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Part I, Abstract

A piezoelectric transducer operating in the thickness vibration
mode 1s represented as a six terminal network. The mesh equations, electro-
mechanical impedance matrix and equivalent circuit valid for any general
conditions of loading and frequency are obtained. All properties of the
transducer can thus be determined once the impedance of the loads and the
energy sources are specified.

Part I1. Abstract

The electrical driving point impedance and admittance of a
plezoelectric transducer operating in the thickness vibration mode are
derived for all conditions of loading and frequency. Universal curves of
these quantities are included for particular cases of importance,
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I. ELECTROMECHANICAL IMPEDANCE MATRIX

1. rod )oY

The use of plezoslectric transducers to produce ultrasonic energy for research
and commercial purposes has increased rapidly in recent years. As a result, a theoreti-
cal analysis of the operation of such elements, which is capable of simplifying the work
of the equipment designer, is extremely desirable., The analysis presented here was under-
taken with this end in view,

Piezoelectric materials have the property of reacting mechanically to an applied
electrical stimulus, and reciprocally, reacting electrically to an applied mechanical
stimulus.l’z Such bilateral conversion of electrical to mechanical energy, and vice versa,
18 the function performed by the piezoelectric element in its various applications. Hence,
any theoretical conclusions must be in a form equally convenient for use with either
electrical or mechanical systems, .

Although piezoelectric crystals are useful when operating in many varied modes,
the mode principally in use for generation of the higher ultrasonic frequenclies is that
corresponding to Xecut Quartz - the so=called thickness vibration, This mode is charace
terized by the colinearity of the mechanical strain and electric fileld intensity vectors,
This is the mode to be considered here.

2. Statement of Problem and Assumptions

Pigure 1 illustrates the problem to be considered. The crystal, its physical
constants and geometry, and the loading acoustic media are specified, while the relae
tions holding among the four mechanical and two electrical parameters are to be determined.
The Rationalized m.k.s. system of units is employed throughout to facllitate the joint use
of mechanical and electrical parameters without the introduction of troublesome multiply=
ing factors.3

To simplify the prodblem, the following assumptions are made:

i. The crystal is an infinite slab with two plane, parallel
surfaces perpendicular to the direction of propagation
of the resulting acoustic disturbance.

ii. The two plane surfaces are slectric equipotentials,

1. W. G. Cady, "Piezoelectricity", McGraw-Hill, New York, 1946, An extremely complete,
well=documented book on electromechanical phenomena in crystals, An excellent
bitliography is included.

2, W. P, Mason, "Electromechanical Transducers and Wave Filters", Van Nostrand,
New York, 1942; p. 196 £f, An equivalent circuit for a piezoelectric transducer
is derived and used in several examples. Derivation of the Piezoelectric Equations
is given in Appendix C.

%, 0. W, Eshbach, "Handbook of Engineering Fundamentals", J, Wiley, New York, 1936,
Contains a useful table of conversion factors for various unit systems, p. 1=120 ff,
and a discussicn of existing systems, p, 3=02 ff,
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. Figure 1, The piezoelectrical medium terminated by two acous-

tic media and one electrical terminsl pair,

1ii. The mechanical energy dissipated in the piezoelectric
material is negligible,

iv. The electrical or mechanical stresses either applied
or produced are not sufficient to cause departure from
a linear operating region.

These assumptions are not restrictive when applied to the type of transducer
generally used for ultrasonic applications., In accordance with 1, the width of the
crystal must be very much larger than its thickness. In practice, this ratio is free
quently as large as 256 or 50 to 1; hence, this assumption is certainly valid, At very
low frequencies, edge effects assume importance since the thickness may be in the order
of the width, and a more elaborate theory is required.

Assumpticn 11 restricts the analysis to widths small compared to the electrical
wave lengths employed. This is certainly always the case except for operation in the micro-
wave region where the wave lengths become comparable to the crystal dimensions,

Assumption iii is not at all restrictive unless the transducer is operating in
a vacuum, in which case, all the mechanical energy is dissipated within the crystal, In
most cases of practical importance, the disslpation in the acoustic material and support-
ing structure greatly exceeds that in the transducer, and no noticeable error is intro=
duced by treating the dissipationless case,

In most cases of importance, iv is not limiting, However, if such a thing as
cavitation is encountered when transmitting into liquids, the mechanicel loading becomes
a function of the intensity and cannot be treated as a constant, In such cases, the
present treatment must be considered only as a first order theory which indicates trends
and approximate magnitudes rather than quantitative behaviour,
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3. ZErocedure

We shall regard the piezoelectric transducer as a circuit element: either
electrical or mechanical depending upon which terminals of the transducer are under
examination., By adopting this viewpoint, it becomes possible to characterize the trans=—
ducer completely by an electromechanical impedance matrix relating electrical and mech-
anical Mcurrents! to the assoclated "voltages", More will be said about the definition
of these terms in a later xaect'.i.on.4

Since the mode we are considering has two opposing crystal surfaces from which
ultrasonic energy is radiated, to represent this situation we can evidently introduce
four mechanical terminals, To affect the crystal electrically, it is necessary to attach
electrodes to these faces. This also makes it possible to introduce two electrical terme
inals, In this manner, the transducer is considered as a six terminal network and we
seek the "mesh" equations and the electromechanical impedance matrix which describes the
interaction occurring among the variables specified for the respective terminal pairs,

As 1s the case with pure electrical networks, we must first obtain the equam=
tions relating "voltages! and "currents" at the six terminals. PFrom this set of three
"mesh" equations, the impedance matrix can be defined and thenceforth used for design
purposes. We shall see that all properties of the transducer can be determined from a
knowledge of this matrix and the boundary conditions at the terminals,

The impedance matrix is developed in accordance with the following procedure:

i. Maxwell's Equations and the constitutive relations
satisfied by the plezoelectric crystal are intro-
duced to obtain the equations satisfied by the elec~
trical parameters,

ii. The Piezocelectric Equations which describe the inter-
relation between the electrical and mechanical var-
iables for plezoelectric materials are used to develop
prelimirary mesh equations in conjunction with the
results of 1.

