′L = f(γ = γ0) captures the large strain
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elasticity. Furthermore, the strain-stiffening ratio S correctly captures the true rela-

tive magnitude of the intra-cycle strain-stiffening,

S =

(
γ0

γ∗

)2

Gβ

G0 +
(
γ0

γ∗

)2

Gβ

(4.5)

where S → 0 in the limit of γ0 � γ∗.

This simple example demonstrates how the interpretation of these new elastic

material measures extract the key features of a nonlinear elastic response, and they

can now be applied to any unknown material or constitutive model.

4.1.2 Purely viscous shear-thinning fluid

We next consider a purely viscous, but nonlinear, constitutive equation represented

by

σ = g(γ̇) γ̇

g(γ̇) = η0 − ηβ
(
γ̇

γ̇∗

)2 (4.6)

where γ̇∗ is a critical strain-rate for shear-thinning to appear. This constitutive equa-

tion for shear stress is that of a generalized Newtonian fluid (GNF) and in particular

it is an example of a Third-Order Fluid in simple shear[8]. Any GNF model (in which

viscosity can be written as a function of shear-rate) has a Taylor series expansion in

the form of Eq. 4.6. For example the Carreau model for the viscosity coefficient has

the following expression for g(γ̇) and associated Taylor expansion

g (γ̇) = η∞ + (η0 − η∞)

[
1 +

(
γ̇

γ̇∗

)2
]n−1

2

' η0 −
1− n

2
(η0 − η∞)

(
γ̇

γ̇∗

)2

+ ...

(4.7)

Eq. 4.6 is only intended to represent the initial deviation from linear behavior observed

in a real material. It applies only for small values of γ̇0 such that shear stress is always
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monotonically increasing with shear-rate, i.e.dσ/dγ̇ > 0. This constrains the upper

limit of oscillatory shear-rate amplitude in this example to values γ̇0 < γ̇∗ (η0/3ηβ)1/2.

Applying the Chebyshev decomposition of Eq. 2.6 to Eq. 4.6 results in the follow-

ing viscous material coefficients

v1 = η′1 = η0 −
3

4
ηβ

(
γ̇0

γ̇∗

)2

v3 = η′3 = −1

4
ηβ

(
γ̇0

γ̇∗

)2

.

(4.8)

As expected, for shear-thinning the 3rd order viscous Chebyshev coefficient v3 is neg-

ative. Again, the nonlinearity is distributed between the first and third order terms,

whereas the alternative measures for reporting the first order viscous contribution,

η′M and η′L, distinctly represent the instantaneous zero-rate and maximum-rate vis-

cosities, respectively

η′M =
1

ω

∑
n odd

nG′′n (−1)
n− 1/2 = v1 − 3v3 = η0 (4.9)

η′L =
1

ω

∑
n odd

G′′n = v1 + v3 = η0 − ηβ
(
γ̇0

γ̇∗

)2

. (4.10)

Thus, the minimum-rate dynamic viscosity accurately captures the viscous material

coefficient at zero shear-rate, η′M = g(γ̇ = 0) = η0 (i.e. the zero-shear rate viscosity),

whereas the large-strain-rate dynamic viscosity represents the viscous material coef-

ficient at maximum strain-rate, ηL = g(γ̇ = γ̇0) . Finally, the shear-thickening index

equates to

T =
η′L − η′M
η′L

=
−ηβ

(
γ̇
γ̇∗

)2

η0 − ηβ
(
γ̇
γ̇∗

)2 (4.11)

which will have a negative value for a shear-thinning fluid. As we noted above,

these new viscous material measures can now be applied to any unknown material or

constitutive model.
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4.1.3 Nonlinear viscoelastic Giesekus model

The purely elastic and purely viscous models above can be superposed to construct

a nonlinear model of Kelvin-Voigt form, σ = f(γ)γ + g(γ̇) γ̇ = σ′ + σ′′. For this

simple nonlinear viscoelastic solid model, the elastic and viscous contributions will

decompose exactly as shown previously, since the geometrical interpretation (stress

decomposition) is immediately apparent by construction. To look beyond the simple

decomposition of a nonlinear Kelvin-Voigt model we consider a prototypical nonlinear

viscoelastic constitutive equation such as the Giesekus model which is commonly used

for constitutive modeling of nonlinear viscoelastic fluids (see for example [51, 52]).

We examine the output of numerical simulations of this model in LAOS flow to illus-

trate our new interpretation and nomenclature (intra- and inter-cycle nonlinearities,

stiffening/softening, and thickening/thinning) with the application of the Chebyshev

decomposition and 2-D Pipkin diagrams.

The constitutive equation for the Giesekus model, as presented by [8], is given by

σσσ = σσσs + σσσp

σσσs = ηsγ̇̇γ̇γ

σσσp + λ1σσσp(1) + α
λ1

ηp
{σσσp · σσσp} = ηpγ̇̇γ̇γ.

(4.12)

Here σσσs is the solvent stress tensor, σσσp is the polymer stress tensor, σσσp(1) is the upper

convected time derivative of the polymer stress, ηs is the solvent viscosity, ηp is the

polymer viscosity, λ1 is the relaxation time, and α is the mobility factor which gives

rise to a nonlinear viscoelastic response (for α 6= 0). In the linear viscoelastic regime,

the Giesekus model reduces to the linear Jeffreys model. The mechanical analog of

the Jeffreys model is a Maxwell element representing the polymer (i.e. a spring in

series with dashpot) in parallel with a Newtonian solvent (dashpot).

The Giesekus model was simulated under imposed oscillatory simple shear strain,

γyx = γ0 sinωt, across a range of frequencies and strain amplitudes using the following

model parameters, λ1 = 1 s, ηs = 0.01 Pa.s, ηp = 10 Pa.s, and α = 0.3. These four

independent parameters result in a retardation time scale λ2 = λ1ηs/(ηs+ηp) = 0.001 s

107



and a polymer shear modulus G = ηp/λ1 = 10 Pa. The coupled system of differential

equations was solved numerically with MATLAB for the range of De1 = λ1ω =

[10−2, 103] and γ0 = [10−3, 10]. The ‘ode15s’ multistep solver was used with relative

and absolute tolerances of 10−10, and a maximum time step tmax = (0.004)2π/ω

to ensure at least 250 points per cycle. Integration was continued until a steady

oscillatory response was achieved (the shorter of t = 18λ1 or N = 1000 cycles).

For analysis of viscoelastic parameters, the final 10 oscillation periods were used (see

Section 4.2.1 regarding data filtering and processing). The nonlinear term involving α

in the polymer stress equation contributes to rich phase behavior in the 2-dimensional

(ω, γ0) parameter space (i.e. the Pipkin space). Material measures can be plotted

as surfaces or contours within the Pipkin diagram [47, 53, 54, 55]. Two dimensional

rheological fingerprints of the Giesekus model, as represented by contour plots of G′1,

η′1, e3/e1, v3/v1, and I3/I1 = |G∗3|/|G∗1| are given in the Pipkin diagrams of Figure 4-1.

The linear viscoelastic regime is indicated first by the vertical contour lines in Fig-

ure 4-1a,b which show that G′1 and η′1 are independent of strain amplitude γ0. The

linear regime is more strictly confirmed by Figure 4-1c,d,e which show the regions in

which e3/e1, v3/v1, and I3/I1 are negligibly small. A linear scale is used for e3/e1 and

v3/v1 to emphasize the sign of the nonlinearity which is needed for a physical inter-

pretation. It is observed that e3/e1 and v3/v1 are more sensitive indicators of material

nonlinearities than I3/I1, since the third-order Chebyshev coefficients reach values of

0.001 at smaller strain amplitudes. The lower sensitivity of I3/I1 is attributed to

the comparison of the total nonlinearity with the total magnitude of the fundamen-

tal harmonic, which allows a nonlinear subdominant component to be masked by a

linear dominant component, e.g. a finite e3/e1 may be obscured if v1ω � e1, since

I3/I1 =
√
e3

2 + (v3ω)2
/√

e2
1 + (v1ω)2.

The linear viscoelastic (Jeffreys-like) response of the Giesekus model is observed

for sufficiently small strain amplitude γ0. In Figure 4-1a the elastic modulus plateaus

at the value of the polymer modulus (G′1 → G = 10 Pa) for De1 = λ1ω � 1,

γ0 � 1. In Figure 4-1b the low frequency dynamic viscosity plateaus at the total

steady viscosity η′1 → ηs + ηp = 10.01 Pa (De1 = λ1ω � 1, γ0 � 1). At sufficiently
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Figure 4-1: Pipkin diagram plots of resulting viscoelastic parameters for a simulated
nonlinear viscoelastic fluid (Giesekus model, λ1 = 1 s, ηs = 0.01 Pa.s, ηp = 10 Pa.s,
and α = 0.3.); (a) first order elastic modulus G′1, contours shown at increments
of 2 Pa (b) first order dynamic viscosity η′1, contours shown at increments of 2 Pa
(c) normalized third-order elastic Chebyshev coefficient e3/e1, contours as labeled,
(d) scaled third-order viscous Chebyshev coefficient v3/v1, contours shown at ±0.001,
±0.025, ±0.05, ±0.1, +0.15, and (e) normalized intensity of the third harmonic I3/I1,
contours shown at 0.001, and increments of 0.01.
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high frequencies (De1 = λ1ω � 1, γ0 � 1) we expect only the solvent viscosity to

contribute to the dissipation, such that η′1 → ηs = 0.01 Pa.s, which is shown by the

lower plateau for η′1 in this region.

The boundary demarcating the limits of the linear regime is a function of fre-

quency, as clearly seen from the contour plots in Figure 4-1. For example, the linear

viscoelastic regime extends to larger strain amplitudes γ0 at lower frequencies. Indeed,

at sufficiently low frequency one would expect a viscoelastic fluid to be dominated

by its viscous characteristics. Thus nonlinearities at low frequency are triggered by a

critical strain-rate amplitude γ̇0, rather than strain amplitude γ0. Lines of constant

strain-rate amplitude, such that γ̇0 = γ0ω = constant, would appear as diagonal

lines of slope=-1 from the upper left to the lower right of the Pipkin diagrams in

Figure 4-1. The contours of the first-order dynamic viscosity η′1(Figure 4-1b) reflect

this response and show that a critical strain-rate triggers nonlinear effects at low fre-

quency (De1 < 1). At these low frequencies the viscous nonlinearities of the Giesekus

model become apparent near a Weissenberg number We1 = λ1ωγ0 ≤ 1. Conversely,

at higher frequency, De1 > 1 when the fluid is dominated by elasticity, the nonlin-

ear regime is determined by a critical strain amplitude γ0, as seen by the horizontal

contours in Figure 4-1a (De� 1).

The inter-cycle nonlinearities (i.e. the dependence of the material response on the

imposed values of γ0 or γ̇0), are indicated by the gradients of the contours in Figure 4-

1. Strain-softening results in a progressive decrease in the magnitude of the elastic

modulus G′1 for strains γ0 > 1 (Figure 4-1a), i.e. the average elasticity decreases with

strain-amplitude. This softening occurs more readily at higher frequencies. The fact

that the contours of G′1(ω, γ0) are not self similar is an indication that the relaxation

modulus of the Giesekus model cannot be written in a time-strain separable form,

i.e. G′1(ω, γ0) 6= G′(ω)h(γ0) [56]. Figure 4-1b captures the inter-cycle nonlinearity of

the average viscous dissipation, showing inter-cycle shear-thinning of η′1. Inter-cycle

shear-thinning is not observed in the higher frequency regime, presumably because

at sufficiently high frequencies only the Newtonian solvent dissipates energy and the

viscous response becomes linear once more (i.e. |v3/v1 < 10−3|), even for large am-
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plitudes up to γ0 = 10.

The contours of the normalized third-order Chebyshev coefficients e3/e1 and v3/v1

(Figure 4-1c,d) give deeper insight into the viscoelastic nonlinearities of the Giesekus

model. At any given location (ω, γ0) in the Pipkin diagram, these Chebyshev coef-

ficients quantify the intra-cycle nonlinearities (i.e. the nonlinearities in the material

response within a steady oscillatory cycle). Elastic nonlinearities are revealed in

Figure 4-1c where regions of both intra-cycle strain-stiffening and intra-cycle strain-

softening are present, as indicated by the sign of e3/e1 being positive or negative,

respectively. Intra-cycle strain-softening is predominant at higher frequency. The on-

set of this strain-softening appears to be mediated primarily by the strain-amplitude

at the highest frequencies, as shown by the nearly horizontal contours of e3/e1 at high

frequency. Intra-cycle stiffening is observed at moderate to low frequencies, creating

a region where the sign of e3/e1 must change from negative to positive. Thus, a con-

tour of e3/e1 exists at large strain-amplitudes, showing that an individual oscillatory

response may appear to be linearly elastic even deep into the nonlinear viscoelas-

tic regime. To fully explore viscoelastic material nonlinearity it is thus essential

to perform a full series of frequency and strain amplitude sweeps. The intra-cycle

viscous nonlinearities of Figure 4-1d show two regions of intra-cycle shear-thinning

(v3/v1 < 0) and one region of intra-cycle shear-thickening (v3/v1 > 0). This necessi-

tates two transition regions where v3/v1 changes sign, again demonstrating that even

at large amplitudes the intra-cycle response can be linearly viscous.

The Giesekus model response is determined by four model parameters (G, λ1, α, ηs).

However, the response to a range of deformations (ω, γ0) is not immediately apparent

from inspection of the constitutive equation and knowledge of the values of these

parameters. We have used our new framework (physically meaningful measures of

nonlinearity, contour plot “fingerprints” of the material coefficients, and unambigu-

ous nomenclature) to characterize the response of the Giesekus model under imposed

oscillatory shear deformation, and can smoothly map the steady flow, linear vis-

coelastic, and nonlinear viscoelastic response. Our framework is able to describe the

nonlinear viscoelastic response in general terms, i.e. without a priori knowledge of
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the material behavior in LAOS. Thus, the scheme can be applied to both constitutive

models and experimental data, providing physically meaningful measures for compar-

ison. Furthermore, the physical insight gained from examining experimental data in

this way may help motivate the selection of an appropriate constitutive model. We

now proceed by using our new framework to describe experimental measurements of

the material response in two representative complex fluids.

4.2 Experimental examples

To illustrate the experimental utility of our proposed new framework for describing

LAOS tests, we apply it to data taken with a wormlike micellar solution and a natural

biopolymeric hydrogel, gastropod pedal mucus. These analytic techniques may be

applied to any rheologically complex material that is subjected to oscillatory simple

shearing deformation.

4.2.1 Materials and Methods

Materials

Slugs were collected in Cambridge, MA, kept in an indoor terrarium maintained at

room temperature, and supplied with a diet of green leaf lettuce. Pedal mucus was

collected by placing a slug on a glass plate and enticing it to crawl with a piece of

food. Trail mucus was collected after the slug had crawled more than one body length

to ensure that no debris remained in the sample.

The wormlike micelle solution (prepared as in [57]) consists of cetylpyridinium

chloride (CPyCl) and sodium salicylate (NaSal) dissolved in brine. The ratio of

CPyCl/NaSal is 100 mM/50 mM (3.2 wt%/0.76 wt%) in a 100 mM (0.56 wt%) NaCl

aqueous solution.
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Rheometry

All experiments were performed on a strain-controlled ARES rheometer (TA Instru-

ments) equipped with a Peltier plate maintained at T=22◦C, using a solvent trap to

inhibit evaporation. The pedal mucus was tested with a plate-plate geometry (diam-

eter D = 8 mm, gap h = 550µm). To eliminate slip, the plate-plate surfaces were

covered with adhesive-backed waterproof sandpaper, 600 grit (ARC Abrasives Inc).

The micellar solution was tested with a cone-plate geometry (diameter D = 50 mm,

cone angle θ = 0.0402rad = 2.30◦, trunctation 48.8µm).

Data acquisition

The analysis requires raw strain and stress signals. However, the standard oscil-

latory test setup available from the instrument control software (TA Orchestrator

software) does not capture raw stress and strain waveforms; it only outputs the cal-

culated viscoelastic parameters such as “elastic modulus” G′. In order to capture the

stress and strain waveforms under oscillation we used the Arbitrary Waveshape Test

capability of the TA Orchestrator software. With this test procedure the user can

specify an equation for the strain input, and the raw strain and stress waveforms are

saved to a data file. Note that this test procedure is part of the standard software

which accompanies every ARES rheometer, making the technique broadly accessi-

ble to ARES users. Another option for capturing the time series waveforms, on the

ARES and also some other rheometers, is to connect to voltage outputs of torque and

displacement. Although higher sampling rates and larger signal to noise ratios may

be obtained by collecting oversampled raw voltage signals of torque and displacement

output [15, 58], the Arbitrary Waveshape Test has the advantage of directly collecting

stress and strain data (rather than voltages) and does not require additional hardware

such as an Analog-to-Digital Converter. Maximum sampling rates of the Arbitrary

Waveshape Test were adequate for our experiments, with a maximum sampling rate

near 100 samples/s. Multiple steady-state waveforms were used for data analysis

(typically 4 cycles) at each coordinate pair (ω, γ0).
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Data filtering and processing

In preparation for Fourier transform (FT) processing, strain and stress data signals

were first trimmed to contain an integer number of cycles, N , by identifying the zero

crossings of the strain signal. The discrete FT operation further requires that the

strain and stress signals have data points which are equally spaced in time. Linear

time spacing was inherent in the data collected experimentally, as a result of the

analog to digital converter within the rheometer. However, the numerical integra-

tion routines used for the Giesekus simulation utilized a variable time stepper, and

consequently the output strain and stress signals were interpolated to create data

with equal time spacing. The prepared data signals were then analyzed with the

’fft’ function in MATLAB which returns the discrete Fourier transform of the input

vector, from which the trigonometric Fourier coefficients were determined (note that

a vector with 2m data points is not required for this operation). The resulting Fourier

spectrum contains discrete information for frequencies up to the Nyquist frequency

ωNyquist = ω1n/2, where ω1 is the imposed frequency and n is the number of data

points per cycle, with a frequency resolution ∆ω = ω1/N , where N is the integer

number of cycles.

The trimmed strain signal has a small but finite phase lag (imaginary compo-

nent), since the first data point is not identically zero but instead a small positive

number. This phase lag of the strain signal must be considered for precisely calculat-

ing the Fourier coefficients G′n,G′′n. These Fourier coefficients are then directly used

to calculate viscoelastic parameters such as G′M and G′L. The Fourier coefficients

are particularly convenient for calculating parameters such as the minimum-strain

modulus G′M . This parameter would otherwise need to be calculated as the slope of

a line via numerical differentiation (Figure 2-4), but the experimental error is sub-

stantially reduced by calculating tangent properties such as G′M and η′M from the

odd-harmonic Fourier coefficients as shown in Eqs. 2.10 and 2.12. The Chebyshev

coefficients, en, vn are also calculated from the Fourier spectrum c.f. Eqs. 2.7 and

2.8, since this avoids the multiple processing steps of stress decomposition (Eqs. 2.3
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and 2.4), followed by the determination of Chebyshev coefficients using numerical

integration of the corresponding orthogonality relation (see Appendix A) combined

with Eqs. 2.5 and 2.6.

The stress decomposition of Cho et al. [28] is also conveniently calculated from the

odd, integer Fourier coefficients using Eqs. 2.3 and 2.4. This stress decomposition is

typically calculated by using the “find-and-subtract” method given by the first por-

tion of Eqs. 2.3 and 2.4 [28, 59]. The find-and-subtract method is easily implemented

with simulated data [59], but is more difficult to use with real experimental data sets

because of two principal difficulties. First, it is unlikely that the available set of data

points will have the appropriate strain/strain-rate symmetry, which necessitates the

use of local interpolation methods. Second, subtracting two individual data points

(from a data series that has not been smoothed or filtered) results in amplification

of random noise. Accordingly, the elastic stress σ′(γ) and viscous stress σ′′(γ̇) curves

may not appear as smooth lines, but rather as scatter plots. Thus, in contrast to

the findings of Kim et al. [59], we find that the discrete Fourier transform approach

provides greater accuracy than the find-and-subtract methodology. Using the odd,

integer Fourier coefficients to construct the individual elastic and viscous stress con-

tributions (Eqs. 2.3 and 2.4) eliminates both the problem of interpolation and noise

amplification, resulting in smooth processed data containing corresponding informa-

tion from the entire periodic stress signal (one may also consider reconstructing the

strain and total stress time data from the FT coefficients, and thereafter using the

Cho et al. subtraction algorithm, but an identical output is more quickly obtained by

directly using Eqs. 2.3 and 2.4). Strain and strain-rate signals are also constructed

to have data points at spacing which corresponds to the stress decomposition signals;

the first-harmonic coefficients of the strain signal are used for this reconstruction.

Furthermore, we construct a smoothed total stress signal by utilizing only the

odd, integer-harmonic components, up to a cutoff frequency, c.f. Eq. 2.1. This

process can be described as applying a discrete comb filter to the raw data, allowing

only particular frequency components to pass through to the smoothed stress signal.

Frequency information corresponding to even-harmonics and non-integer harmonics
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are neglected in the signal reconstruction because they contain only random noise and

are non-physical for a material response devoid of transients, dynamic wall slip, and

secondary flows, as mentioned in Section 2.1. Selecting a cutoff frequency removes the

high frequency components of the signal in which noise obscures any real signal. The

use of multiple cycles N input to the FFT allows for data averaging, and an increase

in the signal to noise ratio[60]. This data averaging of multiple cycles contributes to

the digital filter’s ability to smooth the total stress signal.

4.2.2 Gastropod pedal mucus (a biopolymer hydrogel)

The apparent contradiction of the data shown in Figure 2-1 can be resolved by ap-

plying the framework introduced in Chapter 2. As shown in Figure 2-1, slug pedal

mucus exhibits substantial intra-cycle strain-stiffening as suggested by the Lissajous-

Bowditch curves of stress vs. strain (Figure 2-1b), but the elastic modulus, as cap-

tured by the first harmonic coefficient G′1, is approximately flat when plotted against

strain-amplitude γ0 (Figure 2-1a).

The inter-cycle variations of the elastic moduli are shown in Figure 4-2a where we

plot G′1, G
′
M , G

′
L as a function of imposed strain amplitude γ0. It can be seen that

these measures converge in the linear regime (though G′M suffers from more experi-

mental noise at these low strain amplitudes). The onset of material nonlinearity is

indicated by the divergence of these three different measures of elastic modulus as the

strain amplitude increases. In this biopolymer gel G′M decreases with γ0 (softening at

small strains), whereas G′L first decreases then increases, i.e. the large-strain elasticity

of the network first softens then stiffens (see Figure 4-2a). The first-harmonic elastic

modulus G′1 falls between the two other measures, supporting its interpretation as an

average measure of elasticity throughout the oscillatory cycle.

The intra-cycle nonlinearities which distort the familiar linear viscoelastic ellipse

are also quantified (Figure 4-2c,d). Both S and e3 are positive at the largest strain

amplitudes (Figure 4-2c), indicating strain-stiffening. These indicators of nonlinearity

should be equal to zero in the linear regime (c.f. Eq. 2.14). We see that the parameter

S suffers more from noise than e3, due to the error in calculating G′M which is in the
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Figure 4-2: Oscillatory shear test of pedal mucus from Figure 2-1, ω = 3 rad.s−1,
analyzed within the new framework; (a) Elastic moduli: minimum-strain and large-
strain elastic moduli compared to first harmonic elastic modulus (b) Dynamic vis-
cosities: minimum-rate and large-rate dynamic viscosities compared to first harmonic
dynamic viscosity, (c) Intra-cycle elastic nonlinearity measures: scaled 3rd order elas-
tic Chebyshev coefficient e3/e1 and strain-stiffening ratio S, both indicate intra-cycle
strain-stiffening; (d) Intra-cycle measures of viscous nonlinearity: 3rd order viscous
Chebyshev coefficient v3/v1 and shear-thickening ratio T , both indicate intra-cycle
shear-thinning. Error bars are determined from the noise in the Fourier spectrum
and are shown for representative points. The data point size exceeds the error mar-
gins at larger amplitudes. For e3/e1 and v3/v1 (star symbols) the data point size
exceeds the error for all amplitudes.

denominator of the calculation for S. However, both measures clearly indicate a

strain-stiffening deviation from linear elasticity, with both measures taking positive

values for large strain-amplitudes. This rich behavior in the elastic response of the

gel is revealed and physically described only by the use of the present framework.

From Figure 4-2b it is apparent that the dissipation at small strain-rates η′M

increases with increasing γ̇0, whereas the dissipative nature at large strain-rates (rep-

resented by η′L) decreases from one cycle to the next. At small strain-amplitudes these

quantities suffer from residual noise, with greater perturbations than observed with
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Figure 4-3: Reconstruction of (a) elastic and (b) viscous stresses using the Cheby-
shev spectrum of each signal (c,d). The nonlinearity of each signal is predominantly
described by including only the third-order contribution; contributions higher than
n = 3 are comparably insignificant (e5, e1, v5/v1 < 0.005) (same experimental data
as Figure 2-2).

the elastic quantities since the viscous contribution to the measured signal is com-

paratively smaller and the gel is predominantly elastic at these strain-amplitudes.

At sufficient strain-amplitude, however, the values converge with each other before

the nonlinear regime is reached at strain-rate amplitudes γ̇0 > 2s−1. In the nonlinear

regime the measures clearly diverge, with an increasing value of η′M , a nearly constant

η′1, and a slightly decreasing value of η′L. This increase of η′M suggests that at small

instantaneous strain-rates (corresponding to strains close to the maximum strain γ0)

the deformed material becomes progressively more dissipative.

The intra-cycle nonlinear viscous measures T and v3 (Figure 4-2d) are both neg-

ative at large strain amplitudes, indicating intra-cycle shear-thinning. This is consis-

tent with the fact that η′L < η′M in the nonlinear regime. Again, the true rheological

behavior of the nonlinear viscoelastic material could be ascertained only by using the
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present framework. Insights such as these will help guide constitutive model devel-

opment, since a physical picture of the nonlinear response is now readily apparent.

The utility of elastic and viscous Chebyshev decomposition is illustrated further

by showing a Lissajous-Bowditch plot at a single coordinate point (ω = 3rad.s−1, γ0 =

2.8) for native pedal mucus (Figure 4-3). The total and decomposed stresses are dis-

played in FFigure 4-3a and Figure 4-3b against the strain and strain-rate respectively.

Overlaid on these figures are the reconstructions of the elastic and viscous stresses

using only the 1st and 3rd order contributions for each signal. In Figure 4-3c and

Figure 4-3d we report the spectrum of the elastic and viscous Chebyshev coefficients,

respectively. It can be seen that the 1st and 3rd order contributions describe the non-

linear curves fairly well, thus giving confidence that they represent the predominant

departure from linearity.

4.2.3 Wormlike micellar fluid

In small amplitude oscillatory shear (SAOS) the viscoelastic behavior of this CPyCl

wormlike micelle solution is well described by a single mode Maxwell model with

λ1 = 0.64 s, while in steady shear the solution shear bands at a critical stress of

approximately σ ≈ 20 Pa [61].

Here we test the micellar solution in LAOS under strain-controlled conditions.

Tests are performed over a frequency range of ω = [0.15, 15] with three points per

decade, and a strain-amplitude range γ0 = [0.0056, 10] with four points per decade.

We first use Lissajous-Bowditch curves to summarize the rich viscoelastic response of

the material as a function of both frequency and strain-amplitude. These Lissajous-

Bowditch curves allow a visual inspection of the response prior to applying our quan-

titative analytic techniques. The full set of raw data, covering four tests per decade

of imposed strain, is shown in Figure 4-4) A subset of the elastic Lissajous-Bowditch

curves are shown in Figure 4-5, and the corresponding viscous Lissajous-Bowditch

curves are displayed in Figure 4-6. The individual orbits (σ(t) vs. γ(t) or σ(t) vs.

γ̇(t)) are arranged in Figure 4-5 and Figure 4-6 so that they are centered about the

independent coordinates (ω, γ0) to form a Pipkin diagram [1] of the material response
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Figure 4-4: Raw LAOS data for the micellar solution, shown as elastic Lissajous-
Bowditch curves generated from experimental oscillatory tests. Each trajectory is
positioned in a Pipkin space according to the imposed values (ω, γ0). Solid lines are
total stress σ(t)/σmax vs. γ(t)/γ0. The maximum stress, σmax, is indicated above each
curve.
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Figure 4-5: Elastic Lissajous-Bowditch curves generated from experimental oscilla-
tory tests of the micellar solution, displayed in a Pipkin space. Each trajectory is
positioned according to the imposed values (ω, γ0). Solid lines are total stress (fil-
tered) σ(t)/σmax vs. γ(t)/γ0, dashed lines are elastic stress σ′(t)/σmax vs. γ(t)/γ0.
The maximum stress, σmax, is indicated above each curve.

over a range of frequency and strain. The linear viscoelastic regime is approached

at adequately small strains, and is indicated in both Figure 4-5 and Figure 4-6 by

elliptical curves that are independent of imposed strain amplitude γ0 while frequency

ω is held constant. The data suffers from noise in the lower left portions of Figure 4-5

and Figure 4-5 when σmax < 0.10 Pa, i.e. maximum torque Tmax < 3.3µN.m. The

onset of material nonlinearity can be visually observed for strains γ0 ≥ 1, at which

point the shapes of the curves change and the elastic and viscous stress contribu-

tions to the total stress each become progressively more nonlinear. The nature of the
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Figure 4-6: Viscous Lissajous-Bowditch curves generated from experimental oscilla-
tory tests of the micellar solution, displayed in a Pipkin space. Each trajectory is
positioned according to the imposed values (ω, γ0). Solid lines are total stress (fil-
tered) σ(t)/σmax vs. γ̇(t)/γ̇0, dashed lines are viscous stress σ′′(t)/σmax vs. γ̇(t)/γ̇0.
The maximum stress, σmax, is indicated above each curve.

initial deviation from linearity depends on the frequency, creating an extremely rich

nonlinear response. For example, at ω = 0.75 rad.s−1 (ω < 1/λ1) the initial elastic

departure from linearity is strain-stiffening, whereas at ω = 3.0 rad.s−1 (ω > 1/λ1)

the initial nonlinearity is strain-softening.

The elastic properties of the micellar fluid are shown as contour plots, or “rheo-

logical fingerprints,” in the two-dimensional Pipkin diagram of Figure 4-7, and the

corresponding viscous properties are shown in Figure 4-8. Essential characteristics of

the expected Maxwell behavior in the linear viscoelastic regime can be seen from the
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Figure 4-7: “Rheological Fingerprints” of the elastic properties of the micellar solution
in large amplitude oscillatory shear. Each parameter is plotted in a Pipkin diagram as
a function of the imposed frequency and strain amplitude. (a,b,c) Elastic moduli G′M ,
G′L, and G′1 respectively; unlabeled contours shown at increments of 2 Pa (d) Intra-
cycle elastic nonlinearity as indicated by the normalized third-order elastic Chebyshev
term, e3/e1; contours shown at -0.05, ±0.01, and increments of 0.2.

monotonically increasing value of G′1 with frequency and the approach to a plateau

modulus. Furthermore, the contour plots of the third order elastic Chebyshev coef-

ficient e3 in Figure 4-7d show contrasting nonlinear trends for low and high frequen-

cies. For low frequencies, ω < 2rad.s−1, the elastic nonlinearity is strain-stiffening

with e3 > 0, whereas for higher frequency the elastic nonlinearity is strain-softening

with e3 < 0. The values of e3 in the nonlinear regime are consistent with our visual

inspections of the elastic Lissajous-Bowditch curves in Figure 4-5.

Reporting more than the common first-order viscoelastic moduli G′1 and G′′1 =

η′1ω also reveals behavior which might otherwise be hidden. The Lissajous-Bowditch

curves of Figure 4-5 and Figure 4-6 show a curious behavior at (ω = 0.75 rad.s−1,
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Figure 4-8: Viscous properties of the micellar solution in large amplitude oscillatory
shear, each parameter plotted in a Pipkin space; (a,b,c) Dynamic viscosities η′M , η′L,
and η′1 respectively; contours shown at increments of 2 Pa.s. Inter-cycle nonlinear-
ities are indicated by gradients of these measures. Inter-cycle thinning is shown for
sufficiently large and increasing values of the shear rate amplitude γ̇0 = γ0ω. (d)
Intra-cycle viscous nonlinearity as indicated by the normalized third-order viscous
Chebyshev term, v3/v1 ; contours shown at increments of 0.05. Intra-cycle thickening
is indicated by v3/v1 > 0, whereas intra-cycle thinning is shown by v3/v1 < 0.

γ0 = 10), in which self-intersection appears in the viscous Lissajous-Bowditch curves

(leading to loops) and a negative slope appears in the elastic Lissajous-Bowditch

curves at instantaneous strain value γ = 0. There is nothing in the contour plot of

G′1 (Figure 4-7c) or η′1 (Figure 4-8c) which hints at such behavior; the contours of

G′1 and η′1 appear unremarkable in this region of the Pipkin diagram. However, the

small-strain elastic modulus G′M takes a negative value at this point (Figure 4-7a),

which corresponds to the negative slope in the elastic Lissajous-Bowditch curve at

γ = 0, and leads to the self-intersection in the viscous Lissajous-Bowditch curve. A
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negative modulus G′M indicates that the material is unloading elastic stress faster

than new deformation is being accumulated. This behavior can easily be hidden by

the commonly reported viscoelastic parameters of G′1 or G′′1 = η′1ω, but is revealed

quantitatively with the alternative measures of viscoelastic moduli proposed in this

work.

The physical insight provided by these material measures informs a microstruc-

tural picture of the material, which in turn helps to motivate the choice of a consti-

tutive model. Furthermore, these measures can be used to help test the robustness of

a constitutive model, to see if the model is capable of predicting the same nonlinear

response over a range of imposed strains and timescales.
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Chapter 5

Nonstandard Large Amplitude

Oscillations

5.1 Even-harmonics

Transient, non-periodic, or asymmetric responses will exhibit even-harmonics in the

Fourier-series representation of shear stress. This occurs in general for a response

which is not strictly periodic and does not close on itself, such as oscillations with

decaying amplitude. Periodic responses may also show even harmonics. For exam-

ple, large amplitude oscillatory extension or compression may exhibit asymmetric

Lissajous curves[62, 63, 64] due to the nonlinearity F ∼ 1/h3. Additionally, the

LAOS normal stress difference inherently involves even harmonics, due to the even

symmetry of the elastic stresses and the independence on the direction of shearing

deformation [65]. Although the analysis of such circumstances with Large Amplitude

Oscillations is not yet in common practice, the ontology presented in Chapter 2 can

be generalized to include even harmonics in order to enable the characterization of

such phenomena in the future.

Asymmetric Lissajous curves will exhibit even harmonics, and are of interest for

both asymmetric materials and also large amplitude oscillatory extension (LAOE)

about zero strain γ = 0. Although shear deformations are typically symmetric with

respect to the direction of deformation, extension and compression will likely behave
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differently as the response becomes nonlinear. This asymmetry with respect to strain

direction will result in even harmonics in the Fourier spectrum. For completeness, we

restate the Fourier series representing a stress response to harmonic strain deformation

γ(t) = γ0 sinωt (we continue to represent the response in terms of shear strain and

shear stress, but the results are applicable to other deformations as well, such as

tension). The Fourier series includes both odd and even harmonics,

σ(t;ω, γ0) =
∑
n

G′n sin (nωt) +G′′n cos (nωt), (5.1)

in which n = 0 must also be included. The term G′0 is meaningless, since it is

the coefficient of sin(0) = 0, but the term G′′0 must be retained. The double-prime

notation does not necessarily indicate a connection to dissipation. Instead, the G′′0

term can be considered as a bias stress, since it is always multiplied by cos(0) = 1.

This is particularly important for normal stresses which oscillate about a non-zero

mean[10, 65].

The stress decomposition is more complicated when even-harmonics are included.

