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Abstract

Using simulation results from three different regional ocean models (HOPS, ROMS
and FVCOM) we show that only a few spatio-temporal POD (proper orthogonal
decomposition) modes are sufficient to describe the most energetic ocean dynamics.
In particular, we demonstrate that the simulated ocean dynamics in New Jersey
coast, Massachusetts Bay and Gulf of Maine is energetically equivalent to the wake
dynamics behind a cylinder at low Reynolds number. Moreover, the extrema of the
POD spatial modes are very good locations for sensor placement and accurate field
reconstruction. We employ a modified POD theory to incorporate a limited number
of measurements in reconstructing the velocity and temperature fields, and we study
systematically the corresponding reconstruction errors as a function of the sensor
location, number of sensors, and number of POD modes. This new approach is quite
accurate in short-term simulation, and hence it has the potential of accelerating the
use of real-time adaptive sampling in data assimilation for ocean forecasting.
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1 Introduction

In order to initialize dynamical forecast systems for the ocean state, mea-
surements of high accuracy are required; such measurements are difficult and
costly, and in many cases, e.g. in real-time adaptive sampling, they have to
be done very fast. Given the spatio-temporal variability in the ocean and its
intermittent dynamics, sampling a pre-determined region uniformly in time-
space can be very inefficient. This is due to the fact that only a small subset of
those measurements have a significant effect on the accuracy of the forecasts
(Robinson and Glenn (1999)). Adaptive sampling is an evolving method for
the efficient sampling of the most energetic ocean phenomena in support of
real-time nowcasting and forecasting. It has been used only recently in ocean
forecasting demonstrations (e.g., HOPPS-ESSE (2003)) and has the potential
of reducing the observational requirements by orders of magnitude. However,
adaptive sampling is still complicated and costly for routine observations.
Moreover, truly real-time adaptive sampling of the ocean requires fast data
assimilation methods and rigorous criteria to identify locations of best sen-
sor placement. To this end, adjoint methods (that solve the inverse problem)
(Arango et al. (2003)) bear great promise and a recent demonstration in a
data assimilation experiment of the East Australia Current confirmed this
(Wilkin et al. (2008)). However, adjoint methods tax computational resources
more heavily than other methods and they typically require a lot of computer
memory. Other methods, e.g., based on uncertainty estimation such as the
ESSE system (Lermusiaux (2001)), have been used in certain demonstration
experiments but they too are expensive for truly real-time adaptive sampling.
Various nonlinear versions of the Kalman filter have been applied to simpli-
fied models but no clear consensus on their effectiveness has been reached yet
(Buehner and Malanotte-Rizzoli (2003); Zang and Malanotte-Rizzoli (2003)).
A recent progress report from a joint NSF-ONR workshop (Lermusiaux et al.
(2006)) on Data Assimilation (DA) identified the need for improving real-
time adaptive sampling and recommended the development of new economic
DA without loss of accuracy based on reduced-dimension schemes that will
complement adjoint- and ensemble-based methods.

In light of ocean complexities over a wide range of scales — see the “multiscale
ocean” in (Dickey (2003)) — extracting the proper hierarchy can be both valu-
able in physical understanding but also in developing new ways of modeling
and forecasting ocean processes. Proper Orthogonal Decomposition (POD)
(Rempfer (2003); Bekooz et al. (1993); Aubry et al. (1991); Sirovich (1987))
is one such approach, (also known as the method of Empirical Functions or
EOF), and oceanographers have used it to analyze their data or to develop
reconstruction procedures for gappy data sets, see (Beckers and Rixen (2003);
D’Andrea and Vautard (2001); Hendricks et al. (1996); Everson et al. (1995))
and (Wilkin and Zhang (2006); Pedder and Gomis (1998); Houseago-Stokes



(2000); Preisendorfer and Mobley (1988)). In the present work, we are inter-
ested in extracting useful concepts from POD analysis that will lead to con-
crete guidelines for efficient sensor placement in adaptive sampling for regional
ocean forecasting. Specifically, we pose the question: Can we use properties of
the POD modes, computed over a specific time interval, to decide on the best
and hopefully optimum location of sensors? Here we define optimum location
as the positions that will give us the best possible reconstructed ocean field
(in the mean energy sense), given a limited number of measurements at these
locations.

To this end, instead of tracking instantaneous special flow features in the phys-
ical domain, we are looking for special features in the POD modes, that is in
the modal domain. However, for this approach to be efficient, we first need to
demonstrate, from numerical simulations, that the ocean dynamics predicted
by different regional models is low-dimensional, and hence only a few dom-
inant POD modes can reproduce the essential ocean dynamics. Clearly, the
dimensionality of the ocean region we simulate depends strongly on the phe-
nomena involved (e.g., convection, upwelling, etc.) and no general statements
can be made. To address this difficult question, we have undertaken a system-
atic study using three different ocean models (ROMS (URL)), (HOPS (URL))
and (FVCOM (URL)), to simulate the short-term and long-term dynamics of
different regions and phenomena. As we will see, this distinction between short-
term and long-term dynamics is important as the effective dimensionality of
the ocean system increases with time. The above models employ assumptions
associated with turbulence modeling and do not have the resolution fidelity to
capture the small flow scales. In order to appreciate this, we also compare the
POD analysis of the simulated ocean with a similar analysis of a benchmark
problem, flow past a circular cylinder at low Reynolds number, which is based
on outputs from high-resolution direct numerical simulation (DNS) with all
spatio-temporal scales fully captured.

We present the simulation results in the next section. Subsequently, we present
in section 3 a recent extension of POD (Everson and Sirovich (1995); Beckers
and Rixen (2003); Venturi and Karniadakis (2004); Willcox (2005)), that leads
to a reformulation of the data assimilation problem as a gappy data problem.
First, we apply this approach to our benchmark problem, and then in section 3
to Massachusetts Bay. We conclude the paper with a summary and a discussion
of our findings in section 4.

2 Simulations and Low-dimensionality

We have employed three different regional ocean models, specifically, the Rut-
gers model (ROMS (URL)), the Harvard model (HOPS (URL)), and the Uni-



versity of Massachusetts at Dartmouth model (FVCOM (URL)) to obtain
simulation data for different regions and conditions (New Jersey coast, Mas-
sachusetts Bay (Mass Bay), and Gulf of Maine, respectively). We have ana-
lyzed the ocean dynamics over short-term but also for much longer periods
using POD. By cross-correlating different snapshots obtained from the simula-
tions we constructed the covariance matrix, the eigen-decomposition of which
yields the POD eigenvalues and corresponding POD temporal and spatial
modes. In particular, the sum of the normalized eigenvalues is representative
of the energy captured by the corresponding POD modes. The POD modes
are hierarchical with the lower-indexed modes containing higher energy. We
used a serial code based on LAPACK for the ROMS and HOPS simulation
outputs, however, we implemented a parallel version of the POD code based
on ScaLAPACK to deal with the large matrices involved in the Gulf of Maine
FVCOM simulations (matrices with more than 1 billion entries).

