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Abstract

The two dimensional Ising Model is important because it describes various condensed
matter systems. At low temperatures, spontaneous symmetry breaking occurs such
that two coexisting phases are separated by interfaces. These interfaces can be de-
scribed as vibrating strings and are characterized by their tension and stiffness. Then
the partition function can be calculated as a function of the magnetization with the
interface tension and stiffness as parameters.

Simulating the two dimensional Ising Model on square lattices of various sizes,
the partition function is determined in order to extract the interface tension. The
configurations being studied have low probability of actual occurrence and would re-
quire a large number of Monte Carlo steps before obtaining a good sampling. By
using improved estimators and a trial distribution, fewer steps are needed. Improved
estimators decrease the number of steps to achieve a certain level of accuracy. The
trial distribution allows increased statistics once the general shape of the probability
distribution is calculated from a Monte Carlo simulation. For small lattice sizes, it is
easy to run Monte Carlo simulations to generate the trial distribution. At larger lat-
tice sizes, it is necessary to build the trial distribution from a combination of a Monte
Carlo simulation and an Ansatz from theory due to lower statistics. The extracted
values of the interface tension agree with the analytical solution by Onsager.
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Chapter 1

Introduction

The Ising model is one of the best understood statistical physics models not only

because of its application to a variety of physical systems but also for its ability to be

solved in one and two dimensions. It can be applied to a number of systems which have

a phase transition. The Ising model describes a particular class of systems in terms of

spins that can be "up" or "down" located on a lattice. There is a phase transition in

this type of system between disordered spin configurations and configurations where

groups of neighboring spins are parallel. In this configuration, both "up" and "down"

groups occur and are separated by interfaces. There exist configurations called two

phase configurations in which both "up" and "down" groups occur in large groups

and these are interesting to study.

Many systems are higher dimensional in nature and methods need to be developed

to describe and understand such physical systems. Using a Monte Carlo method of

computer simulation, in which random numbers are used to simulate different states,

the Ising model can be studied. A method for gaining information about higher

dimensions has been developed and to test this method a test case of the solvable

examples of one and two dimensions must be checked. Specific observables of a

particular class of configurations are calculated and compared to their analytical

results.

Chapter Two summarizes general features of the Ising model pertinent to the

research. It also presents a theory of the two phase configurations which exists in the



two dimensional Ising model and is a key focus of the research. Some of these results

are used to calculate the observables of the model. Also, the concept of re-weighting

is explained to show how data is collected.

Chapter Three focuses on the Monte Carlo methods used to calculate observables

and to generate configurations of the system. The Metropolis and Cluster methods

and their application to this research are discussed.

Chapter Four contains the actual application of the numerical method to the Ising

model and the results of the calculation. This method is tested by comparison with

the analytical solutions.

Chapter Five contains the conclusion and discusses the usefulness of this approach

to higher dimensional Ising models.

1.1 Ising Model

The Ising model is formulated in terms of spins on a quadratic lattice. The spins can

either be "up" or "down". It this research, we use periodic boundary conditions.

The Ising model is characteristic for several physical systems which all have a

phase transition. At this phase transition, characteristics of the set of configurations

change by being below a certain temperature, called the critical temperature T,. The

most common example is water turning into ice below the freezing point.

The phase transition in the Ising model is characterized as second order, meaning

it is a smooth transition from one configuration to the other. It is seen as a change

from a more or less random collection of spins to configurations where larger islands

of parallel spins are present. Although absent in one dimensional models, this phase

transition exists and is very important in higher dimensional models. However, it is

not very well understood in higher dimensions because of a lack of an exact solution

except in two dimensions where an exact solution was found by Onsager [1].

A particular set of configurations in the class of ordered configurations that exist

below the critical temperature is the one where two regions of different spin coex-

ist, separated by interfaces (Fig. A-1). With periodic boundary conditions in two



dimensions, there are two interfaces and the two phase configurations requires a large

amount of free energy. The free energy can be parameterized by the interface tension

and stiffness, two characteristics that describe the interface. The interface tension

measures the free energy per unit length of the interface. The stiffness determines

how much energy is used by the curvature of the interface. These are the properties

that are being studied in this research.

1.2 Monte Carlo Methods

To study these characteristics, the particular two phase configurations must be gen-

erated. To generate these configurations, a Monte Carlo method is used. Monte

Carlo methods involve using random numbers to generate configurations. From the

configurations generated, measurements of the characteristics called observables can

be made and averaged over to give a thermal average value of the observable, usually

calculated from a partition function. A partition function is a description of all the

configurations of the system with a statistical weight based on an exponential of the

configuration's energy. By Monte Carlo methods, the same set of observable are cal-

culated from the model's Hamilton function, a function which describes the energy

of a configuration.

However a problem arises. The two phase configurations have a high energy and

therefore low probability and rarely occur. Normal Monte Carlo methods can generate

such configurations by "importance sampling," which generates configurations based

of their probability as they weigh in the partition function. The idea of "re-weighting"

the partition function is used to create a new effective partition function that has the

same configurations but with probabilities that favor the two phase system and allow

their more frequent generation through Monte Carlo methods.

