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Abstract

The primary obstacle for AUV navigation and mapping in unknown environments is
the difficulty of effectively incorporating measurement data to aid in navigation. State
of the art approaches to this concurrent mapping and localization (CML) problem fail
because they do not fully account for data association, navigation, and prior model
uncertainties. This thesis develops an integrated mapping and navigation (IMAN)
algorithm that accounts for these uncertainties within a general, unified framework.
A theory for non-separable hybrid estimation in the presence of navigation errors is
formalized to address the novel structural aspects of this problem. Two primary focus
points are maintained: enhancing the estimation and decision-making capabilities of
a CML algorithm through appropriate representation of parametric uncertainty and
event ambiguity and management of algorithmic complexity to maintain operability
over short (tens of seconds) data sets. A Bayesian analysis is used to develop an
appropriate prior knowledge representation strategy and to examine the fundamental
constraints of CML. A functional implementation of IMAN is evaluated using Monte-
Carlo simulation, and its performance is contrasted with alternative algorithms. This
initial implementation of IMAN provides navigation and mapping performance com-
parable to the state of the art when complexity does not overwhelm the decision
process. Although further research is required to provide robust recovery from highly
ambiguous situations, IMAN is shown to be a valid generalized approach to CML. The
extensions to estimation theory developed in this thesis provide a powerful new basis
for reasoning about events within the filtering process that has a broad applicability
to navigation, mapping, and control problems in robotics.

Thesis Supervisor: John J. Leonard
Title: Assistant Professor of Ocean Engineering
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List of Notation

In the development of the integrated mapping and navigation algorithm and the de-

scription of its implementation, considerable use is made of notation. The variety

of fields from which this research derives, moreover, make use of overlapping and

conflicting standard notations. We have attempted to use a concise and consistent

notation throughout this thesis. Below is a list of the symbols and notation used.

Some additional notes may be of use to the reader. Lowercase letters (Roman and

Greek) are in general used to indicate variables, functions, or indices. Uppercase

letters are used in general for sets, matrices, functions, and Jacobian. Finally, cali-

graphic letters are used as type identifiers. Because several indices are often needed to

specify a variable, the following conventions have been adopted. Post-subscripts are

reserved for a time index and also any conditioning factors. A common simplification

for such conditioning is borrowed from the Kalman filtering literature. The subscript

k k - 1 indicates an estimate at time k conditioned on all information through time

k-1. Similarly, the subscript k k indicates an estimate at time k given all information

through time k. Pre-subscripts are reserved for the primary index of a variable. If

an additional index is required, it is indicated by a post-superscript. Pre-superscripts

are used for type identifiers or to indicate a specific element of a vector variable. Two

examples are provided to help clarify these conventions.



Example 1: n+ q
t k~k-1,rWk

This indicates a vehicle state estimate x, at time k, conditioned on all

information through time k - 1 and the rth assignment, w, from time k.

The tth vehicle state estimate from the qth sub-tree level is specified. Also,

the variable represents a partially updated state estimate, -+.

Example 2: n

This indicates the north, n, element of a feature state estimate (.

We now present the list of notation used in this thesis. Symbols are defined first,

followed by Roman then Greek letters.

-4: resolves to; the decision at the tail of the arrow is required to resolve to the

hypothesis at the head of the arrow

-**: is representable as; the object at the tail of the arrow can be represented as (but

is not equivalent to) the object at the head of the arrow

F-: has a; the object (or class) at the bar has or owns the object (or an instance of

the class) at the dash

>- : derives; the class at head of the arrow derives from the class at the tail of the

arrow

C: is in; the object to the left is an element of the set to the right

a: index over a previous set of updated feature states

A: type identifier for association hypotheses

b: index over a previous set of updated vehicle states
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c: the ontological distance function

Cd: dependency compatibility function

CD: dependency set compatibility function

C: type identifier for the completion rate metric

d: a dependency

D: a dependency set

D: type identifier for dispositional decisions regarding feature tracks

e: index over the dependencies in a dependency set

e: an error vector

E: a set of error vectors

f: a model dynamics function

F: the Jacobian of a model dynamics function

.F: type identifier for a feature class

g: an inverse measurement function

g*: an innovation function

G: the Jacobian of an inverse measurement function

G*: the Jacobian of an innovation function

9: type identifier for the global error metric

h: a measurement function

H: the Jacobian of a measurement function



i: index over a set of features

I: an information matrix

j: index over a set of projected feature states

J: the Jacobian of a function

k: index over the set of time cycles

1: index over a set of projected vehicle states

L: a likelihood function

£: type identifier for the relative error metric

m: index over a set of measurements

.M: type identifier for miss hypotheses

n: index over a set of updated feature states

N: the ordinality function, the number of elements in a set

/A: type identifier for new feature hypotheses

o: index over a set of decisions

0: type identifier for ontological decisions

p: index over a set of hypotheses

P: an estimated state error covariance matrix

P: type identifier for projected states

q: index over a set of sub-tree levels

Q: a process noise covariance matrix
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r: index over a set of assignments

R: a measurement noise covariance matrix

7R: type identifier for assignment root states

7+: type identifier for partially updated states

s: index over a set of assignment root states

S: an innovations covariance matrix

S: type identifier for spurious measurement hypotheses

t: index over the set of states in a sub-tree level

t: a continuous time variable

T: the duration of a time cycle

u: index over the set of hypotheses regarding a decision

U: a decision hypothesis index function, indexes hypotheses from a set that pertain

to a given decision

U: type identifier for updated states

v: index over the set of hypotheses in an assignment

V: an assignment hypothesis index function, indexes hypotheses from a set that

pertain to a given assignment

V: type identifier for a vehicle class

w: index over a set of updated vehicle states

W: type identifier for measurement model classes



x: an estimated vehicle state

X: a set of estimated vehicle states

y: a vehicle track

Y: a set of vehicle tracks

z: a measurement

Z: a set of measurements

Z: type identifier for measurement origin decisions

a: index over the set of leaves compatible with a hypothesis

/: index over the set of leaves compatible with an assignment

y: a gating threshold

6: a decision

6*: the Kronecker delta

A: a set of decisions

e: an error

(: index over the set of error vectors

r]: a feature track

H: a set of feature tracks

0: a hypothesis, a pitch angle

d: a class of hypotheses

O: a set of hypotheses
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Chapter 1

Introduction

Navigation is one of the fundamental capabilities required for the successful opera-

tion of autonomous underwater vehicles (AUVs), and in fact, for any mobile robot.

Knowledge of the robot's position is essential for oceanographic sampling, mapping,

and even simple transit. Traditional navigational techniques function reliably only

in restricted mission domains. They require operation near a known acoustic ar-

ray or allow missions of limited duration in unknown areas. Recent non-traditional

navigation techniques have extended AUV operability to venues for which highly

accurate bathymetric or gravimetric maps are available. There remains a need for

navigation solutions which are valid in a priori unknown regions. In this thesis, we

begin to explore what promises to be a rich source of such navigation solutions: the

incorporation of environmental data to aid in navigation through concurrent map-

ping and localization (CML). Incorporating environmental data aids navigation by

providing an otherwise unavailable source of absolute position information. While re-

lated techniques, such as multiple target tracking and stochastic mapping, can help in

understanding the issues involved, their failure to address all of the sources of uncer-

tainty intrinsic to concurrent mapping and localization limits their applicability. The

current integrated mapping and navigation (IMAN) algorithm explicitly addresses

the issues of data association uncertainty, vehicle navigational uncertainty, and prior
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model uncertainty. The focus of this thesis is to enhance the navigational estimation

process and to manage the computational complexity any such algorithm entails.

By reducing, or even bounding, the navigational uncertainty of AUV operation in

unknown regions, we extend the mission capabilities for marine robots.

1.1 The mine-countermeasures mission

Consider the task of mine-countermeasures (MCM) in shallow and very shallow wa-

ter. Mine-countermeasures are the detection and neutralization of mine-like objects,

usually with the goal of providing a safe avenue for landing on a beach [82, 14, 34].

While there are a variety of devices which may need to be cleared, there are certain

characteristics which can be used to correctly identify mine-like objects with a high

degree of certainty [92]. This mission is difficult for a number of reasons. Forgetting

for a moment any difficulties in detecting mine-like objects, complete coverage of a

specified region is necessary. The region to be de-mined is most likely unknown a pri-

ori. Also, operation in shallow and very shallow water (200 to 10 feet deep) entails

possibly significant and hard-to-model environmental forces.

Traditional efforts in MCM have employed military personnel or trained marine

mammals to identify mine-like objects [68, 72]. Novel approaches are desired to reduce

the danger associated with such direct involvement while maintaining a high level of

performance in mine clearing. Recent efforts have explored the use of crawling robots,

particularly for very shallow water and surf zone MCM [43]. These approaches rely on

randomized motion and large numbers of expendable robots to provide coverage for

a specified region. While such crawling robots may be effective in the surf zone and

for many mines in the very shallow water region, moored mines and larger coverage

areas limit their applicability as a general solution to shallow water and very shallow

water MCM. In these regions, autonomous underwater vehicles (AUVs) provide a

more appropriate platform for mine-countermeasures.
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Figure 1-1: The mine-countermeasures mission. A vehicle must identify and map all
mine-like objects in a specified region. In the shallow and very shallow water zones,
mines may be on the bottom, moored, or even buried. Accurate mapping, and thus
navigation, is necessary to enable neutralizing or avoiding the identified mines in the
future.

One or more AUVs equipped with commercially-available sonar transducers can

provide a solution to shallow water and very shallow water MCM if the problems of

navigation are overcome. Figure 1-1 shows a simplified scenario for an AUV solution

to MCM. The goal for the AUV is to detect all mine-like objects in the specified region

and to map these objects accurately so that they may subsequently be neutralized.

However, AUV navigation in such an a priori unknown region presents a significant

problem. The pre-deployment of an acoustic array is often infeasible. Shallow water

operations entail exposure to more volatile environmental forces, degrading the per-

formance of dead-reckoned navigation. And yet accurate navigation is essential over

the entire mission. Fewer vehicles (in comparison with the crawlers used in surf-zone

MCM) call for a less random approach, necessitating navigational accuracy to ensure

coverage of the entire specified area. Additionally, detected mine-like objects must

be accurately mapped. Thus navigation is perhaps the key technology in realizing an

AUV mine-countermeasures solution.

In a traditional conception of the mapping problem, that is, viewing mapping
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and navigation separately, the map being produced is not involved in estimating the

locations of the vehicle and detected objects. Dead reckoning is used for navigation,

and this navigation information is used to estimate object locations. Detected ob-

jects are added to a map. Figure 1-2 illustrates this process and the extensions used

to integrate mapping and navigation more fully. Existing concurrent mapping and

localization techniques use the map to aid in estimating vehicle and object locations.

This assumes that navigational events, such as measuring a particular object, can

be resolved with certainty. Integrated mapping and navigation attempts to (1) de-

tect navigational events correctly and (2) estimate vehicle and object locations. The

increasing interdependence of the mapping and navigation tasks is designed to ex-

ploit what knowledge can be extracted from a priori models and new measurements

without making unwarranted assumptions about the problem domain.

The evolution from traditional mapping to IMAN is a change from making as-

sumptions about the exact nature of the environmental context of the vehicle to a

more thorough reasoning using a priori models of what might form this environmen-

tal context. This change is designed to incorporate the uncertainties of navigation

more realistically. However, this places a greater emphasis on prior knowledge repre-

sentation and reasoning about navigational events. Considering navigational events

in addition to vehicle and object states transforms the problem to a hybrid estimation

space; we are estimating both continuous parameters (the vehicle and object states)

and discrete hypotheses (the navigational events). While hybrid estimation is not

new, the many types of uncertainty involved in navigation make this extension non-

obvious. The challenge is to enhance estimation by more realistically representing

the navigation problem while maintaining the computational complexity incurred by

hybrid estimation at manageable levels.
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Figure 1-2: The process of mapping. (a) Traditional mapping techniques view map-
ping as separate from navigation. (b) Concurrent mapping and localization uses the
evolving map to aid in estimating vehicle and object states. (c) Integrated mapping
and navigation further integrates mapping and navigation. The evolving map is used
along with estimated vehicle state to estimate both navigational events and vehicle
and object state.
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1.2 Integrating mapping and navigation

Incorporating environmental data in navigation and realistically representing the con-

current mapping and localization problem require a fundamental rethinking of current

navigation techniques. Integrating mapping and navigation means revisiting sources

of uncertainty in navigation and their impact on both state estimation and naviga-

tional event detection. There are three major sources of uncertainty which affect this

hybrid estimation problem and which are not fully represented in existing naviga-

tion technologies: data association uncertainty, vehicle navigation uncertainty, and

prior model uncertainty. The goal is to integrate mapping and navigation through

the incorporation of environmental measurements into the navigation process and to

explicitly represent these forms of uncertainty so that decisions are made in light not

only of the estimates provided, but the presence of these uncertainties as well. IMAN

can be thought of as a generalization of existing technologies which partially achieve

this goal.

Stochastic mapping (SM) is a continuous estimation formulation which esti-
mates (1) vehicle state and (2) feature states. However, associations between
features, feature estimates, and measurements are assumed to be provided.

Multiple-hypothesis tracking (MHT) is a hybrid estimation technique which
estimates (1) the set of features which are present, (2) data associations between
measurements and proposed features, and (3) feature states. However, accurate
vehicle location information is assumed to be available.

Concurrent mapping and localization (CML) is a general navigation problem
which estimates (1) vehicle state, (2) the set of features which are present, (3) data
associations between measurements and proposed features, and (4) feature states.
Data association uncertainty, vehicle navigation uncertainty, and prior model
uncertainty are explicitly represented.
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Figure 1-3 shows the relationship between these three approaches. Below we consider

the impact that these three major sources of uncertainty have on concurrent mapping

and localization.

1.2.1 Data association uncertainty

Data association uncertainty is uncertainty about the source of a measure-
ment or the status of a feature being tracked.

Data association is resolved in traditional navigation techniques by using beacons with

distinct carrier frequencies as position references. In this way, measurement source

identity is conveyed as part of the measurement itself. Objects in the environment,

however, cannot in general be uniquely identified. Figure 1-4 illustrates this difficulty.

Uncertainties and noise in both measurements and existing object state estimates lead

to ambiguity in associating measurements with object models. The data association

problem becomes less important as the density of returned measurements decreases.

In such cases, the vehicle may be able to navigate with enough accuracy that simple

gating techniques successfully disambiguate measurement source identity. However,

real-world data is often degraded to the point where methods to cope with data

association uncertainty explicitly are required. While data association uncertainty

has been addressed in the multiple target tracking community [5], the presence of

vehicle navigation uncertainty prevents the direct applicability of such techniques.

IMAN requires a more general approach to modeling navigational events so that data

associations may be correctly identified during concurrent mapping and localization.

1.2.2 Vehicle navigation uncertainty

Vehicle navigation uncertainty is a problem, particularly in extended missions, when

there are no absolute position references available [41]. Inertial navigation systems
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(a) Stochastic mapping (b) Multiple-hypothesis tracking
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Figure 1-3: Approaches to navigation and mapping. Stochastic mapping (a) estimates
both vehicle and feature states, but assumes that data association information is

provided. Multiple-hypothesis track (b) estimates the data association possibilities,
but assumes that vehicle location is known. Concurrent mapping and localization (c)
is a generalization of these approaches which explicitly represents data association
uncertainty, vehicle navigation uncertainty, and prior model uncertainty.
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Figure 1-4: The data association problem. Because of navigational and measurement
uncertainty, matching measurements to their origins may not be a simple task. The
vehicle is modeling objects 1, 2, and 3. State estimates are shown with two-sigma
error ellipses. Measurements A and B are detected. There is uncertainty about the
origins of the measurements and the disposition of the modeled objects that is only
resolved once data association decisions are made.

and Doppler velocity sensors may slow the growth of positional uncertainty, but in-

evitable measurement noise means that any system relying solely on dead reckoning

for navigation will suffer unbounded error growth.

Vehicle navigation uncertainty is uncertainty regarding the vehicle velocity
or orientation due to the finite accuracy of the navigational system, whether it
is based on dead-reckoning or an inertial system. Vehicle navigation uncer-
tainty leads to error growth in the estimated vehicle position.

While accuracy in navigational systems varies considerably, all AUVs are limited by

navigation uncertainty in long missions unless external position references are uti-

lized. Environmental objects offer a source of such position references. By observing

environmental objects assumed to be stationary or moving with predictable trajecto-

ries, position uncertainty can be reduced and even bounded. It should be noted that

such measurements offer only relative position information rather than an absolute,

or global, position reference. This affects map representation and reasoning about
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navigational events, as will be seen.

1.2.3 Prior model uncertainty

Finally, there are uncertainties in the prior models which are used.

Prior model uncertainty refers to the mismatch between the model used to
describe an environmental object or process and the actual phenomenology of
vehicle measurements.

This may be because of model simplification, because instances of a class of envi-

ronmental objects vary stochastically, or because a supposed object is being modeled

to capture its phenomenology when the environmental context of the vehicle is not

reducible to such a model. Existing navigation techniques tend to take advantage of

simplistic representations of prior knowledge because of the assumptions they make

about navigational events. The increased importance IMAN places on reasoning

about navigational events requires a more realistic treatment of prior knowledge rep-

resentation. Prior models of environmental objects and the measurement processes

through which they are perceived are necessary to form reasonable hypotheses about

navigational events.

1.3 Improving navigational estimation

Our investigation of integrated mapping and navigation will focus on two aspects of

the problem which we feel are crucial to the success of initial implementations:

* enhancing the estimation and decision-making capabilities relative to state-of-

the-art navigational algorithms and

* managing the algorithmic complexity of IMAN.
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1.3.1 Enhanced estimation and decision-making

Current efforts at concurrent mapping and localization expand the Kalman filter to

accommodate models of environmental features in addition to the vehicle state [94,

10, 44]. Decisions about data association, the detection of new tracks, etc. are

resolved as they arise based on assumptions about the prior models involved. In

the more traditional approach of the Kalman filter, any decision-making is hidden

in either vehicle control inputs or the definitions of the dynamic and measurement

models. As navigation algorithms are expanded to encompass a more flexible model of

the environment and the vehicle, the role of these data association decisions becomes

increasingly important. Such decisions are discrete not only in time (as the estimation

algorithm may be), but also in possible outcomes. Data association decisions, for

example, have a set of discrete navigational events as their possible outcomes. It is a

hypothesis-testing or detection problem. Such detections are made by default in the

traditional Kalman filter (by definition of the a priori model); they are made with

little fanfare in stochastic mapping, which, while it must explicitly model the choices,

does so in a simplistic and limiting way.

In this thesis, we enhance the decision-making ability for concurrent mapping and

localization. This project is informed by similar multiple-hypothesis testing algo-

rithms in the field of multiple-target tracking. The primary steps are to make these

decisions more explicit and to move to a hybrid estimation space. We seek now not

only to estimate the states of the vehicle and environmental objects, but also to test

hypotheses about navigational events. Simply making these decisions more explicit

opens considerable potential for making more adaptive and deliberative decisions

about navigational events. We develop the explicit modeling of decisions regarding

navigational events and examine how such a hybrid estimation scheme can be im-

plemented while realistically incorporating navigational uncertainties. We evaluate

this hybrid estimation scheme in absolute terms and in comparison with the more

automatic decision-making structure of existing techniques.
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1.3.2 Complexity management

The attraction of Kalman-based approaches to estimation is their computational econ-

omy. Stochastic mapping implementations, for example, use a Kalman filter whose

order increases as additional environmental objects are incorporated. The number of

the states in the filter grows linearly with the number of objects, but computation

grows with the cube of the number of objects [69]. There has not been, to date,

much consideration of map management or other methods of reducing computational

complexity for stochastic mapping, possibly because implementations have thus far

concentrated on applications with a limited number of targets and a sensible, if ad

hoc, strategy for identifying new objects and deleting unnecessary models. The move

to a hybrid estimation space entails a large increase in algorithmic complexity, due

to the explicit modeling of alternative possibilities for environmental events and the

additional complexities created by delaying the resolution of decisions about nav-

igational events. While some work has been done in the multiple target tracking

literature on managing complexity for multiple-hypothesis algorithms, these strate-

gies are not directly applicable to the concurrent mapping and localization problem.

Complexity management is therefore a crucial component in the implementation of

integrated mapping and navigation.

In this thesis, a basic level of complexity management is achieved. The goal is to

allow the practical consideration of portions of realistic missions. This is achieved,

essentially allowing mission segments to be simulated. The computational complexity

manifests itself not so much in slowing the algorithm as in requiring unsupportable

amounts of storage in those cases where complexity management fails. The complex-

ity management strategies presented in this thesis are an outgrowth of a system-level

consideration of the problem and are posed within the theoretical framework of the

project of enhanced estimation and decision-making. Because of this, complexity

management is less a separate focus than an addition to the priorities considered in

the hybrid estimation process. This, we hope, aligns IMAN, as a navigation scheme,
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more closely with decision theory, something that should benefit subsequent imple-

mentations which rely more heavily on the adaptive decision-making potential of

integrated mapping and navigation.

1.4 Expanded problem statement

Integrated mapping and navigation is truly a much larger goal than could be obtained

in a single dissertation. The project of the present document is to formulate this

larger problem of IMAN and make initial strides in implementing an algorithm for

incorporating environmental data in navigation. As a result of this, we concentrate

on a particular subset of problems facing the development of IMAN. We feel that

the issues of prior knowledge representation, explicit representation of the various

forms of uncertainty, and choice of environmental model type must be addressed at

this early stage in the development of IMAN and so concentrate on them in both

theoretical developments and implementation considerations. Within this refined

field of inquiry, we also identify as research focus points the goals of enhancing the

estimation and decision-making capabilities, or the navigational event discrimination,

of the algorithm and of managing the algorithmic complexity. As a result, we identify

the problem statement for the thesis:

Formulate the incorporation of environmental data as an aid to AUV

navigation through the concurrent mapping of environmental objects and

localization of the vehicle and demonstrate the performance of an imple-

mentation of this algorithm, focusing in particular on enhanced estimation

and decision-making and complexity management.



40 Introduction

1.5 The potential of IMAN

We have considered how the mine-countermeasures problem benefits from the im-

proved navigation offered by IMAN. There are a wealth of additional applications

which also stand to gain from this navigation technology. Any AUV mission where

absolute position references, such as a pre-deployed acoustic array, are unavailable can

improve navigation performance by incorporating environmental information. Even

when a prior map of a region is available, IMAN offers a way to combine measurements

with the a priori map more optimally, improving performance over the use of a static

map that is assumed to be correct. The incorporation of environmental information

is of use in other robotics scenarios as well. Land robots often have access to GPS

(the global positioning system), but its use may be unreliable for accurate navigation,

particularly in cluttered environments [101, 42]. Robot navigation in underground

environments, as an aid to mining operations [31] or for geophysical research [6], has

no access to GPS and can reap substantial benefits from integrated mapping and nav-

igation. Throughout the field of robotics, regardless of the alternative navigation aids

which are currently available, IMAN can provide additional information to improve

navigation and reasoning about navigational events.

With its greater ability to reason about navigational events, the IMAN framework

has the potential to expand beyond the traditional boundaries of mapping and nav-

igation. By improving the ability of the vehicle to understand and reason about its

environmental context, IMAN can provide a framework for situated navigation. We

traditionally think of mapping and navigation solely in terms of fixed landmarks and

static environmental objects. By exploiting a more thorough representation of prior

knowledge, IMAN could consider dynamic objects and more ephemeral aspects of the

environmental context. Moving targets can not only be tracked, but prior models of

possible behavior could lead to advances in the action recognition problem, in which

the vehicle detects specific behaviors of another vehicle or agent through observation

alone [12, 83, 56]. Models of physical oceanography may be verified or contrasted by
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reasoning about model predictions and vehicle observations [26]. These are difficult

problems, and IMAN alone does not solve them, but integrating mapping and navi-

gation and providing a basis for reasoning about navigational (and, more generally,

phenomenological) events establishes a framework for addressing hybrid estimation

problems in the presence of navigation uncertainty.

1.6 Thesis scope

There are two ways to discuss the scope of what we have attempted and accomplished

in this thesis. First, there is a problem-level description of the issues which must be

faced in the thesis. We maintain that the essential issue for concurrent mapping

and localization is the realistic modeling of the forms of uncertainty that obscure

the detection and identification of navigational events, including data association

uncertainty, vehicle navigation uncertainty, and prior model uncertainty. Second, the

thesis scope can be described in terms of the primary focus points which form its

goals. Our focus points are

* enhancing estimation and decision-making regarding navigational events and

* managing algorithmic complexity.

These inform the structure of the thesis and shape the results which are to be consid-

ered. To reiterate, within the general problem of navigation, we consider the explicit

inclusion of data association, navigation, and model uncertainties for concurrent map-

ping and localization with the aim of enhancing estimation and decision-making and

managing complexity.

There are a number of additional issues that we are not facing, are simplify-

ing, or are simply ignoring. Among those factors not considered in this thesis are

extended questions of and alternatives to feature modeling, comparison with intrin-

sically one-step data association methods such as probabilistic data association [5],
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and alternative software implementation structures. Additionally, we ignore cross-

model estimate correlations. A discussion of the implications of this, and possible

alternatives which either re-incorporate or do not at any point ignore these cross-

correlations, is included in Chapter 3. However, in the interest of focusing on an

initial implementation and reducing computational complexity as much as possible,

we ignore these correlations for the present. The developments in this thesis are, in

spite of the issues which have been ignored or simplified, quite substantial. A gen-

eralized theoretical framework for integrated mapping and navigation is developed.

Additionally, significant strides are made in implementing this theory. The product

is a navigational algorithm competitive with the current state-of-the-art and offering

greater potential for extension to more capable navigation technologies.

1.6.1 Preview of the results and conclusions

At this point, it may be of some use to the reader to provide a preview of our results

and conclusions. This will, we hope, provide a useful mental reference of the problem

scope and our goals as the thesis is presented. There are a number of difficulties in

analyzing the performance of an algorithm such as IMAN that extends current capa-

bilities in a rather fundamental way (in this case, through the explicit incorporation

of a number of types of uncertainty which current algorithms are incapable of directly

addressing). Because of this, the performance of IMAN is examined from a number

of viewpoints. First, there is the question of absolute performance. How good is

IMAN at preventing the vehicle from getting lost? What are the limitations on its

operation? How robust is it in realistic situations? These questions are considered

by examining IMAN performance in simulation. Additionally, there is the question

of contrasting IMAN with the current state-of-the-art. In response, a limited com-

parison of IMAN with dead-reckoned mapping and an enhanced version of stochastic

mapping is considered. Figure 1-5 presents a representative result comparing the

performance of IMAN and a dead-reckoned navigation algorithm. We demonstrate
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that IMAN is competitive with state-of-the-art technologies. Part of the attraction

of IMAN, however, is its potential for dealing with more complicated missions in a

unified way, a distinct advantage over the somewhat ad hoc extensions that current

algorithms need to function at even modest levels of environmental complexity. Fi-

nally, the results presented provide a compelling case that significant progress has

been made in enhancing estimation and decision-making and in managing algorith-

mic complexity while more realistically addressing the uncertainties endemic to AUV

navigation in a priori unknown regions.

The major conclusions to be drawn from the results of this thesis are that IMAN

is a valid approach to concurrent mapping and localization and that its enormous po-

tential is realistically attainable. At the close of this project, we are still in the initial

steps of developing truly integrated mapping and navigation. This unified framework

for examining navigational issues through hybrid estimation of vehicle and feature

models and navigational events provides a powerful paradigm for future research in

feature ontology, behavior recognition, and navigation in highly unstructured and

dynamic environments. The current implementation succeeds in enhancing the es-

timation and decision-making capabilities of state-of-the-art navigation technologies

and manages complexity well enough to process realistic data sets of limited duration.

The extensibility of the design of the IMAN framework ensures that future research

can build on this powerful theoretical and implementational base.