In the following, we describe the different data sets we analyzed and present
a summary of our results that provides evidence of the low-dimensionality of
the “numerical” ocean.

2.1 New Jersey and Middle Atlantic Bight

The Lagrangian Transport and Transformation Experiment (LaTTE) is a co-
ordinated program of field and numerical experiments that addresses the bi-
ological and geographic extent of contaminants along the New Jersey and
Middle Atlantic Bight, see (LATTE (URL); Choi and Wilkin (2007)) and Fig.
1. We will use the LaTTE data base in our analysis. Here, POD analysis
is carried out for two cases, one short-term and one long-term simulation.
The simulation results were provided by the Rutgers Ocean Modeling Group
(Rutgers Group (URL)). The short-term simulation is for 2.5 days; it starts at
midnight of May 13, 2005 and ends at noon of May 15, 2005. The long-term
simulation is for 25 days; it starts on February 4, 2006 and ends on February
28, 2006. Time resolution of snapshots and various snapshot length effects on
energy spectra and POD coefficients were investigated systematically to avoid
any erroneous conclusions.

The normalized energy spectra for both cases are shown in Fig. 2 for three
variables, namely horizontal velocity vector, temperature and salinity. We note
that POD analysis was performed on the horizontal velocity vector and not on
the components so only one line representing the velocity is shown in the plot.
Moreover, the entire computational domain is employed in the POD analysis.
Several resolution checks were performed to assess the accuracy of our results.
In Fig. 3 we show the effect of sampling at four different resolutions. Specifi-
cally, the short-term simulation was sampled every 0.625hr, 1.25hr, 2.50hr and



3.75hr while the long-term simulation every 3.0hr, 6.0hr, 12.0hr and 18.0hr.
The percentage of total energy (3 A x 100) captured by the coarse resolutions
superimposed on the finest resolution shows that the low modes of the finest
simulation comprise about 99% of the total energy.

2.2 Massachusetts Bay

The Massachusetts Bay (Mass Bay) simulation data base was provided by the
Harvard Ocean Prediction System Group (Lermusiaux (2001)), see Fig. 4. The
short-term simulation covers eight days, starting on August 25 and ending on
September 2, 1998; the data are recorded at every hour (193 snapshots). The
long-term simulation covers 47 days, between August 20 to October 6, 1998;
the data are recorded daily (47 snapshots). The energy spectra (excluding the
mean mode) is given for both simulations in Fig. 5. As also seen in the New
Jersey simulations, here too a few modes contain most of the energy for both
simulations, see also Tables 1 and 2. The first four modes account for 93%
for the 8-days simulation, and for 78% for the 47-days simulation, as seen in
Table 1. Additionally, Table 2 shows the eigenmodal energy content of the
instantaneous field (excluding the mean mode). The temperature and salinity
variables show very low dimensionality for both simulations, with the first
mode accounting for about 99% of the total energy.

2.8  Gulf of Maine

The Gulf of Maine was simulated by the Unstructured Finite Volume Coastal
Ocean Model (USG-FVCOM) and the simulation data were provided by the
University of Massachusetts-Dartmouth Ocean Modeling Group; see Fig. 6.
The simulation covers all of August 1998 and the output is recorded hourly
(744 snapshots); a typical result is shown in Fig. 7, including sensitivity of
the velocity energy spectrum on two different grids. We note parenthetically
here that the third POD mode shows that most of the activity is centered
around Georges Bank (not shown here). Table 1 presents the first nine POD
eigenvalues. The first mode of temperature and salinity again account for 99%
of the total energy, while the sum of the first three eigenmodes of velocity
accounts for about 95%.

2.4 The “numerical” ocean is low-dimensional

The physical and biological processes in the ocean are characterized by a wide
range of spatio-temporal scales, from 1 mm for molecular processes to more



than 10 km for fronts, eddies and filaments, and corresponding characteristic
times from 1 second to several months (Dickey (2003)). However, the question
that we address here is what range of such scales is captured in simulations us-
ing some representative regional ocean models, and what is the corresponding
energy hierarchy. (We refer to the outputs of the simulation codes as “numer-
ical” ocean.)

We present a summary of all our results in terms of the relative energy as
represented by the normalized eigenvalues. Specifically, in Table 1 we list the
first nine POD eigenvalues from the analysis of the total fields, i.e., including
the mean mode. This mode, corresponding to the first row in the table, is
responsible for about 99.9% of the total energy for temperature and salinity.
Velocity, however, has a wider distribution with its first two eigenmodes con-
taining about 90% energy for the Gulf of Maine, about 70% for Massachusetts
Bay, and about 50% for the New Jersey Coast. The energy contained in the
sum of the first eight eigenmodes comprises about 97% for the short-term sim-
ulation and about 91% for the long-term simulation. We also present the POD
eigenvalues in Table 2 with a different normalization, i.e., we do not include
the first (mean) mode, and hence it is easier to appreciate the energy content
in all the modes representing spatio-temporal fluctuations.

In order to put these results into the proper context we compare next with a
well-studied prototype flow, namely the laminar and turbulent wake. In past
work, in a series of papers (Dong et al. (2006); Ma and Karniadakis (2002); Ma
et al. (2000)) have demonstrated the low-dimensionality of the turbulent wake
in flow past a circular cylinder. These results were based on direct numerical
simulations (DNS), where all spatial scales down to Kolmogorov scale were
accurately resolved. We want to compare the dimensionality of the dynamics
in the three ocean regions we simulated with ROMS, HOPS and FVCOM with
that of the cylinder flow in order to gain some insight on its complexity. In
Fig. 8 we plot the eigenspectra of the cylinder flow at Re = 10,000; 3, 900;
and 185 together with the ocean eigenspectra corresponding to the long-term
simulations for the LaTTE, Mass Bay, and Gulf of Maine data.! Based on
the relative rapid decay of the ocean eigenspectra for all three cases, it is
clear that the dynamics that ROMS, HOPS and FVCOM simulate is low-
dimensional and certainly much less complex than the cylinder dynamics at
Re = 10,000 for which there is significant energetic contribution from the
high modes unlike the ocean dynamics. To appreciate also the distinction
between the short-term and long-term ocean dynamics, we plot in Fig. 9 the
eigenspectra for the short- and long-term simulations of Mass Bay; at the

1 We note that at Re = 185 the cylinder wake is three-dimensional but laminar
whereas at Re = 3,900 it is turbulent with a small inertial range; at Re = 10,000
the wake is fully turbulent although the boundary layer around the cylinder is still
laminar.



