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Abstract

This paper examines the role and performance of an institution for allocating
savings which is observed world wide - rotating savings and credit associations. We
develop a general equilibrium model of an economy with an indivisible durable
consumption good and compare and contrast these informal institutions with credit
markets and autarkic saving in terms of the properties of their allocations and the
expected utility which they obtain. We also characterize Pareto efficient and expected
utility maximizing allocations for our economy, which serve as useful benchmarks for the
analysis. Among our results is the striking finding that rotating savings and credit
associations which allocate funds randomly may sometimes yield a higher level of
expected utility to prospective participants than would a perfect credit market.
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I. Introduction

This paper examines the economic role and performance of Rotating Savings and

Credit Associations (Roscas). These informal credit institutions are found all over the

world, particularly in developing countriesl. While their prevalence and, to some degree,

robustness has fascinated anthropologists 2, there has been very little work devoted to

understanding their economic performance. Here we shall subject them to scrutiny in a

general equilibrium setting, contrasting and comparing them with other financial

institutions.

Roscas come in two main forms. The first type allocates funds using a process of

random allocation. In a Random Rosca, members commit to putting a fixed sum of money

into a "pot" for each period of the life of the Rosca. Lots are drawn and the pot is

randomly allocated to one of the members. In the next period, the process repeats itself,

except that the previous winner is excluded from the draw for the pot. The process

continues, with every past winner excluded, until each member of the Rosca has received

the pot once. At this point, the Rosca is either disbanded or begins over again.

Roscas may also allocate the pot using a bidding procedure. We shall refer to this

institution as a Bidding Rosca. The individual who receives the pot in the present period

does so by bidding the most in the form of a pledge of higher future contributions to the

Rosca or one time side payments to other Rosca members. Under a Bidding Rosca,

individuals may still only receive the pot once - the bidding process merely establishes

priority3.

We take the view, supported in the literature, that these institutions are primarily a

means of saving up to buy indivisible goods, such as bicycles, or to finance major events,

such as weddings. Random Roscas are not particularly effective as institutions for

buffering against risk since the probability of obtaining the pot need not be related to one's

immediate circumstances. Even Bidding Roscas, which may allow an individual to obtain



the pot immediately, only permit individuals to deal with situations which cannot recur,

since the pot may be obtained no more than once. Furthermore, since many kinds of risks

in LDC's are covariant, many individuals will have high valuations at the same instant.

Roscas do play a greater role in transferring resources to meet life--cycle needs such as

financing a wedding. However, even in this context, they seem more appropriate for deal-

ing with significant, idiosyncratic events, rather than the hump saving required for old age.

Despite its manifest importance, there has been relatively little analysis in the

savings literature on the notion of saving up to buy an indivisible good. Yet, the existence

of indivisible goods does, by itself, provide an argument for developing institutions which

intermediate funds. In a closed economy without access to external funds, individuals have

to save from current income to finance lampy expenditures, and can gain from trading with

one another. The savings of some agerts can be used to finance the purchases of others.

By contrast, when all goods are divisible individuals can accumulate them gradually and

there need be no gains from intertemporal trade. Clearly autarky with indivisible goods is

inefficient. Savings lie idle during the accumulation process when they could be employed

to permit some individuals to enjoy the services of the indivisible durable good.

As we explain in more detail in the next section, Roscas provide one method of

making these joint savings work 4. Given the worldwide prevalence of these institutions, it

is of interest to understand precisely how they do mobilize savings and, in particular, the

differences between Random and Bidding Roscas. It is also interesting to consider how the

allocations resulting from Roscas differ from that which would emerge with a fully func-

tioning credit market. Such markets are the economist's natural solution to the problem of

intermediation. Yet there are many settings in which they are not observed. We hope,

through our comparative analysis, to suggest some reasons why this is so.

Our study, in the context of a simple two-good model with indivisibilities, charact-

erizes the path of consumption and of the accumulation of indivisible goods through time

under these alternative institutional arrangements. We also investigate the welfare pro-



perties of Roscas and of a competitive credit market, employing the criteria of ex-post

Pareto efficiency, and of ex-aric expected utility. Neither type of Rosca, as modeled here,

is ez-post efficient. We find that, with homogeneous agents, randomization is preferred to

bidding as a method of allocating funds within Roscas. Moreover, while Bidding Roscas

are always dominated by a perfect credit market, we show that, in terms of ex-ante

expected utility, this is not generally the case for Random Roscas.

We use a model which makes no claim to generality, but which we believe captures

the essential features of the problem described above. We keep the model simple in the

interests of making the insights obtained from it as sharp as possible. Some important

issues concerning Roscas are not dealt with here. In particular, we do not address the

question of why, once an individual has received the "pot", he may be presumed to keep his

commitment to pay into the Rosca. The anthropological literature reveals that the

incentive to defect from a Rosca is curbed quite effectively by social constraintss. Roscas

are typically formed among individuals whose circumstances and characteristics are well

known to each other. Defaulters are sanctioned socially as well as not being permitted to

take part in any future Rosca. Thus, in contrast to the anonymity of markets, Roscas

appear to be institutions of financial resource allocation which rely in an essential way

upon the "social connectedness" of those among whom they operate. It would be interest-

ing to try to formalize this idea in a model allowing default. In future work we will

consider the sustainability of Rcscas in greater detail.

The remainder of the paper is organized as follows. Section II provides an informal

overview of the economic role of Roscas and outlines the main questions to be addressed in

this paper. Section III describes the model which provides the framework for our analysis.

Section IV then formalizes the workings of Roscas and a credit market in the context of

this model. Section V develops properties of efficient and optimal allocations of credit.

The role of Section VI is io compare the different institutions. We describe how the

accumulation and consumption time paths differ under the alternative arrangements. We



also establish the normative properties of the allocations. Section VII concludes.

II. The Economic Role of Roscas: An In: )rmal Overview

Consider a community populated by 20 individuals, each of whom would like to own

some durable, indivisible consumption good - say, a bicycle. Suppose that bicycles cost

$100. If individuals, left to their own devices, were to save $5 per month, then each

individual would acquire a bicycle after 20 months. That is, under autarky and given the

savings behavior assumed, nobody would have the good before 20 months, at which time

everyone would obtain it. Obviously this is inefficient since, with any preference for the

early receipt of their bicycles, it would be possible, by using the accumulating savings to

buy one bicycle per month, to make everyone except' the final recipient strictly better off.

Roscas represent one response to this inefficiency. Let our community form a

Random Rosca which meets once a monwh for 20 months, with contributions set at $5 per

month. Every month one individual in the Rosca would be randomly selected to receive

the pot of $100, which would allow him to buy a bicycle. It is clear that this results in a

Pareto superior allocation. Each individual saves $5 per month as under autarky but now

gets a bicycle on average 10 months sooner. Note that risk aversion is not an issue since,

viewed ez ante, the Random Rosca does as well as autarky in every state of the world, and

strictly better in all but one.

Forming a Random Rosca which lasts for 20 months is only one possibility. The

community could, for example, have a Rosca which lasts for 10 months with members

making the $5 contribution, and someone getting a bicycle every half-month. Or, the

Rosca could last for 30 months with members contributing $5, and a bicycle being

acquired, every month and a half. Given the uniform spacing of meeting dates and the

constant contribution rate, common features of Roscas as they are observed in practice, the

length of the Rosca will be inversely proportional to the rate at which the community saves

and accumulates bicycles. It seems reasonable to suppose that the Rosca will be designed



with a length which maximizes the (ex-ante expected) utility of its "representative"

member. Supposing that this is the cas:e, one can then characterize the optimal length of

the Rosca and the savings rate which it implies.

If instead of determining the order of receipt randomly individuals were to bid for

the right to receive the pot early, the community would be operating a Bidding Rosca.

Suppose that Rosca members, at their initial meeting, bid for receipt dates by promising to

make future contributions at various (constant) rates, with a higher bid entitling one to an

earlier receipt date. In our 20 month example, the individual receiving the pot first might

agree to contribute (say) $6 per meeting for the life of the Rosca, the individual who is to

be last might only pay $4 per meeting, and others might pay something in between. What-

ever the exact numbers, two things should be true in equilibrium: overall contributions

should total $100 per meeting; and, individuals should not prefer the contribution/receipt

date pair of any other Rosca member to their own.

While both Bidding and Random Roscas allow the community to utilize its savings

more effectively than under autarky, they clearly will not result in identical allocations.

Even when they have the same length, the consumption paths of members differ since,

under a Bidding Rosca, those who get the good early must forego consumption to do so.

Moreover, there is no reason to suppose that the optimal length will be the same for both

institutions. Of particular interest are the welfare comparisons between the institutions.

Understanding what determines their relative performance gives insights into the circum-

stances under which we might expect to see one or the other type of Rosca in practice.

Of course, Roscas are not the oiiy institutions able to mobilize savings. Imagine

the introduction of (competitive) banking into the community. Bankers would attract

savings by offering to pay interest, while requiring that interest be paid on loans made to

finance the early acquisition of the bicycle. These borrowers would enjoy the durable's

services for a longer period of time at the cost of the interest payments on the borrowed

funds. Those deferring their purchase of the bicycle would receive interest on their savings



with which to finance greater non-durable good consumption over the course of their lives.

Under ideal competitive conditionts a perfect credit market would establish a pattern

of interest rates such that, when individuals optimally formulate their intertemporal con-

sumption plans, the supply of savings would equal the demand for loans in each period.

Such a market is evidently a much more complex mechanism than the Roscas described

above. It is natural, however, to wonder how the intertemporal allocation of durable and

non-durable consumption which it produces compares with those attained under Roscas.

Of particular interest are the welfare comparisons: how do these simple institutions

perform relative to a fully functioning credit market?

III. The Model

We consider an economy populated by a continuum of identical individuals. Time

is continuous and consumers have finite lives of length T. These assumptions allow us to

treat the time individuals decide to purchase the indivisible good, the length of Roscas, and

the fraction of the population who have the indivisible good at any moment, as continuous

variables. This avoids some technically awkward, but inessential, integer problems.

Each individual in the economy receives an exogenously given flow of income over

his lifetime at a constant rate of y>O. At any moment, individuals can receive utility

from the flow of a consumption good, denoted by c, and the services of a durable good.

We imagine that the durable good is indivisible and can be purchased at a cost of B.6

Once purchased, we assume that it does not depreciate, yielding a constant flow of services

for the remainder of an individual's lifetime. We assume that the durable good is produced

for a large (global) market whose price is unaffected by the actions of agents in our

economy. Moreover, we assume that t:e services of the durable are not fungible across

agents - one must own it to enjoy its services. 7

We assume, for analytical convenience, that preferences are intertemporally

separable, and quasi-linear in the flows of consumption and of the durable's services. At



each instant an individual receives a flow of utility at the rate v(c) if he does not have the

durable good, and v(c) + ( if he does. Moreover, we assume that individuals do not dis-

count the future. Thus there is no motive for saving except to acquire the indivisible good.

These assumptions make our analysis much less cumbersome without substantially

affecting the main insights of the paper. We make the following assumption concerning the

utility function v(.):

Assumption 1: v: IR+- R+ is three times continuously differentiable, and satisfies v' (.) >

0, v"''(.) < 0 and v'"'(.) > 0.

As well as being increasing and strictly concave, we require the utility function to have a

positive third derivative. This assumpt on, which is not essential for much of the analysis,

is satisfied by most plausible utility functions. It is sufficient for individuals to have a

demand for precautionary savings (see Leland (1968)) and also guarantees proper risk

aversion in the sense of Pratt and Zeckhauser (1987).