111, Newton'!s First Law 1s used to derive the wave equation
satisfied by the mechanical displacement. After inte-
gration, the result is employed to obtain the final
mesh equations in the desired form,

iv. The impedance matrix follows directly from the mesh
equations by proper definition of the operational
process involved,

3.1 Introduction of Maxwell's Equations. In the Rationalized m.k.S. system of units,
Maxwell's Equations ar05

4., M, F, Gardner and J, L, Barnes, "Transients in Linear Systems", J. Wiley, New York,
1942, Chapter II contains a discussion of the equations of electricel and mechanical
systems both alone and in combination.

5. J. A. Stratton, "Electromagnetic Theory", McGraw-Eill, New York, 1941, Chapter I.

-3-



vxe+2 = o0 (1a)
vxr-8 - g (1b)
VeD = p (1e)
V.3 =0 (1a)

The constitutive relations for plezoeleciric materials operating in the mode considered

here are
B = A (1e)
D= e (@ -ad) (1)
D, = e (1eg)
D, = ¢,E (1n)

where the symbols represent the following quantities:
E

Electric field intensity - volt/meter

= PFlux density -- weber/sq, meter

= Magnetic fisld intensity -~ ampere-turn/meter
= Dielectric displacement =~ coulomb/sq. meter
= Current density —. ampere/sq. meter

Charge density =~ coulomb/cubic meter

= Permeability -- henry/meter

= Inductive capacity —- farad/meter

= Piezoelectric constant —— volt/meter

™Mo w0 4O W
]

Mechanical displacement —- meter

It is to be understood that all variables are functions of both space and time until
proved otherwlse,

In view of our original assumption of equipotential, parallel, plane surfaces,
infiuite in extent, 1t is evident that E =E =0, and O /0y = O [0z = 0, From (lg)
and (1h), we find that Dy =D, = 0 and by expanding V x E into its rectangular components,

it 1s clear also that VY x E = O, From the former condition and (lc) we obtain

oD

R (22)
while the latter and (la) result in

L - o, (2v)




From this result and (le), it follows that B and H are independent of time. Ve
know from physical considerations that if a time varying voltage ls applied to the electri~
cal terminals, B, D, and J must also vary with t in the same way. We found above that H,
and therefore V x H is independent of t; hence from (1b) we see that V x H = O, Since both
Vx Hand V* H are zero, H itself must be a constant vector, and if no external sources
of B are present, we are free to impose the conditions that

B =H =0 . (3)

The charge density, p, appearing in (1e) is real charge density as opposed to
polarization charge density, usually denoted by p!. As the crystal is a dielectric, p is
zero except on the surfaces, whereas p'! is certalnly not necessarily zero. Thus, within
the crystal we find that

—== = o; (2¢)

hence D is independent of position = varying only with time, This is an important result
and will be used in a later section,
We found above that V xE = 0 and Ey = Ez = 0, This permits us to set

in the usual manner, where ¢ is a scalar potential function. Using the definition of

voltage difference,
P2

Vz =j ay ,

#

it 1s immediately evident that

This result will be needed in the later development of the mesh equations,

By choosing the time variation of the impressed voltage to be e'jwt in the usual
manner, it is clear that the time derivatives of all the variables are simply the
variables multiplied by jw. We found that V x H = O, hence (1b) becomes

ODx

Ir T T TR

Remembering that I = J * A, we finally arrive at the expression for current

1 = =JwAD , (5)

3

which is also required for the derivation of the mesh equations. It is no longer
necessary to continue the use of subscripts since we found a variation only with t and
X =- y and z are no longer of concern.



The above detailed discussion of perhaps perfectly obvious facts, has been
included for the sake of completeness and rigor. It should be noted that an important
result of the above discussion is that no electromagnetic radiation is generated by the
transducer since Pbyntihg's vector, B x H, is zero., This is a direct consequence of the
assumptions concerning the shape of the crystal and the electrode arrangement, and only
applies when these assumed conditions are valid.

3.2. Formulation of the Mesh Equations., The behaviour of the plezoelectric medium for
the mode considered here is described by the Pilezoelectric Eq,uations6

-P = a°x+dD (Ga)
E = 4 >x + 1D . (6v)
These correspond to the equivalent equations for normal elastic dielectric materials7'8
_ X1 -0o) k£ _ ¥
~P = YOGz ex - o ox (6c)
£ =210 = w0 (64

where:

P = Pressure —- newton/sq. meter
Stress to strain ratio for infinite slad
with D = 0 -- newton/sq, meter

®
]

= Mechanical displacement —— meter

= Pilezoelectric constant == newton/coulomb or volt/meter
Dielectric displacement —— coulomb/sq. meter

= Electric field intensity -- volt/meter

= Rlectric intensity to dielectric displacement ratio
with 3§/dx = O == meter/farad

(reciprocal of inductive capacity)

o H U a ™
1

~
|

Young's modulus -- newton/sq. meter
o = Polsson's ratio -- dimensionless,

6. Mason: op, cit., p. 202, formulae 6,32, This set is converted to apply to the
thickness vibration by changing the y subscripts to x, Displacement is introduced
rather than charge from the relation Q = 1/4ﬂ {Disp.), and the two sets become
similar in form put not in units. This conversion is made if a =y /10, 4 = 3 , 1049
and b = 36n , 10°/k. Mason's values for the coefficients for diffePent crystals
can be used above if these changes are made.