40th mode the energy content for the former is about two orders of magnitude
smaller than the energy content of the latter. We will analyze these two cases
in more detail in section 4.

These and other results not presented here suggest that in the current gen-
eration of mesoscale ocean models the dynamics captured is low-dimensional,
and hence reduced-order modeling is possible. This, in turn, implies that both
the data assimilation problem as well as the forecasting problem can be re-
formulated in order to exploit the efficiency of low-dimensional representa-
tions, specifically using the POD modes. While this finding is not new, the
actual low value of the dimensionality, especially for the short-term dynamics
compared to the periodic vortex shedding of the turbulent wake, is an intrigu-
ing result. It does not reflect the real ocean dynamics, which is clearly much
more complex than the cylinder dynamics; after all, the Reynolds number of
the flow around a buoy (used possibly for measurements) at modest current is
larger than Re = 10, 000! However, it points to the limitations of the physical
modeling in the current generation of mesoscale ocean codes and their inability
to resolve accurately energetic contributions beyond a handful of modes. One
could possibly argue that this is also a limitation of the coarse spatio-temporal
resolution but at least for the results we presented here, see Figs. 3 and 7, this
does not seem to be the case. In our view, the problem lies in the modeling
of the viscous terms, and future reformulations of turbulence modeling in the
framework of large-eddy simulations (LES) — using petaflop resources — will
improve the accuracy of simulated ocean dynamics greatly.? Such LES-based
ocean models may require new data assimilation schemes.

3 POD-based Sensor Placement

The simulation results we obtained from three different codes used currently
for regional ocean modeling suggest that only a few POD modes are required
to describe the essential ocean dynamics. This, in turn, can be exploited in
many different ways; here, we show how to use it to advance the adaptive
sampling problem. To this end, instead of sampling the physical structures
we will sample the POD spatial modes, but only the most dominant ones.
We then recast the reconstruction of the ocean state from a limited number
of measurements as a gappy data problem and we employ the POD formula-
tion to deal with it. This POD extension was first proposed by (Everson and
Sirovich (1995)) in image processing applications. (Venturi and Karniadakis
(2004)) have improved its robustness by a modification that ensures that the

2 This observation is supported by the fact that the aforementioned cylinder eigen-
spectrum at Re = 10,000, simulated not with DNS but based on Reynolds-averaged
Navier-Stokes (RANS), resembles the eigenspectrum of Fig. 8 at Re = 185.



accuracy is independent of the initial guess required in filling the originally
incomplete data. POD-based reconstruction for oceanographic data was also
developed independently by (Beckers and Rixen (2003)) and (Alvera-Azcarate
et al. (2005)). Also, (Qiu and Chou (2006)) proposed a method called four-
dimensional data assimilation method based on SVD, somewhat similar to
the method by (Everson and Sirovich (1995)). (Gunes et al. (2006)) compared
the POD for reconstructing gappy fields to Kriging interpolation (Chiles and
Delfinger (1999)) and found it superior for data sets with high temporal res-
olution.

3.1 POD-based Reconstruction

A three-dimensional field u(x, t) can be represented by u(x, t) = 332 , a*(t) ®*(x),
or by employing a truncated expansion it can be approximated as

u(x,t) ~ ;ak(t)tﬁk(x), (1)

where K is the number of the basis functions ®%(x), and a*(t) are the time-
dependent coefficients. Let us define the gappy vector u, which is the point-
wise product of a mask vector m and the complete vector u. Defining an
intermediate solution vector tix that uses the existing spatial POD functions
®*(x), we obtain the expansion form

U = 1; b*(1), @* (x) (2)

defined by the unknown coefficients b*(¢). Minimization of the error defined
between the gappy vector 1 and the intermediate solution tx results in the
best possible time coefficients b* in the mean energy sense (L2-norm). The
error can be defined in the gappy norm as

€= la— x|, (3)

where the subscript m denotes that this is not the standard L2-norm. By
defining the gappy inner product (u,v), = ((m - u),(m - v)) (- as point-wise
multiplication), the corresponding gappy norm ||v||2, = (v, v),, can be defined.
We note that the POD functions ®(x) are no longer orthogonal with respect
to the gappy inner product. We can write Eq. (3) as

5=||ﬁ\|fn—2;bk<ﬁ,<1>k(x))m+ZZbibj(<I>i(x),<I>j(x)) o (4)

i=1j=1 m



and by differentiating with respect to b"(¢), the error-minimization problem
leads to the equation

o0&
ob"

K
=-2(d, ®"), + 2> b (®*,&"),, = 0. (5)
k=1

This is a linear system of equations in matrix form for the coefficient b* in
the form
Mb = f (6)

where the matrix entries are defined as M;; = (®*, ®7),, and the right-hand-
side matrix can be computed from f; = (@, ®*),,, so f; represents the projection
of the measured data onto the available eigenmodes. We note that the matrix
M is non-singular — as it may be the case in the original method (Everson and
Sirovich (1995)) — because the eigenmodes are not obtained from gappy snap-
shots but rather from the output of the ocean model code. Having obtained
the time coefficients b*, we can find the temporary solution through Eq. (2)
and then repair the gappy data @ with new information in G for the missing
points.

We need, however, to determine the criteria for the optimum placement of
the sensors available to sample the POD modes. In (Cohen et al. (2003)) this
problem was considered for unsteady flow past a circular cylinder and the sen-
sors were placed at the extrema of the POD modes. This, of course, assumes
that one knows these modes in advance or in practice one can approximate
(e.g., by extrapolation) these modes from another (e.g., near-by) state. An
alternative approach in selecting optimum locations was presented in (Will-
cox (2005)), where the properties of the linear system in the modified POD
formulation were involved; a similar approach was also used in (Mokhasi and
Rempfer (2004)). To make this point more clear, we consider the linear system
of equations (equation (6)), and we solve for the unknown coefficients b* with
the forcing f; obtained from the measured data. We note that the matrix M is
the identity matrix in the case of complete data due to orthonormality and its
condition number k(M) = 1 in that case. However, for gappy data k(M) > 1,
and hence an “optimization” problem can be set up, where the locations of
sensors are obtained so that x(A) is minimized, hence approaching closer the
complete data case (Willcox (2005)). The hypothesis here is that the closer
the value of k(M) is to unity the more accurate the reconstructed field will
be. Specifically, (Willcox (2005)) proposed the following greedy algorithm to
solve this (non-trivial) optimization problem:

e (i) Consider placing the first sensor: loop over all possible placement points,
evaluate M for each point, and choose the point that minimizes x(M).

e (ii) With the first location set, loop over all possible remaining placement
points. For each point, update the mask vector, evaluate M, and choose the



point that minimizes k(M).
e (iii) Repeat step (ii) for all remaining sensor locations.