To further increase the efficiency of the method, both Metropolis and Cluster

algorithms were examined to determine the best one for the method. The Metropolis

algorithm was first used in the one dimensional example but it was found inefficient

for this research. The Cluster algorithm, specifically the Swendsen and Wang cluster



algorithm [2], was then used and found to work well in one and subsequently two

dimensions. Another method to increase the efficiency was the use of "improved

estimators," routines that improved the efficiency of each Monte Carlo step.

In the end, the data gained from the computer simulation was compared to the

analytical results given by Onsager [1] for one and two dimensions. Agreement with

these results proved the accuracy and efficiency of this method of calculation.



Chapter 2

The Ising Model

2.1 Properties of the Ising model

2.1.1 Definitions

The general Ising Model consists of a d-dimensional lattice of length L made up of

spins s. The lattice can have open or periodic boundary conditions. In this research,

one- and two-dimensional Ising models with periodic boundary conditions are used.

This means the lattice is bounded in all directions, with the last spin SL in one

direction connecting to the first spin sl in the same direction (SL+1 = Sl). In one

dimension, this forms a circle; in two dimensions, it is a torus (Fig. A-2). The spins

at each lattice site take on one value of either +1 ("up") or -1 ("down"). The values

of all the spins specify a configuration, referred to as [s].
The classical Ising Hamilton function for a configuration of spins is given as follows:

H[s] = - S Jssy + Bsx. (2.1)
(x,y)

where J is the coupling constant, B is the magnetic field strength, and s, and s, are

the individual spins in the configuration. The (x, y) in the sum means that the sum

is over all nearest neighbors on the lattice. Because of the +1/-1 values of the spins,

this Hamilton function has a Z(2) symmetry when the magnetic field is zero (B = 0).



This means that an interchange of +1 and -1 spins does not change the value of the

Hamilton function. With the magnetic field nonzero, this is not true.

The partition function, Z, corresponding to this Hamilton function is a function

which describes all of the possible configurations of the system mathematically:

Z = e- H []. (2.2)
[s]

The sum is over all possible configurations [s] and each configuration has a factor of

e-PH[s], called its Boltzmann factor. This factor consists of an exponential of minus

the reciprocal of the absolute temperature, represented by / = 1/kT multiplied by

the energy of that configuration, given by the Ising Hamilton function, Eq. (2.1).

An observable, 0, can be evaluated for each individual configuration, O[s]. An

example of an observable is the magnetization, M. From the partition function,

thermal expectation values of observables, (0), can be calculated by

(0) = - O[s]e - H[s], (2.3)

where O is the observable being calculated. An important observable for this Ising

Model is the magnetization, M:

M[s]= s. (2.4)

Another important quantity is the susceptibility,

x = ((M2) - (M) 2 ) (2.5)

The susceptibility measures the fluctuations in the magnetization and is the difference

of the thermal average of the magnetization squared ((M 2) = ((EXs ) 2)) and the

square of the thermal average of the magnetization ((M) 2).



2.1.2 Phase Transition and Spontaneous Symmetry Break-

ing

There exists a certain temperature below which areas of parallel spins, called domains,

start forming without a magnetic field present. This temperature is the critical tem-

perature, Tc, and has been calculated by Onsager [1]. This is also characteristic of a

phase transition, a change of configurations from more or less random ones to more

ordered ones. This particular phenomenon is called spontaneous symmetry breaking.

The phase transition is characterized by its discontinuities. In the Ising model, the

discontinuity occurs in the susceptibility while the magnetization smoothly changes

with temperature. This type of phase transition is called second order.

There are two main types of configurations possible in the two dimensional Ising

model that characterize the spontaneous symmetry breaking. One class of configura-

tions is formed by a single large domain of one particular spin configuration (Fig. A-3).

This large domain may have smaller regions of the opposite spin configuration inside

it. It is these configurations that are most common and highly probable. The sec-

ond set of less probable configurations is formed by a band of each particular spin

configuration that goes around the cyclic boundaries of the system (Fig. A-4). This

configuration can also have smaller clusters of the opposite spin configuration inside

each of the bands. Since it has both phases of "up" and "down" spins coexisting

in the same configuration, it is called a "two phase" configuration. The phases are

separated by two boundaries called interfaces.

The two phase configuration has a very low probability due to its high free energy

cost of the two interfaces. The high energy implies low Boltzmann factors which

exponentially suppresses these configurations.

2.1.3 Interface Tension and Stiffness

The interfaces can be characterized by their interface tension, o, which measures the

free energy per unit length of the interface, F oc aL. Also useful is the interface

stiffness, I, a measure of the how the energy changes with the curvature of the



interface.

Onsager solved the two dimensional Ising model without a magnetic field [1]. In

studying the two phase configuration, he found the interface tension for an infinite

lattice was given by
1 log[1 + exp(-2PJ)

a = 2J - ~ log[ - ] "  (2.6)
P 1 - exp(-20J)

The results of the numerical simulations should approach this number as the lattice

size is increased.