7. G. Joos, "Theoretical Physics? Stechert. New York, 1924, p. 165 (with 8op = €5, = o,
P,. == Pand Y = E) 33
11 *

8. Stratton: op., cit., p. 10 ff,
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3.2,1. Mechanical Mesh Equations. From the first Piezoelectric Equation, (6a) and (5),
we have

Y
1
-F = 3'3'5“3%113 (72)
o
- —_—s _ 4.
- Py & 3x "~ Juk 13 ° (70)

where the subseript 1 refers to x = = £/2, and 2 to x =£/2, In order to combine both
mechanical and electrical variables in one equation, it is frequently convenient to
consider veloclty as the analogue of current, and force the analogue of voltage. It
should be noted that this choice is not unique; other analogues are perfectly permis-
sableg. We shall follow this procedure here: but since pressure and not force is the
parameter of interest, it is convenient to consider velocity analogous to current density,
or surface area times veloclty analogous to current.

In order to put (7a,b) in proper form, it is necessary to find the relation
between 3§/dx and é since the latter is the desired variable., This can be done by inte-
gration of the wave equation which expresses § as a function of x and t. By application
of Newton's First Law to a small volume element of density p == kg/m:3 -~ as shown in
Mg, 2, we can write

d3

P(x )——}----t> P(x+dx)

|
!
I
[
1
I G

X dx x+dx
Figure 2, TForces acting on small volume element,

2
pdxdydz ':—g = [P(x) - P(x + GX_)] dydz .
t
Since

Plx + dx) = P(x)+9-§§xldx+.... .

we find, after neglecting higher order terms,

Upon differentiation of (6a) and introductiocn in the above, we obtain

2% _ %X,
btz bx?' ox

p

9. Gardner and Barmes, op. cit. p. 60 ff.
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Recalling from (2c) that D is independent of x, we finally obtain the simple wave equation

2 2
.1 (82)

2 2.2 °* a
ox c™ ot

where
c = f-g (8v)

is the velocity of propagation of the elastic wave in the pilezoelectric medium,
Assuming a time varlation of the form ert in accordance with an earlier
discussion, this integrates simply, and we have

I TR T (9)

where

= 8 o 20
k=3 =2
w = angular frequency = radian/sec,
A = wavelength — meter,

This form of solution represents the mechanical displacement as the superposition of two
traveling waves; one propagating in the positive x direction, and the other propagating
in the negative x direction,

Upon differentiation, we find

o€
-—a-]; = Jk{._ Ee'jo + Yo~ 0| gJut (10a)
13
—ss = dk€+ ~Je +‘Ye"°]e'jmt ’ (10b)
where
o = 3—‘2&
€=
Y = »
€
and .
£ = Jw£+E3° + Yo~ I8| 0t (11a)
5'2 = Juf, E"J" + el 9|t | (111)

Solving for f_‘_ in (11a), and substituting this in (10a), we obtain

=8




2 ——= . 1
ox w Ye -39 + e"O ( %)
In a similar manner, by using (11b) and (10b), we have
K - T
-?53 —4 vel? o 739 . (12v)
¥x JO JO
Recalling the fact that
X =x
tarhx = &—=f—
" + o
if we define
Y = 32* N (13)
the above equations take the simple form
&, kb '
s R BT (140)
x w
43 k
—g PR -1
= =% tanh(¥+ 30) (140)

These two latter equations can now be substituted in(7a,b) to give the proper
forms of mesh equations which describe the transducer from the mechanical terminals, By
80 doing, we obtain finally

P, = - %‘-’- tamh (¥ = 3Q) Aél + -&; 13 (15a)

P, = P-Qtanh(‘l’-rgo)AE "3

s (15v)

01&3

where we have included the relation %‘ = czp .% . %; = pc . These equations have
the desired form, but an expression for Y in terms of the mechanical boundary conditions
is required in order to make them more readlly usable.

If the ratio of pressure to particle veloclty is defined as acoustic impedancelo.
the boundary conditions at x = = £ /2 and x =2 /2 are specified by stating the acoustic
impedances of the loading media. These are determining characteristics of materlials, and
in general, are both complex and functions of frequency. It should be noted, that the
acoustic impedance for a wave traveling in the negative direction in a given medium equsls
the negative of the impedance for a wave traveling in the positive direction. This is
sinply seen physicelly from the fact that at a particular point of reference, the pressure
is the same for both waves, but the velocities have opposite signs.

10, P. M, Morse, "Vibration and Sound", McGraw-Hill, New York, 1936, p. 191 £f,
=G




With this understood, the mechanical boundary conditions are imposed by

stating
P
1
- a = (16a)
34 &
P
s = -é (16v)

Employing (15a) and (16a), we find
-3161 =  potanh(V - 30)5 +JoaA I
and similarly from (15b) and (16b)

3252 = = potanh(y + Jo)éz + 3& I, .