We have modified the above algorithm in two ways: First, we have changed
step (i) so that instead of a single sensor we always start with K number of
sensors, i.e., equal to the number of retained POD modes in the expansion.
This is required as the matrix M is rank-deficient when the number of sen-
sors is smaller than K and hence the condition number will take an infinite
value. Specifically, we place K sensors at the extrema of the POD modes as
initial conditions and solve for all possible combinations, with the objective
of minimizing x(M). Second, after step (iii) we pursue a further optimization
by re-locating one-at-a-time all the sensors, successively starting from the first
one. We found that this additional step may lead to even smaller values of con-
dition number, see results below. We note that we search all the grid points
for this optimization problem. Other approaches are also possible, e.g. using
a combined steepest descent-simulated annealing employed in (Mokhasi and
Rempfer (2004)).

3.2 Unsteady flow past a cylinder

To investigate which criterion we should be using in placing the sensors for
sampling the POD modes, we consider a benchmark problem, namely two-
dimensional flow past a circular cylinder, and perform extensive tests. In par-
ticular, we present a comparative study on the sensor locations using two
different criteria: (1) the locations of the extrema of POD modes according
to (Cohen et al. (2003)), and (2) the locations that minimize the condition
number (M) of the matrix in equation (6) according to (Willcox (2005)). To
this end, we consider two-dimensional unsteady flow past a circular cylinder.
We performed high-resolution spectral/hp element?® simulations at Re = 100
for which a time-periodic state is achieved. The POD modes are extracted
from snapshots taken over one time period; details can be found in (Ma et al.
(2000)).

We assume that we have 12 sensors for the limited number of measurements,
and the question is which POD modes to sample and how. For simplicity, we
also assume that we will employ only four POD modes for the reconstruction.
We have investigated more than 20 cases to determine the best possible sensor
configurations but here we present only the 10 most representative ones. In
general, for each configuration we start with the extrema of the POD modes
(using different variables, e.g., the velocity components u, v or the total ve-
locity U = v/u?+ v? or the temperature 7). We then search for locations

3 The spectral/hp element method is a high-order finite element method that em-
ploys spectral polynomial as trial basis, see Karniadakis and Sherwin (2005).
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that minimize x(M) and evaluate the error of the reconstructed field using as
reference solution the results from the full simulation. We summarize the 10
cases in Table 3. In case 1 we do not use the greedy algorithm but instead we
place the sensors at the extrema of the POD modes of the total velocity U
with the following sensor distribution (2,2,4,4) for the modes (1,2,3,4), respec-
tively. In other words, here we place more sensors in the higher modes (3 & 4).
However, we have investigated other configurations, e.g. (4,4,2,2) or (3,3,3,3).
Specifically, we examined another nine cases for which the sensors are placed
at the extrema of different POD modes and with different number of sensors
per mode; the results are somewhat similar to case 1 so we do not present
them here. In case 2 all the sensors are placed along the centerline. For the
other cases (3-10) the aforementioned modified greedy algorithm was used to
find the best possible locations. For cases 3 and above we have used different
initial configurations as follows. Case 3 uses case 2 as initial configuration and
then a greedy algorithm is run (i.e., the last part only of the relocation part of
the algorithm). Similarly, case 4 uses case 3 as initial configuration, and so on.
We identified 100 extrema in the POD modes and starting with these as pos-
sible initial locations we had to perform extensive searches. Subsequently, we
re-located all sensors, one-at-a-time in an iterative fashion, to look for possibly
better sensor locations.

In order to compare the various cases we define the reconstruction error as

& ol — uy)?

where N is the number of snapshots, and 1 and u denote reconstructed and
reference fields, respectively. We should also distinguish between the mea-
surement error and the total error (measurement plus truncation). The latter
reflects the inaccuracies committed due to the fact that we only employed four
POD modes instead of the total number of POD modes available. Hence, we
use the subscript 7 that takes the value of 1 or 2 for the total or measurement
errors, respectively.

In Table 4 we summarize the results for the aforementioned 10 cases. Overall,
we have observed that a small condition number k(M) corresponds to small
reconstruction errors es (and hence e;) but the absolutely smallest x(M) does
not correspond to absolutely smallest e;. We note that in case 2, with all 12
sensors along the centerline, we obtain a very large condition number and cor-
respondingly a very large reconstruction error. Cases 4, 7 and 10 have different
k(M) but about the same error ey. In case 1 (sensors on the extrema of POD
modes) — for which no optimization solution is required for k(M) - we have
the second smallest error e; although its condition number is well above 1. We
have observed similar trends by considering the POD modes of other variables
(e.g., temperature or vorticity) and placing the sensors as above but following
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the contour levels of these state variables. We have concluded that configu-
rations corresponding to low condition number should be preferred for low
reconstruction error. However, placing the sensors at the extrema of the POD
modes of the most important state variable leads to both low reconstruction
errors and low condition number without the extra overhead associated with
the search/optimization algorithm.

In Fig. 10 we plot the first four POD modes along with the location of the
sensors for case 1; the sensors are placed at the extrema of the POD modes. In
Fig. 11 we plot the locations of 12 sensors for case 3, the coordinates of which
were computed based on the greedy algorithm. Comparing the results shown
in the two figures, we see that the sensors are placed in different positions
although the reconstruction error is of about the same magnitude, i.e., 6-7%.
This, of course, indicates that there is no unique solution to this problem and
hence the most efficient method should be used in practice, i.e., the extrema
of the POD modes.

In summary, the general conclusion we draw from these results is that the
extrema of POD modes are very good locations, if not optimum, to place the
sensors. At these locations, the condition number (M), becomes small but
not minimum. In fact, minimization of k(M) does not necessarily lead to the
smallest reconstruction field.

Next, we present results for the Mass Bay using the most efficient method,
i.e., selecting the extrema of POD modes as sensor locations.

4  Massachusetts Bay: Results and Discussion

We now apply the modified POD framework in sampling Mass Bay. We will
investigate the level of reconstruction errors for a different number of retained
POD modes (e.g., different truncations) and also for different number of sen-
sors for both short-term (8-days) and long-term (47-days) simulations. Fol-
lowing the findings from our cylinder investigation, we will place the sensors
at the extrema of the POD modes; a typical result is shown in Fig. 12. We
still have many choices regarding the sensor distribution per mode; here, we
will only show a subset of our results. We use as guiding modes the ones
corresponding to the total velocity U(= vu? 4+ v?) and also the temperature.
The sensor configurations for all cases are given in Table 5. Each box in the
table contains information on how the sensors are distributed per mode; for
example, 2x — 22 — 4z — 4z for the four-modes in case 1 implies that (2,2,4,4)
sensors are used for modes (1,2,3,4), respectively, if z = 1 or (4,4,8,8) if z = 2,
depending on the number of the available sensors (12 and 24, respectively).