This has been considered recently by Yu et al. [66]. The connection to a Chebyshev

polynomial representation is yet to be worked out. Here we focus on the viscoelastic

moduli and dynamic viscosities introduced in Section 2.3, which will help to provide

some interpretation of the even harmonic contributions. An asymmetric LAOS re-

sponse (e.g. a material which responds differently in each strain direction) will have

Lissajous-Bowditch curves without 180◦ rotational symmetry, and therefore the local

measures of moduli and viscosities can take separate values on either side of the cy-

cle. Thus, G′M can take two values, G′M+, at γ = 0, γ̇ > 0, and also G′M−, which is

associated with γ = 0, γ̇ < 0. For γ(t) = γ0 sinωt, GM+ occurs at ωt = 2πm, and

GM− occurs at ωt = π+ 2πm, where m is an arbitrary integer. Substituting this into

the definition of the minimum strain modulus gives

G′M± ≡
dσ

dγ

∣∣∣∣
γ=0, γ̇=±γ̇0

=
∑
n:odd

nG′n ±
∑
n:even

nG′n. (5.2)
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where the n:odd and the n:even terms have been grouped separately to show the

deviations due to even harmonics. A similar case exists for G′L, in which G′L± refers to

the instantaneous point in the cycle in which γ = ±γ0. For the sinusoidal deformation,

these points occur at ωt = π/2 + 2πm and ωt = 3π/2 + 2πm, respectively. The large-

strain elastic modulus is then

G′L± ≡
σ

γ

∣∣∣∣
γ=±γ0

=
∑
n:odd

G′n (−1)
n−1

2 ±
∑
n:even

G′′n (−1)
n
2 . (5.3)

It is quite interesting that the possible elastic asymmetry of G′L± originates from

G′′n (n:even), the double-prime coefficients. It is evidently incorrect to associate the

double-prime coefficients solely with dissipative behavior, as is also the case for G′′0

which represents a bias stress. In fact, the combination of single-prime and double-

prime coefficients also occurs with the minimum-rate dynamic viscosity η′M±. The full

results for the minimum-rate and large-rate dynamic viscosities are given as follows,

η′M± ≡
dσ

dγ̇

∣∣∣∣
γ̇=0, γ=±γ0

=
1

ω

∑
n:odd

nG′′n (−1)
n−1

2 ∓ 1

ω

∑
n:even

nG′n (−1)
n
2 (5.4)

η′L± ≡
σ

γ̇

∣∣∣∣
γ̇=±γ̇0

=
1

ω

∑
n:odd

G′′n ±
1

ω

∑
n:even

G′′n. (5.5)

To aid in the understanding of the nonlinear and asymmetric influences of higher

harmonics, the leading order terms are explicitly shown for each of the results in

Eqs. 5.2 – 5.5.

G′M± = G′1 ± 2G′2 + 3G′3 ± ... (5.6)

G′L± = ±G′′0 +G′1 ∓ G′′2 − G′3 ± ... (5.7)

ωη′M± = G′′1 ± 2G′2 − 3G′′3 ± ... (5.8)

ωη′L± = ±G′′0 +G′′1 ± G′′2 + G′3 ± ... (5.9)

In this section we begin an exploration of the influence of these even harmonics, by
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Figure 5-1: A purely elastic oscillatory response for G′′2 = −G′′0 = −0.1, G′1 = 1, and
all other terms equal to zero. (a) elastic Lissajous curve of stress vs. strain, (b) p
viscous Lissajous curve of stress vs. strain-rate.

way of a few examples.

The first example we construct is that of a purely elastic response, for which

σ(γ) is a single valued function. We will seek to construct an asymmetric curve,

such that the response is more stiff in the positive strain direction, and examine the

constraints which are then imposed on the leading order harmonics. The criteria for

our desired response are as follows. First, we will neglect the third harmonics G′3 and

G′′3 for the sake of simplicity. Next, we impose the condition G′M+ = G′M−, since for

a purely elastic response we might expect the tangent modulus at zero strain to be

equivalent independent of shearing direction. The condition that G′M+ = G′M− then

forces G′2 = 0 (Eq. 5.6). A purely elastic material response dissipates no net energy,

Ed = πγ2
0G
′′
1 = 0, and therefore G′′1 = 0. Furthermore, no dissipation should occur

at any point in the cycle, which requires that η′M± = 0 (which is already satisfied by

previously discussed values G′′1 = G′2 = G′′3 = 0), and also η′L± = 0. Equation 5.9 for

η′L± therefore requires that G′′0 = −G′′2. The condition that η′L± = 0 is equivalent to

the condition that σ(γ = 0) = 0, i.e. zero remnant stress should exist at zero strain

for a purely elastic material. Finally, to create asymmetry, we desire G′L+ > G′L−, i.e.

the stiffness is higher in the positive strain direction. This condition forces G′′2 < 0,

from Eq. 5.7.

All that is left now is the choice of G′1 and G′′2. We choose G′1 = 1 and G′′2 = −0.1
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Figure 5-2: Oscillatory response of arbitrary construction which includes even har-
monics.

for illustrative purposes. Units are arbitrary throughout this section and plotted

results are always scaled as σ/σmax, x = γ/γ0 = sin(ωt), and y = γ̇/γ̇0 = cos(ωt),

as defined in Section 2.2. Figure 5-1 shows both the elastic and viscous Lissajous-

Bowditch curves for this purely elastic asymmetric response. Indeed, the response is

that of an asymmetric purely elastic material for which the elastic modulus is larger

for large positive strains. The resulting non-zero moduli are G′M± = 1, G′L+ = 1.2,

G′L− = 0.8 (cf. Eqs. 5.6 – 5.7).

In the previous example, forcing G′M+ = G′M− required that the leading order

term G′2 = 0. This result consequently forces a similar condition on the minimum rate

dynamic viscosity, i.e. η′M+ = η′M− for G′2 = 0 (when terms n ≥ 3 are zero, Eq. 5.8).

This may be considered a natural connection, considering that the symmetry of the

minimum-strain and minimum-rate coefficients is grounded in the idea that a smooth

transition must exist at both γ = 0 and γ̇ = 0, and that asymmetries in the response

occur only at large strains or strain-rates (to leading order). This would then predict

that for a typical asymmetric material response, the double-prime coefficients G′′2

and G′′0 should be the most significant, and G′2 = 0. This is because G′′2 and G′′0

are associated with asymmetries at the largest strains and strain-rates within the

oscillatory cycle, i.e. G′L± and η′L±.

A complex viscoelastic response may allow the minimum-strain modulus and

minimum-rate viscosity to become asymmetric (i.e. G′M+ 6= G′M− and η′M+ 6= η′M−),
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Figure 5-3: Oscillatory response of arbitrary construction which includes even har-
monics.

in which case G′2 6= 0. Figure 5-2 shows an example of this for the parameter values

G′1 = 1, G′2 = 0.05, G′3 = −0.1, and G′′0 = 0.1, G′′1 = 0.2, G′′2 = 0.1, and G′′3 = 0. The

presence of the third-harmonic introduces a known amount of symmetric nonlinearity

(strain-stiffening in this case, revealed by e3 = −G′3 > 0, cf. Section 2.2). The re-

sponse includes asymmetries from both G′2 (affecting minimum-strain and minimum-

rate coefficients), and also G′′0 and G′′2 which affect the large-strain and large-rate

coefficients. The resulting material coefficients for the response in Figure 5-2 are:

G′M± = 0.8, 0.6

G′L± = 1.1, 1.1

ωη′M± = 0.4, 0

ωη′L± = 0.4, 0 (5.10)

While exploring the possible behavior of even harmonics and asymmetric re-

sponses, it became apparent that some combinations of even harmonics may violate

physical laws. For example, with the Fourier coefficients G′1 = 1 and G′2 = 0.05, and

all other harmonics equal to zero, the resulting response stores energy across half of

an oscillatory cycle which begins and ends at γ = 0 (during which γ̇ > 0). This

describes a situation in which stress begins and ends at zero, yet mechanical energy

was stored during the deformation and therefore the response is not physically pos-
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sible (one may also look at the physical implausibility by considering this half-cycle

to be repeated indefinitely with increasing stored mechanical energy, and if stopped

at zero strain the stress state would still be zero). The response for this (unphysical)

situation is shown by the Lissajous-Bowditch curves in Figure 5-3.

There is much more to be explored and explained in the realm of even-harmonics

within a nonlinear response. For the purpose of this thesis, such efforts will be

considered as future work.

5.2 Stress-controlled LAOS

Another limitation to the current use of LAOS is the restriction that strain-controlled

LAOS is required to produce the higher harmonic coefficients en, vn (orG′n, G′′n), which

were given a physically meaningful interpretation in Chapter 2. Load-controlled (or

stress-controlled) instrumentation is also very common, and it is therefore useful to

extend the framework of LAOS to include physically meaningful material measures

under load-control LAOS.

For load-control circumstances, the natural material measures are compliance, J ≡

γ/σ (for an elastic response, units Pa−1), and fluidity φ = γ̇/σ for a viscous response,

units [Pa.s]−1. For oscillatory deformation the imposed stress can be represented as

σ(t) = σ0 cosωt (5.11)

in which case the linear viscoelastic response is

γ(t) = γ0 cos(ωt− δ) (5.12)

γ(t) = σ0 (J ′ cosωt+ J ′′ sinωt) . (5.13)

Here Eq. 5.11 uses cosωt so that the J ′ and J ′′ terms are additive and positive in

Eq. 5.13. The magnitude of the complex compliance is |J∗| = (J ′2 + J ′′2)1/2. It

is important to note that J ′ 6= 1/G′ and J ′′ 6= 1/G′′ in general[10]. For a linear
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viscoelastic response the interrelationship is

|G∗||J∗| = 1 (5.14)

G′ =
J ′

J ′2 + J ′′2
(5.15)

G′′ =
J ′′

J ′2 + J ′′2
. (5.16)

For a nonlinear response the Fourier series is represented in terms of higher-

harmonic compliance coefficients (or fluidity coefficients),

γ (t;ω, γ0) = σ0

∑
nodd

{J ′n (ω, γ0) cosnωt+ J ′′n (ω, γ0) sinnωt} (5.17)

γ̇ (t;ω, γ0) = σ0

∑
nodd

{−φ′′n (ω, γ0) sinnωt+ φ′n (ω, γ0) cosnωt} (5.18)

in which case the the coefficients are related by φ′′n = nωJ ′n, and φ′n = nωJ ′′n .

Here again we are faced with the problem of interpreting the higher-harmonic co-

efficients, and also the choice of characterizing compliance and fluidity for a nonlinear

viscoelastic response. The method and interpretation of stress decomposition is com-

plicated for a nonlinear response to oscillatory stress. Using analogous arguments to

that described by Cho et al.[28], it is possible to write

γ(t) = γ′(σ) + γ′′(−σ̇), (5.19)

where σ ∼ cosωt is the stress and −σ̇ ∼ sinωt is the stress-rate, but it is initially

unclear how to interpret the superposition. It is easy to consider γ′(σ) as an “elastic”

strain response, since it only depends on the imposed stress σ, i.e. a purely elastic

strain response should only depend on the instantaneous stress input. However, the

interpretation of γ′′(−σ̇) is not immediately clear, since rates of stress do not in

general correspond with a viscous instantaneous strain response. What is desired is

a relationship between the strain-rate and the imposed stress (recall that fluidity is

φ ≡ γ̇(σ)/σ). It is possible to construct such a representation by taking the derivative
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of the superposition of strains in Eq. 5.19, to give

γ̇(t) = γ̇′(σ̇) + γ̇′′(−σ̈). (5.20)

The interpretation of the γ̇′′ term is still not revealed by this representation, as there is

no general interpretation of strain-rate which instantaneously depends on the second

time derivative of stress. We must exploit the fact that our test is sinusoidal, and in

fact −σ̈(t) = σ(t), and therefore Eq. 5.20 can instead be written as

γ̇(t) = γ̇′(σ̇) + γ̇′′(σ), (5.21)

which now represents the second term as a viscous property, with strain-rate a func-

tion of stress. This representation provides a means of physically interpreting the

nonlinear strain response to oscillatory stress input, in which γ′(σ) is the decomposed

elastic strain, and γ̇′′(σ) is the decomposed viscous strain-rate. The details of this are

saved as future work, especially the question of the appropriate coordinate space for

plotting response curves. For example, is it preferable to plot the orthogonal stress in-

puts and the strain output [σ(t), σ̇(t), γ(t)], or the strain-rate output [σ̇(t), σ(t), γ̇(t)],

or perhaps the most interpretable curve would be the strain and strain-rate as a

function of the input stress [σ(t), γ(t), γ̇(t)]?

As for quantitative material measures, the decomposition and material parameters

will be analogous to the framework proposed in Chapter 2. In terms of nonlinear

compliances,

J ′1 =
ω

πσ2
0

∮
γ (t)σ (t) dt (5.22)

J ′M± ≡
dγ

dσ

∣∣∣∣
σ=0, σ̇=±σ̇0

(5.23)

J ′L± ≡
γ

σ

∣∣∣
σ=±σ0

(5.24)

(5.25)
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and for the nonlinear fluidities

φ′1 = J ′′1ω =
ω

πσ2
0

∮
σ (t) γ̇ (t) dt (5.26)

φ′M± ≡
dγ̇

dσ

∣∣∣∣
σ=0, σ̇=±σ̇0

(5.27)

φ′L± ≡
γ̇

σ

∣∣∣∣
σ=±σ0

(5.28)

(5.29)

An LAOS framework for load-controlled tests will be extremely valuable for mate-

rials which fundamentally respond to the stress input, and also to allow the ubiquitous

“torque-controlled rheometer” to confidently examine, and quantify, the nonlinear vis-

coelastic response to large amplitude oscillatory shear stress. Inertia artifacts must

be carefully handled for torque-controlled large amplitude oscillations, since it is the

sample stress which must be a single-harmonic sinusoidal input (Eq. 5.11), rather

than the instrument torque. Of particular note is the fact that the instrument torque

may be sinusoidal, but inertial artifacts combined with a nonlinear strain response

(and therefore non-sinusoidal γ̈) will cause a non-sinusoidal sample stress. This can

be addressed by avoiding inertial artifacts, i.e. using sufficiently low frequencies, or

using very precise feedback control which accounts for this phenomena to provide a

sinusoidal sample stress.

Finally, it is important to note that in the linear viscoelastic regime the strain-

control and stress-control tests are interchangeable, since inter-relations exist between

compliances and moduli[10], e.g. |G∗||J∗| = 1. However, for a nonlinear viscoelastic

response it is unclear if a direct relation will exist between nonlinear compliances and

nonlinear moduli (or between nonlinear fluidities and nonlinear dynamic viscosities).

Thus, strain-control and stress-control tests may not be interchangeable in general

with large amplitude oscillations, and may therefore provide distinct information.
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Chapter 6

Hagfish slime - an ultrasoft

material

6.1 Background

Hagfishes are marine animals that inhabit the cool or deep parts of the oceans of

both hemispheres[67]. They have long bodies (Figure 6-1), and are sometimes called

“slime eels” although they are not eels at all . Hagfishes are well known for their

ability to produce large amounts of slime when they are provoked or stressed. They

do this by ejecting a small amount of slime exudate which can mix into a large volume

of the surrounding water, forming a mucus-like cohesive mass[68, 69, 70]. The slime

glands line both sides of the animal’s body (Figure 6-1c). Hagfish slime is distinct

from other mucus-like materials. In addition to mucin-like molecules it also contains

a fibrous component made of intermediate filaments[71, 72](Figure 6-2). The fibrous

component originates within specialized cells in the slime glands known as gland

thread cells. These unique cells express intermediate filament proteins that assemble

into 10 nm intermediate filaments, which then bundle into a single protein polymer

thread. The threads are wrapped into an egg-shaped “ball of yarn” that takes up

the majority of the cytoplasm volume in mature cells. The thread diameter ranges

from 1-3µm, and when fully unraveled it can be about 15 cm long[73]. The details of

producing a continuous 15 cm long thread within the cytoplasm are still unknown.
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Figure 6-1: Photos of Atlantic hagfish used for this research. (a) top-down view of
three hagfish in a large glass beaker, (b) collection of fresh slime exudate.

Figure 6-2: Microscope images of stabilized hagfish slime. The primary constituents
of whole slime exudate are mucin vesicles and wound-up threads. Each egg-shaped
thread winding is composed of a continuous filament of diameter 1-3µm, with length
up to 15 cm when fully unraveled.

One remarkable thing about hagfish slime is that small volumes of exudate can

entrain large volumes of water. A typical slime mass created by a hagfish has a

volume of about 0.9 L, but this total mass of exudate and entrained water contains

only 20 mg of slime threads and 15 mg of mucins (dry weight)[73]. In contrast,

typical mucus secretions contain about the same mass of mucins per milli liter, i.e.

typical human mucin concentrations are about 1000x larger (47 mg/ml for gastric,

37 mg/ml for duodenal, and 20 mg/ml for colonic mucus respectively)[74]. Hagfish
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slime exudate can absorb 26,000x its weight in water, in comparison to commercially

available absorbent materials (e.g. those used in diapers) which can absorb 50x their

weight in water[75]. However, the method of water entrainment is different between

these materials, and for hagfish slime the water is bound less tightly and will drain

out over timescales of minutes under suitable driving pressure (e.g. as when lifted

into the air)[73]. It appears that bulk seawater is entrained within minute spaces in

the slime, and it is the viscous resistance to the flow of water through this porous

network that allows the slime to be (momentarily) lifted into air.

The viscous entrainment of large volumes of water enable the most likely function

of hagfish slime, which is to thwart attacks by gill-breathing predators[76]. Suction

feeding is such a fast event that most prey typically have little chance of evasion

once the attack has been detected. Hagfishes have evolved a counter-attack strategy

to inhibit the suction feeding mechanism. Lim et al.[76] have shown that hagfish

slime dramatically increases the hydrodynamic resistance of gills, at least in freshly

dead specimens, and the likely result for a predator that gets a mouthful of slime is

suffocation. The slime achieves this effect not by binding seawater tightly, but rather

by simply decreasing the size of the pores through which the water must flow[76].

A slime mass network (of exudate mixed with water) can accommodate large

stretch ratios. When lifted into the air (Figure 6-3), the slime mass remains a cohesive

mass. At sufficiently short times there is minimal draining of water. Stretch ratios up

to approximately λ = Lf/Li ≈ 60cm/1.5cm = 40 can be observed while the network

remains a cohesive mass, as shown in Figure 6-3.

6.2 Materials and methods

Atlantic hagfish were collected and provided by Prof. Douglas Fudge (University of

Guelph). For slime collection, hagfish were removed from a salt water containment

bath, placed on a cold tray, and patted dry with a towel. Hagfish were then induced

to produce slime exudate by electrical stimulation. Exudate was collected directly

from the skin of the animal. For some tests, hagfish were kept in the lab at MIT and
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Figure 6-3: Hagfish slime networks can sustain large stretch ratios while maintaining
a cohesive mass. This photo shows Tim Winegard (hagfish wrangler, University of
Guelph) raising the rheometer test geometry after experiments.

“fresh” exudate could be used for rheometry tests. Other tests were performed on

exudate collected at the University of Guelph from the lab of Prof. Fudge, in which

case “stabilized” exudate was maintained under mineral oil and shipped to MIT.

A precise volume of exudate (Ve = 10µL) was acquired using a micropipette, and

this exudate was added to a predetermined volume of salt water (Vsw = 12 mL) in a

Falcon tube. The tube was closed and the contents mixed to establish the slime gel

network. The concentration was chosen to consistently entrain the full volume of salt

water into the slime network. Mixing was generated by sloshing the contents back

and forth along the container axis by repeatedly inverting the tube. After mixing for

six oscillations, the entire volume of sample material appeared fibrous and behaved
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as a cohesive mass.

Viscoelastic properties of the slime were measured with a torque-controlled rheome-

ter (AR-G2, TA Instruments) using a concentric-cylinder geometry (a.k.a. cup-and-

bob). The geometry consists of an outer cup with flat bottom (radius R0 = 15 mm).

The inner cylinder has radius Ri = 14 mm, length L = 41.5 mm over which the radius

is constant, and a protruding conical bottom with half angle α/2 = 60◦.

The mixed sample of slime was placed in the cup, and the inner cylinder lowered

into the sample until the bottom conical point reached a distance h = 5 mm from

the bottom of the cup, pushing the sample into the 1 mm gap between the inner

and outer cylinders. The volume Vsw = 12 mL was chosen such that the sample

exactly reached the top of the inner cylinder. The sample is thus contained around

and below the inner cylinder. It is the portion of the sample confined in the small gap

which dominates the resistance to deformation, and this deformation is approximately

described as simple shear, γ̇ ' ΩRi/(Ro −Ri), where Ω is the angular velocity, Ri is

the inner radius, and Ro is the outer cylinder radius.

6.3 Results

The results presented here are the first tests to characterize the intrinsic material

properties of mature hagfish slime. Fig. 6-4 contains the results from a single creep

test on “fresh” slime, in which a small constant load was imposed (shear stress σ0 =

0.01 Pa) and the resulting strain γ(t) observed as a function of time. Figure 6-4 shows

the creep compliance, defined as J(t) = γ(t)/σ0. At long times the compliance (strain)

approaches a constant, J(t)→ Jss ≈ 55Pa−1. The equilibrium elastic modulus of the

sample is then approximated by G = 1/Jss. We measured this elastic modulus to be

G = 0.018 Pa, which is about five orders of magnitude more compliant than materials

like gelatin, making it one of the softest elastic biomaterials known.

The inertio-elastic ringing response of Fig. 6-4 was also analyzed following the

procedures outlined in Section 1.2.3, Eqs. 1.3-1.4, by estimating the logarithmic

decrement using four peak points (Eq. 1.7). The “ringing” modulus is interpreted
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Figure 6-4: Results of a creep test conducted with “fresh” hagfish slime reconstituted
from exudate mixed with seawater in the lab. At short times the strain oscillates
due to inertio-elastic ringing, in which the sample elasticity couples with the finite
instrument rotational inertia to “ring” at a resonant frequency, just like a mass at
the end of a spring (see Section 1.2.3). At longer times the strain is approximately
constant, γss, and this is representative of a primarily elastic material response.

here as the differential modulus about an imposed stress (i.e. the tangent modulus

at σ0 = 0.01 Pa)[30]. For a nonlinear elastic response the tangent elastic modulus

K ′ ∼ dσ/dγ is different than the secant modulus G = σ0/γ. For the results of Fig. 6-

4 it is found that the ringing frequency is ω∗ = 0.99 rad.s−1, K ′c = 0.032 Pa, and

K ′′c = 0.007 Pa. The hagfish slime creep response even at σ0 = 0.01 Pa is in fact

nonlinear, as indicated by the differential modulus K ′ = 0.032 Pa being larger than

the secant modulus G = 0.018 Pa.

The same “fresh” sample used for the creep tests of Figure 6-4 was also used

for a linear viscoelastic frequency sweep (Figure 6-5) and large amplitude oscillatory

shear (LAOS) (Figure 6-6). The hagfish slime sample is so soft that inertia easily

dominates the response, as indicated by the raw phase angle > 130◦ above a critical

frequency (note that this critical frequency corresponds to the inertio-elastic ringing
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Figure 6-5: Frequency sweep results with hagfish slime reconstituted from fresh exu-
date. The strain amplitude was prescribed (γ0 = 10%). The mechanical resistance is
so low (G′ < 0.03 Pa) that inertial effects from the rheometer spindle easily appear
in the data, with a sharp jump in raw phase angle from δ = 14.7◦ to δ = 134.9◦ at
ω = 1 rad.s−2, corresponding to the resonant frequency of the material-instrument
system ω∗ = 0.99 rad.s−1 (Fig. 6-4).

frequency shown in Figure 6-4, ω∗ = 0.99rad.s−1). With such large raw phase angles

the accuracy of inertia corrections becomes questionable, and for this reason such

data points with exceedingly large raw phase angles are distinguished as grey circles

in Figure 6-5. The linear viscoelastic moduli for this sample show weak frequency

dependence, and the value of G′ ≈ 0.02 Pa corresponds well with the results of the

creep test of Figure 6-4 for which G = 0.018 Pa.

The LAOS results for this fresh sample are given in Figure 6-6. The test protocol

specified a strain amplitude as the controlled input parameter, since the sample stress

amplitude is not easily controlled when inertia plays such a dominant with such soft

samples as this. It is important to note that the LAOS tests are performed on a torque-

controlled instrument and therefore the strain is not strictly sinusoidal. Thus, the

LAOS ontology cannot be applied since neither the stress nor the strain are controlled
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Figure 6-6: Large amplitude oscillatory shear test with hagfish slime reconstituted
from fresh exudate. The strain amplitude was prescribed as indicated on the abscissa
(ω = 0.15 rad.s−1).

with sufficient precision in this case (i.e. neither is a smooth sinusoid). We are

therefore limited to look only at the first-harmonic moduli output from the rheometer

software. Figure 6-6 shows that the hagfish slime network degrades above a critical

strain-amplitude γ0 ≈ 1, which corresponds to a stres amplitude σ0 ≈ G′γ0 ≈ 0.02 Pa.

This intercycle softening of G′1 might initially seem to contradict the results obtained

with the creep test in Figure 6-4, in which K ′ > G indicated strain-stiffening. Recall

however that the first-harmonic modulus can overshadow the true nonlinear behavior

of the sample, as was the case for slug pedal mucus (Chapter 2, Figure 2-1).

Creep tests were performed over a range of input stress amplitude to better ex-

plore the nonlinear viscoelastic behavior of hagfish slime networks using the torque-

controlled rheometer. Stabilized slime was used for the creep tests in Figure 6-7

(fresh samples were not available at that time)). Note that the creep response of

the stabilized slime (at σ0 ≤ 0.01 Pa) corresponds well with the fresh slime creep

response shown in Figure 6-4. This gives confidence that the stabilized slime exudate
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Figure 6-7: Creep tests conducted with hagfish slime reconstituted from stabilized
exudate mixed with seawater in the lab. Various stress amplitudes are imposed to
examine the nonlinear rheological response. (a) time dependent creep response curves
at each imposed stress, (b) elastic analysis of each curve including the differential
modulus K ′ (Eq. 6.12) and initial secant modulus G0 (Eq. 6.11.
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can be used in place of fresh exudate, and therefore future research can avoid the

maintenance and care of hagfish at multiple sites.

As shown in Figure 6-7a, the slime network responds as a predominantly elastic

material for sufficiently small values of stress. The material softens, i.e. becomes

more compliant, at larger stresses near σ0 = 0.1 Pa, which is a slightly larger stress

than observed in Figure 6-6 in which softening initiates near σ0 = 0.02 Pa. The

sample eventually yields and flows at large imposed stress, e.g. at σ0 = 0.316 Pa.

Inertio-elastic ringing is observed in all of these tests, and was used for analysis of

each curve except σ0 = 0.316 Pa which had insufficient ringing information available.

The four-point method of identifying successive peak/valley data points was used to

determine the differential moduli K ′ and K ′′. Additionally, an underlying Maxwell-

like behavior was assumed to analyze the secant modulus and fluidity of the sample.

Specifically, the prototypical curve assumes a Maxwell response superimposed with

decaying oscillations,

J(t) = X exp

(
−∆ω

2π
t

)
sin(ωt+ Ψ) + Y + Zt (6.1)

in which X is the ringing amplitude, Y is the initial compliance, Z is the fluidity,

and Ψ is an arbitrary phase. Identifying four successive peak/valley data points

from the experimental data, t1 → t4 and J1 → J4, provides sufficient information

to determine all of the parameters of interest. The ideal time spacing forces the

following relationships of the time points, t2 = t1 + π/ω, t3 = t1 + 2π/ω, and t4 =

t1 + 3π/ω. These four data points then provide the following system of equations
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with the assumed underlying model (using Eq. 6.1),

J1 = X exp

(
−∆ω

2π
t1

)
(+1) + Y + Zt1 (6.2)

J2 = X exp

(
−∆ω

2π
(t1 + π/ω)

)
(−1) + Y + Z(t1 + π/ω) (6.3)

J3 = X exp

(
−∆ω

2π
(t1 + 2π/ω)

)
(+1) + Y + Z(t1 + 2π/ω) (6.4)

J4 = X exp

(
−∆ω

2π
(t1 + 3π/ω)

)
(−1) + Y + Z(t1 + 3π/ω) (6.5)

The inertio-elastic ringing frequency is determined from the total time-span of the

data points,

ω∗ =
2π

t4 − t1
1.5. (6.6)

The logarithmic decrement, ∆, can be determined through a proper elimination of

the variables X, Y , and Z. Two independent methods of eliminating Y and Z are

used, namely J1 + J3− 2J2, and −J2− J4 + 2J3. The ratio of these two terms further

eliminates X and allows for ∆ to be calculated as a function of the four point J1 → J4.

This result was given in Eq. 1.7 and is repeated here for convenience,

∆ = 2 ln

(
J1 − 2J2 + J3

−J2 + 2J3 − J4

)
. (6.7)

Knowing ∆ and t1, we can than use the J1 + J3 − 2J2 expression to solve for X.

X =
J1 + J3 − 2J2

exp
(−∆ω

2π
t1
)

(1 + exp(−∆) + 2 exp(−∆/2))
. (6.8)

Next, Z can be determined as a function of X and ∆, using J2− J1 which eliminates

the variable Y ,

Z =
ω

π

[
J2 − J1 +X exp

(
−∆ω

2π
t1

)
(1 + exp(−∆/2))

]
. (6.9)
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Finally, Y is determined directly from the J1 expression,

Y = J1 −X exp

(
−∆ω

2π
t1

)
− Zt1. (6.10)

The initial secant modulus is given by

G0 = 1/Y. (6.11)

The local differential moduli are determined from inertio-elastic ringing analysis, and

depend on ∆ and ω. This analysis was described in Section 1.2.3 and the result is

repeated here for convenience, in which the differential moduli are explicitly indicated,

K ′ ≈ Iω2
∗
b

(
1 + (∆/2π)2) (6.12)

K ′′ ≈ Iω2
∗
b

(
∆

π

)
(6.13)

tanδ ≈ ∆

π

(
1 + (∆/2π)2)−1

(6.14)

The ringing analysis of the creep curves results in stress-amplitude dependent

values of the secant modulus G0 and differential modulus K ′, which are both given in

Figure 6-7b. At sufficiently small stress, the values of G0 and K ′ would be expected

to converge, and indeed this is approximately the case for the measured data here. As

stress amplitude is increased, the values diverge. The secant modulus G0 is initially

constant and eventually decreases, which compares well with the LAOS results of

G′1 (Figure 6-6). The nonlinear behavior is quite rich as the differential modulus

is larger than the secant modulus for all tests, and increases as a function of stress

amplitude indicating nonlinear elastic stiffening. The elasticity stiffens by about

one order of magnitude before the sample response is dominated by flow and the

differential modulus can no longer be measured.

Shear flow tests were attempted, but were unsuccessful due to the wrapping of

the slime threads around the inner rotor of a cup-and-bob geometry. A cone-plate

geometry was also used, but in this case the solid mucus/thread components wrapped
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Figure 6-8: Photos of successive extensional flow tests performed on a single sample
of hagfish slime, made from fresh slime exudate. The shape of the filament at the
end of each run changes slightly; note that after Run 3 the shape is convex near the
center of the filament due to the gel-like nature of the slime mass.

around themselves and aggregated in the center of a saltwater puddle. Extensional

flow tests were more successful. Figure 6-8 displays photos taken during successive

extensional flow tests performed on a single sample of “fresh” hagfish slime. The

sample shows adequate adherence to the upper geometry surface. The experimental

measurements corresponding to these extensional flow tests are shown in Figure 6-9.

The plate separation is given by the equation L(t) = L0 exp(+ε̇t), in which ε̇ is the

extensional strain rate for homogeneous deformation. For the results in Figure 6-9,

ε̇ = 0.2 s−1, and the force curves nearly overlap. The peak force of each successive

experiment is Fmax =0.0416 N, 0.0464 N, 0.0489 N, and 0.0474 N, respectively for

Runs 1-4.

Although the plate separation L(t) is precisely controlled, the kinematics of mate-

rial deformation may not ideally proceed, as suggested by the photos in Figure 6-8 and

by observations during the experiments. For example, a remnant bulge can be seen in

the filament at the end of Run 3. Furthermore, it is possible that a filament of slime

is lifted out of a puddle resting on the bottom plate, i.e. the ultrasoft material sags

in response to gravity, in which case the extensional flow kinematics are non-ideal.

In future experiments, such kinematics can be more closely monitored by a laser mi-
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Figure 6-9: Extensional flow results for hagfish slime, corresponding to the tests shown
in Figure 6-8. (a) Successive tests on the same sample show repeatable results. (b)
The plate separation imposes a constant extensional deformation rate, ε̇ = 0.2 s−1, if
homogeneous deformation is assumed.

crometer. Keeping these possibilities in mind, we will none-the-less assume idealized

kinematics for the present data set, in which stresses and rates should be considered

as “apparent” values. For the idealized case the deformation is homogeneous and

volume conserving, thus the radius evolves according to R(t) = R0 exp(−ε̇t/2). The

stress difference is determined by ∆σ(t) = F (t)/(πR(t)2), and the apparent exten-

sional viscosity is found from ηE = ∆σ(t)/ε̇. These processed results are given in

Figure 6-10 for Run 1. The apparent stress (and corresponding viscosity) approxi-
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Figure 6-10: Analysis of the extensional flow measurements shown in Figure 6-9
(Run 1), with standard assumptions for kinematics of radial deformation, R(t) =
R0 exp(−ε̇t/2). (a) apparent stress difference, and (b) apparent extensional viscosity.

mately plateaus until time t = 10 s, after which it increases by one order of magnitude.

Such a response indicates extensional hardening, so long as deformation kinematics

can be assumed as ideal.

These tests represent the first reported intrinsic property measurement of hagfish

slime, and include both linear and nonlinear rheological responses. The fresh and
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stabilized slime exudate seem to have comparable mechanical properties, especially

as indicated by the secant modulus G ≈ 0.02 Pa for each. A number of items are left

as future work. The most important short term goal would be the development of a

microstructural model which can describe the nonlinear response measured with these

tests. This ultrasoft nonlinear material may also serve as inspiration for soft mate-

rials applications which require large stretch ratios, including the DARPA Chemical

Robots program which funded a portion of this thesis work.

In the context of the rheometry methods discussed in this thesis, the hagfish slime

network is yet another example of the fact that the typical first-harmonic analysis of

LAOS tests (Figure 6-6) can be insufficient to describe the true nonlinear viscoelastic

material response. Here it is elastic strain-stiffening which is revealed by the tan-

gent modulus analysis of inertio-elastic ringing (Figure 6-7b). Although the LAOS

ontology introduced in Chapter 2 could not be used for this sample due to instru-

mentation limits, namely the lack of a cup-and-bob geometry for the strain-controlled

ARES rheometer, we see that appropriately considering the raw oscillatory data can

allow for accurate characterization of complex materials. In this case, it is the inertio-

elastic oscillations (free ringing) which is amenable to analysis on a torque-controlled

instrument.
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Chapter 7

LAOS of pseudoplastic and

elastoviscoplastic materials

This chapter explores the utility of strain-controlled large amplitude oscillatory shear

(LAOS) deformation for identifying and characterizing apparent yield stress responses

in elastoviscoplastic materials. The approach emphasizes the visual representation of

the LAOS stress response within the framework of Lissajous curves with strain, strain-

rate, and stress as the coordinate axes, in conjunction with quantitative analysis of

the corresponding limit cycle behavior. This approach enables us to explore how the

material properties characterizing the yielding response depend on both strain am-

plitude and frequency of deformation. Canonical constitutive models (including the

purely viscous Carreau model and the elastic Bingham model) are used to illustrate

the characteristic features of pseudoplastic and elastoplastic material responses under

large amplitude oscillatory shear. A new parameter, the perfect plastic dissipation

ratio, is introduced for uniquely identifying plastic behavior. Experimental results are

presented for two complex fluids, a pseudoplastic shear-thinning xanthan gum solu-

tion and an elastoviscoplastic invert-emulsion drilling fluid. The LAOS test protocols

and the associated material measures provide a rheological fingerprint of the yielding

behavior of a complex fluid that can be compactly represented within the domain of

a Pipkin diagram defined by the amplitude and timescale of deformation.
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7.1 Introduction

This work examines the response of “yield stress fluids” to large amplitude oscillatory

shear (LAOS) deformation. Without seeking to be drawn into an extended debate, the

term “yield stress fluid” is used pragmatically to refer to any material or model which

exhibits a dramatic change in viscosity (orders of magnitude) over a small range of

applied stress[77, 78]. This definition might include pseudoplastic (dramatically shear-

thinning) liquids, or elastoviscoplastic materials which effectively behave as elastic

solids for applied stresses below a critical yield stress σ < σy, but are viscoplastic and

irreversibly deform and flow for applied stress above the yield stress σ > σy.