1.7 Thesis overview

In this chapter, we have introduced the problem of concurrent mapping and localiza-

tion and described the potential that integrated mapping and navigation can provide.

We have enumerated the scope of the thesis and briefly considered the results and

conclusions of this research.

In Chapter 2, we explore existing research in more detail as a way of establishing
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Figure 1-5: Comparison of IMAN and dead-reckoned navigation. Three point-like

targets are used to improve the navigation estimate. Actual target locations are

displayed as squares. The vehicle is attempting to swim directly north in the presence

of an unknown cross-current. The actual vehicle path is shown as a solid line, with its

final position indicated by a triangle. Uncertain relative measurements of the features

are received each second. The dead-reckoned vehicle path is shown as a dotted line,
as is its three-sigma error ellipse. The final dead-reckoned estimate of vehicle position

is indicated by an asterisk. Using IMAN, vehicle navigation performance is improved

and the features are mapped. The IMAN estimated vehicle path is shown by a dashed

line, the final position estimate by a diamond, and the final three-sigma error ellipse by

a dashed line. The final feature estimates are displayed as stars with their associated

three-sigma error ellipses indicated by dashed-dotted lines. Feature measurements are

degraded by non-unity probability of detection and the presence of clutter. IMAN

successfully maps and models the features while rejecting spurious measurements

and recovers vehicle motion in the presence of an unknown cross-current. Position

uncertainty is greatly reduced by the incorporation of environmental data, using the

three targets as positional references.
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an appropriate approach to IMAN. We consider the current state-of-the-art in CML

and the best results which have been produced. We examine related fields for the

insights that similar problems can bring to the current project. Finally, integrated

mapping and navigation is considered developmentally from a number of standpoints

to render it within the existing research framework and to clarify its position relative

to prior and future research.

Chapter 3 initiates the discussion of enhancing estimation and decision-making

for concurrent mapping and localization. The theoretical foundations of hybrid esti-

mation and the integrated mapping and navigation problem are developed within a

Bayesian framework. Navigational event modeling for both ontological consideration

of environmental objects and for dispositional questions relating to data associa-

tion is presented. A probabilistic interpretation of the hybrid estimation problem

is described and reduced to a recursive estimation strategy for projecting current

possibilities and updating estimates as additional measurements become available.

Chapter 4 continues the discussion of enhancing estimation and decision-making,

focusing on implementation issues. A C++ implementation is examined, illustrating

a compelling object-oriented analysis of the problem which generalizes the current

implementation to a framework for IMAN. Practical matters concerning model rep-

resentation and decision tracking are also examined.

In Chapter 5, the impact of complexity management is considered. The develop-

ments of the previous two chapters are reconsidered with the goal of reducing algorith-

mic complexity and integrating complexity management and decision management at

the theoretical level. The role of prior knowledge representation in generating algo-

rithmic complexity is examined and methods for controlling this process adaptively

are discussed.

In Chapter 6, the limitations of concurrent mapping and localization are explored.

The growth of vehicle position error and its dependence on model uncertainty and

navigational system uncertainty are examined. The information that can be extracted
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from relative measurements is quantified and the overall utility of features as sources

of information is considered for a common operational paradigm. The effects of data

association uncertainty and the errors which this uncertainty causes are discussed.

Each of these inquiries provides a look at how the kinds of uncertainty endemic to

concurrent mapping and localization structure the navigation problem.

Chapter 7 analyzes the performance of the IMAN algorithm developed in this

thesis. Appropriate performance metrics are derived. A number of contrasting al-

gorithms are explored. The performance of IMAN and these contrasting algorithms

in response to environmental clutter, track interaction, and number of features is

presented. Some key topics are discussed to illustrate the directions in which the

development of IMAN needs to proceed.

Finally, in Chapter 8, conclusions about the validity of IMAN are drawn. The

capability of the current implementation and the enormous potential provided by the

unified framework for hybrid estimation of vehicle state and navigational events are

cited as compelling arguments for this approach to navigation in a priori unknown

environments. A number of immediate research directions to refine the current imple-

mentation are considered. The long-term viability of this algorithm is also discussed,

along with a variety of future research projects which will become increasingly real-

izable as the theoretical and implementational basis for IMAN is developed.
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Improving Concurrent Mapping

and Localization

In this chapter, we consider the state of the art in concurrent mapping and localization

research, examine related fields for ways to improve this level of performance, and

justify integrated mapping and navigation, a novel approach to concurrent mapping

and localization. We begin with a survey of existing CML implementations. While

these implementations do not address the full problem as we have stated it, they offer

insight into the research issues and implementation problems to be faced, as well

as providing a performance benchmark. Several related research areas are discussed

next. These illustrate ways in which current CML algorithms may be extended and

provide a basis for choosing among alternative approaches to the problem. We then

develop a particular approach to concurrent mapping and localization which we feel is

well-suited to this problem domain. The basis for integrated mapping and navigation

is described. IMAN is developed in several ways to illustrate its relation to the

research discussed. Finally, we summarize our approach to solving the concurrent

mapping and localization problem and the significant research issues involved and

reiterate our focus points for this thesis.



Improving Concurrent Mapping and Localization

2.1 Current implementations of CML

Concurrent mapping and localization is affected by uncertainties pertaining to both

the continuous states to be estimated and discrete hypotheses regarding, for example,

data association and the number of features present. Prior to this thesis, there has

been no implementation which addresses data association uncertainty, navigation un-

certainty, and model uncertainty in a unified theoretical framework. In Chapter 1, we

motivated CML as a generalization of stochastic mapping and multiple-target track-

ing. The current research in CML is, however, united by a focus on navigation and

the practical aspects of incorporating environmental information. Additionally, these

implementations are all in the land robotics domain. Data association uncertainty,

navigation uncertainty, and prior model uncertainty have all been identified as impor-

tant factors in finding a solution to CML. The lack of a theoretical basis for dealing

with these uncertainties together has, however, lead to a number of ad hoc extensions

to traditional navigation and mapping technologies. Despite the limited success of

these approaches, the need for an approach which can deal with all of these forms of

uncertainty in a realistic and unified way remains apparent. These approaches do,

however, underscore the ways in which uncertainty must inform a CML implemen-

tation and provide a clear grounding in the benefits of a unified approach to dealing

with uncertainty.

Perhaps the most advanced implementation of a concurrent mapping and local-

ization algorithm has been devised by Chatila et al. [53, 16, 46, 10, 15]. They have

considered combining navigation and mapping of unknown regions in an office-like

environment. This has led to simple feature-based environment modeling based on

points (corners) and planes (walls). Their primary contribution [46, 76, 77] has been

relocation fusion, a sub-optimal filter update strategy. Land robot navigation is often

degraded by poor dead reckoning, a result of inadequate prior models of the nonlin-

earities involved in wheel slip, stiction, and related difficulties. Because of this, the

projection model for the vehicle is much less accurate than the sonar measurement
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and feature models. The traditional method for robustifying the extended Kalman fil-

ter to model errors is to artificially increase process noise to account for the additional

uncertainty. However, the relatively poor information present in the vehicle model

is then used to update the relatively more accurate models of the features, caus-

ing degraded performance. Mourtalier and Chatila address this problem in model

uncertainty by sub-optimally updating the vehicle projected state before using this

state to update the feature models, as illustrated in Figure 2-1. While this strat-

egy in effect uses the measurement information twice when updating the features,

performance gains are seen. Relocation fusion is thus a restriction of information

flow between models based on prior decisions about their relative accuracy. Data

association uncertainty has received somewhat less emphasis in the implementation.

Initial work [76] relied on manual data matching, a feat only possible because of the

limited data sets used. Subsequent work has automated this matching using simple

nearest-neighbor matching [46].

Rencken [88] has also produced a concurrent mapping and localization algorithm.

Simple results with point and plane models were produced. A focus was maintained

on realistic and accurate modeling of sensor physics and vehicle dynamics. These

results demonstrated that a CML algorithm using fixed sensors can bound position

error growth, at least for limited missions.

Chong and Kleeman [20] have examined the use of local maps in concurrent map-

ping and localization. The problem they have addressed is reduced representation of

inter-feature correlation by representing local groups of features together. A single

correlation model is used to relate the uncertain models of points from two separate

local maps. While the map representation strategies developed [20] remain simplistic,

the assessment of map representation and improved understanding of the relationship

between global and local mapping is key in addressing a number of issues.

Uhlmann [104] has examined some fundamental issues in concurrent mapping and

localization. First, he (and later Julier [47, 86]) have explored the role of nonlinearities
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Figure 2-1: Process flow in relocation fusion. The optimal form of the Kalman filter
requires that updates be carried out using projected states. Relocation fusion is a
sub-optimal update technique designed to account for model uncertainty. The vehicle
state is updated first using projected vehicle and feature states. The feature states
are then updated using the projected feature states and the updated vehicle state.
Although this method overestimates the amount of information received (effectively
using information more than once), the restriction of information flow from the uncer-
tain vehicle model more than compensates, resulting in a better overall performance.
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in degrading filter performance. They have developed a K-filter, which is essentially

a simple bootstrap filter for providing a more complete description of probability

distributions as they undergo nonlinear transformations. The focus was not to ex-

tend the probability models beyond the usual assumptions of Gaussianity, but to

improve the fit of the Gaussian approximations used. Uhlmann has also developed

a technique called covariance intersection [104] which attempts to provide a conser-

vative update estimate when cross-correlations are ignored. Cross-correlation terms

add significantly to the complexity of CML algorithms, and this technique has the

potential to prevent filter divergence when correlations are ignored. However, the use

of covariance intersection in some ways masks the map representation problem. It is

possible that additional work on map representation can be used to improve system

performance and to deepen our understanding of the relationship between relative

and global maps.

Summary of the state of the art

None of these representations has addressed the combined problems of data asso-

ciation, navigation, and prior model uncertainties. Techniques such as relocation

fusion, covariance intersection, and -filtering are all essentially ad hoc extensions

which appeal for a general framework within which to pose the concurrent mapping

and localization problem. The primary shortcoming of state of the art techniques is

the representation of data association uncertainty. In the next section, we consider

stochastic mapping, a forerunner of these CML approaches, and multiple-hypothesis

tracking to see how different fields have handled these types of uncertainty in isolation.

2.2 Extending the state of the art

The current state of the art in concurrent mapping and localization clearly points out

the need for a more general approach to the problem. Our project of improving the
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theoretical basis for CML begins with a consideration of the theory underlying the

mapping and tracking problems. The field of stochastic mapping provides insight into

the continuous estimation problem in the presence of interacting uncertain models.

Stochastic mapping, in addition, is the immediate precursor (at least in spirit) of

many of the state of the art CML implementations considered above. The added

consideration of data association uncertainty expands the problem to include discrete,

as well as continuous, estimation. Multiple-target tracking has developed a number

of techniques to implement hybrid estimation and provides a deeper understanding of

some of its key aspects. In this section, we consider stochastic mapping and multiple-

target tracking in the context of CML.

2.2.1 The basis of continuous estimation

Stochastic mapping [95, 93] is the mapping and localization technique underlying

the state of the art implementations described above. It is an extension of Kalman

filtering and models the entire map with a single state vector and associated error

covariance, as shown in Figure 2-2. Although vehicle navigation error and (to an

extent) prior model error are accounted for, data association information is assumed.

When new features are encountered, the estimate and covariance vectors are extended

to include the new estimate. A principle focus in the development of stochastic

mapping has been the transformation of models through numerous points of view

to allow correct identification when features are revisited. Despite this, all decision-

making is assumed to happen independently, at a higher level of abstraction.

Implementations of stochastic mapping [88] often use simple nearest-neighbor pro-

cessing to match measurements to feature models. This allows consideration of fea-

tures for which absolute identification information is not available. This approach

is prone to errors in data association, which can lead to estimation errors and filter

divergence.
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Figure 2-2: Structure of the state estimates in stochastic mapping. The entire map
is represented using a single state vector formed of the states of the vehicle and the
individual features. The associated estimated error covariance matrix contains both
model covariances (the diagonal blocks) and cross-model correlations (the off-diagonal
blocks, shaded in the diagram).

2.2.2 The basis of hybrid estimation

While stochastic mapping concerns itself only with the continuous estimation (that is,

parametric estimation) problem, data association uncertainties require fundamentally

discrete (or event-based) estimation. Data association has been extensively considered

in the field of multiple-target tracking, where higher target densities, clutter, and

maneuvering targets provide considerable data association uncertainty. However,

multiple-target tracking techniques assume that sensor location is known at all times,

an assumption that does not obtain during uncertain navigation.

One approach to data association in multiple-target tracking is to separate the

discrete problems of estimating the number of targets and matching measurements

to target tracks from the continuous filtering problem. This approach is typified by

the probabilistic data association filter [5, 18]. While this approach is often imple-

mentationally compact, it suffers from an inherent smearing of the data. Also, the

effects of errors are often difficult to identify. The limitations of the probabilistic
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data association filter are most evident in cluttered environments and when moving

targets cross paths.

An alternative data association technique, multiple-hypothesis tracking (MHT),

was pioneered by Reid [87]. MHT postulates multiple competing hypotheses to ex-

plain the measurement phenomenology based on prior target models. As additional

information is obtained, the likelihood ratios of these competing hypotheses shift to

favor the correct data association hypothesis. By incorporating information from a

more extended time period, MHT is more able to recover from ambiguous situations,

such as path crossing and dense clutter. The theoretical basis for MHT was further

developed by Chong, Chang, and Mori [17, 75]. Leonard [62] addressed model-based

localization and sonar map-building using a Kalman filtering approach. Subsequently,

Cox and Leonard [24] implemented a solution to land robotic map-building using

MHT. Kurien [58] considered the theoretical extension of MHT to address both track-

ing and identification. Moran [74] extended MHT to consider curved two-dimensional

surfaces in addition to corners and planes and applied this algorithm to underwater

sonar measurements. It was demonstrated [73] that navigational uncertainty led to

filter divergence. Barker et al. [7] consider the MHT problem using a probabilistic

representation of prior terrain knowledge and discrete constraints, but maintain a

mixed model; targets are feature-like, but other environmental objects are field-like.

Similar work has been done on a more field-based level for image processing and

the use of image data to extract information [60].

2.3 The integrated mapping and navigation ap-

proach

In this section, we summarize previous research in a number of fields to justify a novel

approach to CML, integrated mapping and navigation. IMAN is a unified theoretical

framework for explicitly addressing data association uncertainty, navigation uncer-
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tainty, and prior model uncertainty in concurrent mapping and localization. Key

features of the IMAN approach include:

* extended Kalman filtering,

* feature-based environment modeling,

* non-separable hybrid estimation, and

* delayed decision-making.

The extended Kalman filter is an extension of filtering theory for nonlinear dy-

namic and measurement models. The relative feature measurements typically avail-

able in concurrent mapping and localization are quite nonlinear. Additionally, the

vehicle dynamic model is nonlinear. Because of the nonlinearities, the assumption

of Gaussianity does not obtain either.1 The EKF is a point estimate of the actual

process. The limitations of such an approach are well known [51, 99, 4]. The EKF is

particularly prone to errors when the covariance estimate is large, which is of course

when such errors are most harmful. The popularity of the extended Kalman filter

in spite of these limitations is due to its compact form, its similarity to the linear

Kalman filter, and its ease of implementation. A number of alternative are avail-

able [99, 27, 84]. A Bayesian interpretation of the filtering problem leads to a natural

way to address nonlinearities [90]. The problem is that such approaches can seldom be

specified in closed form. The field of nonlinear estimation has also produced a number

of relevant results, including some analytic techniques for assessing the goodness-of-fit

of estimations for nonlinear and non-Gaussian probability distributions [55, 54].

Feature-based modeling is common in the current CML implementations, but

this is in part due to the development of these techniques within the land robotics

community and for the purpose of mapping office-like environments, which are eas-

ily represented in terms of simple features. Existing work in the modeling of the

1For example, a distribution which is Gaussian in measurement space will have curves of constant
probability in Cartesian space which are shaped like bananas or pears.
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underwater environment provides a less clear manifest for a feature-based approach.

Stewart [100] has developed a stochastic framework for mapping using a cell-based

map. Such approaches are also referred to as field-based approaches. Even navi-

gational approaches claiming to use environmental 'features' and maps [9, 103, 49]

often use extended bathymetric structures, such as contour lines. Such an approach is

significantly different in spirit than a true feature-based modeling approach. The fun-

damental aspect of features is that they are distinct (although sometimes not clearly)

and that they are compact enough to be identified (in toto) using measurement sets

on the scale of the sensor footprint. Larger structures can serve as landmarks, but

fail to provide a model scale that is useful in terms of formulating hypotheses about

feature dispositions, a case of not being able to see the forest for the kelp.

Hybrid estimation is encountered in a variety of contexts [96, 33]. It is most com-

mon in manufacturing and intelligent control systems, where the continuous plant

models are driven using discrete control inputs [66]. Under such conditions, the sepa-

rability of the discrete and continuous parts may be exploited to aid in analyzing the

problem [5]. In filtering problems that must address event-based estimation, discrete

and continuous portions of the problem are also often separated. This is accomplished

in one of two ways. First, discrete decisions may be forced or probabilistically smeared

instantaneously relative to the continuous estimation process. This is found in prob-

abilistic data association filtering [5] and interacting multiple model filtering [29].

This simplification often leads to discrete estimation errors due either to the data

smearing or the forced resolution of discrete estimation before a clear winner is iden-

tifiable. Second, multiple instances of the continuous filter may be instantiated for

each discrete possibility, as in multiple model filtering [3]. This requires considerable

storage and computation requirements, making multiple model filtering ineffective as

the discrete portion of the estimation problem becomes complex.

The ability to delay decision-making is closely related to the hybrid estimation

problem and its resolution. Comparisons of MHT and probabilistic data associa-
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tion have demonstrated [29] that delaying decision-making reduces the occurrence

and severity of data association errors. This allows MHT algorithms to perform in

multiple-target tracking problems which lead to filter divergence or track loss when

probabilistic data association filtering is used.

2.4 Summary

In this chapter, we have considered existing research to situate the current project of

improving concurrent mapping and navigation. State of the art implementations were

discussed, and the limitations they experience due to simplifying assumptions about

the data association problem were highlighted. Extensions to the state of the art

were considered by examining the fields of stochastic mapping and multiple-hypothesis

tracking, which form useful bases for continuous estimation in mapping and navigation

and hybrid estimation, respectively. Finally, a novel approach to concurrent mapping

and navigation was developed. Integrated mapping and navigation utilizes feature-

based environmental modeling and non-separable hybrid estimation to capture more

fully the uncertainties that come to bear in concurrent mapping and localization. The

key aspects of the IMAN approach are justified in the existing research of a number

of fields, including filtering, estimation, tracking, and control. In the next chapter,

we develop the theory for an integrated mapping and localization algorithm.
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Chapter 3

Integrated Mapping and

Navigation

In this chapter, we develop the theoretical basis for integrated mapping and naviga-

tion (IMAN). We begin by discussing hybrid estimation as it applies to concurrent

mapping and localization (CML). The role of navigational events in estimating ve-

hicle and feature position is considered, and the basic structural elements of hybrid

estimation in the presence of vehicle position uncertainty are described. We then

turn to the problem of prior knowledge representation. The role of vehicle, feature,

and measurement models is examined. In this thesis, we make use of two dynamic

models: (1) a simple model for a survey-class AUV and (2) a general model for two-

dimensional point-like features. These models are presented along with models for

dead reckoning and relative sonar measurements. Next, we examine some theoretical

issues raised by discrete estimation in the presence of sensor location uncertainty.

The dependency of continuous estimates on discrete decisions and the probabilistic

basis of discrete estimation are detailed. Issues relating to the continuous estimation

problem are then considered. A Bayesian interpretation of the estimation problem

is discussed, and the role of cross-model correlation and map representation is ad-

dressed. Finally, the process of integrated mapping and navigation is presented. The
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theoretical basis for each step of this process is detailed and an illustrative example

is developed throughout.

3.1 Hybrid estimation and concurrent mapping and

localization

Hybrid estimation is estimation over both discrete and continuous degrees of free-

dom [75, 81]. Discrete degrees of freedom in estimation are decisions among a dis-

crete number of hypotheses. Continuous degrees of freedom estimate the value of

continuously-varying parameters.

Hybrid estimation is a process in which both discrete and continuous quantities
are estimated.

Hybrid estimation is used in a wide variety of applications, but often some degree of

separability between the discrete and continuous degrees of freedom can be exploited.

Much of the work on hybrid systems maintains continuous plant models but simplifies

the controller through a discrete specification [96, 81]. In multiple-model estimation

schemes, continuous models are run in parallel to represent the outcomes of various

discrete events or decisions [3]. Many algorithms which must model discrete events,

such as probabilistic data association filtering [5] and interacting multiple model esti-

mation [29], force decision to be made within a single time cycle, effectively decoupling

the discrete degrees of freedom. Such separation of the discrete and continuous parts

of the estimation problem is undesirable for IMAN. The discrete navigational events

considered are reflections of discrete events in the world (or our model of the world).

Forcing one-step decisions would prevent delayed decision-making, removing any ad-

vantage from the additional accumulation of evidence. Running parallel continuous

models would simply be too computationally intensive. Concurrent mapping and
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localization calls for a hybrid estimation scheme in which the discrete and continu-

ous degrees of freedom interact. The challenge is to understand how this interaction

should inform the structure and process of integrated mapping and navigation.

3.1.1 Navigational events

Traditional Kalman filtering is designed to find the (in some sense) optimal way to

incorporate measurements with dynamic projection, assuming that we have an exact

model of what is happening. However, there are often cases when "what is happening"

needs to be estimated as well. The process of navigation, and in particular, concur-

rent mapping and localization, is characterized by discrete events. These events can

include: (1) changes in the behavior of the vehicle or the features being modeled and

(2) measurements.

A navigational event is an event that can be modeled in more than one way.
Navigational events are the primary source of discrete uncertainty in concur-
rent mapping and navigation.

In each of these cases, the navigator must decide, either explicitly or implicitly, what

has occurred and how to modify the estimates of vehicle and feature state in response.

Traditionally, a single model is used for the system dynamics [48, 4]. This dynamic

model is assumed to hold at all times, describing the evolution of the system, and

therefore, the estimates, through time. Likewise, a single measurement model is used.

Each measurement (or set of measurements) is assumed to have a given explanation,

including a specification of the states upon which the measurement depends. The

move to a more general model, as required in concurrent mapping and localization,

involves considering different possible outcomes for these cases, i.e. projection and

updating. In this thesis, we for the most part retain the assumption of a given sys-

tem dynamics model. This results in a one-to-one mapping when projecting vehicle

and feature state estimates. We do, however, regard measurements as navigational
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events. Data association uncertainty means that the states upon which each mea-

surement depends are not given. The result is that multiple models regarding the

data association of measurements must be considered.

3.1.2 General aspects of hybrid estimation

By considering discrete events in addition to parametric states in the estimation

problem, we move from continuous estimation to hybrid estimation. As discussed in

Section 2.3, previous research indicates that non-separable hybrid estimation is the

appropriate approach for the problem of concurrent mapping and localization. This

has the effect of changing the structure of the problem from that used for stochastic

mapping, separable hybrid estimation, or multiple hypothesis tracking. In stochastic

mapping, a single state vector is used to describe the state of the vehicle and fea-

tures at any given time. This state vector has a single associated covariance matrix

to estimate the error in the state estimate. The consideration of measurements as

navigational events and the discrete estimation of these events does not necessar-

ily contradict this structure. In multiple-model estimation, multiple versions of this

global state vector and associated error covariance matrix are maintained to account

for each possible resolution of all of the uncertain events. Such an approach, however,

becomes rapidly uncomputable as the number of events to be estimated increases. To

account for this, and to leave the structure open to extension regarding the inclusion

of vehicle and feature dynamics as navigational events, we separate the vehicle state

estimate and each of the feature estimates, as shown in Figure 3-1. Instead of a

single global state vector, the vehicle and each proposed feature have a correspond-

ing state vector and associated error covariance matrix. We consider the evolution

of each feature and the vehicle independently. This change in structure complicates

the specification of cross-model correlations, the off-diagonal blocks of the stochastic

mapping error covariance matrix. Such matrices can of course be included at the cost

of considerable added complexity. The role of these cross-model correlations will be
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Figure 3-1: The structure of state estimates. In stochastic mapping (SM), a single
state vector (a) is used to represent the vehicle and all features. An associated
covariance matrix (b) provides the model covariances (the diagonal blocks) as well
as cross-model correlations (the off-diagonal blocks). In integrated mapping and
navigation (IMAN), vehicle and individual feature models are separated, as in (c)
and (d). State estimates and covariances pertain to a particular model; cross-model
correlations are not represented.

discussed in detail in Section 3.4.2.

3.1.3 Features

Integrated mapping and navigation incorporates feature-based environment model-

ing. This is in line with the modeling strategies of existing concurrent mapping and

localization implementations and multiple-target tracking.

A feature is a
in navigation.
that arise from

distinctive object in the environment that can be modeled to aid
A feature model captures the phenomenology of measurements
the object being modeled as a feature.
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However, it could be argued that AUV navigation occurs in very different environ-

ments than those usually encountered in multiple-target tracking applications. Bathy-

metric features seem the most likely candidates (at least initially) for AUV navigation

in a priori unknown environments. Previous research however, has typically used a

field-based, or cell-based, approach for modeling underwater environments [100, 30].

The representation of such environments in terms of discrete features of limited di-

mension has some potential advantages. First, process modeling and reasoning about

the behavior and interaction of these features is, from a high-level standpoint, best ac-

complished with a feature-based approach. If the features being modeled are too large

or too small, effective reasoning about navigational events and the features would be

difficult, if not impossible, to provide.' Second, the consideration of features, rather

than fields, allows a greater flexibility in the resolution at which discrete events are

considered. Finally, using features as models improves the information available by

estimating both from where and from what measurements are received.

There is an additional ontological concern in prescribing a feature-based environ-

ment modeling paradigm. There may not, in fact, be any such thing as features in

the environment. To answer this, we appeal to a phenomenological viewpoint. The

feature models that are used to characterize the environment are noumenal observers,

in other words, they describe the experienced phenomenology without resorting to an

epistemological imperative.

A noumenal observer is a model that captures the measurement phenomenol-
ogy associated with a particular environmental occurrence. By noumenal, the real
nature of the occurrence is not implied, only a prior model of the measurements
that result from the occurrence.

'A balance needs to be maintained between sensor range and footprint; measurement and navi-
gational event frequency; and feature dynamics, extent, and density. The focus of this thesis remains
on the development of hybrid estimation for concurrent mapping and localization rather than these
issues of feature modeling. As more extensive and varied feature models are developed, these tuning
issues will become more immediate.
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This means that, from a theoretical standpoint, feature ontology, that is, the specifica-

tion of feature models, is best determined empirically. In this thesis, we concentrate

on the use of point-like features. Such features can be found in realistic data sets

and correspond to environmental occurrences such as lobster pots, small man-made

devices such mines and buoys, and even small discrete rock outcroppings [67]. Be-

cause feature models can be regarded as noumenal observers, there may be no such

thing as the actual state of a feature, only estimates of varying quality. The suc-

cess of a feature model is determined by its predictive ability in accounting for the

phenomenology presented by the measurements.

3.1.4 States

As discussed above, the integrated mapping and navigation approach concentrates

on features and the vehicle individually rather than specifying the global state. Ad-

ditionally, there may in fact be no actual feature states. This change in the structure

of the estimation problem results in some altered nomenclature for discussing the

vehicle and feature estimates. We consider an estimate to be the estimate of a single

vehicle or feature. For example, the estimate of a point-like feature might consist of

its north and east coordinates. This estimate will have an associated error covariance

matrix, which estimates the error of the estimate and the correlations between each

estimate variable within the model, that is, the particular vehicle or feature model.