A consumption bundle for an individual in this economy may be described by a pair

<s,c(.)>, where s E Y=- [0,T] U {v} denotes the date of receipt of the durable good, and

c:[O,T] -4 i+ gives the rate of consumption of the non-durable at each date. By "s = v" we

mean the individual never receives the durable good. We suppose, without loss of

generality, that the population is uniformly distributed over the unit interval and we index

different consumers with numbers aE[0.1]. An allocation is then a set of consumption

bundles, one for each consumer type, and may be represented by a pair of functions

<s(.),c(.,.)>, such that s:[0,1] -4 and c:[O,1]x[O,T] -# I+. The function s(-), hereafter

referred to as the assignment function, tells us the dates at which different individuals

receive the durable. By relabelling individuals as required, we may assume with no loss of

generality that individuals with lower index numbers receive the durable earlier. Thus,

letting a denote the fraction of the population ever to receive the durable, we may suppose



that s(.) is non-decreasing on [0,a-, 0 < a < 1, and that s- 1(v) = (a,1]. If a = 1, then

s-1(v) = 0 and everyone receives the good - this being the case on which most of the

analysis will focus. The second component of an allocation gives us the consumption path

{c(a,r):7E[0,T]} of each individual a.8

Under the allocation <s,c>, an individual of type a enjoys utility:

(3.1) u(a;s,) v(c(a,7))dT + ((T-s(a)), s(a)E [0,T]
(3.1) u(a;<s,c>) = 0T

Jv(c( a,))dr, s(a)=u.-0

To be feasible, the allocation must consume no more resources than are available over any

time interval. To make this precise, for any assignment function s(-) and any date rE[0,T],

we define N(T;s) to be the fraction of ihe population which has received the durable by

time 7 with assignment function s(-).9 Then an allocation <s,c> is feasible if, for all

TE[0,T]:

(3.2) ( - lc(a,x)da)dx > N(T;s)B.

The left hand side of (3.2) denotes aggregate saving at r and the right hand side denotes

aggregate investment. Hence, an allocation is feasible if aggregate investment never

exceeds aggregate saving. In the sequel we will let F denote the set of feasible allocations.

IV. Alternative Institutional Arrangements

The object of this paper is to compare different institutional arrangements for

allocating savings and it is the task of this section to describe four possible ways of allo-

cating resources in our model - Autarky, a Random Rosca, a Bidding Rosca, and a perfect



credit market. Each institution that we consider will result in a particular assignment

function and set of consumption paths, and thus a particular distribution of utility on [0,1].

We can evaluate the institutional al.ernatives by comparing these utility distributions.

IV.1 Autarky

The simplest institution is Autarky - i.e., no financial intermediation at all. In this

case saving occurs in isolation. An individual desiring to acquire the durable, given strictly

concave utility and no discounting, will save the required sum B at the constant rate y-c,

over some period ' bý ~cumulation 0O,t]. Acquisition is desirable if the utility from such a

program exceeds T.v(y), i.e. the life-time utility attainable without saving to buy the

durable. Consider, therefore, an individual's life-time utility maximization problem of

choosing c and t to:

Max {t-v(c) + (T-t).(v(y)+ )}

(4.1)

subject to t.(y-c)=B, 0Ocsy and 0_tT.

Let (cA,tA) denote the solution to this problem and let WA denote the maximal value.

To develop an insightful expression for WA, it is convenient to define

(4.2) M (i) =Min v(y )-v(c)+], Ž _ 0.AW O < c<y y-c

Assuming that tA < T at the optimum in (4.1),10 then substitution and rearrangement

leads to the following:

(4.3)
W A = T.-[v(y)+] - B.C-().



Expression (4.3) admits an appealing interpretation, anticipating a more general result

obtained in section V. The value of optimal acquisition of the durable under Autarky is

the difference between the two terms on the right hand side of (4.3). The first equals what

lifetime utility would be if the durable were a free good. Hence, the second term may be

understood as the utility cost of acquiring the durable imposed by the need to save up.

From (4.2), it is easily seen that this cost is directly proportional to the price of the

durable and to the loss of utility per unit time during the accumulation phase, and is

inversely proportional to the length of that phase. The optimal autarkic consumption (and

hence savings) rate, cA, is chosen to minimize this cost.

It should be noted that the function p~.) possesses all the usual properties of a cost

function - it is non-negative, increasing and strictly concave". Moreover, from the

Envelope Theorem the optimal acquisition date, tA, may be obtained by differentiating the

cost function, i.e. tA = B.pt'(). These facts will be used repeatedly below.

It is apparent from (4.3) that acquisition of the durable under Autarky will be

desirable [i.e. WA>T.v(y)] if and only if B.(() < I .T. We formalize this requirement in

the assumption that follows:

Assumption 2: (Desirability) Let 1.(y,3) be defined by p(.)/ = T. Then (T 12

Desirability requires that some combination of the utility of durable services (6), the length

of the lifetime over which these services may be enjoyed (T), and the income flow (y) be

large enough relative to the cost of the durable (B) to make its acquisition worthwhile.

Even if durable good acquisition is not desirable under Autarky, it may be so under other

institutional arrangements. We shall return to this point below.

If the durable good is desirable, then lives under Autarky will be characterized by

two phases. In the first of these individuals save at a constant rate until they have

sufficient funds to buy the durable and, since individuals are the same, this phase and the



consumption rate will be identical for all agents (see (4.1) and (4.3)). Hence, letting

<sA,CA> denote the allocation under Autarky, sA(a) = tA and cA(a,r) = cA when

re[0,tA] for all a E [0,1]. The second phase begins after the durable has been purchased. In

this phase, individuals consume all of their income while enjoying durable services as well,

i.e. cA(a,r) = y when rc[tA,T ] for all a E [0,1]. Hence the allocation achieved under

Autarky is as illustrated in Figure 1. Each individual has an identical piecewise horizontal

consumption path and the fraction of individuals who have the durable at time r jumps

from 0 to 1 at date t A.13

The Autarkic allocation is not Pareto efficient since at each moment before the

acquisition date, the accumulated savings of r.(Y-CA) lie idle, even though they could be

used to finance durable good acquisition for some agents without lowering the utility of

anybody else in the economy. This inefficiency arises solely because of the indivisibility of

the durable - Autarkic accumulation of a divisible good would be Pareto efficient. Any

effort to mobilize savings must simultaneously provide a mechanism to determine the order

in which individuals will have access to them. The institutions of financial intermediation

which we consider now are distinguished primarily by the different ways in which they

treat this "rationing" requirement.

IV.2 Random Rosca

A Random Rosca allocates access to the savings which it generates by lot.

Explaining how such a Rosca operates in our continuum economy requires some care.

Consider a Random Rosca of length t, with contributions set so that the pot available to

each winning member is equal to the cost of the indivisible good, B. To fix ideas, assume

there are a finite number n members of the Rosca. Further suppose that it meets at the

uniformly spaced dates {t/n, 2t/n, 3t/n, ... ,t}, and that at each meeting every member

contributes the sum B/n. A different individual is selected at each meeting to receive the

pot of B, which allows him to buy the durable good.14 Prior to its initiation, a



representative member of this Rosca perceives his receipt date for the pot to be a random

variable, ?, with a uniform distribution en the set {t/n, 2t/n,...,t}. Given Assumption 1,

each member saves at the constant rate equal to B/t over the life of the Rosca. Thus each

member's lifetime utility is the random variable:

(4.4) W(t,T-) - t.v(y-B/t) + (T-t)-(v(y)+ý) + (t-T) .

The continuum case may be understood as the limit of this finite case as n

approaches infinity.'s As n grows, the Rosca meets more and more frequently.' 6 In the

limit it is meeting at each instant of tin e, and the receipt date of the pot, r, becomes a

continuous random variable which is uniformly distributed on the interval [O,t]. Thus the

ez ante expected utility of a representative individual who joins the Rosca of length t is

given by the expectation of (4.4), taking -r to be uniform on [O,t]. Hence,

(4.5) W(t) = t.v(y-B/t) + (T-t).(v(y)+±) + t /2.

In the above discussion we took tne length of the Random Rosca, t, as given. It

seems natural, however, to assume that it will be chosen to maximize members' ex-ante

expected utility - W(t). Thus consider than the problem of choosing t to maximize (4.5).

We denote the solution by tR and use WR to represent the maximum expected utility.

Notice that this problem is almost identical to that in (4.1) (after solving for c from the

budget constraint in (4.1)). We may therefore proceed by analogy with (4.1) through (4.3)

and, assuming tR < T, write17

(4.6) WR = T [v(y)+•] - B-p((/2).

As in the case of Autarky, we can use the Envelope Theorem to deduce that



tR=B. -'(6/2).

Expression (4.6) reveals the elegant simplicity of our model of a Random Rosca.

Comparing (4.6) with (4.3), it is immefiately apparent how a Random Rosca improves

upon Autarky. The financial intermediation provided by the Rosca lowers the utility cost

of acquiring the durable, i.e. WR - WA = B. [pI ) - p)] > 0, since as we noted above,

p(.) is increasing.

So far, we have taken the question of desirability under a Random Rosca for

granted. This does, after all, seem reasonable. The savings in a Rosca are being put to

work and each member of a Random Rosca expects to enjoy the services of the durable

tR/2 units of time more than he would by choosing the same saving rate under Autarky.

So even if acquisition of the durable good is undesirable under Autarky, it seems reasonable

to suppose that the agents would prefer to form a Random Rosca and acquire the durable

good rather than go without it. This situation does indeed occur if WR>T.v(y)>WA.

This belies, however, two more subtle issues related to desirability. First, for the

model of a Random Rosca developed here to be consistent, it must be that each member

would actually choose to invest in the durable good upon winning the pot, as is assumed in

the foregoing derivations. This will be true only if the horizon remaining after the last

member has received his winnings is long enough to justify the investment, which will

depend upon the consumption value of the durable's services.

Second, the finite formulation whose limit is characterized in (4.6) assumes that the

number of meeting dates of the Rosca ic eaual to the number of members. Relaxation of

this assumption allows for the possibiiity that members might elect to face an improper

probability distribution for the random receipt date T. Suppose, for example, that with an

an even number of members, meetings occurred on dates {2t/n,4t/n,6t/n,...,t}. Now, to

make his contribution of B/n at each meeting, an individual would save at the constant

rate of B/2t. In the continuum case, conditional on winning the pot, each agent would face

a uniform distribution of receipt dates Tr[0,t], but the unconditional probability of ever



receiving the pot would only be one-half. Could it be that such a "partially funded" Rosca

would be preferred to the "fully funded" version whose version whose welfare is given in

(4.5)?

To guarantee that Rosca member,, will always want to design a Rosca so that they

all eventually receive the pot and that buying the durable is always an optimal response to

winning, we require a stronger desirability assumption than we made under Autarky. It

turns out that if ý is twice as big as the minimal value needed to induce acquisition of the

durable good under Autarky, then (4.6) does indeed characterize the performance of an

optimal Random Rosca. Thus we replace Assumption 2 with:

Assumption 2': (Strong Desirability) ( 1 2T(y,f).

Then we have:

Lemma 1: Under Assumption 2' an optimal Random Rosca involves every member

receiving the pot during the life of the Rosca. Moreover, every participant of the optimal

Random Rosca will desire to use the proceeds to acquire the durable good.

Proof: See the Appendix.

In fact, specifying the Random Rosca so that everyone receives the pot once is not

essential for much of our comparative welfare discussion in section VI. Our analysis there

compares Random Roscas constrained to provide probability one of eventual receipt of the

pot to alternative arrangements. The finding that a Random Rosca is preferred to other

institutions is only strengthened by allowing the possibility that not everyone wins. On

the other hand, partially funded Roscas do not appear to be common in practice. We do

need Assumption 2', however, for its implication that all winners will prefer to invest in



the durable good. Otherwise the analysis culminating in (4.6) is inconsistent.

The intuitive reason for the stronger desirability requirement comes from noting

that randomization is tantamount to introducing divisibility of the durable good, since

being offered a probability of receiving the durable good is like being offered a fraction of it

ez ante. Assumption 2 assures that "all" is preferred to "nothing" - the only choices facing

an Autarkic individual. Assumption 2' must be stronger since it has to guarantee that

"all" is preferred to "anything less", i.e. intermediate levels of durable consumption must

also be dominated.