2.2 Theory and Re-weighting

2.2.1 Interfaces as Vibrating Strings

Professor Wiese has developed a theory in two dimensions that describes the two phase

configurations and a partition function based on the magnetization of such config-

urations [3]. This theory describes the interfaces as vibrating strings. A Hamilton

function for the strings is written down and partition function is derived as a function

of the magnetization of the configuration. This partition function as a function of the

magnetization has the form:

Z(M) = ~e-H[s]6M[],M. (2.7)
[s]

By using the Kronecker delta function, only configurations with the right magneti-

zation are included. The magnetization-dependent partition function relates to the

normal definition of the partition function by

Z = E Z(M). (2.8)
M



The actual partition function which describes the system as a function of the magne-

tization is calculated as [3]

M M
Z(M) = exp(-f L 2)[D( - L2 ) + D( + L2 ) + exp(-2aL)]. (2.9)

m m 2rL

The two Gaussian distributions, D(M'/m) = V1/2rxL 2 exp(-M'2/2m 2 xL 2 ) with

M' = M -mL 2 , represent the configurations in which a large cluster with magnetiza-

tion ±mL2 of one particular spin configuration exists as shown in Figure (A-3). The

two phase configurations are represented by a plateau near zero magnetization, rep-

resented by the third term on the right hand side. The two phase configurations have

a magnetization near zero because of the existence of approximately equal numbers

of +1 and -1 spins. This is because the free energy is just a function of the length of

the interfaces, not the area of between them. Two configurations could have different

numbers of +1 spins but the same interface shapes and thus nearly the same free

energy as shown in Figure (A-5).

Also important is the ratio:

Z(0) _ xZ(O I) - , exp(-2oL) (2.10)
Z(mL 2 )  V 27

of the minimum and maximum values of the partition function Z. This equation

allows for the calculation of the interface tension a and interface stiffness K if the

average magnetization, susceptibility and the partition function values are known.

2.2.2 Re-weighting: Theory

To investigate the two phase configurations more closely, the idea of re-weighting the

partition function is used. This means that the partition function, which assigns a

probability based on energy, is re-weighted so that certain configurations, in this case

the two phase configurations with high energy, are given a higher probability. As

long as this re-weighting is taken out at the end, the physics described is the same as

before. Careful consideration must be taken in re-weighting and this will be discussed



later in Section 3.4.1.

The way the partition function is re-weighted is based on another function called

the trial distribution. The trial distribution, pt(M), is a function which has all the in-

formation about how the probability should be re-weighted. A new partition function

is created, based on a new Hamilton function. This new effective Hamilton function,

Heff, is the original Hamilton function plus a function of the trial distribution:

Heff[S] = H[s] + log(pt(M([s]))) (2.11)

Note that the trial distribution, pt(M), is a function of the magnetization M. This

results in a new effective magnetization-dependent partition function:

Zeff(M) = Z(M)/pt(M) (2.12)

The use of the trial distribution is to increase the probability of the configurations

of interest, the two phase configurations. Without the trial distribution, the distri-

bution of the probabilities of magnetizations favors the one phase configurations of

magnetization close to (M) (Fig. A-6). The trial distribution was chosen to increase

the probability of getting the two phase configurations with certain magnetizations.

The total effect is that of an approximately flat effective probability distribution of

the configurations, as shown in Graph (A-7).



Chapter 3

Monte Carlo

3.1 Monte Carlo

To investigate the two dimensional Ising Model, a Monte Carlo simulation is used.

Monte Carlo methods have been used since the middle of the last century but were

first documented as such in the 1940's as an offshoot of atomic bomb research [4].

Primarily, Monte Carlo methods entail calculating the value of something using ran-

dom numbers. In this research, Monte Carlo methods were used to generate a Markov

chain, or a string of configurations, from random numbers. Normally, to calculate

an observable, an integration is performed over the whole configuration space of the

system. Monte Carlo methods generates a thermal average using a Markov chain of

configurations.

The Monte Carlo method simply models an experimental point-of-view of cal-

culating observables. Experimentally, observables would be obtained by an average

over several measurements taken at a physical system at some fixed temperature.

The system goes through a number of different configurations possible at the fixed

temperature with different values of the observables. The distribution of these val-

ues gives a picture of the partition function for the system at that temperature. In

the computer, a similar process is simulated: a "computational" model is set up at

a temperature and possible configurations are generated through a Markov chain of

configurations. In this case, the Markov chain is based on spin flips.



3.1.1 Markov Chains

A set of specific spin values at the lattice vertices is defines a configuration denoted

by [s(i)]. A Markov chain is a set of configurations which map to each other: [s( i)] -4

[s(i+ l)] by use of some transitional probability, W([s( i )] -+ [s(J)]). The choice for the

probability of a configuration is its Boltzmann factor: P[s(i)] = exp(-3H[s(i)]). This

choice allows for a simplification of the calculation of observables. An observable is

calculated from statistical mechanics as

(0) = EO exp(-H[s]) (3.1)

with the summation being carried over all possible energy configurations. With P

being the Boltzmann factor, observables are simply calculated as

(0) = E O ) (3.2)
i=1

with N being the total number of configurations generated by the Monte Carlo se-

quence.