12



We will measure the time-averaged reconstruction errors using the following
definition:

N ~ 2
i=1 JQ avg /e

where the subscript denotes snapshot number. The reference state u is

meant to be a complete HOPS solution for j = 1 and reconstructed POD

solution for j = 2 with as many modes (4, 6, 8, 16) as we indicate in each case

in Table 5. We note that in the definition of the errors eq, e; we normalize by

the total magnitude, i.e., we include the velocity t14,,.

13
1

4.1 Total velocity

We first present errors for the short-term simulation using 4, 6 and 8 POD
modes in the expansion. For the 4-modes case, the results are given in Fig.
13. The error e; is about 10.5% for 12 sensors and 9.5% for 24 sensors. The
corresponding truncation error é; is about 8.5% and hence it dominates. In
Fig. 14, we show results for the 6-modes case and we see that the e; error is
reduced to about 7.2% for 24 sensors and 6.8% for 48 sensors. Clearly, using
twice as many sensors is not an effective way to reduce the error since the
truncation error dominates. In fact, we can use only 40 sensors and instead
increase the number of modes to 8 leading to a greater error reduction, i.e.,
the error e; decreases to about 4.5%, see Fig. 15. More specifically, the error ey
that excludes the truncation error is only 2% in this case; however, doubling
the number of sensors from 40 to 80 decreases the error slightly to about 1.5%
(for cases 1 and 2 only).

What we have seen so far from the short-term simulation results is that we
have to look for the appropriate combination of number of modes and number
of sensors for effective error reduction and efficient utilization of the resources.
We will apply the same approach to results from long-term simulations, where
we will now use 4, 8, and 16 modes to reconstruct new fields and we also
assume that we can use (12,24) (40, 80) and (144,288) sensors, respectively.

In Fig. 16, reconstruction errors for the 4-modes long-term integration are
shown. The corresponding truncation error is é; = 31.7%, which is a lower
limit for the reconstruction errors e;. The error e; for all three cases is about
36% for 12 sensors; increasing the total sensors to 24, e; is lowered by only
2%. These are large errors although the corresponding values of the condition
number are low, e.g., 7.10 and 8.12 for case 3 corresponding to 12 and 24
sensors. For the 8-modes case (results not shown here), the difference between
e1 and the truncation error €, has dropped to about 3% with 40 sensors and
about 2% with 80 sensors. In comparison with the 4-modes results, the error
dropped about 16% more for the 8-modes case. Doubling the number of modes
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to 16, see Fig. 17, yields an e; error of about 21% which is only 2% above the
truncation error.

In summary, by comparing the short-term and long-term simulation we can
appreciate how the reconstruction errors are depended on the dimensionality
of the system. For adaptive sampling in mesoscale regions, the short-term
results are more relevant, but we include the long-term results as an extreme
case. However, even in this case, the reconstructed field has all the salient
features of the original field as it is shown in the comparison in figure 18.

4.2 Temperature

We have also applied the POD method in reconstructing the temperature field
for short-term and long-term simulations. The reconstructed fields for temper-
ature are much more accurate than the velocity due to the lower dimensionality
of the temperature field. Specifically, in the short-term simulation, only four
modes contain 97.9% of total energy (truncation error about 0.7%) whereas in
the long-term simulation four modes contain 65.7% of the total energy (trun-
cation error 5.0%); this is a larger percentage than the corresponding 53.2% of
total velocity energy content. Using 12 sensors, the reconstruction error e; is
about 1% and 6% for the short-term and long-term simulations, respectively.
On the other hand, if we employ 16 POD modes, the truncation error e; for
the long-term simulation drops to 2.4% and the reconstruction error (using
144 sensors) drops to about 2.6%; it is negligible for the short-term simulation.

Here we present detailed results for eight modes as shown in Fig. 19 for the
short-term and long-term simulations. In the former, the truncation error is
0.3% while in the latter is 3.6%. We use 40 sensors for each simulation dis-
tributed according to the aforementioned three different cases. We see that for
the short-term simulation, the reconstruction error in the temperature field
is slightly above the truncation error and no greater than 0.5% for all three
cases whereas for the long-term simulation the reconstruction error is about
4% due to the larger truncation error. The condition number (M) is small-
est for case 3 for both short-term and long-term simulations (5.37 and 10.59,
respectively).

While the previous plots provide a quantitative assessment of the reconstruc-
tion errors, in Fig. 20 we present a more global but qualitative comparison of
the temperature field between the original data (“the ground truth”) and the
reconstructed field at one time instant. The agreement is very good and it is
typical for all other time instants as well.
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5 Summary and Discussion

In this paper we have addressed the question of how to identify efficiently the
“best” locations for sampling the ocean state for the most accurate recon-
struction of the velocity, temperature and salinity fields from a limited num-
ber of measurements, in the context of fast adaptive sampling. To this end,
we first performed simulations of three different regions using the mesoscale
ocean models ROMS, HOPS and FVCOM and analyzed their outputs using
proper orthogonal decomposition (POD). Specifically, we investigated both
short-term and long-term simulation outputs and obtained the corresponding
POD eigenvalues and eigenmodes. Our results indicate that the “numerical”
ocean is low-dimensional and hence a handful of modes is sufficient to de-
scribe the essential dynamics. In particular, we demonstrated that even the
long-term dynamics simulated with HOPS for Mass Bay has dimensionality
lower than the dynamics of the turbulent wake at Re = 10, 000 exhibiting pe-
riodic shedding. This, in turn, suggests that in reconstructing an ocean state
it is advantageous to capture the most energetic modes, i.e., perform sampling
in modal space rather than in physical space. We employed POD and investi-
gated two different strategies for sensor placement. In the first approach, the
extrema of the POD modes are selected as the sensor locations whereas in
the second one, an iterative procedure is set up that aims to minimize the
condition number of a matrix involved in the POD approach. We found that
the latter approach is more expensive than the former and does not lead to
any significant accuracy gains. These are not the only possible optimization
approaches, and one can use the reconstruction error directly as alternative
cost function or set up different minimization procedures using other sets of
sampling points, e.g. see (Nguyen et al. (2008)). As stated in (Nguyen et al.
(2008)), there can be several sets of “best” points as uniqueness is not guaran-
teed. For adaptive sampling in forecasting the ocean state, in particular, the
simplest and most efficient approach is the desirable one.