Reverting to the original exponential form for tanh x and the defining relation for V¥,
(13), these become

. -0 38 -
Y -
b -l oo
vol® o o~3°

By introducing the expressions for él and éa from (11a) and (11b) respectively, the two
equations can be manipulated to solve for Y in terms of the boundary impedences and the
constants of the crystal. The resulting expression is

l'cl +1)e%° + (L’ 1)e~°

[(; c 16 ¢ - e’ 0e)
where
-
Finally, from the expression fory, (13), we obtain
¥= 11 € e e v (;?- - 7 . (19)

2 (Lz +1)e9° + (Cl - l)o"‘10

Having determined the value of “’for any general conditions of loading, eguations
(15a,b) are complete, All the quantities are known with the exception of the variables
P, F¥3 , and I. These, however, are just the quantities of interest, so that the remaining

=10




mesh equation deseribing the transducer from the electrical terminals must be derived.
This will then give three equations and three unknowns from which the quantities of inter-
est may be obtained.

3.2.2, Elecirical Mesh E ions, By integrating the second Piezoelectric Equation, (6b),
- with respect to x between the limits - £/2 and £/2 and then introducing @), we find

L2 L/2
-V3=df §d1+b/ Dix .
L/2 L/2

Recalling that D is independent of x, this becomes

-V, = a€; - &)) + vos (20)

where the subscripts have the same meaning as before,
Since € = jw€, Ba. (20) assumes the desired form

v, = Af Af + ke 1 (21)
3 wé, Jucg 3
where
o = 4
= AL
°c = % °

CE 1s recognized as simply the electrostatic capacity of the parallel plate capacitor
formed by the equipotential surfaces of the transducer separated by the dielectriec
material. CP is defined here as the plezoelectric capacity of the transducer. This is
done simply as a matter of convenience since it is so similar to Cn. This completes the
derivation of the three mesh equations., We now proceed with the definition of the impeds
znce matrix and a brief dlscussion of its use.

3.3, ZXlectrome cal Im e « The mesh equations obtained above are repeated
here for conveniernce.

P, = - £&tenn(y- so)aky + = M (15a)

P, = -E& tann(¥ + jo)a€, + ﬁ'&; I, (15v)
= 5 R

Vv, = 3’3@“51"3&%:;‘52"'30:0313 . (21)

These were obtained for the polarity conditions shown in Fig, &, BHere all arrows point in
the positive direction. The lack of symmetry made evident by the signs in (21) can be
rectified by reversing the positive direction of E 2° This 1s shown in Fig. 4 where the
symbol v has replaced f to eliminate confusion, That is, v, = 61, but v, = 62'

w1l




Af, —Dg— -———o—-—pAéz

3 Te,

v, T4
I3

Figure 3. Six terminal network with original positive polarities,

We see by inspection of Flg, 4 that the six terminal network is now completely
symmetric: all cwrrents are taken positive when feedlng into the network at the partie-
ular terminals shown. The revised mesh equations now become

P, = Pf tanh(=- V¥ + 3 %%) Avy + 3:‘%; 1, (Ra)
P, = ECpan(ye g0 4y, + 3;10; 1, (22b)
V., = (22¢)

-1 —t —
3 7 Jd Avy + Jud, A2 * July I;

These can he written in matrix form if the usual rules of matrix multiplication are
AvI > ‘-—-oq—-sz
R 1%
EEEEm—

1

V3

1

(]

Figure 4, Six terminal network with revised positive polarities.

followed' . From (22a,b,c) we can immediately write the matrix equation

11, E. A, Guillemin, "Communication Networks' Vol. II, J. Wiley, 1935, Chap. IV. The
Application of matrix algebra to network analysis and the concept of an impedance
matrix 1s discussed in considerable detail.

-]2=




P Avl

1
Pyl = [Zl x| &v, (23)
v 3 13

where the electromechanical impedance matrix [Z] becomes

S tann(- ¥+ g U k& 0 '3«%?:;

[z] = 0 Be gann(¥+ 5 & &) = | (28)
A c? chp
-1 - <1

This matrix is seen to possess some very special properties, Since le = Zm.
and 223 = 232. the transducer obeys the Reciprocity Theorem if the proper precautions are
taken as to the equality of the internal impedances of any power generating and indicating

apparatus introducedlg

This, of course, must always be the case when applying reciprocity
tests,

We also see that le = 223 and z31 = 282. This implies that the mechanical
terminal pairs are equivalent so far as the electrical terminals are concerned, This is,
of course, obvious on physical grounds alone, If it were not so clearly substantiated
by the theory, we would be correct in regarding the latter with suspicion — to put it
mildly!}

The third point of interest is that 212 = ZZI = 0, This states that the veloce
1ty of one crystal face has no effect on the pressure at the other face., Only the current
flowing into the electrical terminals and the velocity of the surface in question affects
this pressure,

Finally, we recognize that the only impedance elements comprising the matrix
which are not only functions of frequency, but also of acoustic loading once the crystal
type and geometry are specified, are the two mechanical self-impedances, Zn and 222.
These are functions of loading since ‘P is determined by the acoustic medla at the two
surfaces, If it were not for this complicating factor, the pilezoelectric transducer
would be a simpler element with which to work both theoretically and experimentally, since
the remaining self- and mutualeimpedances assume simple forms,

In tbe particular case of symmetric loading, we see from (19) that ¢ = .1
Since tanhj( 3% ."1) = «jcot % , we obtailn the impedance matrix

12, Guillemin: loc. cit. Vol. 1, p, 152. This is also an excellent reference for those
unfamiliar with methods of network analysis.

=13~




g{ cot (W %) 0 3&.;';
Ec & —

. 1 1

] JWOP pr an

which is only a function of frequency once the crystal is specified, Thus,the design of
systems using symmetrical acoustic loading is much simpler than the corresponding asyme
metrical system,

By inspection of the general Z matrix, an equivalent circuit for the transducer
which is valid for any operating conditions can immediately be determined. This is shown
in Fig. 5.