3.1.2 Ergodicity and Detailed Balance

The basic premise of the simulation is to generate an equilibrium distribution of

configurations at a given temperature. Two important rules that the Monte Carlo

simulation obey to give the equilibrium distribution for the system are ergodicity and

detailed balance. Ergodicity is the statement that all possible configurations must be

reachable in a probabilistical sense from any other configuration.

Detailed balance is the statement that the probability to go from one configura-

tion to another configuration must be proportional to going back from the second

configuration to the first configuration. More precisely, if P[s(i)] and P[s(j )] are the

probabilities for configurations [s (i)] and [s(J)], then they must satisfy the equation

P[s(i)]W([s(i)] -+ [s()]) = P[s(j)]W([s(j )] -+ [s(i)]) (3.3)



where W([s( i)] - [s()]) is the transitional probability for going from configuration

[s( i)] to configuration [s(3)].

3.2 Metropolis algorithm

The first Monte Carlo algorithm used was the Metropolis algorithm. The Metropolis

works by simply determining the probability to flip a single spin value based on its

Hamilton function (in this case, the Ising Hamilton function Eq. (2.1)) which itself

is based on the spin values of the nearest neighbors on the lattice. The Hamilton

function is calculated with the spin having its original or current value and with the

opposite or "flipped" value. If the Hamilton function of the original value is greater

than the Hamilton function of the new value, then the spin value is flipped. If the

original Hamilton function, H[s(i)], has a lesser or equal value than the new Hamilton

function,H[s(J)], the spin is flipped with the probability:

p = exp(-P(H[s(j)] - H[s(')])) (3.4)

The chance of flipping a spin is determined by comparing a randomly generated

number r between 0 and 1 to the probability p. If the random number is less than

the probability, the spin is flipped.

The Metropolis algorithm obeys the two rules of ergodicity and detailed balance.

Because the probability for flipping a spin is never zero, the probability to go from

any configuration to another is not zero, although it can be very small. Detailed

balance is proved for this method by analyzing the procedure of flipping spins. Let

H[s(')] and H[s)] be the Hamilton functions of two respective configurations [s(i)]

and [s(j)], which differ only by one spin. The probability of configuration [s(i)] is

its Boltzmann factor, exp(-PH[s(i)]). The transitional probability is determined by

the energy difference of the two configurations. Let [s(i)] have a larger energy than

[sb)]. Therefore, the probability to flip is 1 because the system is going from a higher

energy configuration to a lower energy configuration. Going in the other direction,



the transitional probability from [s(j )] to [s(i)] is p. Putting all of this into the detailed

balance equation, Eq. (3.3), and solving, p is found to be given by equation (3.4),

which is therefore used to satisfy detailed balance.

Although the Metropolis algorithm is good in its simplicity, its inefficiency makes it

bad for the purposes of this thesis. The two phase configurations that are to be studied

have high free energies and low Boltzmann factors and therefore low probabilities.

The Metropolis algorithm misses an important characteristic of the Ising Model. The

Z(2) symmetry makes it very easy to flip large numbers of spins at very little cost in

energy. This inability to simulate the Z(2) symmetry creates correlation errors which

increase the number of Monte Carlo steps to get accurate measurements. Also, the

Metropolis algorithm does not efficiently simulate the ability of the system to move

the interfaces with very little energy, as mentioned in Section 2.2.1.

3.3 Cluster Algorithm

The next algorithm investigated was the cluster algorithm. The cluster algorithm was

developed by Swendsen and Wang [2] for the Ising model. It is an efficient method

of simulating systems near phase transitions. It also uses "importance sampling",

which focuses on generating configurations that have the largest contribution to the

partition function.

The cluster algorithm works by setting up "clusters" of spins based on having the

same spin orientation. These clusters are built by determining "bonds" in between

neighboring spin sites. There is a probability p for putting a "bond" if adjacent

spins are parallel; it is zero if they are opposite. Once all the bonds are determined,

then a 1/2 chance is given each of the clusters to be flipped to the opposite spin.

The configuration that is left is the new configuration, which the observables are

calculated on it. The multi cluster method destroys the bonds and erases the cluster

assignments and then creates new bonds and clusters again for measurement and

repeats this for the Monte Carlo run. The multi cluster method was used for this

research.



The multi cluster algorithm also obeys ergodicity and detailed balance. There

is a positive probability to reach any possible configuration of the system because

there exists a finite probability that no bonds will be made and that all spins will flip

to any other possible configuration. By examining at a set of two neighboring spin

sites, the probability of creating a bond that assures detailed balance is calculated.

The Boltzmann factor for two neighboring spins which are parallel is e J for the

ferromagnetic case of the interaction constant J < 0. The Boltzmann factor for a

pair of anti-parallel spins is e- 3J . The probability to put a bond between parallel

spins is denoted by Pbond, some positive number between 0 and 1. By definition, there

is zero probability to put a bond between neighboring anti-parallel spins. It is pbond

that is calculated to satisfy detailed balance.

Starting with equation (3.3), the detailed balance equation is proven by investi-

gating the procedure of going from an anti-parallel configuration to a parallel configu-

ration of two spins. The left hand side of the equation which describes starting with a

anti-parallel configuration and going to a parallel configuration is equal to e- 0J . The

right hand side which describes the opposite case starting with parallel spins is equal

to e J(1 - Pbond). This second factor is the probability that no bond exists between

the two parallel spins, which is simply one minus the probability of creating a bond.