Yield stress behavior is sometimes desired in order to achieve particular perfor-

mance with complex fluids. For example, oilfield drilling fluids are often formulated

to be yield stress fluids to meet the needs of an intermittent drilling process. While

drilling ahead, relatively long periods of fluid flow will be interrupted by short periods

(usually less than ten minutes) when the fluid is not pumped as pipe connections are

made. During non-drilling activities (tripping pipe, running casing, etc.) the drilling

fluid may lie stagnant in the hole for hours or even days. During this period, set-

tling of solids can be especially problematic if the fluid does not have sufficient yield

structure to support both large and small particulate matter. However, a fluid with

an excessive yield stress can also provide problems; for example, if a large stress is

required to break the structure and initiate fluid flow in the well annulus, the result

is tremendous pressure surges which may fracture the formation and lead to further

problems. The balance between minimizing these swab and surge pressures while

maintaining suspension of weight materials (high specific gravity solids, primarily

barite) and drilled cuttings can be difficult to maintain in fluids that are thixotropic

and exhibit a yield stress[79].

What is needed is a test protocol for characterizing the elastic, viscous, and

yielding characteristics of a prototypical mud in the field or in the formulation lab-

oratory. Large amplitude oscillatory shear (LAOS) is a test method which sys-

tematically interconnects familiar material measures such as steady flow viscosity
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η(γ̇), linear viscoelastic moduli G′(ω) and G′′(ω), as well as nonlinear viscoelastic

properties[14], allowing for nonlinear viscous and elastic effects to be characterized

simultaneously. In strain-controlled LAOS deformation, the imposed strain takes

the form γ(t) = γ0 sinωt, which consequently imposes a phase-shifted strain-rate

γ̇(t) = γ0ω cosωt. The resulting oscillatory shear stress σ(t;ω, γ0) is recorded and

analyzed. LAOS tests are completely defined by two input parameters, e.g. fre-

quency and amplitude {ω, γ0}. These two parameters define an experimental test

space in which results can be compactly represented, which is now known as the

Pipkin diagram[1]. The steady flow curve, η(γ̇), is recovered in the limit of small

frequency, ω → 0, whereas the familiar measures of linear viscoelasticity, G′(ω) and

G′′(ω), are recovered in the limit of small strain amplitude, γ0 → 0. Many com-

plex fluids are processed or utilized outside of these limiting regions, e.g. the oilfield

drilling fluids discussed above experience large strains and strain-rates on the order

of the reciprocal of the characteristic timescales in the material. LAOS offers a sys-

tematic methodology for characterizing viscoelastic material responses over the full

domain of amplitudes (γ0) and timescales (1/ω) of the imposed shearing deformation.

Methods for analyzing LAOS include Lissajous curves[12, 27], Fourier transform

rheology (e.g. [15])), Stress decomposition[28, 50, 66], computation of viscoelastic

moduli[19, 50], decomposition into characteristic waveforms[22], and analysis of pa-

rameters related to Fourier transform rheology[16, 80]. A unifying framework, or

ontology, for LAOS was recently proposed by Ewoldt et al.[50] (see Chapter 2) which

introduced a number of physically-meaningful material measures for LAOS tests and

identified the inter-relation between some of the different approaches listed above. The

physical meaning of some of these measures was highlighted by considering graphi-

cally the raw test data in the form of Lissajous-Bowditch curves, which are parametric

plots of stress σ(t) vs. strain γ(t) or strain-rate γ̇(t). This inherently visual approach

allows for qualitative interpretations of quantitative material measures such as Fourier

or Chebyshev coefficients.

Steady state LAOS responses can be visualized as parametric curves in a 3-D

space with strain, strain-rate, and stress as the coordinate axes, {γ(t), γ̇(t), σ(t)}[28].
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We use the term “elastic Lissajous-Bowditch curve” to denote the projection of the

oscillatory response curves onto the stress σ(t) vs. strain γ(t) plane, whereas viscous

Lissajous-Bowditch curves denote parametric plots of stress σ(t) vs. strain-rate γ̇(t).

A linear elastic material response, σ = Gγ, appears as a straight line on the elastic

Lissajous curve of σ(t) vs. γ(t), or a circle in a suitably scaled plot of σ(t) vs. γ̇(t).

In the linear viscoelastic regime, the Lissajous figures are elliptical when the stress

response is a sinusoidal function, σ(t) = σ0 sin(ωt + δ) and is plotted against γ(t) or

γ̇(t).

A nonlinear viscoelastic response will distort the elliptical shape of a Lissajous

curve. The particular nonlinear LAOS signature associated with yield stress fluids

such as drilling muds can be identified and better understood by first considering

representative constitutive models. Here we consider two canonical models: a purely

viscous Carreau model and the elastic Bingham plastic model. We determine the

hallmark responses of these yield stress fluid models in LAOS tests and explore suit-

able measures for quantifying typical yield-like responses for any material in LAOS.

We examine the experimental response of two material samples using these measures;

a shear-thinning aqueous xanthan gum solution and a pseudoplastic oilfield drilling

mud. We show that the LAOS protocol can be used to identify regimes within the

shear deformation space {ω, γ0} in which a complex material most closely approxi-

mates the response of a yield stress fluid.

7.2 Materials and Methods

7.2.1 Materials

The aqueous xanthan gum solution (0.2 wt%) was provided by CPKelco, San Diego,

CA in solution form. An oilfield drilling fluid was provided by Baker Hughes Drilling

Fluids, Houston, TX. The invert emulsion drilling fluid (IEDF) was obtained as a

sample from field operations and had a density of 1.53 g/ml. The fluid component of

the drilling mud is an invert emulsion with a continuous mineral oil phase surrounding
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an internal phase of calcium chloride brine (17%wt, 1.76 molar). The oil/water ratio

was 76/24 (by vol). The drilling mud contained high specific gravity solids (barite)

at ∼15%wt and organophilic clays ∼2%wt. Drilled solids, which primarily consist

of a mixture of reactive and non-reactive clays, composed greater than 5%wt of the

IEDF.

7.2.2 LAOS protocol

Large amplitude oscillatory shear (LAOS) tests were performed using an ARES-LS

displacement controlled rheometer (TA Instruments). A cone-plate geometry was

used for the aqueous xanthan gum solution, diameter D = 50 mm, cone angle θ =

0.0402 rad, truncation h = 0.049 mm. Xanthan gum tests were performed at T=22◦C.

For the drilling fluid, a plate-plate geometry was selected (diameter D = 25 mm,

gap h = 0.5 mm) because of the presence of a significant particulate phase. Adhesive-

backed, waterproof sandpaper (600 grit) was attached to both the top and bottom

plates to inhibit slip at the surface. In an attempt to avoid edge fracture artifacts, the

gap was deliberately over-filled with the fluid sample. An outer ring (D = 30 mm) was

used to contain the over-filled sample. The ring was sealed to the bottom sandpaper

surface using vacuum grease. Using a Peltier plate, the temperature of the drilling

fluid was maintained at 48.9◦C (i.e. 120◦F which is recommended as standard practice

by the American Petroleum Institute[81]).

The strain field for the rotational parallel plate geometry is inhomogeneous, and

angular displacement and torque are the naturally measured quantities. For the

intrinsic variables of strain and stress, we report (and use in subsequent analysis) the

strain at the edge of the plate, σR, and the apparent stress which would exist at the

edge of the plate assuming a linear response, σA = 2M/πR3. The possible artifacts

of this approach are given more detailed consideration in a subsequent section below.

Raw data was collected with the native rheometer control software (TA Orches-

trator) using the Arbitrary Waveshape test as described in Section 4.2.1 and [50].

Although extremely high sample rates can be achieved by acquiring raw voltage sig-

nals from the BNC outputs on the back of the ARES, we find that the Arbitrary
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Figure 7-1: Validation of the MITlaos software (Chapter 3), using a strain sweep
for xanthan gum solution (0.2 wt%) at ω = 3.75 rad.s−1. MITlaos software is used
to analyze the raw stress and strain waveforms resulting from Arbitrary Waveshape
tests (squares). A duplicate test was performed with the typical oscillation test mode
of the ARES rheometer software (circles), which provides viscoelastic parameters but
no raw data or assessment of higher harmonic content. The superposition of results
indicates the validity of the Arbitrary Waveshape test and the MITlaos software for
analyzing both linear and nonlinear LAOS results.

Waveshape test sequence allows for sufficiently high sample rates for our analysis

without the requirement of a separate data acquisition system.

7.2.3 Data processing

The raw data exported from the rheometer control software was processed using

MATLAB. The majority of data processing is performed using a freely available

LAOS data analysis package, MITlaos (Section 4.2.1 and [49]). The MITlaos software

is used to determine the Fourier coefficients, Chebyshev coefficients, elastic/viscous

stress decomposition, and the corresponding viscoelastic moduli. For a specified pair

of LAOS input parameters, {ω, γ0}, the sample is subjected to multiple deformation

158



cycles. The initial transient response is monitored and allowed to decay so that a

steady-state limit cycle is reached. Six complete strain cycles in the periodic steady

state regime are used for the data processing. MITlaos uses the higher-harmonic

information, up to a user-specified cutoff harmonic nmax = ωmax/ω, to calculate the

desired viscoelastic material parameters. For the drilling fluid, the cutoff frequency

was chosen to be nmax = 11 or higher depending on the noise floor of the power

spectrum, in order to capture of all the meaningful information in the response signal

while avoiding noise. For the xanthan gum solution the cutoff frequency was chosen

to be nmax = 9, except for the lowest frequency test at {ω = 0.15 rad.s−1, γ0 = 1.0}

in which nmax = 5 was used to filter unnecessary noise in the (small) torque signal.

In order to validate the procedure of using MITlaos to analyze raw stress and

strain waveforms we first compared the results from a pair of strain sweep tests

performed using the ARES software. One test used the Arbitrary Waveshape protocol

with offline processing by MITlaos, and the other test used the standard oscillation

protocol of the ARES software, which does not capture the raw waveforms. The

results from these duplicate tests are shown in Fig. 7-1 for the xanthan gum solution at

ω = 3.75 rad.s−1 and increasing values of strain amplitude γ0. Good correspondence

between the two protocols is obtained for both G′1(ω, γ0) and G′′1(ω, γ0) across the full

range of strain amplitudes.

7.3 Response of model fluids with yield stress char-

acteristics

Before we examine experimental LAOS measurements, it is instructive to explore the

characteristic features of Lissajous curves for model yield stress fluids. This helps

build intuition when examining results from experiments or other proposed consti-

tutive models. Here we consider two models which are simpler limits of a general

elastoviscoplastic response. One model is a purely-viscous Generalized Newtonian

Fluid which exhibits pseudoplasticity (shear-thinning) and can approach plastic be-
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Figure 7-2: Lissajous-Bowditch curves of the Carreau pseudoplastic model (Eq. 7.2)
for various values of the Carreau number Cu = λγ0ω and power law index n. Here
n = 1.0 is Newtonian (dotted lines), n = 0.5 is shear-thinning (dashed lines), and
n = 0.0 is the limiting case of viscoplastic yield stress behavior (solid lines). (a) 3D
trajectories of the stress response σ(t)/σmax as a function of the normalized LAOS
inputs {x(t), y(t)}, shown for λγ0ω = 10. Note that the maximum stress σmax is
different for each value of n, as shown in (b), which depicts 2D Lissajous curves
projected onto the planes of stress vs. strain (σ̃(t) vs. x(t)) and stress vs. strain-rate
(σ̃(t) vs. y(t). In (b) the stress is scaled by the Newtonian stress η0γ̇0, rather than
the maximum stress, at each value of the Carreau number Cu = λγ0ω.

havior. The second model is elastoplastic, behaving as a linear elastic solid before

yield with a rate dependent stress after yield. Each model can be allowed to approach

the canonical Bingham plastic constitutive response in an appropriate limit.

7.3.1 Purely viscous Carreau model

Many Generalized Newtonian Fluid models can approach the familiar Bingham plas-

tic limit, for example the Cross model[82]), Papanastasiou model[83], and Carreau-

Yasuda model[8]. Bird et al. 1983[84] and Mitsoulis 2007[85] provide comprehensive

reviews of the relative merits of many of these different models and their utility in

solving flow problems. Here we select the Carreau model because of its familiarity and
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its ability to describe pseudoplastic (shear-thinning) data as well as materials with a

critical plastic stress. Furthermore, the model requires only two variables to fully de-

scribe a response to LAOS deformation, as shown below. The Carreau-Yasuda model

is a Generalized Newtonian Fluid which describes a non-Newtonian viscosity as an

instantaneous single-valued function of shear rate[8]. The non-Newtonian viscosity is

given as

η − η∞
η0 − η∞

= (1 + (λγ̇)a)
n−1
a (7.1)

where η0 is the low-rate Newtonian plateau viscosity, η∞ is the high-rate plateau vis-

cosity, λ is a characteristic timescale (or more accurately the inverse of a characteristic

shear-rate, λ = 1/γ̇∗) beyond which non-Newtonian behavior becomes important, n

is the power-law exponent, and a is correlated with the sharpness (concavity) of the

transition from Newtonian to power-law behavior. Many good fits can be found for

a = 2 and η∞ = 0, especially for polymer solutions and melts[8]. For a = 2, the

model reduces to the Carreau model.

The Carreau model reduces to the Newtonian fluid for n = 1 and describes shear-

thinning for n < 1. For n → 0, and η0 � η∞, the model represents a yield stress

fluid in which the viscosity dramatically changes within a small range of stress. The

apparent yield stress of the Carreau model (Eq. 7.1) for n = 0 can be found by

considering the power-law regime, λγ̇ � 1, and determining the shear stress from

σ = η(γ̇)γ̇. The apparent shear yield stress is found to be σy = η0/λ in the limit

n = 0. The Carreau model gives a purely viscous response, because stress only

depends on the instantaneous value of the shear-rate, σ(γ̇). The elastic modulus G′

is therefore always zero, even in the nonlinear regime.

The LAOS material response of the Carreau model (Eq. 7.1, a = 2) can be

concisely represented by two parameters when we set η∞ = 0 for simplicity. For

x(t) = γ(t)/γ0 = sinωt, y(t) = γ̇(t)/γ̇0 = cosωt the dimensionless stress response is

σ̃ (t;n,Cu) = y(t)
(
1 + (Cu y(t))2)n−1

2 (7.2)
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where σ̃ ≡ σ/η0γ̇0 and Cu ≡ λγ0ω is the Carreau number. The normalized stress

waveform is therefore a function of two non-dimensional parameters. The stress

response of Eq. 7.2 is represented in terms of a family of Lissajous-Bowditch plots in

Fig. 7-2. Fig. 7-2a depicts the 3D response curve of the normalized stress response as

a function of the two orthogonal LAOS inputs, σ(γ(t), γ̇(t)). When suitably scaled

so that x(t) = sinωt and y(t) = cosωt, the periodic system output corresponds to

trajectories on the surface of the bounding cylinder shown in gray (Fig. 7-2a). In the

limit n = 1, the response corresponds to a plane curve sectioned through the cylinder

with σmax = η0γ̇0. As n is decreased, the trajectory becomes increasingly distorted

and the maximum stress decreases.

The Carreau model approaches a yield stress fluid response as n → 0 and the

Carreau number Cu = λγ0ω. For this yield stress response, the maximum stress

becomes σmax → η0/λ and the trajectory approaches two plane semicircles (Fig. 7-

2a, top) offset by 2σmax = 2η0/λ. For this yield-like response, normalized elastic

Lissajous-Bowditch curves of stress vs. strain appear as squares (Fig. 7-2a, bottom-

left, n = 0). The viscous Lissajous-Bowditch curves of stress vs. strain-rate enclose

no area and are single-valued functions of the instantaneous strain-rate y(t) = γ̇(t)/γ̇0

(see Eq. 7.2) as expected for all Generalized Newtonian Fluid constitutive models. For

this purely viscous response, the slope of any local secant line equals the viscosity,

η ≡ σ(γ̇)/γ̇. Near |γ̇| → 0 it is the tangent line of the viscous Lissajous curve

which represents the low-rate Newtonian plateau viscosity, η0; however, this becomes

increasingly difficult to resolve. The apparent viscosity at the minimum resolvable

rate, η′M ≡ dσ/dγ̇|γ̇=0, and at the largest imposed rate, η′L ≡ σ/γ̇|γ̇=γ̇0
, are two useful

measures of the nonlinear response which are generally applicable to any viscoelastic

LAOS response, as discussed in Section 2.3.2 and [50].

The limiting yield stress behavior of the Carreau model is representative of a

viscoplastic yield stress response. A corresponding elastoplastic limit is considered in

the following section.
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7.3.2 Elastic Bingham model - homogeneous strain

The elastic Bingham model responds as a linear elastic solid below the yield stress and

transitions to a Bingham plastic response above the yield stress in which recoverable

elastic strain is stored during flow[2]. This model incorporates material elasticity

below yield and in this sense represents a more general yield stress response than

the Carreau model presented in the previous section. A number of more general

elastoviscoplastic models have also been proposed in the literature (see for example

[86, 87]); however for simplicity we focus here on the canonical elastoplastic model.

The shear stress-strain relationships for the elastic Bingham model are described

by

σ = GγE

σ = GγY + µpγ̇

∣∣γE∣∣ < γY∣∣γE∣∣ = γY
(7.3)

where G is the elastic modulus, γE is the recoverable elastic strain,γY is the yield

strain, and µp is the plastic viscosity. The yield stress for this model is σy = GγY .

The elastic strain γE is found by integrating the shear-rate with respect to time, but

saturates at |γE| = γY during flow. When the flow stops and reverses direction, the

accumulated elastic strain is recovered and the response is linear elastic until the

material is re-yielded again, when γE = ±γY .

The response of the model to LAOS flow is completely governed by two non-

dimensional parameters, representing the normalized strain amplitude and normalized

strain-rate amplitude[2],

Γ0 = γ0

γY
∼maximumimposedstrain

yieldstrain

N = µpγ̇0

σY
∼maxviscousstress

yieldstress
.

(7.4)

N is related to the inverse of the characteristic Bingham number for LAOS, N =

1/Bi[84]. Here we use N to parameterize the flow since it directly corresponds to an

input of the LAOS deformation, strain-rate amplitude γ̇0.

The elastic Bingham model is simulated in homogeneous LAOS flow to produce
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Figure 7-3: Lissajous-Bowditch curves for the elastic Bingham model in terms of
the variables Γ0 = γ0/γY , N = µpγ̇0/σY defined by Yoshimura and Prudhomme[2].
(a) Homogeneous strain (e.g. cone-plate) response showing individual limit cycles of
the oscillatory stress vs. strain (elastic curves) and stress vs. strain-rate (viscous
curves). Maximum normalized stress (σ/σY )max is shown above each curve. (b)
Steady oscillatory response of plate-plate deformation (inhomogeneous strain), curves
of torque vs. displacement (elastic curves) and torque vs. displacement-rate (viscous
curves). The maximum normalized torque shown above each curve, (2M/πR3σY )max.
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the Lissajous curves shown in Fig. 7-3a. For ease of comparison, each Lissajous

curve is normalized once again by the maximum stress which is shown above each

trajectory. The curves are arranged across the two-dimensional parameter space of

strain-rate-amplitude and strain-amplitude (N,Γ0), which represents the appropriate

Pipkin space for the elastic Bingham model response.

The elastic Bingham model reduces to a traditional Bingham plastic as the yield

strain goes to zero, γY → 0, which corresponds to large values of Γ0 and the top of

the Pipkin space in Fig. 7-3a. In this viscoplastic limit the stress is only a function

of strain rate, σ(γ̇), since the yield criteria is satisfied for almost all times.

The elastic Bingham model further reduces to a perfect plastic model with a

constant flow stress after yield as µp → 0, corresponding to N → 0 and Γ0 � 1

(the top left corner of the Pipkin space of Fig. 7-3a). In this limit the constitutive

equation of the perfect plastic model is written as σ = σysgn(γ̇).

The most prominent feature of the yielded response (Γ0 > 1) is a rectangular

elastic Lissajous curve, which is approached exactly in the limit of the perfect plastic

response (N → 0 at Γ0 � 1). The elastic Lissajous curve of the perfect plastic

response has vertical sides (G → ∞) and a flat top and bottom (µp → 0). The

limit of a Bingham plastic model (Γ0 � 1, arbitrary N) also has vertical sides, but

is rounded on the top and bottom because the flow stress is proportional to shear-

rate, σ(t) = σy + µpγ̇(t). The full elastoplastic Bingham model response includes an

additional feature, sloped sides, which are caused by the finite elasticity, dσ/dγ = G,

for stresses below the yield stress.

For completeness, the viscous representation of the Lissajous curves are also shown

in Fig. 7-3a. For the viscous Lissajous curves of stress vs strain-rate, σ(t) vs. γ̇(t),

the importance of the plastic viscosity µp term in flow is indicated by the slope of

linear portions of the curves (for Γ0 > 1). The enclosed area in the center of the

viscous Lissajous curves is indicative of the finite elasticity below yield. Elasticity is

negligible at Γ0 � 1, which corresponds to the limit of the (purely viscous) traditional

Bingham plastic response. The response is approximately Newtonian in the limit of

Γ0 � 1, N � 1 (upper-right portion of the Pipkin diagram). In this limit the flow
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stress dominates, rendering the yield stress negligible. Even though the underlying

constitutive model is elastoviscoplastic, the yielding behavior is insignificant for shear

deformations at Γ0 � 1, N � 1, and in this part of the deformation space, the LAOS

behavior of a material that is described by the elastoplastic Bingham model would

instead appear almost Newtonian.

7.3.3 Elastic Bingham model - torsional plate-plate response

Because of the high volume fraction of solid particulates in many elastoviscoplas-

tic materials such as the drilling fluid considered in the present work, it is typically

necessary to use a parallel plate configuration in which the shearing deformation is

inhomogeneous. It is therefore necessary to address the possible Lissajous curve arti-

facts which are introduced by inhomogeneous torsional shear flow. Exploring LAOS

plate-plate artifacts is important because this geometry is often used for materials

which are susceptible to wall slip and the parallel disk surfaces are easily modified to

increase the roughness (e.g. with adhesive-backed sandpaper as used in this work for

the drilling fluid). LAOS plate-plate artifacts have been considered in terms of both

the harmonic response[88, 89] and the oscillatory response in the time domain[2]. Our

work here is concerned specifically with Lissajous curves, and we therefore examine

the parallel disk artifacts introduced in the form of the Lissajous curves for the elas-

tic Bingham model. The elastic Bingham model (Eq. 7.3) under torsional shearing

is simulated in the plate-plate geometry following the same procedure as [2]. Yield

begins at the plate edge for sufficiently large angular displacements, and the radial

position separating yielded and un-yielded regions is time dependent. For the plate-

plate geometry, the non-dimensional parameters governing the LAOS torque response

involve the relative magnitude of the yield strain γY and the strain amplitude at the

edge of the plate, given by γ0 = θ0R/h, where R is the plate radius, h is the gap

and θ0 is the maximum angular displacement of the plate. The inhomogeneous strain

torque response for the elastic Bingham model is shown in Fig. 7-3b.

Comparing the plate-plate responses of Fig. 7-3b with the homogeneous (e.g. cone-

plate) responses of Fig. 7-3a, we observe that the plate-plate artifacts are small, and
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there is little qualitative difference in the general shapes of Lissajous curves for cone-

plate vs. plate-plate deformations with this model. In general, the inhomogeneous

kinematics of the plate-plate geometry tend to smooth the linear-to-nonlinear tran-

sitions, for instance by rounding some otherwise sharp corners, but otherwise do not

introduce any qualitative new features The strong similarities between the Lissajous

curves for cone-plate and plate-plate can be rationalized as follows. First, the range

of strain within a plate-plate geometry always varies from γ = 0 at the center of

rotation to γ = γ0 at the edge of the fixture. Although the strain amplitude at the

edge of the plate may transition into the nonlinear regime, e.g. the yielded regime

Γ0 > 1, part of the sample will always be in the linear regime at sufficiently small

radial position r. Any dramatic linear-to-nonlinear transition will first occur at the

outer edge of the plate, while the majority of the sample remains in the linear elastic

(un-yielded) regime. The torque response of any purely strain-dependent transition

will therefore be smoothed in LAOS tests with the plate-plate geometry.

Second, the measured torque M is weighted by the magnitude of the stress at large

radius r (i.e. the shear stress in the yielded region). A torque balance between the

applied torque and sample stress (neglecting inertia) gives M = 2π
∫ R

0
σ(r)r2dr. The

material first yields at the maximum radius r = R, and the nonlinear constitutive

response will quickly dominate the torque response for the plate-plate geometry. The

characteristic shapes of the nonlinear Lissajous curves for the plate-plate and cone-

plate flows thus closely resemble each other.

We can quantitatively compare the maximum values of the normalized curves, by

examining the peak value of normalized stress shown above each curve, (σ/σy)max.

For the cone-plate geometry this value approaches (σ/σy)max → 1 in the yielded

region (Γ0 > 1) and at low strain-rate amplitudes (N < 1). For the plate-plate

response, the peak value of the normalized torque (2M/πR3σY )max is shown above

each curve, or equivalently (σA/σY )max where σA = 2M/πR3 is the apparent stress

which would exist at r = R for a linear material response at a given torque M (this

corresponds to the typical method of estimating the stress at the plate edge based on

a torque measurement[8]). In the yielded region at low strain-rate amplitude (N < 1),
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we observe from Fig. 7-3b that (σA/σY )max → 4/3. That is, the assumed edge stress

is larger than the actual model yield stress by only 33%[90]. This numerical value

4/3 can be understood by determining the torque response M for a perfect plastic

material in which the shear stress is constant throughout the sample with magnitude

σ(r) = σy. Substituting into the normalized torque expression gives

(
2M

πR3σY

)
max

=
2

πR3σY

2πR3σY
3

=
4

3
(7.5)

Note that the plate-plate results in the yielded region for high strain-rates (N ≥ 1,

upper-right of the Pipkin space, Fig. 7-3b) are also slight overestimates of the actual

maximum stress (compare to Fig. 7-3a), but the difference is smaller in this region.

The difference between cone-plate and plate-plate is smaller here because the material

response for Γ0 > 1, N > 1, becomes dominated by the plastic viscosity term, which

is inherently a linear response in this model.

This analysis provides a broad interpretation of the artifacts in Lissajous curves

that can be expected to be introduced from LAOS tests in a parallel plate rheometer.

In general, the inhomogeneous strain field softens the nonlinear features of the re-

sponse and leads to small overestimation of stresses for shear-thinning or yield stress

materials. The preceding analysis will aid in the interpretation of the LAOS response

for the drilling fluid examined in this work, and also for future LAOS tests using

parallel plate fixtures.

7.4 Quantitative indicators of plastic behavior in

LAOS

The rheological response of a complex fluid in LAOS can be characterized by numerous

material parameters, including strain- and frequency-dependent viscoelastic moduli

and higher-harmonic coefficients[15]. In this section we consider the expected behavior

of such viscoelastic parameters for a yield stress fluid in response to large amplitude

deformation. We also introduce a measure that we refer to as the perfect plastic
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dissipation ratio, φ, which acts as a metric for quantifying how closely a particular

LAOS response is to the perfect plastic response of an idealized yield stress fluid.

7.4.1 Harmonic analysis and Chebyshev coefficients

For strain-controlled LAOS, γ(t) = γ0 sinωt , the stress response can be represented

in the time domain by a Fourier series[14] of the form

σ (t;ω, γ0) = γ0

∑
n

{G′n (ω, γ0) sinnωt+G′′n (ω, γ0) cosnωt}. (7.6)

On the basis of symmetry arguments it can be shown that the series contains only odd

harmonics (n: odd) for typical behavior in which the material response is unchanged if

the coordinate system is reversed. Even harmonic terms can be observed in transient

rheological responses (when the oscillatory waveforms are not strictly periodic), in

the presence of secondary flows[43], or with dynamic wall slip events[44] due to the

existence of transient events.

Even harmonics have been discussed as possible indicators of wall slip or yield

stress[91, 89, 92, 22]. However, the presence of even harmonics does not specifically

indicate a wall slip or yield stress material response in general, nor does the absence

of even harmonics indicate the lack of wall slip. For example, Yoshimura and Prud-

homme [93] examined the LAOS response of a simple slip layer at the surface of a

linear viscoelastic model and did not observe even harmonics. Even-harmonics are

only related to non-periodic or asymmetric slip/yield responses. Any stress response

which is steady, periodic, and unchanged if the coordinate system is reversed (e.g. a

perfect plastic yield stress) will result in only odd, integer harmonics in the Fourier

series representation (Eq. 7.6).

The harmonic material coefficients in Eq. 7.6 have a characteristic form for fluids

exhibiting idealized yield stress behavior. As we have shown, the ideal perfect plastic

yield stress response appears as a square wave in the time domain, σ(t) = σY sgn(γ̇(t)).
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The spectrum of Fourier coefficients for this square wave behavior is

G′n = 0

G′′n = 4
π
σY
γo

1
n

(−1)
n−1

2 n : odd (7.7)

which indicates that the higher order viscous Fourier coefficients decay as 1/n[22]. The

third-harmonic Fourier coefficients have been given a physical meaning through the

use of Chebyshev polynomial analysis (Section 2.2 and [50]). The signs of the third-

order Chebyshev coefficients, e3 = −G′3 and v3 = G′′3/ω, indicate how the nonlinear

contributions to the elastic and viscous stresses evolve. For the perfect plastic, e3 = 0

which confirms the absence of elastic contributions to the stress and v3 = −4σY /3πγ̇0

is negative and therefore correctly indicates shear-thinning. Although the single pa-

rameter v3 correctly indicates that a plastic-like material is strongly shear-thinning,

it is not per se a sensitive discriminator of a yield stress response. Other materials in-

cluding pseudoplastic liquids will give rise to negative values of v3. More specifically,

it is the scaling in the decay of the higher viscous harmonics, vn ∼ 1/γ0ωn, rather

than the value of a single coefficient, which indicates a Lissajous curve approaching

the perfect plastic yield stress response limit associated with the rectangular shape

shown in Fig. 7-3a.

7.4.2 Viscoelastic moduli

The presence of a critical stress or yield stress intrinsically leads to nonlinear behav-

ior, and we therefore consider more general LAOS measures which quantify material

nonlinearity within a periodic limit cycle (i.e. a single closed Lissajous curve). Sec-

tion 2.3.3 and [50] introduced several dimensionless indexes of nonlinearity which can

be applied broadly to any complex fluid response and which approach limiting val-

ues for idealized yield stress behavior. These indexes depend on local definitions of

the elastic modulus and dynamic viscosity within a single periodic LAOS cycle. The

elastic modulus at the minimum resolvable strain G′M , and the largest imposed strain
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G′L, respectively, are given by

G′M ≡
dσ

dγ

∣∣∣∣
γ=0

= e1 − 3e3 + ... , G′L ≡
σ

γ

∣∣∣∣
γ=γ0

= e1 + e3 + ... (7.8)

The apparent viscosity at the minimum resolvable shear rate and the largest imposed

shear rate, respectively, are given by:

η′M ≡
dσ

dγ̇

∣∣∣∣
γ̇=0

= v1 − 3v3 + ... , η′L ≡
σ

γ̇

∣∣∣∣
γ̇=γ̇0

= v1 + v3 + ... (7.9)

These measures (Eqs. 7.8,7.9) make use of the Lissajous curves to provide a physically

meaningful interpretation of each parameter, and for a linear viscoelastic response

the definitions reduce identically to G′ and η′, respectively (Section 2.3 and [50]).

The dimensionless indexes of nonlinearity compare the elastic moduli (or dynamic

viscosities) at large and minimum strain (or strain-rate), according to

S ≡ G′L −G′M
G′L

=
4e3 − 4e5 + ...

e1 + e3 + e5 + ...
, T ≡ η′L − η′M

η′L
=

4v3 − 4v5 + ...

v1 + v3 + v5 + ...

(7.10)

in which nonlinearities are indicated by non-zero values, and the nature of nonlinearity

is captured by the signs of the strain-stiffening index S and shear-thickening index T .

We first discuss the limiting value of the strain-stiffening measure S. For an

idealized perfect plastic model σ = σY sgn(γ̇)) or any Generalized Newtonian Fluid

model (i.e. solely shear-rate dependent such as the Carreau model), G′M = 0 and

G′L = 0, thus S = 0/0 and is formally undefined. However, for any real experiment

with finite data acquisition rates (or in the limiting case of the elastic Bingham model

approaching a perfect plastic), G′M = 0 and G′L ≈ σY /γ0 = finite. Thus in the limit

of a perfect plastic response (Γ0 � 1, N → 0 corresponding to the upper-left region

of Fig. 7-3a), we expect S = (G′L − 0)/G′L → 1.

The limiting value of the shear-thickening coefficient T is also undefined for the

perfect plastic model. The large-rate dynamic viscosity is readily determined to be

η′L = σY /γ̇0, but the minimum-rate viscosity is undefined due to the discontinuous
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analytical response at γ̇ = 0. We therefore consider the apparent minimum-rate

dynamic viscosity which would be determined from the finite data acquisition rate

(or the spacing of simulated data). In fact, η′M diverges as the resolution of the shear-

rate increases, and thus represents the dynamic viscosity at the minimum strain-rate

which can be resolved by the number of data points available. In such a case η′M

will be finite but very large, η′M � eta′L. We find that T is then a function of data-

acquisition rate, which is undesirable in a material measure. As sampling rate of a

given experiment improves (or for the elastic Bingham model in the limit of Γ0 � 1,

N � 1), the value of T would behave as T = (η′L − η′M)/η′L ≈ −η′M/η′L → −∞ for

a perfect plastic. The value of T evaluated for the Carreau model (Fig. 7-2) also

depends on the sampling rate. With sufficiently fine data spacing, η′M → η0; in this

limit T = (η′L − η′M)/η′L ≈ −η0/η(γ̇0) = − (1 + Cu2)
1−n

2 for the Carreau model.

The nonlinear viscoelastic measures discussed in this section are all well-defined

for an arbitrary elastoviscoplastic response. However, for yield stress materials, the

parameters systematically approach limiting values which depend on the data acqui-

sition rate, making it difficult to compare results from different tests. In the following

section we propose a material measure which is well-defined and has almost no sen-

sitivity to the data acquisition rate.

7.4.3 Perfect plastic dissipation ratio

We consider here a scalar metric for quantifying how close a measured material re-

sponse corresponds to perfect plastic yield stress behavior. We compare the energy

dissipated in a single LAOS cycle to the energy which would be dissipated in a per-

fect plastic response with equivalent strain amplitude γ0 and maximum stress σmax.

The perfect plastic response represents the maximum possible dissipated energy for

a given strain amplitude γ0 and maximum stress σmax.

The energy dissipated per unit volume in a single LAOS cycle, Ed =
∮
σdγ, can

be visualized by the area enclosed by the Lissajous curve of stress vs. strain. The

Lissajous curve for the corresponding perfect plastic reference response is always a

rectangle which circumscribes the measured response. An example is shown in Fig. 7-

172



Figure 7-4: The energy dissipated by a single LAOS response is represented by the
area enclosed in a Lissajous curve of stress vs. strain. For a given strain amplitude
γ0 and maximum stress σmax, the maximum possible dissipated energy is the cir-
cumscribing rectangle of the perfect plastic model response, with strain amplitude γ0

and yield stress σY = σmax. The example shown here is the measured steady LAOS
response of the drilling fluid at ω = 15 rad.s−1, with γ0 = 3.16, σmax = 113 Pa, and
φ = 0.829.