Cross-model correlations, if included, are considered separately. Because of the dis-

crete degrees of freedom in the hybrid estimation problem, there may be multiple

estimates for a feature or the vehicle at any given time. Thus each estimate will also

have an associated likelihood representing an estimate of the absolute probability of

that feature or vehicle estimate being the correct estimate of the model, i.e. repre-

senting the absolute probability that the discrete decision resolutions used to generate

that estimate are correct. This collection of a model state estimate, its associated

error covariance, and its likelihood, form an estimate.
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An estimate is composed of the state estimate for a particular vehicle or fea-
ture model, its associated covariance matrix, and the likelihood that the decision
resolutions used in generating the state estimate are correct.

Each estimate also has a context within the discrete estimation problem. This is

specified by a dependency on some subset of the decisions that are as yet unresolved.

The specification of the required resolution of these decisions for an estimate to hold

is a dependency set.

A dependency set is the set of decision resolutions that are required for an
estimate to be valid.

An estimate in context, that is, an estimate and its dependency set, is a state.

A state is an estimate in the context of the discrete estimation problem. A state
consists of an estimate and its dependency set.

Note that there will be one or more states for each vehicle and proposed feature at

any given time. Also, given a specific, consistent, resolution of all decisions, there

will be a single state for each model (the vehicle and each proposed feature) given

that set of decision resolutions. The state is thus the basic unit within the hybrid

estimation problem.

3.1.5 Tracks

At any given time, the vehicle or a proposed feature may have multiple possible states.

However, this set of possible states evolves in a logical way through time.
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Figure 3-2: The structure of the IMAN estimation problem. Each model, that is,
the vehicle and each proposed feature, is modeled by a track. Tracks provide a dual

representation as trees and track steps. Track trees capture the causal relationships

among states. Track steps capture the functional relationships of the estimation
process. Each node of a track tree is a state. Global possibilities contain a single

compatible state from each track.

A track is the structured set of possible states for the vehicle or a proposed

feature through time.

The concept of tracks was introduced in multiple hypothesis tracking [75]. Under

integrated mapping and navigation, each track is representable as a tree of states.

As the feature estimate evolves, states are modified. If multiple hypotheses about

state updating (or projection) are considered, multiple child states are included for

that node state. The tree structure of the track captures the causality of both the

continuous and discrete degrees of freedom of the estimation problem. In addition

to this structure, a track can also be represented as a set of possible states at any

particular point in the estimation process. As in traditional Kalman filtering, the

estimation process is divided into projection and update steps for each time cycle. A

track will contain a set of possible states for each of these steps. This set is referred

to as a track step. A given track step might thus contain the set of possible updated

vehicle states for a specific time cycle. Track steps, which do not contain any sense of
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causality for the track, can be compared using the dependency sets of their individual

states. Thus each vehicle and proposed feature is estimated as a track with this dual

representation of track tree and track steps. Figure 3-2 illustrates the tree structure

of tracks and the relationships among the concepts of track, state, and feature.

3.2 Prior knowledge representation

With the integrated mapping and navigation approach, vehicle and feature models are

separated, and greater emphasis is placed on reasoning about how to appropriately

model navigational events regarding these separate models. This places greater cur-

rency in the representation of these models and their manipulation, so that extended

reasoning may be accomplished efficiently and appropriately given the circumstances.

Thus, prior knowledge representation takes a more central role in IMAN than it has

in existing concurrent mapping and localization implementations. Prior knowledge

representation is also important for the case of AUV navigation because submarine

bathymetry is an inherently more complex environment than the simple office envi-

ronments, consisting of walls and corners, often considered [53, 20, 16, 15, 11]. In

specifying models, there are three areas which must be considered. The first is system

models for individual features. By interpreting features as noumenal observers of the

environment, we assert that there are classes of features that may be estimated using

one or more parametric prior models. The specification of these feature models is

referred to as feature ontology.

Ontology is the specification of the different models that may be used to repre-
sent the vehicle or an environmental occurrence.

The second consideration for prior knowledge representation is specification of one

or more dynamic models for the vehicle. Vehicle modeling has received consider-

able attention in the context of control and planning [36, 65, 37, 89, 32]. The third
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and final consideration for prior knowledge representation is measurement modeling.

The vehicle is in general involved in multiple types of measurement. Some mea-

surements give rise to no discrete uncertainty. These are typically proprioceptive

measurements (measurements regarding only the dynamic state of the vehicle itself),

local measurements (such as temperature, conductivity, pressure, or optical backscat-

ter), or field-based exteroceptive measurements (such as Doppler velocity profiles).

Such measurements can be appropriately handled within the traditional Kalman fil-

tering paradigm. For integrated mapping and navigation, such models are separately

specified, but are in essence identical to the usual Kalman update techniques. Other

measurements are relative measurements involving the state of multiple models within

the IMAN estimation scheme. These are usually subject to uncertainty about what

proposed feature, if any, has participated in the measurement, and as such are the

primary focus of the hybrid estimation process.

In this thesis, we develop two models. The first is used to represent point-like

features; the second models the dynamics of a survey-class AUV. Two measurement

models are also developed. Dead reckoning measurements are measurements of the

vehicle speed, depth, and orientation. There is no discrete uncertainty associated

with these dead reckoning measurements. Also, a relative sonar measurement model

is specified for the detection of point-like features using a forward-looking sonar array.

These sonar measurements are subject to discrete uncertainty regarding what feature,

if any, is involved in the measurement.

3.2.1 Feature ontology

Feature ontology is the specification of parametric models which correspond to classes

of supposed features in the environment. The purpose of such a model is to accu-

rately describe the behavior (or one type of behavior) for the feature in question.

This corresponds to the specification'of the state projection step in Kalman filtering.
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A dynamic model is a model of a possible dynamic behavior for a vehicle or
feature. The specification of a dynamic model enables estimates to be projected
through time.

A general implementation of IMAN could consider multiple competing hypotheses

about how to model feature behavior. This might be necessary to account for changes

in behavior (such as the sudden maneuvers of a target f107, 21]) or changes in feature

type due to a refined understanding of its associated phenomenology (such as revising

a planar model to a curved surface representation upon detecting a region of non-zero

curvature [74]). In this thesis, such ontological events are not entertained. Projection

of a given state is a one-to-one mapping based on a specified feature model. Each track

that is proposed is associated with a specific feature model to be used for projection.

Point-like features

In this thesis, we consider a simplified environment model containing a single fea-

ture class: points. Point-like features can be extracted from actual sonar data and

correspond to a variety of causative agents, ranging from lobster pots to rock outcrop-

pings [67]. Such points are considered to be nearly stationary over the time during

which the vehicle observes them. Each point is entirely specified by its north and

east coordinates within the global reference frame, that is,

where denotes the point feature model. The point feature model is thus:(3.1)

where Fpt denotes the point feature model. The point feature model is thus:

P Ok G: k+1 = Pf (k) + Wk, where (3.2)
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7,f (k) = G (3.3)

The feature model is denoted YPlt; the time index k denotes the projection implied in

Equation 3.2. Since point-like features are assumed to be nearly stationary, however,

the point model is independent of time,

Ptq k = 7Pt V k. (3.4)

In addition to the assumed dynamics, YP, ¢ includes an additive noise term, wk. This is

assumed to be a sampled Gaussian white noise process and is present for two reasons.

First, the environmental object being modeled may have an associated stochastic

component when modeled as a point. This is due to finite dimension, varying view

angle, and other properties that may not be resolved parametrically by the feature

model. Second, this process noise in included to account for model uncertainty and

has the effect of robustifying the estimation of the process [1]. Without the additional

noise, the feature estimate would become overconfident in its knowledge of the feature,

leading to divergence [1]. The additional noise provides a method of discounting cur-

rent knowledge of the feature to allow the estimate to adapt to unmodeled systematic

variation in the feature.

The usual assumptions about the process noise are made [39]. The noise is as-

sumed to be a white sequence and to be uncorrelated with the initial feature estimate,

prior estimates of the vehicle and any other features, and any other noise processes.

Additionally, the noise is assumed to be zero-mean, stationary, and Gaussian, with a

covariance given by

E [wkW] = tQ nw 0 (3.5)
0 'W
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Table 3.1: Point dynamic model 7p parameters.

Parameter Symbol Value
north process noise covariance nw 2 m2

east process noise covariance ew 2 m2

For all of the simulated runs in this thesis, a point process noise covariance of

TpQ = 2 0 m2 (3.6)

is assumed, as shown in Table 3.1. This value is somewhat arbitrary, but was chosen

based on simulated runs to achieve desired convergence characteristics for the feature

estimate. Note that increasing the feature coordinate process noise would result in

attaching more weight to new measurements, while decreasing this value would attach

greater worth to the existing estimate. Setting the process noise too low can result

in filter divergence due to overconfidence in the current estimate.

3.2.2 Vehicle ontology

The specification of a vehicle model is essentially identical to the specification of a

feature model. The additional considerations are that a more complex model of the

vehicle may be possible because of the availability of additional information (e.g. con-

trol inputs) and the fact that the vehicle may participate in additional measurement

modalities.

A simple vehicle model

AUV control, particularly for survey-class vehicles, is typified by motion along line-

segments. The vehicle moves in a straight line, occasionally performing maneuvers.

Because of this operational paradigm, simple dynamic models can usually capture
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vehicle behavior quite well. Our assumed model of vehicle motion is essentially a

steady-state kinematic model. The vehicle is assumed to travel at a constant speed

in the direction in which it is heading. Model uncertainty is compensated by added

process noise and proprioceptive measurements (heading, pitch, depth, and speed).

The vehicle state variables are the north and east coordinates in the global reference

frame and the depth, speed, pitch, and yaw, that is,

x = nx ex Z oU x x , (3.7)

where V denotes the vehicle dynamic model. The vehicle dynamic model is

VOk : Xk+1 = Vfk (Xk) + Wk, (3.8)

where Vfk is the vehicle dynamic function and wk is additive process noise. The

vehicle dynamic function is:

ZXk UXk COS (Z'Xk) cos (O0 k)

e k + uXk Sin (PXk) COs (0 Xk)

Vfk (Xk) = Z Xk - UXk sin (0k) (39)
UX

k

0Xk

OXk

Although the dynamic model is nonlinear, we can linearize the vehicle model in the

neighborhood of a given operating point using its Jacobian. The Jacobian of this
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vehicle dynamic function with respect to the vehicle state is given by

S () =
vF = - f (x) =

cos (Ox) cos (°x)

sin (Ox) cos (0x)

- sin (° x)

1

0

0

(4x) sin (Ox)

(Ox) sin (°x)

0

0

1

0

-Ux sin ( x) cos (Ox)

UX cos (OX) cos (Ox)

-"U (cos x)

0

0

1

where the Jacobian is understood to be evaluated at a specific operating point x. As

with the point model, the vehicle model is assumed to be independent of time:

Vk = V V k. (3.11)

The vehicle model process noise is assumed

Gaussian white noise process with covariance

E [wk WT VQ =

nw

0

0

0

0

0

to be a sampled stationary zero-mean

0

0

0

uw

0

0

0

0

0

0

ow

0

0

0

0

0

0
?P

(3.12)

-- Ux Cos

-Ux sin

, (3.10)
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Table 3.2: Vehicle dynamic model V¢ parameters.

The process noise is assumed independent of the initial vehicle state and other noise

processes. Table 3.2 shows the values used for the process noise in the vehicle model

for all of the runs in this thesis.

3.2.3 Measurement modeling

In addition to the dynamic models used to reason about vehicle and feature projec-

tion and behavior, measurement models must also be specified. Measurement models

capture the physics and the logical possibilities of sensing processes.

A measurement model captures the prior knowledge about the physics and
logical possibilities for a specific sensing process. Measurement models for
relative measurements must also consider the relationships among the dynamic
models of the objects involved in the measurement.

Measurements are, of course, subject to uncertainty. In the usual continuous sense,

measurements are parametrically uncertain. When measurements involve multiple

models, however, there may additionally be discrete uncertainty about measurement

origin. The specification of a measurement model thus involves not only the model

of the underlying sensing physics, but a broader understanding of the measurement

channel so that deliberation about the possible navigational events associated with

a measurement can be enumerated without conditioning on the specific features or

Parameter Symbol Value
north process noise variance nw 0.5 m2

east process noise variance e w 0.5 m2

depth process noise variance Zw 0.0025 m2

speed process noise variance Uw 0.01 _

pitch process noise variance Ow 0.0008 rad2

yaw process noise variance *w 0.0008 rad2
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models involved.

A measurement channel is the environmental substrate in which measurements
are taken. In the case of acoustic sensors, for example, the channel is represented
by the acoustical properties of the water column which serves as a medium of
propagation.

In this thesis, we consider two measurement modalities. The first involves only the

vehicle model, and consists of dead reckoning measurements. These dead reckoning

measurements do not contain discrete uncertainty and can be processed as in the

usual Kalman framework. Additionally, we consider sonar measurements using a high

resolution forward-looking sonar [67]. These measurements may involve the vehicle

and the feature models and are subject to data association uncertainty.

Dead reckoning measurements

The vehicle measures its depth, speed, pitch, and heading during each time cycle.

The dead reckoning measurement model is denoted Wdrp. The measurements are

based on the vehicle state:

Wdrpk " Zk = Wdrhk (xk) + Vk, (3.13)

where WdrPk is the measurement model at time k, zk is the dead reckoning measure-

ment vector, Xk is the vehicle state, and Vk is additive measurement noise. The dead

reckoning measurements involve direct measurements of the vehicle's depth, speed,

pitch, and yaw:

Zk [--- k uZk Zk Zk ] (3.14)
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Table 3.3: Dead reckoning measurement model Wdrp parameters.

The measurement function is given by

Wdrhk (Xk) =

nXk

eX
k

ZZk

UXk

0Xk

-?Xk-

The measurement noise vk is assumed to be

noise process with covariance

E [vk T] = Wdrfk =

a sampled zero-mean Gaussian white-

000

"v 0 0

0 Ov 0

0 0 Ov

(3.16)

Also, the dead reckoning measurement model is assumed to be independent of time,

allowing the dependence of Wdp, Wd h, and Wd R on k to be dropped. Throughout

this thesis, we will assume a measurement noise covariance with parameters as listed

in Table 3.3.

Parameter Symbol Value
depth measurement noise variance ZV 25 cm 2

speed measurement noise variance 2
speed measurement noise variance "v 0.25 deg2

pitch measurement noise variance ov 0.5 deg 2

yaw measurement noise variance 0. 5 deg2

(3.15)
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Sonar measurements

A second measurement model is used to describe relative measurements taken with

a forward-looking sonar. The sonar data is processed to extract measurements which

might correspond to features. The origin of these measurements is uncertain, however.

A measurement might have come from any of the currently modeled features or from

a new (i.e. previously unknown) feature, or it may be the result of an unmodeled

phenomenon. Measurements arising from unmodeled phenomena are termed clutter

and may arise from unuseable (or unmodelable) features, sonar channel reverberation

or multipath, or noise in the sensor itself. The sonar measurement model is denoted

Wsp. Given that a measurement arises at time k from a relative measurement of the

vehicle with state Xk and a feature i with state (, the sonar measurement provides a

noisy measurement of the range rz and bearing Vz:

11 Pk Zk h= (xk, k) + vL = I (3.17)
L zk

If we regard the vehicle state as consisting of the north and east coordinates and

heading,

Xk = n k e k k 1 (3.18)

and the feature state as consisting of the north and east coordinates of the feature,

i= I e]k T, (3.19)

then the measurement function can be written as

Wsn (X n Zk 2 _ -e(i _ exk)2(
hk k - cta X (3.20)

arctan e k- k k
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Table 3.4: Sonar measurement model "spJ parameters.

Parameter Symbol Value
range measurement noise covariance rv 0.5 m2

bearing measurement noise covariance 'v 5 deg 2

We adopt the convention that if n = "zXk, the expected (that is, disregarding mea-

surement error) bearing is zero. Since we are using separate vehicle and feature

models, the measurement function can be linearized based (separately) on vehicle

and feature state. The Jacobian of this measurement function with respect to the

vehicle state is

(-Ck--Xk)2_ eCI-' -ke

y H. =( eg-m e) -(k-2
and the Jacobian with respect to the feature state is

WH_n
k Xk

W"Hk L(n;-"n)-( _)_
E" ee,&_el

k eXk

(n ;_n)e_( e;_ )

(n 'I_n 2_(ee _ee~ k
Xk k

The measurement noise is assumed to be a sampled zero-mean

noise process with covariance

E [vk VT] = WS v [rR

kPZ

(3.22)

Gaussian white

(3.23)

This noise process is assumed to be independent of the initial vehicle and feature states

and other noise processes. Table 3.4 shows the components of the sonar measurement

model measurement noise covariance matrix.

(nr _n k2_ (q _e k2

n k

n k 2

0

-1
(3.21)
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3.3 Issues in discrete estimation

3.3.1 Decisions

In the continuous estimation problem, there are no compatibility problems introduced

by specifying the PDF of an estimate. Consequent probabilistic manipulations can be

chained together with little problem, e.g. in the recursive formulation of the Kalman

filter. In the case of discrete estimation, however, one is dealing with exclusive events

rather than parametric uncertainty. Because of this, estimates may depend on the

outcome of previous events in incompatible ways. For example, assume that at the

previous time cycle the vehicle either received a spurious measurement or measured

a new feature. The possible estimates for the current time cycle are conditioned on

the outcome of this decision. Estimates which assume that the measurement was

spurious should not consider updates from the proposed new feature; they depend

on the previous decision in an incompatible way. Because of this, each state must

keep track of its decision dependencies. Only compatible states may be considered

together. Incompatible states are part of different "what if..." scenarios and cannot

occur together. This concept is illustrated in Figure 3-3.

Recall that a navigational event is an event that contains some discrete uncer-

tainty. The possibilities regarding each navigational event are represented as a deci-

sion.

A decision is an enumeration of the modeling alternatives being considered in
the representation of a navigational event.

At each time step k, there will, in general, be a number of decisions 0 6k, where the

index o ranges over this set of decisions. We use a set notation to indicate the set of
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26

30
20 40 60

(a) Consider three decisions, 16, 26, and
hypotheses as shown above.

2drie IE ature 1

16-' 1-0 l w10
26- 30 3 36- 50

36. Let each have two possible
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36-050

(b) The compatibility of states can be determined by considering their
dependency sets. Here we consider a state from each tree (the vehicle,
feature one, and feature two). The selected states from the vehicle and
feature one are compatible because all decisions that they mutually de-
pend on (16) are required to resolve to the same hypothesis (18). The
selected states from the vehicle and feature two, however, are incom-
patible because the require different resolutions for decision 16.

Figure 3-3: Decision dependencies and compatibility. Two states are compatible if
and only if they resolve all decisions upon which they mutually depend with the same
hypothesis.

36
50
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decisions Ak that contains these decisions, indexed by o:

Ak = fo 6 k o (3.24)

There are three types of decisions which we consider: feature track disposition de-

cisions -6, measurement origin decisions z 6 , and feature or vehicle ontological deci-

sions "6.

Dispositional decisions are decisions about what has happened to a particular
track.

Origin decisions are decisions about the origin of a particular measurement.

Ontological decisions are decisions about the dynamic behavior or model rep-
resentation of a particular track.

As noted above, we focus on dispositional and origin decisions in this thesis.

Each decision has a set of hypotheses representing the possible models for that

navigational event,

Ootk = {Uku , (3.25)

where u indexes over the hypotheses for decision o.

A hypothesis is a possible resolution for a decision. A hypothesis is a proposed
model for the navigational event represented by the decision.
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A hypothesis may resolve more than one decision. We denote the set of all hypotheses,

that is, all hypotheses from all decision, at time k as

Ok = {pOk}p , (3.26)

where p indexes over all of the hypotheses for time k. We also define a decision

indexing function U which recovers the set of hypotheses for a particular decision

from the set of all hypotheses for a given time:

O.ok = fu = U (o6 k, 6k) = U (k k}) . (3.27)

3.3.2 Decision dependencies

Estimates that are enumerated based on possible hypotheses for a given decision de-

pend on those hypotheses. When a choice among competing hypotheses is made, we

refer to the decision being resolved to a particular hypothesis.

A dependency is the assertion that a decision must resolve to a particular hy-
pothesis.

Thus, estimates have dependencies for the resolution of decisions. We denote a de-

pendency by

d = o 4k - uOk, (3.28)

meaning that the dependency d requires that decision o6 k resolve to hypothesis u0 .

We additionally define 6d as the decision referred to by dependency d and Od as the

hypothesis required by d.
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A given state x has a set of dependencies

Dx = {ed}, (3.29)

where e indexes over all of the dependencies in the set, i.e. all of the dependencies for

the state x. Note that, since hypotheses for a given decision are mutually exclusive,

a state can have at most one dependency for a given decision. Two dependencies are

incompatible if they require different resolutions for the same decision. We define

a dependency compatibility function Cd, which is zero if the two dependencies are

compatible and one if they are not:

Cd if deld d e2d and Od e2 (3.30)
Cd (eld, e2d) = 62 er # ed (3.30)

0 otherwise.

We can quantify an ontological distance c, that is, a distance in discrete estimation

space, for a pair of dependency sets as the number of incompatible dependencies that

they contain:

C (D 1 , D2 ) = C d (,d, e2d) , (3.31)
el e2

where el indexes over all of the dependencies in dependency set D 1 and e2 indexes

over all of the dependecies in dependency set D2 . The dependency set compatibility

function CD is true for a pair of dependency sets if and only if the ontological distance

between them is zero:

CD (DI, D2) true c (D 1, D 2 ) = 0, (3.32)

false otherwise.
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Note that compatible dependency sets require the same resolution for all decisions

that they mutually depend on.

CD (DI, D 2 ) = true iff ed = Oe2 d V e 1,e 2  ed e 2 d (3.33)

where el indexes the dependency set D1 and e2 indexes the dependency set D 2.

3.4 Issues in continuous estimation

3.4.1 A Bayesian interpretation of the Kalman filter

In this section, we consider the general problem of projecting and updating when the

vehicle and feature models are separated. This is done within a Bayesian framework;

however, the results are related to the extended Kalman filter equations, which are

typically used to implement CML. The purpose of this rederivation is three-fold: to

examine the effects of considering the models separately, to examine the role of cross-

model correlations, and to provide deeper understanding of the Bayesian approach to

the estimation procedure, which will be of use as we consider the implementation of

the hybrid estimation problem with IMAN. There are typically two steps in recursive

estimation problems. First, the existing estimate is projected to the current time.

Second, this projected estimate is updated with any measurements that have been

taken.

Bayesian state projection

First we consider the projection of an estimate to predict the state of a model at

some future time. We assume that we have an existing estimate xk-11k-1, where the

estimate is of the state at time k - 1 and incorporates all measurements through time
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k - 1.2 This estimate is a description of the probability density function (PDF) of the

actual state, if one exists, p (Xk-1 Zk-1), where we adopt the convention that Zk- 1

refers to the set of all measurements through time k - 1.3 The estimate provides both

a state estimate

k-llk- 1 = E [Xk-ll Zk-1] (3.34)

and a covariance matrix

Pk-1k-1 -- E[ (Xk- - E[Xk-1) (Xk- - E[Xk-1 )T Zk-1] (3.35)

The dynamic model q is assumed to contain deterministic dynamics

by white noise w,

f corrupted

(3.36)

This model provides a stochastic description of the evolution of the PDF of the

state. We consider the noise to be additive, providing the following discrete (in time)

dynamic model:

Xk = f (Xk-1) + W, (3.37)

where k is a time index. We also make the usual assumptions about the process

noise [39]; that is, it is a sampled zero-mean white Gaussian process, and it is inde-

pendent of the initial state estimate and other noise processes. The noise process is

2Throughout this section, we refer to a general state as x. Note that the projection of feature
states ( is identical.

3 The set of all measurements taken at time k - 1 would be indicated by Zk-1.

S= 0 (f, w).
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assumed to have a covariance

E [wwT] = Q. (3.38)

The goal of projection is to characterize the projected PDF p (xk Zk- l , ¢). This

is not straightforward if the dynamic function f is nonlinear. The extended Kalman

filter [39, 4, 99] addresses this problem by linearizing the state dynamics around the

estimate

f (Xk-1) f (k-1k-1) Fklk- 1 (k-1- k-1) , where (3.39)

F l i - (3.40)

is the Jacobian of the dynamic function. This simplification has two effects. First,

nonlinearities in the dynamic function are ignored. Second, because of the assumed

linearity, Gaussianity of the estimate is assumed to be preserved, even if this is not

the case. A number of methods exist to improve this estimation process for nonlinear

systems [99, 84, 27, 39, 28, 91]; such procedures may improve the robustness and

quality of the estimate, but do not fundamentally alter the development of the hybrid

estimation process found here.

Using these assumptions, the projected density p (Xk Z k - l, ¢) is Gaussian and can

be characterized by its mean and covariance. The mean can be determined without

linearization to provide a projected estimate

k-l 1  E [Xkl Zk - l, ] = f (kllk-1) . (3.41)

The covariance of the error of this estimate, using the linearized dynamic function, is
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then

Pklk-1 = E [(xk - Xk-1) (Xk k)T = Fk-1k-)Tk- I k - 1 -k-1FL1 + Q. (3.42)

This is also the covariance of the projected density;

Pkik-1 = E [(k - E [k]) (k - E [xk])T Zk-1] . (3.43)

Bayesian measurement updating

Now we consider the update step, the combination of the projected estimate with a

measurement. The projected state Xkk-1 contains the mean

'kIk-l = E [Xk| Z k - l] (3.44)

and covariance

Pkk-1 = E [(k - E [k]) (xk - E [Xk) T Z k - ] (3.45)

of the state vector PDF p (xkI Zk-1) at time k based on all information through

time k - 1. We also have a set of measurements Zk from the current time k. We

can consider these measurements sequentially or grouped by measurement type with

no change to the final updated state estimate [98, 50]. We will refere to updating

with a particular measurement (or block of measurements) mizk out of the set of all

measurements for time k,

Zk =mzk}m (3.46)

We denote the set of measurements already used for updating

mi-1Zk - {mZk }<m1. (3.47)
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First, we consider the single model case, in which only the vehicle participates

in the measurement. This occurs, for example, when incorporating dead reckoning

measurements. A measurement model p provides an expected measurement function

h and a description of the measurement noise v:

p = p (h, v) . (3.48)

We assume that the measurement noise is additive, providing the following measure-

ment equation:

mzk = h (Xk) + Vk. (3.49)

The measurement noise is assumed to be a sampled zero-mean white Gaussian pro-

cess that is independent of the state variables and other noise processes and has a

covariance

E [Vk vT] = R. (3.50)

Our goal is to characterize the a posteriori density

p (XklmZk, Zk - l) = (klmlZk, mi-1Zk, Zk-l) , (3.51)

that is, to estimate the state Xk based on all of the measurements taken at earlier times

Zk-1, all of the measurements taken at this time which have already been processed

mi-1Zk, and the current measurement being processed miZk. The current estimate

Xklk-1,m,-1 is thus a partially updated PDF p (xkl mi1Zk, Zk-1). Using Bayes rule,

we can write the posterior density as

p(Xk Zkm 1Z k - 1) - P (miZk , mi-1k, Z k - l ) P (Xk mi-1Zk, Z k - 1)

P m(miZk, mi-1ZZk, Zk(3.52)
p3 (m zkl mi-1Z, Z -)
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Our assumptions about the measurement noise allow this to be reduced to

p (X ZklmlZ Zkk - ) = P(mlmZk XkZ)p (Xkl mi-ZkLZk-1) (3.53)
p (mi zk P)

The conditional measurement density p (m Zk IXk, p) is given by the measurement

model; it is Gaussian with mean h (Xk) and covariance R.4 The total measurement

density p (m, zk I p) is evaluated by linearizing the measurement function h around the

estimated state;

h (Xk) , h (-kjk-1,mi-1) + Hklkl,mll (Xk - Xklk-,mi-1) , (3.54)

where

Sh
H k-lm- l= O- h (3.55)

---1klkl,ml_
1

is the Jacobian of the measurement function with respect to the state vector. The

measurement PDF is thus approximated by a Gaussian with a mean h (Xklk-1,m-1)

and a covariance Hl k-l,ml-1Pklk-1l,mi-HI m Substituting these values into

Equation 3.53 provides

Hk-1 lHPkk-1H- + R 1/ 2

p (Xk miZk, Z ) =
P (Xk Zk2 - (27r) n /2 jPkjk-1 1/ 2 JR1 /2

Sexp - (k Tjk-1 k (m l Z k h(Xk))T R - 1 (m Zk - h (Xk))

- (m,Zk - h ())T (HPkk-1H + R) (m,Zk - h (i))] } (3.56)

where n is the order of the state vector and we have used i to mean iklk-1,m- and

Pkk-1 to mean Pkk-l,mi-1 for clarity. Completing the squares, Equation 3.56 is seen

4 This is often written as p, (mi zk - h (Xk)), meaning that the quantity mi zk -h (xk) is distributed

with the PDF of the measurement noise v.
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to be a Gaussian with mean

4k-l,m, = E [k I miZ, Zk - ] = ikl-1,m-1 +

kk1m1Hk l Hkk-1,ml-1Pklk-,m -1Hikk-,ml R) -1

(ml zk - h (i4k-1,mi-1))

and covariance

Pklk-l,mi = Pklk-l,mi-1 - Pklk-1,m-1HTkk-,ml-1

(Hk k-1,m+-1 PkIk-1,ml-1H1 + R)
Xklk-1,m 1 - 1

Hxklk-1,ml-1 Pklk-1,mi-1,

which is of course the Kalman update equation.