If there was a bond, the spins could not have been flipped. This gives for the detailed

balance equation

e- 0J = e'J(1 - Pbond). (3.5)

Solving this equation for Pbond gives

Pbond = 1 - exp(-2J). (3.6)

This is the probability of creating a bond that satisfies detailed balance.



3.3.1 Improved Estimator : (M 2)

Another help to efficiency is the use of improved estimators. An improved estimator

is a "short-cut" to generating Monte Carlo steps. An improved estimator was used to

calculate (M 2), which relates to the susceptibility as shown in Equation (2.5). In the

Ising model, the magnetization M is zero so for a finite volume the Equation (2.5)

simplifies to
1

X = Z((M2)) (3.7)

This equation will be used later to fit the data. The average of the square of the

magnetization is equal to the square of the sum of all of the spin configurations,

which can be divided into clusters

(M 2 ) ((E s) 2) = x(ZZ s) 2). (3.8)

where ¢ is a cluster in the configuration. Expanding the square, we get

(E sX)2) = (1 Sy). (3.9)

This last sum does not change when it is averaged over all possible 2" cluster flips of

the particular configuration, where n is the number of clusters in the configuration:

(E E s ,) = (E E S)21) (3.10)
0,0' xGq,yC' O, xC¢',y-0'

This fact allows the rewriting of the previous sum in terms of a sum over clusters

and a sum over spins sites in each cluster because spins in different clusters do not

contribute to the average value:

( E E SXSY) = (5 5 ssY) (3.11)
¢,¢ zXE,yEEO' 0 x,yEq



However, all spins in the same cluster are parallel so the product becomes the square

and the average over all possible cluster flips goes away.

(1Z E sxsy) = (Z(Z SX) 2) (3.12)
¢ x,yE¢ ¢ x&¢

The interior sum is just the square of the magnetization for each cluster, MO, which

is just the square of the number of spins in a particular cluster, Ic|:

(E(E s)2) (Z ) = (Z c 2) (3.13)

Thus the susceptibility, X, can be calculated from the average of the cluster sizes

of the configuration. This is an improvement because instead of measuring one value

for a configuration, an average value for 2" configurations is used.

3.4 The Monte Carlo methods used

In actual using a Monte Carlo simulation to generate configurations, a combination of

many techniques was implemented. The basic algorithm was a multi-cluster algorithm

with two improved estimators, one for (M 2) and one for the magnetization-dependent

partition function, Z(M). Re-weighting was implemented to increase the number of

configurations sampled. To include the trial distribution, a Metropolis step was put

into the code.

A multi-cluster algorithm was implemented with re-weighting on the partition

function. Because of detailed balance, the probability to determine whether to form

bonds in the multi-cluster algorithm can not be changed. Therefore, a Metropolis step

was added to the multi-cluster algorithm to introduce the effect of the re-weighted

partition function. Normally, the probability to flip the clusters is given as 1/2.

Now, the probability is determined by the magnetization of the current and flipped

configuration. The factor used is proportional to the one used in the Metropolis

algorithm but using the effective Hamilton function (Eq. 2.11) instead of the original



one. The part of the Hamilton function that is the original Hamilton function has

already been taken care of by the multi cluster algorithm. The part dealing with

the trial distribution has not been accounted for and is therefore dealt with in this

new Metropolis step. The probability factor is just the ratio in values of the trial

distribution:
1 pt(M[s(i)]) (314)
2 pt(M[s(J)])

The decision to flip is based on this probability. If the old Hamilton function is greater

than the new one, the probability is just one-half. If the old Hamilton function is

less than or equal to the new one, the probability is one-half times the ratio of trial

distribution values for the old magnetization and the new magnetization:

if Heff[S(j)] < He.[s(i)] then p = 1

if Hef[s(j ) ] > Hef I[s(i)] then p = 2Pt(M[s(i)])/pt(M[s(J)])

This is to keep detailed balance with both the multi-cluster and Metropolis algo-

rithms.

It is also important for the effect of re-weighting. The effective Hamilton function

is only used in the Metropolis step. The main algorithm uses the original Hamilton

function and thereby describes the physics of that Hamilton function. The effective

Hamilton function applies only to the flipping of the clusters not to the determination

of bonds.

3.4.1 Improved Estimator: Distribution

The first improved estimator for (M 2) was discussed earlier. The second improved

estimator improves the calculation of the magnetization-dependent partition function

Z(M) at each Monte Carlo step.

Starting with one configuration, the Monte Carlo routine applies the multi clus-

ter algorithm to determine the bonds, the cluster, and the cluster sizes. Then the

clusters are sorted by the cluster size and the number there are clusters of that size.



Then the Monte Carlo routine creates a histogram of how many times a particular

magnetization appears in the whole Markov chain of configurations generated. Every

configuration has one definite magnetization defined by summing the individual spin

values.

In the multi-cluster algorithm, the configuration is considered to be made up of

clusters of different sizes and spin values. By flipping the spin values of the different

clusters, different values for the magnetization can be generated. The number of total

ways to flip n clusters is 2". The routine starts with clusters of one size and creates

an initial histogram entry depending on the multiplicity of clusters of that size. Once

this initial entry is made, then another histogram of another cluster size is created.