4. The energy dissipated by the perfect plastic in large amplitude oscillatory shear

is (Ed)pp = (2γ0) (2σmax). In general, the energy dissipated per cycle by an arbitrary

strain-controlled LAOS response is only a function of the first-order viscous Fourier

coefficient[18], and is given by Ed = πγ2
0G
′′
1.

Comparing the actual dissipated energy and the perfect plastic dissipation gives a

dissipation ratio,φ, which takes the following values for some simple model responses:

φ ≡ Ed
(Ed)pp

=
πγ0G

′′
1

4σmax


→ 1

→ π/4 = 0.785

→ 0

PerfectPlastic

Newtonian

PurelyElastic

(7.11)

This scalar measure is well-behaved for any arbitrary LAOS response, since the strain
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Figure 7-5: Carreau model response, characterized by the perfect plastic dissipation
ratio, φ (Eq. 7.12). (a) Behavior of φ with respect to normalized shear-rate amplitude.
(b) Behavior of φ as a function of n, shown for various values of the Carreau number
Cu = λγ0ω: φmax, φ(λγ0ω = 10), φ(λγ0ω = 1).

amplitude and maximum stress are always well-defined and easily determined from the

data. This dimensionless measure φ can be universally applied to any measured LAOS

response, as it compares the unknown response with the maximum possible energy

dissipation, which is represented by the perfect plastic model. For a general LAOS

response, we expect φ = φ(γ0, G
′′
1, σmax). As an example, for a linear viscoelastic

response, σmax = γ0|G∗| and thus φ = πG′′

4|G∗| = π
4

sin δ. For a more general nonlinear

viscoelastic response, σmax = f(γ0, G
′
n, G

′′
n) and thus φ is a complicated function of

the higher-order coefficients.

A closed form expression for φ can be derived for the Carreau model response to

LAOS (Eq. 7.2), given by

φCarreau(n,Cu) =
1

4

∫ 2π

0
cos2 ωt

(
1 + (Cu cosωt)2)n−1

2 d(ωt)(
1 + (Cu)2)n−1

2

(7.12)

where the Carreau number is Cu = λγ̇0 = λγ0ω. Fig. 7-5 shows the behavior of

Eq. 7.12, which will serve as a reference for interpreting φ for a predominantly viscous

LAOS response. As the power law index n → 0 and the Carreau number Cu � 1,

the value of φ smoothly and monotonically approaches the limit φto1. This measure

thus gives an unambiguous method of assessing how close a given material response
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Figure 7-6: Viscosity flow curves for the 0.2wt% xanthan gum solution (squares,
step shear rate for each data point) and the invert emulsion drilling fluid (circles,
thixotropic loop test). Fits to the Carreau model are shown for each fluid (lines).

is to that of a perfect plastic under LAOS deformations.

7.5 Experimental results

In this section we examine experimentally the nonlinear oscillatory response of two

fluids, a strongly shear-thinning (pseudoplastic) fluid and an elastoviscoplastic drilling

fluild. We use the various material measures introduced above for indicating the yield-

like character of the fluid response in LAOS.

Fig. 7-6 depicts a purely viscous perspective of the fluid characterization, showing

flow curves of shear viscosity η for each fluid sample along with fits to the Carreau

model of Eq. 7.1 (for a = 2). For the xanthan gum, a constant shear rate was

applied and the steady state value of the viscosity was recorded, after which a higher

shear-rate was applied and the process repeated. For the drilling mud, a thixotropic

loop test was performed to match experimental conditions for tests on other drilling

fluids[79]. The drilling fluid sample was pre-sheared at γ̇R = 1022 s−1 for 60 s (where

γ̇R is the shear-rate at the rim of the plate), followed by a 10 minute wait time. The
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shear-rate was then linearly ramped up from γ̇R = 0−1000 s−1 over 450 seconds, and

immediately ramped down, linearly from γ̇R = 1000− 0 s−1. The time between data

points limits the minimum resolution of shear-rate to approximately ∆γ̇R = 3 s−1.

Each material exhibits pronounced shear thinning behavior. For the xanthan

gum, a Carreau model fit (forcing η∞ = 0) results in the parameters η0 = 1.50 Pa.s,

λ = 8.0 s, n = 0.35 (c.f. Eq. 7.1). The power law exponent does not approach

yield-like behavior, which would be indicated by n→ 0.

In contrast, the drilling fluid is closer to viscoplastic and approaches a yield stress

fluid response. The apparent and corrected flow curves for the drilling fluid are shown

in Fig. 7-6 (open symbols are apparent stress, closed symbols show the corrected

stress). For steady flow between parallel plates, the true stress can be determined

from σR = σA
1
4

(3 + d lnσA/d ln γ̇R) (e.g. see Macosko[94]), where σR is the true stress

at the edge of the disk and σA is the apparent stress determined by σA = 2M/πR3

where M is the measured torque and R is the disk radius. Applying this correction

requires derivatives of the apparent stress data. To calculate the required deriva-

tives, we fit a fifth order polynomial function to the raw data of ln σA vs. ln γ̇R,

since this allows calculation of the derivative of a smooth analytical function rather

than differentiating discrete raw data. A Carreau fit to the corrected viscosity (filled

symbols) of the drilling fluid (allowing for the term η∞) results in the parameters

η0 = 3.29 ·107 Pa.s, λ = 2.60 ·106s, η∞ = 0.337Pa.s, and n = 0.099. The experimental

data lacks a Newtonian plateau in the limit of low shear rates, and therefore the val-

ues of η0 and λ cannot independently be fit with high precision. However, a low value

of the rms error is associated with a specific combination of these two parameters

in the power-law shear thinning region for which experimental data is available. For

λγ̇ � 1, η0 � η∞, the viscosity is approximately η(γ̇) ' η0(λγ̇)n−1 before the ap-

proach to the high shear-rate plateau. For the drilling fluid n = 0.099, and therefore

η0λ
−0.901 = 55.4 Pa.s−0.901 gives the lowest value of the rms error between the model

and the data in the power-law shear-thinning region. Additional rheological tests,

which approach the Newtonian plateau in the limit of low shear rate, are required to

precisely determine η0 and λ independently. LAOS tests at low frequencies and large
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strains (so that the material is yielded) can provide such information and can thus

be used to refine the values of the constitutive parameters as we show below.

The strongly shear-thinning nature of the drilling fluid is apparent from the very

low power law exponent n � 1. The yield-like behavior is readily observed by re-

plotting the flow curve in the form of viscosity vs. stress η(σ) (Fig. 7-6, inset); the

viscosity of the drilling mud changes by more than a factor of ten while the stress

changes by less than a factor of two. LAOS tests over a range of frequency and strain

amplitude can be used to further explore the behavior of these materials, from linear

to nonlinear viscoelastic responses, to reveal how much each material acts like a yield

stress fluid for some fraction of the relevant deformation parameter space {ω, γ0}.

7.5.1 Xanthan gum LAOS response

LAOS results for the 0.2% xanthan gum are shown in Fig. 7-7 (steady state smoothed

data), and Fig. 7-8 (rheological fingerprints of potential yield stress indicators). LAOS

tests were performed at four frequencies and five strain amplitudes, which are all

shown in Fig. 7-7. For each frequency and strain amplitude {ω, γ0}, the final six

steady state cycles are processed to produce the Lissajous curves in Fig. 7-7. Fig. 7-

7a shows the 3D Lissajous curve traces at ω = 3.75 rad.s−1. The full Pipkin space

response is shown in Fig. 7-7b,c, which includes elastic Lissajous curves of the total

stress (and the corresponding elastic stress contribution) vs. strain and also viscous

Lissajous curves of stress (and viscous stress) vs. strain-rate. The response is linear

viscoelastic at all strain amplitudes γ0 ≤ 1, as shown by the elliptical Lissajous figures

and the linear shape of the elastic and viscous stress contributions. The frequency

domain ω = 0.15−18.75rad.s−1 encompasses a range of phase angle 41◦ ≤ δ ≤ 61◦ (in

the linear viscoelastic regime), and therefore includes the G′ = G′′ crossover frequency

at which tan δ = 1. For strains γ0 > 1 the response becomes increasingly nonlinear

and pseudoplastic in nature. The onset of non-linearity in the elastic stress and

viscous stress functions are quickly identified by visual inspection, and correlate with

the distortion of the elliptical shape of the limit cycles showing the periodic variations

in the total stress. As the strain-amplitude increases, the curves of total stress vs.
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Figure 7-7: Steady-state Lissajous curves for the xanthan gum solution (0.2wt% aque-
ous). (a) Un-normalized 3D Lissajous curves at ω = 3.75 rad.s−1. (b,c) Normalized
curves arranged in a Pipkin space at the corresponding input parameters of frequency
and strain-amplitude, {ω, γ0}. (b) individual plots of normalized stress (solid lines)
and elastic stress (dashed lines) vs. strain; (c) individual plots of normalized stress
(solid lines) and viscous stress (dotted lines) vs. strain-rate. The maximum stress
σmax in each test is shown above each limit cycle.

strain become increasingly rectangular with strongly rounded corners (consistent with

the Carreau model with 0 < n < 1, c.f. Fig. 7-2). The Lissajous curves of stress vs.
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Figure 7-8: Yield stress indicators for the xanthan gum solution (0.2wt% aqueous),
shown as a function of the LAOS input parameters {ω, γ0}. (a,b) Stiffening index and
Thickening index, respectively, lines shown at ±0.01. (c) perfect plastic dissipation
ratio φ. φ > π/4 indicates a region in which the xanthan gum solution is shear-
thinning. The maximum observed value, φmax = 0.97 at {ω = 3.75 rad.s−1,γ0 = 10},
does not indicate an idealized yield stress response, which would appear as φPP = 1.

strain-rate (Fig. 7-7c) appear as shear-thinning at the largest strain amplitude. The

response is primarily viscous in the low frequency, large amplitude regime, since the

179



single-valued curves of viscous stress σ′′(t) vs. strain-rate γ̇(t) closely correspond

with the loops of total stress σ(t) vs. strain-rate γ̇(t) (Fig. 7-7c). The xanthan gum

solution is therefore a shear-thinning viscoelastic liquid.

The similarity to a yield-like response can be quantified by examining contour

plots of S, T , and φ, as shown in Fig. 7-8 (other viscoelastic parameters (e1, e3, δ,

etc.) can be shown as contours in the 2-D space of {ω, γ0}, but are omitted here for

clarity and brevity). For a perfect plastic response, these parameters are expected to

approach the limiting values S → 1, T → −∞, and φ = 1. Within the limits of the

linear regime (γ0 = 1), we observe S ≈ 0.05 and T ≈ 0.05 indicating an approximately

linear viscoelastic response as expected. At low strain amplitude the perfect plastic

dissipation ratio, shown in Fig. 7-8c, is less than expected for a Newtonian fluid

(φ < π/4) as expected for a material response that is, in fact, partially elastic (and

stores energy).

At larger strain amplitudes, values of S∼O(1) indicate strain-stiffening in the elas-

tic response and T ≈ −0.25 indicates shear-thinning. At these large strains, the plots

in Fig. 7-8b,c indicate a region in which the xanthan gum solution is pseudoplastic

in nature (T < 0, φ > π/4). However, the maximum observed value, φ = 0.87, does

not indicate an idealized yield stress response. This experimentally measured maxi-

mum value of φ(ω = 15rad.s−1,γ0 = 10) = 0.87 is close to (but slightly lower) than

predicted by the parameters of the Carreau model fit (Fig. 7-6, n = 0.35, λ = 8.0 s),

which results in φ(n = 0.35, Cu = 12) = 0.90 (c.f. Fig. 7-5 and Eq. 7.12). This sug-

gests that elasticity plays a weak role in this region of the deformation space, which

is consistent with the Lissajous curves at (ω = 0.15 s−1, γ0 = 10). The significance

of elasticity in the fluid at large Carreau numbers is also indicated by the observed

functional dependence of φ, shown by the contours in Fig. 7-8c. For a purely viscous

fluid such as the Carreau model, the dissipation ratio is only a function of the shear-

rate amplitude, φ(γ̇0 = γ0ω). For such a case, φ would be constant along lines of

constant shear-rate amplitude which correspond to lines with slope -1 on the log-log

plot of Fig. 7-8c. Instead, lines of constant φ are approximately horizontal, and φ is

a strong function of the strain amplitude, φ ≈ φ(γ0) which indicates the significance
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of elastic behavior for the range of deformation parameters {ω, γ0} shown in Fig. 7-7

and Fig. 7-8.

Consistent with the inspection of the steady flow curves shown in Fig. 7-6, the

xanthan gum solution is best described as a shear-thinning viscoelastic liquid but

without a distinguishable yield stress behavior. We conclude that the dissipation

ratio φ correctly distinguishes a moderately shear-thinning material response from a

yield stress response.

7.5.2 Drilling fluid LAOS response

LAOS results for the drilling fluid are shown in Fig. 7-9 (processed Lissajous curves)

and Fig. 7-10 (rheological fingerprints of yield stress indicators). A predominantly

elastic regime can be observed at sufficiently small strain amplitudes. At the mini-

mum imposed strain amplitude, γ0 = 0.01, the material response is already weakly

nonlinear and viscoelastic as indicated by the nonlinearities in the curves of elastic

stress (dashed line) and viscous stress (dotted line) in Fig. 7-9b,c. It is typical for a

filled system to exhibit a nonlinear material response at such small strain amplitude.

As the strain amplitude is increased, the material exhibits a rich nonlinear re-

sponse in which the elastic stress curves indicate a strong elastic strain stiffening for

strain amplitude γ0 ≈ 0.1. Furthermore, the Lissajous curves exhibit pronounced

stress overshoots in the stress vs. strain curves, which correspond to apparent self-

intersection of the trajectoriers when projected along the stress vs. strain-rate axes

(Fig. 7-9c). Animations of these three-dimensional space curves are provided as sup-

porting material. The complexities of this transition regime could not be observed

by a steady flow viscosity curve, but are revealed here by the LAOS protocol.

As the deformation amplitude continues to increase (γ0 ≈ 1), the sample be-

comes increasingly plastic as indicated by the increasing area enclosed by the elastic

Lissajous curves (Fig. 7-9) and the corresponding increase in the values of the dissipa-

tion ratio, φ (Fig. 7-10). However, for strains γ0 ≈ 1 none of the Lissajous responses

are representative of a perfect plastic material, and moreover the dissipation ratio is

smaller than the Newtonian benchmark, φ(γ0 = 1) < φNewtonian. The material is thus
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Figure 7-9: Steady-state Lissajous curves for the drilling fluid, shown for a se-
lected range of strains and frequencies. (a) Un-normalized 3D curves for fixed
ω = 4.75 rad.s−1 and strain-amplitudes γ0 = 0.562, 1, 1.78, 3.16, 5.62, 10. (b,c) Nor-
malized 2D projections of σ/σmax arranged in a Pipkin space at the corresponding
input parameters {ω, γ0} which generated each response curve. The maximum stress
is shown above each curve. (b) individual plots of normalized stress (solid black lines)
and elastic stress (dashed red lines) vs. strain; (c) individual plots of normalized stress
(solid black lines) and viscous stress (dotted blue lines) vs. strain-rate.

properly denoted as elastoplastic in nature.

In order to observe behavior close to perfect plastic, the strain amplitude must

be further increased (γ0 = 10) so that the sample fully yields. At this amplitude, the

drilling fluid visually appears to behave as a viscoplastic fluid (Fig. 7-9). The shapes of
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Figure 7-10: Quantitative LAOS analysis of the drilling fluid. (a,b) Stiffening index
and Thickening index, respectively, lines shown at ±0.01. (c) Perfect plastic dissipa-
tion ratio, φ, shown as contours in a Pipkin space. At small strain amplitude φ takes
very small values indicated a predominantly elastic response, which at larger strain
amplitude gives way to a predominantly viscous response and eventually a maximum
dissipation ratio, φmax = 0.93, nearing the behavior of an idealized perfect plastic
response.

Lissajous curves at γ0 = 10 are consistent with the elastic Bingham model (c.f. Fig. 7-

3). Here the Lissajous curves of stress vs. strain become increasingly rectangular in
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the upper-left of the Pipkin space with additional rounding from viscous stress at

high deformation rate amplitudes (upper-right of the Pipkin space).

Fig. 7-10 shows the rheological fingerprints of the potential discriminators of yield-

like behavior, S, T , and φ. As previously discussed, for yield-like behavior, these

parameters take the limiting values S → 1, T → −∞, and φ = 1. In Fig. 7-10a, the

value of S approaches S = 1 in the upper left of the Pipkin space. At γ0 = 10, we

measure S = 0.94, 1.07, 0.90 at ω = 0.475, 1.5, 4.75 rad.s−1, respectively. However, the

stiffening ratio S inherently represents elastic nonlinearities, and therefore also takes

the value S ≥ 1 at other locations in the Pipkin space over which sufficient strain-

stiffening is observed, notably in the region γ0 ≈ 0.1. Thus, for complex nonlinear

viscoelastic material responses, S∼O(1) is associated with, but does not uniquely

identify, a yield-like response.

The shear thickening ratio, T , captures intra-cycle viscous nonlinearities. From

Fig. 7-10b, it is clear that T does become negative for a yield-like response in the

drilling fluid (upper left region of the Pipkin space). However, the most negative

values of T occur at moderate strain amplitudes, γ0 ≈ 0.1, and lower frequencies

where the drilling fluid response exhibits a strongly nonlinear viscoelastic response

(see Fig. 7-9b,c) but not a yield-like response specifically. We therefore conclude that

negative values of T may be associated with a strong pseudoplastic response, but

local extrema cannot be used to precisely indicate a yield-like response.

In Fig. 7-10c we investigate the ability of the perfect plastic dissipation ratio to

uniquely identify a yield-like response. The value of φ is strictly related to the en-

ergy dissipated per cycle, rather than other intra-cycle nonlinearities, and is therefore

robust to complex nonlinear viscoelastic responses such that φ→ 1 is uniquely associ-

ated with a perfect plastic response. For the drilling fluid, the maximum dissipation

ratio is φmax ≈ 0.93 which is observed at moderate frequencies and large strains

{ω = 0.475 rad.s−1, γ0 = 10}. The corresponding maximal value of the measured

apparent stress at {ω = 0.475 rad.s−1, γ0 = 10} is σA,max = 102 Pa, which is higher

than the prediction from the purely viscous Carreau model fit from Fig. 7-6, in which

σA = 84 Pa at γ̇ = γ̇0 = 4.75 s−1. This provides a measure of the dynamic yield stress
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in the fluid at these deformation conditions.

The perfect plastic indicator, φ, typically reaches its maximum value for large

strain-amplitude γ0 and low frequency ω. This is the case for the viscous and vis-

coelastoplastic constitutive models as well as the experimental results shown in Fig. 7-

10c. This asymptotic limit φ → 1 at large strain-amplitude γ0 and low frequency ω

can be understood by considering the response of the elastic Bingham model (Fig. 7-

3). For this model, the elastic portion of the yielded response is negligible as γ � γY

(creating vertical sides of the Lissajous curves), and the viscous stress is approxi-

mately constant for small values of γ̇0 = γ0ω (corresponding to small values of ω at

a given γ0), which creates a flat top to the Lissajous curve. In contrast, for large

shear-rate amplitudes γ̇0, the elastic Bingham model response is predominantly New-

tonian, since the instantaneous rate-dependent plastic viscosity (µpγ̇(t)) dominates

the pre-yield elastic stress (GγY ). Thus, the elastic Bingham model approaches the

perfect plastic response in the upper-left corner of the Pipkin space (large ampli-

tude γ0 and small frequency ω), in agreement with the experimental response of the

elastoviscoplastic drilling fluid.

Finally we note that LAOS results can be used to augment the rheological mea-

surements in steady shear (Fig. 7-6) by providing measurements of the viscous re-

sponse at progressively lower values of the shear rate γ̇0 = γ0ω. In Fig. 7-11 we

show the agreement between measurements of the apparent steady shear viscosity

η(γ̇) (limited to γ̇ ≥ 1 s−1) and the apparent dynamic viscosity v1(γ̇0) = η′1(γ̇0) for

oscillatory shear-rate amplitudes down to γ̇0 = 3 · 10−3s−1. Good overlap in the

data is observed, especially at larger strain amplitudes. This is a manifestation of

the so-called Rutgers-Delaware rule (or ’extended Cox-Merz’ rule) for yield stress

fluids[95]. The plateau at the minimum LAOS shear-rate amplitudes is used to deter-

mine a lower bound for the Carreau model estimates of η0 and λ the values of which

are independently imprecise from the results of Fig. 7-6. As previously discussed,

the value η0λ
−0.901 = 55.4 Pa.s−0.901 is required to match the true viscosity of the

drilling fluid response in the shear-thinning region. Fig. 7-11 suggests a lower bound

of η0 ≈ 1 · 103Pa.s which corresponds to λ ≈ 53s. This modified Carreau model (for
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Figure 7-11: First-harmonic dynamic viscosity v1(γ̇0) = η′1(γ̇0) from LAOS tests
(closed symbols) compared to the apparent shear viscosity η(γ̇) from the thixotropic
loop test (open circles). Good correspondence is found between the tests at sufficiently
large strain amplitudes γ0 ≥ 3, consistent with the Rutgers-Delaware rule. The vis-
cosity at low shear-rates gives a lower bound for the Carreau model fitting parameter
η0. The Carreau fit for η0 = 103 Pa.s, λ = 53.5 s, n = 0.099, and ηinf = 0.377 Pa.s is
given by the solid line.

the true viscosity) is shown in Fig. 7-11.

Closer inspection of the data in Fig. 7-11 shows that as the strain-amplitude is

reduced (at fixed frequency) the LAOS data in fact systematically deviate below the

extrapolated viscous response. This is because the material is not really yielded at

these strains but is deforming elastoplastically. From Fig. 7-10 it is clear that we need

to impose strains γ0 ≥ 3 to achieve φ > π/4, corresponding to a yielded elastoplastic

material that is dissipating at least as much energy per cycle as a Newtonian fluid.

One of the necessary conditions for the validity of the Rutgers-Delaware rule is “high

strain amplitude”[86, 95], i.e. strain amplitudes much larger than the yield strain.

The absolute value of the “large strain” required to successfully apply this rule will

be different between materials, but the material measure φ helps to unambiguously

identify highly-yielded regimes (corresponding to φ > π/4) in which the Rutgers-

Delaware rule will be most applicable.
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Figure 7-12: Dynamic viscosity from LAOS tests (crossed symbols) compared to the
apparent shear viscosity η(γ̇) from the thixotropic loop test (open circles). (a) Large-
rate dynamic viscosity η′L, which shows excellent correspondence in the yielded regime,
γ0 > 3. (b) Magnitude of the first-harmonic complex viscosity, which slightly over-
predicts the flow viscosity in the yielded regime, but suffers from less under-prediction
in the unyielded regime.

7.5.3 Rutgers-Delaware rule

In this brief section some ideas are proposed relating to the theory and applicability

of the Rutgers-Delaware rule.

First, from the theoretical point of view, there are many methods of reporting vis-

cous dissipation with a nonlinear LAOS response, e.g. η′M , η′L, η′1, and |η∗1|(Section 2.3).

This author suggests that η′L might be the best choice for correlating steady flow vis-

cosity information of η(γ̇) to LAOS dynamic viscosity at γ̇ = γ̇0, since η′L corresponds
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to the dynamic dissipation occurring at the largest instantaneous shear-rate within

the cycle, γ̇0. Such a plot is shown for the drilling fluid data set in Fig. 7-12. As we

have seen here, the steady flow viscosity is systematically under-predicted from the

LAOS dynamic viscosity (by any measure of the dynamic viscosity, see Figs. 7-11,7-

12). For a shear-thinning material, |η∗1| > η′1 > η′L, and therefore the best way to

hide the systematic deviation is to choose the measure of dynamic viscosity which is

largest, despite the fact that |η∗| represents both viscous and elastic character. This

may act as a diversion from the best theoretical choice for correlating steady viscosity

and nonlinear viscous dissipation under LAOS.

The second point noted here is that of the systematically lower values of LAOS

dynamic viscosity compared to steady shear viscosity within the un-yielded regime.

Yang et al.[96] show comparable results to our drilling fluid results (Fig. 7-11), in that

|η∗1| lies below η(γ̇) at low strain amplitudes. Yang et al. use a shift in the effective

shear-rate to match the LAOS and steady flow data sets (i.e. the LAOS data are

moved to the right). In contrast, the author of this thesis postulates that the LAOS

data should be shifted upwards to match the viscosities at the comparable rates. The

reason for this upward viscosity shift would correspond to a thixotropic timescale, e.g.

in steady shear the viscosity takes a long time to grow to its equilibrium steady state

value[97]. Unlike steady shear, in LAOS the material structure is not given enough

time to fully develop, because the flow continuously ramps up and down over a finite

timescale. Thus, in LAOS the ’viscosity’ (from |η∗1| or η′L, etc.) will likely be lower

than the ’steady state’ value. This idea would predict the form of a shift factor for

|η∗1|, which would correspond to the shape of the transient viscosity curve η+(t), with

frequency of LAOS related to timescale of the transient viscosity curve. If successful,

such correspondence would be intellectually satisfying due to the underlying meaning

of the shift.
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7.6 Conclusions

Large amplitude oscillatory shear (LAOS) deformations provide a rich picture of

the yielding transitions in a complex viscoelastoplastic fluid in terms of variations

with respect to the strain amplitude and frequency of imposed deformation. This

rich behavior can be represented in terms of 3D Lissajous curves σ(γ(t), γ̇(t)) or 2D

projections of Lissajous curves arranged in a Pipkin diagram (e.g. Fig. 7-3, Fig. 7-9).

The LAOS characterization provides a more complete “rheological fingerprint” which

is especially important for understanding materials which exhibit elastic solid-like

behavior at low strains, as this cannot be captured by steady flow curves.

We have considered various measures for identifying yield-like viscoplastic behav-

ior as a function of the imposed LAOS deformation conditions, {ω, γ0}. Although

the strain-stiffening ratio S and the shear-thickening ratio T accurately represent the

measured intra-cycle nonlinearities in the elastic and viscous properties of a complex

fluid such as the oil-based drilling mud, they do not uniquely indicate yield stress

behavior (Fig. 7-10).

We have introduced a new scalar parameter for identifying a plastic yield-like re-

sponse under large amplitude oscillatory deformations, the perfect plastic dissipation

parameter, φ = Ed

/
(Ed)pp, which uniquely identifies a plastic yield-like response as

φ→ 1. Calculations with simple pseudoplastic and elastoplastic constitutive models,

as well as experimental measurements, correspond to increasingly rectangular Lis-

sajous curves. For regions of the Pipkin space in which φ → 1, the dynamic yield

stress in LAOS can be determined from the maximum value of the stress, σmax = σY .

Of the measures considered here, we conclude that φ is the best choice for clearly

identifying yield-like behavior in large amplitude oscillatory shear flow. The param-

eter φ is straightforward to calculate, stable to dramatic nonlinear responses, and is

associated uniquely with perfect plastic behavior.

For any material of interest, the relevant processing or in-use conditions can be

related to the material response in an appropriate region of the Pipkin space {ω, γ0}.

For such a set of conditions, the Lissajous curves and perfect plastic indicator, φ, can
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be used in both a qualitative and quantitative fashion to identify if a specific fluid

will appear (or feel, or process) like a perfect plastic material that yields at a given

stress. We conclude that the LAOS protocol, and the parameter φ = Ed

/
(Ed)pp,

can be used to provide more complete rheological fingerprints of an elastoviscoplastic

material, and identify regimes within the shear deformation space {ω, γ0} in which

any material can be usefully considered to behave as a fluid with a critical or “yield”

stress.
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Chapter 8

Snail-like wall climbing with

bioinspired slime simulants

Many gastropods, such as snails and slugs, crawl using a technique called adhesive

locomotion, in which a thin layer (typically 10-20µm) of excreted mucus serves both

as glue and lubricant[98, 99], allowing the animals to climb walls and crawl across ceil-

ings. These gastropods exert shear stresses on this thin layer of structurally-sensitive

mucus that holds the organism to the substrate. The pedal mucus has an effective

yield stress; at high applied stresses the network structure breaks, enabling the foot

to glide forward over a fluid layer; whereas in regions of low applied stress the network

structure reforms into a solid-like layer connecting the foot to the substrate (Figure 8-

1). Gastropod pedal mucus films are physically crosslinked gels containing 0.3-9.9%

(by weight) solid matter in water[100]. The solid constituent which dominates the

mechanical properties is a mucus protein-polysaccharide complex. The glycoconju-

gates present in pedal mucus share similarities with both mucin glycoproteins and

glycosaminoglycans in vertebrates[100].

A mechanical crawler has recently been constructed which crawls using the prin-

ciple of adhesive locomotion[101]. The success of the mechanical crawler depends

critically on both the mechanical design of the robot and the rheological properties

of the slime simulant. In this chapter I compare the rheological properties of natural

pedal mucus from terrestrial gastropods with two bioinspired slime simulants that
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Figure 8-1: Bottom view of a crawling terrestrial slug Limax maximus, 1 cm scale
bar; a) muscular contractions compress the foot parallel to the substrate, creating an
area of high shear stress which ruptures the mucus network structure; b) an interwave
of low stress allows the network structure to reform into a solid-like material which
holds the organism to the substrate. Compression waves move toward the head (top
of picture) during locomotion.

have been employed as adhesives by the mechanical crawler. The first is a polymeric

gel based on Carbopol 940 and the second is a colloidal gel based on the synthetic

clay LaponiteRD. Carbopols are a family of high molecular weight polymers con-

sisting of cross-linked poly(acrylic acid) differing in crosslink density and degree of

branching[102], which are used to modify the rheology of a variety of personal care

products. Carbopol dispersions are typically interpreted as microgels[102, 103], in

which soft crosslinked polymer particles are formed and swell in water. The out-

side of each particle exposes dangling ends which overlap with the dangling ends of

other particles above a critical concentration, producing a sample-spanning network

structure. LaponiteRD is a disc-shaped colloidal particle measuring approximately

300 Å in diameter and 10 Å in thickness[104]. Laponite clay particles form a frac-

tal network when mixed with water at sufficient concentration[105]. If the colloidal

dispersion is properly filtered, however, it forms a colloidal glass[106].

A series of linear and nonlinear rheological tests are used to construct a “fin-
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gerprint” of the materials. With steady-state flow viscosity tests it is shown that

both slime simulants satisfy a minimum yield stress criteria needed for wall climb-

ing. In addition, I demonstrate that the linear viscoelastic behavior at low strain

amplitudes of both simulants is similar to native slime. However, adhesive locomo-

tion imposes large stresses and strains upon the material, and thus the nonlinear

rheological response of slime is relevant to the dynamics of adhesive crawling. The

relevant conditions for characterizing the mucin gel and simulants is large amplitude

oscillatory shear (LAOS), and our measurements show that the mechanical response

leading up to yield is different for the simulants compared to native slug slime; the

native slime exhibits pronounced strain-stiffening as observed with Lissajous curves,

and neither simulant mimics this. Other recent rheological studies have shown that

similar strain-stiffening responses are ubiquitous in biopolymer gels[39].

8.1 Experimental

Pedal mucus was collected from the terrestrial snail Helix aspera and the terrestrial

slug Limax maximus, which were kept in glass terrariums and supplied with a diet

of green leaf lettuce and occasionally carrots. A single animal was removed from the

containment area, placed on a glass plate, and allowed to crawl toward a piece of

food. No mucus was collected until the gastropod had traveled a minimum of one

body length so that no debris from the containment area remained in the sample,

and to help ensure that locomotive mucus was present, rather than adhesive mucus

which has been shown in some cases to have different compositional and mechanical

properties[107]. The deposited trail mucus was gathered by scraping with a razor

blade behind the crawling animal until an adequate sample size was obtained. The

sample was immediately deposited on the Peltier plate of a rheometer for testing.

Carbopol 940 was obtained from the Noveon corporation (Cleveland, OH). Slime

simulants based on Carbopol were prepared at various concentrations ranging from

0.5% - 4% (w/w), where w/w refers to weight of the additive with respect to the total

weight of the mixture. The polymer was obtained as a white powder, and was added
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to deionized water being agitated with a magnetic stirrer. Samples were mixed for

a minimum of 30 minutes. The Carbopol-water mixtures initially have a pH near 3,

and each was neutralized with 4 M NaOH solution to achieve a pH=7, producing a

clear gel at the targeted concentration. The rheology of Carbopol mixtures depends

on the pH, with maximum thickening occurring within a pH range of 5-9[108].

LaponiteRD was obtained from Rockwood Specialties Group, Inc. (Princeton,

NJ). Simulants based on Laponite were prepared at concentrations ranging from 1%

- 7% (w/w). Dispersions were prepared by adding Laponite powder to deionized

water being agitated with a magnetic stirrer. Samples were mixed for 30 minutes and

degassed to remove air bubbles. In all cases a clear solution was formed. Laponite

dispersions were brought to pH=10 by addition of NaOH to make them chemically

stable[109]. Dispersions were kept in a sealed container and allowed to rest for a

minimum of 6 hours before testing.

Rheological measurements were performed with stress-controlled AR1000-N and

AR-G2 rheometers, and a strain-controlled ARES-LS rheometer (all TA Instruments,

New Castle, DE). Samples were tested between both plate-plate and cone-plate ge-

ometries, at all times using a solvent trap to stifle evaporation. For plate-plate geome-

tries, diameters ranged from 0.8 cm to 4 cm, and gaps ranged from 200 µm to 1000

µm. When necessary, adhesive-backed waterproof sandpaper (2000 grit, Eastwood

Co., Pottstown, PA) was attached to the top and bottom plates to help avoid slip at

the boundaries. Cone-plate geometries were used for low viscosity Laponite mixtures.

Two cones were used; a 4 cm 2◦ cone with 57 µm truncation and a 6 cm 1◦ cone with

28 µm truncation. All samples were tested at T=22 ◦C. Immediately before testing,

Laponite samples were subjected to a controlled pre-shear at a shear rate γ̇ = 5s−1

for 25 seconds, followed by three minutes of recovery. This pre-shear and recovery

sequence helped to mitigate strain history and aging effects, as Laponite is known to

be thixotropic and to exhibit rheological aging, even under quiescent conditions[105].

A carefully controlled and documented sample preparation history is thus essential in

order to achieve reproducible results. It is likely that Laponite continues to slowly age

after the three minutes of recovery, but this was not observed to affect the primary
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Figure 8-2: Simple model of an adhesive locomotion system - the crawler consists of
N discrete pads and rests on a fluid with thickness h. An internal controlled force
iteratively moves one pad forward with respect to the rest.

results of this work.

8.2 Results and discussion

8.2.1 Requirements of slime simulants

A simple model is used to determine which fluid properties are desired for adhesive

locomotion. The model consists of discrete pads actuated by an internal force (Fig-

ure 8-2), which may be interpreted as a discrete form of gastropod locomotion or

a generalized model of Chan’s Robosnail II [101]. The crawler rests on a layer of

fluid, and a controlled internal force F separates one pad away from the rest, while

the rest are rigidly connected. The controlled force might come from muscles in real

gastropods or from the actuators of a mechanical crawler. This internal force acts in

equal and opposite directions on the two portions that are “rearward tending” and

“forward tending.” It is assumed that the pads are rigid and the no-slip condition is

satisfied across the surface of each pad. The actuation force balances instantaneously

with the shear resistance of the fluid and the weight of the pads when inertial effects

are negligible.
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It can be shown that adhesive locomotion requires, at a minimum, a non-Newtonian

fluid viscosity[110]. Here we consider the case of idealized inclined locomotion. If the

crawler is to passively keep its place on an inclined surface, yet move forward while

attempting to crawl, the fluid must exhibit a rheologically-reversible apparent yield

stress. This is a specific form of the rheoreversibility discussed by Carretti et al[111];

the material for this application must regain its solid-like properties at low stress

without the need to change environmental variables such as temperature or pH. A

rheologically-reversible yield stress is characteristic of weak gels, as opposed to strong

gels[112]. While strong gels are solid-like and may rupture at a critical stress, they

do not flow above the rupture stress, nor do they regain their solid-like nature when

the stress is removed. For example, gelatin ruptures above a critical stress, but the

temperature must be cycled for the pieces to recombine into a unified solid.