For relative measurements, both vehicle state xk and feature state (k are involved

in the measurement mlZk according to a measurement equation

mlZk = h (k,Gk) + Vk. (3.59)

Such relative updates proceed in a similar manner, with the exception that, due to

the separation of the vehicle and feature models, the measurement function is now

linearized as

h (xk,7k) h (ikk-1,mi-1, kjk-1,mi-1) + H4kk-1,ml (Xk -

H klk-l,m_
1 (k

k k-1,m-1) +

- klk-1,m-1 ) ,
(3.60)

where

Oh
. - (lm l1l

Ox Xkk-,ml-1

(3.57)

(3.58)

Hkk- ,m - 1Zklk-1l,ml-1 (3.61)
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as before and

Oh
O{ =6kk-1,ml-1 (3.62)

is the Jacobian of h with respect to the feature state estimate kIlk-1,mi-1. The inno-

vations,

V mZk - h (kk-1,mi-1,) klk-1,mi-1), (3.63)

are distributed identically to p (mlZk Xk, k, p), but with zero mean. The covariance

of the innovations for the case of a relative measurement is

S (skk-l,mi-1, kjk-l,mi-1, miZk) - E [VT] =

Hkk-l,ml-l xPklk-1,mi-1 HTkk-1,ml-
Xkjk-l,rnl-1

+ H lk-l,mnll Pkk-1,mil1 Hkk-+l,ml-lJ+ R, (3.64)

where xPkk-1,mi-1 is the vehicle state covariance and PkIk-1,mi-1 is the feature state

covariance.

The updated vehicle state is then approximated by a Gaussian with mean

klk-l,mi kk-l1,mi-1 + xP-k-1,mi-1 Hkk-1,ml-1

SS (k k-1,mi-1, kk-l,mi-1, miZk

(Zk - h (Xk k-1,mir-1,

H k k-,rn - 1

ik k-l,mi-1 )) (3.65)
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and covariance

xPkk-1,mi = xPklk-1,mi-1 - xPkjk-1,mi-1 Hkk-1,ml-1

* S ( 1kk-l,mi-1, kjk-l,mi-1, miZk

* Hkk-1,ml-1 xPkk-,mi-1- (3.66)

Similarly, the updated feature state is approximated by a Gaussian with mean

~Ik-1,mi = k-1,mi-1 + (Pkjk-1,mi-1 Hk _k-1,ml-1

" S (k k-1,mi-1, kjk-1,mi-1, miZk-

(mlZk - h (Xk k-1,mi-1 kjk-1,mi-1)) (3.67)

and covariance

(Pklk-l,mi = Pkk-1,mi-l - (Pklk-1,mi-1 H klk-l,ml-l

- S (iklk-1,mi-1, kk-1,mi-1, mlZk

H kjik-1,ml-1 Pklk-1,mi-1- (3.68)

3.4.2 The role of cross-model correlations

Cross-model correlations have been shown to be quite important in preventing diver-

gence in CML when global position information is needed [16]. However, the entire

story is not told by the global position information. By ignoring cross-model corre-

lations, the global map more easily slips relative to the vehicle and feature estimates.
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Map slip is the slip of relative position information, that is, the geometric re-
lationships among the vehicle and features being modeled, with respect to the
global frame. This map slip results in increased global positioning error with no
corresponding increase in the estimate of the relative positions of the vehicle and
features.

However, the relative position information, that is, the geometric relationships among

features and the vehicle, may be accurately modeled without the inclusion of the

cross-model correlations.5 This is because the over-estimation of the information

about global position which the cross-model correlations discount is in fact valid in-

formation about the relative position of the objects in question. The primary reason

for ignoring cross-model correlations for the present is complexity, both representa-

tional and computational. This has been an issue in multiple hypothesis tracking,

and the separation of models in integrated mapping and navigation only exacerbates

the problem of representing correlations. There is ongoing research [104] on methods

for conservatively estimating global estimates without maintaining cross-model co-

variance information. Techniques such as covariance intersection have the potential

to correct for ignored cross-model correlations with minimal computational overhead.

In spite of this, we feel that there are significant lessons to be learned from a

more in depth examination of the map representation problem and the relationship

between global and relative position estimation. This is particularly the case when

the vehicle position is very uncertain. In such situations, a good case can be made for

relative mapping as the appropriate representation strategy to improve navigation.

A full consideration of the map representation problem is beyond the scope of this

thesis, but will likely provide an interesting research subject for some time. In this

thesis, we are more directly concerned with the representation of multiple hypotheses

within a framework of uncertain navigation and mapping. Cross-model correlations

5Note that the inclusion of cross-model correlations does not, by itself, prevent map slip. Ignoring
these correlations, however, does allow map slip to occur more easily and can lead to increased global
estimation errors.
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are ignored in order to augment the computability of the integrated mapping and

navigation algorithm. We note, however, that a number of alternatives exist for re-

covering this information either in post-processing, as a post-decision-resolution step,

or integrally within the algorithm. The post-processing recovery of global position

estimates including cross-model correlation effects can be accomplished by using a

stochastic mapping algorithm, which ignores data association uncertainty, based on

the data association decisions made by the IMAN algorithm. This technique remains

sub-optimal because it neglects the possibility that the incorporation of cross-model

correlation effects could affect the decision-making process. A similar, but more

timely, implementation would recalculate estiamtes to include cross-model correlation

information after decisions have been resolved. Although corrected estimates would

not be available for the current time, cross-model correlations would be included

until the most recent unresolved decision. The impact of cross-model correlations

on decisions could be regained to some extent by resetting the unresolved portion

of the track trees when some error threshold is exceeded in comparing the most re-

cent estimates with and without the inclusion of cross-model correlations. Finally,

covariance intersection [104] may provide the capability of recovering conservative,

if sub-optimal, estimates of the vehicle and feature positions without retaining the

cross-model correlation information or re-processing the estimates.

3.5 The process of IMAN

Traditional recursive estimation techniques are split into two processes: projection

and updating. In integrated mapping and navigation, the updating step is expanded

to incorporate the discrete part of the hybrid estimation process, as shown in Figure 3-

4. This discrete estimation has two distinct phases. The first, which occurs before

the continuous updating step, is the enumeration of the discrete possibilities of how

estimated states may be updated based on the set of measurements taken. After con-
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Figure 3-4: Overview of the IMAN process. Recursive estimation is divided into two
steps: projection and updating. In integrated mapping and navigation, the update
step contains discrete, as well as continuous, components. There are two discrete
update activities: possibility enumeration and clean-up.

tinuous updating, an additional discrete step cleans up the resulting estimated states,

removing those discrete possibilities that are to be rejected. The current implemen-

tation of IMAN only considers discrete possibilities regarding updating; however, a

more general scheme would enable discrete estimation regarding projection, as well.

The process of IMAN is shown in greater detail in Figure 3-5. Discrete possibility

enumeration for updating begins by determining what measurement-to-track associ-

ations, or match hypotheses, to consider.

A match hypothesis is an hypothesis associating a measurement with a partic-
ular feature track.

Based on this information, the possibilities for feature tracks are fully enumerated.

The vehicle is involved with all of the measurements together; the vehicle track must
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therefore be enumerated based of global assignments rather than individual hypothe-

ses.

An assignment is a globally consistent set of hypotheses for a given update cycle.
Each assignment represents a plausible resolution for all update decisions for
that cycle.

The vehicle track is enumerated based on the set of possible assignments. After

the continuous updating of the feature and vehicle tracks, a discrete clean-up step,

pruning, is performed. Pruning removes discrete possibilities that are to be rejected.

Chapter 5 discusses pruning and other complexity management issues.

As noted in Section 3.1, the vehicle and each proposed feature are described by

tracks, which have a dual representation as trees and track steps. We denote the

vehicle track y, and sets of vehicle states X. The set of feature tracks is denoted

H = {i?}i, (3.69)

where i indexes over each feature track in. Sets of feature states for feature ii7 are

denoted i2. Indices to indicate time or conditioning factors are included as necessary.

For a cycle of the IMAN process at time k, we begin with the updated results from

the previous cycle and a set of new measurements to be incorporated:

* feature tracks Hk-llk-1 = irk-llk-1}i, with

- updated feature states for each track iuk- 1= {C1 k1I }

* vehicle track y, with

- updated vehicle states UXkllkl = {bXk-llk- b, and

* measurements taken at time k, Zk = {mZk}m.
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Measurements

Feature Vehicle
Estimates Estimates

Figure 3-5: The process of integrated mapping and navigation. The discrete updating

step is shown in detail. Projected state estimates and measurements are used to

determine measurement-to-track associations, or match hypotheses. Feature tracks

are fully enumerated, and then updated, based on these possible matches. The vehicle

must be enumerated based on global assignments, rather than individual hypotheses.

Pruning is used to remove rejected discrete possibilities, for example, possibilities

with very low likelihoods.
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Below, we consider the steps in the IMAN process cycle. For each step, we examine

what existing elements are used and what the product of the step is. The theoretical

basis for the process is described and novel aspects are highlighted. Furthermore, we

develop an example throughout this discussion to illustrate each step. In this example,

we initially assume a vehicle and a single feature track, each with two existing possible

states, as shown in Figure 3-6.

3.5.1 Projection

Track projection is the process of predicting a model state based on a previous esti-

mate and some behavioral model. In this thesis, we assume that projection proceeds

without any discrete uncertainty. Each proposed track, including the vehicle track,

has a single dynamic model which describes the behavior of its state estimates through

time. The set of possible updated states from the previous cycle are projected, using

this dynamic model, to a set of possible predicted states.

For the vehicle track y, the existing estimates Xk-llk-1 and the vehicle model

yO = VO (3.70)

are used to provide the set of projected estimates Xklk- 1 . The specifics of the vehicle

model used in this thesis are presented above in Section 3.2.2. Using an extended

Kalman filter implementation, the dynamic function

yf = f , (3.71)

its Jacobian with respect to a specific vehicle state estimate

xFk-1 k-1 = - (3.72)
x Xk-1k-1
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(a) Initial states. The vehicle, indicated by a triangle, is located at (0,0); there is a
single feature, indicated by a square, at (10,10). Vehicle track estimates are indicated by
a cross; their three-sigma highest density regions (HDRs) by a solid line. Each feature
track estimate is indicated by an x; its three-sigma HDR by a dashed line.

biXk-1k-1 b2 Xk-1jk-1

(b) Vehicle track tree

al(c) Featurek-k-1 atrack tr-k-

(c) Feature track tree

Figure 3-6: IMAN example initial states. A vehicle and a single feature are considered.
At the start of the cycle, each track contains two updated estimates from a previous
time cycle.
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and the noise process yw with covariance

yQ = VQ (3.73)

are used to provide a Gaussian approximation for the projected states. The projected

densities are characterized by means

kllk-1 = yf (bk-llk-1) , V b, (3.74)

where b indexes over the set of existing (updated) states:

Xklk-lk- = bXk-llk-1 b . (3.75)

The covariances of the estimates are

X kk-1 b Fk-llk-1 bXPk- k1 bX Fk-llk-1 + YQ, V b. (3.76)

Since there is no discrete uncertainty, there is a one-to-one mapping between the set

of previous states {bXk-llk-1 b and the set of projected states {lXklk-1 l}

A similar process is used to project each feature track. Each track i7 makes use

of the point-like feature model

(3.77),,¢ = Yt,

which, as developed in Section 3.2.1, has a dynamic function

(3.78),,f = .p' f

3.5 The process of IMAN 101



with a Jacobian

kl l k-1 1(3.79)
S=lk-1k-llk-1

and a noise process ',W with covariance

Q = Q. (3.80)

The projected densities are assumed to be Gaussian with means

klk-1 = f -~1k- , V a, i, (3.81)

and covariances

=kk-1 a~ k-1k- a~n k-1- a~Fkl |k-1 "T iQ, Va, i. (3.82)

Again, projection is a one-to-one mapping between the previous updates a{ 1 ik-1 }a,i

and the projected states ilk-1l

In our example, each existing state yields one projected state. In this case, the

vehicle is assumed to be (nominally) stationary, so the only effect of projection is to

increase the uncertainty for each of the states (due to process noise). The projected

state estimates and the vehicle and feature track trees after the projection step are

shown in Figure 3-7.

3.5.2 Measurement-to-track association

Measurement-to-track association is the process of determining possible match hy-

potheses, or data associations possibly linking a measurement to a particular feature

track. This is the first step in the discrete estimation process determining the naviga-

tional events surrounding the incorporation of measurements. There are two stages
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(a) Projected states. The vehicle, indicated by a triangle, is located at (0,0); there is a
single feature, indicated by a square, at (10,10). Vehicle track estimates are indicated by
a cross; their three-sigma HDRs by a solid line. Each feature track estimate is indicated
by an ex; its three-sigma HDR by a dashed line.

blXk-ilk-1

lXklk-1

b2Xk-llk-1

12Xklk-1

ai~k-1lk-i

jiiklk-1

a2' lk-k-1

j2 klk-1

(b) Vehicle track tree (c) Feature track tree

Figure 3-7: IMAN example projected states. Model uncertainty, represented as pro-
cess noise, results in increased uncertainty, that is, larger HDRs, for each estimate
after projection. The projection process is a one-to-one mapping, since no discrete
uncertainty is considered regarding vehicle or feature dynamics.
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to this step. First, measurements are gated using vehicle and feature estimates so

that unlikely matches are not considered (essentially, the prior probability of such

unlikely matches is set to zero). Second, a probability needs to be assigned to any

matches which gate.

We must first consider what match hypotheses to entertain. Each possible com-

bination of vehicle track y, feature track iq, and measurement mzk is examined. The

vehicle track y has a set of possible projected states

XkJk-1= { Xklk-1} 1 . (3.83)

Each feature i has a set of possible projected states

izk-kl -i {Jdk-1 . (3.84)

The goal is to produce the set of match, or association, hypotheses AO to be consid-

ered.

Each state has a dependency set associated with it. Only compatible states can

be compared. Recall that the dependency set compatibility function CD can be

used to test for compatibility. 6 A vehicle state lxkk-1 and a feature state iaklk-1 are

compatible if

CD (D, Xkk-1,, D k )  = true. (3.85)

The measurement model

mltk = W, (3.86)

is used to characterize the expected measurement kl1j,l for each compatible pair of

6See Section 3.3.2.
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vehicle and feature states, (Xklk-1, kikk 1 .1) The sonar measurement model W p used

in this thesis is described in Section 3.2.3, and provides an expected measurement

function mhk, its Jacobians with respect to given vehicle and feature state estimates,

,xHk and jVHk, and the measurement noise process mVk with covariance

mRk = WsR (3.87)

This measurement model provides a Gaussian expected measurement estimate with

mean

Zkj,l = mhk (IXklk-71, jilk-1) , (3.88)

and covariance

mSklj,l = 1zHkm iPklk-1i zHmT + Hkm k iHkmT + mRk. (3.89)

The measurement innovation is defined as

mVklj,l = mZk - ZkLj,1, (3.90)

and also has covariance mSklj,l. The Mahalanobis distance between the actual and

estimated measurements is the square of the innovation normalized by its covariance,

vTS-1v. This is used, as is common [5, 17]7 , to define a measurement gate,

T m-1
m11kjj,1 m klj,l mVklj,l iy. (3.91)

7A number of alternative strategies have been developed which attempt to more effectively reduce
unlikely matches [35, 22, 64] or adapt gating the threshold based on additional information [40].
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Throughout this thesis, a measurement gate constant of

wsy = 4 (3.92)

is used. This means that a measurement that actually came from the specified vehicle

and feature states according to the sonar measurement model would have an 87%

probability of falling within the gate.

If a measurement gates with any compatible combination of vehicle and feature

states, a match hypothesis is formed for the feature track and the measurement. That

is, we entertain the possibility that the measurement comes from that feature. Note

that the Mahalanobis distance of the innovation is a chi-square distributed random

variable with degrees of freedom equal to the order of the innovation vector. The

chi-square cumulative density function Px2, which can be computed using standard

algorithms [85], can be used to evaluate the probability that the innovation is no

larger than the realized value v. We define the probability of a match PA as the

maximum probability over all pairs of compatible vehicle and feature states that gate

with the measurement,

PA (ir, mZk)= max Px2 ( T ,j mS - 1,l mVkIj,)

V j,1 CD (Dxkkl, D kl- 1) = true and mVkij,l mSk-1 mklj,l vs y . (3.93)

In our example, we assume that all pairs of vehicle and feature states are com-

patible. Since there are two state estimates for each track, that is, the vehicle and

the feature, there will be four pairs of states to consider when checking for a match

hypothesis between a given measurement and the feature track. Two measurements

are received, as shown in Figure 3-8. These measurements are compared with the

expected measurement densities for the four pairs of vehicle and feature states. Note

that this comparison takes place in measurement space, but is equivalent to innova-
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tion space except for a translation. Measurements must fall within at least one of

these expected measurement gates for a match hypothesis to be considered. Both

measurements gate with at least one pair of states, so two match hypotheses are

formed.

3.5.3 Hypothesis formation

Feature track enumeration is the enumeration of decidedly possible hypotheses re-

garding the disposition of the proposed feature tracks being estimated. At each time

cycle, hypotheses are formed about the disposition of each feature track. Each pro-

posed track i7l forms a dispositional decision 6k to consider possibilities about what

happened to that feature during the time cycle. The goal is to determine all of the

hypotheses that should be considered for this dispositional decision

E8 = {uok7 }u , (3.94)

where u indexes over all of the hypotheses to be considered in decision 0S6k. The first

step in enumerating the feature tracks is measurement-to-track association, described

above. Once the set of match hypotheses has been found, additional hypotheses about

the disposition of features and the origin of measurements can be postulated. The

following types of hypotheses can be made regarding feature disposition:

* match A0-the feature has given rise to a (single) specific measurement and

* miss MV-the feature has not given rise to any measurement.

A feature track may have any number of match hypotheses, but must have zero or

one miss hypotheses.

Decisions are also formed about the origin of measurements. Each measurement

mzk forms an origin decision z%6k to consider hypotheses regarding its origin. The
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(a) Measurements and expected measurement gates. Each of the four compatible pairs

of vehicle and feature states generates an expected measurement, indicated by a dia-

mond, with a gating region shown by a dashed-dotted line. Two measurements, indi-

cated by stars, are compared with these gating regions. Positive gates, or associations,

are indicated by solid lines.
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(b) A table of associations, indicating which
measurements gate with each pair of vehicle
and feature states.

Figure 3-8: IMAN example gating. Two measurements are received and compared

with state estimates in measurement space. The first measurement gates with all four

pairs of vehicle and feature states, while the second only gates with two of the pairs.

Match hypotheses are formed associating both measurements with the feature.
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goal is to enumerate the full set of hypotheses to be considered for each origin decision

66k Uk u , (3.95)

where u indexes over all of the hypotheses to be considered for decision mz
6 k. The

following types of hypotheses can be made regarding measurement origin:

* match A -the measurement has arisen from a (single) specific feature that is

currently being tracked,

* new KLt-the measurement has arisen from a (single) specific feature of type L

that is not currently known, and

* spurious St-the measurement does not reflect any useful relative measurement

of a feature (known or unknown).

A measurement may have any number of match or new hypotheses, but may only

have zero or one spurious hypotheses.

The specification of what hypotheses to form in a given situation is part of the

prior model definition for the tracks and measurements. Match hypotheses are formed

based on a gating procedure, using continuous models to eliminate unlikely discrete

possibilities. In the most thorough enumeration, each feature track would also form

a miss hypothesis and each measurement would also form a spurious hypothesis and

new hypotheses for each possible feature class. Often, this extensive formation of

hypotheses is unnecessary. In Section 5.3, a number of hypothesis formation strate-

gies are considered. Reducing the hypotheses formed based on prior models is a

fundamental technique for complexity management.

In our example, we have a single feature r7 and two measurements, mi zk and m 2 Zk.

The feature track has a dispositional decision , 6 k. The measurements have origin

decisions mlzSk and m 2 z 6 k, respectively. During gating, we determined that a match

hypotheses should be formed associating both of these measurements with the feature.
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pP2k = A19 (q, ml2 Zk)

p3
0 k = m9 (77, k)

(a) Feature r disposition

mz6k {
p l k = A d (

t
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l Zk) m2Z k  P2 k = Ad 7, m2Zk))

P40k = ml Zk) P5 Ok S (m3k)

(b) Measurement m, zk origin (c) Measurement 2 zk origin

Figure 3-9: IMAN example hypothesis formation. Match hypotheses are considered
associating both measurements with the feature track. The feature track also enter-
tains a miss hypothesis. Each measurement also forms a spurious hypothesis. The
fully-enumerated decisions for the feature disposition and the measurement origins
are shown.

We also consider a miss hypothesis for the feature track and spurious hypotheses for

each feature. Figure 3-9 shows the enumerated decisions after hypothesis generation.

3.5.4 Feature track updating

Once the discrete possibilities have been enumerated, updated feature track estimates

based on these possibilities must be produced. During the measurement-to-track asso-

ciation step, we compare each possible projected vehicle state IXkk-1 and each possible

projected feature state 3 klk-1, attempting to gate each measurement mzk with these

pairs of states. If the measurement gates with this pair of vehicle and feature states,

a match hypothesis is formed. An updated state estimate is also produced based on

these projected vehicle and feature states and the measurement. Although there will

only be a single match hypothesis for a given feature track and measurement, there

may be multiple updated states based on that hypothesis, depending on the sets of

predicted vehicle and feature states. The differences between these updated feature

states is in dependency on previous decisions. As noted above, once all decisions are
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resolved, a single track estimate will remain.

Each match hypothesis formed associates the vehicle, a feature ir, and a measure-

ment mzk. Recall that pairs of vehicle and feature states (tXklk-l, jlk-1 gate with

the measurement mZk if and only if (1) the states are compatible,

CD (Dxklk-1, D,kk-1) = true, (3.96)

and (2) the Mahalanobis distance between the actual and expected measurements

falls below a gating threshold specified by the measurement model mzk, 1

-1T' (3.97)
muklj,l m kl,l mVklj,l m ZkP

For each pair of state where this is the case, we form an updated feature state " lk'

using an extended Kalman filter and the measurement model mzk p. The Kalman

gain is given by

mWklj,l = 3 P 1 H klT mS, 1 , (3.98)

leading to an updated state that is assumed to be Gaussian and has mean

nklk = Aklk-1 ± mWklj,l mVklj,l and covariance (3.99)

P0 kj1M-1 WT (3.100)

Skk P 3IPk-1 - mWklj,l mSl . (3.100)lj,l

Note that for track updating there is not, in general, a one-to-one correspondence

between possible projected state and possible updated state.

The dependency set of the updated feature state is the union of the dependency

sets of the vehicle and feature states used to produce it, plus dependencies on the

8See Section 3.4.1.
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match hypothesis associating the feature track and the measurement. We denote the

match hypothesis associating feature i77 and measurement mZk as

(3.101)pl k = ' (i7, mZk) .

The dependency e,d requires the resolution of the feature track dispositional decision

t,Sk to this match hypothesis:

eld ,r 6 k t+ pok. (3.102)

Dependency e2d requires the resolution of the measurement origin decision mz
6 k with

this match hypothesis:

e2d -mzk p plOk • (3.103)

Then the dependency sets for the updated feature states are

DnI k = D + D Xk- + eld - e2 d, V n, i.naj ~~L11klk- -1 (3.104)

If a miss hypothesis is generated, a single updated feature state is produced for

each projected state in the track, jiklk-1, where j indexes over all of the projected

track states. In this case the feature state estimate and covariance are unchanged:

nJklk - jklk-1, (3.105)

and

(3.106)kk - k k-l1
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probability of a single possibility

probability of all possibilities

probability of all possibilities

the full track enumeration
probability of a possibility based on

the full track enumeration

P (nkIk Ilkd)

P (nk 1k 7kd)
n

P (nkik)

Figure 3-10: Likelihood calculation for updated feature states. First, the probabil-
ity of individual states is estimated based on the events they depend on and the
likelihoods of any states used to produce them. The sum of these probabilities is
calculated, determining the total probability for the possibilities being considered.
This total probability is used to normalize the updated state likelihoods, produc-
ing the probabilities of the updated states conditioned on the outcome of the track
enumeration process.

We denote the miss hypothesis for track it at time k as

p2
0 k = 9 (i~, k). (3.107)

The dependency e3d requires the resolution of the feature track dispositional decision

O6 k to this miss hypothesis:

(3.108)e3 d = i76k - p 2 0k.

The dependency set for an updated state based on a miss hypothesis is the union of the

dependency set of the projected state and the dependency of the feature dispositional

decision on the miss hypothesis,

D ,l = D l-l + e3 d. (3.109)

The likelihoods of each of the possible updated states must now be found. This
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occurs in two steps, as shown in Figure 3-10. First, the probability of the state based

only on the navigational events that give rise to it is estimated. Second, as a result of

the enumeration of events, we assert that these states form an exhaustive, mutually

exclusive set of feature states. That is, possibilities that are not enumerated are

considered impossible. This allows the normalization of the updated states based

on the total probability of the enumerated states. The probability of each updated

feature state that is based on a match hypothesis conditioned on the outcome of the

feature dispositional decision ,S6 k is the product of the probabilities of the projected

vehicle and feature states used to form the updated state and the probability of the

match hypothesis. We denote the match hypothesis

pi0 k = A (ir, mZk) . (3.110)

The likelihood of the updated state based only on itself can be written

p (njkilk ( Ik p ) k p (jdik-1) (lXklk-l) (pi 6
k), (3.111)

where p (J|k-1) and p (zklk-1) are the likelihoods of the projected feature and

vehicle states, respectively, used to produce the updated state and p (p 1 Ok) is the

probability of match for the gating process,

p((27)N(mzk)/2 ImSkji 1/2 exp - mlklj,l mSkj, l mVklj,l

where N (mZk) is the order of the measurement mzk.