This new histogram is then convoluted with the first histogram. This results in a

new histogram that has the distribution for the magnetization of all the different

combinations of the two different cluster sizes. A histogram of the next cluster size

is created and the process of convolution is repeated. This continues until all the

clusters of different sizes in the current configuration are accounted for. The result

is a histogram of all the possible magnetizations possible from the division of the

current configuration into its clusters.

We now have a distribution of possible magnetizations from the current config-

uration of n clusters. Renormalizing this distribution to one allows substitution of

this distribution for the single entry of one magnetization in the histogram. Then the

histogram is re-weighted by the trial function to enhance the two phase configura-

tion statistics. The re-weighting gives a flat distribution over possible magnetizations

as mentioned in Section (2.2.2). This improved estimator allows more statistics of

the two phase configuration to be taken. This process from creating the bond to

calculating the magnetization histogram is one Monte Carlo step.

After all the Monte Carlo steps are taken, the trial distribution is removed from

the actual distribution measured by the histogram. This is done by multiplying the

individual magnetization value in the histogram by its corresponding value in the

trial distribution: Zfinal(M) = Z(M) x pt(M). The statistics of the plateau region

of two phase configuration are now more accurate and still describe the same physics



that we started with.



Chapter 4

Implementation and Results

4.1 Implementation

The focus of this research is to develop a method for studying the two phase con-

figurations of an Ising Model in any dimension. To start this procedure, the one

dimensional case is explored and then the two dimensional case is used as an actual

test case. In the two dimensional case, all of the previously mentioned methods and

techniques are implemented and tested to see if they work. Once the method has

been tested by comparison to previous results, then actual calculations of interesting

quantities of the two dimensional Ising Model are performed.

4.1.1 One Dimensional Ising Model

The one dimensional Ising Model is useful as a starting point in this research. A one

dimensional Ising Model on a lattice of length L with a periodic boundary (SL+1 = s1 )

was first programmed using a Metropolis algorithm. The partition function for this

particular model has been calculated exactly[1] and therefore makes this model an

excellent test. The magnetization and susceptibility were measured for the model and

calculated from theory and then compared. However, the efficiency of the Metropolis

algorithm for generating the necessary configurations was not high, as mentioned in

Section 3.2.



Next, a cluster algorithm was used to generate the Markov chain of configurations

instead of a Metropolis algorithm. The cluster algorithm provided a more accurate

sampling of the two phase configurations. This appeared in the accuracy of the

observables measured, shown in Table B.1.

4.1.2 Two Dimensional Ising Model

The two dimensional Ising Model was then investigated using a multi-cluster algo-

rithm. Small lattice sizes (L < 10) were used at first to continue testing the accuracy

of new implementations. The first implementation was the improved estimator for

(M), mentioned in Section 3.3.1. Once this part was working correctly, then a routine

was added to histogram the magnetization of the configurations. Then the second

improved estimator for the partition function was included. Data was compared be-

tween the two codes, the one with the improved estimator and the one without it. In

Graphs A-8 and A-9, the effect of this improved estimator is to smooth the histogram

out, giving a more accurate description of the partition function.

Now increasing the statistics of the two phase configurations was taken into ac-

count. The trial distribution was implemented into the program, including the added

Metropolis step mentioned in Section 3.4.1. By setting the trial distribution to a con-

stant value of 1, the effect of the trial distribution would be negated and the results

should be exactly the same if there was no trial distribution. This fact was checked

and confirmed.

The best Ansatz for the trial distribution was figured to be the actual histogram of

the magnetization itself. Thus a small Monte Carlo run was done and the histogram

from that run was used to be the trial distribution of a larger Monte Carlo run. This

worked very well for small lattice sizes, shown in Figures A-10 and A-11. Normal-

ization was done so that the total number of counts in each histogram was equal to

the number of Monte Carlo steps, although each histogram can be normalized to any

value necessary.

However, in the runs of the larger lattice sizes (L > 14), it was found that a small

Monte Carlo run would not generate a full histogram to use a trial distribution. The



histogram of the magnetization would have zero values because even with the tech-

niques implemented, the program would not be able to generate some configurations

due to their exponentially suppressed probabilities. To overcome this problem, an

Ansatz of the trial distribution was used, generated from the proposed formula of

the partition function from Professor Wiese's theory [3]. The accuracy of this Ansatz

trial distribution had to be calculated carefully because a large error in the calculation

was found to occur if the Ansatz distribution had the wrong magnitude in the region

of magnetization of the two phase configuration. With this adjustment made, larger

lattice sizes could be investigated.

Another step to improve accuracy was the use of the previous magnetization par-

tition function for the trial distribution. Once the magnetization-dependent partition

function was calculated, it became the trial distribution for the next run. This al-

lowed the improved accuracy of previous runs to be carried along to improve the next

run.

4.2 Results

Tables B.2, B.3, and B.4 contain data from various runs at different O's and L's

and the observables calculated from each. In total, 17 different lattice sizes and 3

different values of 3 were run using this method. The lattice sizes ranged from 2 to

100 and the values of / used were Tc (the critical temperature, about 0.44), 0.47, and

0.50. Comparison to other research to measure the same observables showed good

agreement [5].