Inclined adhesive locomotion requires a minimum yield stress. The minimum

static yield stress that is required for the crawler to rest on an inclined surface is

σy = Mg sin θ/A, where A is the total contact area. The minimum yield stress

required to move forward, however, is higher than the minimum static yield stress.

Consider a crawler with total contact area A, consisting of N pads (Figure 8-2), each

bearing an equal portion of the total weight Mg, traversing a surface inclined at an

angle θ with the horizontal. Although we consider our model to be general, some

relevant dimensions for Robosnail II are Mg = 0.31 N, A ≈ 35 cm2, N = 5, and

overall length approximately 15 cm[113]. The discrete pad model can be generalized

with φ = 1/N , which represents the fraction of the crawler that is moving forward

during actuation. If the crawler is connected to the substrate via a complex fluid

having a yield stress σy, then to move forward a minimum actuation force must

support the pad weight and exceed the yield stress, F/textmin = σyφA + φMg sin θ.

The force can not be too large, however, or the rearward-tending pads will also cause

the fluid under them to yield. The maximum actuating force is then expressed as

Fmax = σy(1−φ)A−Mg sin θ(1−φ). When these two forces are equal, the crawler is

unable to make progress since the material under all pads would yield simultaneously.

This critical point, at which F/textmin = Fmax, can be recast in terms of a minimum
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dynamic yield stress which is required for locomotion, given by

(σy)min =
Mg sin θ

A

[
1

1− 2φ

]
(8.1)

The minimum dynamic yield stress is therefore a factor of 1/(1− 2φ) larger than the

static yield stress. This can be used as a design criteria when choosing a slime sim-

ulant. For example, with Robosnail II, which has five pads, the required locomotive

yield stress is approximately 67% higher than the necessary static yield stress for in-

clined locomotion. The assumption of equipartition of weight among the pads makes

Eq. 8.1 a lower bound; a higher yield stress is required if any pad carries more than

the equipartion weight. The upper bound for the required yield stress occurs when

one pad happens to support the entire weight of the crawler, (σy)min = Mg sin θ/(φA).

Although the simplest models of yield stress fluids assume affine yielding of the ma-

terial, the model results presented above are independent of the nature of yield. For

example, if the material experiences adhesive yielding (i.e. slip at the wall) the above

analysis still applies provided the adhesive nature of the yield event is reversible and

the pad can passively reattach at low stress.

Once the forward-tending pad has yielded the fluid, the speed of the crawler is

inversely proportional to the flow viscosity. The center of mass velocity is Vcm =

hF/(Aη), assuming steady viscous Couette flow above the yield point and a crawler

mass equally distributed among the pads. For non-affine yielding and flow the ve-

locity expression must be modified. However, velocity is still inversely related to the

resistance to relative motion (viscosity or sliding friction). Thus, another material

property to be considered for optimization is the post-yield viscosity, which should

be minimized to increase the speed of the crawler.

The final property considered here is the restructuring time required for the

sheared fluid to regain its yield stress. This time-dependent character of viscometric

material functions in which structure breaks down during flow and builds up during

rest is known as thixotropy, and is ubiquitous in yield stress materials[114, 115]. This

finite restructuring time imposes limits on the maximum velocity of an adhesive lo-

197



Figure 8-3: Material selection space comparing yield stress fluids; Stars: native mucus
gels, Triangles: polymeric solutions and gels, Hexagons: Particulate suspensions and
gels, Circles: soft glassy materials. A suitable simulant will meet a minimum yield
stress requirement and have a low post-yield viscosity. See Appendix D for material
preparation and reference details.

comotion crawler. After moving a portion of its foot forward, a crawler must wait

for the material to regain an adequate yield stress before actuating the next portion.

Thus, the restructuring time must also be minimized to increase crawler speed. It

should be noted that living gastropods may optimize pedal mucus properties with

respect to an alternative cost function, since the organisms must expend significant

energy to produce the mucus[3, 116] unlike a mechanical crawler.

Figure 8-3 is a nomogram that represents candidate slime simulants in terms of

two of the important fluid properties: yield stress and post-yield viscosity; for clarity

the restructuring time is not shown in this two-dimensional projection. Post-yield

viscosity values are taken at a shear rate γ̇ = 10s−1, which is a representative shear

rate for Robosnail II, since the pad velocity is Vi ≈ 1 cm.s−1 and the fluid thickness is

h ≈ 1 mm. A line of minimum locomotive yield stress for vertical wall climbing can

be drawn for Robosnail II, such that any simulant below this line will not meet the
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criteria for vertical wall climbing. Lines of constant Bingham number are plotted on

the figure as a guide to the eye. The Bingham number is motivated by the Bingham

model for a yield stress fluid[8], and is given by Bn = σy/ηγ̇, where σy is the yield

stress, η is the viscosity, and γ̇ is the shear rate, again we take γ̇ = 10 s−1 for the

Bingham numbers to be consistent with the post-yield viscosity data. For the case of

a vertical climber the Bingham number represents a comparative measure of support

forces and resistive forces, therefore high Bn values are desirable; increasing the yield

stress contributes (linearly) to the factor of safety of wall-climbing whilst decreasing

viscous stress increases crawler speed, as noted above.

It can be seen from Figure 8-3 that there are slime simulants which meet the

minimum rheological criteria for a wall climbing mechanical crawler that uses ad-

hesive locomotion. Thus, although native slug slime could be used for a mechanical

crawler, harvesting slime is not required to operate a mechanical wall climbing device.

Furthermore, from Eq. 8.1 it is clear that the minimum required yield stress scales

with the areal mass density, and therefore scales as the characteristic length of the

crawler, σy ∝ Mg/A ∝ L. Thus, for geometrically similar devices a smaller crawler

will require a lower yield stress and a wider range of fluids will be appropriate for use

as adhesive lubricants.

8.2.2 Rheological material functions

Two promising slime simulants, a particulate gel based on Laponite and a polymeric

gel based on Carbopol, were examined in detail and compared with native pedal

mucus from the terrestrial snail Helix aspera and the terrestrial slug Limax maximus.

Steady shear flow

The steady shear viscosity of the Carbopol-based and Laponite-based simulants and

native pedal mucus from Helix aspera are shown in Figure 8-4. Data is shown for

two different samples of pedal mucus. At sufficient concentration, each simulant

exhibits a very large viscosity at low stress. For σ � σy the viscosity for these
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Figure 8-4: Steady shear viscosity of simulants compared to native pedal mucus from
Helix aspera; native slime collected from two snails, tested with plate-plate fixtures
D = 0.8 mm with sandpaper, h = 100µm; a) Carbopol-based simulant, plate-plate
with sandpaper, solvent trap, h = 1000µm, D = 4 cm for 0.5%-2%, D = 2 cm for
3%-4%; b) Laponite-based simulant, solvent trap, D = 6 cm 1◦ cone-plate for 1%-2%,
D = 4 cm 2◦ cone-plate for 2.5%, D = 4 cm plate-plate, h = 1000µm with sandpaper
for 3%-7%.

materials is so high that they are solid-like for timescales on the order of seconds,

which is the relevant timescale of locomotion for natural gastropods[117] and for
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Chan’s mechanical crawler. For example, with a viscosity η ≈ 106, and a fluid

thickness h = 1 mm, Chan’s crawler would slump down a vertical wall at a rate of

only 0.3 mm.hr−1. However, at a critical stress the viscosity decreases by several

orders of magnitude. Since flow exists for any finite stress, none of these materials

exhibits a true yield stress. However, this behavior may be described as an apparent

yield stress, since the flow at low applied stresses may be difficult to observe, and it

is followed by a dramatic drop in viscosity over a narrow range of stress. The critical

stress at which the viscosity dramatically changes will henceforth be referred to as

the yield stress[77, 78].

Some flow curves appear to be slightly shear-thickening below the yield stress

(e.g. native slime). This is not uncommon for yield stress fluids, because the stress

is incrementally increased after the apparent steady-state flow is achieved, and a

very large equilibration time exists below the yield stress[97]. Native slime and the

Laponite gel share a steep and dramatic drop in viscosity at the yield stress (Figure 8-

4b), whereas the viscosity of the Carbopol solutions drops less quickly as stress is

increased (Figure 8-4a). The drop in viscosity of Laponite occurs over such a narrow

range of stress that a stress-sweep could not capture the behavior. Thus, a rate-sweep

was performed from high shear-rates down to low shear-rates. This technique enables

large changes in the steady shear viscosity to be measured over a small change in

stress. A stress-sweep was used to explore the high viscosity region of the flow curve,

since the data was beyond the minimum resolvable range of the rate-sweep.

Each of these materials is rheologically reversible, so that solid-like properties

are regained when the stress is reduced below the yield stress, and the test can be

repeated to give the same data. The timescale over which the material restructures is

known as the thixotropic timescale[114], which may affect the value of the measured

yield stress[115]; this will be discussed further in Section 8.2.2.

The data for both simulants show that the yield stress is a strong function of con-

centration. The maximum yield stress of each simulant is limited by the impracticality

of increasing the concentration beyond a certain point. Extremely high yield stress

materials are also difficult to test, since they suffer from slip at the boundaries[118].
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Wall slip can be witnessed by observing the edge of the sample during the test[119];

this method indicates that Laponite at 7% is prone to slippage at the solid boundary.

Thus, the data reported in Figure 8-4b give the apparent viscosity for a large gap

h = 1000µm; if slip is occurring then the measured viscosity will become a function

of gap height[93].

Linear viscoelasticity

The linear viscoelasticity of the materials was examined with small amplitude os-

cillatory shear (SAOS). The native slime is compared here to simulants which have

similar yield stress values: a Carbopol-based simulant at 2% and a Laponite-based

simulant at 5%, each having a yield stress σy ≈ 100 Pa. The linear rheological regime

is defined such that the material properties are not a function of the input stress

amplitude, and thus each oscillation test in the linear regime is performed below the

yield stress (σ0 � σy).

The linear viscoelastic moduli, G′ and G′′, were examined over a range of frequen-

cies using SAOS. Both the elastic and viscous contributions to the complex modulus

were found to be weak functions of frequency for each sample below the yield stress,

as shown in Figure 8-5. Although each material has approximately the same yield

stress, the storage moduli vary by over an order of magnitude; native slime has the

lowest elastic modulus, near 200 Pa, whereas the particulate gel Laponite has a stor-

age modulus ten times larger, G′ ≈ 2000 Pa. The mesh size of a polymer gel may be

estimated from the expression G kT/ξ3, where ξ is the characteristic length scale of

the mesh[120] resulting in ξ ≈ 30 nm for pedal mucus and ξ ≈ 20 nm for Carbopol.

Large amplitude oscillatory shear (LAOS)

A crawling slug subjects the pedal mucus film to shear stresses that exceed the yield

stress, and thus the large amplitude, nonlinear viscoelastic properties of both na-

tive slime and slime simulants are relevant in adhesive locomotion. The shear stress

exerted by a crawling slug can exceed 2000 Pa, as measured by Denny[117]. Further-

more, the strain amplitude under a crawling slug can be estimated from the speed
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Figure 8-5: Linear viscoelastic moduli of simulants compared with native pedal mucus
from Limax maximus ; pedal mucus tested with D = 2 cm plate with sandpaper,
solvent trap, h = 200µm, σ0 = 5 Pa; simulants tested with D = 4 cm plate with
sandpaper, h = 1000µm, solvent trap; a) Carbopol-based simulant, σ0 = 5 Pa; b)
Laponite-based simulant, σ0 = 20 Pa.

versus time profile reported by Denny[117]. Using this data, and assuming the pedal

mucus thickness h = 20µm, a strain amplitude γ ≈ O(102) is imposed on the pedal

mucus with each pulsatile wave.

The response of a material to oscillatory shear is considered nonlinear if the stor-
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age and loss moduli depend on the input stress (or strain) amplitude. Additionally,

the strain (or stress) response may be observed to contain higher harmonics than the

input frequency, rather than exhibiting a pure harmonic response. In this nonlinear

regime the linear viscoelastic moduli G′ and G′′ are not uniquely defined. The com-

plex fluid response can be analyzed with a Fourier transform[15], and the real and

imaginary coefficients of the higher harmonic contributions can be represented as G′n

and G′′n respectively (for n = 1, 2, 3, ...) (c.f. Eq. 2.1). To be precise, we will there-

fore report the first harmonic elastic and loss moduli, G′1 and G′′1, for LAOS results,

which reduce to G′ and G′′ in the limit of a small amplitude deformation history. The

new LAOS framework introduced in Chapter 2 cannot strictly be used for these data

sets because they were performed with controlled oscillatory stress (σ(t) = σ0 cosωt),

rather than controlled strain which is required for the theory of Chapter 2. However,

the qualitative shapes of Lissajous-Bowditch curves can still be interpreted within

the framework presented in Chapter 2.

The first harmonic of the storage modulus G′1 and loss modulus G′′1 are shown in

Figure 8-6 as a function of stress amplitude σ0 at a fixed frequency of ω = 1 rad.s−1.

At low stresses each material shows little or no dependence on the input stress am-

plitude. Each material undergoes a transition at a critical stress at which the elastic

response dramatically decreases. However, no data could be collected for native slime

beyond this critical stress since the material was ejected from the gap. The critical

stress amplitude for this transition corresponds approximately to the apparent yield

stress observed in steady flow tests (Figure 8-4). The sharpness of the transition also

corresponds with the steady shear flow results; the polymer gel simulant exhibits a

gentle stress softening, whereas the slime and particulate gel simulant show a very

sharp transition at a critical stress.

The critical yield strain may be expected to obey the relationship σy ∝ Gγy where

G is the nominal elastic modulus of the material. This is approximately true for the

simulants. The yield stresses are similar and the elastic modulus of the Laponite gel

is approximately three times that of the Carbopol. This difference in elastic modulus

is therefore compensated by changes in the critical strain. The critical yield strain for
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Figure 8-6: Large amplitude oscillatory shear (LAOS) of simulants compared with
native pedal mucus from Limax maximus, same geometries as Figure 8-5, all samples
tested at ω = 1 rad.s−1; a) Carbopol-based simulant; b) Laponite-based simulant.

the particulate gel Laponite is smaller (by approximately six times) than the polymer-

based Carbopol gel; the particulate-based material requires a smaller imposed strain

to disrupt the equilibrium microstructure.

As the oscillatory stress amplitude approaches the yield stress, small differences

can be seen in the behavior of G′1 and G′′1 for each material. The loss modulus G′′1 ap-
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pears to increase just before yield for each material; this increase is most pronounced

with the Carbopol simulant. The increase in G′′1 prior to yield, combined with a de-

crease in G′1, has been observed in other materials and is classified as type III LAOS

behavior by Hyun and coworkers[19]. This type III behaviour can be qualitatively

explained by considering a relaxation time that is shear-rate dependent, as is likely

the case for metastable yield stress fluids; a peak in G′′1 can then be reproduced by

simply modifying a Maxwell model in this way[20]. The variation of the first harmonic

storage modulus is less interesting as the yield stress is approached; in each case G′1 is

a weak function of stress amplitude for σ0 < σy. However, upon closer inspection, a

dramatic difference in the material response leading up to failure becomes apparent.

With the aid of Lissajous curves one can immediately see the substantial difference

in each material’s non-linear response to an oscillatory stress input σ(t) = σ0 cosωt,

as demonstrated in Figure 8-7a, Figure 8-7b, and Figure 8-8. These Lissajous curves

are parametric plots of stress versus strain, with each curve corresponding to an

oscillatory shear test with a sinusoidal stress input at a particular frequency and

amplitude. The trajectory is elliptic for a linear viscoelastic material, approaching

the limiting case of a straight line with slope G for a Hookean elastic solid and an

ellipse with axes aligned with the coordinate axes for a Newtonian fluid. A nonlinear

material response to a harmonic forcing input will distort this ellipse. The cyclic

integral of a Lissajous curve, in which stress is plotted against strain, is equal to the

energy dissipated per unit volume per cycle, Ed, and is directly related to the loss

modulus G′′1 as Ed = πγ2
0G
′′
1[18].

The Lissajous curves for each material at low stress appear as tight ellipses (see

insets in Figure 8-7 indicating G′ � G′′; only a small area is enclosed and the re-

sponse is dominated by elasticity. As the imposed stress amplitude is increased toward

the yield stress each material exhibits distinctive behavior. The Laponite simulant

maintains tight elliptical curves almost all the way up to yield, and subsequently

undergoes a quick transition to predominantly viscous behavior, as shown by a dra-

matic increase in the area enclosed by the curve. This transition is consistent with

the sudden drop in viscosity for the steady state flow curves (Figure 8-4b), and is re-
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Figure 8-7: Lissajous curves resulting from the large amplitude oscillatory shear
tests shown in Figure 8-6 for the polymer gel simulant(a) and the particulate gel
simulant(b).

lated to the fragility of the colloidal gel microstructure. The Lissajous curves for the

Carbopol (Figure 8-7a) progressively broaden to enclose more area, and thus show a

gradual transition from elastic to viscous behavior. This soft transition is consistent

with the steady state flow tests (Figure 8-4a) and the behavior of G′1 and G′′1 as the

oscillatory stress amplitude is increased (Figure 8-6a). To aid comparison, we use

the same ranges on the abscissa and ordinate of Figure 8-7a,b; Figure 8-8 shares the

same aspect ratio but with a larger range.
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Figure 8-8: Lissajous curves resulting from the large amplitude oscillatory shear tests
shown in Figure 8-6 for native pedal mucus from Limax maximus.

In contrast to the two simulants, the native pedal mucus exhibits a strongly non-

linear response leading up to yield. For native slime the elliptical curves which are

present at low stresses become progressively distorted as the stress amplitude is in-

creased. The distortion is such that the stress increases sharply at large strains. This

upturn in stress can be interpreted as a form of strain-stiffening, since the maximum

stress is higher than would be expected if the small strain response were fit to an

ellipse and projected to large strains. It is significant to note that this nonlinear

response is not captured by monitoring G′1, as shown in Figure 8-6, in which the first

harmonic storage modulus of native slime is a very weak function of stress amplitude

(this is consistent with the strain-controlled test of pedal mucus reported in Sec-

tion 4.2.2). The strain-stiffening reported for native slime is not mimicked by either

of the Carbopol or Laponite gel simulants. Although strain-stiffening is required in
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other biomaterial applications (e.g. arterial walls[4]), and may also be important in

biological adhesive locomotion, our simple adhesive locomotion model is not affected

by this behavior.

It is important to point out that nonlinear LAOS behavior depends on (at least)

two parameters: stress (or strain) amplitude and frequency. Here we have only ex-

plored one-dimension of this parameter space; i.e. the rheological response to increas-

ing oscillatory stress amplitudes at a constant frequency. A framework for exploring

the two-dimensional experimental space, along with quantifying the nonlinear stiff-

ening behaviour, is the subject of Chapter 2.

Time dependency of yield stress

The apparent yield stress of a material is likely to depend on how long the sample

has been at rest since it was last yielded, i.e. there is a natural timescale of restruc-

turing (thixotropy) to regain a yield stress[114, 115]. Furthermore, our simple model

shows that the maximum velocity of a mechanical crawler is inversely related to the

restructuring time[110].

The restructuring times of the Carbopol and Laponite gel simulants were examined

using shear stress overshoot tests[121]. The sample is first pre-sheared to break down

structure, i.e. it is “shear rejuvenated”[122], to yield the material and erase any strain

history effects. The pre-shear is abruptly “quenched,” or brought to a halt, at which

point the sample is allowed to age for a waiting time tw. A step-strain-rate is then

imposed, which destroys the existing microstructure and causes the sample to flow.

The resulting overshoot stress ∆σ is then determined as the difference between the

peak shear stress and the steady flow stress, and is expected to depend on the time

tw that the microstructure has been allowed to equilibrate. The overshoot stress is

not quantitatively equivalent to the yield stress as defined in this work. However, it

is closely correlated to the yield stress, as it is the peak stress which occurs as the

strain is increased and the material microstructure is ruptured.

The results of time-dependent overshoot tests for the simulants are shown in

Figure 8-9. The Laponite sample (3%) was pre-sheared at γ̇ = 5s−1 for 60 seconds.
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Figure 8-9: Time-dependent stress overshoot of simulants, D = 5 cm 1◦ cone-plate;
a) Carbopol 2%, error bars shown at one standard deviation; b) Laponite 3%.

Less shearing was needed to eliminate strain history effects with the Carbopol, which

was pre-sheared at γ̇ = 5s−1 for five seconds. Each was allowed to rest for a specified

time and then sheared once more at γ̇ = 5s−1. Each Carbopol test was repeated three

times and error bars are shown. The minimum waiting time allowed by the rheometer

is one second, which provides a lower bound for measurement of thixotropic recovery.

An appropriate form of the rheological aging observed in the samples is a stretched
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exponential approach to an asymptotic value observed at long rest times

∆σ (tw, γ̇) = ∆σ∞ (γ̇)
(

1− e−(tw/λ)B
)

(8.2)

where ∆σ∞ is the maximum overshoot stress at long rest times, tw is the rest

time, λ is the characteristic restructuring time, and B is the stretching exponent.

Stretched exponentials have been observed experimentally in both polymeric[123]

and colloidal[124] systems and have been associated with the presence of fractal

networks[125]. When B = 1, Eq. 8.2 represents a single exponential aging timescale,

which has previously been used to describe the aging of the yield stress[126]. Each

data set in Figure 8-9 has been fitted to Eq. 8.2 as both a single exponential (B = 1)

and a stretched exponential. The regression results are shown in Figure 8-9.

For a yield stress that grows in a similar fashion to Eq. 8.2, the restructuring time

λ is inversely related to the maximum velocity of a mechanical crawler[110]. The

polymer gel has a much faster restructuring time than the particulate gel. The single

exponential restructuring timescale of Carbopol is λ ≈ 0.8 s, whereas the restructuring

time of Laponite dispersions is λ ≈ 17 s. Thus, the maximum velocity of a mechanical

crawler on Carbopol would (theoretically) be approximately 20 times that of a crawler

on Laponite. The stretched exponential timescales are also dramatically different.

The restructuring timescale of native pedal mucus could not be reliably measured

as a result of technical difficulties. However, Denny performed similar overshoot tests

with gastropod pedal mucus and found that peak stress as a function of wait time

could be fit to a power law[127]. In order to extract a timescale of restructuring for

comparison, a single exponential timescale can be fit to the first ten seconds of this

power law giving λ ≈ 0.85 s with R2 = 0.74. Although there is biological variability

and a low R2 value, it is apparent that pedal mucus and the Carbopol gel share

restructuring times of the same order of magnitude.
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Figure 8-10: (a) The common garden snail helix aspera (and other terrestrial gas-
tropods) use the nonlinear viscoelastic properties of excreted trail mucus for transitory
attachment, allowing locomotion on inclined surfaces. (b) Bioinspired embodiment of
a mechanical crawler that successfully uses adhesive locomotion to traverse inclined
and inverted surfaces, as in (c), using appropriately designed complex fluids described
in this thesis.

8.3 Demonstration of feasibility

The wall-climbing ability of terrestrial gastropods (Fig. 8-10a) has been successfully

biomimicked using the fluid design rules outlined in this Chapter. It is non-trivial to

duplicate biological functionality, given the constraints on conventional engineering

components such as motors and actuators [128]. For example, it has been exceed-

ingly difficult to mimic flapping wing flight with a self-contained device due to power

requirements and actuator efficiency; instead we have found the best engineering suc-

cess with fixed-wing flight powered by propeller or jet engines. Together with Brian

Chan (Ph.D. ’09)[129], we have shown that adhesive locomotion can be used as the

locomotion strategy of a self-contained device. The crawler (Fig. 8-10b, designed

and built by Brian Chan) has been designed to meet the requirements of appropriate
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motion and geometry for adhesive locomotion. It employs on-board power (two AA

batteries), is driven by a single DC motor, and relies on a unique custom-designed

cam system that transfers power to discrete foot pads. From the work described in

this thesis, a suitable non-Newtonian yield stress fluid has been formulated to enable

the crawler of Fig. 8-10b to traverse inclined and inverted terrain (Fig. 8-10c).

The fluid used is the aqueous polymeric microgel Carbopol 940 (4 wt%) at neu-

tral pH (c.f. Figs. 8-3,8-4). This complex fluid has sufficiently large yield stress to

support the crawler, a reasonably low flow viscosity after yield, and an adequate self-

healing time (the time required to restructure into a solid-like material once a load is

removed), the criteria for which are outlined in this thesis Chapter. It has thus been

demonstrated that the adhesive locomotory strategy can be successfully implemented

with existing engineering technology. Although a synthetic fluid can be concocted to

adequately mimic the nonlinear mechanical properties of pedal mucus, and demon-

strate the feasibility of mimicking adhesive locomotion, native slime is still superior

to the synthetic self-healing materials explored. Native pedal mucus self-heals more

quickly following cessation of deformation and has a sharper yielding transition at the

critical stress for flow (or “yield stress”). The superior performance of the natural

mucus gel motivates a detailed understanding of the linear to nonlinear viscoelastic

properties of pedal mucus, which are discussed in Section 4.2.2 of this thesis.

8.4 Conclusions

It has been known for some time that pedal mucus from terrestrial gastropods exhibits

a yield stress[99], but the present work is the first examination of the progressive

transition from an elastic gelled solid to a nonlinear viscoelastic fluid as the oscillatory

shear stress amplitude is increased. Lissajous curves (such as Figure 8-8) can be used

to graphically indicate the observed strain-stiffening behavior of native pedal mucus.

The bulk rheological response of native slime was used to provide a set of benchmarks

for comparing two possible complex fluids (a particulate gel and a polymeric gel) for

the purpose of enabling mechanical adhesive locomotion.

213



A large number of structured materials were surveyed as possible slime simulants,

including polymer gels, particulate gels, emulsions, wet foams, and composites (Fig-

ure 8-3). Two simulants which could be formulated to have similar yield stresses to

that of native slime (Figure 8-4) were then chosen for further study. When examined

in detail, in linear and nonlinear deformation, the simulants show some differences in

rheological properties. Table 8.1 summarizes the results of the comparison of these

simulants with native gastropod pedal mucus.

The three key parameters for a complex fluid to be useful in adhesive locomotion

are a high yield stress, σy, to support the crawler on an inclined surface, a low

post yield viscosity, η, to increase speed, and a small restructuring timescale, λ, also

to increase speed. Of the two simulants analyzed in this work, the Carbopol-based

polymer gel is the best candidate for use in adhesive locomotion. It provides sufficient

yield stress, a moderate post-yield viscosity, and a restructuring time that is more than

an order of magnitude smaller than the Laponite-based colloidal gel simulant. Native

pedal mucus, however, is still better than the best simulant; it provides comparable

yield stress and restructuring time, but a lower post-yield viscosity.

A more general scientific question related to this work is how to characterize soft

condensed matter under relevant loading conditions. One aspect of relevant charac-

terization is the length scale of interest. It is noteworthy that no rheological measure-

ments have been reported for native pedal mucus at the physiologically relevant gap

thickness h = 10−20µm, including the results presented here. Most tests are reported

with a gap height one to two orders of magnitude larger than this, and it is possible

that native pedal mucus acts differently in a confined space. Effects of narrow gap

polymer rheology such as gap-dependent relaxation times have been the subject of

debate[130] and gap-dependent yield stress levels as well as wall slip velocities have

been observed with emulsions[131] and other complex fluids[132].

The type of rheological test performed must also be relevant to the intended use of

the material. Linear viscoelasticity is robust (in the linear regime), but may not fully

apply to the intended use of the material. In this work, nonlinear rheological tests

were used to quantify properties such as the yield stress, yield strain, and thixotropic
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restructuring time, as well as to investigate the nature of the yield transition and the

existence of strain-stiffening in native slime. However, this strain-stiffening could not

be observed with the common measures of nonlinear viscoelasticity (G′1 and G′′1). This

is in contrast to the colloidal gels examined by Gisler et al.[42] and the semi-flexible

biopolymer gels studied by Storm et al.[39] in which strain-stiffening of the networks

could be detected in the first harmonic elastic modulus, G′1. This difference arises

presumably from the differing flexibility of semi-flexible chains such as F-actin and the

heavily glycosylated mucin protein studied here. In the present study, strain-stiffening

can only be revealed by representing the raw data in the form of Lissajous curves. A

suitable measure to quantify this local strain-stiffening behaviour has been derived

for strain-controlled deformation (Chapter 2), and used to characterize the nonlinear

viscoelastic response of gastropod pedal mucus (Section 4.2.2). In general, when soft

condensed matter is exposed to large stresses or strains in situ, the nonlinear material

properties will be significant, and one must decide which tests and measures provide

the most relevant rheological fingerprint of the material.
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Native
pedal mucus

Carbomer-based
simulant

(polymer gel)

Clay-based
simulant

(particulate gel)

Yield stress 100 - 240 Pa 108 Pa 90.8 Pa
Post-yield viscosity, 10.4 - 25 Pa.s 31.6 Pa.s 9.6 Pa.s
η(γ̇ = 10s−1)

G′(ω = 1rad.s−1) 200 Pa 540 Pa 1800 Pa
G′′(ω = 1rad.s−1) 20 Pa 30 Pa 60 Pa
Yield stress transition Sharp Soft Sharp
Pre-yield stiffening Yes No No
Single exponential 0.85 s 0.8 s 17 s

restructuring (adapted from (for 3% gel)
time, λ ref. [127])

Table 8.1: Summary of rheological properties of two simulants with similar apparent
yield stresses compared with native gastropod pedal mucus. Although the concen-
trations and microscopic structure are different, fluids with similar yield stresses are
compared since the macroscopic rheological property of a yield stress is the primary
requirement for inclined adhesive locomotion, c.f. Eq. 8.1.
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Chapter 9

Tunable and reversible adhesion

using field-activated “smart” fluids

Viscous Newtonian fluids confined in sufficiently small gaps can provide strong re-

sistance to the separation of two parallel rigid surfaces, a phenomenon known as

Stefan adhesion[133]. However, the resistance to a shear load is considerably lower

than for normal loads in such confined geometries. In principle, a field-responsive

“smart” fluid, which exhibits a field-dependent microstructure with dramatically in-

creased resistance to shear loading, can be used in place of a Newtonian fluid en-

abling externally-tunable adhesion. Adhesion to arbitrary surfaces (such as walls or

windows) inhibits the option of creating a homogeneous magnetic field condition.

Therefore successful adhesion in general must tolerate an inhomogeneous magnetic

field. Here it is demonstrated experimentally that MR fluids can be used with in-

homogeneous fields (e.g. created by a permanent magnet near the fluid) to attach

to non-ferromagnetic substrates including plastic, aluminum, glass, ceramic tile, and

wood.

Adhesive performance will depend on the method of separation of the two surfaces,

such as normal pulling off, shearing, or peeling[134]. Experimental results are reported

for both normal and shear loading of a field-responsive yield stress fluid confined

between rigid surfaces as the external magnetic field and the geometry of the adhesive

contact are varied. The peak adhesive force and the mode of failure are all controlled
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Figure 9-1: (a) Sketch of the experimental setup for adhesive pull-off tests of a field-
responsive magnetorheological fluid. Instrument materials are non-magnetic. The
adhesive fluid layer (diameter D, gap height h) resides between rigid surfaces. The
lower plate allows for a permanent magnet (diameter Dm) to be introduced to “acti-
vate” the adhesive with an inhomogeneous field. The top of the magnet is separated
from the bottom of the fluid by a distance δ. (b) Free body diagrams for yield stress
fluid adhesion. For the top plate only forces in the z-direction are shown. The fluid is
modeled locally as a perfect plastic with radially dependent yield stress. Small gaps
are assumed (h/D � 1), so that material deformation consists primarily of shear.

by the field-responsive nature of the magnetorheological fluid forming the adhesive

layer.

9.1 Experimental setup and materials

Simple shearing deformation is examined by shear rheometry, whereas normal ad-

hesion experiments are performed on a linear force/displacement instrument with

sensitive normal force resolution.

218



9.1.1 Instrumentation

Shear rheometry is probed using the AR-G2 rotational rheometer (TA Instruments,

New Castle, DE). For the Newtonian oil, a cone-plate setup was used (D = 40 mm,

θ = 2◦) in which the lower surface (Peltier plate) is temperature-controlled. Carbopol

samples were tested with a plate-plate geometry (D = 40 mm, h = 1000µm) using

a solvent trap to stifle evaporation. The magnetorheological fluid was also tested

with a plate-plate geometry, with gap h = 500µm. Ambient tests of the MR fluid

used the standard rheometer setup and a top plate with D = 40 mm. To examine

the magnetic field dependent rheology, a top plate with diameter D = 20 mm was

used in concert with the MRF Rheometer Cell developed by Murat Ocalan[135]. For

both the Carbopol and MR fluid, adhesive-backed waterproof sandpaper (600 grit,

Eastwood Co., Pottstown, PA) was attached to the top and bottom plates to help

avoid slip at the bounding surfaces.

The parallel plate geometry imposes an inhomogeneous strain field, and therefore

the measured torque represents only the apparent shear stress in the material. To

correct for this, the true stress can be determined from σR = σA
1
4

(3 + d lnσA/d ln γ̇R)

(e.g. see Macosko[94]), where σR is the true stress at the edge of the disk and σA is the

apparent stress determined by σA = 2M/πR3 where M is the measured torque and R

is the disk radius. Applying this correction requires derivatives of the apparent stress

data. To calculate the required derivatives, we fit a fifth order polynomial function

to the raw data of lnσA vs. ln γ̇R, since this allows calculation of the derivative of

a smooth analytical function rather than differentiating discrete raw data. This was

required for the both the Carbopol solution and MR fluid.

The normal “pull off” adhesion was examined using a linear load/displacement

instrument, the TA.XTplus Texture Analyzer (Stable Micro Systems, UK). The fluid

is confined between two rigid surfaces which are separated in the normal direction as

shown in Fig. 9-1. This experiment is sometimes referred to as a “probe tack” test.

The bottom plate is fabricated from transparent plastic. One plate is solid polycar-

bonate of thickness 0.475” (δ = 12.1 mm), with a sandblasted surface to provide a
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finite roughness (r.m.s. roughness Rq = 1.84µm from 2D surface profilometry (Tencor

P-11 Surface Profiler)). A second plate is made from transparent acrylic, thickness

0.325” (8.3 mm), and fabricated with with a cylindrical hole in which a magnet can

be placed δ = 1.0 mm from the fluid (Fig. 9-1). For the Newtonian oil and MR fluid

tests, the diameter of the top plate (typically D = 48 mm) is always bigger than

the initial fluid diameter. This avoids the uncertainties associated with contact lines

pinned to the edge of the plate. For the Carbopol tests the fluid diameter and plate

diameter are chosen to be the same, D = 48 mm, to increase experimental precision.

Here the yield stress fluid is cut to size after overfilling and retains its shape, thus the

shape of the fluid-air interface can be controlled for this case.

The Texture Analyzer is known to exhibit finite compliance in the loading direction

which can cause experimental artifacts under certain adhesive test conditions[136].

The system stiffness was measured to beK = 12, 600 gf/mm (Compliance= 79µm/kgf).

Additional error may come from the parallelism error of the bounding surface. To

measure the parallelism error, the top surfaces were bought into contact. For finite

parallelism error, the contact occurs at a single point on the edge of the top plate.

A gap will persists around the rest of the plate edge, and this maximum gap is mea-

sured by sliding shim stock of known thickness into the gap, such that the maximum

thickness which fits into the gap estimates the parallelism error. For the D = 48 mm

plate, the parallelism error is approximately d ≈ 127µm. The minimum apparent gap

height used in these studies is h = 500µm.