The probability of each updated feature state based on a miss hypothesis is given

by the product of the projected feature state and the probability of miss for the

measurement model,

(3.113)P (n#|k kd k i p 2 Ok) P (kk-) (1 - mzk D)
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where p2
0k is the miss hypothesis,

p2 0k = V (it, k) , (3.114)

and mzk/ PD is the probability of detection for feature type t specified by the measure-

ment model mzkp'

The set of possible updated states for the track,

iEklk = {nlflk}n ' (3.115)

where n indexes over all of the updates that have been formed, is considered a full

enumeration of the possible events in updating the track. That is, they form an

exhaustive, mutually-exclusive set of events. The likelihood of each updated state,

conditioned on the total enumeration of the feature track, is the normalized proba-

bility,

Pp (n(nk) kd) (3.116)P (n [lk) EP (92kilkl ??kd)
n

In our example, we begin feature updating with two possible projected feature

states, uGik-1 and j2 kk-1. There are two measurements, miZk and m2,k, and two

possible projected vehicle states, 11ZXkk-l and IZXlk-1. Three hypotheses are formed

to enumerate the feature dispositional decision ,6k. Both measurements gate with at

least one pair of projected vehicle and feature states, leading to match hypotheses

piOk A ( , miZk) and (3.117)

p2 Ok = " (rl, m2 Zk).
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A miss hypothesis for the feature track is also formed:

p3 k = z9 (T7, k) . (3.119)

Based on these hypotheses and the results of gating9 , eight updated feature states are

produced, as shown in Figure 3-11. These are based on the following combinations of

projected feature state, hypothesis, and projected vehicle state and measurement, if

any:

1. niklk: jiklk, pi8k, llXklk, and m Zk;

2. n 2 klIk: jiklk, pilk, 12Xklk, and miZk;

3. n 3 kk: jlklk, p2
0

k, 11Xkk, and m 2 Zk;

4. n4 klIk: jiklk and p3
0 k;

5. nsklk: j 2 kIk, piok, 11Xklk, and mizk;

6. n6 klIk: j2klk, piok, 12Xklk, and miZk;

7. 7klk: j2 klk, p2Ok, 11Xklk, and m 2zk; and

8. ns8kIk: j 2 klk and p3
0 k

3.5.5 Assignment formation

Feature track updating is relatively simple because of the assumption that each track

is involved in a single dispositional decision, that is, each feature gives rise to at most

one measurement. Feature track enumeration is thus independent for each track.

This is not the case when enumerating the vehicle track. The vehicle is invested in all

of the dispositional decisions as it takes part in every measurement event. Because

9 See Section 3.5.2.

116 Integrated Mapping and Navigation



3.5 The process of IMAN

bl Xk-11k - 1

11 Xkk-1

b2Xk-llk-1

12XkIk-1

(a) Projected vehicle track tree

{ Ok = ' (T, mi Zk)
rE;k P2

0 k = A (m, m2 k)

pik -- M 9(7 )

(b) Feature dispositional hypotheses

i ikjk-1

niklklpl,11 n2Gkk Ip1,12 n3klk IP2,11 n4Gk p3

j 2Gk k-1

n5 kk pl,11 n6 k k p1,12 n7k Ip2, 11 nskk IP3

(c) Updated feature track tree

Figure 3-11: IMAN example feature updating. The projected vehicle track (a) and
possible dispositional hypotheses for the feature track (b) are used to form updated
feature states (c). The indices of the hypothesis and projected feature state, if any,
that are used in forming each updated feature state are indicated after each updated
state. Updates based on match hypotheses are shown with dashed lines. Updates
based on miss hypotheses are shown with dotted lines.
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of this, hypotheses regarding individual decisions cannot be treated independently.

Instead, global assignments which resolve the set of all dispositional decisions for the

current time cycle are needed. An assignment is a set of hypotheses which consistently

resolves all decisions in a given set.

For time k, the set of all dispositional and origin decisions is denoted

Ak = ok}o , (3.120)

where o indexes over all of the decisions. Each decision o 6 k has a set of hypotheses

that possibly resolve it,

oOk = {uk}, (3.121)

where u indexes over all of the hypotheses that potentially resolve decision oSk. Indi-

vidual hypotheses can resolve more than one decision. For example, a match hypoth-

esis resolves both a feature dispositional decision and a measurement origin decision.

The set of all hypotheses at time k is the union of these decision hypothesis sets for

all decisions at time k:

Ok = {pOk}p = oOk. (3.122)

The decision hypothesis indexing function U can be used to recover and index the

hypotheses regarding a particular decision,

oOk = U (oSk, Ok) . (3.123)

The result of assignment formation is a set of assignments that represent all of
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the global possibilities being considered for a given time cycle,

k rWk}r . (3.124)

Each assignment consistently resolves all of the decisions in Ak. An assignment rWk

can be represented as a set of hypotheses:

(3.125)rWk - = v kv ,

where v indexes over all of the hypotheses used by assignment rWk. The assignment

hypothesis indexing function V can recover and index the hypotheses used by an

assignment from the set of all hypotheses,

k = V (rWk) Ok) . (3.126)

Assignments can also be represented as dependency sets. An assignment rWk

specifies the resolution of every decision for time k. These dependencies are denoted

as

(3.127)rWk - DrWk = {o 6 k F-+ Ao ,

where every decision o resolves to some hypothesis in Or. Every hypothesis in Or

resolves some decision in Ak. There must be only one hypothesis for each decision

in the set of hypotheses used by an assignment, that is, the intersection of a decision

hypothesis set o0 k and an assignment hypothesis set OG must be a single hypothesis

for all decisions in Ak and all assignments in Qk. The Kronecker delta 6,V is defined
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as

, = U = v7 (3.128)
0 otherwise.

Using this definition, we can specify necessary and sufficient conditions for assignment

validity. If an assignment rWk uses hypotheses {V(O},, and each decision ok can be

resolved by the hypotheses {u60u, then we must have

U Vu,v = 1 V u,v,o. (3.129)

IMAN uses a simple brute force method to enumerate all possible assignments

given a set of decisions and their possible resolving hypotheses. Other methods have

been developed for the efficient generation of assignments [2, 70, 106, 105, 52, 13, 78].

In particular, Murty's algorithm [78] has been implemented to aid in assignment

formation in multiple hypothesis tracking [70, 25, 63]. This algorithm is capable of

efficiently generating a partial, ranked enumeration of assignments based on some

likelihood estimation strategy. However, care should be taken, since any likelihood

used for such a method is necessarily based on the probabilities of individual as-

signments, rather than the probabilities of assignments conditioned on the results of

vehicle track enumeration.

In our example, there are three decisions for the current time cycle:

* ~k: the feature dispositional decision,

* m 1 z 6k: the origin decision for measurement mlZk, and

* m2z 6 k: the origin decision for measurement m 2zk.

Figure 3-12 shows the enumeration of these decisions and the three assignments that

are formed based on these decisions and the hypotheses that possibly resolve them.
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,65k = p 2 k
)J30

pI Ok

p20kek = p 3
0 kJJO4

A (n, mi Zk)

Ad (q m 2 Zk)

"0 (q, k)
S19 (miZk)

S 1 (m 2Z) )

(a) Hypotheses

(b) Feature decision

mlzOk 
8p4

0 kJ,

(c) Measurement m1 decision

m 2 z
0 k p 2 k 

(d ea k e p5
0 k

(d) Measurement m 2 decision

ri Wk

2k = r
2 Wk

r32 k

{piOk,pOk} s
{p2 Ok, p4 Ok}

{p3 k p 4Ok, P75 Ok }

(e) Assignments

Figure 3-12: IMAN example assignment formation. Five hypotheses (a) are used in
enumerating the feature dispositional decision (b) and the two measurement origin
decisions, (c) and (d). Three assignments (e) are formed based on these hypotheses
and decisions.
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3.5.6 Vehicle track enumeration

Vehicle track enumeration is the process of extending the vehicle track tree from

the set of projected vehicle states 'Xklk_1 to a set of updated vehicle states UXkl k

based on the set of assignments Qk, the measurements taken Zk, and the projected

feature states Ek. Specifying the updated states involves both forming the particular

estimates and evaluating the likelihood of each updated state. The enumeration of the

vehicle track depends on the global assignments rather than individual hypotheses.

Some hypotheses, such as a miss hypothesis, do not alter the value of a vehicle

estimate, but may affect its likelihood. The only type of hypothesis that also affects

the value of the vehicle estimate is a match hypothesis. Because of this, vehicle track

enumeration and updating are carried out in three parts, as shown in Figure 3-13.

First, assignment root states IXkjk-1, are formed. These root states incorporate

information about the assignments that have been formed Ok. Second, the match

hypotheses in each assignment are used to enumerate possibilities for updating. Each

assignment root state functions as the root of a sub-tree. The goal is to enumerate

all possible updates of a vehicle estimate, a feature estimate, and a measurement.

There is a sub-tree level for each match hypothesis in the assignment during this

process. Third, once the specific updating possibilities have been enumerated, the

measurements are incorporated through continuous updating. Finally, the likelihoods

of the updated vehicle states are calculated.

Assignment root state formation

To aid in enumerating the vehicle track tree, assignment root states are used as an

intermediary step.

An assignment root state incorporates a specific assignment into the vehi-
cle track enumeration process. Vehicle track trees are updated on the basis of
assignment root states.
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projected states

assignment root
states

'Xklk-1

1
TXkIk-1,Qk

partially updated
states

updated states

incorporate
assignments

enumerate match
hypotheses

update estimates

Figure 3-13: Vehicle track enumeration and updating. There are three steps in enu-
merating and updating the vehicle track. First, assignment information is incorpo-
rated to produce assignment root states. Second, match hypothesis update possibili-
ties are enumerated, producing partially updated states. Third, continuous updating
finishes the incorporation of measurement information to form the updated vehicle
states.
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We start with the the set of possible projected vehicle states

PXklk-1 - {1XkIk-11}, (3.130)

where 1 indexes over all of the projected states. There is a set of possible assignments

for the current time cycle,

=k = rWkr . (3.131)

For each combination of projected vehicle state lXklk-1 and assignment rWk, an as-

signment root state sXklk-1,,r is formed. The value of the estimate is unchanged:

skJk-1,l,r = 1-kk-1,

Py - Py
sx klk-1,1,r - ix klk-l"

The dependency set of the assignment root state sXklk-1,1,r is the union of the depen-

dency set of the projected vehicle state ZXklk-1 and the dependency set representation

of the assignment rWk:

DXk Ik-1,1,, = Dkklk-1 + D r., (3.134)

The likelihoods of the assignment vehicle states are initially set to the prior like-

lihoods of the assignments that are used to form them, that is,

P (sXklk-1,1,r) = P (rWk) .

and

(3.132)

(3.133)
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The a priori likelihood of an assignment is based on the likelihoods of the hypothesis

types that it contains. An assignment rWk is representable as a set of hypotheses

TOk = {,v0},. (3.136)

The a priori probability for an hypothesis O' depends on what type of hypothesis it

is. There are four possible types of hypothesis:

* A0: a match hypothesis,

* M?: a miss hypothesis,

* sV: a spurious measurement hypotheses, and

* -A10: a new feature hypothesis for feature type t.

The specifics of hypothesis formation are part of the prior model definitions for the

feature dynamic models and the measurement models. IMAN typically uses a delayed

track initiation strategy which precludes the use of new feature hypotheses during

track enumeration. A feature of type t has a dynamic model ,. A measurement of

type r has a measurement model ,p. Each dynamic model , specifies a probability

of detection Ph, which is the probability that a known feature within the sensor

footprint gives rise to a measurement during any given time cycle. The probability of

observing a new feature PK is also specified when track initiation is considered during

vehicle track enumeration. Each measurement model ,p/ specifies a probability of false

alarm PP, which is the probability that a given return does not arise from a known

feature. An alternative prior model representation uses the probability of false alarm

to denote the probability that a given return does not correspond to any feature.
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bl Xk-llk-1

slXk k
P

- 1
pWk k - 1

2 Wk s 3 Xkj k -
1 pa3 Wk

b2Xk-llk-1

-2 Xk k-1

S4 Xklk-1 1P1Wk s5Xklk -1 IP2 Wk 86kk IIP3LWk

Figure 3-14: IMAN example assignment root state formation. The two projected
vehicle states and three possible assignments lead to six possible assignment root
states. The assignment upon which each assignment root state is conditioned is
indicated.

Based on these specified quantities, the a priori hypothesis likelihood is given by

P (1 - P;)

P (pek) =( - P

PFK

P

pek = A (iT, mz;)

pOk = d (i, k)

pk= SV (mzK)

, = -M.

The a priori probability of an assignment rWk is the product of the probabilities of

its hypotheses r8k,

p (rWk) = k p(O), (3.138)

where v indexes over all of the hypotheses used in assignment rWk.

In our example, there are two projected vehicle states and three possible assign-

ments, leading to six assignment root states, as shown in Figure 3-14.

Sub-tree growth

Once assignment root states have been formed, updating possibilities due to any

match hypotheses are enumerated. The assignment root state sXklk-1 forms the root

(3.137)
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of a sub-tree. The assignment root state is based on an assignment ,wk. The enumer-

ation for each match hypothesis is independent and propagates the sub-tree through

one level. Match hypothesis enumeration starts with a partially updated state at the

previous sub-tree level t, k-1 where q is the current sub-tree level, and a match hy-

pothesis , = V0 to be enumerated on sub-tree level q. The goal is a set of partially

updated states,

q Xklk-1,t- t2 klk-,ti t 2 3.139)

The set of all possible state for this sub-tree level is denoted qXklk-1. The match

hypothesis O' associated feature track i and measurement mZk,

v0 = A (i0, mZk) (3.140)

The feature track it has a set of possible projected states

iZkk-1 = {AkIk-1}j. (3.141)

A partially updated state t2Xkk-l,tl is formed for each projected feature state j klk-1 if

and only if (1) the previous partially updated vehicle state tx qikl-1 and the projected

feature state are compatible,

CD (D tq-1 = true, (3.142)
tD Dtxk-1 3Cklk-1/

and (2) the measurement mZk successfully gates with this combination of states,

-1 (3.143)mkl j,ti mSk,ti mVkjj,t , (3.143)

where p is the measurement model for measurement mzk. The partially updated

state t2Xklkl,t, is formed using an extended Kalman filter. This continuous updating

127



step is discussed below in Section 3.5.7. The likelihood of the state t2 klk-lt is the

product of the likelihood of the parent statet, ZTklq-  and the match probability for the

update, as defined in Section 3.5.4. If there are no possible projected feature states

which meet these criteria, the entire sub-tree, including the assignment root state, is

discarded.

In our example, there are six assignment root states. Four of these assignment

root states depend on one match hypothesis; the other two do not depend on any

match hypotheses. Therefore, there will be a single level of sub-tree growth, as shown

in Figure 3-15. One of the assignment root states s 5Xklk-1 has no gating feature state

to update with, so that sub-tree is removed.

Updated vehicle state likelihood

The final step in the discrete enumeration of vehicle updated states is the calculation

of likelihoods for the updated states. Each assignment root state sXkk- 1 initially has

a likelihood equal to the a priori probability of the assignment rWk on which it is

based,

p (szkk-1)= P (rWk). (3.144)

During sub-tree growth, partially updated state likelihoods are multiplied by the

gating probabilities as matches are considered. The total set of vehicle updated

states is denoted

XkJk = {wXklk} , (3.145)

where w indexes over all of the vehicle track tree leaves. The set of leaves which are

compatible with an assignment rWk is denoted

Xk k,rwk = {/3Xklk}p (
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blXk-llk-1 b2 Xk-ll k - 1

11Xklk-1 12Xklk-1

(a) Vehicle track tree

al Ik- k-

jikIk-1

a2 ~k- 1

j 2 klk-1

(b) Feature track tree

IlXk k-1

slXk k-1

q1 q1 q1
tl k k-1 t2 klk-1 t3 kI k

(c) Sub-tree growt]

S4 Xk k-1 j

t6 kk-1. t7 kk-1 i
31 32

s2 Xklk-1

q1
-1 j t4 kk-1 j.2

h from llXklk-1

s5Xk-1 s 6 Xklk-1

q1
t klk-1

(d) Sub-tree growth from 12 Xklk-1

Figure 3-15: IMAN example sub-tree growth. The projected vehicle track tree (a)
and the projected feature track tree (b) are shown for convenience. Sub-tree growth
for the vehicle track tree is shown in (c) and (d). Feature states used in vehicle state
updating are indicated. Vehicle states that do not depend on any match hypotheses
are unchanged; their propagation is indicated by a dotted line. The assignment root
state s5 Xklk-1 is not compatible with any of the projected feature states, and so its
sub-tree is removed.

s3 Xklk-1

t kk-1
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The total probability for this hypothesis is then the sum of the likelihoods of these

leaf states,

p (rWklk) = EP (p2klk) , (3.147)

where the subscript kjk on the assignment rwklk indicates that this probability is

conditioned on the results of vehicle track enumeration. Each assignment root state

likelihood is then set to the product of the likelihood of its parent state and the

normalized likelihood of the assignment conditioned on track enumeration,

P (rWklk)
P (sXkk-1,,r) - p (lXklk-1) (3.148)

ZP(rWklk)
r

The remainder of the sub-tree is renormalized to retain the likelihood ratios among

child states while ensuring that the sum of the likelihoods of the child states are equal

to the likelihood of the parent state.

3.5.7 Vehicle track updating

During sub-tree growth, continuous updating is needed to incorporate measurement

updates for the vehicle states. In each case, a partial updated vehicle state Z+ l q-1 iS

to be updated using a projected feature state and a measurement mZk, basedj klk-1 and a mesurement mz, based

on the match hypothesis

"Or = A9 (ir, mk) . (3.149)

Bayesian updating using a Kalman filter is used to produce a vehicle state t k-1 as

discussed in Section 3.4.1. The Kalman gain is

mW k lj,t,q-1 tq-klk-1 t-1 k-1 mSktq-
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This leads to a partially updated vehicle state txk-1 which is assumed to be Gaussian

with mean

q q-1 (3.151)
tXkk-l tklk-1 + mWkk-1,j,t,q-1 mklk-,j,t,q-1,(3151)

and covariance

tqy 1pY _1 T (3.152)

lklk-1 =tz xqPk- 1 - mWkk-~,j,t,q-l mSklj,t,q- m klk-1,j,t,q-1. (3.152)

Figure 3-16 shows the possible updated states in our example. There are eight

possible updated vehicle states and eight possible updated feature states.

3.6 Summary

In this chapter, we have developed the integrated mapping and navigation algorithm.

Some general features of concurrent mapping and localization and hybrid estimation

problems in general were identified and their impact on the structure of the integrated

mapping and navigation solution was discussed. The importance of prior knowledge

representation was highlighted and the models developed for use in this thesis were de-

veloped, including dynamic models for survey-class AUVs and point-like features and

measurement models for dead reckoning measurements and sonar measurements of

point-like features. Various issues pertaining to the continuous and discrete portions

of the estimation problem were detailed. Finally, the integrated mapping and naviga-

tion algorithm was presented. A Bayesian interpretation of projection and updating

was provided, anchoring the continuous portion of IMAN in the existing techniques

of extended Kalman filtering and target tracking. The discrete estimation problem

was highlighted, including measurement-to-track association, assignment formation,

and the enumeration of feature and vehicle tracks. The evaluation of state likelihoods

based on this discrete estimation process was also developed. In the next chapter,
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5 10
East (m)

Figure 3-16: IMAN example updated states. Based on the vehicle and feature track
enumerations, there are eight possible updated vehicle states and eight possible up-
dated feature states.
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3.6 Summary 133

we will examine some issues regarding the implementation of the integrated mapping

and navigation algorithm.
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Chapter 4

Implementing Integrated Mapping

and Navigation

In this chapter, we consider the implementation of the integrated mapping and nav-

igation algorithm. We begin by outlining a philosophy of implementation which

stresses modularity based on an understanding of the problem structure and exten-

sibility in order to enable the ready incorporation of algorithmic alternatives. An

object-oriented analysis of the IMAN problem is described, providing a road map

for a C++ implementation of the algorithm.' The implementation of prior mod-

els is considered, along with specific packages for modeling point-like features and

survey-class AUVs. Implementation issues and structure for handling decision-based

reasoning are detailed next. Finally state management requirements are outlined and

the implementation of the IMAN interface is described.

The implementation of IMAN was accomplished under a particular programming

philosophy. First and foremost, the structure of the implementation should mirror

to the greatest possible extent the theoretical development. In this way, a calculus

of the problem domain can be developed synergistically through theoretical develop-

1See Tuohy [102] for a consideration of the general requirements and implementation issues in-
volved in AUV simulation.
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Table 4.1: Responsibility of software packages developed for IMAN.

ment and an analysis of implementation structure. Second, the overall complexity of

the problem requires a modular approach to implementation. The interdependency of

structural elements needs to be minimized to ensure a developmentally robust imple-

mentation. Finally, emphasis is placed on the extensibility of the implementation, and

considerable thought concerning possible future development has informed the anal-

ysis of the problem. This philosophy of design is based, in part, on a pattern-based

approach to large-scale software systems [59, 38, 79].

4.1 Analysis of IMAN structure

The main responsibilities of the implementation are divided among three software

packages. Prior knowledge representation, including implementation of dynamic mod-

els and measurement models, is handled in the cmlpr package. Reasoning about

hypotheses, decisions, and assignments is handled in the cmlhp package. The cmist

package provides management of states and tree structures as well as the external in-

terface for the algorithm. Two additional packages provide specific model definitions:

cmlv for survey-class AUVs and cmlpt for point-like features. The responsibilities

of these packages is summarized in Table 4.1 and the hierarchical nature of their

dependencies is illustrated in Figure 4-1.

Package Responsibility
cmlhp Hypothesis formation and decision-based reasoning
cmlpr Prior knowledge representation
cmlpt Point-like feature modeling
cmlst State and tree management and external interface
cmlv Survey-class AUV modeling
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4.1 Analysis of IMAN structure

Figure 4-1: The hierarchy of software packages developed for IMAN. Prior knowledge
representation is implemented in cmlpr. The cmlhp package, which contains classes
used in hypothesis formation and decision-based reasoning, is also a fundamental
package. Specific model types, such as the vehicle model package cmlv and the point
model package cmlpt, make use of the classes in cmlpr. State and tree management
and the interface to the algorithm are handled in the cmlst package, which depends
on all of the other packages.
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4.2 Prior knowledge representation: the cmlpr pack-

age

The cmlpr package is responsible for issues of prior knowledge representation. Fig-

ure 4-2 shows the hierarchical dependency of the software components in cmlpr.

There are three main functions of a prior model. First, it must represent the projec-

tion of a state estimate through time using some dynamic model. Second, it must

appropriately update the state estimate when new information becomes available.

Third, it must be able to initialize an estimate for a new feature based on one or

more measurements. For the case of CML, each of these steps may have a discrete as

well as a continuous component, and thus the result of any of these functions may be

a set of estimates rather than a single one.

The three main functional definitions (projection, updating, and initialization) are

implemented by separate protocol 2 classes: Projector, Updater, and Initializer.

The Projector and Updater components are fundamental, that is, they have no

dependency on other components. To allow for the consideration of ontological de-

cisions, Projector instances are organized in Markov networks. This structure is

encapsulated in the Network component. An Observer is merely a Projector with

the additional context provided by a Network. Thus a Projector provides a model for

projection according to a given dynamic model, situated Observers allow for chang-

ing dynamic types as well. The Initializer component depends on the Observer

component only to situate the resulting estimate within the dynamic model network.

The extended Kalman filter algorithm is implemented in three abstract components,

EKFProjector, EKFUpdater, and EKFInitializer, that inherit the three basic filter-

ing protocols. These require further derivation to provide model specific information,

such as noise parameters.

2A protocol class is merely an interface definition. In C++, this means that the class will contain
only pure abstract functions (i.e. there are no concrete functions or data members) [38].
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Figure 4-2: The hierarchy of classes in the cmlpr package.
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Figure 4-3: The hierarchy of classes in the cmlpt package.

The MeasurementModel component provides projection, updating, and initializa-

tion interfaces for a given measurement process. Channel-level prior information,

that is, information about the sensory channel being used, may also be included in

a MeasurementModel. The PriorModel component contains all of the prior informa-

tion regarding a particular feature (or vehicle) type. It may consist of a number of

MeasurementModels if more than one sensory modality is utilized. An Estimate is

a state estimate for a feature or vehicle model. It contains an estimated state vec-

tor, an associated error covariance matrix, an estimated likelihood, and information

regarding the prior model which produced it.

4.3 Modeling point-like features: the cmlpt pack-

age

The cmlpt package provides complete definitions for modeling point-like environ-

mental features. The hierarchy of classes in the cmlpt package is shown in Fig-

ure 4-3. Concrete components are provided for each of the three filtering protocols:
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4.4 Vehicle modeling: the cmlv package

Figure 4-4: The hierarchy of components in the cmlv package.

PointProjector, PointUpdater, and PointInitializer. Full specification of the

prior model is handled in PointPriorModel. This includes specification of the Markov

network of Projectors, which is in this case a trivial network with a single node. Use

of the point model is completely transparent except for the PointPriorModel con-

structor, which is used to initialize a prior model using particular noise and channel

parameters.

4.4 Vehicle modeling: the cmlv package

The cmlv package provides a simple model for survey-class AUVs. The hierarchy of

components in the cmlv package is shown in Figure 4-4. Projection and initializa-

tion are handled by the VehicleProjector and VehicleInitializer components,

respectively. The vehicle model is involved in two separate measurement modali-
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ties. The VehicleDRUpdater component provides proper updating for dead reckoning

measurements (depth, speed, pitch, and yaw). The VehicleSonarUpdater compo-

nent handles estimate updating with sonar returns hypothesized to have some from

environmental features. The structure of the vehicle prior model is transparently

contained in the VehiclePriorModel component. User interface occurs through the

constructor of VehiclePriorModel.

4.5 Decision-based reasoning: the cmlhp package

The cmlhp package encapsulates the handling of hypotheses and decision-based rea-

soning. The Hypothesis component represents the trifold relationship of the mea-

surement process: the sensing object, the sensed object, and the measurement itself.

Actual objects are handled symbolically using identification flags, removing the de-

pendency of hypothesis formation on prior knowledge representation. The Decision

component captures the mechanics of hypothesis enumeration for particular navi-

gational events. Asserted decision resolutions are encapsulated in the Dependency

component, which is used primarily to track decision dependencies for states. Two

auxiliary components, Possibility and PossibilityStack, encapsulate the logic of

combining and comparing hypotheses. This allows consideration of consistent groups

of hypotheses, but is entirely transparent outside the cmlhp package. The Assignment

component handles assignment formation and processing. It also provides for the rep-

resentation of possible Assignments as dependency sets.

4.6 State management: the cmlst package

The cmlst package handles management of the problem structure, including states,

trees, and tracks. The basic structural unit is the State component which situates an

estimate within the dependency structure of the estimation problem. The StateTree

component encapsulates the representation of possible causal links between states
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Figure 4-5: The hierarchy of components in the cmlhp package

using a tree structure. It also provides for reliable clean up of invalid states dur-

ing the process of hypothesis or state rejection. The TrackStep component provides

an alternative representation of states as sets of possible estimates for a particular

track at given points in the process of IMAN. The TrackBase component provides

a unified interface to this dual representation. The Measurement component encap-

sulates the measurement process and decisions about measurement origin. Handling

of groups of measurements is provided by the MeasurementSet component. Feature

track management is handled in the Track component, and vehicle track manage-

ment is handled in the VehicleTrack component. Each of these two components has

an associated component, TrackInitiator and VehicleInitiator respectively, to

manage decisions and estimates regarding track instantiation. The set of proposed

features is managed by the FeatureMap component. The external interface for the

algorithm is handled in the Situation component.

A number of process-related aspects of the IMAN algorithm are not readily visible
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Figure 4-6: The hierarchy of components in the cmlst package
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within the structurally-based decomposition provided above. Below we examine the

location and impact of the possibility enumeration and pruning processes.

4.6.1 Possibility enumeration

Possibility enumeration is the formation of competing hypotheses to offer explanations

regarding a navigational event. Data association uncertainties about measurement

events are of a small number of types: match, miss, spurious measurement, and

new feature hypotheses. However, gating and model-based possibility restrictions,

forms of complexity management, will inform the particular choice of hypotheses

formed. Currently, the enumeration logic for forming hypotheses is handled in the

Track component. As more refined feature ontologies and measurement models are

developed, this process will need to migrate to the cmlpr package so that it may be

more closely aligned with the feature definitions. The Track component will then

require the ability to extract and manipulate this information from the prior model

specification.