Sty FE) g B tanhiye) £-)
/___A—-\ A -

IL Tt

Ly 1t '\/\/\/—24—'“’2

av —>0-AAN—¢
P, U P
. jocs T~ T Tac, 2
I{ I )
o I\ 1§ ©
- i
jwep jwce
O—0O
V3
I3

Pigure 5. Six terminal equivalent circuit valid for
any general terminating condition,

4, GConclusions

The electromechanical impedance matrix, mesh equations or equivalent circult
obtained above can be used to determine the operating characteristics of the transducer
for any general conditions of driving or loading, regardless of the terminals in
question. The procedure is identical to that used in connection with pure electrical
networks whose impedance matrix is specified. A

Once the boundary conditions satisfied by the respective terminal pairs are
stated in terms of the actual values of loading impedances or energy sources, suf-
ficient information is introduced to permit the solution of the set of linear equations
for the unknown parameters, Due to the simple form of our final equations, these solue~

=14




tions can be obtained by those familiar with any of the simple techniques for solving a
set of three linear equations, Of course, more sophisticated methods can also be applied
in which the matrix is used directly without use of the mesh equations. The methods for
solution of such a set of linear equations are numerous and varied, and hence, are beyond
the scope of this paper, It is intended that the forms given be sultable for solution by
all these methods: the choice is left entirely to the reader.

As an example of the use of the above theory for the solution of a design
problem, the properties of a plezoelectric transducer driven electrically and loaded
acoustically in any’ arbitrary manner are investigated in Part II. General formulae of
driving point impedance and acoustic power output are developed, and curves of these
quentities for particular valuss of loading are plotted as functions of frequency.

«15m




11, ELECTRICAL DRIVING POINT IMPEDANCE AND ADMITTANCE

1, JIntroduction

In Part I of thls paper, we saw that a plezoslectric transducer can be
represented by a six terminal network, The mesh equations, electromechanical impedance
matrix and equivalent circuit for a crystal operating in the thickness vibration mode
were derived, Here, we shall apply these results to determine the electrical driving
point impedance and admittance for such a transducer when loaded by any two arbltrary
acoustic media, This problem is of fundamental importance to the designer who is faced
with the task of developing electrical apparatus capable of properly exclting the
plezoelectric crystal when loaded by specified media.

2. Symmetrical Acoustic Loading

In order to illustrate the method we shall use later for the general problem
without becoming overburdened with algebraic manipulation, we shall consider flrst the
case of eymmetrical acoustic loading, By use of Eq, (16) and the further relations intro-
duced above, él =v and éz = -V, we specify the boundary conditions existing at the
mechanical terminals in the gemeral case by letting

P
= -2 (26a)
31 vl a
and
3. . .= |
2 b "va ¢ (26b)

Of course, for the symmetrical case, 31 = }2, so we can omit subscripts and merely write

F= - (27)

This now applies to either of the two mechanical terminal pairs.

By inspection of the impedance matrix for symmetrical loading given by (25) plus
the additional conditions introduced by (27), the squivalent circult presented in Fig. 5
becomes that shown in Fig, 6.

The method by which the minus sign in (27) is introduced in this circuit
deserves particular comnment, The pressure, P, has been considered a positive quantity in
all the preceding work when the stress applied to a crystal face produces compression
with the electrical terminals open~circuited, i.s., I,‘7> = 0, Hence, P denotes a pressure
"rise" completely analogous to a voltage 'rise® introduced when discussing a source of
electronotive force.

In this sense, the arrows at the terminals of the circuit of Fig. 5 indicate

=16~
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Figure 6. Two terminal equivalent circuit including
two symmetric mechanical terminations,

directions of pressure and voltage rises, If we choose to keep both the same positive
directions for current flow in the respective meshes as above and positive values for the
terminating impedances, (27) shows that P is negative. Thus, the directions of pressure
rises at the two mechanical terminal pairs must be opposite to those indicated in Fig. 5;
or the pressure "drops" must be in the arrow directions. By following the velocity mesh
currents in Fig, 6, it will be seen that this is indeed the case.

With this clearly in mind, it is evident that the complete solution of the sym-
metrical transducer problem can be obtained from an analysis of the relatively simple
three mesh eirecuit of Fig, 6. Using the method of determinants and Cramer's rulels, we
find

— .
£2 cote + % 0 0
0 %& cot@ + 7 Y
1 ~1_ v
Jut, JuC, 3
. . (28)
3 3 1
c 2 .
f;—A- coto + 3 0 JuC
Ee coté + é -1
0 JA A Jud,
1 1 - .
| e, Juc,, July

13. E. A, Guillemin, "Communication Networks", Vol. I, Wiley, New York, 1935, p., 147 ff.
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L
where @ = % 7 &8 before.

Since the electrical driving point impedance of this symmetrical case is
Z, = V:.,’/I3 ohms, we have from (28)

P AL ec 2 1] 1 2
B s coto + ﬂb@;(d s coté + A) + w—zc-g-]- F00_ [, (g’f cotQ + A)]

Z

s 2

gf cotd + %]

or
1 A 2
zs = ,ijE "'.»2c 2pc[§ - ,jcotO] (29)
P

where

; = 'é- .

pec

Although§ is dimensionless, we shall refer to it as the normalized load impedance.
By comparison of the Piezoelectric Equations, (6), with those for a two-mesh

electrical network, further simplification can be achieved. For a two-mesh electrical

network, the mesh equations can be written in the form14

\/

1 I

z
Inh +%;

2 T lpy L viply .

2
v

In the analysis of such systems, it is usually convenient to define the dimensionless

quantity, K, known as the "coupling coefficient®, by the rela.f.icm15

2 - H2la
4y %2
Equations (6) have the same form as those above, and here, too, it is convenient to define
a dimensionless coupling coefficient, In this instance, we obtain

2

K° = . (30)

2P

If we recall from (21) that CP = g and Oy =ﬁ'. and from (8b), that C = ./'g‘ s we find

€20
Ka 3—'2in-0 (31)

Gppc w

Substitution of this result in (29) gives finally

14, Guillemin: 1loc., cit., Vol,. II, p. 135,

15. A lower case letter is usually used, but to avoid confusion with k appearing in
(9), the upper case will be used throughout .