9.1.2 Materials

The Newtonian oil is a PDMS Silicone Oil, “10,000 cst.” The dynamic viscosity at

T = 25◦ was measured here to be η = 9.28 Pa.s (see Appendix E for detailed rhe-

ological characterization). Carbopol 940 was obtained from the Noveon corporation

(Cleveland, OH). The Carbopol-based solution was prepared at a concentration of

2%(w/w), where w/w refers to weight of the additive with respect to the total weight

of the mixture. The polymer was obtained as a white powder, and was added to

deionized water being agitated with a magnetic stirrer. Samples were mixed for a
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Figure 9-2: Rheological characterization of the passive yield stress fluid, Carbopol
2wt%, pH 7.

minimum of 30 minutes. The Carbopol-water mixture initially has a pH near 3, and

each was neutralized with 4 M NaOH solution to achieve a pH=7, producing a clear

gel at the targeted concentration. The rheology of Carbopol mixtures depends on the

pH, with maximum thickening occurring within a pH range of 5-9[108].

Rheological measurements for this particular batch of Carbopol are presented in
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Fig. 9-2. These tests were performed by specifying the shear-rate, in which case

the instrument uses a control feedback loop to impose the appropriate torque. A

rate-specified test was preferred here because the normal adhesion tests impose kine-

matic deformation conditions, i.e. displacement controlled tests. Furthermore, a

rate-specified rheological test allows for the observation of a stress plateau across a

broad range of shear-rates.

The (corrected) shear stress is shown as a function of shear-rate in Fig. 9-2a. This

Carbopol solution is not a perfect plastic material for all shear-rates. However, at low

shear-rates the shear stress may be approximated as a plateau. The results across

the entire range of shear-rates are fit to the Herschel-Bulkley model,

σ = σy +Kγ̇n. (9.1)

resulting in σy = 140.0 Pa, K = 55.2 Pa.sn, and n = 0.429 (shown in Fig. 9-2a).

The method of fitting a Herschel-Bulkley model results in a larger estimate for yield

stress than identifying the corner in a viscosity vs. stress curve, which was done

in Chapter 8 for a similar material, in which the yield stress was estimated to be

σy = 108 Pa (Table 8.1).

For the field-controllable tests a commercial magnetorheological (MR) fluid is

used, purchased from the LORD Corp., designated as MRF-132DG. The MR fluid

is oil-based and contains carbonyl iron particles (1-20µm), plus additives. The iron

particles serve as magnetically-responsive constituents. An external magnetic field

induces magnetic dipoles in the particles, causing them to form chains which dramat-

ically change the mechanical properties of the solution.

The shear rheology of the MR fluid is shown in Fig. 9-3, for the ambient state (open

symbols) and various magnetic field activation (closed symbols). Fig. 9-3a shows the

corrected shear stress as a function of the imposed shear-rate. The ambient state

exhibits a broad stress plateau across several orders of magnitude in shear-rate, which

serves as an apparent yield stress. The material is not perfectly plastic, however, and

the stress eventually increases as a function of shear-rate. The MR fluid becomes more
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Figure 9-3: Steady flow characterization of the magnetorheological fluid, which be-
haves as a nearly perfect viscoplastic with constant stress as a function of shear rate
(a). Another method of showing viscoplastic yield stress behavior is shown in (b),
which depicts steady flow viscosity as a function of the imposed shear stress. The
viscosity and stress values have been corrected for the parallel plate geometry.

of a perfect plastic material as the magnetic field strength increases, as evidenced by

the flat stress profiles in Fig. 9-3a. An alternative way to visualize such yield stress

fluids is to plot viscosity as a function of stress, which is shown in Fig. 9-3b. Here

an apparent yield stress in indicated by the viscosity changing by several orders of

magnitude over a narraw range of stress.

The apparent yield stress is extracted from the corrected flow curves of Fig. 9-3.
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Figure 9-4: Shear yield stress for the magnetorheological fluid as a function of the
external magnetic field strength (field lines perpendicular to shearing direction). Yield
stress values extracted from Fig. 9-3 (circles). The dashed line is a power law fit to
the data (ignoring the data point at B = 0.462 T), resulting in α = 137737 Pa.T−2.

For the field-activated states, the yield stress is estimated from the average stress at

the lowest three shear-rate data points. For the ambient response (open symbols),

the effective yield stress may depend on the characteristic shear-rate. For instance,

σy0 ≈ 6.75 Pa at a characteristic shear rate γ̇ = 2ḣR0/h
2
0 = 0.5 s−1, which corresponds

to the experimental parameters h0 = 0.5 mm, R0 = 6.35 mm, and ḣ = 10µm.s−1.

9.1.3 Magnetic field configuration for pull-off tests

Three different permanent magnets were used to activate the MR fluid. The weakest

magnet is made from Alnico8, with geometry Rm = 6.35 mm and Lm = 6.35 mm. The

magnetic strength was measured with a Hall effect probe (F.W. Bell, model #5180

Gauss/Tesla probe). On the face of the magnet, a magnetic field of B = 0.068 T was

measured at the center. On average (near Rm/2) the field strength is B = 0.077 T.

Across the δ = 1.0 mm acrylic surface, the measurements are B = 0.059 T at the
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center and B = 0.061 T on average (near Rm/2). For modelling and analysis, B0 =

0.061 T is used to represent the field across the area of the magnet.

Nedodymium magnets are used for the two strongest magnets. These are rare

earth magnets comprised of neodymium, iron, and boron. The first of these has

dimensions Rm = 6.35 mm, Lm = 0.95 mm. On the face of the magnet, the field

measurements are B = 0.398 T at the center and B = 0.389 T on average at Rm/2.

Across the δ = 1.0 mm acrylic surface, the field strength is measured to be B =

0.319 T at the center and B = 0.296 T on average near Rm/2. This final value is

used to describe the field strength for adhesive tests, B0 = 0.296 T.

The third magnet is the largest, Rm = 12.7 mm and Lm = 0.95 mm. This magnet

is not used in the cutout cylindrical hole of the bottom plate, but is instead used

beneath the entire thickness of the bottom acrylic plate, δ = 12.1 mm. At this

distance the field measured at the center is B = 0.051 T, and the average field is

B = 0.046 T. This final value is used as the field strength for MR fluid adhesive tests,

B0 = 0.046 T.

At sufficiently large distances, the magnet appears as a magnetic dipole. The

magnetostatic problem for a magnetic dipole can be solved analytically only in the

far field, in which case the magnetic field strength decays as B ∼ L−3, where L is the

distance from the dipole[137]. The region of interest for this problem is close to the

magnet, and therefore the analytical solution does not strictly apply. Finite element

analysis (FEA) was used to determine the mangetic field using the freely available

software Maxwell SV (Ansoft, LLC, Pittsburgh, PA) (see Appendix E). Results

were obtained for the magnetostatic problem of a cylindrical permanent magnet with

a thin, disk-shaped layer of MR fluid at a finite z-distance. For a given distance

above the magnet, δ, the FEA results indicate that the magnetic field strength is

approximately constant for r ≤ Rm, but decays as a power law B ∼ r−3 for r > Rm.
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9.2 Background: fluid adhesion

Three classes of fluid adhesion are considered here for a fluid confined between rigid

parallel surfaces. The focus here is on normal adhesion with small gaps (h/D � 1).

First, capillary phenomena may exert a force on the top plate of Fig. 9-1. The

capillary forces, assuming an axially and vertically symmetric meniscus, are given

by[138]

FCapillary = γ
cos θE
h/2

πR2 + γ sin θE2πR. (9.2)

which is the superposition of a capillary pressure drop and the line traction at r = R.

For a wetting fluid θE < 90◦ and the fluid acts to pull the plates together. The

pressure profile in the fluid is constant as a function of the radius, p(r) ∼ r0, since no

other forces exist in the radial direction.

The pressure profile is not constant during plate separation at finite velocity, due to

the no-slip condition which induces radial fluid flow. The classic problem of “Stefan

adhesion”[133, 139] considers the case of an incompressible Newtonian fluid in the

limit of small gaps (h/D � 1). For quasi-static loading, the momentum balance in

the z-direction is determined by the free body diagram of Fig. 9-1b, resulting in

F = −2π

∫ R

0

p(r)rdr (9.3)

where p(r) is the pressure relative to atmospheric conditions, such that the pressure

at the free surface is zero, p(R) = 0 (neglecting surface tension). Positive adhesive

forces, F > 0, correspond to negative pressures in the fluid. Negative pressure will

exist in order to drive fluid flow inward, and inward fluid flow is required by continuity

(assuming that the fluid remains in contact with the bounding surfaces). For a New-

tonian fluid at low Reynolds number with h/D � 1, the lubrication approximation

is valid, and the momentum balance in the r-direction is

∂p

∂r
= η

∂2vr
∂z2

(9.4)
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where η is the (constant) viscosity and vr(r, z) is the radial fluid velocity. Combining

the momentum balance with continuity,

1

r

∂(rvr)

∂r
+
∂vz
∂z

= 0, (9.5)

results in a parabolic pressure profile and a required force[139]

FNewtonian =
3

2
η
ḣ

h
πR2

(
R

h

)2

(9.6)

where terms have been grouped to suggest a viscous stress (ηḣ/h) acting across the

area πR2, multiplied by the square of the aspect ratio (R/h)2. A Newtonian fluid

therefore acts as an adhesive but only in response to a dynamic situation with non-

zero separation velocity ḣ.

A yield stress fluid can be used to support an adhesive force F under static

conditions[140]. For a deforming perfect plastic material the magnitude of the shear

stress is a constant, σy, independent of the shear-rate and therefore independent of

the kinematics of deformation. For thin gaps (h/D � 1), the deformation is primarily

shear. The momentum balance in the r-direction is then determined from the free

body diagram of Fig. 9-1b, and is given by

dp

dr
=

2σy(r)

h
sgn(ḣ) (9.7)

where h is the height of the fluid and sgn(ḣ) is used to achieve the appropriate sign

for either squeeze flow (sgn(ḣ) = −1) or pull-off adhesion tests (sgn(ḣ) = +1). In this

chapter only “probe tack” adhesion tests are performed, in which case sgn(ḣ) = +1.

The yield stress may vary as a function of the radius, σy(r), for example due to

an inhomogeneous magnetic field which activates the fluid (this is considered in the

following section). For a passive yield stress fluid, σy = constant throughout the

entire fluid, and Eq. 9.7 can be integrated from R to r to reveal a linear pressure

profile. This pressure field is then integrated according to the vertical force balance

(Eq. 9.3), giving the pull-off adhesion force for a perfect plastic fluid with constant
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Mechanism Normal force
Capillary effects

(wettable surface)
FCapillary = γ cos θE

h/2
πR2

Yield stress fluid
(perfect plastic)

Fyield−stress = 2
3
σyπR

2
(
R
h

)
Viscous effects

(Newtonian fluid)
FNewtonian = 3

2
η
(
ḣ
h

)
πR2

(
R
h

)2

Table 9.1: Various fluid adhesion mechanisms.

yield stress,

Fyield-stress =
2

3
σyπR

2R

h
(9.8)

where terms have been grouped to suggest an yield stress σy acting over the con-

tact area πR2 multiplied by the aspect ratio (R/h). This result assumes small gaps

(h/D � 1) and constant fluid contact with the bounding surfaces. The material

deformation is primarily shear and therefore adhesive performance depends on the

shear properties of the fluid.

The results of these thin-gap fluid adhesion mechanisms (capillary, viscous(Newtonian),

and perfect plastic) are summarized in Table 9.1.

9.3 Theory: magnetorheological fluid adhesion with

an inhomogeneous field

Here we extend the previous results of yield stress fluid adhesion discussed in Sec-

tion 9.2 to include radially dependent yield stress caused by an inhomogeneous mag-

netic field. The momentum balance in the z-direction (Eq. 9.3) and the r-direction

(Eq. 9.7) are still valid. Additionally, we must identify the constitutive equation relat-

ing shear yield stress to magnetic field strength and the configuration of the magnetic

field.

For the magnetorheological fluid used here, an apparent shear yield stress exists in

the off state (B = 0) and the yield stress increases in response to an external magnetic
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Figure 9-5: Idealization of B-field which activates the magnetorheological fluid. The
field is constant above the magnet (R/Rm < 1), then decays by the power-law r−3.

field strength B according to a power law relationship (Fig. 9-4, with field lines

perpendicular to the shearing direction). Up to moderate field strengths B ≈ 0.2 T,

the constitutive equation relating shear yield stress to (perpendicular) field strength

can be written as

σy = σy0 + αB2 (9.9)

where α = 137737 Pa.T−2 is the measured value for the MR fluid used here (c.f.

Fig. 9-4).

The final required condition is the form of the magnetic field which activates the

fluid B(r). Here we consider the case of a cylindrical permanent magnet (radius

Rm, length Lm) which is offset from the fluid a finite distance δ (Fig. 9-1). All

other materials and structures in the setup are non-ferromagnetic, and therefore have

negligible influence on the magnetic field lines. The permanent magnet creates an

inhomogeneous magnetic field within the region of interest. For a given distance

above the magnet, δ, the FEA results indicate that the magnetic field strength is

approximately constant for r ≤ Rm, but decays as a power law B ∼ r−3 for r > Rm.

Field lines are not perpendicular to the shearing direction in this case. However, for
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simplicity we will neglect the field origntation and consider only the magnitude of the

excitation field. The field magnitude is then represented analytically as

B(r) =

 B0 r/Rm ≤ 1

B0

(
r
Rm

)−3

r/Rm ≥ 1
(9.10)

which in shown graphically in Fig. 9-5.

Equations 9.3, 9.7, 9.9, 9.10 can be combined to determine the adhesive force F

resulting from the field-activated MR fluid setup. Two cases are distinguished. Case

1 will refer to the situation of R ≤ Rm, i.e. the fluid does not extend beyond the

cross-sectional area of the magnet and is therefore activated by a constant magnetic

field B0. Case 2 will refer to R ≥ Rm, in which the fluid at r > Rm experiences an

inhomogeneous and decaying magnetic field strength.

For Case 1 (R ≤ Rm) the yield stress is constant, σy = σy0 + αB2
0 (Eq. 9.10).

Integrating Eq. 9.7 from R to r and using the boundary condition p(R) = 0 shows

that the pressure field is linear,

p(r) = −2(σy0 + αB2
0)

h
(R− r), (9.11)

and takes the maximum negative value p(r = 0) = −2σy(R/h) = −2(σy0+αB2
0)(R/h).

This pressure field is then used in Eq. 9.3 to determine the force F acting on the top

plate,

F =
2

3
π(σy0 + αB2

0)
R3

h
. (9.12)

which applies only for Case 1 with R ≤ Rm.

For Case 2 (R ≥ Rm) the same procedure is followed, but the inhomogeneous

magnetic field strength must be considered. For the region 0 ≤ r ≤ Rm, the yield

stress is constant, σy = σy0 + αB2
0 , and Eq. 9.7 is integrated from Rm to r to find

p(r) = p(Rm)− 2(σy0 + αB2
0)

h
(Rm − r), (for 0 ≤ r ≤ Rm), (9.13)
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which is similar to Eq. 9.11 but includes the matching condition p(Rm). The pressure

field for Rm ≤ r ≤ R is found by integrating Eq. 9.7 from R to r, using the boundary

condition p(R) = 0. Integration of Eq. 9.7 requires the yield stress expression (Eq. 9.9)

and the field condition (Eq. 9.10), and results in the pressure field

p(r) = −2σy0

h
(R− r)− 2

5
αB2

0

Rm

h

[(
r

Rm

)−5

−
(
R

Rm

)−5
]

, (for Rm ≤ r ≤ R).

(9.14)

The decay of the field-induced pressure magnitude for r ≥ Rm is very strong, since

dp/dr ∼ σy ∼ B2 ∼ (r/Rm)−6 in this region. The pressure field expressions (Eqs. 9.13

and 9.14) are then used to determine the force F , first by using Eq. 9.14 to solve for the

term p(Rm), and then by substitution into and integration of Eq. 9.3. The expression

for the normal force F is

F

Fm
=


(

1 + σy0

αB2
0

)(
R
Rm

)3

R/Rm < 1[
2−

(
R
Rm

)−3

+ σy0

αB2
0

(
R
Rm

)3
]

R/Rm > 1
(9.15)

where Fm = 2
3
παB2

0R
3
m/h0. The peak force required to initiate deformation, Fpeak, is

associated with the initial conditions R = R0, h = h0. The adhesive performance is

determined by three non-dimensional variables, R/Rm, σy0/αB
2
0 , and F/Fm.

For R0/Rm ≤ 1 the fluid experiences a homogeneous field strength B0, and there-

fore exhibits a homogeneous yield stress. For this case the adhesive force is equivalent

to the plastic yield stress fluid theory (see Eq. 9.8 and Table 9.1), such that adhesive

force increases as the cubic of the fluid radius, F ∼ R3. For the fluid extending be-

yond the radius of the permanent magnet, R0/Rm > 1, the activation field strength

is inhomogeneous, decreasing for r > Rm. Adding more fluid (increasing R0/Rm)

will increase the peak adhesive force but with weaker dependency on R0/Rm. If

σy0/αB
2
0 = 0, the adhesive performance will asymptotically approach a constant

value as R0/Rm >> 1, F/Fm → 2. However, the MR fluid used in this study exhibits

a finite apparent yield stress at zero field, σy0 ≈ 6.75 Pa. The off-state yield stress
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can dominate the response if σy0/αB
2
0(R/Rm)3 >> 2, e.g. when the fluid extends far

beyond the magnet.

The validity of these models is tested with experiment in the following sections.

9.4 Results: Passive Fluids

The experimental system is validated by probe-tack tests on a Newtonian oil and

the Carbopol gel. To setup a probe tack test, an initial volume of fluid is placed on

the lower plate and the upper plate is lowered to squeeze the fluid into a circular

disk shape with apparent height h. For Newtonian fluids the radius is kept smaller

than the upper plate radius, so that contact line pinning is avoided at the edge of

the plate. For Carbopol gel tests, the fluid is deliberately overfilled so that excess

material squeezes out all sides of the confinement space. Excess gel is then scraped

away using a flat edge so that the initial shape and the fluid radius can be precisely

controlled. Adhesive probe tack tests are performed by increasing the apparent height

at a constant speed, and the resulting force curves are measured.

The adhesive force predictions summarized in Table 9.1 are for instantaneous

values of fluid radius R and height h. For the experimental results presented here the

fluid volume is constant, which imposes a constraint on the relationship between the

instantaneous values of R and h. The constraint results in

R2 =
R2

0h0

h
(9.16)

in which R0 and h0 are the initial values of fluid radius and height, respectively.

9.4.1 Newtonian oil viscous adhesion

Experimental results for the adhesive performance of the Newtonian oil are given in

Figure 9-6, which shows measured force as a function of the apparent gap height.

The theoretical results predicted by the Stefan adhesion model are shown by the

dashed lines in the Figure. No fitting parameters are used here since all geometrical

232



Figure 9-6: Newtonian oil adhesive performance, measured force as a function of
apparent gap height. The Stefan adhesion model (dashed lines) is predictive for
sufficiently small loads when system compliance is negligible, and sufficiently small
values of h(t)/R(t) such that the lubrication approximation holds. Here D0 = 49 mm
and η = 9.281 Pa.s for all tests. ḣ is given in the key. (a) h0 = 1.0 mm, (b)
h0 = 0.5 mm.

parameters are known and the viscosity was measured to be η = 9.281 Pa.s. Notice

the model scaling of F ∼ h−5 which results from substituting the constant volume

constraint, Eq. 9.16, into Eq. 9.6. Specifically, the force can be written as a function
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of the initial geometry, R0, h0, and the instantaneous thickness h, such that

FNewtonian =
3

2
πηR4

0h
2
0ḣ

1

h5
. (9.17)

The adhesive performance is quantitatively predicted by the Stefan model within

a certain range of experimental parameters. First, it is applicable for sufficiently

small values of h(t)/R(t) such that the lubrication approximation holds, as indicated

by the deviation of model and experiment at large apparent gap thickness. Second,

the model is applicable for sufficiently small loads when system compliance is negli-

gible. The system compliance has a strong effect for the Newtonian fluid adhesion

because the force depends so sensitively on the true gap, h, and also depends on the

instantaneous velocity ḣ. Figure 9-6 demonstrates the limits of the Stefan adhesion

model for this system. Here h is the apparent gap height (neglecting compliance). For

sufficiently small loads, the system compliance is negligible and the Stefan adhesion

model accurately describes the adhesive performance of the Newtonian silicone oil.

9.4.2 Passive yield stress fluid adhesion

Adhesive probe tack tests for the passive yield stress fluid (Carbopol 940, 2wt%)

are shown in Figure 9-7, in which the gap height values h have been corrected for

instrument compliance. The initial force is negative for these tests because the fluid

was squeezed down to a thickness h0, and a residual force exists after squeezing stops.

The predicted initial force is shown by the line in Figure 9-7a, calculated from Eq. 9.8

using the yield stress value σ = 140.0 Pa. This yield stress value was identified from

the Herschel-Bulkley model fit in Figure 9-2. The experimentally measured initial

force is systematically lower in magnitude than the prediction, which may result from

an overprediction of the yield stress at small rates (cf. Figure 9-2) or a small amount

of stress relaxation of the material.

Once the pull off test is initiated, the initial residual force is released and thereafter

the adhesive force increases. The force reaches a maximum after only a small change

in gap height (likely due to elasticity in the material before yield), and then decays
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Figure 9-7: Adhesive performance of the passive yield stress fluid, Carbopol 2wt%.

as the height increases. For this constant volume adhesive failure the force can be

written as a function of the initial geometry, R0, h0, and the instantaneous thickness

h, by substituting the constant volume constraint, Eq. 9.16, into Eq. 9.8, resulting in

FYieldStress =
2

3
πσyR

3
0h

3/2
0

1

h5/2
. (9.18)

Notice here that the scaling relationship for constant volume deformation of a perfect

plastic material is F ∼ h−5/2. The log-log plot of Figure 9-7b shows that this scaling

relationship indeed holds for these tests. The peak adhesive force (failure force) pre-

dicted by this model can be compared with experiment, which is shown in Figure 9-7c

for various initial conditions. No fitting parameters are used here, since the geometry

is known and the rheology was measured (cf. Figure 9-2). The model coincides well
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Figure 9-8: Experimentally measured adhesive performance of the “off state” MR
fluid. Various separation speeds are examined for the same initial diameter D0 =
49 mm and initial height h0 = 0.4 mm. Here the dashed line is the prediction of the
perfect plastic yield stress adhesion model with σy = 9.12 Pa, corresponding to the
experimentally measured shear stress at the characteristic shear rate γ̇ = 2ḣR0/h

2
0 =

3.06 s−1. Top plate is native aluminum surface.

with experimental results, although a small systematic deviation is apparent at the

smallest initial gap heights h0.

The correspondence between model and experiment for passive fluids provides

confidence that the experimental setup can be used to explore the unique situation

of field-activated magnetorheological fluid adhesion against non-magnetic substrates.

9.5 Results: Field-responsive magnetorheological

fluid

Probe tack tests for the MR fluid are performed as described for the passive fluids.

For field-activated tests, there is an additional step of introducing the permanent

magnet after the fluid is squeezed to a thickness h0. Experimental results for the
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Figure 9-9: Experimentally measured adhesive performance of the “off state” MR
fluid. Various initial diameters D0 examined for the same separation speed ḣ =
10µm/s and initial height h0 = 0.5 mm. Top plate covered with P2000 grit sandpaper.
For reference Dm = 12.7 mm, but no magnet was used for these ambient tests.

Figure 9-10: Initial static force measurement, for data set shown in Fig. 9-9. Top plate
covered with P2000 grit sandpaper. For reference Dm = 12.7 mm, but no magnet
was used for these ambient tests.
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“off-state” MR fluid (no permanent magnet) are shown in Figures 9-8 – 9-10. The

influence of separation speed ḣ is shown in Figure 9-8, indicating that the off-state

MR fluid is not a perfect plastic material, since the pull-off force slightly increses as

a function of pull-off speed. Although the dependence is weak, the slowest pull-off

speed available (ḣ = 10µm.s−1) is used in all subsequent tests to avoid artifacts related

to speed. Figure 9-8 includes a dashed line indicating the model prediction using a

yield stress value σ(γ̇ = 3.1s−1) = 9.12 Pa. This stress (from linear interpolation

of experimental data points in Figure 9-3a) corresponds to the characteristic shear-

rate for the conditions ḣ = 10µm/s, R0 = 24.5 mm, h0 = 0.4 mm. The scaling of

F ∼ h−5/2 is also apparent in Figure 9-8.

The influence of initial geometry conditions is shown in Figure 9-9. Here the fluid

radius varies while all other parameters are kept constant. The scaling of F ∼ h−5/2

is again seen here, since the off-state MR fluid has a static yield stress. The initial

force can be observed to be non-zero for these tests, and is positive (i.e. the fluid pulls

downward on the upper plate). This may result from capillary forces, but the trend

does not clearly correspond with any theory (Figure 9-10). For perfectly parallel and

smooth surfaces, the predicted force caused by capillary effects is

FCapillary = γ
cos θE
h/2

πR2 + γ sin θE2πR. (9.19)

The maximum line traction is shown in Fig. 9-10, which scales linearly as a function

of the diameter, F ∼ D0. The measured force is much larger than this, and therefore

the initial static force is expected to come primarily from a capillary pressure drop.

We observe that the static force does not scale as expected from Eq. 9.19, which

predicts F ∼ D2
0. This contradiction indicates that either the capillary forces are

more complicated (due to contact line pinning, large gaps, or parallelism error), or

that the finite yield stress of the fluid plays a role in this initial static force. For

analysis of peak adhesive force, we will take Fpeak − Fstatic, to eliminate the static

force contribution.

The adhesive force is increased by introducing a permanent magnet to activate

238



Figure 9-11: Experimentally measured adhesive performance for a moderately acti-
vated MR fluid (Alnico 8 disc magnet), Bface = 0.077 T on face of magnet, but just
above bottom plastic surface B0 = 0.061 T. Various initial diameters D0 examined
for the same separation speed ḣ = 10µm/s and initial height h0 = 0.5 mm. The top
plate is covered with P2000 grit sandpaper, Dm = 12.7 mm.

the magnetorheological fluid. Figure 9-11 shows force vs. displacement curves for the

Alnico8 permanent magnet, with B0 = 0.061 T. Each curve corresponds to different

values of R0/Rm, with all other parameters held constant. A line representing F ∼

h−5/2 is shown for reference, which would be expected to apply for the cases with

R0/Rm ≤ 1. This is approximately the case, at least initially as the plates begin to

pull apart. The maximum adhesive force occurs at the beginning of the pull-off test for

these curves. Interestingly, the adhesive force peaks and is approximately constant

over a range of h for the curves with R0/Rm ≥ 1. This behavior is distinct from

the passive yield stress fluid performance, and may be related to the inhomogeneous

magnetic field condition, in which a supply of ‘low-activation’ fluid is available to flow

into the region with approximately constant magnetic field B0.

Experimental measurements with a stronger magnetic field are shown in Figure 9-

12, in which B0 = 0.296 T. Just as in Figure 9-11, the fluid radius R0/Rm is varied
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Figure 9-12: Experimentally measured adhesive performance for a strongly activated
MR fluid (Neodymium disc magnet), Bface = 0.389 T on face of magnet, but just
above bottom plastic surface B0 = 0.296 T. Various initial diameters D0 examined
for the same separation speed ḣ = 10µm/s and initial height h0 = 0.5 mm. The
top plate is covered with P2000 grit sandpaper, Dm = 12.7 mm. (a) Log-Log plot,
(b)Linear-Linear plot of same data, which highlights the iterative sawtooth failure
leading up to the peak force (for R/Rm = 2.81, 3.97).

while all other experimental parameters are held constant. The force vs. displacement

curves for this case are very different than previous observations. In this case the

peak stress does not occur near the initial gap height, rather the force grows to a

maximum value. Furthermore, a distinct sawtooth pattern can be seen in the curves

for R0/Rm = 2.81, 3.97. The linear-linear plot in Figure 9-12b highlights the sawtooth

behavior. This sawtooth pattern is extremely repeatable, and performing successive

tests on the same sample results in curves that are almost identical, in which the

saw tooth portions overlap. The spatial frequency of the sawtooth pattern has been
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observed to depend on speed, such that the spatial frequency increases as ḣ increases,

eventually leading to smooth force vs. displacement curves at a sufficient separation

speed ḣ. The sawtooth pattern is likely associated with a stick-slip phenomenon,

which is correlated with the finite compliance of the instrument. When viewed from

below through the transparent bottom plate, the fluid radius R can be observed to

“jump” at a frequency which seems to correspond with the sawtooth frequency. The

analysis of the sawtooth pattern is kept as future work, but one motivation for such

understanding is the fact that a sawtooth pattern may help to indicate the proximity

to adhesive failure of a functional device.

The peak adhesive forces from experimental measurements (including other data

not shown here) are compared with predictions of the model developed in Section 9.3.

Figure 9-13 shows that the models are quantitatively predictive for the case of low to

moderate field activation B0 < 0.1 T. The peak force increases as a function of the

fluid radius, levels off as R0/Rm > 1, and increases again once the static yield stress

becomes significant.

For magnetic activation with higher fields (B0 > 0.1 T), the model of Section 9.3

overpredicts the experimental measurements, as shown in Figure 9-14. Indeed, the

experimental force vs. displacement curves (Figure 9-12) show dramatically different

behavior than for the low field activation. This is most pronounced by the growth

of adhesive force as the gap is increased, and also the dramatic failure near the peak

force. It is likely that interfacial failure is occuring with these tests, which is not

currently included in the model presented here.

9.5.1 Failure modes and pattern formation with magnetorhe-

ological fluid adhesion

In the context of adhesive locomtoion, one stark benefit of MR fluids is that very

little fluid is left on the substrate under certain circumstances. If adhesive failure

occurs while the fluid is activated, then the fluid will be attracted to the magnetic

field source and therefore pull away from the underlying substrate. Thus, in contrast
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Figure 9-13: Experimentally measured peak adhesive force (open symbols) at mod-
erate magnetic field B0 = 0.61 T, for various initial geometries h0 and (R0/Rm). The
theoretical predictions of the current model are given by the lines (see Section 9.3).
No fitting parameters are used.

to real snails and slugs, a robotic crawler using MR fluid may be able to leave no

slime trail at all!
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Figure 9-14: Experimentally measured peak adhesive force (open symbols) at high
magnetic field B0 > 0.14 T, for various initial geometries h0 and (R0/Rm). The
theoretical predictions of the current model are given by the lines (see Section 9.3).
No fitting parameters are used. The experimentally measured adhesive strength is
systematically lower than predicted by theory for these field strengths.

Furthermore, some very interesting patterns were observed in the fluid which

remained on the “foot” surface containing the magnet. Figure 9-15 maps out some

regimes in which cusp-like flower petals can be observed on the substrate. These

initial observations are currently under investigation and will be the subject of future

work.

9.6 Conclusions

In addition to the experimental investigations in this chapter, Fig. 9-16 demonstrates

the feasibility of using magnetic fields for on/off adhesion to various nonmagnetic

substrates, including aluminum, plastic, wood, ceramic tile, and glass. This adhesion

is enabled by a field-responsive viscoplastic magnetorheological fluid. A model of MR

fluid adhesion under inhomogeneous magnetic fields has been developed, and quanti-

tatively describes the peak force performance for moderate magnetic field strengths.

The reversible adhesion mechanism is fast (sub-second) and allows for “leave low
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Figure 9-15: Remnant fluid patterns after adhesive failure, for various parameter
values B0 and R0/Rm. Images shown of the surface containing the permanent magnet.
Opposing top surfaces are not shown, which exhibit “clean” failure for R0/Rm ≤ 1.5
and remnant fluid rings for R0/Rm ≥ 2.8. The “flower” instability is observed for
large R0/Rm and moderate magnetic fields.

trace” adhesion since the adhesive fluid is attracted to the magnetic field source and

the adhesive can remain attached to the magnetic “foot” at failure.

Many unexplored parameters still exist for the problem of field-responsive mag-

netorheological fluid adhesion, such as substrate material, surface roughness, fluid

thickness, magnetic field orientation, and other modes of adhesive failure such as

peeling. Furthermore, a number of interesting phenomena can be explored in more

detail in the future, such as the stick/slip sawtooth waves observed in the force vs.

displacement curves with strong magnetic fields, the over-prediction of peak forces

for strong magnetic fields, and the “flower” instability which is observed at moderate

magnetic field strength. The topic of field-activated MR fluid adhesion should be a

rich source of both scientific and engineering development in the future.
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Figure 9-16: Demonstration of using magnetic fields for reversible adhesion to non-
magnetic substrates, enabled by a viscoplastic magnetorheological fluid. Surfaces
shown are aluminum, plastic, wood, ceramic tile, and glass. The suspended mass,
m = 112 g, is a switchable permanent magnet configuration which creates a magnetic
field strength on the order of B = 0.16 T over an area of approximately A ∼ 230 mm2.
The holding stress is therefore at least mg/A ∼ 4.8 kPa.
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Chapter 10

Conclusions and outlook

The core of this thesis is rheology, which connects multiple aspects of the work in-

cluding biomechanics and bioinspiration, adhesion science, robotics, field-responsive

fluids, measurement theory and techniques, and design. The contributions presented

here span the spectrum from theory and modeling to experimental rheometry and

demonstrated applications of complex fluids and soft solids. The two questions which

have driven these contributions are: “How do we best describe nonlinear viscoelas-

ticity?” and “How can we use nonlinear rheological properties to our advantage?”

The first question of how best to describe nonlinear rheological behavior was

primarily addressed by a new theoretical framework and language (or ontology) for

describing Large Amplitude Oscillatory Shear (LAOS) rheometry. There exists a need

for self-consistent, laboratory-independent, low-dimensional descriptions of nonlinear

material responses. I have proposed a descriptive language and a set of unambiguous

material measures which quantify LAOS responses in such a way (Chapter 2). The

scheme provides a physical interpretation of deviations from linear viscoelastic behav-

ior, characterizing elastic and viscous nonlinearities separately, simultaneously, and

more thoroughly than currently-reported measures. This is facilitated by interpreting

the stress response σ(t) as a function of the two orthogonal mechanical inputs of strain

γ(t) and strain-rate γ̇(t), i.e. σ (γ(t), γ̇(t)), rather than simply a function of time as

is conventionally done with Fourier transform rheology. The analysis can be applied

generally to LAOS results using the raw oscillatory data of strain γ(t) and stress σ(t).
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Such data can be analyzed with software developed during this thesis (Chapter 3),

which has already been distributed to more than 25 academic and industrial users

that have requested the software (contact MITlaos@mit.edu with requests).

The new LAOS framework was used for describing various constitutive models and

experimental results (Chapters 4 and 7). In the future, this framework could be ap-

plied to the study of many other complex fluids and soft solids, including biopolymer

networks, foods, nano-composites, and concentrated suspensions. Extensions of the

framework to other large amplitude oscillatory tests were discussed in Chapter 5. This

thesis has documented some initial thoughts on the issue of a stress-controlled LAOS

framework, including definitions of nonlinear compliances and nonlinear fluidities.

The detailed definition of the stress-controlled orthogonal polynomial decomposition

remains for future work.

The new LAOS framework presented herein is broadly applicable to any material

which can be tested in oscillatory shear, including complex fluids and soft solids, and

serves as a complement to the familiar and successful linear viscoelastic framework

embodied in the familiar material functions G′(ω) and G′′(ω). The new measures

presented here provide a framework for meaningful nonlinear property measurements

that will provide a more rigorous test of constitutive models, and serve as a sensitive

probe for comparing and understanding the true nonlinear rheological properties of

different materials. This framework can support further refinements in our under-

standing of structure-property relationships and help researchers and engineers share

knowledge about complex nonlinear viscoelastic materials in a clear, concise, and

complete way. It is hoped that a better description of nonlinear rheological proper-

ties will make these complex materials easier to understand, and therefore easier to

use in engineering designs.

The second theme driving this thesis is the use of nonlinear rheological properties

to enable new functionalities. Several novel uses of nonlinear rheological properties

have been modeled and demonstrated, including snail-like wall climbing using bioin-

spired yield stress fluids (Chapter 8) and tunable, fast-switching, low-residue adhesion

using magnetorheological fluids (Chapter 9). These technologies depend on nonlin-
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ear rheological properties to function properly. The feasibility of both concepts was

modeled and demonstrated by considering the adhesive materials to be yield stress

fluids. The tunable adhesion using magnetorheological fluids is a future research area

which is particularly rich. The experiments, models, and feasibility presented here

provide a strong foundation for future work, and a number of interesting phenom-

ena have been documented (Chapter 9), however they are yet to be fully explored.