4.6.2 Pruning

Pruning is the likelihood-based rejection of possibilities based on collected evidence.

The primary (and usually only) pruning method used by IMAN is n-backscan assign-

ment pruning, which identified rejected hypotheses based on the current support for

competing assignments. Currently, this is handled in the Situation component, with

some auxiliary functionality (e.g. for cleaning up rejected possibilities) in the Track,

VehicleTrack, TrackStep, and StateTree components. A more general represen-

tation that provides increased encapsulation of the pruning process may be possible

and should be considered during enhancements to the current implementation.
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4.7 Summary

In this chapter, we have explored the implementation of the integrated mapping and

navigation algorithm. Implementation and theoretical development were seen to pro-

vide a synergism for understanding the problem structure and for formalizing the

concepts of non-separable hybrid estimation and concurrent mapping and localiza-

tion. The current implementation has been developed with maintainability, modu-

larity, and extensibility is mind. The IMAN algorithm implementation is contained

in five software packages. The cmlpr package handles prior knowledge representa-

tion, implementation of the extended Kalman filter, and the interaction of dynamic

and measurement models in reasoning about navigational events. The cmlpt package

contains the prior model information for a range of point-like feature classes. The

cmlv package provides simple modeling of survey-class AUVs. Hypotheses, decisions,

dependencies, and assignments, that is, the structural elements used in reasoning

about decisions regarding navigational events, are implemented in the cmlhp pack-

age. Finally, the cmlst package provides management of the structural elements used

in estimation, including states, trees, and tracks, as well as the external interface for

the algorithm. We have discussed the object-oriented decomposition of the algorithm

and its implementation in these five packages. Comments were made about the ease

of use of the current implementation (both in operation and development), and sug-

gestions for further refinements were discussed. In the next chapter, we consider the

task of complexity management and its theoretical and structural implications.

146 Implementing Integrated Mapping and Navigation



Chapter 5

Managing Complexity

In this chapter, issues in the management of complexity are examined. All multiple-

hypothesis algorithms (i.e. non-separable hybrid estimation problems) must address

the cost of considering alternative possibilities. The number of possible cases can

(and does) grow extremely quickly. Additionally, the whole project of considering

multiple possibilities is undertaken to allow an eventual choice from among those

possibilities. Thus, complexity management is closely intertwined with the discrete

estimation problem. We begin by considering the role of complexity management in

the integrated mapping and navigation algorithm. The impact of complexity man-

agement choices is considered, and the basis for choosing among states, hypotheses,

and assignments is detailed. We then turn to pruning, or likelihood-based possibility

reduction. Pruning is the primary form of complexity management in many multiple-

hypothesis tracking implementations. The variety of techniques used in these cases

is considered. The application of pruning techniques to integrated mapping and nav-

igation is discussed, valid methods are described, and implementation problems are

noted. The increased complexity brought about by the explicit inclusion of vehicle

position uncertainty demands more extensive complexity management than pruning

can provide. We identify track number as a driving term in the proliferation of pos-

sibilities. A number of track initiation techniques are considered, including a delayed
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track initiation strategy which significantly reduces complexity in a variety of circum-

stances. We also consider complexity that arises through track interaction and data

association ambiguity. This subdominant effect limits IMAN performance once track

initiation has been addressed. Potential solutions to the track interaction problem

are outlined.

5.1 Managing algorithmic complexity

Uncertainty gives rise to complexity. In the case of continuous estimation, estimators

are typically described in terms of a probability density function (PDF) for the state

variables. The PDF varies over the entire state space. This is in general too complex

for solution [97, 99]. In the case of linear Gaussian systems, the PDF is fully described

by its mean and covariance.1 For systems which are nonlinear and/or non-Gaussian,

this approximation is not exact. In such cases, the first two moments of the posterior

density do not provide a full characterization and the transformation of densities

may be inaccurate. Despite this, linearization and the assumption of Gaussianity are

common to render the problem computable.2

5.1.1 The need for complexity management

In a similar way, discrete estimation problems, in which multiple possible events are

considered within a probabilistic framework, need simplifying assumptions to ensure

computability. However, convenient descriptions of multiple possibilities are not com-

pactly describable for typical cases. This has two primary results. First, individual

possibilities must be represented separately, requiring extensive storage and compu-

tational resources as the number of possibilities increases. Second, some of these

1In the Kalman filter, this information is provided by the estimate and the estimated error
covariance. It can be shown that these values are in fact the mean and covariance of the posterior
density p (xlz) [4].

2 See Section 3.4 for a more extensive discussion of modeling errors in continuous estimation.
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possibilities must be rejected for typical problems to remain computable. Complex-

ity management is the coordinated project of possibility rejection. The reduction in

proposed possibilities that complexity management engenders provides two benefits.

The first is of course that the algorithm is more likely to remain computable. The

second is that identifying a single estimate of vehicle or feature state becomes easier.

Multiple possibilities can be thought of as modeling flexibility. There is a conflict

between this modeling flexibility and computability. The goal of complexity man-

agement is to handle this trade-off in the most appropriate way, maintaining enough

modeling flexibility to capture the phenomenology of the sensor measurements while

rendering the algorithm computable.

5.1.2 The effect of choosing among possibilities

There are a number of ways to make choices about which discrete possibilities to

retain and which to reject. Choices can be made concerning the basis for accepting or

rejecting possibilities. There are two basic cases. First, possibilities may be accepted

or rejected based on the estimated likelihood that they in fact represent the state

of the world (or the best model of the world). In this case, modelable possibilities

are evaluated as to the likelihood that the navigational events they depend on have

occurred. Second, the types of possibilities considered may be limited based on some

set of navigational events prescribed within prior models for the system. In this case,

certain possibilities might or might not be considered based on the models used to

describe the system. Choices can also be based on a number of structural constructs

within the IMAN algorithm, such as states, hypotheses, and assignments.

5.1.3 Choosing and rejecting states

States may at first seem a likely candidate for complexity management. They form the

basic unit of likelihood calculation. The likelihoods of hypotheses and assignments

are computed (primarily) in terms of the states which support them. A problem
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arises, however, in maintaining consistency throughout the estimation problem. The

impact of individual states on the web of interdependencies is difficult to gauge with-

out exhaustive consideration of other states. The dependencies of various estimates

are described by the decision resolutions that they require. This makes hypotheses

and decisions a more natural (and efficient) choice for likelihood-based possibility

rejection. On the other hand, states can provide a great deal of control during pos-

sibility enumeration. While possibility enumeration regarding navigational events is

also more naturally a function of decisions regard those events, state-based possibility

restriction, or screening, can impact the effective complexity engendered by decision

enumeration, particularly during enumeration of feature track trees.

Screening is the model-based restriction of possibilities.

For example, gating is essentially a state-based method for enumerating match hy-

potheses regarding measurements. In summary, states are not a good candidate

for likelihood-based possibility rejection. They can, however, be instrumental in re-

stricting possibilities during track enumeration, particularly when multiple interacting

models are involved, due to their strong links to the prior dynamic and measurement

models.

5.1.4 Hypotheses and decisions

Hypotheses are the basis for possibility enumeration. Decisions enumerate the set of

possibilities for specific navigational events by forming hypotheses. Thus, hypotheses

are in some sense the 'correct' unit for likelihood-based possibility rejection. However,

care must be taken in specifying hypotheses for rejection, because the hypotheses are

not characterized in terms of their role in the dependency web of the system. Thus,

while hypotheses should be the subject of likelihood-based methods, choices among

hypotheses must be made at a more global level. Hypotheses are also a primary avenue
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for screening during the enumeration of decisions, particularly when measurement

models are involved.

5.1.5 Choosing and rejecting assignments

Assignments are in essence descriptions of the global dependency web, capturing the

possible global occurrences. Thus assignments are the appropriate unit by which

to make choices among hypotheses, despite the fact that their likelihood is largely

derived from the state enumeration process. Also, as they are an enumeration of

possible global occurrences given the set of hypotheses and decisions, there is no way

to restrict possible assignment formation without the potential for rejecting validly

enumerated occurrences out of hand.

Pruning is the likelihood-based rejection of possibilities.

In some sense, states, hypotheses, and assignments form a continuum from local

specification toward global specification. Pruning requires a global perspective to

account for the dependency web of the system of estimates, and so should be based

on assignment likelihoods. Likelihood-based possibility rejection choices made at the

hypothesis and state levels ignore this dependency structure and so run the risk of re-

moving necessary states or hypotheses, resulting in system-level inconsistencies (e.g.

a rejection of the vehicle track). The process of possibility enumeration is not, in

contrast, teleological. The basis for possibility enumeration lies in the prior model

representation for the system. Thus states, as the most direct interface to the ve-

hicle and feature prior models, are the proper substrate for screening. Additional

restrictions may arise in a less local sense due to models of the channel or over-

all environment. Such restrictions, which are based on prior measurement models,

are properly applied during hypothesis instantiation. Carrying out screening at an
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inappropriate level can lead to inconsistent treatment of the phenomenology when

model-specific possibilities are inappropriately rejected.

5.2 Pruning

Pruning is the likelihood-based rejection of discrete estimation elements. In this

section, we examine a number of methods for pruning which have been developed

for use in multiple-hypothesis tracking. The application of similar techniques to

integrated mapping and navigation is then considered. Key lessons from pruning

implementations are described, and some potential avenues for further development

in likelihood-based possibility rejection for IMAN are discussed.

5.2.1 Pruning in multiple-hypothesis tracking

There are a number of structural difference between multiple-hypothesis tracking

and IMAN. Since a single (exact) possible vehicle is considered, dependencies are

not spread through the process of vehicle updating. This has two major effects.

First, the data association problem can often be reduced by clustering interacting

features together. This can reduce the global complexity. Second, tracks can be

considered together. In fact, there is typically a single tree of possibilities for each

cluster, rather than a tree of possibilities for each target track [74, 63, 23]. The

terms hypothesis and assignment are given somewhat different meanings in MHT.

Assignments are often referred to as cluster hypotheses. Individual decisions are not

tracked other than during hypothesis enumeration. Because of clustering, trees can

be pruned independently (i.e. there are no dependency relationships across trees).

Additionally each state represents the state estimate for the entire cluster, rather than

the individual feature. Thus each MHT state encompasses what would be a complete

set of possible resolved tracks in IMAN. The arguments regarding the appropriateness

of pruning states, hypotheses, and assignments do not hold for MHT states, which do
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contain all dependency information by virtue of clustering. Despite this, much can

be learned from MHT pruning techniques. All of these techniques reject some set of

MHT states based on their likelihood. The differences are in the way the likelihood

threshold for MHT state rejection is chosen.

The ultimate result of decision-making among competing hypotheses is the re-

solved track.

A resolved track is a track of state estimates in which all decisions have been
resolved and is thus a tree with no branchings.

In multiple-hypothesis tracking, the resolution of all tracks at a given time is provided

by selecting a single state (per cluster) at that time. One of the primary reasons to

delay decision-making is in hope that subsequent evidence will further distinguish

possibilities. In general, this becomes less likely the longer decisions are delayed due

to limitations in temporal correlation between events. Additionally, allowing decisions

to remain unresolved for extended periods can lead to extremes in complexity growth.3

A natural solution to both of these issues is to force a decision after a pre-determined

number of time cycles. This is referred to as n-backscan pruning. At the level of the

cluster tree corresponding to n time steps before the present cycle, the most likely

state is selected. All alternative states at that tree level are rejected (i.e. removed

from the tree and from consideration). Note that n-backstep pruning is not sensitive

to the decision ambiguity present, that is, the likelihood ratios involved.

In MHT, the width of the cluster trees, that is, the number of states at a given

level, is a good indicator of the algorithmic complexity involved (in terms of storage

and computation resources required, for example) [24]. k-best pruning limits tree

width by specifying the maximum number of states that can be considered. The k

3The extreme of this tactic is running multiple models to account for alternative hypotheses.
This technique has been successfully used when the number of competing hypotheses is strictly
limited [3], but requires too much storage and computation to be effective for either MHT or IMAN.
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states with the greatest likelihoods are retained; all other states for the given tree

level are rejected.

Two additional techniques reject states whose likelihood lie below a threshold.

Threshold pruning is the rejection of all states whose likelihood is below a specified

level. Ratio pruning specifies a likelihood ratio. Each state is compared to the state

with the maximum likelihood. Any state whose likelihood ratio lies below the specified

ratio threshold is rejected. Efficient computational routines exist for enumerating only

the most likely assignments [78, 70].

5.2.2 Pruning in integrated mapping and navigation

As noted above, there are a number of structural differences between MHT and

IMAN which complicate the application of pruning. IMAN states have no global

sense of the dependencies of the system; they only retain information about their

individual dependencies. Trees are used to structure estimates on a track level, rather

than globally (or by cluster). Discrete vehicle uncertainty prevents clustering and

engenders a complex web of dependencies across the system. Because of this, more

than states need to be considered during pruning. We have identified assignments

as the appropriate level of abstraction for reasoning about pruning. The results of

assignment-based pruning are the retention or rejection of specific hypotheses. This

global take on pruning is required to ensure that system consistency is maintained.

n-backscan assignment pruning

The primary technique used for likelihood-based possibility rejection in integrated

mapping and navigation is n-backscan assignment pruning. The decisions about

navigational events n time steps before the present time cycle k are compiled,

Ak-n o= o6k-n}o
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The set of assignments which provide consistent, exhaustive resolution of this set of

decisions

Qk-nlk = {rWk-njk}, (5.2)

is calculated, where the time dependency k - n k indicates an assignment regarding

the decisions formed at time k - n based on the system structure at time k. Each of

these assignments can be represented as a dependency set,

rWk-nlk - DrWk-nlk* (5.3)

The vehicle takes part in all decisions, so the vehicle track tree represents a set of

states based on the global assignments. The set of leaf states in the vehicle tree is

UXk = {wxk}. (5.4)

The support for each assignment can then be calculated as the sum of the likeli-

hoods of the states whose dependency sets are compatible with the dependency set

representation of the assignment,

P (rWk-nIk) = P(wk) VW CD (D Wk, Drk-nk) = true. (5.5)

The assignments are then ranked according to their likelihood. The likelihood of the

most likely assignment is taken as a cutoff value. Assignments whose likelihoods are

less than the cutoff value are rejected. The selected assignment is denoted +Wk-nlk-

Ok-11k is the set of all hypotheses for the unresolved decisions formed at time k - n.

E)-n+k is the set of all hypotheses used by assignment +wk-nlk. The set of rejected
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hypotheses is then the difference between these sets

-lnk =Ok-nlk - 0 nk. (5.6)

Once a set of rejected hypotheses has been obtained, the actual pruning can take

place. Each state (on every track tree) that depends on a rejected hypothesis, that is,

has the hypothesis as the resolution of any decision in its dependency set, is removed

along with all causally related states (i.e. child states in its track tree). 4 Due to the

removal of states, additional hypotheses may be rejected (or asserted) as the support

for hypotheses across all the decisions is altered. For this reason, a recursive clean

up of invalidated hypotheses is necessary. After each removal of a set of rejected

hypotheses, all hypotheses and decisions are examined for support. Any hypothesis

that has no remaining support is rejected. Also, if a decision is resolved (i.e. if it

has a single remaining hypothesis) as a result of hypothesis removal, its remaining

hypothesis is asserted. Any decision containing an asserted hypothesis must reject

any competing hypotheses, and therefore resolve to the asserted hypothesis. This

process in continued until there are no additional rejected hypotheses.

In MHT algorithms, n-backscan pruning is usually implemented for n = 2 or 3 [74,

57, 17], but useful delayed decision-making has been shown with n = 1 [29]. Due to

the increased complexity of the IMAN algorithm, most of the experiments for this

thesis use n-backscan pruning with n = 1.

State-based likelihood pruning

One of the limitations of assignment-based pruning is that the number of hypotheses

and states is not directly controlled. Threshold and ratio pruning were implemented

to prune states on a tree-by-tree (that is, a track-by-track) basis. In all cases, signifi-

cant failure rates were encountered in which the system became inconsistent. System

4Note that these child states necessarily depend on the rejected hypothesis as well.
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inconsistency occurs when no global possibilities for resolving all tracks exist. Im-

proved, but still unacceptable, failure rates were encountered using state-based prun-

ing of the feature track trees, but not the vehicle track tree. This emphasizes the role

of assignments as the appropriate basis for likelihood-based possibility rejection. Sys-

tem consistency simply cannot be guaranteed without considering the global impact

of dependencies.

Decision-making

One possible extension to the pruning techniques implemented in this thesis is to

provide more reasoning about decisions themselves. It may be possible to implement

threshold or ratio pruning to decisions while maintaining system consistency. This is

because hypotheses can be rejected singly, and the dependency effects of the rejection

can be propagated before continuing the pruning process. Such a method would

provide greater control over the decision-making process, but would entail additional

book-keeping to ensure system consistency.

5.3 Track initiation

While pruning can be effective in limiting complexity growth, it is insufficient to

render IMAN computable. For this reason, model-based possibility restriction, or

screening, is necessary. The dominant term in algorithmic complexity is the number

of proposed tracks. In this section, we discuss the mechanisms by which feature

track ordinality drives algorithmic complexity and consider a number of approaches

to complexity management that focus on screening strategies.

5.3.1 Track number and complexity

In multiple-hypothesis tracking, feature tracks become interdependent only when they

are part of the same cluster, that is, when they are mutually involved in ambiguous
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data association decisions. Clusters can be handled independently, so complexity

growth is dominated by cluster size rather than global feature ordinality. The enu-

meration of multiple possible vehicle states in integrated mapping and navigation

destroys any chance of clustering tracks. Since vehicle states are enumerated on the

basis of assignments (rather than individual hypotheses), vehicle states take part in

all navigational event decisions (i.e. all feature disposition and measurement origin

decisions). Because of this, vehicle state enumeration is very sensitive to the num-

ber of possible assignments. Independent decisions combine combinatorially during

assignment formation, resulting in a growth of the number of vehicle states in propor-

tion with the product of the assignment ordinality over all 'clusters', or independent

decision groups. Thus, track formation itself can radically affect algorithmic com-

plexity.

5.3.2 Basic track initiation techniques

Since track initiation is so vital in determining algorithmic complexity, it is the fo-

cus of our model-based possibility reduction efforts. The problem is as follows. As

measurements are taken, match hypotheses are considered. Match hypotheses in-

volve existing feature tracks and are closely tied to the prior models of features and

measurements. Once this state-dependent process (match hypothesis generation) is

complete, additional hypotheses are enumerated. The basis of these additional hy-

potheses is channel-level modeling in the measurement models. A channel is the

environmental space within which a given sensing modality operates. Channel-level

modeling includes prior models of feature density, probability of detection, probabil-

ity of false alarm, and the logical process by which non-state-dependent possibility

enumeration occurs. Track initiation is the instantiation of a new track based on

the possibility that a given measurement (or set of measurements) has come from

a previously unmodeled feature. Here we are concerned with the question of when

it is appropriate to entertain a new feature hypothesis. Three basic track initiation
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Table 5.1: Channel parameters used in the comparison of track initiation techniques.

Parameter Value
Probability of detection PD 1
Probability of false alarm PF 0
Probability of correct match given detection PMID 1

techniques are detailed below: (1) an obvious approach, (2) a more clever brute force

approach, and (3) an approach with restricted hypothesis formation. We compare

their performance for a simple example. We assume that the environment consists of

n distinct targets. By distinct, we mean that gating is effective in resolving all data

association ambiguity.5 Table 5.1 lists additional channel-level parameters assumed

as part of the prior measurement model. No pruning is performed to illustrate the

extreme complexity which track initiation can engender. Algorithmic complexity will

be measured by the number of possible vehicle states w which are considered at each

time step.

Obvious

Brute force methods entertain the possibility that each measurement might come

from a new feature. An obvious implementation is to initiate a new track for each

combination of possible vehicle state and measurement. Additionally, the possibility

that each measurement is spurious is also entertained.

During the first time cycle, each measurement origin decision has two hypotheses:

the measurement is spurious and the measurement comes from a new feature. The

decisions are independent (from our assumption of distinct features), so the number

5For this case, where data association ambiguity is not a factor, a multiple hypothesis approach
is unnecessary. The example is useful for comparing track initiation techniques, however, because
it highlights complexity growth even in the absence of feature interaction, and thus independent of
state-based hypothesis enumeration.
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of possible assignments is

N (Q1)ob = 2". (5.7)

There are no complications in matching, so the number of possible vehicle states after

the first measurement is

obWl = 2n . (5.8)

For each subsequent measurement, n measurements are received. Each measure-

ments gates only with the 'correct' track(s). Each measurement has three possible

explanations: it is spurious, it matches one of the existing proposed features, or it

represents a new feature. The number of possible vehicle states grows as follows:

obWk+l = obWk (obwk + 2 ) n . (5.9)

Clever brute force

A clever brute-force implementation reduces the number of tracks considered by in-

stantiating a single new track for each measurement received. Each of these new

tracks will have a number of possible initial states equal to the number of possible ve-

hicle states at the time of track instantiation. While the initial measurement proceeds

identically to the obvious brute force implementation,

clW = 2 n , (5.10)

the growth of possible vehicle states is significantly reduced,

clWk+1 -- clWk (3 ) n
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Restricted

Finding a new feature where a known feature exists and missing the known feature is

a much less likely occurrence than matching the known feature. Using this reasoning,

we can restrict hypothesis formation in the following way. If a measurement matches

a single feature and that feature is matched only by the measurement in question,

assume that the match hypothesis is correct and do not enumerate a miss hypothesis

for the feature and spurious and new feature hypotheses for the measurement. In

other cases, where some ambiguity regarding the data association is readily apparent,

proceed with the full enumeration. For this example, the probability of detection and

probability of match given detection ensure that at most a single feature track will

be proposed for each feature. The initial step is the same,

reWl = 2n , (5.12)

but further complexity growth is eliminated for the case posed here,

reWk+l = reWk. (5.13)

This method of restricting possibility enumeration for unambiguous matches is

used by for integrated mapping and navigation. Any exceptions are explicitly noted.

5.3.3 Delayed track initiation

While the restricted hypothesis track initiation strategy addresses the growth of com-

plexity once match hypotheses become available, it does little to address the com-

plexity inherent in the initial step. A delayed track initiation scheme is used so that

independent decisions about track instantiation can be made independently (i.e. with-

out the combinatorial effect that occurs when the vehicle track depends on the track

initiation reasoning process). When a measurement may be spurious or representa-
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tive of a new feature (e.g. under the restrictive hypothesis enumeration technique,

in ambiguous data association situations), a single hypothesis encompassing these

possibilities is made for the purposes of possibility enumeration. The measurement

and possible vehicle states are then combined to form a possible track initiation esti-

mate. If three mutually-gating possible track initiation estimates are formed within

five time cycles, a new feature track based on these three track initiation estimated

is instantiated. This technique suboptimally combines the different possible vehicle

states to form the track initiation estimate. However, vehicle state estimates are

weighted by their likelihood, and, in any case, the variety of possible vehicle states

should not vary too greatly, so this is a fairly good approximation. For this example,

there is no problem with conflating possible vehicle states. Throughout time, there

is a single possible vehicle state,

deWk = 1 V k. (5.14)

n vehicle tracks are instantiated after the third time cycle, but the feature track

initiation decisions are separated from the vehicle track. The restricted hypothesis

technique described above maintains a constant level of complexity once the feature

tracks are instantiated. This is a case where screening enhances the decision-making

process even when teleological techniques (based on global posteriors) fail.

5.3.4 Comparison of techniques

Figure 5-1 shows the number of possible vehicle states proposed by the four track

initiation techniques described above of for the case of three features (n = 3). For

comparison, the total number of states in an equivalent MHT formulation (that is,

without vehicle uncertainty) with no model-based possibility restriction is also shown.

Table 5.2 lists the number of states generated by each approach in this example.

Track initiation is, of course, not the whole answer to complexity management.
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Figure 5-1: Comparison of track initiation techniques.

Table 5.2: Comparison of track initiation techniques.

Technique k = 1 2 3 4 5
obvious 8 8000 4x1015 2x1062  2x10249

clever brute force 8 216 5832 157464 4 x 106
restricted 8 8 8 8 8
delayed 1 1 1 1 1
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The IMAN implementation makes use of both the delayed track initiation technique

and the restricted hypothesis formation scheme detailed above, and yet, as will be

shown in Chapter 7, there are a significant number of cases when computational

complexity overwhelms the algorithm. The track initiation techniques developed

for IMAN have significantly extended its operability (from about 3 time cycles to

tens of cycles). Robustification of the algorithm to additional sources of complexity

growth remains a research topic. Because of the introduction of vehicle uncertainty,

ambiguous cases tend to cause doubly exponential increases in complexity (as with the

obvious track initiation implementation considered above). This order of complexity

is simply too great to handle through likelihood-based possibility rejection (without

resorting to a zero-backscan algorithm, which is a poor alternative). The answer lies

in model-based possibility restriction.

5.4 Track interaction

The primary remaining cause of complexity growth is track interaction. Track inter-

action occurs when measurements gate with more than one feature. The resulting

complexity quickly overwhelms the IMAN algorithm, even with aggressive pruning.

While fully addressing this problem is beyond the scope of this thesis, a number of

potential approaches are worth observing, both to motivate research on this issue and

to demonstrate the reasoning that goes into model-based possibility restriction. We

suggest two possible approaches to track interaction ambiguity: default assumptions

and interactive gating. Default assumptions are not currently implemented but offer

a number of attractive possibilities. The default hypotheses would be to assume that

a feature is missed or that a measurement is spurious. When complexity becomes an

issue, the default hypotheses can be asserted for some or all of the unresolved deci-

sions. This would also improve the robustness of the algorithm in terms of system

consistency. The default hypothesis could provide a fallback position if things don't
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work out for some reason (such as occurs in state-based pruning). Implementation

of such a strategy is non-trivial, as pruning of default strategies would need to be

handled in a special way. Additionally, some monitoring should be available to indi-

cate how often the default hypotheses were enforced. Overuse of this strategy would

indicate a more fundamental problem which needs to be overcome.

Iterative gating is the process of iteratively reducing the gating threshold (up to

a point) until a single match hypothesis is obtained. This could reduce complexity

considerably, particularly when observing relatively new features (which as a con-

sequence have larger uncertainties, and hence larger gates). Again, implementation

is not trivial, as the ability to make tentative possibility enumerations would be re-

quired.

5.5 Summary

In this chapter, we have explored complexity management for integrated mapping

and navigation. We began by discussing the need for complexity management in any

non-trivial discrete estimation problem. The method by which continuous estimation

avoids the issue of complexity, assuming the sufficiency of a Gaussian representa-

tion, was noted. The basis for managing complexity was discussed and two types of

complexity management were identified: (1) likelihood-based possibility rejection, or

pruning, and (2) model-based possibility restriction, or screening. The structure of

the IMAN algorithm was revisited. Pruning, being grounded in the teleological con-

cept of posterior likelihood, is appropriately applied to assignments, which contain

information about the global impact of dependencies. State-based pruning can lead to

system inconsistency. On the other hand, states and hypotheses are the appropriate

substrates for screening due to their proximal involvement with the prior models for

feature behavior and sensor measurement. Next, pruning was discussed. Several tech-

niques for pruning in multiple-hypothesis tracking were described. The application
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of these techniques to the structurally different problem of IMAN was discussed and

n-backscan assignment pruning was identified as the most useful pruning strategy for

integrated mapping and navigation. Next, screening was considered in more depth.