Let <sR,cR> denote the allocation achieved with the optimal Random Rosca under

Strong Desirability. Recalling that an individual's type, a, is identified with his order of

receipt of the durable, the assignment function will be sR(a)= tR . As under Autarky, all

individuals have identical consumption paths which fall into two distinct phases. To be

more precise, cR(a,r)=cR, for TE[0,tR]; and, cR(a,r)=y, for 7E(tR,T], where cR=y-B/t R.
The allocation with the optimal Random Rosca is exhibited in Figure 1. While

consumption is still a piecewise horizontal function for each agent, the fraction of the

population who have received the durable at time t is now increasing and linear (see Figure

Ib). Moreover, while exhibiting the same general pattern for consumption, we shall show

below that the accumulation phase will not last the same length of time as under Autarky. 18

IV.3 Bidding Rosca

We turn next to the Bidding Rosca, where the order in which individuals receive the

accumulated savings is determined by bidding. As discussed in section II, the simplest

assumption to make is that the bidding takes place when the Rosca is formed at time zero,

and involves individuals committing themselves to various contribution rates over the life

of the Rosca. We do not model the auction explicitly, but instead simply characterize

what we believe would be the most plausible outcome in this context. Specifically we wil)



require that, for a Bidding Rosca of length t, an individual receiving the "pot" at date

TE[O,t] commits to contributing into the Rosca at the constant rate b(r) over this interval.

A set of bids {b(r):TE[O,t]} constitutes an equilibrium if: (i) no individual could do better

by out bidding another for his place in the queue; and (ii) contributions are sufficient to

allow each participant to acquire the durable upon receiving the pot. The first condition is

an obvious requirement of any bidding equilibrium. The second precludes the desirability

of saving outside the Rosca. Any such saving would lie idle and thus be inefficient.

Now in the equilibrium of a Bidding Rosca of length t, the utility of an individual

receiving the pot at time TE[O,t] is given by: u = tv(y-b(7))+(T-t)(v(y)+ )+(t-T)>.

Condition (i) then implies that, for all -,7' E [0,t]:

(4.7) v(y-b(r)) + (1 T- = v(y-b(T')) + (1

while condition (ii) implies that

(4.8) { b(7)dT = B.
0

These two equations uniquely determine the function b(.), given the Rosca's length t. An

optimal Bidding Rosca will have its length chosen so that the utility level of a

representative member is maximized subject to (4.7) and (4.8).

To characterize the optimal Bidding Rosca, consider the consumption rate of an

individual who receives the pot at date 7. which we denote by c(T) - y - b(T) for T E [0,t].

We may describe the Bidding Rosca just as well with the function c(-) as we could by

considering the bids directly. Substitiuting this into (4.8) and making the change of

variable a = 7/t, yields



i-
(4.9) t.[y - c(a)da] = B.

Now consider the consumption level, c = c(x), of an individual who receives the durable at

xt, (xE[0,1]) and note that (4.7) implies that c(a) = v-l (v(c)-(x-a)6), for all aE[0,1].

Hence all other individuals' consumption levels can be determined from the equal utilities

condition once c is known. Moreover, defining A(c,x)=f[v-l (v(c)-{x-a)6)]da as the

average consumption level and using (4.9), we may write t = B/(y-A(c,x)). Hence the

utility level of the member who receives the pot at date xt can be written as:

(4.10) W(c) = T. [v(y)+] - B- [v(y)-v(c)+x6]/[y-A(c,x)]

Since, all members have identical utility levels, by construction, maximizing the utility of a

particular member is the same as maximizing the common utility level. Thus we can view

the problem solved by the Bidding Rosca as choosing c to maximize (4.10). Let cB(x)

denote the optimal consumption level for type x individuals and let WB denote the welfare

level achieved at the optimum. Using by now familiar arguments we may write:

(4.11) WB = T [v(y)+'] - B - B(),

where

Mino [v(y)-vcc)4+x 3 o.
B() < cy y-, c, ) 0.

This admits the same interpretation that we noted for both Autarky and the

Bidding Rosca, as the difference betweer, utility were the durable free and the cost of

saving up. Note that WB and mean consumption at the optimum, denoted by AB



(=A(cB(x),x)), are both independent of x by construction. 19 Note also that the optimal

length of the Bidding Rosca, which we denote by tB, will be given by tB=B/(y-AB).

Once again, the above formulation assumes that individuals will always buy the

durable when they receive the pot. Thus if it turns out to be the case that some

individuals could actually do better by not purchasing the durable, the analysis will be

inconsistent. Intuitively, it seems reasonable to suppose that the (weak) desirability

condition given in Assumption 2 should rule this out. After all, the financial

intermediation afforded by the Bidding Rosca mean that the costs of saving up are les

than under Autarky and, since the allocation of the pot is not random, none of the issues

raised in the previous sub-section arise. Unfortunately, however, we have been unable to

establish the validity of this conjecture. While it is clear that ( must be "sufficiently

large" relative to y, B, and T, it is not obvious that Assumption 2 or even Assumption 2'

provide appropriate bounds. Hence the exact condition necessary to ensure desirability in

the optimal Bidding Rosca awaits determination

Let <sB,CB> denote the allocation generated by the optimal Bidding Rosca. As

with the Random Rosca, the assignment function is linear, i.e. sB(a) = atB. Below, we

shall compare tB with tR, the length of the optimal Random Rosca. Unlike Autarky and

the Random Rosca, each individual receives a different consumption path under a Bidding

Rosca. However the general pattern is similar with an accumulation phase followed by a

phase in which agents consume all of their incomes. Hence the allocation of non-durable

consumption is described by cB(a,r)=cB(ca), for rTE[0,tB] and cB(a,r)=y, for rE(tB,T ].

IV.4 The Market

The final institution that we consider is a credit market. In the present context, we

specify the behavior of such a market in the following way. Let r(r) denote the market

interest rate at time r. It is convenient to define 6(r) as the present value of a dollar at

time 7. i.e. ••7I excp(--f r(z)dz) and to think of the market as determining a sequence of



present value prices {6(7):7E[0,T]} at which the supply of and demand for loanable funds

are equated. Hence, an individual who buys the durable good at time s pays 6(s)B for it.

Given the price path, an individual chooses a purchase time s(a) and a consumption path

{c(a,r):7E[O,T]} to maximize utilitr.

Hence, the optimization problem solved by each individual is given by

Max rT
c( s) } 0 v(c(r))dr + C(T-s)

(4.12)
T T

subject to 6(r)c(r)dT + 6(s)B < y (r7)dr, E [0,T].
0 0

This assumes that each individual decides to purchase the durable at some time. Once

again, this will require that C be big enough, given T, y and B. We shall assume that this

is true in what follows. 20 Hence, we define a market equilibrium to be an allocation

<sM,CM> and a price path 6(-) satisfying two conditions: first, <sM(a),cM(a,T)> must

be a solution to (4.12) for all aE[O,1i, and second, at each date te[O,T],

t 1
(4.13) 0 [Y -- 0cM(a,7)d a ]dT = N(t;sM) B.

Since individuals are identical, the first condition implies that, in equilibrium, all

individuals are indifferent between (iurable purchase times. The second condition just says

that savings equals investment at all points in time. We use WM to denote the

equilibrium level of utility enjoyed by agents in a market setting. Below, we show that

this can be written in a form analogous to (4.3), (4.6) and (4.11).

Direct computation of competitive equilibrium prices and the associated allocation

is difficult, even in the simple case of logarithmic utility explored in section VI. However,



we are able to infer the existence and some of the properties of competitive equilibrium in

our model by using the fact that, with identical agents, it must coincide with a Pareto

efficient allocation which gives equal util-ty to every agent. Hence, explaining properties of

the Market allocation must await consideration of efficient allocations more generally.

This completes our description and preliminary analysis of the different institutional

frameworks which are dealt with in this paper. In section VI we shall make detailed com-

parisons of them. Our next task, however, is to discuss the implications of Pareto effic-

iency for the model described so far. This will aid the study of competitive allocations,

while also providing insight into the basic resource allocation problem posed here by the

existence of an indivisible durable good.

V. Efficient and Ez Ante Optimal Allocations

We have now shown how various institutions for mobilizing savings produce

particular feasible allocations and associated distributions of utility in the population. To

evaluate the allocative consequences of alternative institutions for financial intermediation

we require some welfare criteria. Two such criteria are natural here. The first is ex post

Pareto efficiency, or more simply, efficiency. We consider an allocation to have been

efficient if there is no alternative feasible allocation which makes a non-negligible set of

individuals strictly better off, while leaving all but a negligible set of individuals at least as

well off.

The second criterion is defined in terms of ez ante expected utility. The allocation

<s,c> is better than <s',c'>, in this sense if f1 u(a;<s,c>)da > f u(a;<s',c'>)da. The

preferred allocation gives a higher expected value of the lifetime utility of a type a indi-

vidual, with a regarded as a random variable uniformly distributed on the unit interval.

This is a "representative man" criterion which asks: which allocation would be preferable

if one did not know to which position in the queue one would be assigned? We are



particularly interested, therefore, in that allocation which yields the highest level of

expected utility. We call this the ez ante optimal allocation. Notice that, since all

individuals enjoy the same level of utility under Autarky, the Bidding Rosca, and the

Market, the two criteria coincide when applied to allocations emerging from any one of

these institutional forms. This is not the case for the Random Rosca. It is possible that an

allocation generated by a Random Rosca might b( Pareto dominated, and yet itself be

preferred to some Pareto efficient allocation in terms of the ex ante optimality criterion.

Indeed, we will present an example in which precisely this reversal occurs.

In what follows, we characterize efficient allocations for our economy and the ex

ante optimal allocation. While this section is the analytic cornerstone of the paper, the

reader whose primary interest lies in the results may wish just to skim the next few pages,

focusing particularly on Corollary I,. which describes the essential properties of efficient

allocations and the discussion of the optimal allocation following Theorem 2.

V.1 Efficient Allocations

To characterize efficient alloca,;ions, we introduce weights 0(a) > 0 for each agent

aE[O,1], normalized so that IO0(a)da = 1. Define the set of all such weights: 8={0 :[0,1]

[R++[i 0 integrable and f 0O(a)da = 1}. By analogy with a standard argument in welfare

economics, an efficient allocation should maximize a weighted sum of individuals' utilities.

Hence, if <s',c'> is efficient ther, there must be a set of weights in B such that

0B0(ac)u(a; <s,cl'>)da /2 0(a)u(a;-s,c>)da, for all feasible allocations, <s,c>. In order

to investigate the properties of efficient allocations we therefore study, for fixed O8E, the

problem:

1
(5.1) max W(O;<s,c>) O0(a)u(a;<s,c>)da,

<s, c>fF J



for u(a;<s,c>) as defined in (3.1).21 Let <s,c 0> denote an allocation which solves this

problem, and W0 = W(0;<s 0 c0>) denote the maximized value of the objective function.

Although (5.1) may appear to be a "non-standard" optimization problem, it can be

solved explicitly under our simplifying assumptions on preferences. The solution is exhib-

ited in Theorem 1 below. We develop the Theorem and discuss its implications at some

length in what follows. The proof of this result, presented in the Appendix, exposes the

nature of the resource allocation problem which any institution for financial intermediation

must confront in our economy.

The first point to note about the efficiency problem is that it can be solved in two

stages, loosely corresponding to static and dynamic efficiency. The first requires that any

level of aggregate consumption be optimally allocated across individuals, i.e. maximizes the

weighted sum of instantaneous utility at each date, while the second determines the

optimal acquisition path for the durable good. We shall focus, once again, on the case in

which everyone receives the durable at the optimum.

Let c0(7) denote aggregate consumption in period 7r, i.e. d(7r)Ef~co(a,r)da. A brief

inspection of the efficiency problem should convince the reader that this should be

distributed among the different types of individuals so as to maximize the weighted sum of

utilities from consumption in period T. To state this more precisely, define the problem

Max 0(a)v(X(a))da
X(.) 0

(5.2)

subject to X(a)da = w
0

for all w > 0. Let X0(.,w) denote the solution and let V0(w) denote the value of the

objective function. Then a type a individual's consumption at time TE[O,Tj is given by

co(a,7)=X a,- 7)), and total weighted consumption utility is given by V 0(c 0()). It



remains, therefore, to determine s (a) and cd(E7).