Based on the extrema of POD modes, we reconstructed the velocity field for
the Mass Bay for 8-days and 47-days simulations. We found that for the 8-
days simulation even a relatively small number of sensors (e.g., 12) can give an
accurate reconstructed velocity field. However, for a 47-days simulation even
for a large number of sensors the reconstruction errors are large. The latter
case is not representative of adaptive sampling but we included it in order
to investigate how the POD approach behaves in that extreme limit. It also
points to the connection we attempted to make between the dimensionality
of the system and the particular scheme of data assimilation that needs to be
employed.

The accuracy of our method is shown to strongly depend on the number
of employed POD modes, and hence it is important how to distribute the
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available sensors among the POD modes to be sampled. Another question is
which state variables to use in a multi-physics simulation involving velocity,
temperature, salinity and possibly chemistry or biology. We have found that
the total velocity U = v/u? + v? (employed in this paper) but also the vorticity
are the best variables. In particular, we simulated scenarios where the extrema
of the temperature POD modes were selected as the measurement locations,
and we found that the errors in all other fields increased compared to the
cases where the extrema of the total velocity or vorticity POD modes were
employed. This is expected given that the POD eigenspectra of the velocity
field show a broader distribution of the energy (i.e., higher dimensionality)
compared to the temperature or the salinity eigenspectra, and hence higher
dimensionality. From the practical standpoint, given the currently available
resources for multi-field measurements, e.g. CTD, it is therefore better to take
measurements at the extrema of the total velocity POD modes even though
these may not be the theoretically guaranteed best locations for the other
fields.

Another open question is which POD modes to use in the reconstruction. Here
in order to focus on the reconstruction error only, we employed POD modes
from the full simulation. In practice, such modes will not be available and
hence some approximations are required. In the adaptive sampling context, as
we advance the ocean computer model in time, such POD modes can be con-
structed from the snapshots obtained at previous time steps, hence there will
be a time lag due to such extrapolation. In preliminary tests we performed we
found differences less than 5%, in agreement also with the results of (Mokhasi
and Rempfer (2004)). In general, given the small time steps involved in the
mesoscale ocean models we do not anticipate any major error contributions
from this time extrapolation. Specifically, let us assume that we have a time
window of two to three hours to deploy our sensors; using snapshots from
the previous hour to obtain the POD modes will not significantly increase
the reconstruction errors. This is also justified by our results for short-term
integration that show extremely small errors in the short-term dynamics runs.

Another issue that requires a physical explanation is why the extrema of POD
modes are such important locations, and specifically how are these locations
related to the uncertainty fields employed, e.g., in HOPS via the ESSE sys-
tem (Lermusiaux (2001)). In work not presented here, we performed direct
comparisons with the ESSE approach for the Mass Bay, and we found the
the POD extrema coincide or are very close to the locations of maximum
uncertainty employed in the ESSE data assimilation scheme. From the ap-
proximation theory standpoint, one can draw an analogy with non-Fourier
spectral theory where the maxima of the Chebyshev polynomials are the col-
location points (the so-called Gauss-Lobatto points), based on which the most
accurate approximations are guaranteed — we refer here to the so called “min-
imax theorem”, see (Gottlieb and Orszag (1977)). Clearly the POD modes
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are not necessarily polynomials but they can be approximated by spectral
polynomials.

Finally, we emphasize that the “measured data” in this study are of “infinite”
accuracy, however, in practice we have to incorporate the uncertainty in our
measurements and propagate it through the computer ocean model along with
other parametric uncertainties of the model. Clearly, further systematic studies
are required to resolve these issues before the use of our proposed approach in
future adaptive sampling experiments.
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Figure Captions

New Jersey coast: Contours of the first POD mode (dimensionless tem-
perature) and domain.

New Jersey coast: Energy spectra of horizontal velocity vector (u,v), tem-
perature and salinity for 2.5-days (left) and 25-days (right) simulations.
New Jersey coast: Time resolution effects on the energy spectra of hori-
zontal velocity (u,v) vector for 2.5-days (left) and 25-days (right) simu-
lations.

Mass Bay: Contours of the first POD mode (dimensionless temperature)
and domain.

Mass Bay: Energy spectra of horizontal velocity vector (u, v), temperature
and salinity for 8-days (left) and 47-days simulations.

Gulf of Maine: Contours of the first POD mode (temperature) and do-
main.

Gulf of Maine. Left: Energy spectra of horizontal velocity vector (u,v),
temperature and salinity for Gulf Of Maine. Right: Energy spectra of
horizontal velocity vector at two different grid resolutions.

Comparison of eigenspectra between the turbulent wake and the long-
term ocean dynamics of three regions.

Comparison of eigenspectra between the turbulent wake and the short-
term and long-term ocean dynamics of Mass Bay.

Contours of first four POD modes of the total velocity U and sensor
locations for case 1. Mode 1: upper-left; Mode 2: upper-right; Mode 3:
lower-left; Mode 4: lower-right.

Contours of streamwise velocity u and sensor locations for case 3.

Mass Bay: Schematic of best sensor locations for Case 1 (see Table 5: 4
modes, 12 sensors). Only a slice at the surface of the first POD mode
is shown; different symbols correspond to different modes. The extrema
are located at some depth from the surface. The contours represent the
second POD mode of the temperature.

Short-term simulation, 4-modes: Time averaged errors for total velocity.
The total of four modes contain 92.6% of total energy and the correspond-
ing truncation error is & = 8.5%. For 12 sensors (M) = 14.82,10.54,9.55
for Cases 1,2 and 3, respectively.

Short-term simulation, 6-modes: Time averaged errors for total veloc-
ity. The total of siz modes contain 96.1% of total energy and the cor-
responding truncation error is & = 6.2% . For 24 sensors k(M) =
18.92,17.74,16.54 for Cases 1,2 and 3, respectively.

Short-term simulation, 8-modes. Time averaged errors for total velocity.
The total of eight modes contain 98.1% of total energy and the truncation
error is é; = 4.3%. For 40 sensors x(M) = 19.15,20.37,19.94 for Cases
1,2 and 3, respectively.

Long-term simulation, 4-modes. Time averaged errors for total velocity.
The total of four modes contain 53.2% of total energy and the truncation
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Figure 17:

Figure 18:
Figure 19:

Figure 20:

error is é; = 31.7%. For 12 sensors x(M) = 20.73,11.33,7.10 for Cases
1,2 and 3, respectively.

Long-term simulation, 16-modes. Time averaged errors are for total ve-
locity. The total of sizteen modes contain 83.1% of total energy and the
truncation error is & = 19.3%. For 144 sensors k(M) = 13.42,13.92,11.78
for Cases 1,2 and 3, respectively.