Track ordinality was identified as the dominant term in algorithmic complexity. A

number of track initiation techniques were developed and compared. The integrated

mapping and navigation algorithm uses a delayed track initiation technique along

with a restricted hypothesis generation scheme. Finally, the outstanding problem of

track interaction was considered, and several possible approaches were discussed. In

the next chapter, we begin the performance analysis of the algorithms developed in

this thesis by considering the constraints of the concurrent mapping and localization

problem.
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Chapter 6

Analysis of Concurrent Mapping

and Localization

In this chapter, we explore the role of uncertainty in the problem of concurrent map-

ping and localization. As we saw in Chapter 2, existing CML implementations have

been to some degree ad hoc. This is in part because a full characterization of the

sources of error and their interactions has not been available. Here, we examine how

model uncertainty, navigation uncertainty, and data association uncertainty structure

the problem of concurrent mapping and localization. We start with a consideration

of how model uncertainty and errors in the navigation system affect the navigational

performance of the vehicle during dead reckoning. This illustrates (1) how vehicle

error grows as the vehicle becomes lost and (2) what factors dominate the growth

of vehicle uncertainty. Next, we consider environmental features as sources of in-

formation. The amount of information provided by measurements is quantified and

examined within a common operational paradigm. The potential benefits of using

features to aid in navigation are explored, and the impact of such measurements on

the structure of the vehicle position error is examined. Finally, we discuss the effects

of data association errors and other errors in discrete estimation. The types of data

association errors and their effects are cataloged. The impact of clutter and failed
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detections on feature estimation is considered. The spatial distinguishability of fea-

tures and interaction between feature models is considered for the case of point-like

features. We conclude the chapter with a summary of major points regarding how

the major sources of error structure the problem of CML and what methods can be

used to recover from these uncertainties.

6.1 Vehicle position error growth

Vehicle navigation is difficult primarily due to the growth of position error and un-

certainty. In this section, we examine the mechanisms of error growth. The primary

factors affecting this error growth are (1) model uncertainty, which is modeled by pro-

cess noise in the vehicle dynamic model, and (2) navigational system uncertainty, that

is, uncertainty that arises from navigational system sensors, such as dead-reckoning

sensors and inertial navigation systems. Through this development, the nature of the

problem should become clearer, as will the potential impact of measurement infor-

mation from environmental features.

The growth of position error is often characterized for a given navigational system

in terms of percentage of distance traveled. Although this is a somewhat simplistic

interpretation, it is a fairly accurate description of error growth for a dead reckoning

system, that is, a system without access to external position references (either abso-

lute or relative). We examine how taking measurements alters this process, regardless

of the actual measurement information obtained. Throughout this development, we

consider straight-line transiting of the vehicle, a common operational paradigm [45].

The vehicle travels along a straight path, as shown in Figure 6-1. The direction of

vehicle motion is referred to as the pathwise coordinate. The transverse coordinate

measures distances orthogonal to the vehicle path. For clarity, a two-dimensional

dynamic model is used. Extension to three dimensions is straightforward.
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Pathwise
Direction Vehicle

Path

. Vehicle

Transverse
Direction

Figure 6-1: Transiting operational paradigm. The vehicle moves in a straight line.
The direction of vehicle motion is the pathwise direction. The orthogonal coordinate
is the transverse direction.

6.1.1 Model uncertainty

First, let us examine the case where the navigational system used by the vehicle is

exact. In this case, the only source of uncertainty is the process noise of the dynamic

model, which represents model uncertainty. Vehicle dynamics are based on a known

speed u and heading 4. The vehicle travels in a straight line with coordinates in the

pathwise direction Px and the transverse direction tx:

PXk+1 k + U COSV) +Wk, (6.1)

Lt k+1 [t k + u sin 4

where Wk is an additive zero-mean white Gaussian noise process. The Jacobian of the

dynamic function with respect to the vehicle state is the identity matrix,

F [ 1] (6.2)
L0 1
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The covariance of the vehicle state estimate is

p PP k Pt pk
Pk = I t j, (6.3)

the covariance of the noise process is

PO"2  
0

Q= t2 1 (6.4)

and is independent of the initial vehicle state. The error covariance grows according

to the dynamic model, that is,

Pk+l = FPkFT + Q = Pk + Q. (6.5)

If we assume that the vehicle begins with an accurate estimate of its location, this

provides a view of the process of getting lost. The additive process noise accumu-

lates, dominating the vehicle uncertainty. With perfect initial knowledge, the error

covariance grows as follows:

k Pa2 0
Pk+1 = k iT2 (6.6)

The diagonal elements of the error covariance grow linearly in time (and distance).

If each time cycle lasts for T seconds, we can define a time

t= kT. (6.7)

The vehicle travels a distance

s = ukT (6.8)
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in k cycles. The vehicle positional uncertainty in the pathwise aC and transverse t

directions grow with the square root of time or distance traveled.

a = = (u) 2  , (6.9)

and

t t
to= -_ (6.10)

S T1/2 (uT)1/2

6.1.2 Navigation system uncertainty

Now we extend this simple model to include uncertainty in the dead-reckoning sensors.

Instead of exact navigational information, the vehicle merely has uncertain estimates

of speed Uxk and heading *Zk. The vehicle dynamic projection equation becomes

PXk+1 PXk + Uxk COS Xk

t Xk+1 tXk + uXk sin zXk
+= wk, (6.11)

uXk+ 1  U k

Xk+l Xk

with a Jacobian with respect to this state given by

1 0 cos Xk -Uk sin ZXk

0 1 sin Xk Xk COS Xk (6.12)
,Fk =

00 1 0

00 0 1

Note that the vehicle dynamics are now nonlinear, so the dynamic matrix xFk depends

on the vehicle state. By definition, the vehicle heading with respect to the pathwise
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direction is nominally zero, giving

xFk =

10 1 0

0 1 0 U"k

00 1 0

000 1

(6.13)

X=Ik

The process noise is a zero-mean white Gaussian noise process with covariance

PO-2  
o

0 toa2

0

0 0

0 0 ua2 0

0 0 0 Ca2

The error covariance matrix is defined as

PPk PtPk PUPk P Pk

ptPk tPk tU p k  t Pk

PUPk tuPk UPk U1Pk

PoPk tPk Uo1P Pk

(6.14)

(6.15)
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Then the Kalman projection step yields

Pk+1 =

PPk + 2 PuPk + Pk + p2

PtPk + tULP + UXk (PiPk + UPk)

PUPk + uPk

PP Pk + u 4 Pk

PtPk + tuPk + UX (zPk + u"Pk)

tPk + 2 UXk tPk + Pk + ta2

tup + UXk ipk

t')Pk + Uxk VPk

PUPk + upk

tPk + k u PPk

UPk + u 2

UOPk

P'OPk + uV)Pk

t"pk + uXk "Pk

Pk+
VCPk + V)02

If we assume that the vehicle begins with perfect navigational information, that is,

Po = 0, (6.17)

then this simplifies to

PPk + 2PUPk + Pk + pa2

PUPk + uPk

0

0

tPk + 2 "k t + + X p2  + ta2

0

tPk + uxk Pk

PUPk + uPk 0

0 tiPpk + Uk Pk

uPk + ua 2  0

0 Pk + VC2

In general, a navigational system provides estimates of the vehicle speed and

(6.16)

Pk+l =

(6.18)
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heading. This estimation process reaches a steady state, at which point we have

UP = U"a2 and *P = OaUs. Equation 6.18 indicates that the cross-correlations terms

PUP and tP integrate this steady-state uncertainty over time. The main directional

uncertainties PP and tP have terms which integrate these cross-correlations over time,

leading to terms which grow quadratically with time. Substituting time t = kT,

assuming a steady state speed estimate us,, and ignoring initial uncertainty, we have

(P2 +±u t + - t2 0T T2

(t 2 +2s a2s t 2 t2 2
0 t+ S

Pt = T T2

t 0
T

0 Uss ss t

u q2-$8t 0T

Uss lpo 2s
T (6.19)

u 2 0

0 7o2

The position coordinate covariances clearly becomes dominated by the quadratic term

as time increases, leading to a linear growth rate for the RMS position error. An

additional point to note is that it is the speed estimate uncertainty which leads to

error growth in the pathwise direction and the heading estimate uncertainty which

leads to error growth in the transverse direction. Consider a noise level defined by

uass = Us, a0  = dr , (6.20)

and

pa = to = ma. (6.21)
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Table 6.1: Vehicle position uncertainty growth parameters. These parameters were
chosen so that the growth of vehicle position uncertainty in the pathwise and trans-
verse directions is equal. Note that the steady-state heading error is more reasonable
for typical navigational systems than the steady-state speed estimate. This is in line
with the experience that pathwise error growth is usually greater than error growth
in the transverse direction.

Parameter Symbol Value
pathwise process noise variance Pa 71 cm
transverse process noise variance ta 71 cm
steady-state speed uSs 3 m
steady-state speed estimate variance Uass 5.25 Cm
steady-state heading estimate variance as 10

The error growth for the vehicle position coordinates then becomes

mU 2  n2 (1
St + t + 2 , (6.22)

T T T

where m 2 denotes the level of model uncertainty and n"2 denotes the level of navi-

gational system uncertainty.

6.1.3 Quantifying position error growth

Now we are in a position to consider the actual growth of error in the vehicle position

estimate, comparing the two cases derived above: (1) the use of exact navigational

information and (2) the use of uncertain navigational estimates. This comparison uses

the parameters listed in Table 6.1. The navigational system noise levels were chosen

so that pathwise and transverse error growth are identical at the nominal vehicle

speed. The evolution of the RMS vehicle position estimate error (V/P and t-tP)

over a ten minute interval is shown in Figure 6-2. At first, the navigational system

uncertainty has little effect and error growth is dominated by model uncertainty in

the form of the model process noise. In this region, the position error grows with

the square root of time or distance traveled. With increasing time, however, the
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Figure 6-2: Growth of RMS vehicle position error. The lower region shows error

growth in the absence of navigational system uncertainty and exhibits error growth
with the square root of time or distance traveled. The upper region accounts for

navigational system uncertainties and approaches linear error growth with time or
distance traveled.
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Figure 6-3: Vehicle position error growth rate

navigational system uncertainty comes to dominate error growth. In this region,

vehicle position error grows linearly with time or distance traveled. To emphasize

this, Figure 6-3 shows the rate of RMS position error growth (i.e. the derivative

of the curves in Figure 6-2). In the model-uncertainty-dominated regime, the error

growth is strictly decreasing, while in the navigational-uncertainty-dominated regime

this growth approaches a constant. This change in regime comes about as the vehicle

position estimate becomes highly correlated with the vehicle navigational estimates

provided by the navigational system. The change of regime happens quickly for

dead-reckoned systems. However, external position measurements, whether absolute

or relative, have the effect of reducing the correlation between the vehicle position

estimate and the navigational system.

6.2 Features as sources of information

Now that we have a better appreciation for the kinds of errors incurred during naviga-

tion, we turn to the measurements. Environmental features can provide measurements
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to improve the vehicle position estimate. Since the measurements we consider are rel-

ative measurements, they can never reduce the global vehicle position uncertainty.

However, they can bound vehicle error growth, both by decoupling the position es-

timate from navigational system estimates and by providing information about the

vehicle's relative position through time. The goals of this section are to quantify

the information extracted from relative measurements and to identify the utility of

individual features within a basic operational paradigm.

6.2.1 Measurement information

The quantification of measurement information is usually accomplished by deter-

mining the Cramer-Rao bound on the estimate variance [51, 71, 80]. There are a

number of reasons why this approach is inappropriate in the case of CML 1. First,

the Cramer-Rao bound only holds for linear measurements [51]. In the nonlinear

case, the Cramer-Rao bound asymptotically approaches the actual covariance bound

as the number of measurements becomes large. In the case of concurrent mapping

and localization, the relative measurements typically consist of range and bearing.2

Additionally, features often are visible for a limited time only, with the result that

few measurements are available. Those measurements are also typically representa-

tive of different linearization points, as well. For example, if the vehicle is traveling

at 6 knots, has a forward sensor range of 300 m, and can interrogate its surroundings

using a high-resolution forward-looking array once every 5 seconds, then a feature

will be measured at most 20 times before passing from view. During that time, the

feature will traverse the entire half-angle of the sonar view. Thus the Cramer-Rao

1 An alternative quantification of the evidential worth of information sources, the predictive ability
measure, has been developed by Chong [19]. This technique focuses more on the worth of information
sources in correctly identifying discrete events.

20Other measurements are of course possible, including, for example, waveform information. How-
ever, the basic information about the relative feature position in inherently represented within the
egosphere of the vehicle. Thus, any estimate of feature position involves a transformation from
cylindrical or spherical coordinates to Cartesian coordinates. This is a fundamental nonlinearity
and should not be dismissed lightly.
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bound can not be trusted to represent an accurate limit on estimate covariance. Sec-

ond, the Cramer-Rao bound is not well-suited for use within a Bayesian framework.

The joint probability could be used, but the identification of likelihood (and, more

importantly, the separation of likelihood from prior) can be quite difficult [8, 61]. For

these reasons, an accurate bound on estimate covariance is not readily computable.

In spite of this, we can use a similar formulation to quantify the amount of infor-

mation present in measurements about the vehicle location. The measurement model

provides a description of the conditional probability density for the measurements

given the vehicle and feature states p (zlx, (). Using the Fisher information provides

an information matrix

I = -Ez [V 2 lnp(zlx, )] , (6.23)

where the Lagrangian is taken with respect to x and ( and the expectation is over

z. This provides a quantification of the information in the measurement itself, that

is, without regard to any prior information, about the vehicle and feature states.

Measurement models are discussed in detail in Sections 3.2.3 and 3.4.1. We assume

a measurement model

z = h (x, ) + v, (6.24)

where v is a zero-mean Gaussian white-noise process with covariance R. The Jacobian

of the measurement function with respect to the vehicle and feature states is H. The

conditional probability density is then normal with mean h (x, () and covariance R,

(6.25)
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The Fisher information for this measurement is then

Iz = HTR- 1 H. (6.26)

Recalling the measurement model definition from Chapter 3, and combining the

vehicle and feature state into a single vector,

[n
TeX

eX CX n e ] 7

we specify the measurement Jacobian. To simplify the notation, we define

An = n- - nx, (6.27)

Ae = _ ex, (6.28)

r = (An)2 + (e) 2 . (6.29)

The measurement Jacobian is

-An

H= r
Ae
2[

-Ae
r

-An72

0 an ae
r r

-1 -Ae An
r 2 r 2

The inverse of the measurement noise covariance is denoted

R-1 =r I ]

L0 Igj

and

(6.30)

(6.31)
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Table 6.2: Information matrix example parameters.

Parameter Symbol Value
range information Ir 4 m- 2

bearing information I 1.56e6 rad- 2

The information matrix Iz is

A B -A

Iz = B T  I, -B T  (6.32)

-A T  -B A

where

A (An) 2 +1 (e )2 1re - 4 An AeA =•2 H -2 (6.33)
Ir Ae An Ae (Ae) 2 + . (An)2

r r2 r4 T 2 r4

and

B = r2 (6.34)
An

Figure 6-4 shows the variation of the first two diagonal elements of this matrix,

corresponding to the information about the north and east vehicle coordinates, as

the feature location is varied. Note that measurements of features directly north of

the vehicle provide information about the vehicle's north position but comparably

little information about the east direction. These results are based on the parameters

listed in Table 6.2.
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Figure 6-4: Information obtained from relative measurements. (a) and (b) show the

information matrix elements corresponding to the north and east vehicle coordinates,
respectively, based on single measurements of the range and bearing to a feature.
Because range is more accurate than bearing for typical sonar systems, measurements
provide substantially more information about the direction in which they lie than the

orthogonal direction.
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Initial
Offset

Sensor
Footprint

Transverse
Offset

Figure 6-5: Feature measurement example setup. The vehicle transits in a straight
line. Features appear to move through the sensor footprint at a constant transverse
offset. Features are characterized by this transverse offset and their offset from the
edge of the sensor range when they are first measured.

6.2.2 Feature information

While this information is of some use, a more interesting metric is obtained by sum-

ming the information matrix over multiple observations of a single feature. Using the

parameters in Table 6.3, the sum of the information matrices of all of the measure-

ments taken of a given feature while it is within the sonar footprint can be calculated.

We assume that the vehicle is transiting in a straight line, so that measurements ap-

pear to approach the vehicle with a constant perpendicular distance between the

feature and the vehicle path, as shown in Figure 6-5. The summed information ma-

trix depends on the transverse distance of the feature from the path of the vehicle

and the initial offset of the feature from the edge of the viewable range when it is

first measured. To quantify this matrix more simply, we consider two norms for the

vehicle portion of the matrix (i.e. the upper-left 3x3 block). First, we consider the

determinant of the vehicle portion of the summed information matrix. This gives

an estimate of the overall impact the feature can have on navigation performance.
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Table 6.3: Feature information example parameters.

Parameter Value
vehicle speed 3 m

S

sonar range 300 m
sonar view angle +400

sonar ping interval 5 s

Second, we consider the trace of the block. This indicates the amount of information

without penalizing features which fail to provide information about all vehicle states.

These norms are shown in Figure 6-6. Note that features in the direct path of the

vehicle are of less use because they can provide little information about the transverse

vehicle coordinate. As the transverse distance to the vehicle path increases, the fea-

tures are visible for less time, and therefore fewer measurements can be taken. The

most useful measurements combine a long potential observation time with significant

relative angular motion.

6.3 Data association errors

The effect of data association errors is quite difficult to analyze. Existing research [5,

57, 104] takes an empirical approach, demonstrating the relative efficacy of various

algorithms. In this section, we describe the kinds of errors to which data association

uncertainty may give rise and discuss the practical aspects of understanding the

impact of data association errors.

6.3.1 The effects of event uncertainty

Algorithms which ignore event uncertainty have achieved a certain limited compe-

tence. Any algorithm which explicitly considers event uncertainty in a non-separable

way (e.g. multiple-hypothesis tracking and integrated mapping and localization) takes

on a great deal of complexity to unravel navigational events. The question arises
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Figure 6-6: Total information from features. The information matrix Iz is summed

over all measurements taken of a given feature and the vehicle information block is

extracted. The determinant and trace of this block are indicated. Plots show the
minimum and maximum vehicle information norms versus transverse distance to the

vehicle path for the full range of initial viewpoint offsets.
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whether it is worthwhile to model event uncertainty explicitly and non-separably. Part

of the answer lies in the demonstrated performance gains that multiple-hypothesis

tracking has realized [17, 58]. The other part lies in a belief that such methods offer

a better understanding of what is going wrong when data association errors occur.

Because of this, sub-optimal implementations of algorithms which explicitly model

event uncertainty tend to make better overall choices than alternative implementa-

tions, even when the amount of reasoning about possible events is reduced [29]. At

any rate, reasoning about event uncertainty is surely the only way to sensibly make

decisions about data association and other discrete portions of the hybrid estima-

tion problem. It is a matter of exploiting the prior knowledge which is available and

appropriately representing it in order to provide efficient yet effective algorithms.

There are many possible data association errors which can occur. They all amount

to mistakenly identifying a measurement with an incorrect target. The basic types

of data association error we consider are clutter and feature interaction. Clutter,

also referred to as spurious measurements, are sonar returns which do not correspond

to any modelable feature according to the measurement models being considered. In

other words, they are returns that are not properly explainable given the prior models

available to the algorithm. Feature interaction occurs when two or more modelable

features are close together. Measurements from the features may be improperly asso-

ciated, leading to a confusion between the features. Other data association errors are

more typical in the target tracking problem and include splitting and merging targets

and changing target behavior. Overall, data association errors have a greater impact

for moving targets, but model uncertainty can give rise to complex data association

problems as well.

6.3.2 Clutter

Clutter may be present due to a variety of causes. It may be due to real measure-

ments which are not representable with the measurement models provided. It may
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be discrete noise. Gating algorithms and conservative track initiation strategies can

take care of most clutter. The difficult cases are when a spurious measurement oc-

curs where a valid measurement is expected. In this case, the predominant effect is

that the clutter can be ignored only if it is further from the expected measurement

than a valid return. If it is closer to the expected return than the valid return (if

one exists), the spurious measurement will most likely be chosen as the appropriate

measurement to match with the feature in question. Clutter thus has the effect of

occasionally giving the algorithm too much confidence in its estimate. When dense

clutter is encountered, this can lead to filter divergence.

There are a number of ways to address clutter. The first is to ignore possible data

association errors due to clutter. If the clutter is not too dense, the feature probability

of detection is not too low, and there is enough process noise to compensate for

erroneous associations, this strategy can be effective. If clutter is non-uniformly

dense, features in cluttered regions can simply be ignored in favor of less ambiguous

information sources. Finally, if a given sonar return has a great deal of clutter (either

overall or in the region of a particular expected measurement), the algorithm can

assume all returns (or all returns in that area) to be spurious for that time cycle.

By essentially throwing out the ambiguous data, features can be tracked without too

much additional complexity or probability of data association error, provided enough

unambiguous measurements are available. Throughout this thesis, no special steps

are taken to ensure that clutter is rejected.

6.3.3 Feature interaction

Feature interaction in similar to clutter in effect. The real problem arises when valid

measurements appear closer to the expected measurements of opposing features than

to their respective expected measurements. There is, of course, a limit of distinguisha-

bility for features which depends on the measurement noise, the feature process noise,

and the model uncertainty. Without special precautions, this situation can cause a
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rapid explosion in complexity. The obvious answer is to ignore features which are

unresolvable. This, however, requires a method of reasoning about the resolvability

and distinguishability of features. In this thesis, no special steps are taken to reduce

the impact of feature interaction.

6.4 Summary

In this chapter, we have examined the problem of concurrent mapping and localization

to determine how different types of uncertainty interact and affect the problem struc-

ture. We have examined the growth of vehicle position uncertainty and identified two

regimes of error growth. In the first, which is dominated by model uncertainty, vehicle

error increases with the square root of distance traveled. The second regime, which

is dominated by navigational system uncertainties, involves vehicle errors that are

linear with distance traveled. This linear growth range is the limiting factor in dead-

reckoned missions; it arises because of the ever-increasing coupling between navigation

estimates and position estimates. External position information has the potential to

reduce this coupling to recover a more acceptable error growth regime. Additionally,

measurements provide real information about the vehicle position through time. We

have quantified (1) the information content of individual measurements and (2) the

summed information content of features. Two factors affect the usefulness of features

during transiting operation: (1) the transverse distance from the vehicle path and

(2) the range of the relative bearing while in view. The most useful features for this

operational paradigm were 10 to 40 m from the vehicle path. Such features proscribe

significant paths relative to the vehicle egosphere and remain within the viewable area

for many measurements. Finally, the errors which may arise from data association

uncertainty were described. In the next chapter, we analyze the performance of the

integrated mapping and navigation algorithm.
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Chapter 7

Performance Analysis of IMAN

In this chapter, we analyze the level of performance achieved by the integrated map-

ping and navigation algorithm. We begin with a summary of the testing condi-

tions. Monte Carlo simulation is used to explore IMAN performance. Environmen-

tal conditions, point-like features, and a number of performance metrics are dis-

cussed. Dead reckoning and an augmented stochastic mapping algorithm developed

by H. J. S. Feder (both with and without cross-model correlations) provide contrasting

algorithms. Results are presented which show the effects of clutter density, feature

separation, and feature ordinality on IMAN performance. Several issues regarding

IMAN performance are then discussed. The estimator performance and convergence

are considered, and algorithmic complexity is assessed. A number of failure modes

are also examined. The loss of valid tracks is considered, along with causes, impact,

and potential improvements. The completion rate of the algorithm is discussed, and

the role of complexity in overwhelming the algorithm is described. Potential im-

provements, both to improve handling of ambiguous situations and to recover from

complexity-based failure, are considered. The phenomenon of map slip, in which sud-

den global errors are developed while relative mapping performance remains good,

is discussed. The impact of feature ordinality and environmental conditions on map

slip is highlighted, and possible improvements to address the problem of map slip are
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considered. Finally, a summary of the IMAN performance analysis is provided.

7.1 Testing IMAN performance

There are two primary purposes for performance analysis testing of the current im-

plementation of the integrated mapping and navigation algorithm: (1) assessment

of the validity of IMAN as an approach to concurrent mapping and localization and

(2) identification of the limitations of this implementation. The focus points for this

research, as stated in Chapter 1, are enhancing the estimation and decision-making

ability of the estimation process and managing algorithmic complexity. Because of

this, there are two factors to consider in evaluating the success of this enterprise.

First, does the algorithm, complexity issues aside, provide improved estimation as a

result of the consideration of multiple hypotheses within an non-separable estimation

framework? Second, have the methods for complexity management developed in this

thesis improved the robustness of the algorithm in ambiguous situations? The answer

to both of these questions is yes, and although the current implementation is by no

means the last word on IMAN, it provides a valid and useful basis for further research.

7.1.1 Monte Carlo simulation

The complexity of the concurrent mapping and localization problem precludes a

closed-form analysis of performance. Monte Carlo testing [85] is the use of the statis-

tics of many simulations to characterize the range of performance achieved over the

full space of possible mission realizations. Ten different mission scenarios were se-

lected to aid in examining IMAN performance. One hundred simulations were run

for each of these scenarios. Each mission consists of a thirty second stream of mea-

surements. The performance metrics presented are the population statistics of these

sets of simulations.
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7.1.2 Environmental conditions

While the prior models considered are fairly simple, realistic environmental contexts

were desired. There are a number of environmental factors that are not explicitly

modelable using the prior models, but which must be resolved by the estimation

process. First, there is the presence of clutter, or spurious measurements. Clutter

arises in real data sets for a variety of reasons. For example, clutter may be caused

by unmodeled feature types, multipath reflections, channel variations, and electronic

sensor noise. In all of these cases, the spurious returns provided by clutter can

not aid in the estimation process given the set of prior models used. To simulate

clutter, a Poisson arrival rate is assumed over the footprint of the sensor, which has a

range of 300 meters and a forward view angle of ±400, as shown in Figure 7-1. This

arrival rate is characterized by a single parameter, A, the expected number of spurious

measurements within the viewable region. Once the number of spurious returns is

determined, actual measurements are calculated. The clutter returns are uniformly

distributed over the viewable region in measurement space (i.e. range and bearing).

Note that these assumptions result in a relatively higher density of perceived targets

near the vehicle in Cartesian space. This is an appropriate characterization of clutter

that arises from electronic noise in the sensor itself, but does not necessarily reflect

the spatial distribution of unmodelable features or multipath. 1

To address the possibility of model errors in the vehicle dynamic model, an un-

known cross-current is simulated. While this current is not extreme, it results in a

vehicle drift in the transverse direction, as illustrated in Figure 7-2. This drift was

unobservable from the dead reckoning measurements provided to the vehicle. While

dead reckoning systems can be made robust to modeling errors by increasing the as-

sumed process noise of the vehicle, they are incapable of resolving systematic error

growth resulting from such unmodeled effects.

1Note that actual feature positions are more properly modeled fractally than by the assumption
of a uniform distribution. Also, some causes of clutter, such as multipath and channel variation, are
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Figure 7-1: Clutter and the sonar footprint. The forward-looking sonar [67] has a
range of 300 meters and a view angle of ±400. Twenty five clutter returns are shown.
Clutter is uniformly distributed in measurement space, which results in a greater
density near the vehicle in Cartesian space.
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Figure 7-2: Current-induced vehicle drift. An unknown cross-current flows east,
resulting in a transverse drift by the vehicle, which is assumed to be heading north.
This drift is not observable from dead reckoning sensors, that is, measurements of

speed, depth, and orientation.
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7.1.3 Features

The primary task in defining the environmental context is of course the specification

of features. For this performance analysis, actual point-like features are assumed to

be present in the environment. As discussed in Section 3.1.3, this assumption is not

necessary for the IMAN algorithm to remain valid; however, it does make the repre-

sentation of the environment (external to the algorithm) simpler and more compact.

The only concession to the stochastic nature of actual environmental objects is the

inclusion of a substantial amount of process noise in the feature model. Actual feature

representation, that is, external to the algorithm, is assumed to be exact, although

measurement noise is also included. The measurement models used as prior models

are assumed to be accurate for the purposes of random measurement generation.