=] 8=



. .
Zg Jwen 1 cot@ + Jt (32)

This is the driving point impedance for any conditions of frequency and sym-
metrical loading consistent with our original assumptions. Although we used the network
of Mg. 6 to find first 13 and then Zs. it should be realized that the remaining mesh
currents and then the power dissipated by the real parts of the loading impedances can
similarly be obtained in a straightforward manner. In this way, it is a simple matter to
determine the acoustic power ocutput in each load as a function of frequency once the
electrical driving source is specified, We shall see later that this is also the case for
the general problem of unsymmetrical loading,

3. General Acoustig Loading

In this section, we shall determine the driving point impedance and admittance
for the general transducer problem following the procedure used in the simpler case of
symmetrical loading. The boundary conditions are given by (26 a,b), and after intro~
ducing these in the circult of Fig., £, we obtain that shown in Fig. 7.

Pc - ! pc
P A T L
A\ I 11t
4 A | == -4 __1 Av, 22
A jwep T 4[\ “Jwep A
It L |
A q A
A I !
’Uc’ lﬂc,

Megure 7, Two terminal equivalent circult including
two asymmetric mechanical terminations.

Writing the equation for Ig in determinant form as before, we have

18-



ES tann(- ¥ + 30) +?—} 0 0
0 ef tanh(y + JO) -o}f 0
Jut :‘):Llﬁ— 73
D **p
I:5 = .
B tenn(- ¥+ 30) +‘-?£- 0 3;)%
D
0 S pann(¥+ 30) +°—313 Ei;lc"
D
-l . -1
Jucy Juc, July

Solving this determinantal equation for the ratioc Vs/Iz glves the result

£

X}
pre 1 725 , (32a)

where

5§ = (23v)

1 i 1
tanh(V+ Jo) + [, @ tamh(-¥ +30) +L, | °

For applications in which the crystal and acoustic loads are specified, the
solution is now complete since all the parameters entering in the above expression for 2
are known, However, we wish here to investigate the behaviour of this impedance as we
vary the parameters; so, unfortunately, a considerable amount of algebra is necessary in
order to convert (33) to a more useful form., Our goal is to obtain expressions for the
real and imaginary parts of Z in terms of the system parameters: crystal constants,
normalized load impedances and frequency.

Recalling the results of (12) and (14), we have

ve'® . 39

tanh( 9) = =20 34a
‘p+ J ) 'Yejo . e_do ( )

ve~J9 _ ¢4

tanh(-¥ + 3o) = abor A (34v)

+ 0

while from (18),

’&1 + 106+ & - 1)e7°
ST L(cz + 10630 & (€ - 1)e70

. (35)

=20



Substitution of (35) in (34a) and (34b), respectively, leads to
§2 +§l cos2Q + jsin26

tann(¥ + 39) c0s26 - 1 + JL, e1n20 (36a)
§, + L cos2o + Jsin20e
1l __2
tann(- ¥ + 39 cos20 = 1 + J[,81n20 * (36v)
Using these results for substitution in (33b), we have
2(cos2Q - 1) + J(C.l + L. )sin26
5 = (§; +T)cos26 + 5Q1 :ﬁfz)—sin% . (37)
Rationalization of thie expression t¢ obtain real and imaglnary parts results
in
S = 'sl + 35, (38a)
where
El * Cz]E(l - sec2Q) + (1 + glgz)tmzm]
Sl = ——2 '2 2 — -~ (38b)
{L’l +§2] + E+§1§2] tan“2Q
and
Eanao] Ecl + ;2)2 + 201 +§,8,)(sec20 - 12-1 . (s8)

N [N P e

If we now consider the driving point impedance as comprising a resistance R and reactance
X in series, from (33a) and (38), we find

Z = R+ jX (39a)
where
K251
R = chzo ? (391))

and

X = ;—c;ﬁza Ez-i‘g] . (39¢)

Although these are the expressions for which we have been looking, they can be
improved insofar as their applicability to a large range of design problems is concerned.
We shall see later that a crystal which is symmetrically vacuum loaded, Cl = ;2 = 0, has
its first Y“resonance" for & = 32'. Since @ = % 3= N 2 if we define the quantity )‘o from
the condition that %‘.[% ____%r » We have.