One data file was used for data input and three files were used for output data.

The input data file contained the lattice size, L, the inverse temperature, /, and the

number of Monte Carlo steps to be used to generate the trial distribution and the

magnetization-dependent partition function. One output file contained the values for

the magnetization and susceptibility calculated for each run. From the magnetiza-

tion histogram, the interface tension was extrapolated using Equation ( 2.10) and

then written to another output data file. The last file held the histogram for the



magnetization-dependent partition function.

The surface tension from the data approached the analytical value in agreement

with Onsager's calculation[l] in the runs with the large lattice size, as shown in

Figures A-12, A-13, and A-14. With this information, the interface stiffness was

extrapolated to the infinite volume limit by use of a fit to a form from a rearrangement

of Equation (2.10) His theory predicts that a --+ o' + a/L, with a' being the ratio of

values from the magnetization-dependent partition function.

4.2.1 Statistical Errors: Monte Carlo

The Monte Carlo method is an approximation of an infinite calculation. It calculates

observables in a finite number of steps that are truly represented by average measure-

ments on a system in equilibrium forever. These errors are statistical in nature.

The naive error of the magnetization is, from basic principles:

AM = '(M 2) - (M) 2  (4.1)

It assumes that the measurements taken are independent and have no correlation.

For the multi-cluster algorithm, this level of error analysis is sufficient because of the

lack of correlation between measurements.

The error in the susceptibility from Monte Carlo statistics is given by

Ax = (M 4 ) - M22 (4.2)

These equations are used to calculate the error in the magnetization and suscep-

tibility from the Monte Carlo simulations.

4.2.2 Statistical Errors: General

These general statistical errors occur in the actual calculation of measured values.

Using a process called "bining", the observables were calculated five to ten times

for each f and lattice length L at a smaller number of Monte Carlo steps rather



than one large Monte Carlo run. This is to remove correlations that may be in the

measurements. A statistical average is taken for the multiple values taken from each

particular pair of parameters and this value is used.

4.2.3 Systematic Errors

The general reasoning of this method of calculation is based on an expansion of a

mathematical description of the actual possible configurations. The method pre-

sumes that beyond the critical temperature to the lowest order, the configuration

either forms one large domain or creates two separate phase domains. This gives

three basic areas of contribution to the magnetization-dependent partition function:

two around the plus and minus values of the average magnetization (M = ±(Mavg))

and one around zero (m = 0). The expansion is for large volumes and configura-

tions of magnetization near zero. This is why an extrapolation from small to large

volumes is necessary. To higher orders, however, combinations of these two types

of configurations are possible. There could be a large domain of one phase inside

the opposite phase and an interface. There could be multiple interfaces or domains.

These configurations are not accounted for at this level of the expansion and could

have contributions to the regions not covered by the expansion.



Chapter 5

Conclusion

The goal of this thesis was the development of a method of calculation for certain

observables of the Ising Model in any dimension through the use of a two dimen-

sional test case. Many methods were used to do this. A combination multi-cluster

and Metropolis algorithm using a trial distribution to increase the statistics of cer-

tain states was developed. Two improved estimators were implemented: one to help

measure the susceptibility which relies on (M) and one to build a histogram of con-

figurations separated by magnetization. A theory by Professor Wiese [3] was used to

build an Ansatz and calculate the results to compare with previous work. The results

for this test case have shown that the method does work and agrees with previous

calculations by Onsager [1].

What makes this work unique is not the use of improved estimators or a trial

distribution but the use of the combination of both. As of this time, this is the

first attempt at such an approach and the improvement of data that it allows. One

of the main concerns about using the Monte Carlo method to accumulate data is

how long to run, that is, how many Monte Carlo steps are necessary until accurate

data can be taken. This method allowed for a reduction of Monte Carlo steps, or

equivalently an increase in the accuracy of the Monte Carlo calculation. The rough

estimate of efficiency is about a order of magnitude of the number of Monte Carlo

steps when compared to the work of others who did not use cluster algorithms to

similar calculations [5].



Now, our method can be used to calculate properties of the Ising Model in higher

dimensions. The Monte Carlo methods used can be extended to higher dimensions

with little work. However, deeper analysis of the Ising model in higher dimensions is

necessary to understand how the characteristics of interface tension and stiffness can

be calculated from magnetization-dependent partition functions.