Furthermore, it is envisioned that optimization of both applications will necessarily

require an advanced understanding of the nonlinear rheological properties, e.g. with

the use of the ontology developed in this thesis.

The work presented here provides the means to a better understanding of biological

and engineered systems which involve nonlinear viscoelastic materials. This naturally

applies to many physiological, processing, and in-use situations. Additionally, com-

plex rheological behavior can be deliberately utilized to enable novel functionality. It

is envisioned that future engineered systems will rely on such materials which defy

categorization as simply fluid or solid. As such, the description, understanding, and

use of nonlinear viscoelastic materials will be of critical importance.

249



250



Appendix A

Chebyshev polynomials

The Chebyshev polynomials of the first kind are orthogonal over the domain [-1,1].

The n = 0− 5 order polynomials, along with the recursive definition are given below

[46].

T0 (x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1

T5(x) = 16x5 − 20x3 + 5x

Tn+1 (x) = 2xTx (x)− Tn−1 (x)

(A.1)

The first, third,and fifth order polynomials are shown in Figure A-1. The orthogo-

nality relation is given by

∫ 1

−1

Tm(x)Tn(x)

(1− x2)1/2
dx =

 1
2
π for m 6= 0, n 6= 0

π for m = n = 0
. (A.2)
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Figure A-1: Chebyshev polynomials of the first kind; plots of the first few odd poly-
nomials.

In this use is made of the identity Tn(cos θ) = cos(nθ). This can be used to derive

the identity for Tn(sin θ) by using sin θ = cos(π/2− θ).

Tn (sin θ) = Tn

(
cos
(π

2
− θ
))

= cos (nπ/2− nθ)

= cos (nπ/2) cos (nθ) + sin (nπ/2) sin (nθ)

=

 sin (nθ) (−1)(n−1)/2 n : odd

cos (nθ) (−1)n/2 n : even

(A.3)

252



Appendix B

MATLAB source code

This Appendix includes the MATLAB source code behind the data analysis performed

by MITlaos (3). The data processing of MITlaos is based on the processing presented

here, however, MITlaos also includes a graphical user interface and a few features

which make data analysis easier. For clarity, such additional code associated with

the graphical user interface of MITlaos is not included here. The source code for

automatic batch processing of LAOS results follows.

B.1 JoR laos batch analyze v2p0.m

The MATLAB script ‘JoR laos batch analyze v2p0.m’ performs automated batch

processing for a collection of LAOS test results, each contained in an individual file.

There is no graphical user interface associated with this script. It repeatedly calls

‘JoR laos analyze v3p3.m’ to perform the analysis, and compiles all of the viscoelastic

parameters into a single data file.

1 % ============================================
2 % Batch process LAOS analysis
3 % RHEwoldt
4 %
5 % Performs the following functions
6 % * Loads files created with appropriate naming structure
7 % * Combines data from selected files into one matrix
8 % * Writes this large matrix to a single data file
9 %

10 % ============================================
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11

12

13 clear
14 clc
15

16

17 directory = 'C:\Research\ARES\070123 Micellar LAOS\RawDataNewNames\ReducedPipkinSpace−NoAxes\'
18

19 %files that end in *.dat are original raw data files
20 files = dir(strcat(directory,'*.dat'))
21 savefileE = strcat(directory,'070608−CPyCL−ReduxDATA−Eparameters.txt')
22 savefileV = strcat(directory,'070608−CPyCL−ReduxDATA−Vparameters.txt')
23

24 for i=1:length(files)
25

26 %==== START Extract omega from file name
27 for k=1:length(files(i).name)−4
28 if 'omega'==files(i).name(k:k+4)
29 omeganum = k;
30 end
31 end
32 Sw10 = files(i).name(omeganum+5:omeganum+6);
33 Sw00p10 = files(i).name(omeganum+8:omeganum+9);
34

35 omega = str2num(Sw10) + str2num(Sw00p10)/100
36 %==== END Extract omega from file name
37

38 data = JoR laos analyze v3p3(strcat(directory,files(i).name), omega);
39 data all e(i,:) = data(1,:);
40 data all v(i,:) = data(2,:);
41

42 if i==round(length(files)/2)
43 msgbox('5 second pause in middle of processing')
44 pause(5)
45 end
46

47 end
48

49 fid = fopen(savefileE, 'w');
50 fprintf(fid,'omega gam 0 G1'' GM'' GL'' e3 G3'' S');
51 fprintf(fid, '\n');
52 for m=1:length(data all e(:,1))
53 fprintf(fid,'%d %d %d %d %d %d %d %d \n',data all e(m,:));
54 end
55 fclose(fid)
56

57

58 fid = fopen(savefileV, 'w');
59 fprintf(fid,'omega gam 0 G1'''' EtaM'' EtaL'' v3 G3'''' T');
60 fprintf(fid, '\n');
61 for m=1:length(data all v(:,1))
62 fprintf(fid,'%d %d %d %d %d %d %d %d \n',data all v(m,:));
63 end
64 fclose(fid)
65

66

67 open(savefileE)
68 open(savefileV)

B.2 JoR laos analyze v3p3.m

The MATLAB script ‘JoR laos analyze v3p3.m’ performs automated data analysis
on an individual LAOS test waveform.
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1 function datasave = JoR laos analyze v3p3(loadfile, omega)
2 % ============================================
3 % Processing of LAOS raw data (automatically, through batch process call)
4 % RHEwoldt February 2007
5 %
6 % Skeleton of script from Janmey Analysis.m (RHE Feb 2007)
7 %
8 % Performs the following functions
9 % *Loads a single data file at a given strain amplitude and frequency

10 % *User selects window of data to analyze
11 % *FT analysis for multiple cycles of data
12 % *Calculates moduli: Gn', Gn'', M, L, S, S 2 based on FT decomposition
13 % *Plots/Prints various figures as desired
14 % *Saves data files (if desired) of filtered [gamma, tau, tau e]
15 % and filtered [gammadot, tau, tau v]
16 % ============================================
17

18 % % % % % % % % clear %kept here for debugging purposes
19 % % % % % % % % clc
20

21 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
22 % ====== START Manual Input Required ======
23 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
24

25 % time gamma gamma dot tau xy tau xx−tau yy (Dumbbell data setup)
26 timecol = 0; %Column in data file containing time [s]
27 % (set to 0 if no time available)
28 straincol = 1; %Column in data file containing strain[−]
29 stresscol = 2; %Column in data file containing stress[Pa]
30

31 % windowing percentage
32 winpctfront = 5; %set to 0 for no window, or chose percent of front/back
33 winpctback = 5; % of data range to ignore
34

35 %START Plotting & Saving On/Off Switches:
36 SaveData = 1;
37

38 POver = 0; %Overview plot, includes Lissajous, Chebyshev
39 POverPrint = 0; % unfiltered data, FT spectrum, Viscoelastic Quantifiers
40

41 PPipLiss = 1; % Lissajous plots for creating Pipkin space (NO AXES!)
42

43

44 PLeg = 0; % Legednre polynomial decomposition
45 PLegPrint = 0; %
46

47 PCheb = 0; % Chebyshev
48 PChebPrint = 0; %
49

50 PFT = 0; % Full Raw Data with FT decomposition
51 PFTPrint = 0; %
52

53 PLiss = 0; % Lissajous curves of Raw, & Recon
54 PLissPrint = 0; %
55

56 PGeo = 0; % Geo Interp Only
57 PGeoPrint = 0;
58 %END Plotting & Saving On/Off Switches
59

60

61

62

63 %%%%===== FOR BATCH PROCESSING ======
64 pathname='';
65 file = loadfile;
66 % % % % % % % % directory = 'C:\Research\Carreau\'; %Start directory for OPEN dialog
67 % % % % % % % % [file, pathname] = uigetfile(strcat(directory,'*dat'), 'Pick a Data File')
68 %%%%===== FOR BATCH PROCESSING ======
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69

70

71 % Filenames of saved files
72 savefile img TTe Strn = strcat(pathname,file,' Fig TTe−Strn.tiff');
73 savefile img TTv Rate = strcat(pathname,file,' Fig TTv−Rate.tiff');
74 savefile vStrain = strcat(pathname,file,' 1cycle−vStrain.txt');
75 savefile vRate = strcat(pathname,file,' 1cycle−vRate.txt');
76 savefile VEparameters = strcat(pathname,file,' VEparameters.txt');
77

78 % % % % % % % % % winput = inputdlg('Angular Frequency [rad/s]','Numerical Input');
79 % % % % % % % % % w = str2num(cell2mat(winput))
80 w = omega;
81

82 m=11; % Number of "Higher Harmonics" to consider
83 PPQC=100; %Points Per Quarter Cycle for FT reconstruction
84

85 contents = importdata(strcat(pathname,file));
86

87 if size(contents) == 1
88 data = contents.data;
89 else
90 data = contents;
91 end
92

93 % this code was used when manually selecting the input range
94 % % % if timecol 6= 0
95 % % % H=figure;plot(data(:,timecol),data(:,straincol)/max(data(:,straincol)),'b');
96 % % % hold on;plot(data(:,timecol),data(:,stresscol)/max(data(:,stresscol)),'r');
97 % % % xlabel('Time [s]');axis tight
98 % % % else
99 % % % H=figure;plot(data(:,straincol),'b');hold on;plot(data(:,stresscol),'r');

100 % % % xlabel('Index')
101 % % % end
102 % % % legend('Strain','Stress','Location','SouthEast');ylabel('Arbitrary');
103 % % %
104 % % % title('Click to Select TWO Bounds of Input Limits, then Press >ENTER')
105 % % %
106 % % % %Window data from Front and Back, enter percentage to discard:
107 % % % winbox = ginput;
108 % % % close(H)
109 % % %
110 % % % if length(winbox(:,1)) 6= 2
111 % % % errordlg('Start Over: Please select TWO points for windowing data')
112 % % % return
113 % % % end
114

115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
116 % ====== END Manual Input Required ======
117 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
118

119

120 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
121 % ====== START Data Preprocessing ======
122 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
123

124 % Data Windowing
125 winstart=round(length(data(:,straincol))*winpctfront/100 + 1);
126 winstop = round(length(data(:,straincol)) − length(data(:,straincol))*winpctback/100);
127

128 % this code was used when manually selecting the input range
129 % % % % % % % % if timecol 6= 0
130 % % % % % % % % % Find index of selected times for windowing
131 % % % % % % % % TimeWin = winbox(:,1);
132 % % % % % % % % winstart = find(min(TimeWin) < data(:,timecol),1);
133 % % % % % % % % if max(TimeWin) > max(data(:,timecol))
134 % % % % % % % % winstop = length(data(:,timecol));
135 % % % % % % % % else
136 % % % % % % % % winstop = find(max(TimeWin) < data(:,timecol),1);
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137 % % % % % % % % end
138 % % % % % % % % else
139 % % % % % % % % %Identify selected indices for windowing
140 % % % % % % % % RowWin = round(winbox(:,1));
141 % % % % % % % % winstart = min(RowWin);
142 % % % % % % % % if winstart <1
143 % % % % % % % % winstart = 1;
144 % % % % % % % % end
145 % % % % % % % % winstop = max(RowWin);
146 % % % % % % % % if winstop > length(data(:,straincol)) %if index exceeds dimensions
147 % % % % % % % % winstop = length(data(:,straincol)); %set stop index to end
148 % % % % % % % % end
149 % % % % % % % % end
150

151 %Extract selected data
152 if timecol 6=0
153 time uneven = data(winstart:winstop,timecol);
154 disp uneven = data(winstart:winstop,straincol); %Strain data − Raw
155 torque uneven = data(winstart:winstop,stresscol); %Stress data − Raw
156

157 %Force strain & stress data to be linearly space in time
158 time=linspace(time uneven(1),time uneven(end),length(time uneven));
159 disp = interp1(time uneven,disp uneven,time);
160 torque = interp1(time uneven,torque uneven,time);
161 else
162 disp = data(winstart:winstop,straincol); %Strain data − Raw
163 torque = data(winstart:winstop,stresscol); %Stress data − Raw
164 end
165

166 clear data
167

168 % Trim data to be an integer number of cycles, starting with SINE strain
169 [gam, tau, Ncycles]= cycletrim(disp, torque);
170

171 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
172 % ====== END Data Preprocessing ======
173 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
174

175

176 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
177 % ==== START FT Decomposition and Reconstruction ====
178 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
179

180 [A0, AnS, BnS]= FTtrig(tau); %will neglect A0 in reconstruction
181 [gA0, gAnS, gBnS]= FTtrig(gam); %will neglect gA0 in reconstruction
182

183 % gam 0 = abs(gBn(Ncycles)); %identify strain amplitude
184 %acknowledge possible phase shift, but neglect h.o.t.
185 gam 0 = sqrt( gBnS(Ncycles)ˆ2 + gAnS(Ncycles)ˆ2 );
186 ∆ = atan( gAnS(Ncycles) / gBnS(Ncycles)); %raw signal phase shift
187

188 for q=1:length(AnS) %Create NOT SHIFTED Fourier coefficients
189 An(q) = AnS(q)*cos(q*∆/Ncycles) − BnS(q)*sin(q*∆/Ncycles);
190 Bn(q) = BnS(q)*cos(q*∆/Ncycles) + AnS(q)*sin(q*∆/Ncycles);
191 end
192 % Now proceed as it was before (Introduction of UNshift in v3p3 RHE) %
193

194

195 PPC=4*PPQC; %Points Per Cycle
196 TP=6*PPQC+1; %Total Points: Points for Three Half−Cycles plus one for overlap
197

198 gam recon=zeros(PPC,1);
199 for q=1:PPC %sum for each point in time, 1 full cycle, no overlap
200 gam recon(q) = gam 0*sin(2*pi*(q−1)/PPC);
201 end
202 %make gam recon 1.5 cycles with 1 point overlap
203 gam recon = [gam recon; gam recon(1:2*PPQC+1)];
204
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205 % w (omega) is currently a MANUAL input
206 % strain−rate is equal to omega*strain−shifted−1/4−cycle
207 gamdot recon=w*gam recon(PPQC+1:PPQC+PPC); %One cylce of gamdot
208 gamdot recon=[gamdot recon; gamdot recon(1:2*PPQC+1)]; %make 1.5 cycles
209 % figure;plot(gamdot recon);hold on;plot(gam recon)
210

211 %%% Obsolete, now that I'm reconstructing strain data too.
212 % T=round(length(gam)/Ncycles) %integer number of data points per cycle
213 % Tnum = length(gam)/Ncycles; %decimal number of data points per cycle
214

215 tau recon = zeros(PPC,1); %initialize tau recon (m harmonics included)
216 FTtau e = zeros(PPC,1);
217 FTtau v = zeros(PPC,1);
218

219 tau recon1 = zeros(PPC,1); %initialize tau recon1 (1st harmonic only)
220 tau recon3 = zeros(PPC,1); %initialize tau recon3 (1st & 3rd Harmonics)
221

222 for q=1:PPC %sum for each point in time for 1 full cycle, no overlap
223 for p=1:2:m %m:total number of harmonics to consider
224 %sum over ODD harmonics only
225 tau recon(q) = tau recon(q) + Bn(Ncycles*p)*sin(p*2*pi*(q−1)/PPC) ...
226 + An(Ncycles*p)*cos(p*2*pi*(q−1)/PPC);
227

228 FTtau e(q) = FTtau e(q) + Bn(Ncycles*p)*sin(p*2*pi*(q−1)/PPC);
229 FTtau v(q) = FTtau v(q) + An(Ncycles*p)*cos(p*2*pi*(q−1)/PPC);
230

231 end
232 for p=1:3 %Now just the first 3 harmonics
233 tau recon3(q) = tau recon3(q) + Bn(Ncycles*p)*sin(p*2*pi*(q)/PPC) ...
234 + An(Ncycles*p)*cos(p*2*pi*(q)/PPC);
235 end
236 for p=1 %Now just the first harmonic
237 tau recon1(q) = tau recon1(q) + Bn(Ncycles*p)*sin(p*2*pi*(q)/PPC) ...
238 + An(Ncycles*p)*cos(p*2*pi*(q)/PPC);
239 end
240 end
241 %make FTtau * have one point overlap
242 FTtau e(PPC+1,1)=FTtau e(1);
243 FTtau v(PPC+1,1)=FTtau v(1);
244 %make tau recon* 1.5 cycles with 1 point overlap
245 tau recon = [tau recon; tau recon(1:2*PPQC+1)];
246 tau recon3 = [tau recon3; tau recon3(1:2*PPQC+1)];
247 % figure;plot(gam recon, tau recon)
248

249 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
250 % ==== END FT Decomposition and Reconstruction =====
251 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
252

253 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
254 % ====== START Geo Interp Calculation ========
255 % Using FT reconstruction signals.
256 % FT recon must be made such that
257 % strain=0 exactly after each 1/2 cycle,
258 % and strain=max exactly after each 1/2 cycle
259 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
260 tau v = zeros(PPC,1);
261 tau e = zeros(PPC,1);
262 for k=1:PPC
263 %viscous stress, odd wrt strain−rate
264 tau v(k) = 0.5 * (tau recon(k) − tau recon(TP+1−k));
265 %elastic stress, odd wrt strain
266 tau e(k) = 0.5 * (tau recon(k) − tau recon(PPC+2−k));
267 end
268 tau v(PPC+1)=tau v(1); % create overlap points
269 tau e(PPC+1)=tau e(1); %
270

271 %
272 % START Polynomial Decomposition
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273 %
274 % Create domains for elastic and viscous, from [−1:+1]
275 Xe=gam recon(3*PPQC+1:5*PPQC+1)/gam 0; %gam recon is 1.5 cycles
276 Xv=gamdot recon(2*PPQC+1:4*PPQC+1)/(gam 0*w); %gamdot recon is 1.5 cycles
277 % Create corresponding input function from Geo. Interp. decomposition
278 fe=[tau e(3*PPQC+1:4*PPQC); tau e(1:PPQC+1)]; %tau e is 1 cycle
279 fv=tau v(2*PPQC+1:4*PPQC+1); %tau v is 1 cycle
280

281 %
282 % Legendre Polynomial Decomposition
283 % Use Xe, fe
284 % and Xv, fv
285 % for inputs
286 Cn e = legendre decompose(fe,15,Xe);
287 Cn v = legendre decompose(fv,15,Xv);
288

289 % Legendre Polynomial Reconstruction
290 %
291 % Elastic
292 fe L1 = legendre compose(Cn e(1),Xe);
293 fe L3 = legendre compose(Cn e(1:3),Xe);
294 fe L5 = legendre compose(Cn e(1:5),Xe);
295

296 % Viscous
297 fv L1 = legendre compose(Cn v(1),Xv);
298 fv L3 = legendre compose(Cn v(1:3),Xv);
299 fv L5 = legendre compose(Cn v(1:5),Xv);
300

301

302 %
303 % Chebyshev Polynomial Decomposition
304 % Use Xe, fe
305 % and Xv, fv
306 % for inputs
307 An e = chebyshev decompose(fe,15,Xe);
308 An v = chebyshev decompose(fv,15,Xv);
309 %
310 % Chebyshev Polynomial Reconstruction
311 % NOTE: An(1) is ZEROETH order polynomial
312 % this is currently different than Cn from Legendre decomposition
313 %
314 % Elastic
315 fe C1 = chebyshev compose(An e(1:2),Xe);
316 fe C3 = chebyshev compose(An e(1:4),Xe);
317 fe C5 = chebyshev compose(An e(1:6),Xe);
318 % Viscous
319 fv C1 = chebyshev compose(An v(1:2),Xv);
320 fv C3 = chebyshev compose(An v(1:4),Xv);
321 fv C5 = chebyshev compose(An v(1:6),Xv);
322

323 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
324 % ====== END Geo Interp Calculation ========
325 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
326

327 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
328 % ==== START Calculate Moduli: Gn', Gn'', M, L, S, S2 ====
329 %
330 % Note: An: cosine term > Gn''
331 % Bn: sine terms > Gn'
332 % since we're looking at stress response after a SINE STRAIN INPUT
333 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
334

335 if Bn(Ncycles)>0 %ensure that G 1' is positive
336 Gp = Bn/gam 0; %G' from sine terms
337 else
338 Gp = −Bn/gam 0;
339 end
340
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341 if An(Ncycles) > 0 %ensure that G 1'' is positive
342 Gpp = An/gam 0; %G'' from cosine terms
343 else
344 Gpp = −An/gam 0;
345 end
346

347 N=length(An); % number of available harmonics
348 G complex = zeros(N,1);
349 G compNORM = zeros(N,1);
350 for j=1:N
351 G complex(j)=(Gp(j)ˆ2+Gpp(j)ˆ2)ˆ0.5;
352 end
353 for j=1:N
354 G compNORM(j) = G complex(j)/G complex(Ncycles);
355 %max intensity occurs at Ncycles frequency
356 end
357

358 M=0;
359 Lo=0;
360 EtaM = 0;
361 EtaL = 0;
362 for p=1:2:m
363 M = M + p*Gp(Ncycles*p);
364 Lo = Lo + Gp(Ncycles*p)*(−1)ˆ((p−1)/2);
365

366 EtaM = EtaM + (1/w)*(p)*Gpp(Ncycles*p)*(−1)ˆ((p−1)/2);
367 EtaL = EtaL + (1/w)*Gpp(Ncycles*p);
368 end
369 M;
370 L=Lo;
371

372 S=L/M;
373 EtaT=EtaL/EtaM;
374

375 S2=(L−M)/L;
376 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
377 % ==== END Calculate Moduli ========
378 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
379

380

381

382 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
383 % ==== START Plotting ======
384 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
385

386 % The .tiff plots of TTe vStrn
387 % and TTv vRate
388 % are NOT optional, because they are needed to generate the full Pipkin
389 % Space plot
390

391 if PPipLiss ==1
392

393 I=figure;
394 set(I,'PaperUnits','inches')
395 set(I,'Units','inches')
396 set(I,'Position',[10 4 1 1]);
397 set(I,'PaperSize',[1 1])
398 set(I,'PaperPosition',[0.0 0.0 1 1]);
399 % axes('Position',[0.01 0.01 0.775 0.815],'Parent',I)
400 axes('Position',[0.01 0.01 0.85 0.85],'Parent',I)
401 H=plot(gam 0*Xe,fe,'r−−',gam recon(1:PPC),tau recon(1:PPC),'b',[0],[0],'k+');
402 axis off; axis square; axis tight;
403 set(H,'LineWidth',1)
404 set(H,'MarkerSize',3)
405

406 Xlimits = get(gca,'XLim')
407 Ylimits = get(gca,'YLim')
408 set(gca,'XLim',Xlimits*1.05) %loosen axis limits; too tight and the trim linewidth!
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409 set(gca,'YLim',Ylimits*1.05)
410 strtau0 = num2str(abs(max(tau recon)))
411 if strtau0(1) == 0
412 %Force 3 significant figures: I expect tau is always less than 100, and larger than 0.1
413 strtau0end = 5;
414 else
415 strtau0end = 4;
416 end
417 text(0,1.2*Ylimits(2),strcat(strtau0(1:strtau0end),' Pa'),'FontSize',8)
418

419 print('−dtiff','−r600',savefile img TTe Strn)
420 close(I)
421

422

423

424 I=figure;
425 set(I,'PaperUnits','inches')
426 set(I,'Units','inches')
427 set(I,'Position',[10 4 1 1]);
428 set(I,'PaperSize',[1 1])
429 set(I,'PaperPosition',[0.0 0.0 1 1]);
430 axes('Position',[0.01 0.01 0.85 0.85],'Parent',I)
431 H=plot(gam 0*w*Xv,fv,'r−−',gamdot recon(1:PPC),tau recon(1:PPC),'b',[0],[0],'k+');
432 axis off; axis square; axis tight;
433 set(H,'LineWidth',1)
434 set(H,'MarkerSize',3)
435

436 Xlimits = get(gca,'XLim')
437 Ylimits = get(gca,'YLim')
438 set(gca,'XLim',Xlimits*1.05) %loosen axis limits; too tight and the trim linewidth!
439 set(gca,'YLim',Ylimits*1.05)
440 strtau0 = num2str(abs(max(tau recon)))
441 text(0,1.2*Ylimits(2),strcat(strtau0(1:strtau0end),' Pa'),'FontSize',8)
442 print('−dtiff','−r600',savefile img TTv Rate)
443 close(I)
444

445

446 end
447

448 % Plot Legendre polynomial decomposition of Geo. Interp. Decomposition
449 %
450 if PLeg==1
451

452 I=figure;
453 set(I,'Position',[100 100 1020 840]);
454 set(I,'PaperPosition',[0.2500 2.5000 12.0000 9.6000]);
455 subplot(2,2,1);
456 H=plot(gam recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
457 hold on;
458 H=plot(gam 0*Xe,fe,'r');set(H,'LineWidth',2)
459 title(file)
460 H=plot(gam 0*Xe,fe L1,'k');set(H,'LineWidth',2)
461 H=plot(gam 0*Xe,fe L3,'g');set(H,'LineWidth',2)
462 H=plot(gam 0*Xe,fe L5,'m');set(H,'LineWidth',2)
463 axis tight
464 xlabel('Strain \gamma [−]')
465 ylabel('Elastic Stress \tau e [Pa]')
466 legend('\tau {total}','\tau e Total','Legendre Recon: 1','Legendre Recon: 1+3',...
467 'Legendre Recon: 1+3+5','Location','SouthEast')
468 subplot(2,2,2); bar(Cn e/gam 0)
469 title('Legendre Decomposition of \tau {elastic}')
470 xlabel('Polynomial Order, n')
471 ylabel('C n')
472 pos = get(gca,'YLim')/7;
473 text(length(Cn e)/2,4*pos(2),strcat('G 1''=',num2str(Gp(Ncycles)),' Pa'))
474 text(length(Cn e)/2,3*pos(2),strcat('M=',num2str(M),' Pa'))
475 text(length(Cn e)/2,2*pos(2),strcat('L=',num2str(L),' Pa'))
476 subplot(2,2,3);
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477 H=plot(gamdot recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
478 hold on;
479 H=plot(gam 0*w*Xv,fv,'r');set(H,'LineWidth',2)
480 H=plot(gam 0*w*Xv,fv L1,'k');set(H,'LineWidth',2)
481 H=plot(gam 0*w*Xv,fv L3,'g');set(H,'LineWidth',2)
482 H=plot(gam 0*w*Xv,fv L5,'m');set(H,'LineWidth',2)
483 axis tight
484 xlabel('Strain−Rate [sˆ{−1}]')
485 ylabel('Viscous Stress \tau v [Pa]')
486 legend('\tau {total}','\tau v Total','Legendre Recon: 1','Legendre Recon: 1+3',...
487 'Legendre Recon: 1+3+5','Location','SouthEast')
488 subplot(2,2,4); bar(Cn e/(gam 0*w))
489 title('Legendre Decomposition of \tau {viscous}')
490 xlabel('Polynomial Order, n')
491 ylabel('C n')
492 pos = get(gca,'YLim')/7;
493 text(length(Cn e)/2,4*pos(2),strcat('G 1"=',num2str(Gpp(Ncycles)),' Pa'))
494

495 if PLegPrint==1
496 print('−djpeg',strcat(pathname,file,' Fig Legendre.jpg'))
497 end
498

499 end
500

501

502

503 % Plot Chebyshev polynomial decomposition of Geo. Interp. Decomposition
504 %
505 if PCheb == 1
506

507 I=figure;
508 set(I,'Position',[100 100 1020 840]);
509 set(I,'PaperPosition',[0.2500 2.5000 12.0000 9.6000]);
510 subplot(2,2,1);
511 H=plot(gam recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
512 hold on;
513 H=plot(gam 0*Xe,fe,'r');set(H,'LineWidth',2)
514 title(file)
515 H=plot(gam 0*Xe,fe C1,'k');set(H,'LineWidth',2)
516 H=plot(gam 0*Xe,fe C3,'g');set(H,'LineWidth',2)
517 H=plot(gam 0*Xe,fe C5,'m');set(H,'LineWidth',2)
518 axis tight
519 xlabel('Strain \gamma [−]')
520 ylabel('Elastic Stress \tau e [Pa]')
521 legend('\tau {total}','\tau e Total','Chebyshev Recon: 1','Chebyshev Recon: 1+3',...
522 'Chebyshev Recon: 1+3+5','Location','SouthEast')
523 subplot(2,2,2); bar([0:1:length(An e)−1],An e/gam 0)
524 set(gca,'XLim',[−1 length(An e)])
525 title('Chebyshev Decomposition of \tau {elastic}')
526 xlabel('Polynomial Order, n')
527 ylabel('C n')
528 pos = get(gca,'YLim')/7;
529 text(length(An e)/2,4*pos(2),strcat('G 1''=',num2str(Gp(Ncycles)),' Pa'))
530 text(length(An e)/2,3*pos(2),strcat('M=',num2str(M),' Pa'))
531 text(length(An e)/2,2*pos(2),strcat('L=',num2str(L),' Pa'))
532 subplot(2,2,3);
533 H=plot(gamdot recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
534 hold on;
535 H=plot(gam 0*w*Xv,fv,'r');set(H,'LineWidth',2)
536 H=plot(gam 0*w*Xv,fv C1,'k');set(H,'LineWidth',2)
537 H=plot(gam 0*w*Xv,fv C3,'g');set(H,'LineWidth',2)
538 H=plot(gam 0*w*Xv,fv C5,'m');set(H,'LineWidth',2)
539 axis tight
540 xlabel('Strain−Rate [sˆ{−1}]')
541 ylabel('Viscous Stress \tau v [Pa]')
542 legend('\tau {total}','\tau v Total','Chebyshev Recon: 1','Chebyshev Recon: 1+3',...
543 'Chebyshev Recon: 1+3+5','Location','SouthEast')
544 subplot(2,2,4); H=bar([0:1:length(An e)−1],An v/(gam 0));

262



545 set(gca,'XLim',[−1 length(An e)])
546 title('Chebyshev Decomposition of \tau {viscous}')
547 xlabel('Polynomial Order, n')
548 ylabel('C n')
549 pos = get(gca,'YLim')/7;
550 text(length(An e)/2,4*pos(2),strcat('G 1"=',num2str(Gpp(Ncycles)),' Pa'))
551

552 if PChebPrint == 1
553 print('−djpeg',strcat(pathname,file,' Fig Chebyshev.jpg'))
554 end
555

556 end
557

558

559 % Plot Geo. Interp. decomposition, along with Total stress & partially
560 % reconstructed stress
561 if PGeo == 1
562

563 I=figure;
564 set(I,'Position',[100 100 560 840]);
565 set(I,'PaperPosition',[0.2500 2.5000 6.0000 9.6000]);
566 subplot(2,1,1);
567 H=plot(gam recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
568 hold on;
569 H=plot(gam recon(1:PPC),tau recon3(1:PPC),'g');set(H,'LineWidth',2)
570 H=plot(gam recon(1:PPC),tau e(1:PPC),'r');set(H,'LineWidth',2)
571 title(file)
572 xlabel('Strain [−]');ylabel('(Elastic) Shear Stress');
573 axis tight
574 legend(strcat('\tau {total} from FT−recon: ',num2str(m),' harmonics'),...
575 '\tau {total} from FT−recon: 1&3 harmonics','\tau {elastic} from Geo. Interp.',...
576 'Location','SouthEast')
577

578 subplot(2,1,2);
579 H=plot(gamdot recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
580 hold on;
581 H=plot(gamdot recon(1:PPC),tau recon3(1:PPC),'g');set(H,'LineWidth',2)
582 H=plot(gamdot recon(1:PPC),tau v(1:PPC),'r');set(H,'LineWidth',2)
583 title('From Fourier Transform Reconstruction using Odd Harmonics')
584 xlabel('Strain−Rate [sˆ{1}]');ylabel('(Viscous) Shear Stress');
585 axis tight
586 legend('see above','see above','\tau {viscous} from Geo. Interp.','Location','SouthEast')
587

588 if PGeoPrint == 1
589 print('−djpeg',strcat(pathname,file,' Fig GeoInterp.jpg'))
590 end
591

592 end
593

594

595

596 % Plot FT Decomposition
597 %
598 if PFT == 1
599

600 dw = w/Ncycles;
601 wn = [dw:dw:N*dw];
602

603

604 I=figure;
605 set(I,'Position',[100 100 560 840]);
606 set(I,'PaperPosition',[0.2500 2.5000 6.0000 9.6000]);
607

608 subplot(4,1,1); H=plot(tau);
609 title(file)
610 % set(H,'LineWidth',1)
611 xlabel('Time [arb]'); ylabel('Stress [Pa]');
612
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613 subplot(4,1,2); plot(wn,G compNORM)
614 set(gca,'YScale','log','YTick',[1e−5 1e−4 1e−3 1e−2 1e−1 1e0],'YLim',[1e−5 2])
615 xlabel('\omega [rad.sˆ{−1}]')
616 ylabel(' | G n * |/ | G 1* |')
617 title('Full FT Spectrum')
618

619 subplot(4,1,3); bar(wn(1:Ncycles*m),Gp(1:Ncycles*m))
620 title(strcat('FT Spectrum: ',num2str(m),' cycles'))
621 xlabel('\omega [rad.sˆ{−1}]')
622 ylabel('G n'' [Pa]')
623 subplot(4,1,4); bar(wn(1:Ncycles*m),Gpp(1:Ncycles*m))
624 xlabel('\omega [rad.sˆ{−1}]')
625 ylabel('G n" [Pa]')
626

627 if PFTPrint == 1
628 print('−djpeg',strcat(pathname,file,' Fig FT.jpg'))
629 end
630

631 end
632

633

634

635

636 % Plot "1 cycle" of data from FT reconstruction: v. Time & Lissajous
637 %
638 if PLiss == 1
639

640 C1 = 1; %Which raw data cycle to plot
641 T=round(length(gam)/Ncycles); %integer number of data points per cycle
642 Tnum = length(gam)/Ncycles; %decimal number of data points per cycle
643 tarb raw = [1:T]*(PPC/Tnum); %for co−plotting raw data and FT recon data
644 ibeg = round(Tnum*(C1−1)+1); %index to start plotting raw data
645 ifin = ibeg + T −1; % " " " stop " " " " "
646

647 I=figure;
648 set(I,'Position',[100 100 560 840]);
649 set(I,'PaperPosition',[0.2500 2.5000 6.0000 9.5000]);
650

651 subplot(2,1,1); H=plot(tau recon(1:PPC),'b'); set(H,'LineWidth',2)
652 hold on
653 H=plot(tau recon3(1:PPC),'g');
654 set(H,'LineWidth',2)
655 H=plot(tau recon1(1:PPC),'k'); set(H,'LineWidth',2)
656 H=plot(tarb raw,tau(ibeg:ifin),'r'); set(H,'LineWidth',2)
657 axis tight
658 xlabel('Time [arb]'); ylabel('Shear Stress [Pa]')
659 legend(strcat('FT−recon: ',num2str(m),' harmonics'),'FT−recon: 1&3 harmonics',...
660 'FT−recon: 1st harmonic','Raw Data − One cycle')
661 title(file)
662

663

664 subplot(2,1,2);
665 % H=plot(gam(ibeg:ifin),tau recon,'b');set(H,'LineWidth',2)
666 H=plot(gam recon,tau recon,'b');set(H,'LineWidth',2)
667 hold on
668 H=plot(gam recon(1:PPC),tau recon3(1:PPC),'g');set(H,'LineWidth',2)
669 H=plot(gam recon(1:PPC),tau recon1(1:PPC),'k');set(H,'LineWidth',2)
670 H=plot(gam(ibeg:ifin),tau(ibeg:ifin),'r');set(H,'LineWidth',1.5)
671 axis tight
672 xlabel('Strain [−]'); ylabel('Shear Stress [Pa]')
673 legend(strcat('FT−recon: ',num2str(m),' harmonics'),'FT−recon: 1&3 harmonics',...
674 'FT−recon: 1st harmonic','Raw Data − One cycle'...
675 ,'Location','NorthWest')
676 pos = get(gca,'YLim')/7;
677 text(0,2*pos(1),strcat('G 1''=',num2str(Gp(Ncycles)),' Pa',', G 1"=',...
678 num2str(Gpp(Ncycles)),' Pa'))
679 text(0,3*pos(1),strcat('M=',num2str(M),' Pa'))
680 text(0,4*pos(1),strcat('L=',num2str(L),' Pa'))
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681 text(0,5*pos(1),strcat('S=',num2str(S)))
682 text(0,6*pos(1),strcat('S 2=',num2str(S2)))
683