Note first that since preferences are strictly monotonic, the feasibility constraint

that <s,c> e F [see (3.2)] may without loss of generality be written as:

(5.3) J[y - J c(a,7)da]dr = N(r;s)B, VE[O,T].
0 0

That is, all savings must be put imediately to use. Moreover, in the absence of

discounting, if the flow of aggregate savings 10 [y-c(a,'r)]da equals zero at some date 7,

then efficiency demands that it must also be zero at any later date r'>r. Otherwise, by

simply moving the later savings forwarcd in time one could assign some agents an earlier

receipt date for the durable withou; reducing anyone's utility from non-durable

consumption. The foregoing implies that any assignment function solving (5.1) must be

continuous, increasing, and satisfy s(0)= 3. This in turn implies that such an assignment

function will be invertible and differentiable almost everywhere. We can use these facts to

write N(T;s) = -1 (r), for TE[O,s(1)], and N(T;s) = 1, for 7-E(s(1),T]. Substituting this

expression for N(t;s) in (5.3) and differentiating with respect to 7, we find that for all

TE[O,s(l)) we have y-c(T)=B/s'(s-1l()), and for all re(s(1),T] we have y--(r)=O.

Therefore, we may conclude that the following condition must be satisfied by any solution

to (5.1):

(5.4) s'(a) = B/[y--C(s(a))], for all aE[0,1); and, c(r)=y, for all TE(s(1),T].

Equations (5.4) are the analogue of "production efficiency" in our model, i.e. there

can be no outright waste of resources. Hence, for part two of the solution, we are

interested in the problem of choosing functions s •a) and c(J-) to maximize



T 1
(5.5) j V0 (E(r))dr + (T - ~J 0(a)s(a)da

subject to (5.4). By analogy, with our earlier analysis we define

(5.6) y[(7) -rin >0Ž
0 a< y y---

and denote the solution by aO(7). We now have:

Theorem 1: Let <s,c> be an efficient allocation with s-1 (v)=0, and let OEO be the weights

for which <s,c> provides a solution in (5.1). Then the maximized value can be written in

the form

W = T. [V(y)+]- B.J 0ýix0(z)dz) dx
and the assignment function satisfies:

s(a) = B .- [y-1a9 (fJx(z)dz)]-dx, aE[0,1].
Moreover, for all ac[0,1], non-durable consumption obeys

c(a,s(x)) = XO(a,u9 (ýflO(z)dz)), for xE[0,1]; and c(a,r) = x0(a,y), for TE(s(1),T].

Proof: See the Appendix.

As noted, Pareto efficiency requires two conditions beyond the absence of physical

waste of resources. First, any given aggregate level of non-durable consumption should be

allocated efficiently among individuals and second, it must optimally manage the

intertemporal trade-off between aggregate consumption of the non-durable and faster

diffusion of durable ownership. We discussed above how V(.-) summarized the first of



these stages. More needs to be said about the dynamic efficiency considerations - in

particular, the relevance of the minimization conducted in (5.6).

To see this consider the express.on for W 0 in Theorem 1. This welfare measure is

the difference of two terms. The fi-st, T.[V6(y)+ý], would be the maximal weighted

utility sum if the durable were a free good. The second term is, therefore, the (utility

equivalent) cost of acquiring the dural le. It is this cost which is minimized in (5.6). It has

two competing components: non-durable consumption foregone in the process of acquiring

the durable (since c(s(a)) < y) and durable services foregone in allowing some non-durable

consumption (since s'(a) < B/y). Consider a small interval of time aE(a,a+da), then the

sum of these two components is approximately [V0(y)-V 0(c(s(a))+lf 1O(z)dz], while the

duration of the time interval is s'(a)da-=Bda/[y-c(s(a))]. Efficient accumulation

therefore means minimizing the product of these terms at each aE[0,1]. This is precisely

the problem described by (5.6).

A geometric treatment of the minimization problem (5.6) may also be helpful (see

Figure 2). The function V9(.) is smooth, increasing and strictly concave because we have

assumed that v(-) has these properties. Therefore, choosing a to minimize the ratio

[Vo(y)-Vo (a)+7]/[y-- ] means finding that point (a,V 0(a)) on the graph of V0(.) such

that the straight line containing it, and containing the point (y,V 0(y)+-), is tangent to the

graph of V0(.). Notice from the diagram that uý(7) must be decreasing, rising to y as 7

falls to 0.

This observation, together with Theorem 1, permits us to deduce some useful

properties of efficient allocations:

Corollary 1: Let <s,c> be an efficient allocation with s-1(v)=-. Then

(i) the assignment function s( ) is increasing, strictly convex and satisfies

lim s'(a) = +m, and
O- 1



(ii) for all aE[0,1], c(a,.) is increasing on the interval [0,s(1)], and constant

thereafter.

Proof: (i) In view of (5.4) and Theorem 1, we know that any efficient allocation <s,c>

satisfies s'(a) = B/[y-a•6f 1 O(z)dz)], for some GOE. As noted above oa(), is decreasing

and approaches y as y falls to 0. Hence, the result.

(ii) This follows immediately from Theorem 1 after noting that x 0(a,.) is increasing and

that au( ) is decreasing. o

The properties of the assignment function imply that, in an efficient allocation, the fraction

of the population who have received the durable by time 7 is increasing and strictly

concave. In addition, the rate of accumulation (the time derivative of N(r;s)) approaches

zero as r goes to s(1).

Finally, it is worth drawing attention to the relationship between the characteriza-

tion in Theorem 1 and the welfare expressions found for Autarky in (4.3), for the Random

Rosca in (4.6) and for the Bidding Rosca in (4.11). These expressions all take the same

general form, allowing the intuitive interpretation that welfare is the hypothetical utility

achieved when the durable is a free good, net of the implicit utility cost of acquiring the

durable's services. This observation is the basis for most of the results in section VI.

V.2 The Optimal Allocation

The optimal allocation is that efficient allocation in which individuals are equally

weighted. Since individuals are identical and are assigned types randomly, this solution

maximizes the ex ante expected utility of a representative agent. Hence, noting that 1E0,

we can write ex ante expected utility as W(1;<s,c>), and the optimal allocatzon <so,Co>

must satisfy: W(1;<s o,o>) > W(1;<s,c>), V <s,c>cF.

Notice also that Vl(w)=v(w), and Xl(a,w)-w, for all (a,w). This implies that if all



agents have equal weights and utility is strictly concave, then aggregate non-durable

consumption should be allocated equally among all agents. It is also useful to note that

Pl(q)-A(q), where i(.-) is defined in (4.2), and that u' (7)=[y-o(7)]- 1 , using the Envelope

Theorem. These facts, together with Theorem 1, yield:

Theorem 2: Let <s ,co> be the optimal allocation. Then, ex ante expected utility can be

written in the form

W(1;<s ,co>) - W = T. [v(y)+]- B. J0 A((1-a))da,

and the optimal assignment function satisfies

s %(a) - B. l((1-x))dx.

Moreover, for all ac[0,1], non-durable consumption obeys

co(a,so(x)) = y-1/pz'(((1-x)) for xe[0,1], and CO(a,r) = y for Tr(So(1),T].

-1Proof: Provided that s 1 (v)=0, the Theorem follows at once from Theorem 1 and the

foregoing observations, after noting that flO(z)dz=fal(z)dz=l-a. To prove that

--1s 0(v)=0 , we show that welfare under the optimum is increasing in the fraction of the

population who ever get the durable, a. Hence, let W0 (a) denote maximal expected utility

when a fraction a of the population get the durable. Arguing as in the proof of Theorem 1,

we obtain:

Wo() = T [v(y)+a(] a- B -1 (((-a))da.

Differentiating with respect to -c, yields

Wo(a) = TW + B. (((- ))d - B4(0),

which, after using the Fundamental Theo:em of Calculus, simplifies to

Wo(' ) = T, - B. (a).
0



By Assumption 2, we know that T( > BLj(). Since (.) is increasing, it follows that

Wo( > 0. o

In addition to the properties outlined in Corollary 1, therefore, the optimal

allocation also gives individuals identical consumption paths. Theorem 2 also tells us that

c (0) equals cA, the consumption level in the accumulation phase under Autarky22. The

pattern of consumption and the fraction of the population which has acquired the durable

good in the optimal allocation are illustrated, as a function of time, in Figure 1. Each

individual has an identical consiumption path beginning at cA and rising smoothly to y at

the end of the accumulation phase. The fraction of the population with the durable is

increasing and concave over the interval of accumulation.

It is helpful to note the :elationship between the problem solved by the optimal

allocation and that of accumul[,ting a perfectly divisible good under autarky. As ncted

earlier, if the durable good were perfectly divisible, then there would be no gains from trade

and Autarky would be optimal. 23 It is precisely the indivisibility of the durable which

creates the problem. Nonetheless, the economy may approximately replicate the situation

under perfect divisibility, ever, in the presence of indivisibilities, by randomly assigning

individuals to positions in the queue at the initial date. This is tantamount to granting

each individual a "share" of the aggregate amount of the durable good available at any

subsequent date.

The exact link between the two problems is spelled out in the following lemma.

Here the function K(T) is to be interpreted as the stock of the divisible asset the individual

holds at time 7.



Lemma 2: The optimal aggregate consumption path {E0 (r):7,[O,T]} solves the problem:

T
Max [v(c(r)) + ((T-,r)K'(r)] dT

c( -) 0
subject to B.K'(T)=y-c(T); K(O)=O; K(T)=1; 0<c(r)_y.

Proof: See the Appendix.

Thus the consumption path of non-durable consumption is precisely that attained by an

individual accumulating a perfectly divisible durable good. In the absence of trade in

durable services, financial intermediation provides the only means to overcome the

limitations imposed on the agents by the constraint of indivisibility. In the optimal

allocation it is completely overcome in the sense that ez ante expected utility is just the

same as it would be under perfect divisibility.

While we have assumed that pr;Fferences are quasi-linear in deriving our results,

there will be gains from randomization (on the ez ante expected utility criterion) in any

equilibrium with indivisibilities. This is a general point, and it is key to many of the results

of section VI. It is important therefore to understand why it is true. Assumptions about

preferences affect the extent to which randomization provides a perfect substitute for

divisibility, but not whether it improves over deterministic, equilibrium outcomes in the

presence of indivisibility. From an ex ante viewpoint, the representative agent who faces

the deterministic assignment function s(-) without knowing his types a is already, in

effect, bearing risk. He sees a probability N(7;s) of enjoying the durable's services

beginning on or before 7, and evaluates his expected utility accordingly.

By contrast, adopting an ex post viewpoint on any equilibrium, an agent knowing his

type a and facing assignment function s(.), must be willing to accept his assignment -

that is, he must not want to be any other type.24 This is what the substance of the equal



utility conditions of the Bidding Rosca and the market equilibrium. Thus in the latter two

institutional settings, only those allocations which satisfy feasibility and equal utility can

be considered. This amounts to an add-,ional constraint on the problem of maximizing ex

ante expected utility.

This completes our characterization of efficient and optimal allocations. Having

understood their properties, we are ready to examine how well the various institutions that

we have discussed perform relative to these criteria.

VI. The Performance of Roscas

The purpose of this section is to analyze the allocative performance of Roscas in

detail. We shall be interested in understanding how they perform relative to the efficiency

and expected utility criteria, as well as in establishing additional features of the resource

allocation which they produce. In order .o do this, it is helpful to set out concisely some of

the results of the previous two sections. This we do in Table 1. To keep the notation

consistent we let to denote the date at which all have acquired the durable under the

optimum, i.e. t =So(1).

TABLE 1

Welfare Date by which all have
Institution acquired the durable

Autarky WA=T[v(y)+f]-BA(() tA=B' (,)

Random Rosca WR=T[v(y)+()-Bp(;) tR=Bp'( )
Bidding Rosca WB=T[v(y)+']-BAB(l) tB=B/(y-AB)

Optimum Wo =T[v(y)+ý-BjI p(ca)da t =B0 1  (aý)da0 i 'ýI 00



We begin by discussing the efficie icy of resource allocation in Roscas.

Proposition 1: The allocations achieved 'y Bidding and Random Roscas are inefficient.

Proof: By Corollary 1(i) efficient allocations have strictly convez assignment functions,

while the analysis of sections IV.2 and IV.3 showed that Roscas, with uniformly spaced

meeting dates and constant contribution rates, lead to linear assignment functions. o

The constraint that contributions occur at a constant rate during the life of a Rosca is

intended to reflect an important feature of these institutions as observed in practice - their

simplicity. A result of this simple representation is the inefficiency noted above. The

convexity of efficient assignment functions is a consequence of the fact that, as the

remaining horizon becomes shorter, the value of the durable good to an agent who acquires

it diminishes, so the amount of current consumption foregone to finance diffusion of

durable goods should also decline. Roscas, as we have modeled them, cannot achieve this

subtle intertemporal shift in resource allocation. Notwithstanding, the best Random Rosca

does yield maximal ez ante expected utility to its members subject to the constraint of the

assignment function being linear. Moreover, the best Bidding Rosca generates the highest

common level of utility for its members, among all feasible allocations satisfying the linear

assignment function requirement.