To explore the role of clutter, a single feature is used in five different scenarios.

While this results in a strictly unobservable global system, it allows the consideration

of clutter independent of additional factors, such as track interaction. Two features

are used to explore the effects of feature separation on estimation performance. These

features are initially located at identical ranges from the vehicle. This complicates the

problem by maximizing their possible interaction, as bearing is much more uncertain

than range. Finally, a set of simulations were run with eight features. While real

data often contains more features than this, we feel that these experiments illustrate

the range of performance of the IMAN algorithm and identify its current limitations.

7.1.4 Performance metrics

Three performance metrics provide the primary characterization of algorithm perfor-

mance: completion rate, global error, and relative error. Completion rate CE is the

percentage of simulations which run to completion. During some runs, the decision

process becomes too complex for the integrated mapping and navigation algorithm.

dependent on vehicle and feature state.
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A complexity fault is a failure to complete a simulation due to decision-making
complexity. When a complexity fault occurs, the number of state estimates
being considered rapidly increases until available memory is exhausted.

The completion rate is a measure of the robustness of the algorithm to the complexity

of a given scenario. In general, complexity increases as ambiguous situations become

more common, or likely.

Global error 9e is the mean-square error of the mapping and navigation portions

of the estimation process (errors in the navigational system are not included). At each

step, the vehicle has a number of feature tracks and a vehicle track. For each track,

the most likely updated state estimate is chosen as the track state estimate. A simple

nearest-neighbor procedure is used to match proposed tracks to actual targets. 2 For

each actual feature or vehicle track C, the actual object location t is subtracted from

the most likely estimate i to determine an error vector

(e = (t - (', (7.1)

where x is used to denote a vehicle or feature state and ( is an index over all tracks

that have been matched to actual objects, i.e. the vehicle and actual features in the

environment. Any additional tracks proposed by the algorithm are ignored. The set

of all these error vectors is denoted

E= {(e} . (7.2)

2Remember that the vehicle has no knowledge about what or how many features there actually
are. Tracks that do not correspond to any actual feature are sometimes generated.
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Figure 7-3: Global and relative error metrics.

The global error is then defined as

E = ZceT e (7.3)

The relative error IE represents the success of the algorithm at estimating the

relative positions of the vehicle and features. If the navigational objects are considered

pairwise, the components of the relative error are the squared differences between the

estimated and actual vectors connecting each pair, as shown in Figure 7-3. In terms

of the errors themselves, the relative error can be represented as

c N (() 9E - E, C~ e T c 2 e

EN() = (7.4)
N (()- 1

where N (C) is the number of navigational objects, that is, the number of elements in

the set E.
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7.2 Alternative algorithms

In order to provide a benchmark for IMAN performance, additional navigational

algorithms are also considered in these performance analysis simulations. While these

algorithms do not capture the complexity of the hybrid estimation problem to the

extent that IMAN does, they provide a sanity check regarding the validity of IMAN

and the effects of taking this more complex approach to concurrent mapping and

localization.

7.2.1 Dead reckoning

Dead reckoning is navigation using only the navigational system estimates of vehi-

cle kinematics to estimate vehicle position. No external feature measurements are

incorporated. Dead reckoning measurement updates are performed in the same way

(and using the same models) as for IMAN and the other algorithms. Because of

the simulated current, dead reckoning performs consistently worse than the other

algorithms. Also, since relative measurements are not incorporated, there is little

difference in dead reckoning performance over the scenarios tested. A representative

comparison of IMAN and dead reckoning is shown in Figure 7-4. The dead reckon-

ing algorithm fails to recover the drift of the vehicle in the cross-current. While the

dead-reckoned estimate is robust to this drift, this robustness comes at the price of

extremely uncertain estimates.

7.2.2 Augmented stochastic mapping

As discussed in Chapter 2, stochastic mapping is unable to handle data association

uncertainty due to the assumption that feature matching is provided along with mea-

surements. This is particularly relevant when considering clutter, as no ready basis

exists for explaining such a phenomenon within traditional stochastic mapping. An

augmented stochastic mapping algorithm developed by H. J. S. Feder which is ca-
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Figure 7-4: Comparison of IMAN and dead reckoning. The actual vehicle track, shown
by a solid line and ending at a triangle, starts at (0,0). The vehicle is assumed to head
directly north, but is pushed east by a cross-current. Three features, indicated by
squares, are located at (50,-5), (50,20), and (65,0). The dead-reckoned vehicle path is
shown by a dotted line, with the final position estimate marked with an asterisk. The
three-sigma highest density region (HDR) is also shown by a dotted line. The IMAN
estimated vehicle path is shown by a dashed line. The final estimate is indicated
by a diamond, with the three-sigma HDR also shown by a dashed line. The final
IMAN feature estimates are marked by stars. Their three-sigma HDRs are shown
by dashed-dotted lines. The IMAN algorithm is able to estimate vehicle drift with
the aid of sonar measurements. IMAN also provides a more accurate error estimate.
Accuracy in calculating the estimate error is important when making decisions based
on the quality of the vehicle navigation estimate.
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Figure 7-5: Augmented stochastic mapping covariance matrices. The ASM1 algo-
rithm retains all cross-model correlations. ASM2 discards the cross-model correla-
tions, as does IMAN.

pable of operation in clutter is used as an alternative algorithm for comparison with

IMAN. Data association is resolved using a nearest-neighbor algorithm [5]. Thus

discrete decisions are completed instantaneously from the point of view of the con-

tinuous estimation problem; delayed decision-making is not possible. This separable

approach to hybrid estimation is similar to, but less robust than, the probabilistic

data association filter developed by Bar-Shalom [5, 18].

Two versions of the augmented stochastic mapping algorithm are considered. The

first, ASM1, provides the complete estimate, including a full account of the cross-

model correlations, which are ignored by IMAN. The second version, ASM2, drops

the cross-model correlations. The result is a block diagonal covariance matrix for

the state estimates. Figure 7-5 illustrates the covariance matrices used in these two

augmented stochastic mapping algorithms.

7.3 Results

Figure 7-6 shows a representative run, illustrating some common aspects of the ex-

perimental simulations. Identical actual vehicle dynamics and environmental effects

are present in all simulated runs. The differences between runs are the number of fea-

tures present, the actual feature locations and the measurement values received. The
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7.3 Results

Table 7.1: Parameters characterizing dead reckoning measurement errors.

Table 7.2: Parameters characterizing sonar measurement errors.

vehicle is subject to an a priori unknown cross-current which results in a 10% trans-

verse drift rate. The vehicle assumes that it is heading directly north in a straight

line. Uncertain measurements of vehicle depth, speed, pitch, and yaw are available

at each time cycle. Table 7.1 lists the noise parameters for these dead reckoning mea-

surements. Sonar measurements provide the relative range and bearing to apparent

targets. The noise parameters used to model the sonar measurement process are listed

in Table 7.2. The algorithms use accurate measurement models of these processes.

The prior models for the vehicle and point-like features, as developed in Chapter 3,

are used to model vehicle and feature tracks. The parameters used to specify these

models are shown in Tables 7.3 and 7.4. In all runs, the vehicle starts at the origin

and proceeds to the north with a speed of 1 M. The cross-current causes an easterly
S

drift of 0.1 M. The vehicle processes measurement data at one second intervals. Runs
S

continue for thirty seconds unless the algorithm is overwhelmed by complexity.

Parameter Value
Depth measurement variance 25 cm2

Speed measurement variance 0.25 -
Pitch measurement variance 0.26 deg2

Yaw measurement variance 0.26 deg 2

Parameter Value
Probability of detection 0.9
Probability of false alarm 0.3
Range measurement variance 0.5 m2

Bearing measurement variance 2.6 deg 2
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Figure 7-6: An example IMAN simulation. The actual vehicle is indicated by a
triangle; its path is a solid line. The vehicle is assumed to be heading directly north,
but drifts to the east in the presence of an unknown current. Two features, indicated
by squares, are present at (75,-10). The estimated vehicle is indicated by a diamond;
its path is a dashed line. The three-sigma error ellipse for the vehicle is also shown
with a dashed line. Each proposed feature is marked by a star. The three-sigma error
ellipses for the feature estimates are shown by dashed-dotted lines. Note that in this
case, a false feature is being considered, due to the presence of clutter. While the
relative map is quite accurate in this example, there is some map slip; note that the
actual vehicle falls outside of the estimated vehicle highest density region.

Table 7.3: Process noise values for the vehicle model.

Parameter Value
North coordinate process noise variance 0.5 m2

East coordinate process noise variance 0.5 m2

Depth process noise variance 0.0025 m2

Speed process noise variance 0.01 2

Pitch process noise variance 2.6 deg2

Yaw process noise variance 2.6 deg 2



Table 7.4: Process noise values for the point-like feature model.

Component Value
North coordinate process noise variance 2 m2

East coordinate process noise variance 2 m2

7.3.1 Clutter

The effect of clutter on navigation and mapping is explored using a single feature and

varying clutter densities. The single feature is located at (75,10) for all of the clutter

scenarios. The expected number of spurious returns A varies between 0 and 4. Spu-

rious returns are uniformly distributed in measurement space. Figure 7-7 illustrates

the amount of clutter for each scenario. Apparent measurement locations are shown

based on the actual vehicle position. Measurement noise and vehicle navigational

uncertainty provide additional ambiguity.

Completion rates for the various algorithms are shown in Figure 7-8. While IMAN

has no problem completing the runs in the clutter-free case, significant failure rates

are found as clutter density is increased. In the densest clutter considered, IMAN is

able to complete only 34% of the runs. This is due to increased situational ambiguity

when spurious returns gate for several time cycles in a row.

Figure 7-9 presents the global and relative errors for the IMAN and augmented

stochastic mapping algorithms. When complexity faults do not occur, the IMAN algo-

rithm provides a global mapping performance which is comparable to the augmented

mapping algorithms. The relative mapping performance of IMAN is significantly

better than that of the augmented stochastic mapping algorithms. Divergence of the

estimate is not a problem despite the unobservability of the system. By ignoring

cross-model correlation, IMAN allows map slip, but retains accuracy in estimating

the relative vehicle and feature positions.

2017.3 Results
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Figure 7-7: Examples of clutter density. The expected number of spurious returns per
cycle A is varied. A single feature at (75,10) is measured each cycle with a probability
of detection PD = 0.9. Apparent measurement locations are shown based on the
actual vehicle position through thirty measurement cycles.
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Figure 7-8: The effect of clutter density on completion rate. Clutter density is char-
acterized by the expected number of spurious returns during each scan A. While the
IMAN algorithm has no problem in the clutter-free case, higher clutter densities lead
to a large number of complexity faults.

7.3.2 Feature separation

To explore the effects of track interaction, we consider the effect of feature separation

on navigation and mapping performance. Two features, at (75, ±-2), are used; the

feature separation p is varied between 10 and 40 meters. Clutter is also added, with

an arrival rate A = 2.

The completion rates for IMAN in these four scenarios are shown in Figure 7-

10. IMAN had significant difficulties overcoming the complexity of reasoning about

feature separation. A completion rate of 0% is obtained for feature separation of

10 meters. As p is increased to 40 meters, a 75% completion rate is obtained. The

difficulties of separating feature tracks are complicated by the fact that the initial

ranges are identical and clutter is present. The significant failures of IMAN in this case

underscore the need for improved robustness, for example through the implementation

of default hypothesis and recovery from complexity faults.
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Figure 7-9: The effect of clutter of navigation and mapping performance. The global

mapping performance of IMAN is comparable to the performance of the augmented

stochastic mapping algorithms when complexity faults do not occur. IMAN out-

performs the ASM algorithms in relative mapping. Note that the relative error for

IMAN is considerably smaller than the global error as a result of ignoring cross-model

correlations.
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Figure 7-10: The effect of feature separation on completion rate. Track interaction
remains a research issue for IMAN and is the largest factor in precluding a robust

implementation. When features are 10 meters apart, the IMAN algorithm cannot
disambiguate the tracks. As feature separation increases, IMAN fares better. These
scenarios included a clutter arrival rate of A = 2. The baseline performance for this
clutter density is reached with a feature separation of 30 meters, indicating that at
this distance, features are essentially distinct to the algorithm.
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Table 7.5: Results of the eight-feature experiment.

Algorithm Global Error Relative Error Completion Rate
IMAN 13.51 1.56 15
ASM with correlations 20162.79 22144.06 100
ASM without correlations 22663.18 24964.86 17

Figure 7-11 shows the global and relative error metrics for the feature separation

scenarios. When complexity faults do not cause failure, IMAN demonstrates consider-

able performance gains in both global and relative mapping. Delayed decision-making

and the consideration of discrete events allows better estimation choices to be made.

7.3.3 Feature ordinality

Performance in the presence of more features is illustrated by a scenario with eight

features located at (75, ±20), (100, ±20), (125, +20), and (125, +20). No clutter

is present in these simulations. Figure 7-12 shows measurements and IMAN perfor-

mance for a representative simulation. Performance metrics for the various algorithms

are listed in Table 7.5. The low completion rate for the ASM2 algorithm is due to

track loss due to filter divergence, rather than complexity.

7.4 Discussion

7.4.1 Estimator performance

Estimator performance for the IMAN algorithm is quite promising. In situations

where complexity faults do not cause failure, IMAN outperforms the augmented

stochastic mapping algorithms. Divergence of the estimator has not been as issue, but

could become a difficulty for longer missions. This could be addressed by refinements

to the filtering process [99, 84, 27, 39, 28, 91], for example, incorporating higher-order

filters, iterated Kalman filtering, or bootstrap filtering.
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Figure 7-11: The effect of feature separation on mapping and navigation performance.
While IMAN is unable to complete highly ambiguous measurement sets, its perfor-
mance for completed sets shows substantial gains. IMAN outperforms the augmented
stochastic mapping algorithms in both global and relative mapping.
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(a) Navigation and mapping performance. The actual vehicle is marked by a
triangle; its path is shown by a solid line. The estimated vehicle is marked by
a diamond. Its path and three-sigma error ellipse are shown by a dashed line.
Eight actual features are present and are marked by squares. Feature estimates
are marked by stars; their three-sigma error ellipses are shown by dashed-dotted
lines.
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Figure 7-12: Representative results with eight features.
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7.4.2 Track loss

Track loss has not been a problem for IMAN in these experiments. The few com-

pletion failures that occurred for the augmented stochastic mapping algorithms are

due to a combination of initial vehicle uncertainty and track loss (or divergence).

As longer missions are considered, this may become an issue. However, the relative

error performance of IMAN suggests that track loss is less of a problem when relative

mapping schemes are utilized. The role of map representation and the relationship

between global and relative mapping need to be more fully considered to address this

question.

7.4.3 Complexity faults

Complexity faults are a significant remaining problem, as can be seen by the com-

pletion rates (the overall completion rate was 53% over 1000 missions). The major

cause for this is track interaction and clutter density. Suggestions for addressing

this problem are discussed in Chapter 5. In spite of the complexity problems associ-

ated with hybrid estimation, we feel that IMAN represents the correct approach for

CML. The performance when complexity is adequately managed, and, in particular,

the relative mapping performance, bear this out. The significant intrinsic complexi-

ties engendered by the ambiguity of concurrent mapping and localization cannot be

effectively overcome using simplistic techniques. While managing complexity will re-

main a major concern, aggressive confrontation of this problem from a determinedly

decision-theoretic standpoint is the key to realizing true performance gains and robust

operation.

7.4.4 Map slip

Map slip is a significant and poorly understood phenomenon in concurrent mapping

and localization. Manifesting particularly when few features are available, it is related
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to the observability of the system. The interdependence of observability, modeling

flexibility, and model uncertainty is poorly understood, perhaps because of the success

of Kalman filtering in many situations despite its extensive assumptions. In order to

develop more effective hybrid estimation algorithms, a deeper understanding of these

issues is essential. The amount of map slip increases if cross-model correlations are ig-

nored, but this assumption does not necessarily impair relative mapping performance.

Practical methods for addressing map slip depend on an improved understanding of

the relationship between global and relative mapping and the map representation

problem in general.

7.5 Summary

In this chapter, we have examined the performance of the integrated mapping and

navigation algorithm and contrasted it with dead reckoning and augmented stochas-

tic mapping approaches. Monte Carlo simulation was used to capture the range of

performance for a variety of scenarios. Global error, relative error, and completion

rate were used to evaluate the estimation and decision-making performance and com-

plexity management capabilities of the algorithms. The effects of clutter density,

feature interaction, and feature ordinality on navigation and mapping performance

were considered. Finally, a number of observations regarding these results were made.

In the next chapter, we draw conclusions about the work in this thesis and consider

future research directions.



Chapter 8

Conclusions and Future Research

We began this thesis with the recognition that the current state of the art in estima-

tion is insufficient to encompass the problem of concurrent mapping and localization.

There is a demonstrable need, however, to incorporate environmental information

more effectively as an aid to navigation and mapping. We have identified data asso-

ciation uncertainty, navigational uncertainty, and prior model uncertainty as the key

issues shaping the problem of CML. Existing approaches to concurrent mapping and

localization have failed to account for these uncertainties and so are prevented from

effectively reasoning about navigational events such as measurements and changes in

model class. Integrated mapping and navigation is an approach to the problem of

concurrent mapping and localization that is capable of addressing all of these uncer-

tainties. The goals of this dissertation have been (1) to develop a unified theory for

integrated mapping and navigation, (2) to formalize an IMAN algorithm, (3) to pro-

duce an operational codebase that can process realistic data sets of limited duration,

and (4) to provide an analysis of both the performance limitations imposed by the

problem of CML itself and the actual abilities of the algorithm as implemented. In

this chapter, we summarize the thesis and provide a roadmap for further development

in the areas of concurrent mapping and localization, reasoning about measurement

phenomenology, and integrating high-level vehicle control with data collection and
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assimilation. We begin by discussing the contributions made in this thesis toward the

theory of integrated mapping and navigation, the implementation of IMAN, and the

analysis of CML and IMAN. The overall impact of this research is briefly considered.

A number of future research directions are discussed, including the long-term research

potential of integrated mapping and navigation. Finally, we briefly summarize the

most cogent points from this dissertation.

8.1 Contributions

Integrated mapping and navigation involves a fundamental departure from existing

concurrent mapping and localization techniques. We feel that this generalization of

the problem is essential in the development of improved mapping and navigation al-

gorithms. As a result of this, the theoretical development and formalization of IMAN

represent the most important contribution from this work. Additional contributions

have been made (theoretically, implementationally, and analytically), but these will

necessarily be superseded as further research and development ensues. The state

of the art in concurrent mapping and localization has reached a point where recent

advances have been increasingly ad hoc. The paradigm shift embodied in posing

the question of integrated mapping and localization will, we hope, provide a unified

general framework allowing a more structured development of the field.

8.1.1 Theory

The major contributions of this thesis are theoretical. Here we summarize a number

of the developments made during the course of this research.

Problem formalization

The problem of integrated mapping and navigation is fundamentally more complex

that stochastic mapping and multiple-hypothesis tracking approaches because there
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8.1 Contributions

may be multiple possible vehicle states at any given time. This changes the structure

of the problem and demands novel techniques for keeping track of vehicle and feature

estimates and their interdependencies. We have formalized the statement of IMAN

and identified the structural artifacts engendered by the consideration of multiple

vehicle estimates.

Probabilistic basis for IMAN

We have developed the theory for integrated mapping and navigation within a Bayesian

probabilistic framework. The effects of suboptimal estimation (due to, for example,

nonlinearities, non-Gaussianity, and pruning) have been identified. The formulation

of state, hypothesis, and assignment likelihoods has been developed.

Delayed track initiation

A delayed track initiation technique was developed. This isolates reasoning about

track initiation from the main decision-based tree growth of the algorithm, signif-

icantly reducing the computational burden of considering track instantiation. The

probabilistic basis of this (suboptimal) approach has also been developed.

n-backscan assignment pruning

The application of pruning techniques, which are quite common in multiple-hypothesis

tracking, to IMAN has been considered. The impact of structural differences on the

robustness of these techniques was identified, and the n-backscan pruning algorithm

was successfully adapted for assignment-based pruning of hypotheses.

Specific prior models

We developed two concrete ontological models to enable tracking survey-class AUVs

and point-like environmental features. Measurement models for dead reckoning and

sonar interrogation of point-like features were also developed.
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8.1.2 Implementation

Implementation of the theory of integrated mapping and navigation is an essential

step is assessing the viability of such an approach. Also, structuring and programming

such a complex framework is no trivial feat. In practice, the implementation has

evolved alongside the theory, allowing a synergy between the object-oriented analysis

of the problem domain and the appropriate representation of theoretical elements. An

extensive codebase (e 20,000 lines) has been developed that implements a superset

of the concepts addressed in this thesis. This implementation has been designed for

maintainability and extensibility, with possible future developments in mind at each

step.

8.1.3 Analysis

Finally, a series of Monte Carlo simulations were performed to analyze the perfor-

mance of the integrated mapping and navigation algorithm. The performance analysis

is intended to aid in understanding the limits of the concurrent mapping and localiza-

tion problem itself and to assert the validity of IMAN as an approach to CML. The

present implementation of IMAN is necessarily preliminary; further developments

will rapidly eclipse the performance level shown herein. The essential point is an

understanding of (1) what the current implementation has accomplished and (2) why

it has accomplished that. Additionally, an understanding of the limitations of the

current algorithm is useful in considering the future development needs for integrated

mapping and navigation.

Navigational uncertainty and error growth

The connection between navigational uncertainty and error growth while dead reck-

oning was explored. Two regimes of error growth were identified, corresponding to

dominance of model uncertainty and navigational system uncertainty, respectively.
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8.1 Contributions

The potential for reducing the greater error growth rates caused by correlations be-

tween the navigational system and the position estimate was noted.

Information content of features

The Fisher information was used to assess the worth of point-like features as sources

of information for a common survey-class operational regime. While the Fisher infor-

mation does not bound estimate uncertainty, it does provide a useful quantification

of environmental information.

IMAN performance

The performance of IMAN was considered through Monte Carlo simulation of a num-

ber of simulated missions. Global and relative errors and completion rate were used to

assess the performance of IMAN and two augmented stochastic mapping algorithms.

IMAN displayed superior performance for those missions in which complexity-based

failure did not occur, demonstrating the negative impact of data association error

when the discrete estimation problem is oversimplified.

Map slip

Cross-model correlations are ignored in IMAN. This simplification increases the chance

of map slip, or the sudden increase in global error without relative error divergence.

However, the effectiveness of IMAN in minimizing relative error demands a reconsid-

eration of the map representation problem.

Remaining complexity issues

Track interaction has been identified as the most important remaining factor in

complexity-based failure of the IMAN algorithm. We have proposed a number of

potential solutions to address this problem.

215



8.2 Impact

In many ways, our conception of the navigation problem has remained fairly static

since the early 1960's, when much of the seminal work on Kalman filtering was done.

To be sure, many refinements have been developed, and our understanding of recur-

sive estimation has expanded tremendously. However, the inability to reason about

prior models themselves from within the estimation process has necessarily limited

the technologies which have been developed. Robust control was perhaps the first

application to systematically consider what happens when the prior models used for

filtering are incorrect or imprecise. We feel that the further development of naviga-

tion technologies depends on a shift of focus to incorporate not only the processing

of information within a set model framework, but also deliberation about the model

framework itself.

During this same period, a widening gulf has developed in the artificial intelligence

community, resulting in often completely independent focuses on high-level planning

and reasoning on the one hand and local reactivity and robustness to realistic en-

vironments on the other. These two goals indeed often seems at odds. Responsive-

ness and robustness often require truncated decision-making and the acceptance of

broad assumptions. The reasoning process is highly subjective and often must rely

on heuristic evaluations rather than provable optimality. Navigation has most often

been concerned with the low-level, data-focused, and deliberation-deficient side of this

dialectic. The time has come to bridge the gap between experience and understand-

ing. This thesis is a first step in this direction, an integration of the data provided by

sensors and the prior understanding of context. This reconceptualization of naviga-

tion to include not only the logical interpretation of measurements, but also a deeper

understanding of the events that transpire and the context in which they occur, has

the potential to provide a powerful lever toward the development of navigation and

mapping techniques that transcend the current paradigm and achieve truly intelligent

behavior.
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8.3 Future research directions

8.3 Future research directions

8.3.1 Theoretical extensions

A number of theoretical extensions were proposed in Chapters 3 and 5 to address

remaining issues in the algorithmic complexity of IMAN. This included the concept of

default hypotheses, which would allow graceful recovery from ambiguous situations.

There is also a need for development of additional feature ontologies. Empirical

consideration of sensor physics can be used to develop new classes of useful features.

The process by which such feature ontologies can be efficiently developed remains an

open question. Integration of the IMAN algorithm with higher-level vehicle control

(or even low-level dynamic control) poses another theoretical challenge.

8.3.2 Implementation improvements

Several improvements could be made to the implementation. Some specific recom-

mendations are provided in Chapter 4. Suggested improvements include an improved

interface to aid in integration of IMAN with vehicle or user-interface code. The rep-

resentation of resolved track in persistent form (i.e. the off-loading of these estimates

to disk) could improve the memory requirements of the algorithm. The code itself

is, of course, in an initial version as well. Iteration of the code design will undoubt-

edly remove any memory leaks present and improve efficiency. Specialized memory

management may improve performance and increase robustness to complexity.

8.3.3 Further analysis

A number of additional investigations regarding the limitations of CML and the per-

formance of IMAN are also recommended. A convincing theoretical analysis of the

effects of data association does not exist and would greatly enhance our understand-

ing of the problem domain. A better understanding of the effect of environmental
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measurements on the correlation between the vehicle position estimate and the nav-

igational system would improve our understanding of error growth limitations in

CML, possibly leading to an analysis of conditions under which vehicle position error

remains bounded. The role of map representation and map slip are related phenom-

ena which are crucial in advancing our operational understanding of IMAN and its

potential applications.

8.3.4 Long-range research potential

As stated above, the theory developed in this thesis has potential applications to wide

variety of fields. Navigation, in general, can benefit by an increased understanding of

non-separable hybrid estimation. This is particularly true when absolute positioning

systems (such as GPS) are unavailable or unreliable, such as underwater, in space,

underground, and on land in urban or cluttered environments. Further research di-

rections include sharing map information, recovering correlation information, and

multiple-vehicle implementations. As on-board computational abilities improve (and

algorithmic complexity is reduced) adaptive feature ontology becomes a possibility.

Also, interacting prior models can be considered in more depth. For example, by

providing a more extensive channel (environmental) model, both feature and envi-

ronmental models can be estimated, both parametrically and regarding navigational

events. Finally, the basis of prior knowledge representation can be extended to con-

sider target behavior in an increasingly deliberative manner. Situated navigation, in

which the vehicle reacts to recognized behavior in targets, becomes a possibility.

8.4 Summary

We have developed a novel approach to concurrent mapping and localization which

explicitly addresses the major sources of uncertainty in a generalized way. Signifi-

cant structural differences from existing algorithms have required the development
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of a more generalized theory for considering hybrid estimation in the presence of

navigation uncertainty. The two primary focus points for this research have been

(1) enhancing estimation and decision-making through the realistic representation of

the major classes of uncertainty and (2) managing complexity. The most important

contribution of this work has been the theoretical development and formalization of

the problem of integrated mapping and navigation. Additional contributions have

been made in implementation and an analysis of the limitations of CML and IMAN.

IMAN provides improved vehicle and feature estimation when track interaction does

not overwhelm the algorithm. While improved track initiation techniques have ex-

tended the operable range of IMAN by an order of magnitude, robustness to com-

plexity remains a problem. Further research is expected to enable recovery from

ambiguous situations such as those generated by track interaction. IMAN represents

a valid and viable approach to concurrent mapping and localization that is still in the

early stages of its development. The theoretical and practical advances realized in

this work have broad potential applications to AUV navigation, robotics in general,

and a wide range of non-separable hybrid estimation problems.
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