I would like to thank my Advisor, Professor Uwe-Jens Wiese, for his constant

support and guidance throughout this thesis.
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Figures
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Figure A-i: Two regions of different spins separated by two interfaces
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Figure A-2: Ising lattice



Figure A-3: One phase configuration



Figure A-4: Two phase configuration

Figure A-4: Two phase configuration
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Figure A-5: Two possible two phase configurations with the same free energy
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Figure A-6: Original magnetization-dependent partition function, Z(M)
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Figure A-7: Effective magnetization-dependent partition function, Zeff(M)
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Figure A-8: Effect of the improved estimator: with improved estimator
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Figure A-9: Effect of the improved estimator: without improved estimator
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Z(M) vs. M
3=0.47, L=8, D=2
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Figure A-10: magnetization-dependent partition function for 3 = 0.47, L = 8
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Z(M) vs. M
3=0.47, L=12, D=2
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Figure A-11: magnetization-dependent partition function for /3 = 0.47, L = 12
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Figure A-12: The surface tension for 3 = Tc
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Appendix B

Tables



Table B.1: Magnetization (M) and susceptibility X data from D = 1, L = 4 Cluster
algorithm

No. of steps
1x106
1x106
1x106
1x106
1x106
1x106
1x106
1 x 106
1x106
1x106
1x106Ix106

(M)
-0.1225(5)
0.8745(6)
0.0165(6)

-0.3005(6)
-0.0215(7)
0.1390(8)
0.3395(8)

-0.2385(9)
-1.8300(9)
1.1000(9)

-0.2520(10)

X
0.2500(3)
0.3055(3)
0.3713(4)
0.4488(4)
0.5333(4)
0.6202(4)
0.7028(4)
0.7756(4)
0.8350(3)
0.8821(3)
0.9174(3)

X, Analytical
0.2500
0.3052
0.3718
0.4490
0.5337
0.6203
0.7025
0.7751
0.8351
0.8821
0.9172

0.000
0.000
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.800
0.900
1.000



Table B.2: Surface tension o, magnetization (M), and susceptibility X for D=2,
f3TC

L No. of steps a (M) x
2 100000 0.5201 0.0019(83) 0.6816(8)
4 100000 0.4171 -0.0027(73) 0.5323(15)
6 100000 0.2697 -0.0020(69) 0.4766(17)
8 100000 0.2010 0.0030(67) 0.4515(18)

10 100000 0.1576 -0.0034(66) 0.4318(19)
12 100000 0.1305 0.0030(65) 0.4185(19)
14 100000 0.1134 0.0001(64) 0.4112(20)
16 100000 0.0976 -0.0035(63) 0.4033(20)
18 100000 0.0877 -0.0025(63) 0.4005(21)
20 100000 0.0781 -0.0046(63) 0.3965(21)
30 100000 0.0533 -0.0473(63) 0.4147(22)
40 100000 0.0195 0.0997(50) 0.6530(8)
50 100000 0.0157 0.0981(49) 0.6438(7)
60 100000 0.0130 -0.2984(48) 0.6356(7)
74 100000 0.0103 0.1009(48) 0.6239(7)
80 100000 0.0096 -0.3027(48) 0.6203(6)

100 100000 0.0029 0.0002(53) 0.4407(9)
exact 0. 0.



Table B.3: Surface tension a, magnetization (M), and susceptibility X for D=2,
0 = 0.47

No. of steps
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000

50000
50000
50000
50000
50000
50000
50000

a0

0.5858
0.4937
0.3697
0.2986
0.2592
0.2309
0.2120
0.1968
0.1876
0.1787
0.1416
0.1289
0.1402
0.1259
0.1342
0.1262
0.1149
0.11491859

(M)
0.0003(83)
0.0029(74)

-0.0063(71)
0.0040(70)

-0.0017(69)
0.0000(69)
0.0035(69)
0.0046(69)

-0.0066(69)
0.0057(69)
0.0879(61)
0.1925(63)
0.1598(70)

-0.1202(64)
-0.1638(54)
0.1631(59)
0.3097(62)

0.

L
2
4
6
8

10
12
14
16
18
20
30
40
50
60
74
80

100
exact

x
0.6910(8)
0.5528(14)
0.5099(15)
0.4914(16)
0.4823(17)
0.4743(17)
0.4707(17)
0.4705(17)
0.4710(17)
0.4709(16)
0.6313(8)3
0.6043(12)
0.5925(13)
0.6507(10)
0.7100(11)
0.6594(12)
0.6208(8)



Table B.4: Surface tension a, magnetization (M), and susceptibility X for D=2,
S= 0.50

No. of steps
100000
100000
100000
100000
100000
100000
100000
100000
100000
100000

50000
50000
50000
50000
50000
50000
50000

a

0.6495
0.5787
0.4772
0.4008
0.3624
0.3363
0.3152
0.3040
0.2982
0.2910
0.2759
0.2525
0.2281
0.2281
0.2281
0.2281
0.2281

(M)
-0.0009(84)
-0.0045(76)
0.0032(73)

-0.0028(73)
-0.0110(72)
-0.0028(72)
0.0085(72)

-0.0006(72)
0.0100(73)
0.0053(73)

-0.0037(73)
0.1535(72)
0.4431(56)

-0.0391(56)
-0.0598(52)
-0.0767(47)
0.1272(44)

exact 0.228063166 0.

L
2
4
6
8

10
12
14
16
18
20
30
40
50
60
74
80

100

X
0.7001(6)
0.5743(12)
0.5395(13)
0.5275(14)
0.5194(13)
0.5224(13)
0.5203(12)
0.5190(10)
0.5391(11)
0.5401(9)
0.5441(10)
0.6318(14)
0.6842(9)
0.7084(8)
0.6834(10)
0.5983(16)
0.5997(14)

exact 0.228063166 0.
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