Our next result concerns the welfare comparisons.

Proposition 2: (a) The optimal allocation yields the highest level of ez ante expected

utility and Autarky the lowest. (b) The Random Rosca dominates the Bidding Rosca.

Hence, a representative agent, using the ex ante welfare criterion, would rank the



institutions in the following way: WA • WB < WR < W o.

Proof: Recall that p() Min{v(Y)--(c) +  is positive, increasing and concave, -O0.

Moreover, it is easy to show that As'(() is decreasing and convex, under our assumption

that v' ...>0. Recall also the definitions pB() -minv(yL ( }, any xE[0,1], x0o,
1 -1where A(c,x)_-4v (v(c)-_(x-a))da. Because v(-) is increasing and strictly concave we

know that v-1 (.) is increasing and strictly convex. Therefore A(c,1)<c, and (by Jensen's

Inequality) A(c, )>c. Thus, taking x=1 we see that pB(6)<t(6), while taking x= allows

us to see that jpB(6)>A(j). Hence, i/((>p~B()>p,(). The result then follows immediately

by reference to Table 1. o

In light of our earlier remarks, it seems obvious that Autarky must be the worst,

and the ez ante expected utility maxim zing allocation must be the best, of the alternatives

being considered here. What is most noteworthy about Proposition 2 is the ranking of the

Bidding and Random Roscas. Individuals, given our assumptions, would always prefer to

use a savings association that allocates access to the accumulating resources by lot, rather

than by competitive bidding. We shall return to the reason for this momentarily. At

present, it should be noted that the assumption of homogeneous agents is crucial to what

we have found. Bidding could serve as a means for individuals to credibly convey

information about their differences to other Rosca members. Notice, though, that those

differences would have to be unobservable to the other agents to obviate our conclusion

above. Otherwise the self-selection would occur prior to the formation of the Roscas,

resulting in homogeneous associations which would perform better with a random

allocation of positions in the queue for funds than with bidding.25

Formally, it can be seen that the Bidding Rosca solves a more constrained problem

than does a Random Rosca: equilibrium of the bidding process requires that lifetime

utilities be equal, which precludes the equality of marginal utilities across agents which is



necessary for ex ante expected utility maximization.28 This point is also made in the

related analysis of Bergstrom (1986).27 Figure 4 provides a diagrammatic exposition of the

main idea. It depicts a two person economy wherein individuals live for two periods. We

will assume that parameter values are such that it is efficient to allocate the durable to

only one individual in each time period. In such an economy Roscas can achieve efficiency

since the assignment function must be linear, i.e. the same number of individuals must

receive the good in each period. The:e are two utility possibility frontiers and which is

relevant depends upon who gets the durable first. With a Random Rosca, non-durable

consumption is equally allocated. Hence, the utility allocations will be at A if individual

one wins the pot in period 1 and at B iF individual 2 wins it. At either of these points,

utility is allocated unequally. Since both utility allocations have equal probability, each

individual's expected utility will be at point C. Under a Bidding Rosca, utility is equal and

hence the allocation occurs at the intersection of the utility possibility frontiers. It is clear

that the Random Rosca results in a higaer level of expected utility than the Bidding Rosca.

Indeed, in this simple economy, the Random Rosca achieves the optimal allocation.

For exactly the same reason, the competitive equilibrium allocation, constrained by

definition to provide agents with equal utilities, generates lower ex ante expected utility

than the optimal allocation <so,Co>. 28 This can also be seen from Figure 3 since in a two

person, two period world the Bidding Rosca and the Market result in identical allocations.

In general, however, the Market is superior to a Bidding Rosca. To understand this, recall

that, in addition to being constrained to provide agents equal utilities, the Bidding Rosca is

also constrained to have a linear assignment function. We summarize these observations in

Proposition 3: While being inferior to the optimal allocation, the Market is preferred to a

Bidding Rosca, i.e. W0 > WM > WB.

Proof: Since each agents' utility is constant in both <SM,cM> and <sB,CB>, and since



<sB,cB> is Pareto inefficient while by the First Fundamental Theorem of Welfare Econ-

omics <sM,cM> is Pareto efficient, we must have WM>WB. Moreover, the constancy of

agents' utility in a competitive equilibrium implies:

(6.1) VOEE: W0 E W(9;<s 0,c0>) > W(O;<sM,cM>) = W(OM;<sM,cM>) - WM

where 0M are the weights asscciated with the competitive allocation. The inequality in

(6.1) reflects the fact that <s 0, c9> maximizes the weighted sum of utilities with weights 0;

the equality is due to the fact that the weighted average of a constant function does not

depend on the weights. So WM=Min{ Max W(O;<s,c>)}! The competitive
EOE <s,c>EF

equilibrium solves an elegant mini-max problem. Thus, not only is WM<Wo (equality is

impossible since then, by the strict concavity of v(.) and the fact that cM#Co, a strict

convex combination of <s M,M> and <s o,c> would be feasible and would dominate

<so,Co>), but WM is less than any maximized weighted sum of utilities. o

This proof demonstrates that the competitive equilibrium uses weights which

minimize W 0 This is key to cur constructive demonstration, in Proposition 4 below, that

there exist circumstances under which the competitive allocation is strictly dominated, in

terms of ez ante expected utility, by the optimal Random Rosca. Hence, our final result on

welfare comparisons shows that the "equal utility" constraint can be more cf an

impediment to generating ez ante welfare than the "linear assignment function" constraint.

As already mentioned, W R is maximal ez ante welfare subject to having a linear

assignment function, while WM maximizes the same criterion subject to the constraint

that utilities are equal. The question naturally arises whether one can prove a general

result on the relation of these values. One might have suspected that under some plausible

conditions the competiti :e allocation would dominate the inefficient Random Rosca.



However, this is not the case. What follows is an illustration of the fact that a simple

institution of financial intermediation, allocating its funds by lot, can actually out perform

a perfectly competitive credit market.

Proposition 4: In the case of logarithmic utility, there exists a Z such that for all ( > Z, a

Random Rosca dominates the Market; i.e. WR > WM.

Proof: See the Appendix.

The technique of proof is indirect, since explicit representation of competitive

allocations, even in the case of logarithmic utility, seems intractable. We use the fact,

from the proof of Proposition 3, that the market gives the least maximized weighted utility

sum, over all possible weights. We then construct a set of weights whose maximized utility

sum is less than WR, to infer th(e result. Intuitively the result may be understood by

recognizing that, when C is very la:ge, respecting the equal utility constraint means those

receiving the durable early must get much lower non-durable consumption than those

acquiring it late. Therefore, the agents' marginal utilities from non-durable consumption

will be very unequal, causing their ez ante expected utilities to be relatively low. Since the

magnitude of ( does not effect the utility cost of the non-optimal intertemporal allocation

of non-durable consumption characteristic of Roscas, when ( is sufficiently big the

Random Rosca dominates.

Another difference between the institutions concerns the length of their

accumulation periods. Our next task, therefore, is to explore some facts concerning these.

In what follows we shall refer to the date by which all have acquired the durable as the

terminal time. We now have:



Proposition 5: The terminal times under Autarky, the Random Rosca, and the Optimum

can be ordered as follows: tR/2 < tA < R < to'

Proof: Considering the formulae in Table 1, and the fact that I'(.) is under our assump-

tions a decreasing, strictly convex function, the last two inequalities above follow at once.

Let c*(() give the minimum in (4.2). Then V( ? 0: pL() = v'(c*(()) and

p'(() = [y--c*()] - 1. Some straightforward algebra shows that c*(.) is decreasing and,

given v''' > 0, strictly convex. Now from Table 1, tR  < 2tA  if and only if

c*(J) < [c*(6)+y]/2 = [c*(6)+c*(0)]/2, which follows from the strict convexity of c*(.). a

The moral of this proposition is, roughly speaking, that the more efficient the

financial intermediation, the more protracted the period of accumulation. Since under

Autarky all savings lie idle, it stands to reason that the accumulation period would be

relatively short. The ex ante optimum, on the other hand, allocates resources as if the

services of the durable, as acquired, were immediately available to all agents on a prorated

basis (see the discussion in Section V.2). We also know from Corollary 1 that the rate of

acquisition must slow to zero as cumulative diffusion approaches unity. The Random

Rosca is somewhere between these two extremes, but has the property that on the average

its members acquire the durable good earlier than would be the case if they saved in

isolation.

Notc also that the rcl.Its on the term'inal dates car be used to infer something

about the average rates of consumption (E), and therefore saving, during the accumulation

phase for the different institutions after remembering that t = B/y - E. Hence a corollary

of Proposition 5 is that the average savings rate is greatest under Autarky and lowest

under the optimal allocation.

The optimal length of the period of accumulation under the Bidding Rosca (and, it

would appear, also under the market mechanism) is more difficult to characterize, because



it is not related to the function AsB(.) in any simple way. We have however been able to

obtain the following result.

Proposition 6: (i) If 1/v'(.) is concave, then the terminal time in a Bidding Rosca is later

than under Autarky, i.e. tBtA. (ii) If 1/v'(.) is convex, then the terminal time under a

Random Rosca is later than with a Bidding Rosca, i.e. tB<_tR'

Proof: See the Appendix.

Whether 1/v'(c) is concave or convex does not follow directly from any well known

property of the utility function. For iso-elastic utility functions, v(y) = yl-P/(1-p),

1/v'(c) is convex if p>l and concavre if p<l. It is interesting to note that in the borderline

case, v(c) = In(c), implying that 1/v'(c) is linear in c, both parts of the Proposition are

satisfied, and tA < tB < tR.

VII. Conclusions and Suggestions for Further Research

This paper has investigated the economic role and performance of Roscas. We have

sought their rationale in the fact that some goods are indivisible, a fact which makes

autarkic saving inefficient. While Rosca allocations are not Pareto efficient, they are

superior to Autarky. Moreover, a Random Rosca may yield a higher level of expected

utility than in a perfect credit market. The latter result is more striking still when taken

in conjunction with the fact that R.oscas are such a simple institution - a factor surely

significant in many contexts in which they are adopted.

A number of issues remain outstanding and we hope to consider them in future

work. The most important concerns the sustainability of Roscas. There is a strong

incentive for those who win the pot early to stop contributing to the Rosca, although as we

noted in the introduction, this does not appear to be a serious problem in practice. The
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kinds of primitive societies which spawn Roscas are comparatively rich in the ability to use

social sanctions to enforce contractual performance. This ability may however deteriorate

in the process of economic development causing problems for Roscas. Understanding these

issues better would, we conjecture, further enhance our understanding of when Roscas are

likely to be the most "appropriate" savings institution for an economy.
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Akppendix

Proof of Lemma 1: To prove that the opi mal Random Rosca will be fully funded, we must
first extend our model of a Random Ros•:a to allow for partial funding. To do this all we
have to do is to let NE(0,1] be the limit ing ratio of meetings to members, but otherwise
adopt the model of the optimal Randor i Rosca with a continuum of agents as it was
described in the text. Then if the Rosca has length t, members save at the rate N.B/t,
and face probability N of ever winning the pot. Conditional on winning, the receipt date
a is uniform on [0 1] Reasoning in like manner to the arguments for (4.3) and (4.6), and
denoting by WR(N) the maximal expected utility of the members of this Rosca, we have:

WR(N) = Max[tv(c)+(T-t)v(y)+N.(T -)~( s.t. t.(y-c)=NB, 0<c<y-NB/T.

As before, if the optimal length t<T then (4.2) may be employed to write:

(A.1) WR(N) = T.[v(y)+N3] - NB.-(N6/2)

as the welfare associated with that optimal "partially funded" Random Rosca which pro-
vides its members a probability N of ever obtaining the pot. "Full funding" of the Rosca
is optimal iff WR=WR(1)WR(N), VNE(0,1]. That is, combining (4.6) and the above, iff:

(A.2) >A(612) - Np(N/2) VNE(0,1].