Comparison between the original (left) and the reconstructed (right) total
velocity field for the 24th snapshot in the long-term simulation.

Time averaged errors for temperature; 8-modes. Both short-term and
long-term results are shown using 40 sensors.

Comparison between the original (left) and the reconstructed (right) tem-
perature field for the 36th snapshot in the short-term simulation.
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Table 1. Mean (First) and subsequent eight eigenmodes for New Jersey Coast (! = 2.5 days, ? = 25 days), Massachusetts Bay (! = 8 days,

2 = 47 days) and Gulf of Maine simulations.
Mode No: NJ Coast ! NJ Coast 2 Mass. Bay ! Mass. Bay 2 Gulf of Maine
IS 2 IS 2 2
g 2 2 2 2
> g > > g > > g > > g > > g >
b ) B S ) S B g S S ) B B N =
S S & S S & S S S S S & S S &
First Mode 3052 % 99.94% 99.99% |31.82% 99.72% 99.90 % 6290 % 99.32% 99.99% |51.62% 99.13% 99.99% |68.95% 99.82%  99.98 %
Second Mode | 23.34 % 0.02 % 0.01 % |20.26 % 0.14 % 0.07% |14.57 % 043% <001%|1511% 026% <0.01%|20.77% 0.04 % 0.01 %
Third Mode 12.38 % 001% <0.01%|12.96 % 0.04 % 0.01 % 8.75 % 012% <001%| 632% 013% <0.01% | 595% 0.03% <0.01%
Fourth Mode | 10.46 % < 0.01% < 0.01 % |10.88% 0.02 % 0.01 % 6.85 % 0.06% <001%| 508% 009% <0.01% | 0.68% 0.03% <0.01%
Fifth Mode 858 % <001% <0.01%]| 568% 001 % <001%| 240 % 002% <001%| 428% 0.08% <0.01%| 043% 001% <0.01%
Sixth Mode 754% <0.01% <001%| 439% 001 % <001%| 1.1M% <001% <001%| 245% 0.06% <0.01%| 032% 001 % <0.01%
Seventh Mode | 1.89% <0.01% <0.01%| 1.91% <001% <001%| 072% <001% <001%| 1.79% 004% <0.01%]| 025% 001% <0.01%
Eighth Mode 154% <001% <001%| 1.72% <001% <001%| 042% <001% <001%| 1.53% 003% <001%| 019% <001% <0.01%
Nineth Mode 099% <001% <001%| 149% <001 % <001%| 037% <001% <001%| 1.21% 002% <001%| 016% <0.01% <0.01%
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Table 2. First eight eigenmodes for New Jersey Coast (! = 2.5 days, ? = 25 days), Massachusetts Bay (' = 8 days, ? = 47 days) and Gulf

of Maine simulations.

Mode No: NJ Coast ! NJ Coast 2 Mass. Bay ! Mass. Bay 2 Gulf of Maine

e e ® ® S

3 3 3 3 3

3 3 3 3 3
2 g 2 2 S 2 2 S 2 2 g 2 2 g 2
3 Y S 3 & S 3 = S 3 S S 3 Y S
kS S S kS S £ kS S £ RS S £ kS £ £
NS QO QL QO N8 S} N S} QO QO I
=~ &~ ™A ~ &~ A ~ ~ wn =~ &~ 9 = &~ A

First Mode 336 % 49.1% 59.1% [29.7% 495 % 74.7% |393% 640% 592% |31.2% 299% 343% |669% 243% 714 %
Second Mode | 178 % 13.6% 176 % |19.0% 163% 88 % |23.6% 180% 188 % [13.1% 150% 164 % |192% 173% 9.7 %
Third Mode 151% 81% 105%|16.0% 98% 63% |185% 83% 100%|105% 10.7% 105% | 22% 145% 45%
Fourth Mode |123% 60% 37% | 83% 74% 26% | 65% 34% 44%| 89% 88% 63% | 14% 76% 29%
Fifth Mode 109% 51% 16%| 64% 31% 14%| 46% 22% 26%| 51% 64% 53%| 1.0% 60% 28%
Sixth Mode 27% 38% 10% | 28% 24% 09% | 19% 17% 18% | 3.7% 43% 44% | 08% 37% 12%
Seventh Mode | 22% 33% 09% | 25% 20% 07%| 1.1% 08% 09% | 32% 31% 37%| 06% 28% 12%
Eighth Mode 14% 26% 08% | 22% 14% 06% | 1.0% 05% 06%| 256% 26% 26% | 05% 19% 09%




Table 3
Sensor location for 12 sensors. In case 1 x] denotes the coordinate of mode j with

ith extrema, with 1 corresponding to largest extremum; the contours of the POD
modes of total velocity U = v/u? + v? are employed for identifying the extrema.