(<]

A, = 22 , (402)



In other words, for the frequency at which this first resonance occurs, we arbitrarily

let the thickness of the crystal, £, equal Ao/z. Since the velocity of propagation within
the crystal, ¢, 18 a constant of the plezocelectric material, we are able to define the
quantity, W by the equation

= 21¢
mo = )\o . (4%)

Finally, ’by defining the dimensionless parameter, 8, by

@ A
g = = = 2 R (40¢)
w A
°
we obtain from above
e =87, (40a)

Upon introducing these relations in the expressions for the impedance, (40), we
obtain the final results:

Z = R+JX (41a)
where
2 oy "xf [;1 + §31E -;ec&ﬂ + J’-lz-ru +25§§)tanisf;| } (a10)
8° Zu Cp [;1 +C2] + E+§1C2] ‘tan 8
and

, 2 tan&‘n%(tl * E&f + (1 +§J_§2;(sec8n - 1)_]- ) sél
n
8" 2% El +£?-J + ﬁ +§1§2] tanB 'y

The driving point admittance is obtained very easily from these results. Since

(41¢)

the admittance, Y, is the sum of a conductance G and susceptance B in parallel, we have

Y = G+ JB. (42a)

By definition, Y =3Z* ; thus, from (41a) and 42a) it follows immediately that

R
¢ = (42
R+ X° )
and
B = w—=3—
2 e (42¢)



Equations (41) and (42) are the general relations valid for all conditions of
loading and frequency. The crystal constants, K, w, and GE’ are only dependent upon the
type of piezoelectric material used and its dimensions; whereas, the normalized load
impedances, §1 and §2, are determined by the choice of crystal and the loading media. It
must be remembered that in general g is complex, although in the majority of ultrasonic
applications, { can be considered real,

The two representations of the transducer driving its acoustic loads as elec-
trical circuit elements are shown in Fig., 8. The series form is useful when the source
of electrical energy has a high internal impedance, while the shunt form is useful for
a source having a low internal impedance, These two limlting cases are usually approx-
imated by constant current and constant voltage sources, respectively,

o R O
2—> X Y—>| G B
O (o,

@ ®

Figure 8, a. Two terminal series equivalent circult.
b. Two terminal shunt equivalent circuit,

4, Particular Cases of Acoustic L n

In order to increase the utility of the foregoing analysis, in this section,
curves of the four quantities R, X, G, and B are presented as functions of frequency for
a variety of loading conditions. Some of these conditions have been chosen since they
frequently arise in actual ultrasonic applications, and hence are of practical importance,
while others were chosen to indicate the behaviour of the transducer when loaded by cer-
tain idealized media,

The latter, although not of practical use in a quantitative sense, are impor-
tant in that they increase our understanding of the operation of the transducer, Fre-
quently, such information indicates what can and cannot be expected from a particular
choice of conditions, and hence is of use in separating reasonable from unreasonable
applications,

In an attempt to make these results applicable to all cases in which the
thickness vibration mode is employed, the common factor, Kz/-gnocn. is not included in the
calculated values, This factor, which is wholly dependent upon the crystal used, is
introduced after the values are taken from the curves; thus, many of the curves are
applicable to any crystal chosen. For the same reason, the values of the circuit elements

«23=



are plotted against the dimensionless parameter 8, rather than frequeney, thus permitting
use of the curves for any frequency region. More will be said concerning the universality
of each set of curvee in the discussion to follow,

4,1. Resistance versus Frequency. (cf. Figs. 9-13) If the factor 2K2/11w°cn is removed
from the right side of (41b), we obtain the dimensionless expression

2 % . -% El + Cg]E - ;ecB‘n + %(1 +2;1cg)tan28ﬂ] .
2K2 5 [Fl + é] 4-E.+ Clcz tanzkﬂ

(43)

It is this expression which is plotted as a function of 8§ for varlous assumed values of
;1 and ;2. Although the ordinates and abscissae of the resulting curves are dimensionless,
it is convenient to refer to them as resistance and frequency, respectively.

By inspection of (43), several points of interest are evident., First, we see
that the term on the right is entirely free from all explicit crystal constants —— although
they are present implicitly in the values of ; corresponding to various loading media.ls
Hence, the curves of resistance versus frequency are truly universal if applied for loads
having the {'s which are specified.

Secondly, we notice that the value of the bracketed term is periodic, having a
period along the frequency axis of 2, As a result, in order to have complete information
concerning its behaviour for any value of 8, we need only compute values in the interval
0£s5 £ 2,

Finally, we see that the quantity 1/62 is a modulating function for the periodic
term. The complete behavior of the resistance for any frequency can thus be obtained if
its values for any one period are given., In accordance with this, all the resistance
curves but one are plotted for the frequency interval of most general interst —-
0&£ &6 £ 2, The one exception has been plotted for values of 8 up to 9,5 merely as an
11lustrative example to show the variation of resistance as the crystal is driven at free
quencies higher than its fundamental,

From Fig. 8a, it is evident that the total acoustic power output, if we assume
a constant current generator, is proportional to R. For this limiting case, we can obtain
the bandwidth of the transducer by measuring the width of the curves between half-amplie-
tude points., This will vary somewhat according to the harmonic considered due to the
1/8° factor.

A measure of the bandwidth is important for pulsed operation of the transducer
since 1t is a determining factor of the minimum pulse width that can properly be transe
mitted, The bandwidth for any actual electrical source is readily obtained from these
Plots of R and Fig. 8a by first finding the current as a function of frequency, and then
obtaining the product IgR, agaln as a function of frequency., The width between half= .
bower points of the resulting function is the desired bandwidth figure. .

It should be noticed, that numerical values.of C are given on the curves in
addition to the corresponding media: the latter are enclosed in parentheses. These

16. A, B, Wood, "A Textbook of Sound",Bell, London, 1944, pp. 562-63. All values of
acoustic impedance used here have been taken from this source.
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latter captions only apply when the transducer is Quartz. They have been included for
added convenience since Quartz is generally used for high frequency work,

At this point, it would be desirable to discuss in detall the many interesting
features of the curves and their relations to one another; however, in the interests of
brevity, this must grudgingly be omitted. An attempt has been made to include enough
material on the curves, themselves, to make them self-explanatory after a careful perusal,
A summary of the most important features is included in the Conclusione,

4,2. Reactance versus Frequency. (pf. Figs. 14=18) If we convert (41e) to dimensionless

form, we obtaln

< ™ °I _L tan&ng-(cl + Cg)z + (1 + Clgz)(sec&n‘ - 15] - (4)

2K° 5° l}l +§;J2 +E + ;1542’0&261\’ T

The first term on the rizht side of this equation is similar to that discussed above in
that 1t is independent of the crystal used, it has a period of 2, and it includes the
1/82 modulating function. Here, however, we have an additional term wich does depend
upon the choice of crystal since it includes the coupling coefficient, X.