That this condition is stronger than the desirability requirement of Assumption 2 may be
seen as follows: For N P 1 the RHS of the equation above -p(A 2) + (6/2)p•('/2) ? A(),
by concavity. So if the inequality holds for N E (1-c,1], e near zero, we may conclude that
T/B > A()/1, which is Assumption 2. On the other hand, if Assumption 2 fails then,
although a Random Rosca which guarantees eventual receipt of the durable may be
preferred to doing without it, one which provides something less than certainty of receipt
(N<1) would be even better. Moreover, since ~g( ) is not generally a convex function, the
above inequality could hold for N ? 1, but fail for N < 1. Thus, without imposing some
additional assumption we cannot assure even the local optimality of a "fully funded"
Random Rosca.

We now show that (A.2) holds, given Assumption 2'. Strong desirability implies
6T/B>2246/2). Let x>0, and c*(x) give the minimum in (4.2) when 6=x. Then:

x() x v(y)-v(c*(x))+xx(x) = y-c (x) y-c(x) = p=x).

Therefore, use (A.1), set x=N6/2 above, and recall that A is strictly increasing, to get:

dWR ( N)dN T-B[p() + ( )> - B[-p( B[-2 ( 0,
for 0<N<1. So W'R(1)>WR(N), VNE(0,1], and (A.2) obtains.

To prove the remaining part of the lemma, consider the choice problem faced by the
member of the optimal "fully funded" Random Rosca who wins the pot at date rE[0,t]. He
must continue to pay into the Rosca at rate y - B/T on the interval (r,t]. If he ever



acquires the durable he does best to buy it immediately, in which case his continuation
payoff is:

W*(r) E (t-r)-v(Y-t) + (T-t).v(y) + (T-r)ý.

If he never acquires it, he should consunre for the rest of his life at the maximal constant
rate consistent with available resources, which generates the continuation payoff:

W(r) = (T-T).v
(t-r)(y B) + (T-t)y + BI

T-r

We need to show that W*(T)ŽW(T), VrE[O,t]. It may be easily verified that this is
true if and only if W*(t)ŽW(t). (That is, if any member will want not to invest in the
durable, it will be the last one to receive the pot.) Thus, the proof will be complete if we
can show that v(y) + > v(y+TBt), for t the optimal length of this Random Rosca. But
it follows from (4.2), (4.4) and (4.5) that t=B/[y--c*(C/2)]=BL'(c/2),
v' (y)=4(0). So by the concavity of v(.), the properties of p(.) derived
of Assumption 2':

B B Tv(y+T--)-v(y) • v'(y).(T-.) =

while (4.2) implies
above, and in light

S(~ / f2)-(•/2). •,(/2)-2A(ý/) •,•2)

Indeed, the same argument can be used to show that, under Strong Desirability, the last
winner of the "partially funded" Random Rosca (N<1) will also choose to acquire the dur-
able, as presumed. This completes the proof. o

Proof of Theorem 1: In view of the discussion preceding the statement of the Theorem:

"a VMax{J V O((T))dT + (T-s(l))V y) + ýT- ( 0(a)s(a)da}
subject to

s'(a) = B/[y-c(s(a))], aE[0,1).
Now employ the change of variables: r=s(a), dr

f~s'(a)da; and use (5.4) and the definition in (5.6)

W = Max{J s(iV 0(c(r))dT + (T-s(1))-.V(y) +

1
= Max{T[V 0 y)+] - Js' (a) [V (y)-V 0c

1
= T[V(y)+] - Minf{B J{[Vo(y)-V(c(s(a

=s'(a)da, TE[O,s(1)]; note that

to get the following:
1

(T-i( 0(a)s(a)da)d}

(s(a))+f lO(z)dz] d a}

)))+ a (z)dz]/[y-c(s( a))] }da}
U

= T[V (y)+c] - Ilo(z)dz)da

s(1) =

Ul

1
B 0 0



This proves (i). Note that the minimization above is pointwise, with respect to c(s(a)), at

each aLE[O,1]. So it implies that for aE[(O,], c(s(a))=a(J 10yO(z)dz). In view of this and

(5.4) we conclude that s(a)=j'a '(x)dx satisfies (ii). Now also from (5.4) we know that

c(r)=y, for r>s(1), and we noted earlier in the text that c(a,t)=Xg(a,Ec(t)), VaE[0,1],

VtE[O,T]. Taken together, these prove (iii).

Proof of Lemma 2: From (5.4), (5.5), and the fact that Vl(w)=v(w), we know that the

functions Co(7) and so(a) maximize:

T 1
Jv(C(r))dr + (T - 4 s(a)da

subject to:

s'(a) = B/[y-c(s(a))], for all aE[0,1); and, E(r)=y, for all rE(s(1),T].

Now, for any feasible c(Tr) and s(a), define the function K(.) as follows: K(r)=s-l 1(r) for

vT[0,s(l)) and K(7)=l for re[s(1),T]. Notice that K'(r)=(y-c(r-))/B for rC[0,s(1)) and
K'(r)=O for rE[s(1),T]. It follows that we may rewrite the constraints as:

B. K'(r)=y--C(); K(O)=0; K(T)=1; 0<c(T)<y.

Now note that using the change of variables r=s(a), dr=s'(a)da we may write

f0s(a)da= TrK'(r)dT, and since K(O)=O and K(1)=1, we have that T=TfTK'(r)dr.
Thus the objective function may be written as:

T
I [v(c(T)) + ((T-T)K'(r)]dT.

0

Proof of Proposition 4: When v(c)=ln(c), welfare under the Random Rosca is:

WR = T[ln(y)+] - B[1+x((/2)]WR y

where X(()-ln(l+X(ý))_5=, (20, defines x(.). Similarly, for the Market we have

WM = T[ln(y)+±+f 1 OM(a)ln(OM(a))da] -O0
B 1

Y 0 x

for some 0ME@. We know from the proof of Proposition 3 that WM m Wn . Hence,
VR>>W M if and only if 30E6 such that R>V 'O. The proof constructs some weights for

which this is so. First we need:

OM(z)dz)ldx,



Lemma 3:
and let g(.) be a
Then

Let f(.) be
function on

an increasilig, strictly concave function satisfying f(0)
[0,1], strictly decreasing satisfying g(1) = 0 and g(0)

1 1
f(g(x))dx > f(1)f g(x)dx.

Proof: Let i be a random variable which is uniformly distributed on [0,1].

= g(i), and i = 1, if i < j 0g(x)dx, and i = 0, if I > J• g(x)dx.

Define

Then

E( ) = f g(x)dx =E(i)

where E(-) denotes the expectations operator. Moreover, i is riskier than 3 in the sense of
second order stochastic dominance. Therefore, since f(-) is strictly concave:

1
E(f(ý)) = ff(g(x))dx

This proves the lemma. o

This lemma implies that

g(x)dx.

f x(f 0(z)dz)dz)x > x(0 x )f &((z)dz)dx.0 x
This in turn implies that

W < T[n(y) +C(+ )(0(x)n( )dx) - B[1+
1 1

where we have also used the fact that f f O(z)dzdx =O X

Hence, a sufficient condition for WR > W\i-, is that:

3068 such that X(Y
S 1

B X(f1 x0(x)dx.Y 0\/J(/2) > f 0(x)in(0(x))dx

f0 O(x)ln(0(x))dx
No dfie () mi S.t O~~d=7. hn R>M0f

-0,

= 1.

xO(x)dx.

> E(f(i)) == f(1)

I
x0(x)dx=j . Then W'R>WHM if:Now define E(W) s.t.

x0(x)dx] -x()],

Smin
L LOO
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3-E(0,1) such that (Ty). ~[X()-X(&/2)] > E(9).

LetB() - E()}Let BT-'7E(0,1), and consider the problem: max X()- E()}=
"k [ 0,1]

We conclude

that it is sufficient for WR>WM that 11 >7X((/ 2 ).

Lemma 4: (i) E(-) is strictly convex, and E(9)>E(½), V#E[0,1]; and, (ii) if E'(O)=A,

then E(C)=XA-+ln(A(eA-1)-1).

Proof: Define the Lagrangean

1 1L = O(x)n(O(x)dx + A[-f xO(x)dx]

0 0
+ I[1- •(x)dx].

0

The first order condition with respect to 0(x) is: ln(O(x))+1-Ax-pJ0, xE[0,1]. Inverting

and integrating this condition, using the constraint, yields: -1 = 1 Solving this

for IL, substituting into the first order condition, multiplying by (x) and integrating yields
(ii). To prove (i) observe that integrating the first order condition, after inverting and
multiplying through by x, and using the above derived expression for / yields:

f1lx(x)dx f=eA-1 1xeAxdx = r-A(e A-1-

0 0 A
/ ] = eA/(eAl)

It is straightforward now to see that O(A) -- 0 as A - --w; O(A) -- 1 as A - +- m and

O(A) -4 1/2 as A -4 0. Part (i) is now proved by noting that E'(0) = €-1(9), from the
envelope condition. o

This result and simple calculation reveals: 0 > rX(&/ 2) if and only

e y7X(/2). Note also that, from the definition of X(-), that X'(6) = (1+x(0))IX(0)) > 1.

Thus X(6) > x(6/ 2 ) + 6/2. Moreover, (c'-1)/z = Jezxdx is a strictly increasing function.

So:

e7X(()-I e> X()eY( ) - 1
7X(7) > 7X(/2) + ys/2 e7x(;) e-7 1/2-q((/2)+,y/21 x(W/2) + (/2)]- 1

The first of the two terms on the right hand side grows unboundedly as ( -+ m. Moreover,
for a sufficiently large (, the second term vanishes. Hence, for large enough (,

[e'X() - 1]/7(x() > e7 X(L / 2) and 'R  . (Note that ý, the critical value of (,

depends only on y-B/Ty.) o

J 1 :

efx(f)



Proof of Proposition 6: (i)
that tB Ž tA. We will use

Suppose that 1/v'(c) is a concave function of c. We will show
the following notation. Let cB be the consumption rate of the

lowest bidder in the Rosca i.e., cB=CB(1).

f jc(a)da.A(cB71)); c'-c()=cB, and co=c(O).
Define: c(a)v-l (v(cB)-ý(1-a));

From the discussion of section IV.3 we

know that c(a) must equal the consumption level of individuals receiving the durable at

date atB (i.e., c(a)=cB(a)), and c is the population average rate of consumption at each

moment over the life of the Rosca.
following Lemma.

Notice that c'(x)= /v'(c(x)). We will use the

Lemma 5: 1/v'(c) concave implies v'(c) • (/[cl-co], while 1/v'(c) convex implies

v P (d) > ý [c'--noe
Proof: By the Fundamental Theorem of Calculus

0 v(c( ))-

while by definition [v' ()]-1 =

(c())
0 v'(c (ca))

V
1- -1

(1 c(a)da]

v' (f c(a)da]0

Now Jensen's inequality implies

= [v,(-)] - 1

when 1/v'(c) is concave (convex). o

We will use this lemma as follows. Note that tB > tA
satisfies the first order condition:

if and only if E > CA, while cA

[v(y) + ý - v(cA)] - v'(cA)(y-cA) = 0.

Moreover, using (4.10) (with x=1) one may calculate that the first
determining cB is:

[v(y)+ ~-v(cB>l

order condition

-L oJl [yC = 0.
1.C .JC

Let A(c) E v(y)+&-v(c) and g(c) = A(c)-v'(c)(y-c).
Therefore, when 1/v' (c) is concave, we have:

Then c<cB, A'(c)<0 and 7'(c)>0.

I oC-1 oJ

( (c)-v' (c)(y-c)> A(cB)-V' (c)(y-)



=c O- v(--) ](y- --) 0 = ~cA)'
This proves (i).

To prove (ii) note that tR tB if and only if cR>E. With c', co, c(-) as defined in

the proof of (i) above, let EB denote tl:e consumption of a median bidder in the optimal

Rosca, who receives the durable at date tB/2 (i.e., cB=c(1/2)). Bidding equilibrium

requires: v(EB)=v(cB)+(/2. The first order condition for the optimality of the Bidding

Rosca may thus be rewritten as:

[v(y)+ 6/2-v(EB) '

and the function c(a) now satisfies:

c(a) = v-(v(cB) - (2-a)), aE[O,1].