Sensor
No: 1 2 3 4 5 6
Case
No:
1 z mi m_m; m:mf m_mg m:m? m:mg
y =y} y=y3 y =93 y=y3 y =y y =y
5 z =1.0 z = 2.0 z = 3.0 z = 4.0 z = 5.0 r = 6.0
y =0.0 y = 0.0 y =0.0 y =0.0 y =0.0 y = 0.0
3 z = 0.62 r =18.9 r = 4.19 xr = 1.49 z = 1.96 r =2.78
y=-011 | y =0.05 y=-128 | y=—-06 y=-1.0 y =1.42
4 = 2.0 xz = 4.0 z = 6.0 x = 14.7 z = —0.87 x = 0.37
y = 0.00 y = 0.0 y =0.0 y = 5.47 y=—1.86 y = —0.53
5 r=1.25 r =1.38 z = 8.30 = 6.52 T = 7.48 x =7.05
y =—0.2 y =0.11 y = 0.57 y=-229 | y=-0.08 | y=—-1.21
6 z = 2.06 z = 2.01 r = 2.06 z = 0.38 r = 3.25 z = 13.8
y=-2.0 y =0.0 y = 2.01 y = —0.56 y =0.0 y=-1.93
7 xr = 0.87 z = 2.79 r = 2.53 z =1.18 r = 3.25 z = 3.49
y=-048 | y=0.0 y=—-179 | y=—1.11 | y=0.15 y=1.59
s r = 3.12 z = 3.15 r = 2.31 r =1.41 r = 0.96 z = 3.36
y =0.74 y =—0.75 y = 0.62 y = —0.24 y = 0.01 y =—1.29
9 = 3.24 r =3.12 r =2.31 x = 8.93 r=12.3 x =3.17
y=-0.5 y=-0.8 y = 0.62 y =0.21 y =0.0 y=—1.26
10 r = 6.38 x =5.21 xz = 10.8 z =1.14 x =0.73 xz = 24.8
y =1.17 y =1.04 y =0.0 y = 0.0 y = —0.38 y=—1.38
Sensor
No: 7 8 9 10 11 12
Case
No:
1 acfzcg ac:aci ac:ac‘l1 a::ac% acfa:é m:acﬁ
y =y y =y y=y; y=ys y=ys y=y;
5 z=17.0 z = 8.0 z =9.0 z = 10.0 =11.0 z =12.0
y =0.0 y =0.0 y = 0.0 y=0.0 y = 0.0 y=0.0
3 r=6.71 r = T7.89 r =6.25 r =721 z =1.03 r = 9.36
y =—1.36 y = —0.76 y = —0.15 y = 0.36 y = —0.34 y=—0.3
4 r = 5.46 r = 2.42 r = 5.47 x = 3.27 r =1.56 r =14.2
y=—-1.19 | y=—-046 | y=1.24 y=-0.26 | y=0.63 y = 1.47
5 r=1.15 = 2.52 z =1.56 x = 3.30 r =1.54 x = 8.85
y = 0.41 y = —0.59 y = —0.52 y = —0.20 y = 0.06 y=—1.04
6 r=17.8 = 3.91 z =3.0 = 4.0 z =3.21 ¢ =18.9
y =172 y =—0.77 y = —0.68 y =0.74 y = —0.41 y=1.25
7 =224 r = 3.92 z =3.0 x = 4.0 r =3.21 x =11.0
y =0.70 y=-077 | y=-0.68 | y=0.74 y=-0.41 | y=1.89
s r = 2.42 r = 22.3 r = 9.66 r = 6.32 r = 9.67 r = T7.64
y=-024 | y=-031 | y=-004 | y=-032 | y=-0.03 | y =0.22
9 ¢ =17.7 r =14.4 r = 8.34 z = 6.32 r = 9.64 r =7.64
y = 0.52 y = 0.49 y =0.0 y = —0.32 y = 0.0 y = 0.22
10 r = 24.1 z =1.26 r =24.2 z = 0.51 r = 0.63 z = 0.51
y=-078 | y=—1.44 | y=0.54 y=0.1 y=—-045 | y=0.0
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Table 4
Errors e; (w.r.t. full simulation) and ey (w.r.t. POD reconstruction) of the total

velocity U = /(u? + v?).

Case No: | Cond. Number el es
K(M):
1 4.1932 15.79 % 7.42 %
2 2.3e+08 66283 % | 66939.4 %
3 1.0359 15.33 % 6.37 %
4 3.0940 18.66 % | 12.49 %
5 1.0276 17.32 % | 10.33 %
6 1.5024 19.17 % 13.25 %
7 1.0152 18.38 % 12.05 %
8 1.4815 15.95 % 7.76 %
9 1.0327 16.10 % 8.07 %
10 1.0249 18.16 % 11.711 %
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Table 5

Sensor configurations for Mass Bay. In the table-boxes, N x means N times x, with
x a multiplier adjusted for the total number of sensors.

Total
Modes: | Four Modes | Six Modes Eight Modes | Sixteen Modes
Case
No:
2x-2x-4dx-4x | 2x-2x-4dx-4x- | 2x-2x-4x-4x- | 2x-2x-4x-4x-
6x-6x 6x-6x-8%-8x | 6x-6x-8x-8x-
Case 1
10x-10x%-12x-12x-
14x-14x%-16x-16x
3x-3x-3x-3x | 4x-4x-4x-4x- | 5x-5x-Dx-5x- | 9x-9x-9x-9x-
4x-4x 5x-5x%x-5X-bx 9x-9x-9x-9x-
Case 2
9x-9x-9x-9x-
9x-9x-9x-9x
4x-4x-2x-2x | 6x-6x-4x-4x- | 8x-8x-6x-6x 16x-16x-14x-14x-
2x-2% 4x-4x-2x-2x 12x-12x-10x-10x-
Case 3

8x-8x-6x-6x-
4x-4x-2x-2x
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Fig. 1. New Jersey coast: Contours of the first POD mode (dimensionless tempera-
ture) and domain.
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Fig. 2. New Jersey coast: Energy spectra of horizontal velocity vector (u,v), tem-
perature and salinity for 2.5-days (left) and 25-days (right) simulations.
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Fig. 6. Gulf of Maine: Contours of the first POD mode (temperature) and domain.
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Fig. 9. Comparison of eigenspectra between the turbulent wake and the short-term
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Fig. 11. Contours of streamwise velocity u and sensor locations for case 3.
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Fig. 12. Mass Bay: Schematic of best sensor locations for Case 1 (see Table 5: 4
modes, 12 sensors). Only a slice at the surface of the first POD mode is shown;
different symbols correspond to different modes. The extrema are located at some
depth from the surface. The contours represent the second POD mode of the tem-

perature.
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Fig. 13. Short-term simulation, 4-modes: Time averaged errors for total velocity. The
total of four modes contain 92.6% of total energy and the corresponding truncation
error is é; = 8.5%. For 12 sensors k(M) = 14.82,10.54,9.55 for Cases 1,2 and 3,
respectively.
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Fig. 14. Short-term simulation, 6-modes: Time averaged errors for total velocity. The
total of siz modes contain 96.1% of total energy and the corresponding truncation
error is é; = 6.2% . For 24 sensors k(M) = 18.92,17.74,16.54 for Cases 1,2 and 3,
respectively.
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Fig. 15. Short-term simulation, 8-modes. Time averaged errors for total velocity.
The total of eight modes contain 98.1% of total energy and the truncation error is
é1 = 4.3%. For 40 sensors k(M) = 19.15,20.37,19.94 for Cases 1,2 and 3, respec-
tively.
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Fig. 16. Long-term simulation, 4-modes. Time averaged errors for total velocity.
The total of four modes contain 53.2% of total energy and the truncation error is
é1 = 31.7%. For 12 sensors k(M) = 20.73,11.33,7.10 for Cases 1,2 and 3, respec-
tively.
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Fig. 17. Long-term simulation, 16-modes. Time averaged errors are for total velocity.
The total of sizteen modes contain 83.1% of total energy and the truncation error
is &1 = 19.3%. For 144 sensors k(M) = 13.42,13.92,11.78 for Cases 1,2 and 3,
respectively.

43



U (emis) U (emisy

3807
35.16
5226
4936
4645
4358
40R5
3774
Je04
3144
29.00
2643
23.23
2032
1742
1252
5

8.71

581

230

43

o

en

RS
T

Lattitude (degrees)
Lettitude (degrees)

765 70 ) 71 705
Longituds {degress) Longitude (degrees)

Fig. 18. Comparison between the original (left) and the reconstructed (right) total
velocity field for the 24th snapshot in the long-term simulation.
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