Referring to the reactance curves, we see that the latter term is a hyperbola
around which the variations produced by the periodic term occur, These variations from
the true hyperbola can be applied universally evean though the hyperbola, itself, will
have different values due to the presence of K, These curves have been computed taking
K = 0,10 which is the value for Quartz; for other crystals, it is a simple matter to
superimpose the periodic variations shown here upon the proper hyperbola,

The variations of the reactance curves for §2 = 2,83 x 10°° (Air) are extremely
sharp in all the cases plotted except that for which cl = 1,00 (Quartz), but do not
become infinite., Although values of the reactance functions are given for values of &
very close to the peaks, these are not to be taken as the maxima since the calculations
were made for increments in 8 of ,001, If smaller increments had been used, larger
values for the maxima would have been found., Differentiation to obtain the exact valuer
of 8 corresponding to these maxima lead to complicated transcendental equations, The
time needed for solution of these equations could not be justified in view of the pur-
pose for which the curves are intended; thus, the values are given merely to indicate
the order of magnitudes of the peaks of the reactance functions,

4.3, nduc ersus Frequency. (cf. Figs. 19=22) By use of BEq, (42b) and the
dimensionless resistance and reactance expressions, (43) and (44) respectively, it is
clear that we have ali the information necessary for plotting curves of (1-'mnocn/2K:a
against 6. The question of universality becomes complicated in this case since both R
and X appear. Although clear-cut conclusions cannot be made, several general observa-
tions may be of value to the designer,

Inspection of the R and X curves shows that XZ is very much larger than Rg
throughout most of the frequency range, exclusive of the rescnance reglons, for the major-

Lty of loading conditions, We, therefore, obtain the expression

=25



which is valid when 8 is removed from the resonances, Here, X follows a true hyperbola
which was shown above to be dependent upon the crystal chosen. In these regions then, the
conductance curves are not universal as to magnitudes, although the contours can be
applied quite generally,

For the reglons of resonance, the above approximation no longer holds because
we can no longer neglect 3.2. Under these conditions, the variations in the X hyperbolae
and the values of R become the determining factors, Since both of these quantities were
shown to be independent of the plezoelectric material, the conductance curves near
resonance are more universally applicable than for other frequency domains, The latter
statement becomes more nearly true for lighter loads == smaller values of g- since,
in these cases, the values for the variations of X completely overshadow those for the
parent hyperbolae,

If more exact values of conductance are needed for a transducer other than
Quartz, they can be obtained in a stralghtforward manner from the universal resistance
and the corrected reactance curves, For most design problems, however, this procedure
will not be necessary because the curves presented here will be found sufficiently
accurate.

Prom Fig., 8b, we recognize that the total acoustic power output, assuming a
constant voltage source, is proportional to G, Thus, as discussed above in connection
with the curves of R and a constant current source, we can obtain useful information cone
cerning the bandwidth of the transducer when driving various loading media. By consider-
ing the curves of resistance and conductance as acoustic power output for the two electri-
cal sources mentioned, we can appreciate the extreme importance of the internal source
impedance and can estimate the behaviour to expect with sources other than these two
limiting cases,

4.4. Susceptance versus Frequency. (cf. Figs, 23-26) From (42¢), it follows that for

regions other than resonance where we can neglect Rz. we have

B 5 -

M-

Near resonance Rz must again be included, and the final result is that the B curves are
straight lines with variations appearing at the resonances, The remarks concerning
universality of the susceptance curves are entirely similar to those given above in the
discussion of the conductance; hence, we shall not discuss this further here,

5. GConclusions

The impedance and admittance curves plotted as functions of frequency present
us with much information concerning the operating characteristics of plezoelectric trans-
ducers under varied conditions of loading and frequency. Although most of the details
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have been left to the actual curves, a listing of the important trends should be of
considerabfe value in assisting us to comprehend the behaviour of such elements, For
detalled verifications of the items listed, reference to the curves and equations is
required.

i, Bandwidth increases when the load impedance increases. In most
cases fhis increase continues for load impedances greater than
that of the crystal,

11, Loading of both crystal surfaces leads to greater bandwidths than
are obtalned by keeping one surface unloaded,

1311, Maximum power output at resonance for a given driving source varies
inversely to transducer bandwidth: power output decreases for an
increase in bandwidth, and vice versa.

iv. Operation at very low frequencies requires heavy loading of both
surfaces and a source with a high internal impedance.

v. Loading by materials having impedances greater than that of the
transducer leads to doubly-peaked resonance curves analogous to
those obtalned with overcoupled electrical circuits.

vi, With a high internal impedance source, the resonance frequencies
decrease with an increase in loading; dbut with a low internal
impedance source, the resonance frequencies remain very nearly
constant,

vii., With a high internal impedance source, the power output varies
inversely to the square of the order of the harmonic of the funda-
mental frequency. With a low interral impedance source and light
loading, this is also roughly the case; but with heavy loading,
the power output is very nearly independent of the order of the
harmonie,
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