Notice that Jensen's inequality and the convexity of v-l(.) imply:

1 1 _1
c c(a)da = fv (v(McB) 2-a)6)da cB)0 0

moreover, the first-order condition determining cR is:

[v(y)+6/2-v(cR) ] = v'(cR)[Y-CR].

With A(c) and b(c) defined as before we may use the Lemma to conclude that if 1/v'(c) is
convex, then

E)a A(E)-v'(E)(y-E) S A(EB)-v'(E-)(y-E) = L v'()] [y-E] 5 0 = *cR).

This completes the proof. o



End Notes

1Bouman (1977) provides a comprehensive listing of all the countries in which Roscas have
been observed as well as some sense cf their quantitative importance. He reports, for
example, that an estimated 60% of the population in Addis Ababa belong to a Rosca of
some form. Light (1972) discusses their use by ethnic minorities in the US. Additional
specific country studies are provided by Begashaw (1978), Fernando (1986), and Osuntogun
and Adeyemo (1981). The nineteenth century savings and loan associations in the US also
appeared to have worked as Roscas - see Grossman (1989) and Symons and White (1984;,
page 65. Roscas have long been popular in India where they travel under the name of Chit
Funds. Radhakrishnan et al. (1975) describes them in detail. In Kerala, for example, they
report that Roscas are used in preference to banks by industrialists, educational
institutions and churches. In 1967, there were 12491 registered Chit Funds in this state of
India alone.
2The classic anthropological studies of Roscas are by Geertz (1962) and Ardener (1964).
The latter paper is particularly recommmended as an introduction to the literature.
3While bidding and drawing lots seem to be the two most common ways of allocating the
pot, it is also sometimes allocated according to need or known criteria such as age or
kinship seniority. The reader is referred to Ardener (1964) for a more detailed discussion.
4This was clearly recognized by Ardener (1964). "The most obvious function of these
associations is that they assist in small-scale capital-formation, or more simply, they
create savings. Members could save their contributions themselves at home and
accumulate their own "funds", but this would withdraw money from circulation: in a
rotating credit association capital need never be idle." p. 217.
5See, for example, the discusion in ArdEner (1964) p. 216.
6Note that the quantity B is a stock, while y and c are rates of flow.
7This is consonant with the anthropological stories. Individuals do not, typically, share the
fruit from Rosca winnings. In cases such as the purchase a new roof for one's home, this is
not typically feasible anyway.
sThe function c:[0,1]x[0,T] -4 R+ is required to be such that c(. ,7-) and c(a,.) are (Lebesgue)
integrable for all (a,r).

9That is, N(r;s) is the measure of the set s-l ([0,r-])={ac[0,1] I s(a)<r & s(a)#v}.
1oThe problem makes no economic sense otherwise, since tA =T implies WA<T.v(y). We
provide a condition which is both necessary and sufficient for WA>T. v(y) in Assumption
2 below.

"lit is trivial to show that p(.) is increasing and strictly positive. To prove strict concavity,
let (1 f ý2' define a a~1 + (1-a)(2 and note that

v(y)-v(c )-(1 v(y)-v(c )- 2
a a 2

where c is the optimal consumption level at a. Note also that



v(y)-v(c 0)-_
A(i) < -Y c for (i = (1' 2 "

Hence, p6a) > ap(l1) + (1-a)A(6 2), a- claimed.

12From the properties of gp.) stated in the text, we know that p(~)/( is decreasing for 6>0.
Moreover, i())v' (y); so the Envelope Theorem implies = v X < 0. Thus there

exists a minimal .>0, which is a decreasing function of both y and of , such that it is
desirable to acquire the durable under A utarky if and only if 6 _ k.
13If desirability fails, then sA -v and cA(a,r) _ y, for all agents. Note also that we are using
the symbol "CA" to denote both the function which designates consumption levels for the
agents at various dates, and the value of that function during the period of accumulation.
No confusion should result.
14We assume for the moment that the winner will choose to buy the durable. This assump-
tion is discussed further below.
5INotice that the particular limit obtain, d depends upon the assumption that the spacing of

meeting dates is uniform and the contribution at each meeting is constant. By having the
meetings occur with different frequencies at different times during the life of the Rosca, and
by varying the rate of contribution across meeting dates, it may be shown that one can, in
the limit, generate every feasible allocation <s,c> in which the consumption paths c(a,7)
are constant .r a, as the ez post outcome of a Random Ro, ca. (Moreover, one can in
similar fashion generate every feasible aJlocation <s,c> in which the utility u(a;<s,c>) is
constant in a, as the limiting outcome of a Bidding Rosca.) However, we do not attempt
to exploit these fact in this paper. To do so would run contrary to the spirit of our
analysis. The point of this exercise is to see how simple institutions of financial
intermediation compare with each other and with a more complicated market mechanism.
We believe, upon our reading of the anthropological literature, that the simplicity and
minimal informational requirements of Roscas, as represented here and as observed in prac-
tice, are important factors explaining their popularity around the world. We therefore
restrict ourselves to the study of Roscas which can in effect be fully and simply charact-
erized in terms of two parameters - the frequency of meetings, and the contribution
required per meeting. It is of some interest that, despite this restriction, we nevertheless
find that Roscas can compare favorably with more complicated mechanisms of resource
allocation.
1sIt is worth noting that the larger the -umber of individuals in a Rosca, the earlier is the
average receipt date of the durable. (E(i) = t . [1 + l/n]/2.) Thus our formulation implies
that individual participants are better off when more members are added to the Rosca. In
practice, at least two factors are likel 3 to work against this. First, a larger membership
requires more meeting dates and there are likely to be transactions costs associated with
these meetings. Second, the more members the more impersonal the relationship between
participants, and hence the greater the likelihood of incentive problems. The general issue
of the optimal number of members is an interesting subject for further research.
17Unless the optimal accumulation perio- is strictly shorter than the planning horizon, our
model of the Random Rosca breaks down. Those winning the pot near the end of the
Rosca would not rationally choose to buy a durable good if there were no time left to enjoy
its services. Assumption 2' introduced below is sufficient to insure that acquisition of the



durable by the winner is always rational, and so tR<T at the optimum. See Lemma 1.

s8From (4.2), (4.4) and (4.6) it should also be noted that since tR = B. - (/2), we can write

the utility level of a type a individual as

u(a; <sR,cR>) = T[v(y) + 6] - B. [gp(/2) - (1-2a)(6/2)A'(6/2)].

Since p(.) is concave, p(6/2) + (6/2)jL'(6/2) > gp), so that u(1;<sR,cR>) < WA. Thus

in the optimal Random Rosca the last recipient of the pot is worse-off than he would have
been under Autarky.
'gBoth of these can be verified straightforwardly by noting that the first order condition for

cB(x) can be written as 1 = "B(6o)fC'(a)da.

20As in the case of the Bidding Rosca, we have been unable to establish whether Assumption
2 is sufficient to guarantee that all individuals will purchase the durable in a market
equilibrium. Again, intuitively, it seems that it should be. We know that the market
equilibrium is efficient and that all individuals have equal utilities. These two facts
together with Assumption 2 should, one would imagine, imply that all individuals will
receive the durable. For, if a group of individuals never received the durable, then, by the
equal utilities requirement, they would have to be compensated by having higher
consumption levels. Given desirability, however, it should be cheaper, in terms of the loss
of the rest of the population's utility, to provide them with the durable.
21As justification for the characterization in (5.1) consider the "separating hyperplane"
argument sketched as follows. Each feasible allocation <s,c> EF gives rise to an allocation
of utility u(a;<s,c>), aE[0,1]. Let U - { u(-;<s,c>) I <s,c>EF }. Given the convention
of labelling agents according to their order of receipt of the durable, U constitutes the
utility possibility set for our model. Under our assumptions U is a convex, bounded
subset of the space of Lebesgue integrable functions on the unit interval, L'([0,1]), with
non-empty interior, closed in the norm topology. Convexity is assured by the fact [see
equation (5.4) below] that on the efficient frontier of F s'(a) is inversely proportional to
the aggregate savings rate [y-fc(x,s(a))dx]. Thus the convex combination of two
consumption allocations allows receipt dates for every agent which are less than the same
convex combination of the corresponding assignment functions.

Now an efficient allocation <s',c'>EF generates an allocation of utility u'EU
satisfying (suppress dependence of u on <s,c> hereafter): u(a) > u'(a) a.e. if and only if

ugU. The Hahn-Banach Theorem implies a continuous linear functional p:L'([0,1]) -4 R
exists, such that p(u') Ž p(u), VuEU, It is well known that the dual of L'([0,1]) may be
identified with the set of bounded, measurable functions on [0,1]. (See, e.g., Goffman and
Pendrick (1965), Theorem 1, p.147). Therefore, there exists such a function, ¢, satisfying:

1 1p(u') = f 0u(a)q(a)c a > fOu(a)0(a)da = p(u), V uEU.
Obviously 0(.) must be non-negative, a.e. Moreover, if u' corresponds to an allocation in
which all agents enjoy positive utility from the flow consumption good then, given any
subset A of agents of measure strictly less than one, there is an alternative feasible
allocation making all agents in A strictly better off, and all agents in [0,1]\A strictly
worse off. Therefore ¢ must be strictly positive, a.e. The weights 0(.) correspond to the
function 0(-) normalized to integrate to one.
22To see this, note that co(a,s (0)) = y - 1/,'(() = cA.



23Even with indivisibility the allocation problem reduces in this way if the durable's services
were fungible across agents - if there were, e.g., a perfect rental market for its services.
There are, of course, good (adverse selection/moral hazard) reasons why such trade in dur-
able services might not obtain, especially in a LDC setting. Moreover, some reports on the
use of Roscas stress their role in financing; personal expenditures (daughter's wedding, feast
for fellow villagers, tin roof for house) wdich, though not producing a fungible asset, gener-
ate private consumption benefits lasting fbr some time that are not transferable to others.
24The similarity of this discussion to classical incentive compatibility considerations may be
misleading, in that there is really only oae "type" of agent in our model. Our results are
based on incentive considerations only in the most primitive way - the equal utility
requirement of equilibrium forces an allocation which is in the "non-convex part" of the
overall utility possibility frontier for the economy. So the gains from randomization are
induced by the indivisibility in the model. The non-convexity is due to the possibility of
reassigning agents to different orders of receipt of the durable good. As discussed in the
note justifying (5.1), given an ordering of the agents, as repesented by the convention that
s(a) must be non-decreasing, utility possibilities are convex. By relabelling people at the
same physical allocation one obtains a different distribution of utility among them. The
union of utility possibilities over all possible relabellings is not convex. (See Figure 3.)
The equilibrium incentive constraint of equal utility forces a utility distribution which is in
the intersection of all utility possibility frontiers generated by a relabelling of individuals.
As the Figure shows, the overall utility possibility set must be locally non-convex near
such a point.
25This point can be made formally precise. Suppose that an individual who has the durable

obtains instantaneous utility v(c)+wý where cw[w,~] is an unobservable, individual specific,
taste parameter. Let F(w) denott the fraction of individuals who have a valuation less

than or equal to w and let &^ denote the rmean value of w. Then welfare under the optimal
Bidding Rosca, when bids (b) and receipt dates (s) are functions <b(w),s(w)> of announced
"type" constrained to be incentive compatible, can be written:

WB = T[v(y)+ý]-B'B(ýI((-G)) ,

where G is the Gini coefficient associated with the distribution F(w). Thus welfare under a
Bidding Rosca depends positively upon the extent of the dispersion in agents' valuations of
the durable as measured by the Gini coefficient. By constrast, welfare under the Random
Rosca which treats all agents alike remains: WR=T[v(y)+ý]-B~(w/2). The Bidding

Rosca can dominate with sufficient inequality in the distribution of valuations. A proof of
this result is available from the authors on request.
26This does, of course, depend on the form of the utility function. However, it may be
checked that the only case in which equality across agents of the level of lifetime utilities,
and equality of the rate of marginal utilities of both goods at all dates does not conflict is
when utility may be written: u(a;<s,c>)=V[lc(a,t)dt + ý(T-s(a))]. That is, the two
goods must be perfect substitutes for one another between any two dates.
27The failure of the market to achieve maximal expected utility parallels results obtained in
other literatures where indivisibilities are important, such as location models (Mirrlees
(1972) and Arnott and Riley (1977)), club membership (Hillman and Swan (1986)) and
conscription (Bergstrom 1986).
28An income lottery, with competitive equilibrium in a market for consumption loans occur-
ing after the realization of random incomes becomes known, would allow a decentralized
realization of the ez ante expected utility maximum, W .