684 if PLissPrint == 1
685 print('−djpeg',strcat(pathname,file,' Fig Lissajous.jpg'))
686 end
687

688 end
689

690

691

692 % Overview Plot
693 %
694 if POver == 1
695

696 I=figure;
697 set(I,'Position',[100 100 1176 840]);
698 set(I,'PaperPosition',[0.0 0.0 14.0 10.0]);
699 subplot(2,3,1);
700 H=plot(gam recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
701 hold on;
702 H=plot(gam 0*Xe,fe,'r');set(H,'LineWidth',2)
703 H=plot(gam 0*Xe,fe C3,'g:');set(H,'LineWidth',2)
704 axis tight
705 xlabel('Strain \gamma [−]')
706 ylabel('(Elastic) Stress \tau e [Pa]')
707 legend('\tau {total}','\tau e Total','Chebyshev 1+3','Location','SouthEast')
708

709 subplot(2,3,4); bar([0:1:length(An e)−1],An e/gam 0)
710 set(gca,'XLim',[−1 length(An e)])
711 title('Chebyshev Coeff: \tau {elastic}')
712 xlabel('Polynomial Order, n')
713 ylabel('e n')
714 pos = get(gca,'YLim')/7;
715 maxpos = find(max(abs(pos))); %index of maximum YLim (1:negative, 2: positive)
716 strG1p = num2str(Gp(Ncycles));
717 strM = num2str(M); strL = num2str(L); strS = num2str(S);
718 strE3 = num2str(An e(4)/gam 0);
719 text(length(An e)/2.5,6*pos(maxpos),strcat('G 1''=',strG1p,' Pa'))
720 text(length(An e)/2.5,5*pos(maxpos),strcat('G M'' =',strM,' Pa'))
721 text(length(An e)/2.5,4*pos(maxpos),strcat('G L'' =',strL,' Pa'))
722 text(length(An e)/2.2,3*pos(maxpos),strcat('e 3 = ',strE3,' Pa'))
723 text(length(An e)/2.2,2*pos(maxpos),strcat('S = G M''/G L'' = ',strS,' '))
724

725 subplot(2,3,2);
726 H=plot(gamdot recon(1:PPC),tau recon(1:PPC),'b');set(H,'LineWidth',2)
727 hold on;
728 H=plot(gam 0*w*Xv,fv,'r');set(H,'LineWidth',2)
729 H=plot(gam 0*w*Xv,fv C3,'g:');set(H,'LineWidth',2)
730 axis tight
731 xlabel('Strain−Rate [sˆ{−1}]')
732 ylabel('(Viscous) Stress \tau v [Pa]')
733 title(file,'FontSize',20)
734 legend('\tau {total}','\tau v Total','Chebyshev 1+3','Location','SouthEast')
735

736 subplot(2,3,5); H=bar([0:1:length(An e)−1],An v/(gam 0));
737 set(gca,'XLim',[−1 length(An e)])
738 title('Chebyshev Coeff: \tau {viscous}')
739 xlabel('Polynomial Order, n')
740 ylabel('v n')
741 pos = get(gca,'YLim')/7;
742 strEta1p = num2str(Gpp(Ncycles)/w);
743 strEtaM = num2str(EtaM); strEtaL=num2str(EtaL); strEtaT = num2str(EtaT);
744 strV3 = num2str(An v(4)/gam 0);
745 text(length(An e)/2.5,6*pos(2),strcat('\eta 1''=G 1"/\omega=',strEta1p,' Pa.s'))
746 text(length(An e)/2.5,5*pos(2),strcat('\eta M''=',strEtaM,' Pa.s'))
747 text(length(An e)/2.5,4*pos(2),strcat('\eta L''=',strEtaL,' Pa.s'))
748 text(length(An e)/2,3*pos(2),strcat('v 3 = ',strV3,' Pa.s'))
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749 text(length(An e)/2,2*pos(2),strcat('T = \eta M''/\eta L'' = ',strEtaT,' '))
750

751 subplot(2,3,3);
752 H=plot(tau/max(tau)); set(H,'LineWidth',2)
753 hold on;
754 H=plot(gam/gam 0*0.5,'r−−'); set(H,'LineWidth',2)
755 set(gca,'YLim',[−1.1 +1.1])
756 xlabel('Time [arb]'); ylabel('Scaled \tau(t) , \gamma(t) [−]');
757 legend('\tau(t)','\gamma(t)','Location','SouthEast')
758

759 dw = w/Ncycles;
760 wn = [dw:dw:N*dw];
761

762 subplot(2,3,6); plot(wn,G compNORM)
763 set(gca,'YScale','log','YTick',[1e−5 1e−4 1e−3 1e−2 1e−1 1e0],'YLim',[1e−5 2])
764 xlabel('\omega [rad.sˆ{−1}]')
765 ylabel(' | G n * |/ | G 1* |')
766 title('Full FT Spectrum')
767

768 if POverPrint == 1
769 print('−djpeg',strcat(pathname,file,' Fig Overview.jpg'))
770 end
771

772 end
773

774 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
775 % ==== STOP Plotting ======
776 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
777

778

779

780

781 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
782 % ==== START Data Save ======
783 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
784

785 datasave = [w, gam 0, Gp(Ncycles), M, L, An e(4)/gam 0, Gp(3*Ncycles) , S;
786 w, gam 0, Gpp(Ncycles), EtaM, EtaL, An v(4)/gam 0, Gpp(3*Ncycles), EtaT ];
787

788 if SaveData ==1
789 % save the strain & stress & strain−rate waveforms for future plotting;
790 % save one cycle + 1 point to ensure overlap when plotting Lissajous curves
791

792 %%% Strain/Stress/ElasticStress data file
793 dlmwrite(savefile vStrain,[gam recon(1:PPC+1) tau recon(1:PPC+1) tau e],'delimiter',',')
794

795 %%% Strain−rate/Stress/ViscousStress data file
796 dlmwrite(savefile vRate,[gamdot recon(1:PPC+1) tau recon(1:PPC+1) tau v],'delimiter',',')
797

798 % fid = fopen(savefile VEparameters, 'w');
799 % fprintf(fid,'omega, gam 0, G1''(G1''''), GM''(EtaM''), GL''(EtaL''), e3(v3), G3''(G3''''), S(T)');
800 % fprintf(fid, '\n');
801 % fprintf(fid,'%d %d %d %d %d %d %d %d \n',w, gam 0, Gp(Ncycles), M,...
802 % L, An e(4)/gam 0, Gp(3*Ncycles) , S);
803 % fprintf(fid,'%d %d %d %d %d %d %d %d \n',w, gam 0, Gpp(Ncycles), EtaM,...
804 % EtaL, An v(4)/gam 0, Gpp(3*Ncycles), EtaT );
805 % fclose(fid)
806 %
807

808 end
809 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
810 % ==== END Data Save ======
811 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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B.3 cycletrim.m

1 function [istrain, istress, N]= cycletrim(gamma,tau)
2 % ============================================
3 % Extract integer numer of strain and stress data, starting with sine
4 % strain
5 %
6 % RHEwoldt February 2007
7 %
8 % [istrain, istress, N]= cycletrim(gamma,tau)
9 %

10 % VARIABLES
11 % gamma strain data input, arbitrary length
12 % tau stress data input, arbitrary length
13 % istrain (integer # of cycles, sine wave start)
14 % istress (aligned with strain)
15 % N # of cycles contained
16 %
17 % SEQUENCE
18 % (fit sine wave to strain data) − not yet implemented
19 % find zeros in strain signal
20 % identify first starting point of sine wave
21 % identify final point of sine wave
22 % output trimmed data
23 % ============================================
24

25

26 % %%% Diagnostic testing initialization
27 % %
28 % clear
29 % clc
30 % directory = 'C:\Research\ARES\Janmey\';
31 % files = dir(strcat(directory,'*.txt')) ;
32 % data=load(strcat(directory,files(8).name));
33 % norm = data(500:end,1); %Normal force data
34 % gamma = data(500:end,2)/100; %Strain data is expected to be units of percent,
35 % % so force it to be unitless
36 % tau = data(500:end,3); %Stress data
37 % %
38 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
39

40

41 N=length(gamma);
42

43 k=0; %k is a counter for the number of times gamma changes sign
44 sign gam = sign(gamma);
45 for i=1:N−1
46 if sign gam(i) 6= sign gam(i+1)
47 k=k+1;
48 d zero(k)=i+1; %index location after sign change
49 end
50 end
51

52

53 % if the sign changed, and the previous point was NEGATIVE (or ZERO)
54 % then it's the beginning of the sine wave
55

56 if gamma(d zero(1)−1) ≤ 0
57 istart = d zero(1);
58 init = 1;
59 else if gamma(d zero(2)−1) ≤ 0
60 istart = d zero(2);
61 init = 2;
62 else
63 errordlg('Something is wrong with istart')

267



64 end
65 end
66

67

68 lgth = length(d zero);
69

70 if gamma(d zero(lgth)−1) < 0
71 istop = d zero(lgth)−1;
72 fin = lgth;
73 else if gamma(d zero(lgth−1)−1) < 0
74 istop = d zero(lgth−1)−1;
75 fin = lgth−1;
76 else
77 errordlg('Something is wrong with istop')
78 end
79 end
80

81 istrain = gamma(istart:istop);
82 istress = tau(istart:istop);
83 N = (fin−init)/2;
84

85 if N==round(N)
86 %Do nothing
87 else
88 errordlg('Something is wrong with N')
89 end

B.4 FTtrig.m

1 function [A0, An, Bn]= FTtrig(f)
2 % ============================================
3 % Find trigonometric Fourier Series components from FFT:
4 % f = A0 + SUM n( An*cos(n*2*pi*t/T + Bn*sin(n*2*pi*t/T)
5 %
6 % RHEwoldt February 2007
7 %
8 % [A0, An, Bn]= FTtrig(f)
9 %

10 % VARIABLES
11 % f vector to be transformed
12 % A0 essentially mean(f)
13 % An cosine terms
14 % Bn sine terms
15 %
16 % SEQUENCE
17 % force input to have EVEN number of data points (reqd for fft.m)
18 % take FFT > complex vector results
19 % extract trigonometric terms from complex vector
20 % ============================================
21

22

23 if int16(length(f)/2) == length(f)/2
24 %do nothing
25 else
26 %trim last data point to force even number of data points
27 %f MUST HAVE EVEN NUMBER OF DATA POINTS!
28 d=f; % d is placeholder
29 clear f
30 f = d(1:length(d)−1);
31 clear d
32 end
33

34 n=length(f);
35 N=n/2; %N will be the number of harmonics to consider
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36

37 Fn(n)=zeros; %initialize complex transform vector
38 % this will make it a ROW vector
39 % which is necessary for combination later
40

41 sizef = size(f);
42 if sizef(1) == 1 %if ROW vector
43 Fn = fft(f); %let Fn be ROW vector
44 else
45 frow = f';
46 Fn = fft(frow); %compute FFT Fn=[ low > high | high < low ]
47 %force input to fft to be ROW fector
48 end
49 Fn new = [conj(Fn(N+1)) Fn(N+2:end) Fn(1:N+1)];
50 %rearrange values such that: Fn new = [ high < low | low > high ]
51

52 Fn new(:) = Fn new(:)/n; %scale results
53

54 A0 = Fn new(N+1);
55 An = 2*real(Fn new(N+2:end)); %cosine terms
56 Bn = −2*imag(Fn new(N+2:end)); %sine terms

B.5 legendre decompose.m

1 function [Cn]= legendre decompose(F,N,X)
2 % ============================================
3 % Find Legendre Polynomial components of input data vector:
4 % f = C1*P1(x) + C2*P2(x) + C3*P3(x) + ...
5 %
6 % RHEwoldt February 2007
7 %
8 % [Cn]= legendre decompose(F,N)
9 %

10 % *Assumes F occupies the domain [−1 : +1]
11 % with an arbitrary number of data points
12 % *Uses trapz.m to calculate integrals
13 %
14 % INPUT VARIABLES
15 % F: vector of data, in domain [−1:1]
16 % N: degree of desired Legendre Polynomial decomposition
17 %
18 % OUTPUT VARIABLE
19 % Cn: vector of Legendre coefficients
20 %
21

22

23 % % Following lines for diagnostic purposes only
24 % F = fe;
25 % N = 11;
26 % X = Xe;
27

28 if nargin < 3,
29 % Make X (input range) linear spaced and same length as F
30 X=linspace(−1,1,length(F));
31 end
32

33 % F must be a row vector. Change if necessary
34 if length(F(1,:))==1 %if there is only 1 column
35 d=F'; clear F
36 F=d ; clear d
37 end
38

39

40
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41 Cn = zeros(N,1); %initialize vector of Legendre coefficients
42

43 for i=1:N
44

45 clear P % These are temporary placeholders within the loop
46 clear CDv %
47 clear Cv %
48

49 P=legendre(i,X);
50

51 CDn = trapz(X, P(1,:).ˆ2); %calculate denominator integral
52 Cn(i) = 1/CDn * trapz(X, P(1,:).*F);
53

54 end

B.6 legendre compose.m

1 function [f,X]= legendre compose(Cn,X)
2 % ============================================
3 % Construct Legendre Polynomial components into data vector:
4 % f = C1*P1(x) + C2*P2(x) + C3*P3(x) + ...
5 %
6 % RHEwoldt February 2007
7 %
8 % [f,X]= legendre compose(Cn)
9 %

10 %
11 % INPUT VARIABLE
12 % Cn: vector of Legendre coefficients
13 % m: number of data points desired in output vector
14 % (OPTIONAL: default is 2001)
15 %
16 % OUTPUT VARIABLE
17 % f: reconstructed data vector (using all available Cn components)
18 % x: corresponding input vector [−1 : +1]
19 %
20

21 if nargin < 2,
22 % Make X vector linear spaced, 2001 pts
23 X=linspace(−1,1,2001);
24 end
25

26

27 N=length(Cn); %numer of components to consider
28 f=zeros(1,length(X)); %initialize output vector
29

30 for i=1:N
31

32 clear P % This is temporary placeholders within the loop
33

34 P=legendre(i,X); %Legendre polynomial of order i
35

36 f = f + Cn(i) * P(1,:); %Add this component to the previous sum
37

38 end

B.7 chebyshev decompose.m

1 function [An]= chebyshev decompose(F,N,X)
2 % ============================================
3 % Find Chebyshev Polynomial components of input data vector:
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4 % f = A0*T0(x) + A1*T1(x) + A2*T2(x) + ...
5 %
6 % RHEwoldt February 2007
7 %
8 % [An]= chebyshev decompose(F,N,X)
9 %

10 % *Assumes F occupies the domain [−1 : +1]
11 % with an arbitrary number of data points
12 % *Uses trapz.m to calculate integrals
13 %
14 % INPUT VARIABLES
15 % F: vector of data, in domain [−1:1]
16 % N: degree of desired Legendre Polynomial decomposition
17 % X: Range points associated with F
18 %
19 % OUTPUT VARIABLE
20 % An: vector of Chebyshev coefficients
21 % An(i) = A {i−1}
22 %
23

24

25 % % Following lines for diagnostic purposes only
26 % % F = fe;
27 % % N = 11;
28 % % X = Xe;
29 % order=0
30 % Xlength=1000
31 % X = linspace(−1,1,Xlength);
32 % F = X.ˆorder;
33 % N = 31;
34

35

36 if nargin < 3,
37 % Make X (input range) linear spaced and same length as F
38 X=linspace(−1,1,length(F));
39 end
40

41 % F must be a row vector. Change if necessary
42 if length(F(1,:))==1 %if there is only 1 column
43 d=F'; clear F
44 F=d ; clear d
45 end
46

47

48

49 An = zeros(N,1); %initialize vector of Chebyshev coefficients
50

51 T = gallery('chebvand',X); %Matrix of Chebyshev polynomials evaluated at X
52 %T(i,:) is (i−1)order polynomial
53

54

55 %
56 % COORDINATE TRANSFORM TECHNIQUE: NO WEIGHTING NECESSARY
57 %
58

59 THETA = asin(X);
60

61 % 0th order polynomial has different front factor
62 An(1) = 1/pi * trapz(THETA, F);
63 % Remaining coefficients use same front factor
64 for i=2:N
65 An(i) = 2/pi * trapz(THETA, T(i,:).*F);
66 end
67

68 % %
69 % % Diagnostic/Proof Figure Printing
70 % %
71 % I=figure;
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72 % set(I,'Position',[100 100 700 500]);
73 % set(I,'PaperPosition',[0.2500 2.5000 7.0000 5.0000]);
74 % subplot(1,2,1);
75 % H=plot(X,F,'r');set(H,'LineWidth',2)
76 % title('Input Function (Scaled)'); xlabel('X'),ylabel('F')
77 % subplot(1,2,2);bar([0:1:N−1],An)
78 % title('Chebyshev Coefficients (Coord. Txform. & trapz.m)'); xlabel('n');ylabel('A n')
79 % text(N/2.5,0.5,strcat('X has n=',num2str(Xlength),' points'))
80 %
81 % % subplot(2,2,3);
82 % % plot(X,T(1,:),'k');
83 % % hold on
84 % % plot(X,T(2,:),'b')
85 % % plot(X,T(3,:),'r')
86 % % plot(X,T(4,:),'g')
87 % % title('Chebyshev Polynomials: Order 0, 1, 2, 3')
88 % % axis([−1.1 1.1 −1.1 1.1 ])
89 % % subplot(2,2,4);
90 %
91 % print('−djpeg',strcat('C:\Research\ARES\Polynomial Fits\Chebyshev Fig',...
92 % num2str(order),'−',num2str(Xlength),'.jpg'))
93

94

95

96

97

98

99

100

101 % %
102 % % CARTESIAN TECHNIQUE, WHICH REQUIRES WEIGHTING FUNCTION
103 % % OBSOLETE! as of Feb 8, 2007
104 %
105 %
106 %
107 % %weighting function required for orthogonality
108 % W = sqrt(1−X.ˆ2);
109 % L=log10(W(2))
110 %
111 % W(1) = 1*10ˆ(L−3); %Weighting function =0 @ +/−1, so make this finite
112 % W(1) %instead, because I divide by W for integrand
113 % W(end) = 1*10ˆ(L−3); %
114 % W(end) %
115 %
116 %
117 %
118 %
119 % I=F./W; %part of integrand used for every An calculation
120 %
121 % % 0th order polynomial has different front factor
122 % Cn(1) = 1/pi * trapz(X, I);
123 % % Remaining coefficients use same front factor
124 % for i=2:N
125 %
126 % Cn(i) = 2/pi * trapz(X(2:end−1), T(i,2:end−1).*I(2:end−1));
127 %
128 % end

B.8 chebyshev compose.m

1 function [f,X]= chebyshev compose(An,X)
2 % ============================================
3 % Construct Chebyshev Polynomial components into data vector:
4 % f = A0*T0(x) + A1*T1(x) + A2*T2(x) + A3*T3(x) + ...
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5 %
6 % RHEwoldt February 2007
7 %
8 % [f,X]= chebyshev compose(An)
9 %

10 %
11 % INPUT VARIABLE
12 % An: vector of Chebyshev coefficients (starting from order 0)
13 % m: number of data points desired in output vector
14 % (OPTIONAL: default is 2001)
15 %
16 % OUTPUT VARIABLE
17 % f: reconstructed data vector (using all available An components)
18 % x: corresponding input vector [−1 : +1]
19 %
20

21 if nargin < 2,
22 % Make X vector linear spaced, 2001 pts
23 X=linspace(−1,1,2001);
24 end
25

26

27 N=length(An); %numer of components to consider
28 f=zeros(1,length(X)); %initialize output vector
29

30 T = gallery('chebvand',X); %Matrix of Chebyshev polynomials evaluated at X
31 %T(i,:) is (i−1)order polynomial
32

33 for i=1:N
34

35 f = f + An(i) * T(i,:); %Add this component to the previous sum
36

37 end
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Appendix C

Yield stress LAOS - supplementary

figures

This appendix is a supplement to Chapter 7, and covers three parts. First, details

are given for the interpolation of discrete LAOS tests to make smooth rheological

fingerprints. Second, additional plots are included for the shear-thinning xanthan

gum solution. Finally, additional figures related to the elastoviscoplastic drilling fluid

are presented.

The collection of experimental data occurs at discrete values within the Pipkin

space of (ω,γ0). For example, the drilling fluid data presented in Chapter 7 was spaced

at 2 points per decade in frequency ω and 4 points per decade in strain-amplitude

γ0. The viscoelastic parameters corresponding to these discrete sampling points can

be visualized by plots such as Figure C-1a. Color blocks are used for this plot, which

are centered about the imposed (ω,γ0). The width and height of the block area is

determined by the spacing of the data. On a technical note, this is a non-standard use

of the MATLAB ‘pcolor’ command. The (X,Y) input to pcolor defines the vertices

of the blocks, so one must take the ‘omega’ and ‘gamma’ vectors and map them to

‘Xvertices’ and ‘Yvertices’ vectors. It is also required to pad the Gp matrix with an
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Figure C-1: Non-interpolated vs. interpolated fingerprints of viscoelastic parameters.

extra row and extra column. Note that the finite width and height of each block

increases the XYlimits of the plot beyond where data was actually collected, since

the blocks are centered over the corresponding (ω,γ0) location.

To improve visualization of trends and contour lines, the data can be interpolated

to produce smooth gradients of color values, as in Figure C-1b. The figures presented

here have been interpolated to include 100 points per decade in both frequency ω and

strain-amplitude γ0. As a technical note, the standard ‘flat shading’ of the ‘pcolor’

command is used for the interpolated plots. For ease of processing, the interpolated

data are not precisely centered over the imposed (ω,γ0), since the vectors of ‘omega’

and ‘gamma’ get used to define the vertices of the blocks. Thus, the data is shifted

by 0.5% in this case. This is the reason that the minor axis ticks show up on the

right side of the plots.

Figures C-6 and C-7 give additional rheological fingerprints of the xanthan gum

solution which were not included in Chapter 7.

FiguresC-4 and C-4 show un-normalized Lissajous curves for the drilling fluid.

Such plots more clearly reveal the change in peak stress as a function of the strain

amplitude.
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Figure C-2: Additional quantitative LAOS analysis of the xanthan gum. (a,b,c) Elas-
tic moduli G′1, G′M and G′L respectively. (d,e) higher harmonic Chebyshev coefficients,
e3/e1 and e5/e1, respectively. Contour lines shown at ±0.01 in (d,e).
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Figure C-3: Additional quantitative LAOS analysis of the xanthan gum (cf. Figures 7-
7-7-8). (a,b,c) Elastic moduli η′1, η′M and η′L respectively. (d,e) higher harmonic
Chebyshev coefficients, v3/v1 and v5/v1, respectively. Contour lines shown at ±0.01
in (d,e).
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Figure C-4: Smoothed Lissajous curves for the drilling fluid. LAOS test strain-
sweep at constant frequency ω = 0.475 rad.s−1, increasing strain amplitude γ0 from
bottom row. (left column) Elastic perspective, 2D projection onto stress vs. strain
axes; (middle column)3D view with strain, strain-rate, and stress as the coordinate
system; (right column) Viscous perspective, 2D projection onto stress vs. strain-rate
axes.
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Figure C-5: Smoothed Lissajous curves for the drilling fluid. LAOS test strain-
sweep at constant frequency ω = 4.75 rad.s−1, increasing strain amplitude γ0 from
bottom row. (left column) Elastic perspective, 2D projection onto stress vs. strain
axes; (middle column)3D view with strain, strain-rate, and stress as the coordinate
system; (right column) Viscous perspective, 2D projection onto stress vs. strain-rate
axes.
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Figure C-6: Additional quantitative LAOS analysis of the drilling fluid (cf. Figures 7-
9 and 7-10). (a,b,c) Elastic moduliG′1, G′M andG′L respectively. (d,e) higher harmonic
Chebyshev coefficients, e3/e1 and e5/e1, respectively. Contour lines shown at ±0.01
in (d,e).

281



Figure C-7: Additional quantitative LAOS analysis of the drilling fluid (cf. Figures 7-
9 and 7-10). (a,b,c) Elastic moduli η′1, η′M and η′L respectively. (d,e) higher harmonic
Chebyshev coefficients, v3/v1 and v5/v1, respectively.
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Appendix D

Details of Slime Simulant Survey

Material details

High vacuum grease was purchased from the Dow Corning Corporation (Midland,

MI). Carbopol preparation is described in the article. Aloe gel was purchased under

the Banana Boat brand name, labeled as Soothing Aloe Aftersun Gel. The aloe gel

is distributed by Sun Pharmaceuticals Corp (Delray Beach, FL). Locust bean gum

was a gift from P.L. Thomas & Co., Inc. (Morristown, NJ). The collagen mixture

was prepared by adding 0.25 g of microfibrillar, type I collagen isolated from bovine

tendon (Integra LifeSciences, Plainsboro, NJ) to 4 ml of DI water. After mixing the

solution, 1 ml of 3.0M acetic acid was injected, resulting in a mixture of 5% (w/w)

collagen in 0.6M acetic acid solution. The collagen and acetic acid solution was

mixed using two syringes joined with a female-female Luer-lock assembly, in which

the solution was pushed from one syringe to another ten times in succession. The

solution was allowed to rest for three hours in order to equilibrate. The mixture

was then centrifuged for 45 minutes at 4000g to remove air bubbles. The resulting

clear gel was kept at T=4C until it was needed for testing. Locust bean gum was

added directly to a Ringer’s solution and mixed with a magnetic stirrer. The Ringer’s

283



Legend name Description

Grease Dow Corning high vacuum grease
Carbopol Carbopol 940 in water, pH7;

0.5%, 1%, 2%, 3%, 4% (w/w)
Aloe Gel Banana Boat, Soothing Aloe Af-

tersun Gel
Collagen Type I collagen in water; 0.5%,

2%, 3.5%, 5% (w/w)
LBG Locust bean gum in Ringer’s so-

lution; 1% (w/w)
Laponite LaponiteRD in water, pH=10;

3%, 4%, 5%, 7% (w/w)
Cream 3 Westin’s Heavenly Bath brand

“hydrating cream”
Conditioner Westin’s Heavenly Bath brand

conditioner
Toothpaste Crest regular paste

Garden snail Native pedal mucus from the
common garden snail (Helix as-
pera)

Table D.1: Details of personal data from Figure 8-3

solution is DI water containing 0.86 mg/ml NaCl, 0.03 mg/ml KCl, and 0.033 mg/ml

CaCl. Laponite preparation is described in the article.

The Cream 3 and Conditioner samples are made available by Westin hotels under

the Heavenly Bath brand name. Toothpaste was purchased from a local store, sold

by the Crest Co., labeled as Regular paste - tartar control. The toothpaste is opaque,

and light blue in color. Pedal mucus collection is described in the article.
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Legend name Description Reference

Banana slug Native pedal mucus from
the banana slug (Ariolimax
columbianus); yield stress value
from stress overshoot tests,
extrapolated to limit of zero
strain-rate

[99]

Grease in oil Dow Corning high vacuum grease
in 0.1 Pa.s silicone oil; 15wt%,
25wt%

[141]

Alginate Alginate in water; 4.4% (w/w)
with Ca cations; τy extrapolated
from data

[142]

Carageenan Grindsted Carageenan in water;
2%, 3%

[143]

Xanthan Xanthan in water; 1%, 2%, 3% [143]
Dextran Dextran in water; 250mg/ml;

0mM CaCl2, 1.9mM CaCl2;
[144]

HPG3 hydrophobically modified (hy-
droxypropyl) guar, called HPG3,
in water; 1.5wt%; η ≈ 102 Pa.s
for τ < τy

[145]

Blend Carbopol 940 : sodium alginate
: guar gum in artificial tear
fluid; 0.5:0.2:0.2, 0.6:0.3:0.3; un-
known concentration, fit to Bing-
ham model

[146]

Hair gel Miss Helen blue hair gel [147]

Table D.2: Details of polymeric gels from Figure 8-3
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Legend name Description Reference

Bentonite Ca-bentonite and Na-bentonite in
water; 2% (w/w), τy extrapolated
from data

[148]

Cloisite Exfoliated montmorillonite clay
(Cloisite 20A) in xylene; 1% -
10% (w/w),

[149]

Kaolin Kaolin (plate-like particles) in
water; 51% (w/w)

[150]

TiO2 A-HR TiO2 (sphere-like parti-
cles, 0.5µm diameter) in water,
pH=2.4; 50% (w/w)

[150]

Table D.3: Details of particulate gels from Figure 8-3
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Legend name Description Reference

Cream 1 Commercially available skin
creme (brand not reported)

[132]

Cream 2 Prepared lamellar gel-structured
“cream” containing emulsifiers,
2% triethanolamine, and water;
6.5% and 13% emulsifiers

[151]

PB creamy Commercially available “smooth”
peanut butter (brand not re-
ported), data fit to Bingham
model

[152]

PB 100% nuts Commercially available “100%
peanuts” peanut butter (same
brand as above, but not re-
ported), data fit to Bingham
model

[152]

Mayo 1 Factory sample of mayonnaise, fit
to Herschel-Bulkley model

[151]

Mayo 2a Apparent rheology of mayonnaise
prepared with various xanthan
gum concentrations; 50% (w/w)
oil; 0.5%, 1.0%, 1.5% (w/w) xan-
than gum

[153]

Mayo 2b Same physical sample as Mayo 2a
but with data corrected for slip

[153]

Mayo 2c Slip corrected rheology of may-
onnaise prepared with various oil
concentrations, no xanthan gum;
75%, 80%, 85% (w/w) oil

[153]

Foam Commercial shaving foam
(Gilette Foamy, regular), tested
with rough surface, fit to
Herschel-Bulkley model

[147]

Table D.4: Details of emulsions, wet foams, and composites from Figure 8-3
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Appendix E

Supplemental information for

normal adhesion tests

E.1 Newtonian silicone oil rheology

The silicone oil used for the adhesive tests in Chapter 9, “10,000 cst”, is Newtonian.

This assertion is supported by the rheological data presented in this section. An AR-

G2 rotational rheometer was used with a cone-plate setup, D = 40 mm, cone angle

θ = 2◦. A steady flow test was performed across a large range of shear-rates, as shown

in Fig. E-1a. The ordinate is shown on a linear scale to emphasize the Newtonian

nature of the fluid. The average viscosity from this test is η = 9.28 Pa.s

Adhesion tests were performed under ambient conditions, without temperature

control. The temperature sensitivity of the viscosity was examined with a temperature-

sweep flow test, at γ̇ = 2.863 s−1. The results of the temperature sweep test are given

in Fig. E-1. The viscosity of this silicone oil displays a weak sensitivity to temper-

ature. An Arrhenius profile can be fit to the data, η(T ) = a exp(b/T ), resulting in

a = 0.09033 Pa.s and b = 1381.1 K. The viscosity at T = 25◦, using the Arrhenius

fit, is η = 9.281 Pa.s.
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Figure E-1: Newtonian oil rheological characterization.

E.2 Magnetic field FEA

The analytical magnetostatics solution does not strictly apply for the magnetically-

activated fluid adhesion, since the region of interest is close to the magnet. Finite

element analysis (FEA) was used to determine the mangetic field using the freely

available software Maxwell SV (Ansoft, LLC, Pittsburgh, PA). Results were obtained

for the magnetostatic problem of a cylindrical permanent magnet with a thin, disk-

shaped layer of MR fluid at a finite z-distance. Results are presented here for a

Neodymium magnet, NdFe30, which was available as a material selection option with

Maxwell SV. For this material, µ = 1.04457301671, and the magnetic retentivity is
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Figure E-2: Magnetic field analysis for the Neodymium magnet, Rm = 6.35 mm,
Lm = 9.52 mm.

Figure E-3: Magnetic properties of the oil-based magnetorheological fluid MRF 132-
DG, as given by the LORD Corporation.

Br = 1.1 T. The radius of the cylindrical magnet is Rm = 6.25 mm, with length

Lm = 9.525 mm. The situation is axisymmetric with a cylindrical polor coordinate

system. Results are shown in z-r plane. The field configuration for the case of no

fluid is shown in Fig. E-2.
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Figure E-4: Magnetic field analysis for the Neodymium magnet, Rm = 6.35 mm,
Lm = 9.52 mm, including the layer of magnetorheological fluid with thickness h =
0.5 mm and various radii (R = 2, 5, 10, 20 mm).

The presence of a magnetically permeable fluid will alter the magnetic field. FEA

was used to examine this effect, using a fluid/magnet separation of δ = 1.0 mm,

a fluid thickness h = 0.5 mm, and various fluid radii (R = 2, 5, 10, 20 mm). The

plane of interest is Z = 1.5 mm above the surface of the magnet, which corresponds

to the location at the top of fluid. The magnetic field at this surface is of interest

because it is furthest from the magnet and is likely to be the weakest link in the

adhesion failure problem. The fluid was modeled with a magnetic response given

by the LORD Corp, as shown in Fig. E-3. The magnetic field configuration in the

presence of magnetorheological fluid is given in Fig. E-4.

The results of Fig. E-4 are combined and shown in Fig. E-5. The magnetic field

strength exhibits spikes near the boundary of the fluid. Aside from these localized

spikes, the field configuration is approximately homogeneous above the permanent

magnet (r < Rm). The field strength then decays away from the magnet according to
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Figure E-5: Magnetic field profile for the Neodymium magnet, Rm = 6.35 mm,
Lm = 9.52 mm, including the layer of magnetorheological fluid at various radii (R =
2, 5, 10, 20 mm). Localized spikes in the magnetic field strength occur near the edge of
the fluid, but overall the profile appears flat above the magnet (r < Rm = 6.35 mm)
and decays as a cubic power law beyond the edge of the magnet (r > Rm).
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Figure E-6: Magnetic field profile for an Alnico 9 magnet, Rm = 6.35 mm,
Lm = 6.35 mm, including the layer of magnetorheological fluid at various radii
(R = 2, 5, 10, 20 mm). Localized spikes in the magnetic field strength occur near
the edge of the fluid. The profile is approximately constant above the magnet
(r < Rm = 6.35 mm), although a rise in magnetic field is observed near r = Rm. The
field decays as a cubic power law beyond the edge of the magnet (r > Rm).

an inverse cubic power law, which is consistent with the analytical far field solution.

The magnetically-activated adhesion tests of Chapter 9 used both Neodymium

and Alnico 8 magnets. In addition to the Neodymium results given in Figs. E-2-

E-5, FEA was performed for an Alnico 9 magnet (which is similar to the Alnico 8

magnet used for experiments). The material properties of Alnico 9 were available

within the material selection options of the Maxwell SV software. The Alinco 9

magnetic properties involve a nonlinear B-H curve. The effects with various fluid

radii (R = 2, 5, 10, 20 mm) were examined.

Results for the Alnico 9 magnet in the presence of magnetorheological fluid are

given in Fig. E-6. Again, the magnetic field spikes near the sharp boundaries of

the fluid. Aside from these localized spikes, the field configuration is approximately
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homogeneous above the permanent magnet, involving a slight rise near r = Rm. The

field strength then decays away from the magnet according to an inverse cubic power

law, which is consistent with the analytical far field solution.

Each magnet analyzed here (NdFe30 and Alnico9) suggest a similar profile for the

magnetic field configuration which activates the fluid. The idealized behavior used for

the modeling of MR fluid adhesion in Chapter 9 is that of a homogeneous magnetic

field above the magnet (r < Rm), which decays by a cubic power-law for r > Rm.
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