End Notes

1Bouman (1977) provides a comprehensive listing of all the countries in which Roscas have
been observed as well as some sense of their quantitative importance. He reports, for
example, that an estimated 60% of the population in Addis Ababa belong to a Rosca of
some form. Light (1972) discusses their use by ethnic minorities in the US. Additional
specific country studies are provided by Begashaw (1978), Fernando (1986), and Osuntogun
and Adeyemo (1981). The nineteenth century savings and loan associations in the US also
appeared to have worked as Roscas - see Grossman (1989) and Symons and White (1984),
page 65. Roscas have long been popular in India where they travel under the name of Chit
Funds. Radhakrishnan et al. (1975) describes them in detail. In Kerala, for example, they
report that Roscas are used in preference to banks by industrialists, educational
institutions and churches. In 1967, there were 12491 registered Chit Funds in this state of
India alone.
2The classic anthropological studies of Roscas are by Geertz (1962) and Ardener (1964).
The latter paper is particularly recommmended as an introduction to the literature.
3While bidding and drawing lots seem to be the two most common ways of allocating the
pot, it is also sometimes allocated acccrding to need or known criteria such as age or
kinship seniority. The reader is referred to Ardener (1964) for a more detailed discussion.
4This was clearly recognized by Ardener (1964). "The most obvious function of these
associations is that they assist in small-scale capital-formation, or more simply, they
create savings. Members could save their contributions themselves at home and
accumulate their own "funds", but this would withdraw money from circulation: in a
rotating credit association capital need never be idle." p. 217.
5See, for example, the discusion in Ardener (1964) p. 216.
8Note that the quantity B is a stock, while y and c are rates of flow.
7This is consonant with the anthropological stories. Individuals do not, typically, share the
fruit from Rosca winnings. In cases such as the purchase a new roof for one's home, this is
not typically feasible anyway.
sThe function c:[0,1]x[O,T] -4 +R is required to be such that c(.,Tr) and c(a,.) are (Lebesgue)
integrable for all (a, r).

gThat is, N(r;s) is the measure of the set s-1 ([,r])={ae[O,1] I s(a)<•r & s(a)#v}.
10The problem makes no economic sense otherwise, since tA=T implies WA<T.v(y). We
provide a condition which is both necessary and sufficient for WA >T.v(y) in Assumption
2 below.

"It is trivial to show that p(.) is increasing and strictly positive. To prove strict concavity,
let (1 f # 2' define a = a1l + (1-a) 2 and note that

v(y)-v(c_ 1v(y)-v(c _)-_2
y(-c) = Ca + -C a

where c a is the optimal consumption level at ( . Note also that



v(y)-v(c i)-i

9i ) < y -c i for (i {1' 2 "

Hence, 6(a) > a9(1) + (1-a)962), aE claimed.

12From the properties of i(.) stated in the text, we know that A(6)/• is decreasing for 2>0.
Moreover, (()>v'(y); so the Envelope Theorem implies .= - < 0. Thus there

exists a minimal .>O, which is a decreasing function of both y and of , such that it is

desirable to acquire the durable under Autarky if and only if 6 > k.
131f desirability fails, then sA = v and cA(a,r) = y, for all agents. Note also that we are using

the symbol "cA" to denote both the function which designates consumption levels for the

agents at various dates, and the value of that function during the period of accumulation.
No confusion should result.
14We assume for the moment that the winner will choose to buy the durable. This assump-
tion is discussed further below.

IsNotice that the particular limit obtained depends upon the assumption that the spacing of
meeting dates is uniform and the contribution at each meeting is constant. By having the
meetings occur with different frequencies at different times during the life of the Rosca, and
by varying the rate of contribution across meeting dates, it may be shown that one can, in
the limit, generate every feasible allocation <s,c> in which the consumption paths c(a,7)
are constant in a, as the ex post outcome of a R0.,dom Rosca. (Moreover, one can in
similar fashion generate every feasible allocation <s,c> in which the Ltility u(ar<s,c>) is
constant in a, as the limiting outcome of a Bidding Rosca.) However, we do not attempt
to exploit these fact in this paper. To do so would run contrary to the spirit of our
analysis. The point of this exercise is to see how simple institutions of financial
intermediation compare with each other and with a more complicated market mechanism.
We believe, upon our reading of the anthropological literature, that the simplicity and
minimal informational requirements of Roscas, as represented here and as observed in prac-
tice, are important factors explaining their popularity around the world. We therefore
restrict ourselves to the study of Roscas which can in effect be fully and simply charact-
erized in terms of two parameters - the frequency of meetings, and the contribution
required per meeting. It is of some interest that, despite this restriction, we nevertheless
find that Roscas can compare favorably with more complicated mechanisms of resource
allocation.
OsIt is worth noting that the larger the number of individuals in a Rosca, the earlier is the

average receipt date of the durable. (E(Q-) = t -[1 + 1/n]/2.) Thus our formulation implies
that individual participants are better off when more members are added to the Rosca. In
practice, at least two factors are likely to work against this. First, a larger membership
requires more meeting dates and there are likely to be transactions costs associated with
these meetings. Second, the more members the more impersonal the relationship between
participants, and hence the greater the likelihood of incentive problems. The general issue
of the optimal number of members is an interesting subject for further research.

17Unless the optimal accumulation period is strictly shorter than the planning horizon, our
model of the Random Rosca breaks down. Those winning the pot near the end of the
Rosca would not rationally choose to buy a durable good if there were no time left to enjoy
its services. Assumption 2' introduced below is sufficient to insure that acquisition of the



durable by the winner is always rational, and so tR<T at the optimum. See Lemma 1.
18From (4.2), (4.4) and (4.6) it should also be noted that since tR = B.,j'(4/2), we can write
the utility level of a type a individual as

u(a;<sR,cR>) = T[v(y) + ý] - E [pA(2) -(1-2a)((]2)/'(C~2)].

Since p(.) is concave, A(/2) + (ý/2)p~'(6/2) > p((), so that u(1;<sR,cR>) < WA. Thus
in the optimal Random Rosca the last recipient of the pot is worse-off than he would have
been under Autarky.
19Both of these can be verified straightforwardly by noting that the first order condition for
cB(x) can be written as 1 = pB()oc'(a)da.

20As in the case of the Bidding Rosca, we have been unable to establish whether Assumption
2 is sufficient to guarantee that all individuals will purchase the durable in a market
equilibrium. Again, intuitively, it seems that it should be. We know that the market
equilibrium is efficient and that all individuals have equal utilities. These two facts
together with Assumption 2 should, one would imagine, imply that all individuals will
receive the durable. For, if a group of individuals never received the durable, then, by the
equal utilities requirement, they would have to be compensated by having higher
consumption levels. Given desirability, however, it should be cheaper, in terms of the loss
of the rest of the population's utility, to provide them with the durable.
21As justification for the characterization in (5.1) consider the "separating hyperplane"
argument sketched as follows. Each feasible allocation <s,c> eF gives rise to an allocation
of utility u(a;<s,c>), aE[0,1]. Let U • u(.;<s,c>) I <s,c>EF . Given the convention
of labelling agents according to their order of receipt of the durable, U constitutes the
utility possibility set for our model. Under our assumptions U is a convex, bounded
subset of the space of Lebesgue integrable functions on the unit interval, L'([0,1]), with
non-empty interior, closed in the norm topology. Convexity is assured by the fact [see
equation (5.4) below] that on the efficient frontier of F s'(a) is inversely proportional to
the aggregate savings rate [y-fc(x,s(a))dx]. Thus the convex combination of two
consumption allocations allows receipt dates for every agent which are less than the same
convex combination of the corresponding assignment functions.

Now an efficient allocation <s',c'>EF generates an allocation of utility u'EU
satisfying (suppress dependence of u on <s,c> hereafter): u(a) > u'(a) a.e. if and only if
ufU. The Hahn-Banach Theorem implies a continuous linear functional p:L'([0,1]) - R
exists, such that p(u') > p(u), VuEU. It is well known that the dual of L'([0,1]) may be
identified with the set of bounded, measurable functions on [0,1]. (See, e.g., Goffman and
Pendrick (1965), Theorem 1, p.147). Therefore, there exists such a function, 0, satisfying:

p(u') = _4u/(a) (a)da > f1Ou(a)(a)da = p(u), V uEU.
Obviously 0(.) must be non-negative, a.e. Moreover, if u' corresponds to an allocation in
which all agents enjoy positive utility from the flow consumption good then, given any
subset A of agents of measure strictly less than one, there is an alternative feasible
allocation making all agents in A strictly better off, and all agents in [0,1]\A strictly
worse off. Therefore 0 must be strictly positive, a.e. The weights 08() correspond to the
function 0(.) normalized to integrate to one.
22To see this, note that co(a,so(0)) = y - 1/h'(e) = cA.



23Even with indivisibility the allocation problem reduces in this way if the durable's services
were fungible across agents - if there were, e.g., a perfect rental market for its services.
There are, of course, good (adverse selection/moral hazard) reasons why such trade in dur-
able services might not obtain, especially in a LDC setting. Moreover, some reports on the
use of Roscas stress their role in financir,g personal expenditures (daughter's wedding, feast
for fellow villagers, tin roof for house) which, though not producing a fungible asset, gener-
ate private consumption benefits lasting for some time that are not transferable to others.
24The similarity of this discussion to classical incentive compatibility considerations may be
misleading, in that there is really only one "type" of agent in our model. Our results are
based on incentive considerations only in the most primitive way - the equal utility
requirement of equilibrium forces an allocation which is in the "non-convex part" of the
overall utility possibility frontier for the economy. So the gains from randomization are
induced by the indivisibility in the mcdel. The non-convexity is due to the possibility of
reassigning agents to different orders of receipt of the durable good. As discussed in the
note justifying (5.1), given an ordering of the agents, as repesented by the convention that
s(a) must be non-decreasing, utility possibilities are convex. By relabelling people at the
same physical allocation one obtains a different distribution of utility among them. The
union of utility possibilities over all possible relabellings is not convex. (See Figure 3.)
The equilibrium incentive constraint of equal utility forces a utility distribution which is in
the intersection of all utility possibility frontiers generated by a relabelling of individuals.
As the Figure shows, the overall utility possibility set must be locally non-convex near
such a point.
25This point can be made formally precise. Suppose that an individual who has the durable

obtains instantaneous utility v(c)+wc where wE[w,w] is an unobservable, individual specific,

taste parameter. Let F(w) denote the fraction of individuals who have a valuation less

than or equal to w and let b denote the mean value of w. Then welfare under the optimal
Bidding Rosca, when bids (b) and receipt dates (s) are functions <b(w),s(w)> of announced
"type" constrained to be incentive compatible, can be written:

WB = T[v(y)+(]-BB(r ( 1-G)) ,

where G is the Gini coefficient associated with the distribution F(w). Thus welfare under a
Bidding Rosca depends positively upon the extent of the dispersion in agents' valuations of
the durable as measured by the Gini coefficient. By constrast, welfare under the Random
Rosca which treats all agents alike remains: WR=T[v(y)+ý]-BA(w/I2). The Bidding

Rosca can dominate with sufficient inequality in the distribution of valuations. A proof of
this result is available from the authors on request.
26This does, of course, depend on the fcrm of the utility function. However, it may be
checked that the only case in which equality across agents of the level of lifetime utilities,
and equality of the rate of marginal utilities of both goods at all dates, does not conflict is
when utility may be written: u(a;<s.c>)=V[fc(a,t)dt + C(T-s(a))]. That is, the two
goods must be perfect substitutes for one another between any two dates.
27The failure of the market to achieve maximal expected utility parallels results obtained in
other literatures where indivisibilities a:e important, such as location models (Mirrlees
(1972) and Arnott and Riley (1977)), club membership (Hillman and Swan (1986)) and
conscription (Bergstrom 1986).
28An income lottery, with competitive equilibrium in a market for consumption loans occur-
ing after the realization of random incomes becomes known, would allow a decentralized
realization of the ex ante expected utility maximum, W .
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